TW202313660A - 變異的金黃色葡萄球菌LukA和LukB多肽和疫苗組合物 - Google Patents

變異的金黃色葡萄球菌LukA和LukB多肽和疫苗組合物 Download PDF

Info

Publication number
TW202313660A
TW202313660A TW110136365A TW110136365A TW202313660A TW 202313660 A TW202313660 A TW 202313660A TW 110136365 A TW110136365 A TW 110136365A TW 110136365 A TW110136365 A TW 110136365A TW 202313660 A TW202313660 A TW 202313660A
Authority
TW
Taiwan
Prior art keywords
amino acid
seq
variant
luka
lukb
Prior art date
Application number
TW110136365A
Other languages
English (en)
Inventor
某瑞 布萊恩
康斯坦丁諾夫 謝爾蓋
格森 杰倫
羅金泉
索馬尼 桑迪普
T 巴克利 彼得
J 托雷斯 維克特
Original Assignee
美商楊森製藥公司
紐約大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商楊森製藥公司, 紐約大學 filed Critical 美商楊森製藥公司
Priority to TW110136365A priority Critical patent/TW202313660A/zh
Publication of TW202313660A publication Critical patent/TW202313660A/zh

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本發明涉及金黃色葡萄球菌殺白細胞素A (LukA)和殺白細胞素B (LukB)的變異多肽,以及編碼LukA、LukB和LukAB變異多肽的多核苷酸。本發明進一步涉及包含這些LukA和LukB變體的疫苗組合物,以及在受試者中產生針對金黃色葡萄球菌的免疫應答的方法。

Description

變異的金黃色葡萄球菌LukA和LukB多肽和疫苗組合物
本發明涉及變異的金黃色葡萄球菌殺白細胞素A (LukA)和殺白細胞素B (LukB)蛋白和多肽、包含這些LukA和LukB變體的疫苗組合物,以及所述疫苗組合物在受試者中誘導免疫應答以治療和/或預防金黃色葡萄球菌感染的用途。
金黃色葡萄球菌引起廣泛的侵襲性疾病,包括敗血症、感染性心內膜炎和中毒性休克,以及不太嚴重的皮膚和軟組織感染(Tong等人,“ Staphylococcus aureusInfections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management,” Clin. Microbiol. Rev. 28(3):603-661 (2015))。目前,沒有批准用於對抗金黃色葡萄球菌的疫苗,治療選擇受到新出現的抗生素耐藥性的進一步限制(Sause等人,“Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureusInfections,” Trends Pharmacol. Sci. 37(3):231-241 (2016))。金黃色葡萄球菌引起多種臨床綜合征的能力通常與基因組含量的主要變化有關(Copin等人,“After the Deluge: Mining Staphylococcus aureusGenomic Data for Clinical Associations and Host-Pathogen Interactions,” Curr. Opin. Microbiol. 41:43-50 (2018) 和Recker等人, “Clonal Differences in Staphylococcus aureusBacteraemia-Associated Mortality,” Nat. Microbiol. 2(10):1381-1388 (2017))。值得注意的是,大約40%的基因組不是所有金黃色葡萄球菌分離株所共有的(Bosi等人,“Comparative Genome-Scale Modelling of Staphylococcus aureusStrains Identifies Strain-Specific Metabolic Capabilities Linked to Pathogenicity,” Proc. Natl. Acad. Sci. USA 113(26):E3801-3809 (2016)),因而使疫苗和生物制品生產的保守靶標的鑒定更加複雜。
本發明旨在克服本領域中的這些和其他限制。
本發明的第一方面涉及變異的金黃色葡萄球菌殺白細胞素A蛋白或其多肽。在一個方面,所述LukA變體是SEQ ID NO:25的LukA蛋白或多肽的變體,包括對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113、Val193的一個或多個氨基酸殘基上的氨基酸取代。
本發明的其他方面涉及具有一個或多個附加氨基酸取代、缺失和/或添加至上述氨基酸的LukA變體。本發明還涉及編碼變異LukA蛋白或多肽的核酸分子,以及包含前述核酸分子的表達載體。
本發明的另一方面涉及變異的金黃色葡萄球菌殺白細胞素B蛋白或其多肽。在一個方面,LukB變體是SEQ ID NO:39的LukB蛋白或多肽的變體,包含對應於SEQ ID NO:39的氨基酸殘基Val53上的氨基酸取代。
在一個方面,LukB變體是SEQ ID NO:39的LukB蛋白或多肽的變體,包含對應於氨基酸殘基Glu45、Glu109、Thr121和Arg154的氨基酸殘基上的氨基酸取代。
本發明的其他方面涉及具有一個或多個附加氨基酸取代、缺失和/或添加至上述氨基酸的LukB變體。本發明還涉及編碼變異LukB蛋白或多肽的核酸分子,以及包含前述核酸分子的表達載體。
本發明的另一方面涉及一種表達載體,所述表達載體包含編碼本文所述LukA變異多肽的核酸分子,所述核酸分子可操作地與編碼本文所述LukB多肽或LukB變異多肽的核酸分子偶聯。
本發明的另一方面涉及包含本文所述的任何一種或多種表達載體的宿主細胞。
本發明的另一個方面涉及包含本文所述LukA變異多肽的金黃色葡萄球菌疫苗組合物。
本發明的另一方面涉及包含本文所述的LukB變異多肽的金黃色葡萄球菌疫苗組合物。
本發明的另一個方面涉及金黃色葡萄球菌疫苗組合物,包含本文所述的LukA變異多肽和本文所述的LukB變異多肽。
本發明的另一方面涉及在受試者中產生針對金黃色葡萄球菌的免疫應答的方法。所述方法包括在所述受試者中可有效產生針對金黃色葡萄球菌的所述免疫應答的條件下,向所述受試者施用本文所述的疫苗組合物。
金黃色葡萄球菌(S. aureus)是導致大量醫院和社區獲得性感染的原因。為了逃避免疫系統的清除,金黃色葡萄球菌采用多種方法,包括分泌被稱為殺白細胞素的雙組分成孔毒素。每個殺白細胞素由兩個約300個氨基酸長的多肽組成,分為宿主細胞靶向(S型,慢,基於其色譜洗脫曲線)和聚合作用(F型,快)的亞單位。在人類金黃色葡萄球菌分離株中已經記載了多達五種殺白細胞素:Panton-Valentine殺白細胞素(PVL,或LukSF-PV)、γ-溶血素(HlgAB和HlgCB)、殺白細胞素ED (LukED)和殺白細胞素AB(LukB,也稱為LukGH)。殺白細胞素與特定的細胞表面蛋白受體結合,並組裝成低聚孔,最終由於快速滲透失調而導致細胞溶解(Spaan等人,“Leukocidins: Staphylococcal Bi-Component Pore-Forming Toxins find their Receptors” Nat. Rev. Microbiol. 15(7):435-447(2017))。
最近發現的殺白細胞素,LukAB (DuMont等,“Characterization of a New Cytotoxin that Contributes to Staphylococcus aureus Pathogenesis” Mol. Microbiol. 79(3):814-825 (2011)),具有幾個區別於其他雙組分殺白細胞素的獨特特征。LukA (S型)和LukB (F型)亞單位作為預組裝的二聚體存在於溶液中,而不是單獨的單體(DuMont等人,“Identification of a Crucial Residue Required for Staphylococcus aureus LukAB Cytotoxicity and Receptor Recognition” Infection and Immunity 82(3):1268-1276 (2014))。而且,LukAB靶向宿主細胞表面的CD11b/CD18整合素(DuMont等,“Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1” Proc Natl Acad Sci USA. 110(26):10794-9 (2013)),不同於PVL、LukED、HlgAB和HlgCB,它們與特定的七種跨膜趨化因子受體相互作用(Spaan等人,“Leukocidins: Staphylococcal Bi-Component Pore-Forming Toxins find their Receptors” Nat. Rev. Microbiol. 15(7):435-447(2017))。最後,LukAB是在使用了原代人白細胞的體外感染模型中負責金黃色葡萄球菌介導的細胞裂解的主要毒素(DuMont等人,“Characterization of a New Cytotoxin that Contributes to Staphylococcus aureus Pathogenesis” Mol. Microbiol. 79(3):814-825 (2011))。這些獨特的特征可能是由LukAB與其他殺白細胞素的差異來解釋的。通常的,在每組中,S型和F型成分分別具有71-82%和65-81%的同一性,而LukA和LukB與其他殺白細胞素只有30%和39%的同一性。重要的是,殺白細胞素AB (LukAB)存在於迄今為止記載的所有人類感染分離株中,並且在最遠的葡萄球菌譜系之間表現出高達20%的氨基酸差異。
鑒於LukAB毒素在金黃色葡萄球菌發病機理和感染中的重要性,本文公開了新的LukA和LukB變異蛋白和多肽。本文公開的LukA和LukB變異蛋白和多肽保留了它們相互之間二聚化的能力,因為它們可以維持天然毒素結構並向免疫系統呈現以產生強大的免疫反應使它們成為理想的疫苗候選物,但缺點是缺乏細胞毒性活性。鑒於每年有大量的人感染金黃色葡萄球菌,這些感染中很大一部分很可能對傳統的抗生素治療無效。本文記載的治療,更重要的是預防此類感染的創新方法包括抑制金黃色葡萄球菌毒力因子,如LukAB,其負責殺死多形核白細胞(PMNs),多形核白細胞(PMNs)是參與防禦金黃色葡萄球菌感染的最關鍵的先天免疫細胞。
本發明涉及變異的金黃色葡萄球菌殺白細胞素蛋白和多肽以及包含這些變異蛋白和多肽的組合物。本發明還涉及一種預防受試者金黃色葡萄球菌感染的方法。
定義
在描述本發明的組合物和方法之前,應當理解,本發明不限於所描述的特定組合物或方法,因為它們可以變化。還應當理解,說明書中使用的術語僅用於描述特定方案或實施例的目的,並不旨在限制本文實施例的範圍,本發明實施例的範圍將僅由所附申請專利範圍來限制。除非另有定義,本文使用的所有技術和科學術語與本領域普通技術人員通常理解的含義相同。盡管與本文描述的方法和材料相似或等同的任何方法和材料可用於本文實施例的實踐或測試,但是現在描述優選的方法、裝置和材料。本文中提到的所有出版物均通過引用整體並入本文。本文中的任何內容均不應被解釋為承認本文中的實施例無權憑借現有發明先於此類公開。
必須注意的是,如本文和所附申請專利範圍中所使用的,單數形式“一個”、“一種”和“該”包括複數指代形式,除非上下文另有明確規定。
除非另有說明,否則任何數值,如本文所述的濃度或濃度範圍,應理解為在所有情況下都被術語“約”修飾。因此,數值通常包括所述值的10%浮動範圍。例如,1mg/ml的濃度包括0.9mg/ml~1.1mg/ml。同樣,1%~10%(w/v)的濃度範圍包括0.9%(w/v)~11%(w/v)。如本文所使用的,數值範圍的使用明確地包括所有可能的子範圍,該範圍內的所有單個數值,包括數值在該範圍內的整數和分數,除非上下文明確地另外指出。
除非另有說明,一系列要素之前的術語“至少”應理解為指該系列中的每個要素。本領域技術人員將認識到或能夠僅使用常規實驗來確定這裏描述的本發明的具體實施例的許多等同物。這些等同物旨在包含在本發明中。
如本文所使用的,術語“包含(comprises)”、“含有(comprising)”、“包括(includes)”、“包括(including)”、“具有”、“蘊含”、“由...構成”、“由...組成”或其任何其他不同表述,將被理解為包含所述整數或整數組,但不排除任何其他整數或整數組,並且旨在是非排他性的或開放式的。例如,包括一系列要素的組合物、混合物、工藝、方法、制品或設備不一定僅限於這些要素,而是可以包括未明確列出的或這種組合物、混合物、工藝、方法、制品或設備固有的其他要素。此外,除非有相反的明確說明,“或”指的是包含性的或,而不是排他性的或。例如,條件A或B由以下任一項滿足:A為真(或存在),B為假(或不存在),A為假(或不存在),B為真(或存在),A和B都為真(或存在)。如本文所使用的,多個引用的要素之間的連接術語“和/或”被理解為包括單獨的和組合的選項。例如,當兩個要素通過“和/或”連接在一起時,第一個選項指的是第一個要素的適用性,而沒有第二個要素。第二種選擇是指沒有第一種要素的第二種要素的適用性。第三種選擇是指第一和第二要素一起的適用性。這些選項中的任何一個被理解為落入該含義內,因此滿足這裏使用的術語“和/或”的要求。一個以上選項的同時適用性也被理解為落入該含義內,因此滿足術語“和/或”的要求。
如本文所用,術語“由...組成”或其不同表述諸如“由...構成”或“其組成為”,如在整個說明書和申請專利範圍中所使用的,表示包括任何引用的整數或整數組,但是沒有額外的整數或整數組可以添加到特定的方法、結構或組成中。
如本文所使用的,術語“基本上由...組成(consists essentially of)”或不同表述,例如貫穿說明書和申請專利範圍所使用的“基本上由...構成(consist essentially of)”或“基本上由...組成(consisting essentially of)”,表示包括任何列舉的整數或整數組,以及任選包括任何列舉的整數或整數組,其不會實質上改變特定方法、結構或組成的基本或新穎性。
如本文所用,“受試者”是指任何動物,優選哺乳動物,最優選人。本文使用的術語“哺乳動物”包括任何哺乳動物。哺乳動物的示例包括但不限於牛、馬、羊、豬、貓、狗、小鼠、大鼠、兔子、豚鼠、猴子、人類等,更優選人類。
還應該理解的是,本文使用的術語“大約”、“近似”、“一般”、“基本上/實質上”和類似術語,當指優選發明的部件的尺寸或特性時,表示所述尺寸/特性不是嚴格的範圍或參數,並且不排除功能上相同或相似的微小變化,如本領域普通技術人員所理解的。至少,包括數值參數的這種參考將包括使用本領域接受的數學和工業原理的變化(例如,舍入、測量或其他系統誤差、制造公差等),不會改變最低有效數字。
在兩種或多種核酸或多肽序列(例如,葡萄球菌LukA和LukB多肽以及編碼它們的多核苷酸)的上下文中,術語“完全相同”或“同一性”百分比是指兩種或多種序列或子序列,當使用以下序列比較算法之一或通過目測進行比較和比對以獲得最大對應性時,它們是相同的或具有相同的特定百分比的氨基酸殘基或核苷酸。
對於序列比較,通常將一個序列作為參考序列,測試序列與之進行比較。當使用序列比較算法時,測試和參考序列被輸入到計算機中,必要時指定子序列坐標,並且指定序列算法程序參數。然後,序列比較算法根據指定的程序參數,計算測試序列相對於參考序列的序列同一性百分比。
用於比較的序列的最佳比對方法可以通過下述方法進行:例如通過Smith & Waterma的局部同源性算法(Adv. Appl. Math. 2:482 (1981)),通過Needleman & Wunsch的同源性比對算法( J. Mol. Biol. 48:443 (1970)),通過Pearson & Lipman的相似性搜索方法(Proc. Nat'l. Acad. Sci. USA 85:2444 (1988)),這些算法通過計算機化(GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI),或通過視覺檢查(一般參見,Current Protocols in Molecular Biology, F.M. Ausubel等人,eds., Current Protocols, (1995 Supplement))實現。
適用於確定序列同一性百分比和序列相似性的算法的例子是BLAST和BLAST 2.0算法,它們分別記載於Altschul等人((1990) J. Mol. Biol. 215: 403-410) 和Altschul等人((1997) Nucleic Acids Res. 25: 3389- 3402)的研究中。用於執行BLAST分析的軟件可通過國家生物技術信息中心公開獲得。
除了計算序列同一性百分比,BLAST算法還對兩個序列之間的相似性進行統計分析(例如,參見Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993))。BLAST算法提供的一種相似性測量是最小和概率(P(N)),它提供了兩個核苷酸或氨基酸序列之間偶然發生匹配的概率的指示。例如,如果測試核酸與參考核酸的比較中的最小和概率小於約0.1,更優選小於約0.01,最優選小於約0.001,則認為核酸類似於參考序列。
如下所述,兩個核酸序列或多肽基本相同的進一步指示是由第一個核酸編碼的多肽與由第二個核酸編碼的多肽在免疫學上可進行交叉反應。因此,一種多肽通常與第二種多肽基本相同,例如,這兩種多肽僅在保守取代上有所不同。兩個核酸序列基本相同的另一個指示是這兩個分子在嚴格的條件下可相互雜交。
如本文所用,術語“多核苷酸”,同義地稱為“核酸分子”、“核苷酸”或“核酸”,是指任何多核糖核苷酸或多脫氧核糖核苷酸,其可以是未修飾的RNA或DNA或修飾的RNA或DNA。“多核苷酸”包括但不限於單鏈和雙鏈DNA、單鏈和雙鏈區域的混合物DNA、單鏈和雙鏈RNA、單鏈和雙鏈區域的混合物RNA、包含單鏈或更典型地雙鏈的DNA和RNA的雜交分子或單鏈和雙鏈區域的混合物。此外,“多核苷酸”是指包含RNA或DNA或RNA和DNA的三鏈區域。術語多核苷酸還包括含有一個或多個修飾鹼基的DNA或RNA,以及為了穩定性或其他原因而進行骨架修飾的DNA或RNA。“修飾的”鹼基包括,例如,三苯甲基化的鹼基和獨特的鹼基,如肌苷。可以對DNA和RNA進行多種修飾;因此,“多核苷酸”包括通常在自然界中發現的多核苷酸的化學、酶促或代謝修飾形式,以及病毒和細胞特有的DNA和RNA的化學形式。“多核苷酸”也包括相對較短的核酸鏈,通常稱為寡核苷酸。
如本文所用,術語“載體”是指例如任意數量的核酸,其中可以插入所需序列,例如限制性和連接,用於在遺傳環境之間運輸或在宿主細胞中表達。核酸載體可以是DNA或RNA。載體包括但不限於質粒、噬菌體、噬菌粒、細菌基因組、病毒基因組、自擴增RNA、複制子。
如本文所用,術語“宿主細胞”是指包含本發明核酸分子的細胞。“宿主細胞”可以是任何類型的細胞,例如原代細胞、培養的細胞或來自細胞系的細胞。在一個實施方案中,“宿主細胞”是用本發明的核酸分子轉染或轉導的細胞。在另一個實施方案中,“宿主細胞”是這種轉染或轉導細胞的後代或潛在後代。細胞的子代可能與親代細胞相同,也可能不同,例如,由於突變或環境影響(可能發生在子代中)或核酸分子整合到宿主細胞基因組中。
本文所用,術語“表達”是指基因產物的生物合成。該術語包括將基因轉錄成RNA。該術語還包括將RNA翻譯成一種或多種多肽,還包括所有天然存在的轉錄後和翻譯後的修飾。表達的多肽可以在宿主細胞的細胞質內,進入細胞外環境,如細胞培養物的生長培養基,或固定在細胞膜上。
如本文所用,術語“肽”、“多肽”或“蛋白質”可以指由氨基酸組成的分子,並且可以被本領域技術人員認為為蛋白質。術語“肽”、“多肽”和“蛋白質”在本文中可以互換使用,指任何長度的氨基酸聚合物。聚合物可以是直鏈或支鏈的,它可以包含修飾的氨基酸,並且它可以被非氨基酸中斷。該術語還包括天然的或通過幹預修飾的氨基酸聚合物;例如二硫鍵形成、糖基化、脂質化、乙醯化、磷酸化或任何其他操作或修飾,例如與標記成分結合。定義還包括例如含有一種或多種氨基酸類似物(包括例如非天然氨基酸等)的多肽,以及本領域已知的其他修飾。
本文所述的多肽序列是根據通常的慣例書寫的,其中肽的N-末端區域在左邊,C-末端區域在右邊。盡管氨基酸的異構形式是已知的,但是除非另另有明確說明,否則所代表的是氨基酸的左旋形式。
術語“分離的”可以指基本上不含細胞物質、細菌物質、病毒物質或其原始來源的培養基(當通過重組DNA技術產生時)、或化學前體或其他化學物質(當化學合成時)的核酸或多肽。此外,分離的多肽是指可以作為分離的多肽給予受試者的多肽;換句話說,如果多肽粘附在柱上或嵌入凝膠中,就不能簡單地認為它是“分離的”。此外,“分離的核酸片段”或“分離的肽”是並非作為片段天然存在和/或通常不處於功能狀態的核酸或蛋白質片段。
如本文所用,短語“免疫應答”或其等同的表述“免疫學應答”是指在受試者中針對本發明的蛋白質、肽、碳水化合物或多肽的體液(抗體介導的)、細胞(由抗原特異性T細胞或其分泌產物介導的)或體液和細胞應答的發展。這種應答可以是通過施用免疫原誘導的主動應答,也可以是通過施用抗體、含有抗體的物質或活化的T細胞誘導的被動應答。細胞免疫應答是通過與第一類或第二類MHC分子相關的多肽表位的呈遞而引發的,以活化抗原特異性CD4 (+)輔助性T細胞和/或CD8 (+)細胞毒性T細胞。這種應答還可能涉及單核細胞、巨噬細胞、自然殺傷細胞、嗜鹼性粒細胞、樹突狀細胞、星形膠質細胞、小膠質細胞、嗜酸性粒細胞或先天免疫的其他成分的活化。本文所用的“主動免疫”是指通過施用抗原而賦予受試者的任何免疫。
金黃色葡萄球菌殺白細胞素 A 變體
本發明的第一方面涉及變體,即非天然存在的金黃色葡萄球菌( S. aureus)殺白細胞素A (LukA)蛋白質或多肽。這些變異的LukA蛋白或多肽包含一個或多個氨基酸殘基的插入、取代和/或缺失,使得LukAB雙組分毒素無細胞毒性,穩定LukAB異二聚體,提高解鏈溫度,和/或增加溶解度。如本文所述,這些變異的LukA蛋白和多肽是理想的疫苗抗原候選物,可以單獨給藥或與殺白細胞素B (LukB)野生型或變異蛋白或多肽聯合給藥。當與LukB蛋白或其多肽聯合給藥時,所得類毒素模擬金黃色葡萄球菌LukB毒素的結構,從而促進產生針對金黃色葡萄球菌最有效毒素之一的強大免疫應答。在任意的實施方案中,LukA變異多肽是全長LukA蛋白的變體,所述全長LukA蛋白包含對應於全長成熟LukA蛋白序列的所有氨基酸殘基。本文所指的“成熟”殺白細胞素蛋白序列是缺乏氨基末端分泌信號的殺白細胞素蛋白序列,其通常包含氨基末端的前27-28個氨基酸殘基。
在任意的實施方案中,LukA變異多肽是小於全長成熟LukA蛋白的變體。在任意的實施方案中,LukA變異多肽長度至少為100個氨基酸殘基。在任意的實施方案中,LukA變異多肽是至少110、至少120、至少130、至少140、至少150、至少160、至少170、至少180、至少190、至少200、至少210、至少220、至少230、至少240、至少250、至少260、至少270、至少280、至少290、至少300個氨基酸殘基的長度。
雖然本文描述的示例性LukA變異蛋白和多肽是克隆複合物CC8 (SEQ ID NO:1)和CC45 (SEQ ID NO:2)變異的LukA蛋白(見下表1),但是本領域技術人員將容易理解,鑒定LukA的氨基酸取代和/或缺失所基於的SEQ ID NO:1和SEQ ID NO:2是在各種克隆複合物中保守的氨基酸殘基,或者是在各種克隆複合物中高度保守的LukA區域內的氨基酸殘基。事實上,來自15個不同金黃色葡萄球菌菌株的LukA蛋白序列的比對(見圖1)顯示,本文中鑒定為易變異殘基的氨基酸殘基是在所有15個比對的LukA氨基酸序列中保守的殘基。雖然所鑒定的變異殘基的位置在單個LukA序列之間可能不同,但序列比對顯示了這些位置之間的對應關系。為了清楚起見,從序列比對中產生具有SEQ ID NO:25的氨基酸序列的LukA共有序列,並用於指定特定氨基酸變異的位置。例如,SEQ ID NO:25中賴氨酸殘基83位的氨基酸取代對應於SEQ ID NO:1的LukA序列中80位的賴氨酸殘基,對應於SEQ ID NO:2的LukA序列中81位的賴氨酸殘基,以及對應於SEQ ID NO:26–38的LukA序列中83位的賴氨酸殘基。因此,本文所述的經鑒定的氨基酸變體可以普遍應用於現在已知的或將來的任何LukA氨基酸序列的相應氨基酸殘基。
根據本發明的這個方面,在任意的實施方案中,LukA變異多肽包含對應於SEQ ID NO:25的殘基Lys83、Ser141、Val113、Val193的一個或多個氨基酸殘基上的氨基酸殘基插入、取代和/或缺失。在任意的實施方案中,除了上述一個或多個氨基酸殘基插入、取代和/或缺失之外,LukA變異多肽還包含對應於SEQ ID NO:25的Glu323的氨基酸殘基上的氨基酸取代或缺失。在任意的實施方案中,在Glu323的氨基酸取代或缺失包括在SEQ ID NO:25的323位(Glu323Ala)的穀氨酸到丙氨酸的取代。
在任意的實施方案中,在LukA(以及本文所述的LukB)的一個或多個鑒定位置的氨基酸取代是保守取代。這種保守的取代包括用一個氨基酸殘基替換另一個同一類型的氨基酸殘基,這種替換作為功能等同物,導致無聲的改變。也就是說,相對於天然序列的變化不會明顯降低LukA的基本性質。這些種類的氨基酸殘基包括非極性(疏水性)氨基酸(例如丙氨酸、亮氨酸、異亮氨酸、纈氨酸、脯氨酸、苯丙氨酸、色氨酸和甲硫氨酸);極性中性氨基酸(例如甘氨酸、絲氨酸、蘇氨酸、半胱氨酸、酪氨酸、天冬醯胺和穀氨醯胺);帶正電荷的(鹼性)氨基酸(如精氨酸、賴氨酸和組氨酸);和帶負電荷的(酸性)氨基酸(例如天冬氨酸和穀氨酸)。
在其他實施方案中,本文所述的變異殺白細胞素多肽的一個或多個鑒定位置的氨基酸取代是非保守性改變(即破壞鑒定區域的序列、結構、功能或活性的取代)。為了減少或減輕蛋白質的細胞毒性,這種取代可能是理想的。非保守取代包括用不同種類的氨基酸殘基取代一個特定種類的氨基酸殘基。例如,用極性中性氨基酸取代非極性(疏水性)氨基酸殘基,反之亦然。在另一個實施方案中,非保守取代包括帶正電荷(鹼性)氨基酸殘基被帶負電荷(酸性)氨基酸殘基(例如天冬氨酸和穀氨酸)取代,反之亦然。這種分子改變可以通過本領域熟知的方法完成,包括使用單鏈模板在質粒模板上進行引物延伸(Kunkel等人,Proc. Acad. Sci., USA 82:488-492 (1985), which is hereby incorporated by reference in its entirety,在本文中通過全文引入作為參考),雙鏈DNA模板(Papworth等人,Strategies 9(3):3-4 (1996),在本文中通過全文引入作為參考),和通過PCR克隆(Braman,J. (ed.), IN VITRO MUTAGENESIS PROTOCOLS, 2nd ed. Humana Press, Totowa, N.J. (2002),其全部內容通過引用結合於此)。
在任意的實施方案中,本發明的LukA變異多肽在對應於SEQ ID NO:25的83位(Lys83Met)賴氨酸的殘基上包含賴氨酸到甲硫氨酸的取代。在任意的實施方案中,本發明的LukA變異多肽在對應於SEQ ID NO:1的80位(Lys80Met)賴氨酸的殘基上包含賴氨酸到甲硫氨酸的取代。在任意的實施方案中,本發明的LukA變異多肽包含在對應於SEQ ID NO:2的81位(Lys81Met)賴氨酸的殘基上包含賴氨酸到甲硫氨酸的取代。
在任意的實施方案中,本發明的LukA變異多肽在對應於SEQ ID NO:25的141位(Ser141Ala)的絲氨酸的殘基上包含絲氨酸到丙氨酸的取代。在任意的實施方案中,本發明的LukA變異多肽在對應於SEQ ID NO:1的138位(Ser138Ala)的絲氨酸的殘基上包含絲氨酸到丙氨酸的取代。在任意的實施方案中,本發明的LukA變異多肽在對應於SEQ ID NO:2的139位(Ser139Ala)的絲氨酸的殘基上包含絲氨酸到丙氨酸的取代。
在任意的實施方案中,本發明的LukA變異多肽在對應於SEQ ID NO:25的113 位(Val113Ile)的纈氨酸的殘基上包含纈氨酸到異亮氨酸的取代。在任意的實施方案中,本發明的LukA變異多肽在對應於SEQ ID NO:1的110 位(Val110Ile)的纈氨酸的殘基上包含纈氨酸到異亮氨酸的取代。在任意的實施方案中,本發明的LukA變異多肽在對應於SEQ ID NO:2的111位 (Val111Ile)的纈氨酸的殘基上包含纈氨酸到異亮氨酸的取代。
在任意的實施方案中,本發明的LukA變異多肽在對應於SEQ ID NO:25的193 位(Val193Ile)的纈氨酸的殘基上包含纈氨酸到異亮氨酸的取代。在任意的實施方案中,本發明的LukA變異多肽在對應於SEQ ID NO:1的190 位(Val190Ile)的纈氨酸的殘基上包含纈氨酸到異亮氨酸的取代。在任意的實施方案中,本發明的LukA變異多肽在對應於SEQ ID NO:2的191位 (Val191Ile)的纈氨酸的殘基上包含纈氨酸到異亮氨酸的取代。
在任意的實施方案中,本發明的LukA變異多肽除了對應於SEQ ID NO:25的Lys83、Ser141、Val113和Val193的殘基上的任何一個或多個取代之外,還包含對應於SEQ ID NO:25的穀氨酸殘基323 位(Glu323Ala)的殘基上的穀氨酸到丙氨酸的取代。在任意的實施方案中,本發明的LukA變異多肽除了對應於SEQ ID NO:1的Lys80、Ser138、Val110、Val190的殘基上的任何一個或多個取代之外,還包含對應於SEQ ID NO:1的穀氨酸殘基320 位(Glu320Ala)的殘基上的穀氨酸到丙氨酸的取代。在任意的實施方案中,本發明的LukA變異多肽除了對應於SEQ ID NO:25的Lys81、Ser139、Val111、Val191的殘基上的任何一個或多個取代之外,還包含對應於SEQ ID NO:2的穀氨酸殘基321位 (Glu321Ala)的殘基上的穀氨酸到丙氨酸的取代。
在任意的實施方案中,本發明的LukA變異多肽包含對應於SEQ ID NO:25的Lys83、Ser141、Val113和Val193的兩個前述氨基酸殘基上具有氨基酸殘基插入、取代和/或缺失的多肽。在任意的實施方案中,LukA變異多肽包含在三個前述氨基酸殘基上的氨基酸殘基插入、取代和/或缺失。在任意的實施方案中,LukA變異多肽包含在所有四個前述氨基酸殘基上的氨基酸殘基插入、取代和/或缺失。在任意的實施方案中,LukA變異多肽在對應於SEQ ID NO:25的Lys83Met、Ser141Ala、Val113Ile和Val193Ile的上述氨基酸殘基上包含賴氨酸到甲硫氨酸、絲氨酸到丙氨酸和纈氨酸到異亮氨酸的氨基酸取代。在任意的實施方案中,LukA變異多肽進一步包括對應於SEQ ID NO:25的殘基323位 (Glu323Ala)的氨基酸殘基處穀氨酸到丙氨酸的氨基酸取代,即變異LukA包括對應於SEQ ID NO:25的Lys83Met、Ser141Ala、Val113Ile、Val193Ile和Glu323Ala的取代。
本發明的示例性變異LukA多肽具有對應於SEQ ID NO:25中的Lys83Met、Ser141Ala、Val113Ile、Val193Ile和Glu323Ala的氨基酸取代。在任意的實施方案中,LukA變異多肽是CC8 LukA變體,其包含對應於SEQ ID NO:1中Lys80Met、Ser138Ala、Val110Ile、Val190Ile和Glu320Ala的氨基酸取代。在任意的實施方案中,該LukA變異多肽具有SEQ ID NO:3的氨基酸序列,或具有與SEQ ID NO:3的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意的實施方案中,LukA變異多肽是CC45 LukA變異多肽,其包含對應於SEQ ID NO:2中Lys81Met、Ser139Ala、Val111Ile、Val191Ile和Glu321Ala的氨基酸取代。在任意的實施方案中,該LukA變異多肽具有SEQ ID NO:4的氨基酸序列,或具有與SEQ ID NO:4的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。其他示例性的LukA變異多肽包括SEQ ID NO:26-38的LukA蛋白質中的任何一種,其包含對應於SEQ ID NO:25中Lys83Met、Ser141Ala、Val113Ile、Val193Ile和Glu323Ala的取代的氨基酸取代。
在任意的實施方案中,本文所述的LukA變異多肽包含對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的一個或多個氨基酸殘基上的氨基酸取代。在一個實施方案中,在一個或多個前述殘基上的氨基酸取代引入了能夠形成二硫鍵的半胱氨酸殘基,以穩定LukAB異二聚體結構的構象。例如,在一個實施方案中,本文所述的LukA變異多肽在對應於SEQ ID NO:25的Tyr74 (Tyr74Cys)的氨基酸殘基上包含酪氨酸至半胱氨酸的取代,並且在對應於SEQ ID NO:25的Asp140 (Asp140Cys)的氨基酸殘基上包含天冬醯胺至半胱氨酸的取代。74位和140位處的這些半胱氨酸殘基形成二硫鍵,從而相對於野生型LukA或相對於不含能形成二硫鍵的成對半胱氨酸殘基的其他變異LukA多肽,增加了變異LukA的熱穩定性。
在另一個實施方案中,本文所述的LukA變異多肽在對應於SEQ ID NO:25的Gly149 (Gly149Cys)的氨基酸殘基上包含甘氨酸到半胱氨酸的取代,並且在對應於SEQ ID NO:25的Gly156 (Gly156Cys)的氨基酸殘基上包含甘氨酸到半胱氨酸的取代。這些在149和156位引入的半胱氨酸殘基形成二硫鍵,從而相對於野生型LukA或相對於不含能形成二硫鍵的成對半胱氨酸殘基的其他變異LukA多肽增加了變異LukA的熱穩定性。
在任意的實施方案中,LukA變異多肽在對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,在任一氨基酸殘基上的氨基酸取代都包括如上所述的半胱氨酸殘基的引入。在任意的實施方案中,LukA變異多肽在對應於SEQ ID NO:1的氨基酸殘基Tyr71、Asp137、Gly146和Gly153的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,任一氨基酸殘基上的氨基酸取代都包括引入半胱氨酸殘基。在任意的實施方案中,LukA變異多肽在對應於SEQ ID NO:2的氨基酸殘基Tyr72、Asp138、Gly147和Gly154的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,任一氨基酸殘基上的氨基酸取代都包括引入半胱氨酸殘基。
在任意的實施方案中,LukA變異多肽包含在對應於Lys83、Ser141、Val113、Val193和Glu323的一個或多個氨基酸殘基上的氨基酸取代,以及在對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的一個或多個氨基酸殘基上的氨基酸取代。在任意的實施方案中,LukA變異多肽包含對應於SEQ ID NO:25的殘基Lys83、Ser141、Val113、Val193和Glu323以及殘基Tyr74、Asp140、Gly149和Gly156的氨基酸殘基上的氨基酸取代。
在任意的實施方案中,示例性的LukA變異多肽是CC8 LukA變異多肽,其在對應於SEQ ID NO:1的Lys80、Ser138、Val110、Val190、Glu320、Tyr71、Asp137、Gly146和Gly153中每一個的殘基上具有氨基酸取代。在任意的實施方案中,示例性的LukA變異多肽是CC8 LukA變異多肽,其在對應於SEQ ID NO:1的Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Glu320Ala、Tyr71Cys、Asp137Cys、Gly146Cys和Gly153Cys中每一個的殘基上具有氨基酸取代。在任意的實施方案中,該CC8 LukA變異多肽包含SEQ ID NO:5的氨基酸序列,或具有與SEQ ID NO:5的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意的實施方案中,示例性的LukA變異多肽是CC45 LukA變異多肽,其在對應於SEQ ID NO:2的Lys81、Ser139、Val111、Val191、Glu321、Tyr72、Asp138、Gly147和Gly154中每一個的殘基上具有氨基酸取代。在任意的實施方案中,示例性的LukA變異多肽是CC45 LukA變異多肽,其在對應於SEQ ID NO:2的Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Glu321Ala、Tyr72Cys、Asp138Cys、Gly147Cys和Gly154Cys中每一個的殘基上具有氨基酸取代。在任意的實施方案中,該CC45 LukA變異多肽包含SEQ ID NO:6的氨基酸序列,或具有與SEQ ID NO:6的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
其他示例性的LukA變異多肽包括SEQ ID NO:26-38的LukA蛋白質中的任何一種,其包含對應於SEQ ID NO:25的Lys83Met、Ser141Ala、Val113Ile、Val193Ile、Glu323、Tyr74、Asp140、Gly149和Gly156的氨基酸取代。
在任意的實施方案中,本文所述的LukA變異多肽在對應於SEQ ID NO:25的氨基酸殘基Thr249的氨基酸殘基上包含氨基酸取代或缺失。在任意的實施方案中,LukA變體包含在對應於Thr249的殘基上的取代,其中所述取代是在該殘基(Thr249Val)上蘇氨酸到纈氨酸的取代。在任意的實施方案中,本文所述的LukA變異多肽在對應於SEQ ID NO:1的氨基酸殘基Thr246的氨基酸殘基上包含氨基酸取代或缺失。在任意的實施方案中,本文所述的LukA變異多肽在對應於SEQ ID NO:2的氨基酸殘基Thr247的氨基酸殘基上包含氨基酸取代或缺失。
在任意的實施方案中,本文描述的LukA變異多肽包含在對應於SEQ ID NO:25的Thr249的氨基酸殘基上的氨基酸取代,與本文描述的任何其他氨基酸殘基取代相結合,即在對應於SEQ ID NO:25的Lys83、Ser141、Val113、Val193、Glu323、Tyr74、Asp140、Gly149和Gly156的殘基上的取代。在任意的實施方案中,本文所述的LukA變異多肽包含對應於SEQ ID NO:25的Thr249的氨基酸殘基上的氨基酸取代,以及本文所述的至少兩個、至少三個、至少四個、至少五個、至少六個、至少七個、至少八個或所有九個其他氨基酸殘基取代。在任意的實施方案中,LukA變異多肽在對應於SEQ ID NO:25的Lys83、Ser141、Val113、Val193、Glu323和Thr249的每個殘基上包含氨基酸取代。
在任意的實施方案中,示例性的LuCA變異多肽是CC8 LukA變異多肽,其在對應於SEQ ID NO:1的Lys80、Ser138、Val110、Val190、Glu320和Thr246中每一個的殘基上具有氨基酸取代。在任意的實施方案中,示例性的LukA變異多肽是CC8 LukA變異多肽,其在對應於SEQ ID NO:1的Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Glu320Ala和Thr246Val中每一個的殘基上具有氨基酸取代。在一個實施方案中,在對應於上述每個位置的殘基上具有氨基酸取代的示例性的LukA變異多肽具有SEQ ID NO:7的氨基酸序列,或具有與SEQ ID NO:7的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意的實施方案中,示例性的LukA變異多肽是CC45 LukA變異多肽,其在對應於SEQ ID NO:2的Lys81、Ser139、Val111、Val191、Glu321和Thr247中每一個的殘基上具有氨基酸取代。在任意的實施方案中,示例性的LukA變異多肽是CC45 LukA變異多肽,其在對應於SEQ ID NO:2的Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Glu321Ala和Thr247Val中每一個的殘基上具有氨基酸取代。在一個實施方案中,在對應於上述每個位置的殘基上具有氨基酸取代的示例性的LukA變異多肽具有SEQ ID NO:8的氨基酸序列,或具有與SEQ ID NO:8的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
其他示例性的LukA變異多肽包括SEQ ID NO:26-38的LukA蛋白中的任何一種,其在對應於SEQ ID NO:25的Lys83、Ser141、Val113、Val193、Glu323和Thr249的氨基酸殘基上包含所述氨基酸取代。
在任意的實施方案中,LukA變異多肽在對應於SEQ ID NO:25的Lys83、Ser141、Val113、Val193、Glu323、Thr249、Tyr74、Asp140、Gly149和Gly156的每個殘基上包含氨基酸取代。
在任意的實施方案中,示例性的LukA變異多肽是CC8 LukA變異多肽,其在對應於SEQ ID NO:1的Lys80、Ser138、Val110、Val190、Glu320、Tyr71、Asp137、Gly146、Gly153和Thr246中每一個的殘基上具有氨基酸取代。在任意的實施方案中,示例性的LukA變異多肽是CC8 LukA變異多肽,其在對應於SEQ ID NO:1的Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Glu320Ala、Tyr71Cys、Asp137Cys、Gly146Cys、Gly153Cys和Thr246Val中每一個的殘基上具有氨基酸取代。在一個實施方案中,在對應於上述每個位置的殘基上具有氨基酸取代的示例性的LukA變異多肽具有SEQ ID NO:9的氨基酸序列,或具有與SEQ ID NO:9的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意的實施方案中,示例性的LukA變異多肽是CC45 LukA變異多肽,其在對應於SEQ ID NO:2的Lys81、Ser139、Val111、Val191、Glu321、Tyr72、Asp138、Gly147、Gly154和Thr247中每一個的殘基上具有氨基酸取代。在任意的實施方案中,示例性的LukA變異多肽是CC45 LukA變異多肽,其在對應於SEQ ID NO:2的Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Glu321Ala、Tyr72Cys、Asp138Cys、Gly147Cys、Gly154Cys和Thr247Ala中每一個的殘基上具有氨基酸取代。在一個實施方案中,在對應於上述每個位置的殘基上具有氨基酸取代的示例性的LukA變異多肽具有SEQ ID NO:10的氨基酸序列,或具有與SEQ ID NO:10的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
其他示例性的LukA變異多肽包括SEQ ID NO:26-38的LukA蛋白質中的任一種,其在對應於SEQ ID NO:25的Lys83、Ser141、Val113、Val193、Glu323、Thr249、Tyr74、Asp140、Gly149和Gly156的殘基上包含所述氨基酸取代。
下表1提供了本文公開的示例性的變異LukA氨基酸序列。
1. 示例性 LukA 多肽氨基酸序列
SEQ ID NO 名稱 描述
1 LukA CC8 WT HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPTYDKNVLLVKKQGSIHSNLKFESHKEEKNSNWLKYPSEYHVDFQVKRNRKTEILDQLPKNKISTAKVDSTFSYSSGGKFDSTKGIGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWSVIANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKYSDDNKPYKEG
  2   LukA CC45 WT ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVKKQGSIHSNLKFESHRNETNASWLKYPSEYHVDFQVQRNPKTEILDQLPKNKISTAKVDSTFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWSVVANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFLTYISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYKEG  
3 LukA CC8 W95E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPTYDKNVLLVK M QGSIHSNLKFESHKEEKNSNWLKYPSEYH I DFQVKRNRKTEILDQLPKNKISTAKVD A TFSYSSGGKFDSTKGIGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWS I IANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKYSDDNKPYK A G  
4 LukA CC45 W95E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVK M QGSIHSNLKFESHRNETNASWLKYPSEYH I DFQVQRNPKTEILDQLPKNKISTAKVD A TFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWS I VANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFLTYISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G  
5 LukA CC8 W95W72 E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Tyr71Cys, Asp137Cys,  Gly146Cys, Gly153Cys HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPT C DKNVLLVK M QGSIHSNLKFESHKEEKNSNWLKYPSEYH I DFQVKRNRKTEILDQLPKNKISTAKV CA TFSYSSG C KFDSTK C IGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWS I IANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKYSDDNKPYK A G  
6 LukA CC45 W95W72E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile, Tyr72Cys, Asp138Cys,  Gly147Cys, Gly154Cys ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPT C DKNVLLVK M QGSIHSNLKFESHRNETNASWLKYPSEYH I DFQVQRNPKTEILDQLPKNKISTAKV CA TFSYSLG C KFDSTK C IGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWS I VANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFLTYISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G
7 LukA CC8 W97E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Thr246Val HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPTYDKNVLLVK M QGSIHSNLKFESHKEEKNSNWLKYPSEYH I DFQVKRNRKTEILDQLPKNKISTAKVN A TFSYSSGGKFDSTKGIGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWS I IANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFL V YLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKYSDDNKPYK A G
8 LukA CC45 W97 E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile, Thr247Val ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVK M QGSIHSNLKFESHRNETNASWLKYPSEYH I DFQVQRNPKTEILDQLPKNKISTAKVD A TFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWS I VANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFL V YISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G
9 LukA CC8 W97 W72E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Thr246Val, Tyr71Cys, Asp137Cys, Gly146Cys, Gly153Cys HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPT C DKNVLLVK M QGSIHSNLKFESHKEEKNSNWLKYPSEYH I DFQVKRNRKTEILDQLPKNKISTAKV CA TFSYSSG C KFDSTK C IGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWS I IANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFL V YLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKYSDDNKPYK A G
10 LukA CC45 W97 W72 E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile, Thr247Val, Tyr72Cys, Asp138Cys,  Gly147Cys, Gly154Cys ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPT C DKNVLLVK M QGSIHSNLKFESHRNETNASWLKYPSEYH I DFQVQRNPKTEILDQLPKNKISTAKV CA TFSYSLG C KFDSTK C IGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWS I VANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFL V YISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G  
11 LukA CC45 W94E321A, Lys81Leu, Ser139Ala, Val111Ile, Val191Ile   ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVK L QGSIHSNLKFESHRNETNASWLKYPSEYH I DFQVQRNPKTEILDQLPKNKISTAKVD A TFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWS I VANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFLTYISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G
12 LukA CC45 W96E321A, Lys81Leu, Ser139Ala, Val111Ile, Val191Ile, Thr247Val   ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVK L QGSIHSNLKFESHRNETNASWLKYPSEYH I DFQVQRNPKTEILDQLPKNKISTAKVD A TFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWS I VANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFL V YISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G
13 LukA CC8Glu320Ala   HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPTYDKNVLLVK KQGSIHSNLKFESHKEEKNSNWLKYPSEYH VDFQVKRNRKTEILDQLPKNKISTAKVD STFSYSSGGKFDSTKGIGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWS VIANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKYSDDNKPYK A G
14 LukA CC45Glu321Ala ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVKKQGSIHSNLKFESHRNETNASWLKYPSEYHVDFQVQRNPKTEILDQLPKNKISTAKVDSTFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWSVVANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFLTYISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G
64 LukA CC8 Δ 10 HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPTYDKNVLLVK KQGSIHSNLKFESHKEEKNSNWLKYPSEYH VDFQVKRNRKTEILDQLPKNKISTAKVD STFSYSSGGKFDSTKGIGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWS VIANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKY
65 LukA CC45 Δ 10 ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVKKQGSIHSNLKFESHRNETNASWLKYPSEYHVDFQVQRNPKTEILDQLPKNKISTAKVDSTFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWSVVANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFLTYISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKY
金黃色葡萄球菌殺白細胞素 B(LukB) 變體
本發明的另一方面涉及金黃色葡萄球菌殺白細胞素B (LukB)變異多肽。這些LukB變異多肽包含一個或多個氨基酸殘基插入、取代和/或缺失,它們提高了LukB的穩定性,從而有助於LukB類毒素的穩定性。如本文所述,這些LukB變異多肽是理想的疫苗抗原候選物,其可以單獨給藥或與殺白細胞素A (LukA)野生型或變異蛋白或多肽聯合給藥。當與LukA野生型或變異多肽聯合給藥時,所得類毒素模擬金黃色葡萄球菌LukAB毒素的結構,從而促進產生針對金黃色葡萄球菌最有效毒素之一的強大免疫應答。在任意的實施方案中,LukB變異多肽是全長LukB蛋白的變體,包含對應於全長成熟LukB蛋白序列的所有氨基酸殘基。在任意的實施方案中,LukB變體包含比全長成熟LukB蛋白更少的參考蛋白的氨基酸鏈。在一個實施方案中,LukB變異多肽長度至少為100個氨基酸殘基。在任意的實施方案中,LukB變異多肽是至少110、至少120、至少130、至少140、至少150、至少160、至少170、至少180、至少190、至少200、至少210、至少220、至少230、至少240、至少250、至少260、至少270、至少280、至少290、至少300個氨基酸殘基的長度。
雖然本文描述的示例性LukB變異多肽是克隆複合物CC8 (SEQ ID NO:15)和CC45 (SEQ ID NO:16)的LukB變體(見下表2),但是本領域技術人員容易理解,鑒定LukB的氨基酸取代和/或缺失所基於的SEQ ID NO:15和SEQ ID NO:16是在各種克隆複合物之間保守的氨基酸殘基,或在各種克隆複合物之間高度保守的LukB區域內保守的氨基酸殘基。來自14個不同金黃色葡萄球菌菌株的LukB蛋白序列的比對(見圖2)顯示,本文中鑒定為易變異殘基的氨基酸殘基是在所有14個比對的LukB氨基酸序列中保守的殘基。雖然所鑒定的變異殘基的位置在各個LukB序列之間可能不同,但序列比對顯示了這些位置之間的對應關系。為了清楚起見,從序列比對中產生具有SEQ ID NO:39的氨基酸序列的LukB共有序列,並用於指定特定氨基酸變異的位置。例如,SEQ ID NO:39中穀氨酸殘基109位的氨基酸取代對應於SEQ ID NO:15、42、44和46–51的LukB序列中109位的穀氨酸殘基,對應於SEQ ID NO:41的LukB序列中110位的穀氨酸殘基,以及對應於SEQ ID NO:41的LukB序列中60位的穀氨酸殘基。因此,本文所述的經鑒定的氨基酸變體可以普遍應用於現在已知的或將來的任何LukB氨基酸序列中的相應氨基酸殘基。
在任意的實施方案中,本文公開的LukB變異多肽在對應於SEQ ID NO:39的氨基酸殘基Val53的氨基酸殘基上包含氨基酸取代或缺失。在任意的實施方案中,Val53處的氨基酸取代包括纈氨酸到亮氨酸(Val53Leu)的取代。在一個實施方案中,示例性的LukB變異多肽包含對應於SEQ ID NO:39中的Val53Leu取代的取代。
在任意的實施方案中,示例性的LukB變異多肽是CC8 LukB變異多肽,其在對應於SEQ ID NO:15的53位的氨基酸具有氨基酸取代。在任意的實施方案中,示例性的LukB變異多肽是CC8 LukB變異多肽,其在對應於SEQ ID NO:15的53位具有纈氨酸到亮氨酸的氨基酸取代。在任意的實施方案中,在53位具有纈氨酸到亮氨酸取代的示例性CC8 LukB序列包含SEQ ID NO:17的氨基酸序列,或具有與SEQ ID NO:17的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意的實施方案中,示例性的LukB變異多肽是CC45 LukB變異多肽,其在對應於SEQ ID NO:16的53位的氨基酸具有氨基酸取代。在任意的實施方案中,示例性的LukB變異多肽是CC45 LukB變異多肽,其在對應於SEQ ID NO:16的53位具有纈氨酸到亮氨酸的氨基酸取代。在一個實施方案中,包含對應於SEQ ID NO:39中的Val53Leu取代的示例性LukB變異多肽包含SEQ ID NO:18的氨基酸序列,或具有與SEQ ID NO:18的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
其他示例性的LukB變異多肽包括SEQ ID NO:40-51的任意一種LukB蛋白,所述LukB蛋白包含對應於Val53Leu的氨基酸取代。
在任意的實施方案中,本文所述的LukB變異多肽包含對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基上的氨基酸取代。在一個實施方案中,在一個或多個前述殘基上的氨基酸取代引入了能夠形成二硫鍵的半胱氨酸殘基,以穩定LukAB異二聚體結構的構象。例如,在一個實施方案中,本文所述的LukB變異蛋白或多肽對應於SEQ ID NO:39的Glu45 (Glu45Cys)的氨基酸殘基上包含穀氨酸到半胱氨酸的取代,並且在對應於SEQ ID NO:39的Thr121 (Thr121Cys)的氨基酸殘基上包含蘇氨酸到半胱氨酸的取代。45位和121位的這些半胱氨酸殘基形成二硫鍵,從而相對於野生型LukB或相對於本文所述的不含能形成二硫鍵的成對半胱氨酸殘基的其他變異LukB蛋白和多肽,增加了變異LukB的熱穩定性。
在另一個實施方案中,本文所述的LukB變異蛋白或多肽在對應於SEQ ID NO:39的Glu109 (Glu109Cys)的氨基酸殘基上包含穀氨酸到半胱氨酸的取代,並且在對應於SEQ ID NO:39的Arg154 (Arg154Cys)的氨基酸殘基上包含精氨酸到半胱氨酸的取代。這些在109位和154位引入的半胱氨酸殘基形成二硫鍵,從而相對於野生型LukB或相對於不含能形成二硫鍵的成對半胱氨酸殘基的其他LukB變異多肽,增加了LukB變異體的熱穩定性。
在任意的實施方案中,LukB變異多肽在對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,在任一氨基酸殘基上的氨基酸取代都包括如上所述的半胱氨酸殘基的引入。
在任意的實施方案中,LukB變異多肽是CC8 LukB變異多肽,其包含在對應於SEQ ID ID NO:15的氨基酸殘基Glu45、Glu109、Thr121和Arg154的任何一個或多個氨基酸殘基上的氨基酸取代。在任意的實施方案中,LukB變異多肽是CC8 LukB變異多肽,其在對應於SEQ ID NO:15的氨基酸殘基Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,任一氨基酸殘基上的氨基酸取代都包括如上所述的半胱氨酸殘基的引入。在一個實施方案中,包含在對應於SEQ ID ID NO:39的Glu45、Glu109、Thr121和Arg154的殘基處的半胱氨酸氨基酸取代的示例性LukB變異多肽包含SEQ ID NO:21的氨基酸序列,或具有與SEQ ID NO:21的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意的實施方案中,LukB變異多肽是CC45 LukB變異多肽,其在對應於SEQ ID NO:16的氨基酸殘基Glu45、Glu110、Thr122和Arg155的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,LukB變異多肽是CC45 LukB變異多肽,其在對應於SEQ ID NO:16的氨基酸殘基Glu45、Glu110、Thr122和Arg155的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,任一氨基酸殘基上的氨基酸取代都包括如上所述的半胱氨酸殘基的引入。在另一個實施方案中,在對應於SEQ ID ID NO:39的Glu45、Glu110、Thr122和Arg155的殘基上包含半胱氨酸氨基酸取代的LukB變異多肽包含SEQ ID NO:22的氨基酸序列,或具有與SEQ ID NO:22的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
其他示例性的LukB變異多肽包括SEQ ID NO:40-51的LukB蛋白中的任何一種,其在對應於SEQ ID NO:39的殘基Glu45、Glu109、Thr121和Arg154的殘基上包含所述氨基酸取代。
在任意的實施方案中,本文公開的LukB變異多肽包含對應於SEQ ID NO:39的Val53的氨基酸殘基上的氨基酸取代,以及對應於SEQ ID NO:39的Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基上的氨基酸殘基取代。在任意的實施方案中,LukB變異多肽是CC8 LukB變異多肽,其在對應於SEQ ID NO:15的氨基酸殘基Val53、Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,LukB變異多肽是CC8 LukB變異多肽,其在對應於SEQ ID NO:15的氨基酸殘基Val53Leu、Glu45Cys、Glu109Cys、Thr121Cys和Arg154Cys的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,示例性的CC8 LukB變異多肽包含SEQ ID NO:19的氨基酸序列,或具有與SEQ ID NO:19的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意的實施方案中,LukB變異多肽是CC45 LukB變異多肽,其在對應於SEQ ID NO:16的氨基酸殘基Val53、Glu45、Glu110、Thr122和Arg155的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,LukB變異多肽是CC45 LukB變異多肽,其在對應於SEQ ID NO:16的氨基酸殘基Val53Leu、Glu45Cys、Glu110Cys、Thr123Cys和Arg155Cys的每個氨基酸殘基上包含氨基酸取代。在對應於上述每個位置的殘基上具有氨基酸取代的示例性CC45 LukB變異多肽具有SEQ ID NO:20的氨基酸序列,或具有與SEQ ID NO:20的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
其他示例性的LukB變異多肽包括SEQ ID NO:40-51的LukB蛋白中的任一種,其在對應於SEQ ID NO:39的Val53、Glu45、Glu109、Thr121和Arg154的殘基上包含所述氨基酸取代。
下表2提供了本文公開的示例性的變異LukB氨基酸序列。
2. 示例性 LukB 多肽氨基酸序列
SEQ ID NO 名稱 描述
  15   LukB CC8 WT KINSEIKQVSEKNLDGDTKMYTRTATTSDSQKNITQSLQFNFLTEPNYDKETVFIKAKGTIGSGLRILDPNGYWNSTLRWPGSYSVSIQNVDDNNNTNVTDFAPKNQDESREVKYTYGYKTGGDFSINRGGLTGNITKESNYSETISYQQPSYRTLLDQSTSHKGVGWKVEAHLINNMGHDHTRQLTNDSDNRTKSEIFSLTRNGNLWAKDNFTPKDKMPVTVSEGFNPEFLAVMSHDKKDKGKSQFVVHYKRSMDEFKIDWNRHGFWGYWSGENHVDKKEEKLSALYEVDWKTHNVKFVKVLNDNEKK  
  16   LukB CC45 WT EIKSKITTVSEKNLDGDTKMYTRTATTSDTEKKISQSLQFNFLTEPNYDKETVFIKAKGTIGSGLKILNPNGYWNSTLRWPGSYSVSIQNVDDNNNSTNVTDFAPKNQDESREVKYTYGYKTGGDFSINRGGLTGNITKEKNYSETISYQQPSYRTLIDQPTTNKGVAWKVEAHSINNMGHDHTRQLTNDSDDRVKSEIFSLTRNGNLWAKDNFTPKNKMPVTVSEGFNPEFLAVMSHDKNDKGKSRFIVHYKRSMDDFKLDWNKHGFWGYWSGENHVDQKEEKLSALYEVDWKTHDVKLIKTFNDKEKK
  17   LukB CC8 Val53Leu KINSEIKQVSEKNLDGDTKMYTRTATTSDSQKNITQSLQFNFLTEPNYDKET L FIKAKGTIGSGLRILDPNGYWNSTLRWPGSYSVSIQNVDDNNNTNVTDFAPKNQDESREVKYTYGYKTGGDFSINRGGLTGNITKESNYSETISYQQPSYRTLLDQSTSHKGVGWKVEAHLINNMGHDHTRQLTNDSDNRTKSEIFSLTRNGNLWAKDNFTPKDKMPVTVSEGFNPEFLAVMSHDKKDKGKSQFVVHYKRSMDEFKIDWNRHGFWGYWSGENHVDKKEEKLSALYEVDWKTHNVKFVKVLNDNEKK  
  18   LukB CC45 Val53Leu EIKSKITTVSEKNLDGDTKMYTRTATTSDTEKKISQSLQFNFLTEPNYDKET L FIKAKGTIGSGLKILNPNGYWNSTLRWPGSYSVSIQNVDDNNNSTNVTDFAPKNQDESREVKYTYGYKTGGDFSINRGGLTGNITKEKNYSETISYQQPSYRTLIDQPTTNKGVAWKVEAHSINNMGHDHTRQLTNDSDDRVKSEIFSLTRNGNLWAKDNFTPKNKMPVTVSEGFNPEFLAVMSHDKNDKGKSRFIVHYKRSMDDFKLDWNKHGFWGYWSGENHVDQKEEKLSALYEVDWKTHDVKLIKTFNDKEKK  
  19   LukB CC8 Val53Leu, Glu45Cys, Glu109Cys, Thr121Cys, and Arg154Cys KINSEIKQVSEKNLDGDTKMYTRTATTSDSQKNITQSLQFNFLT C PNYDKET L FIKAKGTIGSGLRILDPNGYWNSTLRWPGSYSVSIQNVDDNNNTNVTDFAPKNQD C SREVKYTYGYK C GGDFSINRGGLTGNITKESNYSETISYQQPSY C TLLDQSTSHKGVGWKVEAHLINNMGHDHTRQLTNDSDNRTKSEIFSLTRNGNLWAKDNFTPKDKMPVTVSEGFNPEFLAVMSHDKKDKGKSQFVVHYKRSMDEFKIDWNRHGFWGYWSGENHVDKKEEKLSALYEVDWKTHNVKFVKVLNDNEKK
  20     LukB CC45 Val53Leu, Glu45Cys, Thr122Cys, Glu110Cys, Arg155Cys EIKSKITTVSEKNLDGDTKMYTRTATTSDTEKKISQSLQFNFLT C PNYDKET L FIKAKGTIGSGLKILNPNGYWNSTLRWPGSYSVSIQNVDDNNNSTNVTDFAPKNQD C SREVKYTYGYK C GGDFSINRGGLTGNITKEKNYSETISYQQPSY C TLIDQPTTNKGVAWKVEAHSINNMGHDHTRQLTNDSDDRVKSEIFSLTRNGNLWAKDNFTPKNKMPVTVSEGFNPEFLAVMSHDKNDKGKSRFIVHYKRSMDDFKLDWNKHGFWGYWSGENHVDQKEEKLSALYEVDWKTHDVKLIKTFNDKEKK  
  21   LukB CC8 Glu45Cys, Glu109Cys, Thr121Cys, and Arg154Cys KINSEIKQVSEKNLDGDTKMYTRTATTSDSQKNITQSLQFNFLT C PNYDKET VFIKAKGTIGSGLRILDPNGYWNSTLRWPGSYSVSIQNVDDNNNTNVTDFAPKNQD C SREVKYTYGYK C GGDFSINRGGLTGNITKESNYSETISYQQPSY C TLLDQSTSHKGVGWKVEAHLINNMGHDHTRQLTNDSDNRTKSEIFSLTRNGNLWAKDNFTPKDKMPVTVSEGFNPEFLAVMSHDKKDKGKSQFVVHYKRSMDEFKIDWNRHGFWGYWSGENHVDKKEEKLSALYEVDWKTHNVKFVKVLNDNEKK
  22     LukB CC45 Glu45Cys, Thr122Cys, Glu110Cys, Arg155Cys EIKSKITTVSEKNLDGDTKMYTRTATTSDTEKKISQSLQFNFLT C PNYDKET VFIKAKGTIGSGLKILNPNGYWNSTLRWPGSYSVSIQNVDDNNNSTNVTDFAPKNQD C SREVKYTYGYK C GGDFSINRGGLTGNITKEKNYSETISYQQPSY C TLIDQPTTNKGVAWKVEAHSINNMGHDHTRQLTNDSDDRVKSEIFSLTRNGNLWAKDNFTPKNKMPVTVSEGFNPEFLAVMSHDKNDKGKSRFIVHYKRSMDDFKLDWNKHGFWGYWSGENHVDQKEEKLSALYEVDWKTHDVKLIKTFNDKEKK  
根據本文公開內容的所有方面,本文公開的LukA和/或LukB變異多肽可以進一步包含一個或多個異源氨基酸序列。合適的異源氨基酸序列包括但不限於標簽序列、免疫原、信號序列等。合適的標簽序列包括但不限於聚組氨酸標簽、多聚精氨酸標簽、FLAG標簽、Step-標簽II、泛素標簽、NusA標簽、幾丁質結合域、鈣調蛋白結合肽、纖維素結合域、Hat標簽、S標簽、SBP、麥芽糖結合蛋白、穀胱甘肽S-轉移酶(參見Terpe K .,Terpe K., “Overview of Tag Protein Fusions: From Molecular and Biochemical Fundamentals to Commercial Systems,” Appl. Microbiol. Biotechnol. 60:523-33 (2003),在此引入作為參考)。合適的免疫原包括但不限於T細胞表位、B細胞表位。合適的信號序列包括但不限於PelB信號序列、Sec信號序列、Tat信號序列、AmyE信號序列(參見Freudl R.,“Signal Peptides for Recombinant Protein Secretion in Bacterial Expression Systems,” Microbial Cell Factories 17:52 (2018),該文獻在此引入作為參考)。在任意的實施方案中,本文所述的LukA和/或LukB變異多肽包含PelB序列(MKYLLPTAAAGLLLLAAQPAMA;SEQ ID NO:23)。在任意的實施方案中,本文所述的LukA和/或LukB變異多肽包含His標簽(例如,NSAHHHHHHGS;SEQ ID NO:24)。在任意的實施方案中,本文所述的LukA和/或LukB變異多肽包含前述PelB序列和His標簽。
變異 LukA LukB 多核苷酸和構建體
本發明的另一方面涉及編碼本文所述的LukA和LukB變異多肽的核酸分子。本文所述的核酸分子包括分離的多核苷酸、重組多核苷酸序列、部分表達載體或部分線性DNA或RNA序列,包括用於體外或體內轉錄/翻譯的線性DNA或RNA序列,以及與原核和真核細胞表達和分泌本文所述的LukA和LukB變異多肽兼容的載體。在任意的實施方案中,本文所述的LukA和LukB多核苷酸包含DNA。在任意的實施方案中,本文所述的LukA和LukB多核苷酸包含RNA,特別是mRNA。
本發明的多核苷酸可以通過化學合成產生,例如在自動多核苷酸合成器上進行固相多核苷酸合成,並組裝成完整的單鏈或雙鏈分子。或者,本發明的多核苷酸可以通過其他技術產生,例如PCR,然後常規克隆。用於產生或獲得給定序列的多核苷酸的技術是本領域公知的。
在任意的實施方案中,本發明的多核苷酸編碼LukA變異多肽,該多肽在對應於SEQ ID NO:25的83位(Lys83Met)賴氨酸的殘基上包含賴氨酸到甲硫氨酸的取代。在任意的實施方案中,本發明的多核苷酸編碼LukA變異多肽,其在對應於SEQ ID NO:25的141位 (Ser141Ala)的絲氨酸的殘基上包含絲氨酸到丙氨酸的取代。在任意的實施方案中,本發明的多核苷酸編碼LukA變異多肽,該多肽在對應於SEQ ID NO:25的113位 (Val113Ile)的纈氨酸的殘基上包含纈氨酸到異亮氨酸的取代。在任意的實施方案中,本發明的多核苷酸編碼LukA變異多肽,該多肽在對應於SEQ ID NO:25的193位 (Val193Ile)的纈氨酸的殘基上包含纈氨酸到異亮氨酸的取代。在任意的實施方案中,本發明的多核苷酸編碼LukA變異多肽,其在對應於前述氨基酸殘基的殘基(即SEQ ID NO:25的Lys803Met、Ser141Ala、Val113Ile和Val193Ile)上包含賴氨酸到甲硫氨酸、絲氨酸到丙氨酸和纈氨酸到異亮氨酸的氨基酸取代。在任意的實施方案中,本發明的多核苷酸編碼LukA變異多肽,其進一步包含對應於Glu323Ala的氨基酸取代,即多核苷酸編碼LukA變體,其包含對應於SEQ ID NO:25的Lys83Met、Ser141Ala、Val113Ile、Val193Ile和Glu323Ala取代的取代。
在一個實施方案中,示例性核酸分子是編碼CC8 LukA變體序列的核酸分子,例如編碼SEQ ID NO:1的變體,其包含對應於SEQ ID NO:1中Lys80Met、Ser138Ala、Val110Ile、Val190Ile和Glu320Ala的氨基酸取代。本文編碼CC8LukA的示例性核酸分子表述為SEQ ID NO:52。因此,在任意的實施方案中,示例性核酸分子是SEQ ID NO:52的變體,其中所述變體包含具有與SEQ ID NO:52的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。
在一個實施方案中,編碼CC8 Luk8變體的示例性核酸分子是編碼LukA變體序列(LukA CC8 Glu320Ala、Lys80Met、Ser138Ala、Val110Ile、Val190Ile)的核酸分子,所述LukA變體序列為SEQ ID NO:3或具有與SEQ ID NO:3的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。編碼這種LukA CC8變體的示例性核酸分子包含與SEQ ID NO:54具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。在任意的實施方案中,編碼這種LukACC8變異體的核酸分子包含SEQ ID NO:54的核苷酸序列。
在另一個實施方案中,示例性核酸分子是編碼CC45 LukA變體序列的核酸分子,例如,編碼SEQ ID NO:2的變體,其包含對應於SEQ ID NO:2中Lys81Met、Ser139Ala、Val111Ile、Val191Ile和Glu321Ala的氨基酸取代。本文中編碼CC45 LukA的示例性核酸分子表述為SEQ ID NO:53。因此,在任意的實施方案中,示例性核酸分子是SEQ ID NO:53的變體,其中所述變體包含與SEQ ID NO:53的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。
在一個實施方案中,本發明的示例性核酸分子是編碼CC45 LukA變體序列(LukA CC45 Glu321Ala、Lys81Met、Ser139Ala、Val111Ile、Val191Ile)的核酸分子,所述CC45 LukA變體序列為SEQ ID NO:4或具有與SEQ ID NO:4的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。編碼這種LukA CC45變體的示例性核酸分子包含與SEQ ID NO:55具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。在任意的實施方案中,編碼這種LukACC8變異體的核酸分子包含SEQ ID NO:55的核苷酸序列。
在任意的實施方案中,本發明的多核苷酸編碼LukA變異多肽,所述多肽包含對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的一個或多個氨基酸殘基上的氨基酸取代。在一個實施方案中,所述多核苷酸編碼LukA變異多肽,該多肽在對應於SEQ ID NO:25的Tyr74 (Tyr74Cys)的氨基酸殘基上包含酪氨酸至半胱氨酸的取代,並且在對應於SEQ ID NO:25的Asp140 (Asp140Cys)的氨基酸殘基上包含天冬醯胺至半胱氨酸的取代。在任意的實施方案中,本發明的多核苷酸編碼LukA變異多肽,所述多肽在對應於SEQ ID NO:25的Gly149 (Gly149Cys)的氨基酸殘基上包含甘氨酸到半胱氨酸的取代,並且對應於SEQ ID NO:25的Gly156 (Gly156Cys)的氨基酸殘基上包含甘氨酸到半胱氨酸的取代。在任意的實施方案中,本發明的多核苷酸編碼LukA變異多肽,所述多肽在對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,這些氨基酸殘基中每一個的氨基酸取代都是如上所述的半胱氨酸殘基。
在任意的實施方案中,本發明的多核苷酸編碼LukA變異多肽,所述多肽包含在對應於Lys83、Ser141、Val113、Val193和Glu323的一個或多個氨基酸殘基上的氨基酸取代,以及對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的一個或多個氨基酸殘基上的氨基酸取代。在任意的實施方案中,所述多核苷酸編碼LukA變異多肽,所述多肽在對應於SEQ ID NO:25的殘基Lys83、Ser141、Val113、Val193和Glu323以及殘基Tyr74、Asp140、Gly149和Gly156的氨基酸殘基上包含氨基酸取代。
在一個實施方案中,示例性核酸分子是編碼CC8 LukA變體序列的核酸分子,例如,編碼SEQ ID NO:1的變體,其包含對應於SEQ ID NO:1的Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Glu320Ala、Tyr71Cys、Asp137Cys、Gly146Cys和Gly153Cys中每一個的氨基酸取代。在一個實施方案中,示例性核酸分子是編碼LukA變體序列(LukA CC8 Glu320Ala、Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Tyr71Cys、Asp137Cys、Gly146Cys、Gly153Cys)的核酸分子,所述LukA變體序列為SEQ ID NO:5或與SEQ ID NO:5的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在另一個實施方案中,示例性核酸分子是編碼CC45 LukA變異體序列的核酸分子,例如,編碼SEQ ID NO:2的變體,其包含對應於SEQ ID NO:2的Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Glu321Ala、Tyr72Cys、Asp138Cys、Gly147Cys和Gly154Cys中每一個的氨基酸取代。在一個實施方案中,本發明的示例性核酸分子是編碼LukA變體序列(LukA CC45 Glu321Ala、Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Tyr72Cys、Asp138Cys、Gly147Cys、Gly154Cys)的核酸分子,所述LukA變體序列為SEQ ID NO:6或與該序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意的實施方案中,本發明的多核苷酸編碼LukA變異多肽,該多肽在對應於SEQ ID NO:25的氨基酸殘基Thr249的氨基酸殘基處包含氨基酸的取代或缺失。在任意的實施方案中,多核苷酸編碼LukA變異體,該變異體在對應於SEQ ID NO:25的249位的殘基上包含蘇氨酸到纈氨酸的取代。在任意的實施方案中,本發明的多核苷酸編碼LukA變異多肽,該多肽包含在對應於Thr249的位置上的氨基酸取代,以及對應於SEQ ID NO:25的Lys83、Ser141、Val113、Val193、Glu323、Tyr74、Asp140、Gly149和Gly156的殘基上的任何一個或全部氨基酸取代。
在一個實施方案中,示例性核酸分子是編碼CC8 LukA變體序列的核酸分子,例如,編碼SEQ ID NO:1的變體,其包含對應於SEQ ID NO:1的Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Glu320Ala和Thr246Val中每一個的氨基酸取代。在任意的實施方案中,本發明的示例性核酸分子是編碼LukA變體序列(LukA CC8 Glu320Ala、Lys80Met、Ser138Ala、Val110Ile、Val190Ile和Thr246Val)的核酸分子,所述LukA變體序列為SEQ ID NO:7或具有與SEQ ID NO:7的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。在任意的實施方案中,本發明的示例性核酸分子是編碼SEQ ID NO:9的CC8 LukA變體序列的核酸分子,其包含對應於Glu320Ala、Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Thr246Val、Tyr71Cys、Asp137Cys、Gly146Cys和Gly153Cys的氨基酸取代。本發明的示例性核酸分子包括編碼與SEQ ID NO:9的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列的核酸分子。在任意的實施方案中,編碼SEQ ID NO:9的這種LukA CC8變體的示例性核酸分子包含與SEQ ID NO:56具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。在任意的實施方案中,編碼這種LukACC8變體的核酸分子包含SEQ ID NO:56的核苷酸序列。
在另一個實施方案中,示例性核酸分子是編碼CC45 LukA變體序列的核酸分子,例如,編碼SEQ ID NO:2的變體,其包含對應於SEQ ID NO:2的Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Glu321Ala和Thr247Val中每一個的氨基酸取代。在任意的實施方案中,本發明的示例性核酸分子是編碼LukA變體序列(LukA CC45 Glu321Ala、Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Thr247Val)的核酸分子,所述LukA變體序列為SEQ ID NO:8或具有與SEQ ID NO:8的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。在任意的實施方案中,本發明的示例性核酸分子是編碼SEQ ID NO:10的LukA變體序列的核酸分子,其包含對應於Glu321Ala、Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Thr247Val、Tyr72Cys、Asp138Cys、Gly147Cys和Gly154Cys的氨基酸取代。本發明的示例性核酸分子包括編碼與SEQ ID NO:10的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列的核酸分子。在任意的實施方案中,編碼SEQ ID NO:10的這種LukA CC45變體的示例性核酸分子包含與SEQ ID NO:57具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。在任意的實施方案中,編碼這種LukACC8變體的核酸分子包含SEQ ID NO:57的核苷酸序列。
本發明的另一方面涉及編碼本文公開的LukB變異多肽的多核苷酸。在一個實施方案中,多核苷酸編碼LukB變異多肽,該多肽在對應於SEQ ID NO:39的氨基酸殘基Val53的氨基酸殘基上包含氨基酸取代或缺失。在任意的實施方案中,Val53處的氨基酸取代包括纈氨酸到亮氨酸(Val53Leu)的取代。在一個實施方案中,示例性核酸分子是編碼CC8 LukB變體序列的核酸分子,例如,編碼SEQ ID NO:15的變體,其包含SEQ ID NO:15的53位處的氨基酸取代。編碼CC8 LukB的示例性核酸分子在此表述為SEQ ID NO:58。因此,在任意的實施方案中,示例性核酸分子是SEQ ID NO:58的變體,其中所述變體包含與SEQ ID NO:58的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。
在一個實施方案中,本發明的示例性核酸分子編碼LukB變異多肽,所述變異多肽為SEQ ID NO:17 (LukB CC8 V53L)或具有與SEQ ID NO:17的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。編碼這種LukB CC8 V53L變體的示例性核酸分子包含具有與SEQ ID NO:60至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。在任意的實施方案中,編碼這種LukACC8變體的核酸分子包含SEQ ID NO:60的核苷酸序列。
在另一個實施方案中,示例性核酸分子是編碼CC45 LukB變體序列的核酸分子,例如,編碼SEQ ID NO:16的變體,其包含SEQ ID NO:16的53位的氨基酸取代。編碼CC45 LukB的示例性核酸分子在此表述為SEQ ID NO:59。因此,在任意的實施方案中,示例性核酸分子是SEQ ID NO:59的變體,其中所述變體包含與SEQ ID NO:59的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。
在另一個實施方案中,本發明的示例性多核苷酸編碼LukB變異多肽,所述變異多肽為SEQ ID NO:18 (LukB CC45 V53L)或具有與SEQ ID NO:18的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。編碼這種LukB CC45 V53L變體的示例性核酸分子包含具有與SEQ ID NO:61至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。在任意的實施方案中,編碼這種LukACC45變體的核酸分子包含SEQ ID NO:61的核苷酸序列。
在任意的實施方案中,本發明的多核苷酸編碼LukB變異多肽,該多肽包含對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基上的氨基酸取代。在一個實施方案中,在一個或多個前述殘基上的氨基酸取代引入了一個或多個能夠形成二硫鍵的半胱氨酸殘基,以穩定LukAB異二聚體結構的構象。在一個實施方案中,所述多核苷酸編碼LukB變異蛋白或多肽,所述蛋白或多肽包含對應於SEQ ID NO:39的Glu45 (Glu45Cys)的氨基酸殘基上的穀氨酸到半胱氨酸的取代,以及對應於SEQ ID NO:39的Thr121 (Thr121Cys)的氨基酸殘基上的蘇氨酸到半胱氨酸的取代。在另一個實施方案中,多核苷酸編碼LukB變異蛋白或多肽,其包含對應於SEQ ID NO:39的Glu109 (Glu109Cys)的氨基酸殘基上的穀氨酸到半胱氨酸的取代,以及對應於SEQ ID NO:39的Arg154 (Arg154Cys)的氨基酸殘基上的精氨酸到半胱氨酸的取代。
在任意的實施方案中,本發明的多核苷酸編碼LukB變異多肽,該多肽在對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,任一氨基酸殘基上的氨基酸取代都包括如上所述的半胱氨酸殘基的引入。
在一個實施方案中,示例性核酸分子是編碼CC8 LukB變體序列的核酸分子,例如,編碼SEQ ID NO:15的變體,所述變體在對應於SEQ ID NO:15的氨基酸殘基Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基上包含氨基酸取代。在一個實施方案中,多核苷酸編碼LukB變異多肽,其包含SEQ ID NO:21的氨基酸序列(LukB CC8 Glu45Cys、Glu109Cys、Thr121Cys和Arg154Cys)或具有與SEQ ID NO:21的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。在另一個實施方案中,示例性核酸分子是編碼CC45 LukB變體序列的核酸分子,例如編碼SEQ ID NO:16的變體,其在對應於SEQ ID NO:16的氨基酸殘基Glu45、Glu110、Thr122和Arg155的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,多核苷酸編碼LukB變異多肽,該多肽包含SEQ ID NO:22的氨基酸序列(LukB CC45 Glu45Cys、Thr122Cys、Glu110Cys、Arg155Cys)或具有與SEQ ID NO:22的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意的實施方案中,本發明的多核苷酸編碼LukB變異多肽,其包含對應於SEQ ID NO:39的Val53的氨基酸殘基上的氨基酸取代,以及對應於SEQ ID NO:39的Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基上的氨基酸殘基取代。在一個實施方案中,示例性核酸分子是編碼CC8 LukB變體序列的核酸分子,例如,編碼SEQ ID NO:15的變體,其在對應於SEQ ID NO:15的氨基酸殘基Val53、Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,多核苷酸編碼具有SEQ ID NO:19的氨基酸序列(LukB CC8 Val53Leu、Glu45Cys、Glu109Cys、Thr121Cys和Arg154Cys)的LukB變異多肽,或者編碼具有與SEQ ID NO:19的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列的LukB變異多肽。在另一個實施方案中,示例性核酸分子是編碼CC45 LukB變體序列的核酸分子,例如,編碼SEQ ID NO:16的變體,其在對應於SEQ ID NO:16的氨基酸殘基Val53、Glu45、Glu110、Thr122和Arg155的每個氨基酸殘基上包含氨基酸取代。在任意的實施方案中,多核苷酸編碼具有SEQ ID NO:20的氨基酸序列(LukB CC45 Val53Leu、Glu45Cys、Thr122Cys、Glu110Cys、Arg155Cys)的LukB變異多肽,或編碼具有與SEQ ID NO:20的氨基酸序列至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列的LukB變異多肽。
在另一個實施方案中,本發明的示例性核酸分子是編碼本文公開的LukA序列和LukB序列的核酸分子。在一個實施方案中,示例性核酸分子是編碼CC45 LukA序列(變體或非變體)和CC45 LukB序列(變體或非變體)的多核苷酸。例如,編碼本文公開的CC45 LukA變體序列和CC45 LukB非變體序列的多核苷酸,或編碼本文公開的CC45 LukA非變體序列和CC45 LukB變體序列的多核苷酸。
在另一個實施方案中,示例性核酸分子是編碼CC8 LukA序列(變體或非變體)和CC8 LukB序列(變體或非變體)的多核苷酸。例如,編碼本文公開的CC8 LukA變體序列和CC8 LukB非變體序列的多核苷酸,或編碼本文公開的CC8 LukA非變體序列和CC8 LukB變體序列的多核苷酸。
在另一個實施方案中,示例性核酸分子是編碼CC45 LukA序列(變體或非變體)和CC8 LukB序列(變體或非變體)的多核苷酸。例如,編碼本文公開的CC45 LuCA變體序列和CC8 LukB非變體序列的多核苷酸,或編碼本文公開的CC45 LuCA非變體序列和CC8 LukB變體序列的多核苷酸。
在另一個實施方案中,示例性核酸分子是編碼CC8 LukA序列(變體或非變體)和CC45 LukB序列(變體或非變體)的核酸分子。例如,編碼本文公開的CC8 LukA變體序列和CC45 LukB非變體序列的多核苷酸,或編碼本文公開的CC8 LukA非變體序列和CC45 LukB變體序列的多核苷酸。
在另一個實施方案中,本發明的示例性核酸分子是編碼LukA變體序列和LukB野生型序列的多核苷酸。例如,編碼選自SEQ ID NO:3、4、5、6、7、8、9、10、11、12、13或14中任一項所述的LukA變體序列的多核苷酸,與SEQ ID NO:15或SEQ ID NO:16的LukB野生型(即非變體)序列組合。
在任意的實施方案中,本發明的示例性核酸分子是編碼LukA野生型序列和LukB變體序列的多核苷酸。例如,編碼SEQ ID NO:1或SEQ ID NO:2的LukA野生型序列與選自SEQ ID NO:17、18、19、20、21或22中任一個的LukB變體序列組合的多核苷酸。
在任意的實施方案中,本發明的示例性核酸分子是編碼LukA變體序列和LukB變體序列的多核苷酸。例如,編碼選自SEQ ID NO:3、4、5、6、7、8、9、10、11、12、13或14中任一個的LukA變體序列的多核苷酸,與選自SEQ ID NO:17、18、19、20、21或22中任一個的LukB變體序列組合。
在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:3的LukA變體序列和SEQ ID NO:15或16的LukB非變體序列、SEQ ID NO:17或18的LukB變體序列、SEQ ID NO:19或20的LukB變體序列或SEQ ID NO:21或22的LukB變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:4的LukA變體序列和SEQ ID NO:15或16的LukB非變體序列、SEQ ID NO:17或18的LukB變體序列、SEQ ID NO:19或20的LukB變體序列或SEQ ID NO:21或22的LukB變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:5的LukA變體序列和SEQ ID NO:15或16的LukB非變體序列、SEQ ID NO:17或18的LukB變體序列、SEQ ID NO:19或20的LukB變體序列或SEQ ID NO:21或22的LukB變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:6的LukA變體序列和SEQ ID NO:15或16的LukB非變體序列、SEQ ID NO:17或18的LukB變體序列、SEQ ID NO:19或20的LukB變體序列或SEQ ID NO:21或22的LukB變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:7的LukA變體序列和SEQ ID NO:15或16的LukB非變體序列、SEQ ID NO:17或18的LukB變體序列、SEQ ID NO:19或20的LukB變體序列或SEQ ID NO:21或22的LukB變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:8的LukA變體序列和SEQ ID NO:15或16的LukB非變體序列、SEQ ID NO:17或18的LukB變體序列、SEQ ID NO:19或20的LukB變體序列或SEQ ID NO:21或22的LukB變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:9的LukA變體序列和SEQ ID NO:15或16的LukB非變體序列、SEQ ID NO:17或18的LukB變體序列、SEQ ID NO:19或20的LukB變體序列或SEQ ID NO:21或22的LukB變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:10的LukA變體序列和SEQ ID NO:15或16的LukB非變體序列,SEQ ID NO:17或18的LukB變體序列,SEQ ID NO:19或20的LukB變體序列,或SEQ ID NO:21或22的LukB變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:11的LukA變體序列和SEQ ID NO:15或16的LukB非變體序列,SEQ ID NO:17或18的LukB變體序列,SEQ ID NO:19或20的LukB變體序列,或SEQ ID NO:21或22的LukB變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:12的LukA變體序列和SEQ ID NO:15或16的LukB非變體序列,SEQ ID NO:17或18的LukB變體序列,SEQ ID NO:19或20的LukB變體序列,或SEQ ID NO:21或22的LukB變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:13的LukA變體序列和SEQ ID NO:17或18的LukB變體序列,SEQ ID NO:19或20的LukB變體序列,或SEQ ID NO:21或22的LukB變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:14的LukA變體序列和SEQ ID NO:17或18的LukB變體序列,SEQ ID NO:19或20的LukB變體序列,或SEQ ID NO:21或22的LukB變體序列。
在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:17的LukB變體序列和SEQ ID NO:1或2的LukA非變體序列,SEQ ID NO:3或4的LukA變體序列,SEQ ID NO:5或6的LukA變體序列,SEQ ID NO:7或8的LukA變體序列,SEQ ID NO:9或10的LukA變體序列,SEQ ID NO:11或12的LukA變體序列,或SEQ ID NO:13或14的LukA變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:18的LukB變體序列和SEQ ID NO:1或2的LukA非變體序列,SEQ ID NO:3或4的LukA變體序列,SEQ ID NO:5或6的LukA變體序列,SEQ ID NO:7或8的LukA變體序列,SEQ ID NO:9或10的LukA變體序列,SEQ ID NO:11或12的LukA變體序列,或SEQ ID NO:13或14的LukA變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:19的LukB變體序列和SEQ ID NO:1或2的LukA非變體序列,SEQ ID NO:3或4的LukA變體序列,SEQ ID NO:5或6的LukA變體序列,SEQ ID NO:7或8的LukA變體序列,SEQ ID NO:9或10的LukA變體序列,SEQ ID NO:11或12的LukA變體序列,或SEQ ID NO:13或14的LukA變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:20的LukB變體序列和SEQ ID NO:1或2的LukA非變體序列,SEQ ID NO:3或4的LukA變體序列,SEQ ID NO:5或6的LukA變體序列,SEQ ID NO:7或8的LukA變體序列,SEQ ID NO:9或10的LukA變體序列,SEQ ID NO:11或12的LukA變體序列,或SEQ ID NO:13或14的LukA變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:21的LukB變體序列和SEQ ID NO:1或2的LukA非變體序列,SEQ ID NO:3或4的LukA變體序列,SEQ ID NO:5或6的LukA變體序列,SEQ ID NO:7或8的LukA變體序列,SEQ ID NO:9或10的LukA變體序列,SEQ ID NO:11或12的LukA變體序列,或SEQ ID NO:13或14的LukA變體序列。在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:22的LukB變體序列和SEQ ID NO:1或2的LukA非變體序列,SEQ ID NO:3或4的LukA變體序列,SEQ ID NO:5或6的LukA變體序列,SEQ ID NO:7或8的LukA變體序列,SEQ ID NO:9或10的LukA變體序列,SEQ ID NO:11或12的LukA變體序列,或SEQ ID NO:13或14的LukA變體序列。
在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:4的CC45 LukA變體序列和SEQ ID NO:16的CC45 LukB序列。編碼這種LukAB異二聚體(RARPR-15)的示例性核酸分子包含與SEQ ID NO:55 (CC45 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,該核苷酸序列可操作地與SEQ ID NO:59 (CC45 LukB)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列偶聯。編碼這種LukAB異二聚體的示例性核酸分子包含SEQ ID NO:55的核苷酸序列,其可操作地與SEQ ID NO:59的核苷酸序列偶聯。
在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:4的CC45 LukA變體序列和SEQ ID NO:18的CC45 LukB變體序列。編碼這種LukAB異二聚體(RARPR-30)的示例性核酸分子包含與SEQ ID NO:55 (CC45 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,所述核苷酸序列與SEQ ID NO:61(CC45 LukB變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列可操作地偶聯。編碼這種LukAB異二聚體的示例性核酸分子包含SEQ ID NO:55的核苷酸序列,其可操作地與SEQ ID NO:61的核苷酸序列偶聯。
在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:3的CC8 LukA變體序列和SEQ ID NO:15的CC8 LukB序列。編碼這種LukAB異二聚體(RARPR-32)的示例性核酸分子包含與SEQ ID NO:54 (CC8 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,所述核苷酸序列與SEQ ID NO:58 (CC8 LukB)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列可操作地偶聯。編碼這種LukAB異二聚體的示例性核酸分子包含SEQ ID NO:54的核苷酸序列,其可操作地與SEQ ID NO:58的核苷酸序列偶聯。
在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:3的CC8 LukA變體序列和SEQ ID NO:18的CC45 LukB變體序列。編碼這種LukAB異二聚體(RARPR-33)的示例性核酸分子包含與SEQ ID NO:54 (CC8 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,所述核苷酸序列與SEQ ID NO:61(CC45 LukB變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列可操作地偶聯。編碼這種LukAB異二聚體的示例性核酸分子包含SEQ ID NO:54的核苷酸序列,其可操作地與SEQ ID NO:61的核苷酸序列偶聯。
在任意的實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:3的CC8 LukA變體序列和SEQ ID NO:17的CC8 LukB變體序列。編碼這種LukAB異二聚體(RARPR-34)的示例性核酸分子包含與SEQ ID NO:54 (CC8 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,所述核苷酸序列與SEQ ID NO:60(CC8 LukB變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列可操作地偶聯。編碼這種LukAB異二聚體的示例性核酸分子包含SEQ ID NO:54的核苷酸序列,其可操作地與SEQ ID NO:60的核苷酸序列偶聯。
下表3提供了本發明的示例性核酸分子序列。
3. 示例性 LukA LukB 多核苷酸序列
構建體名稱 SEQ ID NO: DNA序列
CC8 LukAwt 52 GCT CAC AAA GAT TCT CAG GAT CAA AAT AAG AAG GAG CAC GTC GAC AAG TCT CAG CAG AAA GAC AAG CGT AAT GTT ACA AAC AAG GAC AAA AAC AGC ACT GCT CCA GAC GAC ATT GGA AAA AAC GGT AAG ATT ACT AAA CGC ACC GAA ACG GTA TAT GAC GAA AAA ACG AAC ATT TTG CAA AAC TTG CAG TTC GAT TTC ATT GAC GAC CCC ACT TAT GAC AAG AAT GTC CTT CTG GTG AAG AAG CAG GGC AGC ATT CAC TCA AAC TTG AAA TTT GAG TCT CAC AAG GAG GAG AAG AAC TCC AAT TGG CTG AAA TAC CCA TCA GAG TAC CAC GTT GAT TTT CAA GTG AAA CGT AAC CGC AAA ACG GAA ATT TTG GAC CAA TTG CCG AAA AAC AAG ATC TCC ACC GCG AAA GTA GAC TCA ACA TTC AGT TAC TCT TCC GGC GGA AAG TTC GAC AGC ACT AAG GGG ATC GGG CGC ACT TCT TCC AAT TCG TAC TCG AAA ACG ATT TCT TAC AAT CAG CAG AAT TAT GAC ACT ATC GCA TCT GGT AAA AAT AAT AAC TGG CAC GTG CAT TGG TCG GTG ATT GCT AAT GAT TTA AAG TAT GGA GGT GAG GTA AAA AAT CGT AAT GAC GAG CTG CTG TTT TAC CGT AAC ACT CGC ATC GCA ACC GTT GAA AAC CCG GAA TTG TCC TTT GCC TCG AAA TAC CGC TAC CCT GCA TTA GTT CGT TCA GGC TTT AAT CCC GAG TTT TTG ACT TAT CTT TCC AAT GAA AAA TCG AAC GAG AAG ACT CAG TTC GAG GTT ACG TAC ACC CGC AAT CAG GAC ATT TTG AAG AAC CGT CCG GGA ATT CAC TAT GCG CCT CCC ATC TTA GAG AAG AAT AAG GAT GGA CAA CGT TTG ATC GTT ACA TAT GAA GTT GAC TGG AAA AAT AAG ACC GTA AAG GTT GTG GAT AAG TAT TCG GAT GAT AAT AAG CCC TAT AAA GAA GGG
CC45 LukAwt 53 GCG AAC AAA GAT TCT CAG GAC CAG ACC AAA AAG GAG CAC GTA GAC AAG GCC CAG CAA AAA GAG AAG CGT AAT GTG AAC GAC AAA GAT AAG AAT ACT CCG GGG CCA GAT GAT ATC GGC AAG AAC GGT AAA GTC ACG AAG CGT ACA GTG TCT GAG TAT GAC AAA GAA ACA AAC ATC CTG CAG AAC TTA CAA TTC GAC TTT ATT GAT GAT CCA ACT TAC GAT AAG AAT GTG TTG CTG GTT AAG AAA CAA GGT TCA ATC CAT TCT AAC TTG AAG TTC GAG TCA CAC CGT AAC GAA ACG AAC GCG TCG TGG TTG AAA TAT CCG TCA GAG TAT CAT GTT GAT TTT CAA GTA CAA CGT AAT CCC AAA ACG GAA ATT TTG GAC CAA TTA CCT AAA AAT AAG ATT AGC ACC GCC AAG GTT GAC TCA ACT TTC TCC TAC TCA TTA GGA GGA AAG TTC GAT TCG ACA AAA GGG ATC GGG CGT ACA TCT TCG AAT AGC TAC AGT AAG AGC ATT AGC TAT AAC CAG CAG AAC TAT GAT ACG ATT GCT TCA GGG AAA AAT AAC AAC CGT CAC GTA CAT TGG TCA GTG GTT GCG AAC GAT CTT AAA TAT GGA AAC GAG ATT AAG AAT CGT AAC GAC GAA TTT TTG TTT TAC CGC AAT ACA CGC CTT AGT ACC GTG GAA AAT CCC GAG CTG TCC TTC GCG TCG AAG TAT CGC TAT CCG GCC CTT GTG CGT TCG GGT TTC AAT CCC GAG TTC TTA ACA TAT ATT TCC AAT GAG AAA ACT AAC GAC AAG ACT CGC TTC GAA GTC ACC TAC ACT CGC AAC CAG GAC ATT CTG AAA AAC AAG CCT GGA ATT CAT TAC GGG CAA CCA ATT TTA GAG CAG AAT AAG GAT GGA CAG CGC TTT ATT GTG GTA TAT GAG GTG GAC TGG AAG AAT AAG ACA GTA AAA GTT GTG GAA AAG TAC TCT GAC CAG AAT AAG CCC TAT AAA GAA GGA
CC8 LukAΔ10C 62 GCT CAC AAA GAT TCT CAG GAT CAA AAT AAG AAG GAG CAC GTC GAC AAG TCT CAG CAG AAA GAC AAG CGT AAT GTT ACA AAC AAG GAC AAA AAC AGC ACT GCT CCA GAC GAC ATT GGA AAA AAC GGT AAG ATT ACT AAA CGC ACC GAA ACG GTA TAT GAC GAA AAA ACG AAC ATT TTG CAA AAC TTG CAG TTC GAT TTC ATT GAC GAC CCC ACT TAT GAC AAG AAT GTC CTT CTG GTG AAG AAG CAG GGC AGC ATT CAC TCA AAC TTG AAA TTT GAG TCT CAC AAG GAG GAG AAG AAC TCC AAT TGG CTG AAA TAC CCA TCA GAG TAC CAC GTT GAT TTT CAA GTG AAA CGT AAC CGC AAA ACG GAA ATT TTG GAC CAA TTG CCG AAA AAC AAG ATC TCC ACC GCG AAA GTA GAC TCA ACA TTC AGT TAC TCT TCC GGC GGA AAG TTC GAC AGC ACT AAG GGG ATC GGG CGC ACT TCT TCC AAT TCG TAC TCG AAA ACG ATT TCT TAC AAT CAG CAG AAT TAT GAC ACT ATC GCA TCT GGT AAA AAT AAT AAC TGG CAC GTG CAT TGG TCG GTG ATT GCT AAT GAT TTA AAG TAT GGA GGT GAG GTA AAA AAT CGT AAT GAC GAG CTG CTG TTT TAC CGT AAC ACT CGC ATC GCA ACC GTT GAA AAC CCG GAA TTG TCC TTT GCC TCG AAA TAC CGC TAC CCT GCA TTA GTT CGT TCA GGC TTT AAT CCC GAG TTT TTG ACT TAT CTT TCC AAT GAA AAA TCG AAC GAG AAG ACT CAG TTC GAG GTT ACG TAC ACC CGC AAT CAG GAC ATT TTG AAG AAC CGT CCG GGA ATT CAC TAT GCG CCT CCC ATC TTA GAG AAG AAT AAG GAT GGA CAA CGT TTG ATC GTT ACA TAT GAA GTT GAC TGG AAA AAT AAG ACC GTA AAG GTT GTG GAT AAG TAT
CC45 LukAΔ10C 63 GCAAATAAAGACTCTCAAGATCAGACTAAAAAGGAACATGTTGATAAGGCGCAACAAAAAGAAAAGCGTAATGTCAATGATAAGGACAAGAATACTCCGGGACCCGACGACATTGGCAAGAACGGAAAGGTGACAAAGCGTACCGTTAGTGAGTACGACAAGGAAACAAATATCCTGCAGAACTTACAGTTCGATTTTATTGACGATCCTACCTATGACAAGAATGTCCTGTTGGTGAAGAAACAGGGCAGCATTCATTCCAATTTAAAATTTGAAAGCCATCGTAACGAAACAAATGCATCTTGGCTTAAATACCCTTCTGAGTACCACGTAGATTTTCAGGTACAACGCAACCCAAAAACCGAAATTCTGGATCAACTGCCCAAGAATAAAATTTCTACGGCTAAAGTTGACAGTACATTTAGCTACAGTTTAGGGGGAAAGTTTGATAGTACAAAAGGAATTGGTCGTACTTCCAGTAACTCCTATTCGAAATCTATTTCCTATAATCAACAGAATTACGACACCATCGCATCCGGTAAAAACAATAATCGCCACGTACATTGGAGTGTTGTCGCGAATGACTTAAAGTACGGTAACGAAATCAAGAACCGCAACGACGAATTCTTATTCTATCGTAACACGCGTTTAAGCACCGTCGAGAACCCCGAGTTATCCTTTGCTAGCAAATATCGCTATCCTGCGTTAGTACGCTCAGGGTTCAATCCTGAGTTCTTAACCTACATCTCCAACGAGAAAACTAATGATAAGACACGCTTCGAGGTGACCTACACCCGTAATCAGGATATCCTTAAAAATAAACCGGGTATTCATTACGGGCAACCCATTTTAGAACAGAATAAGGACGGCCAACGTTTTATCGTGGTCTATGAGGTTGATTGGAAGAACAAGACAGTGAAAGTGGTTGAAAAGTAT
CC8 LukA W95 54   CATAAAGATTCGCAGGATCAAAATAAGAAGGAGCATGTTGACAAGAGCCAGCAGAAAGACAAGCGCAATGTTACAAACAAAGATAAGAACTCTACAGCGCCCGATGACATTGGTAAGAACGGCAAGATAACTAAGCGGACGGAAACCGTGTATGACGAGAAAACTAACATTCTGCAAAATTTGCAATTTGACTTTATCGACGATCCAACCTATGACAAGAATGTCTTGCTTGTCAAAATGCAAGGTTCGATTCATTCAAACCTTAAATTTGAATCCCACAAAGAGGAGAAAAACTCTAATTGGTTAAAGTATCCTTCAGAATATCACATAGATTTCCAGGTAAAGAGAAACCGTAAAACGGAGATACTGGATCAACTGCCTAAAAACAAGATCTCGACAGCTAAGGTGGACGCTACGTTCTCGTACTCGTCTGGTGGGAAGTTCGACTCGACCAAAGGCATTGGGCGTACATCATCAAATAGCTATTCAAAGACTATTAGCTATAATCAGCAGAACTATGATACGATAGCTTCGGGTAAGAATAACAACTGGCACGTTCATTGGTCGATCATTGCAAATGACTTGAAGTATGGCGGAGAGGTAAAGAATCGCAACGATGAGCTGTTATTCTATCGCAATACGAGAATTGCGACTGTAGAGAACCCGGAATTGTCTTTTGCCTCCAAATATCGGTACCCGGCATTGGTACGCTCTGGTTTCAATCCTGAGTTTTTAACTTACCTTTCCAACGAAAAGAGTAATGAGAAGACCCAATTTGAGGTTACCTACACCCGTAACCAGGATATTTTGAAGAATCGGCCGGGCATCCATTATGCCCCACCAATCCTGGAGAAAAATAAAGACGGTCAGCGGCTTATTGTGACTTACGAGGTCGATTGGAAAAATAAGACGGTCAAGGTAGTGGACAAATATTCTGATGACAATAAACCGTACAAAGCTGGC
CC45 LukA W95 55   GCTAATAAGGACTCCCAGGACCAGACAAAGAAGGAACACGTCGACAAAGCCCAGCAAAAAGAAAAACGCAACGTAAACGATAAGGACAAGAACACCCCAGGACCCGATGATATTGGGAAGAACGGTAAAGTCACAAAACGCACAGTGAGCGAGTACGATAAAGAAACAAATATCCTGCAAAATCTGCAATTTGACTTCATCGATGACCCTACCTATGATAAGAATGTGTTGTTGGTTAAGATGCAGGGAAGTATTCATTCCAACTTGAAATTCGAGAGCCACCGTAACGAAACGAATGCGAGTTGGTTAAAGTACCCTTCAGAATACCACATTGATTTTCAGGTGCAGCGTAACCCGAAAACCGAAATCTTAGACCAGCTGCCTAAAAACAAGATTTCTACGGCCAAGGTGGACGCAACTTTCAGTTATAGTCTTGGAGGAAAGTTCGACAGTACCAAAGGTATCGGCCGCACATCCTCAAACAGCTATTCGAAATCCATTTCTTACAACCAGCAAAATTATGACACGATCGCCTCAGGTAAGAACAACAATCGTCATGTGCATTGGAGCATCGTGGCTAACGATTTGAAATATGGTAACGAAATCAAAAATCGCAATGACGAGTTCTTGTTTTACCGCAATACTCGCCTTTCTACGGTAGAGAATCCTGAGCTTAGCTTTGCGAGCAAGTATCGTTACCCTGCTCTTGTACGTTCGGGTTTCAACCCAGAGTTCCTTACTTATATCTCCAATGAGAAGACGAACGATAAAACCCGTTTTGAAGTTACATACACGCGTAATCAGGACATCTTAAAGAATAAACCGGGGATTCATTATGGGCAGCCGATCTTAGAGCAAAATAAGGATGGACAGCGTTTCATTGTAGTGTATGAGGTTGACTGGAAGAACAAGACGGTAAAAGTAGTTGAAAAGTATTCCGACCAAAACAAGCCTTATAAGGCGGGT
CC8 LukA W97 W92 56 CACAAAGACAGCCAGGATCAAAACAAGAAAGAGCACGTGGACAAGAGCCAGCAAAAGGATAAACGTAACGTTACCAACAAGGACAAAAACAGCACCGCGCCGGACGATATCGGCAAGAACGGCAAAATTACCAAGCGTACCGAGACCGTGTACGATGAAAAAACCAACATCCTGCAGAACCTGCAATTCGACTTTATTGACGATCCGACCTGCGATAAAAACGTGCTGCTGGTTAAGATGCAGGGCAGCATCCACAGCAACCTGAAATTCGAAAGCCACAAAGAGGAAAAGAACAGCAACTGGCTGAAGTACCCGAGCGAGTATCACATTGACTTTCAGGTGAAACGTAACCGTAAGACCGAAATCCTGGATCAACTGCCGAAGAACAAAATTAGCACCGCGAAGGTTTGCGCGACCTTCAGCTACAGCAGCGGTTGCAAATTTGACAGCACCAAGTGCATCGGCCGTACCAGCAGCAACAGCTATAGCAAAACCATCAGCTACAACCAGCAAAACTATGATACCATTGCGAGCGGCAAGAACAACAACTGGCACGTGCACTGGAGCATCATTGCGAACGACCTGAAATACGGTGGCGAGGTTAAGAACCGTAACGATGAACTGCTGTTCTATCGTAACACCCGTATCGCGACCGTGGAGAACCCGGAACTGAGCTTTGCGAGCAAATACCGTTATCCGGCGCTGGTGCGTAGCGGTTTCAACCCGGAGTTTCTGGTTTACCTGAGCAACGAGAAAAGCAACGAAAAGACCCAGTTCGAAGTTACCTACACCCGTAACCAAGACATCCTGAAGAACCGTCCGGGTATCCACTATGCTCCGCCGATTCTGGAGAAGAACAAAGATGGCCAACGTCTGATTGTGACCTATGAAGTTGACTGGAAGAACAAAACCGTTAAAGTGGTTGATAAGTACAGCGACGATAACAAACCGTATAAGGCGGGT
CC45 LukA W97 W92 57 GCAAACAAAGACTCACAAGATCAGACAAAGAAAGAGCATGTAGACAAAGCTCAACAGAAGGAAAAGCGCAATGTGAACGACAAGGATAAAAATACTCCTGGTCCAGATGACATTGGTAAGAATGGTAAAGTTACTAAGCGGACCGTCTCTGAATATGATAAGGAGACAAATATTCTCCAGAATTTGCAATTCGATTTCATTGATGATCCGACGTGCGATAAGAACGTATTGCTCGTTAAAATGCAGGGCTCCATCCATTCGAATCTCAAGTTCGAATCCCATCGCAACGAGACAAACGCTTCCTGGCTCAAATATCCTAGCGAGTATCATATCGACTTCCAAGTTCAACGGAACCCTAAAACTGAAATCCTTGATCAACTCCCTAAGAACAAAATCTCAACTGCCAAGGTCTGTGCCACATTTTCTTATTCTCTTGGCTGCAAATTCGATTCAACAAAGTGTATTGGTCGTACATCAAGTAATAGCTATAGTAAAAGCATCAGTTATAACCAGCAAAACTATGATACAATCGCGTCAGGCAAAAACAATAATCGTCATGTCCATTGGTCCATTGTCGCGAACGACCTTAAGTACGGTAACGAAATTAAGAATCGGAACGATGAGTTTTTGTTCTATCGCAACACCCGTCTGTCTACTGTCGAAAACCCGGAGTTGTCCTTCGCAAGTAAATATCGCTATCCTGCTTTGGTACGTTCTGGGTTTAACCCGGAATTTCTCGTCTACATCAGCAACGAGAAAACAAATGACAAAACGCGCTTTGAAGTCACGTACACACGTAATCAGGACATCTTAAAAAATAAACCAGGGATTCACTATGGTCAGCCAATCTTGGAGCAGAATAAAGACGGCCAGCGTTTCATTGTCGTTTATGAAGTGGACTGGAAAAACAAAACTGTTAAGGTGGTTGAGAAATATTCCGACCAAAACAAACCGTATAAGGCCGGT
CC8 LukBwt 58   AAAATCAATTCTGAAATTAAGCAAGTGTCCGAAAAAAATTTGGATGGAGACACGAAGATGTATACGCGTACTGCTACGACGTCAGACTCCCAGAAGAACATTACACAGAGTCTGCAATTTAATTTTCTGACAGAACCAAACTATGACAAGGAAACTGTCTTTATTAAGGCTAAAGGGACTATCGGAAGCGGCTTACGCATTTTAGACCCCAACGGTTATTGGAATAGCACGCTGCGCTGGCCGGGCAGTTACTCAGTATCAATCCAAAATGTCGATGATAACAATAACACCAATGTTACCGATTTCGCCCCCAAGAACCAGGATGAATCGCGCGAGGTTAAATACACATACGGCTACAAGACAGGCGGTGACTTTAGCATCAACCGTGGGGGCTTGACAGGGAATATTACTAAGGAATCAAATTATAGTGAGACTATCTCTTATCAACAACCGTCCTATCGTACCTTATTAGACCAGAGTACCTCCCACAAAGGTGTAGGGTGGAAAGTTGAAGCGCACCTGATTAATAATATGGGTCACGATCACACACGCCAACTGACCAACGACAGTGACAACCGCACAAAAAGTGAAATTTTTAGTCTTACCCGTAACGGAAATCTGTGGGCCAAAGACAATTTTACACCGAAAGATAAGATGCCGGTCACTGTATCTGAGGGGTTCAATCCCGAGTTTTTAGCAGTAATGTCGCATGACAAAAAGGACAAAGGGAAATCCCAGTTTGTTGTCCACTATAAGCGTAGCATGGATGAATTCAAAATCGACTGGAACCGTCACGGTTTCTGGGGTTACTGGTCAGGTGAGAACCACGTAGACAAGAAAGAGGAGAAACTGAGCGCATTATATGAGGTTGATTGGAAAACGCACAATGTGAAATTTGTTAAAGTCCTGAATGACAACGAGAAAAAG
CC45 LukBwt 59   GAAATTAAGTCTAAGATCACAACAGTATCGGAGAAAAACCTGGATGGCGATACTAAGATGTATACACGCACCGCCACTACTTCGGACACGGAGAAGAAGATCTCACAATCGTTACAGTTTAATTTTCTTACAGAACCGAACTACGACAAAGAGACCGTCTTCATTAAAGCTAAAGGTACGATTGGTTCGGGATTAAAAATTCTGAATCCGAATGGCTATTGGAACAGTACCTTACGTTGGCCGGGGTCATATTCTGTATCCATTCAAAACGTGGACGACAATAACAACAGCACCAATGTGACAGATTTCGCTCCAAAGAATCAGGATGAGTCCCGCGAGGTGAAATATACCTATGGGTACAAAACAGGAGGTGACTTTAGCATTAACCGTGGTGGCTTGACTGGTAATATCACGAAGGAAAAAAATTACTCTGAGACTATTTCCTACCAACAGCCGTCGTATCGCACCTTGATCGACCAACCAACGACTAACAAAGGGGTCGCGTGGAAAGTTGAGGCCCACAGTATTAACAATATGGGCCACGATCACACTCGTCAGCTTACTAACGATTCGGATGACCGCGTCAAGTCGGAAATTTTCAGCCTGACGCGTAACGGAAATTTGTGGGCTAAAGACAATTTCACTCCTAAGAACAAGATGCCCGTGACTGTTTCCGAAGGCTTTAATCCCGAATTCTTAGCGGTGATGTCTCATGATAAAAATGATAAAGGAAAATCGCGCTTCATTGTGCATTATAAGCGTTCTATGGACGACTTCAAATTGGATTGGAATAAGCACGGATTCTGGGGGTACTGGTCCGGGGAAAATCACGTAGATCAAAAGGAAGAGAAGTTGTCCGCTTTGTATGAAGTGGACTGGAAGACTCACGACGTTAAGTTGATCAAGACCTTCAATGACAAAGAGAAGAAA
CC8 LukB Val53Leu 60   AAGATCAATTCGGAAATTAAACAGGTAAGTGAGAAAAATTTGGATGGCGATACCAAAATGTACACCCGCACCGCTACCACGTCAGATTCACAAAAAAATATTACACAGTCCTTGCAGTTCAATTTCCTGACAGAACCGAATTACGACAAGGAGACTTTGTTCATTAAAGCCAAGGGAACCATCGGGTCCGGATTGCGTATCTTGGACCCGAACGGATATTGGAACTCGACCTTACGTTGGCCGGGGTCTTACAGTGTTAGTATCCAAAACGTAGATGATAACAATAACACAAACGTGACAGATTTTGCACCTAAAAACCAGGACGAAAGCCGCGAGGTAAAGTACACATATGGGTATAAAACAGGGGGGGACTTTTCCATCAACCGTGGTGGTTTGACCGGGAACATCACCAAAGAGTCAAATTACAGTGAGACCATCAGTTATCAGCAGCCGTCCTATCGTACATTATTGGATCAGTCGACTTCACATAAAGGGGTCGGATGGAAAGTAGAGGCTCATTTGATCAACAACATGGGTCACGATCATACACGTCAGTTAACGAACGATAGCGATAATCGCACGAAGTCAGAAATCTTTAGTCTGACTCGTAACGGTAACTTGTGGGCCAAGGACAATTTCACGCCCAAAGATAAGATGCCTGTGACGGTATCGGAGGGGTTCAATCCAGAATTCCTTGCTGTAATGTCCCATGACAAAAAAGACAAGGGCAAATCGCAATTTGTAGTCCACTATAAGCGTTCTATGGACGAGTTCAAGATTGACTGGAACCGCCACGGCTTCTGGGGGTACTGGAGTGGTGAGAATCATGTGGATAAAAAGGAGGAGAAACTTAGCGCCCTGTATGAGGTAGATTGGAAAACACACAATGTCAAGTTCGTGAAAGTTCTTAATGACAACGAAAAAAAA
CC45 LukB Val53Leu 61   GAGATCAAGAGCAAAATTACCACCGTGAGCGAAAAGAACCTGGACGGTGATACCAAAATGTATACCCGTACCGCGACCACCAGCGACACCGAGAAGAAAATTAGCCAGAGCCTGCAATTCAACTTTCTGACCGAGCCGAACTACGATAAGGAAACCCTGTTCATCAAGGCGAAAGGCACCATTGGTAGCGGCCTGAAAATCCTGAACCCGAACGGTTATTGGAACAGCACCCTGCGTTGGCCGGGTAGCTACAGCGTGAGCATCCAGAACGTTGACGATAACAACAACAGCACCAACGTGACCGACTTCGCGCCGAAGAACCAAGATGAGAGCCGTGAAGTTAAATACACCTATGGTTACAAAACCGGTGGCGACTTTAGCATTAACCGTGGTGGCCTGACCGGCAACATCACCAAGGAGAAAAACTATAGCGAAACCATTAGCTATCAGCAACCGAGCTACCGTACCCTGATCGATCAGCCGACCACCAACAAGGGTGTGGCGTGGAAAGTTGAGGCGCACAGCATTAACAACATGGGCCACGACCACACCCGTCAACTGACCAACGATAGCGACGATCGTGTGAAGAGCGAAATCTTCAGCCTGACCCGTAACGGTAACCTGTGGGCGAAAGACAACTTTACCCCGAAGAACAAAATGCCGGTGACCGTTAGCGAGGGTTTCAACCCGGAATTTCTGGCGGTGATGAGCCACGACAAGAACGATAAGGGCAAAAGCCGTTTCATTGTTCACTACAAACGTAGCATGGACGATTTCAAGCTGGACTGGAACAAACACGGTTTTTGGGGCTATTGGAGCGGCGAGAACCACGTTGATCAGAAAGAGGAGAAACTGAGCGCGCTGTACGAAGTGGACTGGAAGACCCACGATGTTAAGCTGATCAAAACCTTTAACGATAAAGAAAAGAAA
在任意的實施方案中,編碼如本文所述的編碼變異LukA和LukB多肽的核酸分子被密碼子優化以在哺乳動物細胞,優選人細胞中進行表達。密碼子優化的方法是已知的,並且已經在前面描述過(例如授予Seed的國際專利申請公開號WO1996/09378,其全部內容通過引用結合於此)。如果與野生型序列相比,至少一個非優選密碼子被更優選的密碼子取代,則序列被認為是密碼子優化的。這裏,非優選密碼子是在生物體中使用頻率低於編碼相同氨基酸的另一個密碼子的密碼子,更優選的密碼子是在生物體中使用頻率高於非優選密碼子的密碼子。用於特定生物體的密碼子使用頻率可以在本領域公知的和可獲得的密碼子頻率表中找到。優選多於一個非優選密碼子,例如多於10%、40%、60%、80%的非優選密碼子,優選大多數(例如,至少90%)或所有非優選密碼子被更優選的密碼子替換。優選地,生物體中最常用的密碼子用於密碼子優化的序列。優選密碼子的替換通常導致更高的表達。
本發明的多核苷酸序列可以使用常規分子生物學技術來進行克隆,或者通過DNA合成從頭生成,這可以由在DNA合成和/或分子克隆領域有業務的服務公司(例如GeneArt、GenScript、Invitrogen、Eurofins)使用常規程序來進行。
在任意的實施方案中,將前述核酸分子插入載體,即用於本文所述疫苗組合物的表達載體。或者,可以將這些核酸分子插入到表達載體中,該表達載體被轉化或轉染到合適的宿主細胞中,用於表達和分離編碼的變異LukA蛋白、變異LukB蛋白或變異LukB複合物(作為穩定的異二聚體),其中變異LukB複合物包含本文公開的變異LukA和非變異LukB、非變異LukA和變異LukB、或變異LukA和變異LukB。
根據本發明的這一方面,編碼本文所述的金黃色葡萄球菌LukA和/或LukB蛋白及其多肽的核酸分子可以加入到能夠表達由核酸序列構建體編碼的LukA和/或LukB蛋白或多肽的任何表達載體中。合適的表達載體包含控制、調節、引起或允許由這種載體編碼的LukA和/或LukB蛋白或多肽表達的核酸序列要素。這些要素可以包括轉錄增強子結合位點、RNA聚合酶起始位點、核糖體結合位點和其他促進編碼多肽在給定表達系統中表達的位點。合適的載體包括但不限於DNA載體、質粒載體、線性核酸和病毒載體,例如腺病毒載體。
在一個實施方案中,所述表達載體是環形質粒(參見,例如,Muthumani等人,“Optimized and Enhanced DNA Plasmid Vector Based In vivo Construction of a Neutralizing anti-HIV-1 Envelope Glycoprotein Fab,” Hum. Vaccin. Immunother. 9: 2253-2262 (2013),其全部內容通過引用結合於此)。質粒可以通過整合到細胞基因組中來轉化靶細胞,或者存在於染色體外(例如,具有複制起點的自主複制質粒)。示例性的質粒載體包括但不限於pCEP4、pREP4、pVAX、pcDNA3.0、provax或能夠表達由重組核酸序列構建體編碼的變異LukA和/或變異LukB蛋白或多肽的任何其他質粒表達載體。
在另一個實施方案中,表達載體是線性表達盒(“LEC”)。LEC能夠通過電穿孔被有效地遞送至受試者,以表達由本文所述重組核酸分子編碼的LukA和/或LukB蛋白或多肽。LEC可以是任何沒有磷酸骨架的線性DNA。在一個實施方案中,LEC不包含任何抗生素抗性基因和/或磷酸骨架。在另一個實施方案中,LEC不包含與所需基因表達無關的其他核酸序列。
LEC可以來自任何能夠線性化的質粒。該質粒能夠表達本文所述重組核酸分子編碼的LukA和/或LukB蛋白或多肽。示例性質粒包括但不限於pNP(Puerto Rico/34)、pM2(New Caledonia/99)、WLV009、pVAX、pcDNA3.0或provax,或能夠表達由重組核酸序列構建體編碼的變異LukA和/或變異LukB蛋白或多肽的任何其他表達載體。
在另一個實施方案中,所述表達載體是病毒載體。能夠表達LukA和/或LukB蛋白或多肽的合適的病毒載體包括,例如,腺相關病毒(AAV)載體(參見,例如,Krause等人,“Delivery of Antigens by Viral Vectors for Vaccination,” Ther. Deliv.  2(1):51-70 (2011);Ura等人,“Developments in Viral Vector-Based Vaccines,” Vaccines 2: 624-641 (2014); Buning等人,"Recent Developments in Adeno- associated Virus Vector Technology," J. Gene Med. 10:717-733 (2008),其中每一篇都在此全文引入作為參考),慢病毒載體(參見,例如,Ura等人,“Developments in Viral Vector-Based Vaccines,” Vaccines 2: 624-641 (2014);和Hu等人,“Immunization Delivered by Lentiviral Vectors for Cancer and Infection Diseases,” Immunol. Rev. 239: 45-61 (2011),其在此全文引入作為參考)、逆轉錄病毒載體(例如參見Ura等人,“Developments in Viral Vector-Based Vaccines,” Vaccines 2: 624-641 (2014),其在此全文引入作為參考)、牛痘病毒、複制缺陷型腺病毒載體和無骨腺病毒載體(gutless adenovirus vector)(例如參見美國專利No. 5,872,005,其全部內容通過引用結合於此)。用於產生和分離適合作為載體的腺相關病毒 (AAVs) 的方法在本領域是已知的(參見,例如,Grieger & Samulski,"Adeno-associated Virus as a Gene Therapy Vector: Vector Development, Production and Clinical Applications," Adv. Biochem. Engin/Biotechnol. 99: 119-145 (2005),Buning等人,"Recent Developments in Adeno- associated Virus Vector Technology," J. Gene Med. 10:717-733 (2008),其中每一篇都通過引用整體結合於此)。
編碼本文所述LukA和/或LukB蛋白或多肽的核酸分子通常與表達載體構建體中的啟動子序列、翻譯起始序列、3’非翻譯區序列、聚腺苷酸化序列和轉錄終止序列結合,以實現最大表達。適於驅動LukA和/或LukB蛋白或其多肽表達的啟動子序列包括但不限於延伸因子1-α(EF1a)啟動子、磷酸甘油酸激酶-1 (PGK)啟動子、巨細胞病毒立即早期基因啟動子(CMV)、嵌合肝特異性啟動子(LSP)、巨細胞病毒增強子/雞β-肌動蛋白啟動子(CAG)、四環素應答啟動子(TRE)、甲狀腺素運載蛋白啟動子(TTR)、猿猴病毒40啟動子(SV40)和CK6啟動子。本領域已知的適於驅動宿主細胞中基因表達的其他啟動子也適於包含在本文公開的表達構建體中。
本發明的另一方面涉及包含載體的宿主細胞,所述載體包含編碼本文所述LukA和/或LukB多肽的多核苷酸。編碼本文所述LukA和LukB蛋白或多肽的表達構建體可以通過共轉染、串聯轉染或分別轉染到宿主細胞中。本文所述的LukA和LukB蛋白和多肽可以任選地由本領域所熟知的細胞系、混合細胞系、永生化細胞或永生化細胞的克隆群體產生(例如,參見Ausubel等人,ed., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., NY, N.Y. (1987-2001);Sambrook等人,Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor, N.Y. (1989); Harlow和Lane, Antibodies, a Laboratory Manual, Cold Spring Harbor, N.Y. (1989); Colligan等人,eds., Current Protocols in Immunology, John Wiley & Sons, Inc., NY (1994-2001); Colligan等人,Current Protocols in Protein Science, John Wiley & Sons, NY, N.Y., (1997-2001),其全部內容通過引用結合於此)。這種宿主細胞可以是真核細胞、細菌細胞、植物細胞或古細菌細胞。
在任意的實施方案中,本文所述的LukA和/或LukB多肽在細菌細胞中產生。合適的細菌宿主細胞包括但不限於埃希氏菌宿主細胞、假單胞菌宿主細胞、葡萄球菌宿主細胞、鏈黴菌宿主細胞、分枝杆菌宿主細胞和芽孢杆菌宿主細胞。在任意的實施方案中,宿主細胞是大腸杆菌宿主細胞。在任意的實施方案中,宿主細胞是金黃色葡萄球菌宿主細胞。
在任意的實施方案中,本文所述的LukA和/或LukB多肽在真核細胞中產生。示例性真核細胞可以來自哺乳動物、昆蟲、鳥類或其他動物。哺乳動物真核細胞包括永生化細胞系如雜交瘤或骨髓瘤細胞系如SP2/0(美國典型培養物保藏中心(ATCC),弗吉尼亞州馬納薩斯,CRL-1581),NSO(歐洲細胞培養物保藏中心(ECACC),英國威爾特郡索爾茲伯裏市,UK, ECACC No. 85110503),FO (ATCC CRL-1646)和Ag653 (ATCC CRL-1580)鼠細胞系。示例性的人骨髓瘤細胞系是U266 (ATTC CRL-TIB-196)。其他有用的細胞系包括來自中國倉鼠卵巢(CHO)細胞的細胞系,如CHO-K1SV (Lonza Biologics,Walkersville,Md .)、CHO-K1 (ATCC CRL-61)或DG44。
本文所述的LukA和LukB多肽可以使用上述分離的多核苷酸、載體和宿主細胞通過多種技術中的任何一種來制備。通常,蛋白質是通過標準克隆和細胞培養技術產生的,這些技術通常用於制備重組表達載體、轉染宿主細胞、選擇轉化體、培養宿主細胞以及從培養基中回收蛋白質或多肽。轉染宿主細胞可以使用多種常用於將外源性DNA導入原核或真核宿主細胞的技術來進行,例如通過電穿孔、磷酸鈣沉澱、DEAE-葡聚糖轉染等。
本文所述的LukA和/或LukB多肽可以通過諸如糖基化、異構化、去糖基化等過程進行翻譯後修飾,或者通過非天然發生的共價修飾(諸如添加聚乙二醇(PEG)部分(聚乙二醇化)和脂質化等)進行翻譯後修飾。這種修飾可以發生在體內或體外。
在任意的實施方案中,本文所述的LukA和LukB多核苷酸和/或多肽優選為“分離的”多核苷酸和/或多肽。當用於描述本文公開的多核苷酸和/或多肽時,“分離的”意味著多核苷酸和/或多肽已經從其生產環境的組分中鑒定、分離和/或回收。優選地,分離的多核苷酸和/或多肽不與來自其生產環境的其他組分結合。其生產環境中的汙染物組分,例如由重組轉染細胞產生的汙染物成分,是通常會幹擾藥物使用的物質,可能包括酶、激素和其他蛋白質或非蛋白質溶質。通過已知方法從重組細胞培養物中回收和純化多核苷酸和/或多肽,包括但不限於蛋白A純化、硫酸銨或乙醇沉澱、酸提取、陰離子或陽離子交換色譜、磷酸纖維素色譜、疏水相互作用色譜、親和色譜、羥基磷灰石色譜和凝集素色譜。高效液相色譜法(“HPLC”)也可用於純化。
金黃色葡萄球菌疫苗組合物
本發明的另一方面涉及金黃色葡萄球菌疫苗組合物。在任意的實施方案中,所述金黃色葡萄球菌疫苗組合物包含本文所述的任何一種或多種LukA變異多肽,或編碼本文所述LukA變異多肽的一種或多種核酸分子。特別的,所述疫苗組合物的LukA變異多肽,如本文鑒定和描述的,在一個或多個氨基酸殘基的任何一個上包含氨基酸殘基插入、取代和/或缺失。在任意的實施方案中,所述疫苗組合物的LukA變體包含SEQ ID NO:25的變體或SEQ ID NO:1、2或26-38中任何一個的變體。在任意的實施方案中,所述疫苗組合物的LukA變體包含SEQ ID NO:1 (CC8)的變體。示例性的CC8LukA變體包括但不限於SEQ ID NO:3、5、7、9和13的LukA變體。在任意的實施方案中,所述疫苗組合物的LukA變體包含SEQ ID NO:2 (CC45)的變體。示例性的CC45 LukA變體包括但不限於SEQ ID NOs: 4、6、8、10、11、12和14的LukA變體。
在任意的實施方案中,本文公開的金黃色葡萄球菌疫苗組合物包含具有SEQ ID NO:3的氨基酸序列的CC8LukA變體。
在任意的實施方案中,本文公開的金黃色葡萄球菌疫苗組合物包含具有SEQ ID NO:7的氨基酸序列的CC8 LukA變體。
在任意的實施方案中,本文公開的金黃色葡萄球菌疫苗組合物包含具有SEQ ID NO:8的氨基酸序列的CC45 LukA變體。
在任意的實施方案中,本文公開的金黃色葡萄球菌疫苗組合物包含本文所述的任何一種或多種變異LukB蛋白或多肽,或編碼本文所述的LukB變體蛋白或多肽的一種或多種核酸分子。特別的,所述疫苗組合物的LukB變異多肽,如本文鑒定和描述的,在一個或多個氨基酸殘基的任何一個上包含氨基酸殘基插入、取代和/或缺失。在任意的實施方案中,所述疫苗組合物的LukB變體包含SEQ ID NO:39的變體或SEQ ID NO:15、16或40-51中任何一個的變體。在任意的實施方案中,所述疫苗組合物的LukB變體包含SEQ ID NO:15 (CC8)的變體。示例性的CC8 LukB變體包括但不限於SEQ ID NO:17、19和21的LukB變體。在任意的實施方案中,所述疫苗組合物的LukB變體包含SEQ ID NO:16 (CC45)的變體。示例性的CC45 LukB變體包括但不限於SEQ ID NO:18、20和21的LukB變體。
在任意的實施方案中,本文公開的疫苗組合物同時包含LukA和LukB蛋白。因此,在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:1的CC8 LukA變體,同時包含SEQ ID NO:15的CC8 LukB非變體序列或具有與SEQ ID NO:15至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。在任意的實施方案中,CC8 LukB序列變體序列包含選自SEQ ID NO:17、19和21的氨基酸序列。例如,在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:3的CC8 LukA變體,同時包含SEQ ID NO:15的CC8 LukB序列或與SEQ ID NO:15的CC8 LukB具有85%或更多序列同一性的變體,例如選自SEQ ID NO:17、19和21的CC8 LukB變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:5的CC8 LukA變體,同時包含SEQ ID NO:15的CC8 LukB序列或與SEQ ID NO:15的CC8 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:17、19和21的CC8 LukB變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:7的CC8 LukA變體,同時包含SEQ ID NO:15的CC8 LukB序列或與SEQ ID NO:15的CC8 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:17、19和21的CC8 LukB變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:9的CC8 LukA變體,同時包含SEQ ID NO:15的CC8 LukB序列或與SEQ ID NO:15的CC8 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:17、19和21的CC8 LukB變體序列。
在任意的實施方案中,所述疫苗組合物包含具有SEQ ID NO:3氨基酸序列的CC8 LukA變體和具有SEQ ID NO:15氨基酸序列的CC8 LukB變體。
在任意的實施方案中,所述疫苗組合物包含具有SEQ ID NO:3氨基酸序列的CC8 LukA變體和具有SEQ ID NO:17氨基酸序列的CC8 LukB變異體。
在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:1的CC8 LukA變體,同時包含SEQ ID NO:16的CC45 LukB序列或具有與SEQ ID NO:16至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。在任意的實施方案中,CC45 LukB變體序列包含選自SEQ ID NO:18、20和22的氨基酸序列。例如,在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:3的CC8 LukA變體,同時包含SEQ ID NO:16的CC45 LukB序列或與SEQ ID NO:16的CC45 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:18、20和22的CC45 LukB變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:5的CC8 LukA變體,同時包含SEQ ID NO:16的CC45 LukB序列或與SEQ ID NO:16的CC45 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:18、20和22的CC45 LukB變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:7的CC8 LukA變體,同時包含SEQ ID NO:16的CC45 LukB序列或與SEQ ID NO:16的CC45 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:18、20和22的CC45 LukB變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:9的CC8 LukA變體,同時包含SEQ ID NO:16的CC45 LukB序列或與SEQ ID NO:16的CC45 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:18、20和22的CC45 LukB變體序列。
在任意的實施方案中,所述疫苗組合物包含具有SEQ ID NO:5氨基酸序列的CC8 LukA變體和具有SEQ ID NO:16氨基酸序列的CC45 LukB變體。
在任意的實施方案中,所述疫苗組合物包含具有SEQ ID NO:5氨基酸序列的CC8 LukA變體和具有SEQ ID NO:22氨基酸序列的CC45 LukB變體。
在任意的實施方案中,所述疫苗組合物包含具有SEQ ID NO:5氨基酸序列的CC8 LukA變體和具有SEQ ID NO:18氨基酸序列的CC45 LukB變體。
在任意的實施方案中,所述疫苗組合物包含具有SEQ ID NO:5氨基酸序列的CC8 LukA變體和具有SEQ ID NO:20氨基酸序列的CC45 LukB變體。
在任意的實施方案中,所述疫苗組合物包含具有SEQ ID NO:3氨基酸序列的變異LukA蛋白和具有SEQ ID NO:18氨基酸序列的LukB蛋白。
在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:2的CC45 LukA變體,同時包含SEQ ID NO:16的CC45 LukB序列或具有與SEQ ID NO:16至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。在任意的實施方案中,CC45 LukB變體序列包含選自SEQ ID NO:18、20和22的氨基酸序列。例如,在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:4的CC45 LukA變體,同時包含SEQ ID NO:16的CC45 LukB序列或與SEQ ID NO:16的CC45 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:18、20和22的CC45 LukB變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:6的CC45 LukA變體,同時包含SEQ ID NO:16的CC45 LukB序列或與SEQ ID NO:16的CC45 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:18、20和22的CC45 LukB變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:8的CC45 LukA變體,同時包含SEQ ID NO:16的CC45 LukB序列或與SEQ ID NO:16的CC45 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:18、20和22的CC45 LukB變體。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:10的CC45 LukA變體,同時包含SEQ ID NO:16的CC45 LukB序列或與SEQ ID NO:16的CC45 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:18、20和22的CC45 LukB變體。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:11的CC45 LukA變體,同時包含SEQ ID NO:16的CC45 LukB序列或與SEQ ID NO:16的CC45 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:18、20和22的CC45 LukB變體。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:12的CC45 LukA變體,同時包含SEQ ID NO:16的CC45 LukB序列或與SEQ ID NO:16的CC45 LukB具有大於 85%序列同一性的變體,例如選自SEQ ID NO:18、20和22的CC45 LukB變體。
在一個實施方案中,所述疫苗組合物包含具有SEQ ID NO:4的氨基酸序列的CC45 LukA變體與具有SEQ ID NO:16的氨基酸序列的CC45 LukB的組合。
在一個實施方案中,所述疫苗組合物包含具有SEQ ID NO:11的氨基酸序列的CC45 LukA變體與具有SEQ ID NO:16的氨基酸序列的CC45 LukB的組合。
在一個實施方案中,所述疫苗組合物包含具有SEQ ID NO:12的氨基酸序列的CC45 LukA變體與具有SEQ ID NO:16的氨基酸序列的CC45 LukB的組合。
在一個實施方案中,所述疫苗組合物包含具有SEQ ID NO:8的氨基酸序列的CC45 LukA變體與具有SEQ ID NO:16的氨基酸序列的CC45 LukB的組合。
在一個實施方案中,所述疫苗組合物包含具有SEQ ID NO:4的氨基酸序列的CC45 LukA變體和具有SEQ ID NO:18的氨基酸序列的CC45 LukB變體的組合。
在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:2的CC45 LukA變體,同時包含SEQ ID NO:15的CC8 LukB序列或具有與SEQ ID NO:15至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。在任意的實施方案中,CC8 LukB變體序列包含選自SEQ ID NO:17、19和21的氨基酸序列。例如,在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:4的CC45 LukA變體,同時包含SEQ ID NO:15的CC8 LukB序列或與SEQ ID NO:15的CC8 LukB序列具有大於85%序列同一性的變體,例如選自SEQ ID NO:17、19和21的變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:6的CC45 LukA變體,同時包含SEQ ID NO:15的CC8 LukB序列或與SEQ ID NO:15的CC8 LukB序列具有大於 85%序列同一性的變體,例如選自SEQ ID NO:17、19和21的變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:8的CC45 LukA變體,同時包含SEQ ID NO:15的CC8 LukB序列或與SEQ ID NO:15的CC8 LukB序列具有大於 85%序列同一性的變體,例如選自SEQ ID NO:17、19和21的變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:9的CC45 LukA變體,同時包含SEQ ID NO:15的CC8 LukB序列或與SEQ ID NO:15的CC8 LukB序列具有大於 85%序列同一性的變體,例如選自SEQ ID NO:17、19和21的變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:10的CC45 LukA變體,同時包含SEQ ID NO:15的CC8 LukB序列或與SEQ ID NO:15的CC8 LukB序列具有大於 85%序列同一性的變體,例如選自SEQ ID NO:17、19和21的變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:11的CC45 LukA變體,同時包含SEQ ID NO:15的CC8 LukB序列或與SEQ ID NO:15的CC8 LukB序列具有大於 85%序列同一性的變體,例如選自SEQ ID NO:17、19和21的變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:12的CC45 LukA變體,同時包含SEQ ID NO:15的CC8 LukB序列或與SEQ ID NO:15的CC8 LukB序列具有大於 85%序列同一性的變體,例如選自SEQ ID NO:17、19和21的變體序列。
本發明的另一方面涉及金黃色葡萄球菌疫苗組合物,其包含本文所述的任何變異LukB變異多肽或編碼LukB變體的核酸分子。特別地,所述疫苗組合物的LukB變異多肽包含一個或多個本文所述的氨基酸殘基的插入、取代和/或缺失。在任意的實施方案中,所述疫苗組合物的LukB變體包含SEQ ID NO:15 (CC8)的變體。示例性的CC8 LukB變體包括但不限於SEQ ID NO:17、19和21的LukB變體。在任意的實施方案中,所述疫苗組合物的LukB變體包含SEQ ID NO:16 (CC45)的變體。示例性的CC45 LukB變體包括但不限於SEQ ID NO:18、20和22的LukB變體。
在任意的實施方案中,本文公開的疫苗組合物包含本文描述的LukB變異多肽和LukA蛋白或多肽。因此,在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:15的CC8 LukB變體,例如SEQ ID NO:17、19和21的變體,同時包含SEQ ID NO:1的CC8 LukA序列或具有與SEQ ID NO:1至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:15的CC8 LukB變體,例如SEQ ID NO:17、19和21的變體,同時包含SEQ ID NO:2的CC45 LukA序列或具有與SEQ ID NO:2至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。
在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:16的CC45 LukB變體,例如SEQ ID NO:18、20或22的變體,同時包含SEQ ID NO:1的CC8 LukA序列或具有與SEQ ID NO:1至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。在任意的實施方案中,所述疫苗組合物包含SEQ ID NO:16的CC45 LukB變體,例如SEQ ID NO:18、20或22的變體,同時包含SEQ ID NO:2的CC45 LukA序列或具有與SEQ ID NO:2至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。
本發明的疫苗組合物是通過將本文所述的LukA和/或LukB多肽與藥學上可接受的載體和任選的藥學上可接受的賦形劑一起配制而制備的。藥學活性成分與藥學上可接受的載體的制備在本領域是已知的,例如Remington: The Science and Practice of Pharmacy (例如第21 版(2005)和任何更新的版本)。附加成分的非限制性例子包括:緩沖劑、稀釋劑、溶劑、張力調節劑、防腐劑、穩定劑和螯合劑。一種或多種藥學上可接受的載體可用於配制本發明的藥物組合物。
如本文所用,術語“藥學上可接受的載體”和“藥學上可接受的賦形劑”(例如添加劑,如稀釋劑、免疫刺激劑、佐劑、抗氧化劑、防腐劑和增溶劑)以其所用的劑量和濃度施用組合物對受試者無毒。藥學上可接受的載體的例子包括水溶液,例如用磷酸鹽、檸檬酸鹽和另一種有機酸緩沖得到的水溶液。可用於本發明的藥學上可接受的賦形劑的代表性例子包括抗氧化劑,如抗壞血酸;低分子量(小於約10個殘基)多肽;蛋白質,如血清白蛋白、明膠或免疫球蛋白;親水聚合物,如聚乙烯吡咯烷酮;氨基酸,如甘氨酸、穀氨醯胺、天冬醯胺、精氨酸或賴氨酸;單糖、二糖和其他碳水化合物,包括葡萄糖、甘露糖或糊精;螯合劑,如乙二胺四乙酸;糖醇,如甘露醇或山梨醇;成鹽抗衡離子,如鈉;和/或非離子表面活性劑。
在任意的實施方案中,本文所述的疫苗組合物是液體制劑。液體制劑的優選實例是水性制劑,即包含水的制劑。液體制劑可以包括溶液、懸浮液、乳液、微乳液、凝膠等。水性制劑通常包含至少50% w/w的水,或至少60%、70%、75%、80%、85%、90%或至少95% w/w的水。
疫苗組合物可以進一步包含一種或多種佐劑。如本文所用,術語“佐劑”是指當與本文所述的LukA和/或LukB多肽聯合給藥時,可以增加、增強和/或促進對多肽的免疫應答的化合物。然而,當佐劑化合物單獨給藥時,不會對上述多肽或編碼多肽的多核苷酸產生免疫應答。佐劑可以通過幾種機制增強免疫應答,包括例如淋巴細胞募集、刺激B和/或T細胞以及刺激抗原呈遞細胞。
本文所述的疫苗組合物包含LukA和/或LukB多肽和/或編碼該多肽的多核苷酸,所述疫苗組合物包含佐劑或與佐劑聯合施用。用於與本文所述疫苗組合物聯合施用的佐劑可以在施用疫苗組合物之前、同時或之後施用。
合適的佐劑是本領域已知的,包括但不限於鞭毛蛋白、弗氏完全佐劑、弗氏不完全佐劑、氫氧化鋁、溶血卵磷脂、pluronic多元醇、聚陰離子、肽、油乳劑、二硝基酚、ISCOMATRIX和脂質體聚陽離子DNA顆粒。佐劑的其他例子包括,例如,專利US6,355,625中描述的β-葡聚糖(該專利在此全文引入作為參考),或粒細胞集落刺激因子(GCSF)。
額外的示例性佐劑包括但不限於鋁鹽(明礬)(例如氫氧化鋁、磷酸鋁、硫酸鋁和氧化鋁,包括包含明礬或納米明礬制劑的納米顆粒)、磷酸鈣(例如,Masson JD等人,Expert Rev Vaccines 16: 289-299 (2017),其在此全文引入作為參考)、單磷醯基脂質A (MPL)或3-脫氧-醯化單磷醯基脂質A (3D-MPL)(參見例如,GB2220211,EP0971739, EP1194166, US6491919,這些文獻在此全文引入作為參考),AS01,AS02、AS03和AS04(例如參見EP1126876、記載了AS04的US7357936、EP0671948、EP0761231、記載了AS02的US5750110,其在此全文引入作為參考)、咪唑並吡啶化合物(參見WO2007/109812,其在此全文引入作為參考)、咪唑並喹喔啉化合物(參見WO2007/109813,其在此全文引入作為參考)、Δ-菊粉(例如Petrovsky N 和PD Cooper, Vaccine 33: 5920-5926 (2015),其在此全文引入作為參考)、 STING-激活合成環狀二核苷酸(例如US20150056224,其在此全文引入作為參考)、卵磷脂和卡波姆均聚物的組合(例如US6,676,958,其在此全文引入作為參考),和皂苷,例如Quil A和QS21(例如參見Zhu D和W Tuo,2016, Nat Prod Chem Res 3: e113 (doi:10.4172/2329-6836.1000e113),其在此全文引入作為參考),任選地與QS7(參見例如Kensil等人,in Vaccine Design: The Subunit and Adjuvant Approach (eds. Powell & Newman, Plenum Press, NY, 1995); US 5,057,540,其在此全文引入作為參考)組合。在任意的實施方案中,所述佐劑是弗氏佐劑(完全或不完全)。在任意的實施方案中,所述佐劑包含Quil-A,例如可從Brenntag(現稱Croda)或Invivogen購買得到的Quil-A。Quil-A含有來自於Quillaja saponaria Molina tree的皂苷的水提成分。這些皂苷屬於三萜皂苷類,具有共同的三萜骨架結構。已知皂苷可誘導對T依賴和T非依賴抗原的強佐劑反應,以及強細胞毒性CD8+淋巴細胞反應,並增強對粘膜抗原的反應。因此,在任意的實施方案中,所述佐劑包含皂苷。在任意的實施方案中,所述佐劑包含QS-21。
在任意的實施方案中,所述皂苷與膽固醇和磷脂結合,形成免疫刺激複合物(ISCOM),其可以啟動抗體介導和細胞介導的針對不同來源的廣泛抗原的免疫反應。在某些實施方案中,所述佐劑是AS01,例如AS01B。AS01是含有MPL(3-O-去十二烷基-4’-單磷醯基脂質A)、QS21(Quillaja saponaria Molina,餾分21)和脂質體的佐劑系統。在某些實施方案中,AS01是商業上可購買得到的,或者可以如WO 96/33739中所述制備,該文獻通過引用整體結合於此。某些助劑包括乳液,乳液是兩種不混溶的流體,例如油和水的混合物,其中一種以小液滴形式懸浮在另一種流體中,並通過表面活性劑穩定。水包油乳液具有形成連續相的水,圍繞小油滴,而油包水乳液具有形成連續相的油。某些水包油乳液包含角鯊烯(一種可代謝的油)。某些助劑包括嵌段共聚物,它是當兩種單體聚集在一起並形成重複單元的嵌段時形成的共聚物。包含嵌段共聚物、角鯊烯和微粒穩定劑的油包水乳液的一個例子是TiterMax®,其可以從Sigma-Aldrich公司購買得到。
任選地,乳劑可以與其他免疫刺激成分如TLR4激動劑結合或包含其他的免疫刺激成分。適用於本文公開的組合物中的佐劑組合的合適但非限制性的例子包括水包油乳液(如角鯊烯或花生油)、MF59(例如參見EP0399843、US 6299884、US6451325,其全部內容通過引用結合於此)和AS03,任選與免疫刺激劑如單磷醯脂質A和/或QS21如AS02(參見Stoute等人,N. Engl. J. Med336: 86-91 (1997)s,其全部內容通過引用結合於此)進行組合。佐劑的其他示例是含有免疫刺激劑如MPL和QS21的脂質體,如在AS01E和AS01B中(例如,參見US2011/0206758,其通過引用整體結合於此)。佐劑的其他例子是CpG和咪唑並喹啉(如咪喹莫特和R848)(例如,參見Reed G等人.,Nature Med,19: 1597-1608 (2013),其全部內容通過引用結合於此)。在本發明所述的任何實施方案中,所述佐劑是Th1佐劑。
在任意的實施方案中,本文公開的疫苗組合物的佐劑包含單獨的toll樣受體4 (TLR4)激動劑或其與另一種佐劑的組合。TLR4激動劑在本領域中是眾所周知的,例如參見Ireton GC和SG Reed,Expert Rev ventures 12:793-807(2013),其全部內容通過引用結合於此。在任意的實施方案中,佐劑是包含脂質A或其類似物或衍生物的TLR4激動劑。
在任意的實施方案中,所述疫苗組合物的佐劑包含脂質A或脂質A類似物或衍生物。如本文所用,術語“脂質A”是指脂多糖分子(LPS)的疏水脂質部分,其包含氨基葡萄糖,並通過酮苷鍵與脂多糖分子內核中的酮基-脫氧辛基酮糖酸連接,該酮苷鍵將脂多糖分子錨定在革蘭氏陰性菌外膜的外小葉中。本文所用的脂質A包括天然存在的脂質A、其混合物、類似物、衍生物和前體。該術語包括單糖,例如脂質A的前體,稱為脂質X;二糖脂質A;七醯基脂質A;六醯基脂質A;五醯基脂質A;四醯基脂質A,例如脂質A的四醯基前體,稱為脂質IVA;去磷酸化脂質A;單磷醯基脂質A;二磷醯基脂質A,如來自大腸杆菌和球形紅杆菌的脂質A。幾種免疫激活脂質A結構含有6條醯基鏈。直接連接到葡糖胺糖上的四個初級(primary)醯基鏈是3-羥基醯基鏈,長度通常在10到16個碳之間。兩個額外的醯基鏈通常連接在初級醯基鏈的3-羥基上。例如,大腸杆菌脂質A通常具有四個連接到糖上的C14 3-羥基醯基鏈,以及一個C12和一個C14分別連接到初級醯基鏈的2’和3’位的3-羥基上。
如本文所用,術語“脂質A類似物或衍生物”是指具有類似於脂質A的結構和免疫活性,但不一定天然存在的分子。脂質A類似物或衍生物可以被修飾以被縮短或縮合,和/或使它們的葡糖胺殘基被另一個胺糖殘基(例如半乳糖胺殘基)取代,以在還原端含有2-脫氧-2-氨基葡萄糖酸鹽以代替葡糖胺-1-磷酸鹽,在4’位帶有半乳糖醛酸部分而不是磷酸鹽。脂質A類似物或衍生物可由從細菌中分離的脂質A制備,例如通過化學衍生,或化學合成,例如通過首先確定優選脂質A的結構並合成其類似物或衍生物。脂質A類似物或衍生物也可用作TLR4激動劑佐劑(參見,例如,Gregg KA等人,MBio 8, eDD492-17, doi: 10.1128/mBio.00492-17 (2017),其全部內容通過引用結合於此)。
MPL和3D-MPL是脂質A類似物或衍生物,已被修飾以減輕脂質A的毒性。脂質A、MPL和3D-MPL具有糖主鏈,有長脂肪酸鏈連接在糖主鏈上,其中所述主鏈包含糖苷鍵中的兩個6碳糖和4位的磷醯基部分。典型地,五到八個長鏈脂肪酸(通常12-14個碳原子)連接到糖主鏈上。由於天然來源的衍生,MPL或3D-MPL可以以多種脂肪酸取代模式(例如七醯基、六醯基、五醯基等,其具有可變的脂肪酸長度)的複合物或混合物的形式存在。對於本文所述的一些其他脂質A類似物或衍生物也是如此,然而合成脂質A變異體也可以被定義和均質化。US4,436,727中記載了MPL及其批量生產,該專利在此全文引入作為參考。US4,912,094B1中描述了3D-MPL(該專利在此全文引入作為參考),並且與MPL的不同之處在於選擇性去除了3-羥基肉豆蔻醯基殘基,該殘基在3位與還原端的氨基葡萄糖酯連接。適於本文所述疫苗組合物中的脂質A(類似物、衍生物)的例子包括MPL、3D-MPL、RC529(例如,參見EP1385541,其在此全文引入作為參考)、PET-脂質A、GLA(糖基吡喃糖脂佐劑,一種合成二糖糖脂;例如,參見US20100310602和US8722064,這兩個專利在此全文引入作為參考),SLA(例如,參見Carter D等人,Clin. Transl. Immunology 5: e108 (doi:10.1038/cti.2016.63) (2016),其在此全文引入作為參考,並且其描述了優化用於人類疫苗的TLR4配體的結構-功能方法),PHAD(磷酸化的六醯基二糖;其結構與GLA相同)、3D-PHAD、3D-(6-醯基)-PHAD (3D(6A)-PHAD)、E6020(CAS Number 287180-63-6)、ONO4007、OM-174等。在任意的實施方案中,所述疫苗組合物的佐劑是包含選自3D-MPL、GLA或SLA的脂質A類似物或衍生物的TLR4激動劑佐劑。在某些實施方案中,脂質類似物或衍生物被配制在脂質體中。
所述佐劑,優選包括TLR4激動劑,可以以各種方式配制,例如乳劑,例如油包水(w/o)乳劑或水包油(o/w)乳劑(例如MF59、AS03)、穩定(納米)乳劑(SE)、脂質懸浮液、脂質體、(聚合)納米顆粒、病毒體、明礬吸附的、水性制劑(AF)等,代表了用於佐劑中的免疫調節分子和/或針對免疫原的免疫調節分子的各種遞送系統(例如參見Reed等人,Nature Med, 19: 1597-1608 (2013) and Alving CR et al, Curr Opin Immunol 24: 310-315 (2012),其在此全文引入作為參考)。
在任意的實施方案中,免疫刺激性TLR4激動劑可以任選地與其他免疫調節成分組合,例如角鯊烯水包油乳劑(SE)(例如,MF59、AS03)、皂苷類(如QuilA、QS7、QS21、Matrix M、Iscoms、Iscomatrix等)、鋁鹽、其他TLR的激活劑(如咪唑並喹啉、鞭毛蛋白、dsRNA類似物、TLR9激動劑,如CpG等)、和類似成分(例如參見Reed G. 等人,Nature Med,19: 1597-1608 (2013),其全部內容通過引用結合於此)。
在任意的實施方案中,本文公開的疫苗組合物的佐劑是TLR4激動劑,例如GLA與SE(即GLA-SE)的組合。在任意的實施方案中,本文公開的疫苗組合物的佐劑是TLR4激動劑,如GLA與皂苷(如GLS-QS21)的組合。在任意的實施方案中,上述佐劑可以配制成脂質體。因此,示例性佐劑還包括GLA-LSQ,其被配制成包含合成的TLR4激動劑(例如MPL )和皂苷(例如QS21)的脂質體。
用於本文所述疫苗組合物的其他示例性佐劑包括脂質A類似物或衍生物,包括例如SLA-SE(合成的MPL [SLA]、角鯊烯油/水乳劑)、SLA-納米明礬(合成的MPL[SLA]、鋁鹽)、GLA-納米明礬(合成的MPL[GLA]、鋁鹽)、SLA-AF(合成的MPL[SLA]、水懸浮液)、GLA-AF(合成的MPL[GLA]、水懸浮液)、、SLA-明礬(合成的MPL[SLA]、鋁鹽)、GLA-明礬(合成的MPL[GLA]、鋁鹽)、AS01(MPL、QS21,脂質體)、AS02(MPL、QS21,油/水乳劑)、AS25(MPL,油/水乳劑)、AS04(MPL,鋁鹽)、和AS15(MPL、QS21、CpG,脂質體)。參見例如WO2008/153541、WO2010/141861、WO2013/119856、WO2019/051149、WO 2013/119856、WO2006/116423、US 4,987,237、US 4,436,727、US 4,877,611、US 4,866,034、US 4,912,094、US 4,987,237、US 5,191,072、US 5,593,969、US 6,759,241、US 9,017,698、US 9,149,521、US 9,149,522、US 9,415,097、US 9,415,101、US 9,504,743;Reed G.等,Nature Med, 19: 1597-1608 (2013), Johnson等人,J Med Chem, 42:4640-4649 (1999),和Ulrich 和 Myers, 1995, Vaccine Design: The Subunit and Adjuvant Approach; Powell and Newman, Eds.; Plenum: New York, 495-524,其全部內容通過引用結合於此。
在任意的實施方案中,所述疫苗組合物的LukA和/或LukB蛋白或多肽可以與免疫原性載體分子偶聯。合適的免疫原性載體分子包括但不限於牛血清白蛋白、雞蛋卵清蛋白、匙孔血藍蛋白、破傷風類毒素、白喉類毒素、甲狀腺球蛋白、肺炎球菌莢膜多糖、CRM 197和腦膜炎球菌外膜蛋白。
疫苗組合物可以進一步包括一種或多種附加的金黃色葡萄球菌抗原,所述抗原選自血清型336多糖抗原、聚集因子A、聚集因子B、纖維蛋白原結合蛋白、膠原結合蛋白、彈性蛋白結合蛋白、MHC類似蛋白、多糖細胞內粘附、β溶血素、Δ溶血素、Panton-Valentine殺白細胞素、殺白細胞素M、脫落毒素A、脫落毒素B、V8蛋白酶、透明質酸裂解酶、脂肪酶、葡激酶、腸毒素、腸毒素超抗原SEA、腸毒素超抗原SAB、中毒性休克綜合征毒素-1、聚-N-琥珀醯β-1→6氨基葡萄糖、過氧化氫酶、β-內醯胺酶、磷壁酸、肽聚糖、青黴素結合蛋白、趨化抑制蛋白、補體抑制劑、Sbi、5型抗原、8型抗原和脂磷壁酸。適用於包含在本文所述疫苗組合物中的其他金黃色葡萄球菌抗原包括但不限於CP5、CP8、Eap、Ebh、Emp、EsaB、EsaC、EsxA、EsxB、EsxAB(融合)、IsdA、IsdB、IsdC、MntC、rTSST-1、rTSST-1v、TSST-1、SasF、vWbp、vWh玻連蛋白結合蛋白、Aaa、Aap、Ant、自溶素氨基葡糖苷酶、自溶素醯胺酶、Can、膠原結合蛋白、Csa1A、EFB、彈性蛋白結合蛋白、EPB、FbpA、纖維蛋白原結合蛋白、纖連蛋白結合蛋白、FhuD、FhuD2、FnbA、FnbB、GehD、HarA、HBP、免疫顯性 ABC 轉運蛋白、IsaA/PisA、層粘連蛋白受體、脂肪酶GehD、MAP、Mg2+轉運蛋白、MHC II類似物、MRPII、NPase、RNA III活化蛋白(RAP)、SasA、SasB、SasC、SasD、SasK、SBI、SEA外毒素、SEB外毒素、mSEB、SitC、Ni ABC轉運蛋白、SitC/MntC/唾液結合蛋白、SsaA、SSP-1、SSP-2、Sta006和Sta011。
在任意的實施方案中,所述疫苗組合物被配制成可注射的,其可以例如通過注射裝置(例如注射器或輸注泵)注射。可以通過肌肉內、腹膜內、玻璃體內或靜脈內進行注射。
本發明的疫苗組合物可以配制成腸胃外給藥。該組合物的溶液、懸浮液或乳液可以在水中制備,適當地與表面活性劑如羥丙基纖維素混合。分散體也可以在甘油、液體聚乙二醇及其在油中的混合物中制備。示例性的油是石油、動物、植物或合成來源的油,例如花生油、大豆油或礦物油。一般來說,水、鹽水、葡萄糖水溶液和相關的糖溶液,以及二醇,例如丙二醇或聚乙二醇,是優選的液體載體,特別是對於注射溶液。在通常的儲存和使用條件下,這些制劑含有防腐劑以防止微生物的生長。
適於注射使用的藥物疫苗組合物包括無菌水溶液或分散體以及用於臨時制備無菌注射溶液或分散體的無菌粉末。在所有情況下,劑型必須是無菌的,並且必須是流動性的,達到易於注射的程度。它在生產和儲存條件下必須是穩定的,並且必須防止微生物如細菌和真菌的汙染作用。載體可以是溶劑或分散介質,其含有例如水、乙醇、多元醇(例如甘油、丙二醇和液體聚乙二醇)、及其合適的混合物和植物油。
在任意的實施方案中,本文所述的疫苗組合物是固體制劑,例如凍幹或噴霧幹燥的組合物,其可以原樣使用,或者醫生或患者在使用前向其添加溶劑和/或稀釋劑。固體劑型可以包括片劑,例如壓縮片劑和/或包衣片劑,以及膠囊(例如硬或軟明膠膠囊)。疫苗組合物還可以是例如袋裝粉劑、糖衣丸、粉劑、顆粒劑、錠劑或用於重構的粉末的形式。
疫苗組合物的劑型可以是速釋的,在這種情況下,它們可以包含水溶性或可分散的載體,或者它們可以是延遲釋放、持續釋放或緩和釋放,在這種情況下,它們可以包含可以調節制劑在胃腸道或皮膚下的溶解速率的水不溶性聚合物。
在其他實施方案中,所述疫苗組合物可以鼻內、口腔內或舌下遞送。
疫苗組合物的水性制劑中的酸鹼度可以在3至10之間。在一個實施方案中,所述疫苗組合物的酸鹼度為約7.0至約9.5。在另一個實施方案中,所述疫苗組合物的酸鹼度為約3.0至約7.0。
金黃色葡萄球菌疫苗組合物的用途
本發明的另一方面涉及本文所述疫苗組合物在預防或抑制受試者的金黃色葡萄球菌感染中的用途。在一個實施方案中,本發明涉及在受試者中產生針對金黃色葡萄球菌的免疫應答的方法,該方法包括在可有效地在所述受試者中產生針對金黃色葡萄球菌的免疫應答的條件下,將本文所述的疫苗組合物施用給受試者。另一個實施方案涉及在有需要的受試者中治療或預防金黃色葡萄球菌感染的方法,包括施用有效量的本文公開的疫苗組合物。另一個實施方案涉及一種在有需要的受試者中再定殖或防止金黃色葡萄球菌的定殖或再定殖的方法,該方法包括施用有效量的本文公開的疫苗組合物。根據這一方面,本文所述的方法適用於在有需要的受試者中防止金黃色葡萄球菌的短期和持續定殖或再定殖。
這些方法包括將本文所述的任何一種疫苗組合物施用於有此需要的受試者,例如有金黃色葡萄球菌暴露或感染風險的受試者。在一個實施方案中,疫苗組合物包含LukA變異多肽(即SEQ ID NO:1或2的變體)和如上所述的野生型LukB蛋白或多肽。在另一個實施方案中,疫苗組合物包含如上所述的野生型LukA蛋白或多肽和LukB變異多肽(即SEQ ID NO:15或16的變體)。在另一個實施方案中,疫苗組合物包含如上所述的LukA變異多肽和LukB變異多肽。根據本發明的這一方面,適合治療的受試者是有發展成金黃色葡萄球菌感染風險的受試者。
根據本發明的這一方面,向受試者施用預防有效量的疫苗組合物,以產生針對金黃色葡萄球菌感染的免疫應答。預防有效量是能夠產生或引發體液(即抗體介導的)和細胞(T細胞)免疫應答所必需的量。誘導的體液應答足以預防或至少減少金黃色葡萄球菌感染的程度,否則在沒有這種應答的情況下會惡化。優選地,施用預防有效量的本文所述疫苗組合物在受試者中誘導針對金黃色葡萄球菌的中和免疫應答。為了在受試者中實現有效的免疫應答,組合物可以進一步包含一種或多種額外的金黃色葡萄球菌抗原或如上所述的佐劑。在另一個實施方案中,佐劑與組合物分開給予受試者,在給予本發明的組合物之前、之後或同時給予。
出於本發明這一方面的目的,目標“受試者”包括任何動物,優選哺乳動物,更優選人。在為了預防、抑制或降低受試者中金黃色葡萄球菌感染和金黃色葡萄球菌定殖的嚴重性而施用疫苗組合物的情況下,目標受試者包括有被金黃色葡萄球菌感染風險的任何受試者。特別易感的受試者包括免疫功能低下的嬰兒、青少年、成人和老年人。然而,任何有金黃色葡萄球菌感染風險的嬰兒、少年、成人或老年成人都可以根據本文所述的方法和疫苗組合物進行治療。特別合適的受試者包括有感染耐甲氧西林金黃色葡萄球菌(MRSA)或甲氧西林敏感金黃色葡萄球菌(MSSA)風險的受試者。其他合適的受試者包括那些可能患有或有風險患有由金黃色葡萄球菌感染引起的疾病,即金黃色葡萄球菌相關疾病的受試者,例如皮膚創傷和感染、組織膿腫、毛囊炎、骨髓炎、肺炎、燙傷樣皮膚綜合征、敗血症、膿毒性關節炎、心肌炎、心內膜炎和中毒性休克綜合征。
在任何實施方案中,受試者至少或最多 1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、85 或 90 歲(或其中可推導出的任何範圍)。在某些實施方案中,本文描述的受試者或患者,例如人類受試者,是兒科受試者。兒科受試者被定義為小於18歲。在任意的實施方案中,兒科受試者為2歲或更小。在任意的實施方案中,兒科受試者小於1歲。在任意的實施方案中,兒科受試者小於6個月。在任意的實施方案中,兒科受試者為2個月或更小。在任意的實施方案中,人類患者為65歲或以上。在任意的實施方案中,人類患者是衛生保健工作者。在任意的實施方案中,患者是將接受外科手術的患者。
在可有效誘導強免疫反應的條件下施用疫苗組合物時,也可以考慮許多其他因素。這些因素包括但不限於,例如,組合物中活性劑的濃度、給藥方式和頻率,以及受試者的具體情況,例如年齡、體重和整體健康和免疫狀況。例如,在國際協調會議的出版物和雷明頓制藥科學(Mack Publishing Company 1990)的出版物中可以找到一般性的指導,在此將其全文引入作為參考。臨床醫生可以施用本文所述的疫苗組合物,直到達到所期望或所需預防效果的劑量,例如所需的抗體滴度。預防性反應的進展可以很容易地通過常規檢測來監測。
在本發明的一個實施方案中,本文所述的疫苗組合物可以以預防性的方式施用,以預防、延遲或抑制有感染金黃色葡萄球菌病毒風險或有發展成相關病症風險的受試者中金黃色葡萄球菌病毒感染的發展。在本發明的任何實施方案中,疫苗組合物的預防性給藥可有效地完全預防個體中的金黃色葡萄球菌感染。在其他實施方案中,預防性給藥可有效預防在沒有這種給藥的情況下會發生感染的全部程度,即基本上預防或抑制個體中的金黃色葡萄球菌感染。
在使用預防性組合物預防金黃色葡萄球菌感染的情況下,該組合物的劑量應足以產生能夠中和金黃色葡萄球菌LukAB介導的細胞毒性的抗體滴度,並能夠減少許多症狀,降低至少一種症狀的嚴重性,或延緩至少一種症狀的進一步發展,甚至完全緩解感染。
本文所述疫苗組合物的預防有效量將取決於是否共同施用佐劑,在沒有佐劑的情況下需要更高的劑量。每名患者施用的變異LukA和/或LukB的量可以在1 μg-500 μg之間。在任何實施方案中,每次人體注射使用5、10、20、25、50或100 μg。偶爾,每次注射使用1-50mg的較高劑量。通常,每次人體注射使用約10、20、30、40或50mg。注射的時間可以有很大的不同,從一年一次到十年一次。通常,有效劑量可以通過從受試者獲得流體樣品(通常是血清樣品),並確定針對LukA、LukB或LukB產生的抗體的滴度來監測,所述滴度通過使用本領域公知的並且易於適用於待測特定抗原的方法進行測定。理想情況下,在首次給藥前采集樣本,並在每次免疫接種後采集後續樣本並進行滴度測定。通常,在血清稀釋度為1:100時,提供比對照或“背景”水平至少大四倍的可檢測滴度的劑量或給藥方案是理想的,其中背景是相對於對照血清或相對於酶聯免疫吸附試驗中的平板背景來定義的。
本發明的疫苗組合物可以通過胃腸外、局部、靜脈內、口服、腹膜內、鼻內或肌內方式給藥,用於預防性治療。
本發明的疫苗組合物可以配制成腸胃外給藥。該組合物的溶液、懸浮液或乳液可以在水中制備,適當地與表面活性劑如羥丙基纖維素混合。分散體也可以在甘油、液體聚乙二醇及其在油中的混合物中制備。示例性的油是石油、動物、植物或合成來源的油,例如花生油、大豆油或礦物油。一般來說,水、鹽水、葡萄糖水溶液和相關的糖溶液,以及二醇,例如丙二醇或聚乙二醇,是優選的液體載體,特別是對於注射溶液。在通常的儲存和使用條件下,這些制劑含有防腐劑以防止微生物的生長。
適於注射使用的藥物疫苗制劑包括無菌水溶液或分散體以及用於臨時制備無菌注射溶液或分散體的無菌粉末。在所有情況下,劑型必須是無菌的,並且必須是流動性的,達到易於注射的程度。它在生產和儲存條件下必須是穩定的,並且必須能夠防止微生物如細菌和真菌的汙染。載體可以是溶劑或分散介質,其含有例如水、乙醇、多元醇(例如甘油、丙二醇和液體聚乙二醇)、其合適的混合物和植物油。
實施方案
本發明提供了以下非限制性實施方案。
實施方案1是SEQ ID NO:25變異的金黃色葡萄球菌殺白細胞素A (LukA)多肽,所述LukA變異多肽包含:對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113和Val193的一個或多個氨基酸殘基上的氨基酸取代。
實施方案2是實施方案1所述的LukA變異多肽,其中所述LukA變異多肽在對應於SEQ ID NO:25的Glu323的氨基酸殘基上進一步包含氨基酸取代。
實施方案3是實施方案2所述的LukA變異多肽,其中對應於Glu323的氨基酸殘基上的氨基酸取代包括穀氨酸到丙氨酸(Glu323Ala)的取代。
實施方案4是實施方案1-3中任一項所述的LukA變異多肽,其中對應於Lys83的氨基酸殘基上的氨基酸取代包括賴氨酸到甲硫氨酸(Lys83Met)的取代。
實施方案5是實施方案1-4中任一項所述的LukA變異多肽,其中對應於Ser141的氨基酸殘基上的氨基酸取代包括絲氨酸到丙氨酸(Ser141Ala)的取代。
實施方案6是實施方案1-5中任一項所述的LukA變異多肽,其中對應於Val113的氨基酸殘基上的氨基酸取代包括纈氨酸到異亮氨酸(Val113Ile)的取代。
實施方案7是實施方案1-6中任一項所述的LukA變異多肽,其中對應於Val193的氨基酸殘基上的氨基酸取代包括纈氨酸到異亮氨酸(Val193Ile)的取代。
實施方案8是實施方案2-7中任一項所述的LukA變異多肽,其中所述LukA變異多肽包含對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113、Val193和Glu323的每個氨基酸殘基上的氨基酸取代。
實施方案9是實施方案8所述的LukA變異多肽,其中氨基酸取代包括Lys83Met、Ser141Ala、Val113Ile、Val193Ile和Glu323Ala。
實施方案10是實施方案1所述的LukA變異多肽,其中所述變體是SEQ ID NO:1的CC8 LukA變體,包含對應於SEQ ID NO:1中Lys80Met、Ser138Ala、Val110Ile、Val190Ile和Glu320Ala的氨基酸取代。
實施方案11是實施方案10所述的LukA變異多肽,其中所述LukA變異多肽包含SEQ ID NO:3的氨基酸序列。
實施方案12是實施方案1所述的LukA變異多肽,其中所述變體是SEQ ID NO:2的CC45 LukA變體,包含對應於SEQ ID NO:2中Lys81Met、Ser139Ala、Val111Ile、Val191Ile和Glu321Ala的氨基酸取代。
實施方案13是實施方案12所述的LukA變異多肽,其中所述LukA變異多肽包含SEQ ID NO:4的氨基酸序列。
實施方案14是實施方案1-13中任一項所述的LukA變異多肽,其中所述LukA變異多肽進一步包含對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的一個或多個氨基酸殘基上的氨基酸取代。
實施方案15是實施方案14所述的LukA變異多肽,其中對應於Tyr74的氨基酸殘基處的氨基酸取代包括酪氨酸至半胱氨酸(Tyr74Cys)的取代。
實施方案16是實施方案14或15所述的LukA變異多肽,其中對應於Asp140的氨基酸殘基上的氨基酸取代包括天冬醯胺到半胱氨酸(Asp140Cys)的取代。
實施方案17是實施方案14-16中任一項所述的LukA變異多肽,其中對應於Gly149的氨基酸殘基上的氨基酸取代包括甘氨酸到半胱氨酸(Gly149Cys)的取代。
實施方案18是實施方案14-17中任一項所述的LukA變異多肽,其中對應於Gly156的氨基酸殘基上的氨基酸取代包括甘氨酸到半胱氨酸(Gly156Cys)的取代。
實施方案19是實施方案14-18中任一項所述的LukA變異多肽,其中所述LukA變異多肽包含對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的每個氨基酸殘基上的氨基酸取代。
實施方案20是實施方案14所述的LukA變異多肽,其中所述變體是SEQ ID NO:1的CC8 LukA變體,包含對應於SEQ ID NO:1的Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Glu320Ala、Tyr71Cys、Asp137Cys、Gly146Cys和Gly153Cys的氨基酸取代。
實施方案21是實施方案20所述的LukA變異多肽,其中所述LukA變異多肽包含SEQ ID NO:5的氨基酸序列。
實施方案22是實施方案14所述的LukA變異多肽,其中所述變體是SEQ ID NO:2的CC45 LukA變體,包含對應於SEQ ID NO:2的Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Glu321Ala、Tyr72Cys、Asp138Cys、Gly147Cys和Gly154Cys的氨基酸取代。
實施方案23是實施方案22所述的LukA變異多肽,其中所述LukA變異多肽包含SEQ ID NO:6的氨基酸序列。
實施方案24是實施方案1-23中任一項所述的LukA變異多肽,其中所述LukA變異多肽在對應於SEQ ID NO:25的氨基酸殘基Thr249的氨基酸殘基上進一步包含氨基酸取代。
實施方案25是實施方案24所述的LukA變異多肽,其中對應於Thr249的氨基酸殘基上的氨基酸取代包括蘇氨酸到纈氨酸(Thr249Val)的取代。
實施方案26是實施方案25所述的LukA變異多肽,其中所述變異LukA蛋白包含SEQ ID NO:7或SEQ ID NO:8的氨基酸序列。
實施方案27是實施方案1-26中任一項所述的LukA變異多肽,進一步包含氨基末端信號序列。
實施方案28是實施方案27所述的LukA變異多肽,其中氨基末端信號序列包含SEQ ID NO:23的氨基酸序列。
實施方案29是實施方案1-28中任一項所述的LukA變異多肽,其進一步包含氨基末端純化序列。
實施方案30是一種編碼實施方案1-29中任一項所述的LukA變異多肽的核酸分子。
實施方案31是一種包含實施方案30所述的核酸分子的表達載體。
實施方案32是一種包含實施方案31所述的表達載體的宿主細胞。
實施方案33是SEQ ID NO:39變異的金黃色葡萄球菌殺白細胞素B (LukB)蛋白或多肽,所述LukB變異多肽包含對應於SEQ ID NO:39的氨基酸殘基Val53的氨基酸殘基上的氨基酸取代。
實施方案34是實施方案33所述的LukB變異多肽,其中在對應於Val53的氨基酸殘基上的氨基酸取代包括纈氨酸到亮氨酸(Val53Leu)的取代。
實施方案35是實施方案33所述的LukB變異多肽,其中所述變異體是SEQ ID NO:15的CC8 LukB變體,包含對應於SEQ ID NO:15的Val53Leu的氨基酸取代。
實施方案36是實施方案35所述的LukB變異多肽,其中所述LukB變異多肽包含SEQ ID NO:17的氨基酸序列。
實施方案37是實施方案33所述的LukB變異多肽,其中所述變體是SEQ ID NO:16的CC45 LukB變異體,包含對應於SEQ ID NO:16的Val53Leu的氨基酸取代。
實施方案38是實施方案37所述的LukB變異多肽,其中所述LukB變異多肽包含SEQ ID NO:18的氨基酸序列。
實施方案39是實施方案33或34所述的LukB變異多肽,其中所述變異體進一步包含對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基上的氨基酸取代。
實施方案40是實施方案39所述的LukB變異多肽,其中對應於Glu45的氨基酸殘基上的氨基酸取代包括穀氨酸到半胱氨酸(Glu45Cys)的取代。
實施方案41是實施方案39或40所述的LukB變異多肽,其中對應於Glu109的氨基酸殘基上的氨基酸取代包括穀氨酸到半胱氨酸(Glu109Cys)的取代。
實施方案42是實施方案39-41中任一項所述的LukB變異多肽,其中對應於Thr121的氨基酸殘基上的氨基酸取代包括蘇氨酸到半胱氨酸(Thr121Cys)的取代。
實施方案43是實施方案39-42中任一項所述的LukB變異多肽,其中對應於Arg154的氨基酸殘基上的氨基酸取代包括精氨酸到半胱氨酸(Arg154Cys)的取代。
實施方案44是實施方案39-43中任一項所述的LukB變異多肽,其中所述LukB變異多肽包含對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基上的氨基酸取代。
實施方案45是實施方案39所述的LukB變異多肽,其中所述變體是SEQ ID NO:15的CC8 LukB變體,包含對應於SEQ ID NO:15的Val53Leu、Glu45Cys、Glu109Cys、Thr121Cys和Arg154Cys的氨基酸取代。
實施方案46是實施方案45所述的LukB變異多肽,其中所述LukB變異多肽包含SEQ ID NO:19的氨基酸序列。
實施方案47是實施方案39所述的LukB變異多肽,其中所述變體是SEQ ID NO:16的CC45 LukB變體,包含對應於SEQ ID NO:16的Val53Leu、Glu45Cys、Glu110Cys、Thr123Cys和Arg155Cys的氨基酸取代。
實施方案48是實施方案47所述的LukB變異多肽,其中所述LukB變異多肽包含SEQ ID NO:20的氨基酸序列。
實施方案49是SEQ ID NO:39變異的金黃色葡萄球菌殺白細胞素B (LukB)蛋白或多肽,所述LukB變異多肽包含:對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基上的氨基酸取代。
實施方案50是實施方案49所述的LukB變異多肽,其中對應於Glu45的氨基酸殘基上的氨基酸取代包括穀氨酸到半胱氨酸(Glu45Cys)的取代,對應於Thr121的氨基酸殘基上的氨基酸取代包括蘇氨酸到半胱氨酸(Thr121Cys)的取代。
實施方案51是實施方案49或50所述的LukB變異多肽,其中對應於Glu109的氨基酸殘基上的氨基酸取代包括穀氨酸到半胱氨酸(Glu109Cys)的取代,對應於Arg154的氨基酸殘基上的氨基酸取代包括精氨酸到半胱氨酸(Arg154Cys)的取代。
實施方案52是實施方案49-51中任一項所述的LukB變異多肽,其中所述LukB變異多肽包含在對應於SEQ ID NO:39的氨基酸Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基上的氨基酸取代。
實施方案53是實施方案52所述的LukB變異多肽,其中所述變體是SEQ ID NO:15的CC8 LukB變體,包含對應於SEQ ID NO:15的Glu45Cys、Glu109Cys、Thr121Cys和Arg154Cys的氨基酸取代。
實施方案54是實施方案53所述的LukB變異多肽,其中所述LukB變異多肽包含SEQ ID NO:21的氨基酸序列。
實施方案55是實施方案52所述的LukB變異多肽,其中所述變體是SEQ ID NO:16的CC45 LukB變體,包含對應於SEQ ID NO:16的Glu45Cys、Glu110Cys、Thr123Cys和Arg155Cys的氨基酸取代。
實施方案56是實施方案55所述的LukB變異多肽,其中所述LukB變異多肽包含SEQ ID NO:22的氨基酸序列。
實施方案57是實施方案33-56中任一項所述的LukB變異多肽,進一步包含:氨基末端信號序列。
實施方案58是實施方案57所述的LukB變異多肽,其中氨基末端信號序列包含SEQ ID NO:23的氨基酸序列。
實施方案59是實施方案33-58中任一項所述的LukB變異多肽,進一步包含:氨基末端純化標簽。
實施方案60是一種編碼實施方案33-59中任一項所述的LukB變異多肽的核酸分子。
實施方案61是一種包含實施方案60的核酸分子的表達載體。
實施方案62是一種包含實施方案30的核酸分子的表達載體,該核酸分子可操作地與實施方案60的核酸分子偶聯。
實施方案63是實施方案62所述的表達載體,其包含與SEQ ID NO:55 (CC45 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,所述核苷酸序列與和SEQ ID NO:59 (CC45 LukB)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列可操作地偶聯。
實施方案64是實施方案62所述的表達載體,其包含與SEQ ID NO:55 (CC45 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,所述核苷酸序列與和SEQ ID NO:61 (CC45 LukB變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列可操作地偶聯。
實施方案65是實施方案62所述的表達載體,其包含與SEQ ID NO:54 (CC8 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,所述核苷酸序列與和SEQ ID NO:58 (CC8 LukB)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列可操作地偶聯。
實施方案66是實施方案62所述的表達載體,其包含與SEQ ID NO:54 (CC8 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,所述核苷酸序列與和SEQ ID NO:61 (CC45 LukB變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列可操作地偶聯。
實施方案67是實施方案62所述的表達載體,其包含與SEQ ID NO:54 (CC8 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,所述核苷酸序列與和SEQ ID NO:60 (CC8 LukB變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列可操作地偶聯。
實施方案68是包含實施方案61-67中任一項所述的表達載體的宿主細胞。
實施方案69是包含實施方案61-67中任一項所述的表達載體的金黃色葡萄球菌疫苗組合物。
實施方案70是一種金黃色葡萄球菌疫苗組合物,其包含實施方案1-29中任一項所述的一種或多種LukA變異多肽。
實施方案71是實施方案70所述的疫苗組合物,其中LukA變異多肽是SEQ ID NO:1的變體。
實施方案72是實施方案70或71所述的疫苗組合物,其進一步包含:殺白細胞素B (LukB)蛋白或多肽,所述LukB蛋白或多肽與SEQ ID NO:15的氨基酸序列具有至少85%的序列相似性。
實施方案73是實施方案70或71所述的疫苗組合物,其進一步包含:殺白細胞素B (LukB)蛋白或多肽,所述LukB蛋白或多肽與SEQ ID NO:16的氨基酸序列具有至少85%的序列相似性。
實施方案74是實施方案73所述的疫苗組合物,其中LukA變異多肽在對應於SEQ ID NO:1的氨基酸殘基Lys80、Ser138、Val110、Val190和Glu320Ala的一個或多個氨基酸殘基上包含氨基酸取代。
實施方案75是實施方案74所述的疫苗組合物,其中LukA變異多肽包含與SEQ ID NO:3的氨基酸序列具有至少90%序列同一性的氨基酸序列,並且LukB多肽包含與SEQ ID NO:18的氨基酸序列具有至少90%序列同一性的氨基酸序列。
實施方案76是實施方案74所述的疫苗組合物,其中LukA變異多肽包含SEQ ID NO:3的氨基酸序列,LukB多肽包含SEQ ID NO:18的氨基酸序列。
實施方案77是實施方案74所述的疫苗組合物,其中LukA變異多肽包含SEQ ID NO:3的氨基酸序列,LukB蛋白或多肽包含SEQ ID NO:22的氨基酸序列。
實施方案78是實施方案74所述的疫苗組合物,其中LukA變異多肽包含SEQ ID NO:3的氨基酸序列,LukB蛋白或多肽包含SEQ ID NO:20的氨基酸序列。
實施方案79是實施方案70所述的疫苗組合物,其中LukA變異多肽是SEQ ID NO:2的變體。
實施方案80是實施方案79所述的疫苗組合物,其進一步包含殺白細胞素B (LukB)蛋白或多肽,所述LukB蛋白或多肽與SEQ ID NO:16的氨基酸序列具有至少85%的序列相似性。
實施方案81是實施方案79所述的疫苗組合物,其進一步包含殺白細胞素B (LukB)蛋白或多肽,所述LukB蛋白或多肽與SEQ ID NO:15的氨基酸序列具有至少85%的序列相似性。
實施方案82是實施方案79-81中任一項所述的疫苗組合物,其中所述LukA變異多肽包含對應於SEQ ID NO:2的氨基酸殘基Lys81、Ser139、Val111、Val191和Glu321Ala的一個或多個氨基酸殘基上的氨基酸取代。
實施方案83是實施方案82所述的疫苗組合物,其中LukA變異多肽包含與SEQ ID NO:4的氨基酸序列具有至少90%序列同一性的氨基酸序列,並且LukB蛋白或多肽包含與SEQ ID NO:16的氨基酸序列具有至少90%序列同一性的氨基酸序列。
實施方案84是實施方案82所述的疫苗組合物,其中LukA變異多肽包含氨基酸序列SEQ ID NO:4,LukB蛋白或多肽包含氨基酸序列SEQ ID NO:16。
實施方案85是一種金黃色葡萄球菌疫苗組合物,其包含實施方案33-56中任一項所述的一種或多種變異LukB蛋白或多肽。
實施方案86是實施方案85所述的疫苗組合物,其進一步包含殺白細胞素A (LukA)蛋白或多肽,所述LukA蛋白或多肽與SEQ ID NO:1 (CC8)的氨基酸序列具有至少85%的序列相似性。
實施方案87是實施方案85所述的疫苗組合物,其進一步包含殺白細胞素A (LukA)蛋白或多肽,所述LukA蛋白或多肽與SEQ ID NO:2 (CC45)的氨基酸序列具有至少85%的序列相似性。
實施方案88是一種金黃色葡萄球菌疫苗組合物,其包含實施方案1-32中任一項所述的LukA變異多肽和實施方案33-56中任一項所述的LukB變異多肽。
實施方案89是實施方案74所述的疫苗組合物,其中LukA變異多肽包含與SEQ ID NO:3的氨基酸序列具有至少90%序列同一性的氨基酸序列,並且LukB蛋白或多肽包含與SEQ ID NO:15的氨基酸序列具有至少90%序列同一性的氨基酸序列。
實施方案90是實施方案74所述的疫苗組合物,其中LukA變異多肽包含SEQ ID NO:3的氨基酸序列,LukB蛋白或多肽包含SEQ ID NO:15的氨基酸序列。
實施方案91是實施方案74所述的疫苗組合物,其中LukA變異多肽包含與SEQ ID NO:3的氨基酸序列具有至少90%序列同一性的氨基酸序列,並且LukB蛋白或多肽包含與SEQ ID NO:17的氨基酸序列具有至少90%序列同一性的氨基酸序列。
實施方案92是實施方案74所述的疫苗組合物,其中LukA變異多肽包含SEQ ID NO:3的氨基酸序列,LukB蛋白或多肽包含SEQ ID NO:17的氨基酸序列。
實施方案93是實施方案74所述的疫苗組合物,其中LukA變異多肽包含與SEQ ID NO:4的氨基酸序列具有至少90%序列同一性的氨基酸序列,並且LukB蛋白或多肽包含與SEQ ID NO:18的氨基酸序列具有至少90%序列同一性的氨基酸序列。
實施方案94是實施方案74所述的疫苗組合物,其中LukA變異多肽包含SEQ ID NO:4的氨基酸序列,LukB蛋白或多肽包含SEQ ID NO:18的氨基酸序列。
實施方案95是實施方案69-94中任一項所述的疫苗組合物,其進一步包含佐劑。
實施方案96是實施方案69-94中任一項所述的疫苗組合物,其進一步包含一種或多種額外的金黃色葡萄球菌抗原。
實施方案97是一種在受試者中產生針對金黃色葡萄球菌的免疫應答的方法,所述方法包括:在所述受試者中有效產生針對金黃色葡萄球菌的所述免疫應答的條件下,向所述受試者施用實施方案69-94中任一項所述的疫苗組合物。
實施方案98是實施方案66-94中任一項所述的疫苗組合物,其中所述疫苗組合物用於在受試者中產生針對金黃色葡萄球菌的免疫應答的方法中。
實施例
提供以下實施例來說明本發明的實施例,但絕不旨在限制其範圍。
實施例 1– 示例性的 LukA 變異多肽、 LukB 變異多肽和穩定的 LukAB 複合物
為了表達lukB異二聚體蛋白,將大腸杆菌BL21(DE3)細胞與克隆到pCDFDuet-1中的lukA構建體和克隆到pETDuet-1中的LukB構建體進行共轉化。將轉化體在50µg/ml氨苄青黴素和50µg/ml大觀黴素中培養,以分別在37℃的Luria-Bertani液體培養基中選擇pETDuet-1和pCDFDuet-1,並以190rpm振蕩過夜。為了表達,在37℃下用1:50稀釋的過夜培養物接種新鮮的Terrific Broth液體培養基,以190rpm的速度振蕩,直到培養物達到OD 600= 2。然後通過加入異丙基β-d-1-硫代吡喃半乳糖苷誘導表達至最終濃度為1 mM,並在37℃下繼續誘導5小時。在大腸杆菌Origami 2(DE3)細胞的細胞質中表達LukAB異二聚體,包括LukA和/或LukB中的半胱氨酸取代對,以支持二硫鍵的形成。在大腸杆菌BL21(DE3)的周質中LuCA單體的表達是通過在pD861-CH中轉化LuCA構建體來進行的,在37℃下使用最終濃度為4 mM的鼠李糖在Terrific Brot液體培養基(補充有30 g/mL卡那黴素)中誘導4小時。在誘導細胞質和周質表達構建體後,通過在4℃下以4000 rpm離心15分鐘收獲細胞,然後再懸浮在裂解緩沖液中(94% Bugbuster [EMD Millipore]+6% 5M氯化鈉+ 0.4% 4 M咪唑+蛋白酶抑制劑混合物 [ProteaseArrest, G-Biosciences])。在室溫下裂解20分鐘後,裂解物在冰上孵育45分鐘,然後在16100×g、4℃下離心35分鐘。使用AKTA純25M FPLC和HisTrap柱,通過LukA N-末端的6xHis標簽純化蛋白質,並使用咪唑梯度(50-500mM咪唑溶於50 mM磷酸鈉緩沖液,pH 7.4,200 mM氯化鈉)洗脫。通過SDS-PAGE測定的含有純化蛋白質的餾分被合並,並在50mM磷酸鈉緩沖液、pH 7.4、200mM氯化鈉、10%甘油中於4℃透析過夜。純化的蛋白質通過雙肉桂酸(BCA)蛋白質測定法(Pierce)進行定量。
4. 本文所述研究中使用的示例性 LukA LukB LukB 異二聚體複合物
類毒素 / 毒素名稱 LukA LukA 取代 SEQ ID NO: LukB LukB 取代 SEQ ID NO:
RARPR-013 CC45 W94 E321A、Lys81Leu、Ser139Ala、Val111Ile、Val191Ile 11 CC45 16
RARPR-015 CC45 W95 E321A、Lys81Met、Ser139Ala、Val111Ile、Val191Ile 4 CC45 16
RARPR-017 CC45 W96 E321A、Lys81Leu、Ser139Ala、Val111Ile、Val191Ile、Thr247Val 12 CC45 16
RARPR-019 CC45 W97 E321A、Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Thr247Val 8 CC45 16
RARPR-30 CC45 W95 E321A、Lys81Met、Ser139Ala、Val111Ile、Val191Ile 4 CC45 Val53Leu   18
RARPR-31 CC8 W95   E320A、Lys80Met、Ser138Ala、Val110Ile、Val190Ile 3    
RARPR-32 CC8 W95 E320A、Lys80Met、Ser138Ala、Val110Ile、Val190Ile 3 CC8 15
RARPR-33 CC8 W95   E320A、Lys80Met、Ser138Ala、Val110Ile、Val190Ile 3 CC45 Val53Leu   18
RARPR-34 CC8 W95   E320A、Lys80Met、Ser138Ala、Val110Ile、Val190Ile 3 CC8 Val53Leu   17
LukA單體 CC8 W97 W72 E320A、Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Thr246Val、Tyr71Cys、Asp137Cys、Gly146Cys、Gly153Cys 9    
LukA單體 CC45 W97 W72 E321A、Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Thr247Val、Tyr72Cys、Asp138Cys、Gly147Cys、Gly154Cys     10    
  CC8 W95 W72 E320A、Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Tyr71Cys、Asp137Cys、 Gly146Cys、Gly153Cys 5 CC45 16
  CC8 W95 W72 E320A、Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Tyr71Cys、Asp137Cys、 Gly146Cys、Gly153Cys 5 CC45 Glu45Cys、Thr122Cys、Glu110Cys、Arg155Cys 22
  CC8 W95 W72 E320A、Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Tyr71Cys、Asp137Cys、 Gly146Cys、Gly153Cys 5 CC45 Val53Leu   18
  CC8 W95 W72 E320A、Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Tyr71Cys、Asp137Cys、 Gly146Cys、Gly153Cys 5 CC45 Val53Leu、Glu45Cys、Thr122Cys、Glu110Cys、Arg155Cys   20
CC8Δ10 CC8 C端殘基312-321的缺失 64 CC8 15
CC45Δ10 CC45 C端殘基313-322的缺失 65 CC45 16
CC8毒素 CC8 1 CC8 15
CC45毒素 CC45 2 CC45 16
實施例 2 - 野生型、 LukA LukAB 類毒素的細胞毒性
通過與野生型LukB毒素比較,使用前單核白血病細胞系THP-1或新分離的原代人多形核白細胞(hPMNs)評估LukB類毒素蛋白(如表4所定義)的細胞毒性。
在檢測細胞毒性之前,在佛波醇12-肉豆蔻酸13-乙酸酯的存在下分化THP-1細胞。對於THP-1細胞毒性測定,將包含總共1×105個細胞的50μl RPMI加入96孔板的每個孔中。將LukAB毒素和類毒素蛋白調節至標準蛋白濃度,在冰冷的RPMI培養基中連續稀釋,並將50μl體積的每種蛋白加入合適的孔中。除了僅含RPMI的陰性對照外,將Triton X-100添加到最終濃度為0.1%的陽性對照中。平板在37℃和5% CO2下孵育2小時,然後使用CytoTox-ONE分析(Promega)評估作為膜完整性標志的細胞質酶乳酸脫氫酶的釋放。
LukA和LukAB類毒素對分化的THP-1細胞的細胞毒性列於下表5。分化的THP-1細胞對野生型毒素敏感,因為CC8和CC45 LukAB野生型毒素在低至0.313µg/ml的毒素濃度下殺死了30%或更多的細胞群體。在LukA(Δ10)的C-末端缺失最後10個氨基酸殘基將CC8Δ10毒素的細胞毒性降低到在40 g/mL時細胞死亡低於5%,但是沒有降低CC45Δ10毒素對分化的THP-1細胞的細胞毒性。這兩種LukA單體對分化的THP-1細胞都沒有顯示細胞毒性。這是預期的結果,因為在沒有LukB的情況下,LukA不應形成活性孔複合物。每一種LukAB二聚體類毒素,包括RARPR-33、RARPR-34和RARPR-15,對分化的THP-1細胞顯示出了顯著降低的細胞毒性,在最高測試濃度40 g/mL下,每一種測試類毒素的細胞死亡率為1%或更低。
5. LukA LukAB 蛋白對分化的 THP-1 細胞的細胞毒性,人類單核細胞系,使用標準量的毒素。 數據以死亡細胞百分比表示。
  LukAB 濃度 (µg/mL)
類毒素 / 毒素 40 20 10 5 2.5 1.25 0.625 0.313 0.156 0.078 0.04 0.02
RARPR-15 -12 -12 -12 -14 -14 -15 -10 -14 -12 -11 -9 -7
RARPR-30 0 -1 0 0 0 0 0 0 0 0 0 0
RARPR-31 0 0 -1 0 0 0 -1 -1 0 0 -1 -1
RARPR-32 0 -1 -1 -1 0 0 0 0 0 0 0 0
RARPR-33 1 1 1 0 1 1 1 0 1 1 1 1
RARPR-34 1 0 1 1 1 1 0 1 1 0 0 1
CC8 LukA W97 (單體) 1 1 0 0 1 0 0 0 0 0 1 1
CC45 LukA W97 (單體) 1 1 0 0 0 0 0 0 0 1 1 2
CC8Δ10 4 3 1 1 0 0 0 0 0 -1 0 0
CC45Δ10 53 39 32 31 33 41 54 55 53 35 13 5
CC8毒素 41 44 43 39 39 38 37 30 15 6 2 1
CC45毒素 42 34 31 34 40 46 46 36 18 4 1 0
                         
對於hPMNs,在中毒處理前,將所有毒素標準化為2.5 μg/mL(每個亞單位),然後將20 μl毒素移至96孔板的頂部孔中,並在10μl 1X PBS中連續稀釋2倍。分離多形核白細胞(PMNs),標準化為每90μl RPMI(10mM HEPES+0.1% HSA)含有200,000個細胞。然後將90μl多形核白細胞移至每個孔中,並將毒素-PMN混合物在37℃和5% CO 2培養箱中培養1小時。為了評估毒性,使用10μl的CellTiter 96 Aqueous One Solution(CellTiter;Promega)加入到96孔板中,混合物在5% CO 2中於37℃溫育1.5小時。PMN的生存能力用PerkinElmer EnVision 2103 Multilabel Reader在492nm的吸光度進行評估。
LukA單體和LukAB二聚體類毒素對人原代PMN細胞的細胞毒性見下表6。在毒素濃度分別為0.313µg/ml和1.25µg/ml時,野生型CC8和CC45毒素對原代人類多形核白細胞的殺滅率超過90%。相比之下,LukB類毒素和LukA單體對這些細胞的細胞毒性顯著降低。CC8 LukA中10個C-末端殘基的缺失基本上消除了對分化的THP-1細胞的細胞毒性,而這種毒素保留了對hPMNs的細胞毒性,在濃度等於或高於5μg/mL時觀察到超過20%的殺滅率。CC8和CC45 LukA單體對hPMNs的細胞毒性很小,正如缺乏對活性孔複合物形成至關重要的LukB組分的類毒素所預期的那樣。與CC8和CC45野生型LukB毒素相比,每種LukB二聚體類毒素對hPMN細胞的細胞毒性顯著降低。RARPR-33 LukAB類毒素以及相關類毒素RARPR-32和-34顯示出比CC8Δ10更低的細胞毒性,RARPR-33在最高測試濃度(20 g/mL)下僅殺死15%的細胞群。
6. 使用標準量的毒素測定 LukA LukAB 蛋白對人原代多形核細胞的細胞毒性。 數據以死亡細胞百分比表示
  LukAB 濃度 (µg/mL)
類毒素 / 毒素 20 10 5 2.5 1.25 0.625 0.313 0.156 0.078 0.04 0.02
RARPR-15 42 36 31 20 14 11 11 11 6 10 11
RARPR-30 27 17 14 10 5 0 0 0 0 0 0
RARPR-31 12 2 1 0 0 3 0 0 0 0 0
RARPR-32 17 6 4 4 2 1 0 0 0 0 0
RARPR-33 15 8 6 3 1 0 0 0 0 0 0
RARPR-34 16 9 5 3 0 0 0 0 0 0 0
CC8 LukA W97 ( 單體 ) 5 3 2 1 2 1 1 2 0 2 1
CC45 LukA W97 ( 單體 ) 7 6 2 3 4 1 0 1 2 0 0
CC8 Δ 10 29 26 22 18 11 11 4 4 3 4 3
CC8 毒素 93 96 97 96 97 93 90 87 75 52 29
CC45 毒素 97 97 97 97 96 85 72 57 49 30 19
實施例 3-RARPR-33 LukAB 類毒素和 WT LukAB 毒素的其他變體的細胞毒性。
進行了額外的實驗來評估RARPR-33和WT LukAB毒素與LukA單體的不同變體的細胞毒性和免疫原性。將小鼠用於免疫原性研究。
在人類多形核白細胞上評估LukAB毒素、類毒素和單體的細胞毒性。中毒處理前,將所有毒素標準化至100 μg/mL(每亞單位),然後將20 μl毒素移至96孔板的頂部孔中,並在10μl 1X PBS中連續稀釋2倍。PMN從不同的供體中分離出來,標準化為每90μl RPMI(10mM HEPES+0.1% HSA)含有200,000個細胞。將90μl多形核白細胞移至每個孔中,並將毒素-PMN混合物在37℃+ 5% CO2培養箱中培養1小時。為了評估毒性,使用10μl CellTiter 96 Aqueous One Solution (CellTiter; Promega)加入到96孔板中,混合物在5% CO2中於37℃溫育1.5小時。PMN的生存能力用PerkinElmer EnVision 2103 Multilabel Reader在492nm的吸光度進行評估。死亡細胞的百分比通過減去背景(健康細胞+ PBS)並歸一化為100%死亡的Triton X100處理的細胞來計算。
圖3提供了LukA單體和LukAB毒素對人原代PMN細胞的細胞毒性。野生型LukAB CC8和CC45毒素在毒素濃度分別為2.5µg/ml和5µg/ml時,對原代人類多形核白細胞的殺滅率超過90%。在2.5µg/ml的濃度下,還觀察到LukAB混合毒素CC8/CC45和CC45/CC8的最大殺滅率。相比之下,LukB類毒素和LukA單體對這些細胞的細胞毒性顯著降低。CC8 LukA中10個碳末端殘基的缺失保留了對hPMNs的細胞毒性,在濃度等於或高於5µg/ml時觀察到超過20%的殺滅率。CC8和CC45 LukA單體以及這些單體的組合對hPMNs幾乎沒有細胞毒性。RARPR-33 LukAB類毒素顯示出比CC8Δ10C更低的細胞毒性,在最高測試濃度(20 g/mL)下,RARPR-33僅殺死15%的細胞群。
實施例 4 - 在小鼠中的免疫原性。
為了確定不同LukAB變體的免疫原性,對Envigo Hsd:ND4 (4周齡)小鼠(n = 5/抗原)皮下注射20μg LukAB,所述LukAB溶於50 μl 10%甘油1X TBS與50μl佐劑TiterMax® Gold的混合物中。一組5只小鼠也接受了由等體積的10%甘油1X TBS和TiterMax® Gold組成的模擬免疫。在間隔兩周兩次注射相同的抗原-佐劑混合物後,通過心臟穿刺給小鼠放血並獲得血清。
為了測定抗LukAB抗體滴度,進行了酶聯免疫吸附試驗。將WT LukAB CC8或CC45在1X PBS中稀釋至2 μg/ml,並在96孔Immulon 2HB板(Thermo Fisher,cat no. 3455)中用100 μl溶液包被,並在4℃孵育過夜。然後用洗滌緩沖液(1X PBS + 0.05%吐溫)洗滌平板3次,然後用200 μl封閉緩沖液(含2.5%牛奶的1X PBS)封閉1小時。產生從1:500血清到封閉緩沖液的五倍系列稀釋,並允許在搖板上孵育1小時。然後再次洗滌平板3次,加入在封閉緩沖液中稀釋1:5,000的小鼠IgG-HRP(Biorad)抗體,並允許在室溫下孵育1小時。用洗滌緩沖液連續洗滌三次,洗去未結合的第二抗體。將升至室溫的TMB (100 μl)加入每個孔中,並覆蓋培養25分鐘。反應完成後,向每個反應孔中加入等量的2N硫酸以停止反應。然後在Envision酶標儀上讀取平板的450nm吸光度。圖4A和圖4B所示的熱力圖顯示了重複測量的平均吸光度值,黑色代表高吸光度和抗體與包被抗原的結合,白色代表低吸光度和無抗體結合。
RARPR-33誘導了強有力的抗CC8和抗CC45 LukAB IgG抗體滴度(圖4A和圖4B)。RARPR-33免疫誘導了與用CC8 WT毒素、CC8/CC45雜交毒素和CC8Δ10C類毒素免疫相當的抗CC8 IgG反應。由單個CC8 LukA單體誘導的抗CC8 LukAB IgG滴度不如由CC8 LukAB毒素或CC8/CC45雜交毒素、CC45/CC8雜交毒素和RARPR 33雜交抗原誘導的抗體滴度高(圖4A)。
RARPR-33免疫小鼠的抗CC45 LukAB滴度高於CC8/CC45 WT雜合抗原誘導的滴度,與CC45 WT抗原誘導的滴度相當。CC8和CC45 LukA單體組合可引起對CC8和CC45 LuKA的抗體滴度(圖4B)。然而,由CC8和CC45 LukA單體組合引發的這些抗CC8和抗CC45 LukB滴度不如由RARPR 33引發的那些高。單個CC45 LukA單體可引發非常高的抗CC45 LukB滴度-類似於CC45/CC8混合物引發的水平,僅略低於RARPR-33或CC45 WT毒素引發的水平。這些結果表明,在RARPR-33免疫後,誘導了對LukAB CC8和CC45的高量級抗體反應。
實施例 5 - 抗體介導的毒素細胞毒性中和
抗體介導的毒素細胞毒性的中和應用從如上實施例4所述免疫的小鼠獲得的血清進行評估。將熱滅活的混合血清在PBS中標準化為40%血清,然後將20μl血清移至96孔板的頂部孔中,並在10μl 1X PBS中連續稀釋2倍。在室溫下,將每種LukAB毒素克隆複合物序列變體的LD 90加入平板(10μl/孔)中15分鐘。然後將標準化為每80μl RPMI (10mMHEPES+0.1% HSA)含有200,000個細胞的新鮮分離的人原代多形核白細胞(hPMNs)加入血清-毒素混合物中,並在37℃和5% CO 2下孵育1小時。為了評估毒性,使用10μl CellTiter 96 Aqueous One Solution(CellTiter; Promega)加入到96孔板中,混合物在5% CO 2中於37℃溫育1.5小時。PMN的生存能力用PerkinElmer EnVision 2103 Multilabel Reader在492nm的吸光度進行評估。抗體中和數據如圖5所示。
來自用RARPR-33免疫的小鼠的血清顯示出所有抗原中最有效的、廣泛的中和LukAB的能力(圖5)。來自RARPR 33免疫小鼠的血清強烈中和了檢測低至0.25%血清的所有11種LukAB變體的細胞毒性,並且對於大多數LukAB變體也提供了檢測低至0.063-0.125%血清的保護(圖5)。用單個CC8和CC45 LukA單體免疫產生的血清具有高度偏向抗原骨架的LukAB中和能力(圖5)。每次免疫以每種單體20 μg(總蛋白40 μg)施用的CC8 LukA單體與CC45 LukA的組合產生了具有廣泛和有效的LukAB中和能力的血清,在低至0.5%的血清中中和了所有11種測試的LukAB變體(圖5),然而,這低於用RARPR-33免疫小鼠的血清觀察到的水平。
結合實施例3-5中給出的數據顯示,加入到RARPR-33的CC8/CC45 LukAB骨架中的減毒和穩定的突變提高了CC8/CC45 WT LukAB混合物的廣泛免疫原性效應(圖4和5),同時與CC8/CC45 WT LukAB毒素相比,RARPR-33也呈現高度減弱的毒性(圖3)。
實施例 6 - 抗血清毒素中和
用從用野生型LukAB、野生型LukB混合物(即CC8 LukA/CC45 LukB和CC45 LukA/CC8 LukB)、LukA單體或LukAB類毒素免疫的小鼠獲得的血清評估抗體介導的毒素細胞毒性中和。將熱滅活的混合血清在PBS中標準化為40%血清,然後將20μl血清移至96孔板的頂部孔中,並在10μl 1X PBS中連續稀釋2倍。然後在室溫下,將每種LukAB毒素克隆複合物序列變體的LD 90加入到含有2%、1%或0.5%血清的平板(10μl/孔)的孔中15分鐘。來自不同供體的新鮮分離的人原代多形核白細胞(hPMNs)標準化為每80μl RPMI (10mMHEPES+0.1% HSA)含有200,000個細胞,然後加入血清-毒素混合物中,在37℃和5% CO 2下孵育1小時。為了評估毒性,使用10μl CellTiter 96 Aqueous One Solution(CellTiter; Promega)加入到96孔板中,混合物在5% CO 2中於37℃溫育1.5小時。PMN的生存能力用PerkinElmer EnVision 2103 Multilabel Reader在492nm的吸光度進行評估。抗體中和數據顯示在圖6A (2%抗體血清)、圖6B (1%抗體血清)和圖6C (0.5%抗體血清)的表格中。
用野生型CC8和CC45 LukAB免疫誘導抗體以反映免疫抗原序列組成的模式中和LukAB毒素的天然序列變體。由CC8 LukAB毒素引發的抗體有效地中和了來自CC8、CC1、CC5和其他金黃色葡萄球菌譜系的毒素,但它們不能完全中和來自CC30、CC45或ST22A金黃色葡萄球菌的毒素。同樣,用CC45 LukAB毒素免疫誘導的抗體能有效中和來自CC30、CC45或ST22A金黃色葡萄球菌譜系的毒素,但不能中和來自其他譜系的毒素。
用非天然雜交LukAB免疫小鼠,無論是CC8 LukA與CC45 LukB的組合還是CC45 LukA與CC8 LukB的組合,與天然存在的二聚體組合相比,都產生了對LukAB序列變體顯示具有更廣泛中和作用的抗體。在非天然雜交二聚體中,CC8 LukA和CC45 LukB顯示出比相反組合稍好的中和譜,這種模式保留在LukA倒數第二個殘基中具有Glu至Ala取代的蛋白質中(E323A)。正如針對野生型毒素誘導的抗體所觀察到的,LukA單體誘導的抗體顯示出指示其序列組成的中和模式。CC8LukA和CC45 LukA單體(RARPR-31+CC45 LukA W97)的組合引發了顯示廣泛中和模式的抗體,但是與二聚體抗原相比,中和的效力降低了,1%或0.5%血清的中和水平降低就證明了這一點。
在二聚體類毒素中,RARPR-15、RARPR-33和RARPR-34顯示出對所有測試的LukAB序列變體的廣泛中和抗體反應。非天然野生型二聚體組合也顯示了廣泛的中和譜,盡管中和反應的效力不如觀察到的幾種類毒素。當在2%(圖6A)和1%(圖6B)的血清中測試時,混合野生型和類毒素抗原都顯示出廣泛的中和特性,但是當在0.5%的血清中測試時,對類毒素反應的效力提高是明顯的(圖6C)。在此最低測試濃度下,RARPR-15、RARPR-32、RARPR-33和RARPR-34均顯示出廣泛的中和反應。特別是,RARPR-33引發的血清保留了廣泛的中和反應,而混合野生型抗原和E323A類毒素在0.5%血清時未能引發廣泛的保護反應,並且CC45類毒素RARPR-15在最低測試濃度下引發的中和模式反映了其序列組成,因為僅觀察到CC30、CC45和ST22A LukAB毒素的高水平中和。混合二聚體類毒素RARPR-33引發了一種有效的廣泛中和免疫反應。
實施例 7– 高濃度下 RARPR-33 的細胞毒性。
方法 :
細胞毒性試驗 :為了評價每種LukAB蛋白複合物的細胞毒性,用金黃色葡萄球菌毒素對新鮮分離的人原代多形核白細胞(PMNs)進行中毒處理。從不同的供體中分離多形核白細胞,並標準化為每50μl RPMI(10mM HEPES+0.1% HSA)含有200,000個細胞。將PBS中的50 μl毒素添加到細胞中,並將毒素-PMN混合物在37℃的 5% CO 2培養箱中孵育1小時。為了評估毒性,使用10 μl CellTiter 96 Aqueous One Solution(CellTiter; Promega)加入到96孔板中,混合物在5% CO 2中於37℃溫育1.5小時。PMN的生存能力用PerkinElmer EnVision 2103 Multilabel Reader在492nm的吸光度進行評估。死亡細胞(%)是通過減去背景(健康細胞+ PBS)並歸一化為設定為100%死亡的經TritonX處理的細胞來計算的。
LDH 測定 :為了評估是否每一種相應的LukAB蛋白複合物都能引起細胞溶解,將來自不同供體的新鮮分離的人原代多形核白細胞(PMNs)用金黃色葡萄球菌LukAB毒素進行中毒處理,並測量LDH的釋放。WT毒素在PBS中連續稀釋2倍,並以5-0.0024µg/ml的濃度範圍進行測試。將LukAB類毒素在PBS中稀釋,並以2.5、2、1、1.5和0.5mg/ml進行測試。分離多形核白細胞,並標準化為每50μl RPMI (10mMHEPES+0.1% HSA)含有200,000個細胞。然後將50μl PMNs移至每個孔中,並在每個孔中加入50μl 稀釋的毒素。毒素-PMN混合物在37℃+5% CO 2培養箱中孵育2小時。為了評估LDH的釋放,平板以1500rpm離心5分鐘,然後從每個孔中取出25μl上清液,並轉移到96孔黑色透明底板中。將25µl CytoTox-ONE均質膜完整性試劑(Promega)加入到黑色透明底96孔板中,並將混合物在室溫下於黑暗中孵育10分鐘。通過記錄激發波長為560nm和發射波長為590nm的熒光,用PerkinElmer EnVision 2103 Multilabel Reader評估細胞裂解。死亡細胞(%)通過減去背景(健康細胞+ PBS)並歸一化為設定為100%死亡的經TritonX處理的細胞來計算。
結果 :
在前面的實施例中,LukAB類毒素RARPR-33對hPMNs的細胞毒性被確定達到20µg/ml的濃度。接下來,在存在更高濃度(高達2.5mg/ml)的RARPR-33的情況下,監測人PMN的細胞毒性。在約0.156 g/ml毒素中毒處理1小時後,觀察到基於CellTiter測量的WT LukAB CC8、CC45和CC8/CC45毒素對人PMNs (4-6個供體)的最大細胞毒性(圖7A)。對於RARPR-33和CC8 LukA單體,在濃度為0.5 mg/ml時,用CellTiter測量的死亡細胞百分比約為10%(圖7B)。對濃度高達2.5mg/ml的RARPR-33或CC8 LukA單體的多形核白細胞進行孵育不會進一步增加通過CellTiter測量確定的死亡細胞百分比。
LD 15值表示誘導15%細胞死亡的抗原濃度。使用線性回歸確定LD 15。對於CC8 WT LukAB,LD 15為0.013µg/ml,對於CC45 WT LukAB,LD 15為0.004µg/ml,對於CC8/CC45LukAB混合物,LD 15為0.002µg/ml。LukAB RARPR-33的半數致死量為2.5mg/ml。通過將RARPR-33的LD 15濃度除以WT抗原的LD 15濃度來比較LD 15值。根據這些觀察,LukAB RARPR-33的毒性比LukAB CC8 WT低 192,308倍以上,比LukAB CC45 WT低 625,000倍以上,比LukAB CC8wt/CC45wt低 1,250,000倍以上。
此外,在與不同的WT毒素、CC8 LukA單體或RARPR-33孵育兩小時後,進行LDH測定以評估質膜損傷。暴露於WT毒素、CC8 WT、CC45 WT或CC8/CC45毒素混合物2小時後,誘導人PMN細胞毒性(圖7C)。在毒素濃度為0.625µg/ml時,觀察到由LDH測定的最大細胞死亡。相反,在暴露於濃度高達2.5mg/ml的RARPR-33或CC8 LukA單體兩小時後,沒有觀察到人多形核白細胞的質膜損傷(圖7D)。這些數據表明,在濃度高達2.5mg/ml時,RARPR-33已經脫毒,不能誘導人類多形核白細胞的細胞死亡。與CC8/CC45 WT LukAB毒素相比,結合到RARPR-33的CC8/CC45 LukAB骨架中的高度突變減弱了細胞毒性。
實施例 8:RARPR-33 D39A/R23E 類毒素的比較
產生了基於CC8骨架的LukB類毒素,其中LukA具有D39A突變,LukB具有R23E點突變。這種“D39A/R23E類毒素”在Kailasan, S.等人的“Rational Design of Toxoid Vaccine Candidates for Staphylococcus aureusLeukocidin AB (LukAB),” Toxins 11(6): (2019)中有描述,該文獻在此全文引入作為參考。這種類毒素是在LukAB CC8骨架上產生的,與WT CC8 LukAB毒素相比,毒性減弱了36,000倍以上。用分化為PMN樣的HL-60細胞系測定細胞毒性。在本實驗中,對D39A/R23E類毒素和RARPR-33進行了比較。測定了對人多形核白細胞(PMNs)的細胞毒性,並評估了免疫後誘導廣泛毒素中和抗體的能力。
方法 :
細胞毒性試驗 :為了評價每種LukAB蛋白複合物的細胞毒性,采用金黃色葡萄球菌毒素對來自不同供體的新鮮分離的人原代多形核白細胞(PMNs)進行中毒處理。分離多形核白細胞,標準化為每50μl RPMI(10mM HEPES+0.1% HSA)含有200,000個細胞。向細胞中加入50μl PBS中的毒素,並將毒素-PMN混合物在37℃的5% CO 2培養箱中培養2小時。為了評估毒性,將10 μl CellTiter 96 Aqueous One Solution(CellTiter; Promega)加入到96孔板中,混合物在5% CO 2中於37℃溫育1.5小時。PMN的生存能力用PerkinElmer EnVision 2103 Multilabel Reader在492nm的吸光度進行評估。死亡細胞的百分比通過減去背景(健康細胞+ PBS)並歸一化為100%死亡的經TritonX處理的細胞來計算。
LDH 測定 :為了評估每種相應的LukAB蛋白複合物是否引起細胞裂解,采用金黃色葡萄球菌LukAB毒素對來自不同供體的新鮮分離的人原代多形核白細胞(PMNs)進行中毒處理,並測量LDH的釋放。WT毒素在PBS中連續稀釋2倍,並在0.5µg/ml~0.00024µg/ml的濃度範圍內進行測試。將LukAB類毒素在PBS中稀釋至1mg/ml~0.03125mg/ml的濃度,並進行測試。分離多形核白細胞,並標準化為每50μl RPMI (10mMHEPES+0.1% HSA)含有200,000個細胞。然後將PMNs(50μl )移至每個孔中,並在每個孔中加入50μl稀釋的毒素。毒素-PMN混合物在37℃+5% CO 2培養箱中孵育2小時。為了評估LDH的釋放,平板以1500rpm離心5分鐘,然後從每個孔中取出25μl上清液,並轉移到96孔黑色透明底板中。將25µl CytoTox-ONE均質膜完整性試劑(Promega)加入到黑色透明底96孔板中,並將混合物於室溫下在黑暗中孵育10分鐘。通過記錄激發波長為560nm和發射波長為590nm的熒光,用PerkinElmer EnVision 2103 Multilabel Reader評估細胞裂解。死亡細胞的百分比通過減去背景(健康細胞+ PBS)並歸一化到設定為100%死亡的經TritonX處理的細胞來計算。
小鼠免疫接種:Envigo Hsd:ND4 (4周齡)小鼠(n = 5/抗原)皮下注射20μg LukAB,所述LukAB溶於50 μl 10%甘油1X TBS與50μl佐劑TiterMax® Gold的混合物中。在兩次加強相同的抗原/佐劑混合物後,通過心臟穿刺給小鼠放血,並獲得血清用於毒素中和研究。
毒素中和試驗:將每組免疫小鼠的血清混合,並在55 ̊C的水浴中加熱滅活30分鐘。然後用PBS將合並的熱滅活血清稀釋至40%。然後通過在96孔板中將40%儲備液在10μl PBS中連續稀釋2倍來實現血清的進一步稀釋。將毒素(10 μl)加入血清孔中,最終濃度為0.156 μg/ml毒素(LD 90)。在每個孔中加入濃度為200,000個RPMI細胞+ 0.1% HSA + 10 mM HEPES的80μl hPMNs。然後將平板在37℃+5% CO 2培養箱中孵育1小時。孵育後,將Cell Titer加入中毒中並孵育1.5小時。孵育後,然後在酶標儀上以492 nm的吸光度讀取平板。死亡細胞的百分比通過減去背景(健康細胞+PBS)並歸一化到設定為100%死亡的經TritonX處理的細胞來計算。
結果 :
據報道,D39A/R23E類毒素的細胞毒性試驗高達約12µg/ml。在此,測定了濃度高達1mg/ml的RARPR-33和D39A/R23E類毒素對人多形核白細胞的細胞毒性。此外,對WT LukAB CC8、CC45和CC8/CC45進行了對比測試。在約0.02µg/mlWT LukAB CC8/CC45、約0.03µg/mlLukAB CC8和0.125µg/mlLukAB CC45中毒處理1小時後,觀察到基於CellTiter測量的人類多形核白細胞的最大細胞毒性(圖8A)。圖中顯示了5名供體的平均值。對於D39A/R23E類毒素,在與1mg/ml孵育時觀察到約22%的細胞毒性。對於RARPR-33,在1mg/ml的濃度下,用CellTiter測量的死亡細胞百分比約為3%(圖8B)。
此外,在與不同的WT毒素、D39A/R23E類毒素和RARPR-33孵育兩小時後,進行LDH測定以評估質膜損傷。在暴露於WT毒素、CC8 WT、CC45 WT和CC8/CC45毒素混合物的組合2小時後,誘導人PMN的細胞毒性(圖8C)。在毒素濃度為0.25µg/ml時,觀察到由LDH測定的最大細胞死亡率。在人PMN暴露於濃度高達1mg/ml的D39A/R23E類毒素兩小時後,觀察到約8%的細胞死亡。當用類似濃度的RARPR-33孵育人PMN時,沒有觀察到質膜損傷,表明沒有細胞死亡(圖8D)。這些結果表明,RARPR-33在檢測中被減弱到檢測極限以下,並且比D39A/R23E類毒素更弱。
來自用RARPR-33或D39A/R23E類毒素免疫的小鼠的血清在毒素中和試驗中進行測試,以評估該血清在防止毒素誘導的人多形核白細胞細胞死亡的能力。在從4個供體分離的多形核白細胞上測試了對16種不同LukAB毒素的中和作用。
在來自RARPR 33免疫小鼠的0.125%血清的存在下,測試的所有16種LukAB變體的細胞毒性作用被中和(圖9)。在相似的血清濃度下,來自D39A/R23E類毒素免疫小鼠的血清僅與來自RARPR-33免疫小鼠的血清同等地保護免受LukAB CC8的細胞毒性影響。針對所有其他毒素,對來自D39A/R23E類毒素免疫小鼠的血清沒有觀察到保護作用或觀察到低得多的保護作用。這些結果表明,RARPR-33免疫誘導了比用D39A/R23E類毒素免疫更廣泛的毒素中和反應。
實施例 9:LukAB 類毒素的熱穩定性
與野生型蛋白質相比,LukAB類毒素的穩定性通過熱展開實驗來評估,該實驗使用固有的色氨酸或酪氨酸熒光來估計熔化溫度(Tm),該溫度對應於蛋白質從折疊狀態向展開狀態轉變的中點。使用NanoTemper's PromethiusNT.Plex儀器(NanoTemper Inc., 德國)來評估熱穩定性。對0.3~1mg/ml的蛋白質樣品(20μl,緩沖液:50mM磷酸鈉緩沖液,200mM氯化鈉,酸鹼度7.4,10%甘油)進行熱展開測量,每個樣品重複進行。Prometheus NanoDSF用戶界面(Melting Scan tab)用於設置運行的實驗參數。典型樣品的熱掃描範圍為20℃~95℃,速率為1.0℃/分鐘。將用於樣品的同一緩沖液中的標準單克隆抗體(CNTO5825或NIST)作為對照,重複進行試驗。使用供應商軟件PR.ThermControl分析熱熔化曲線以測定50%蛋白質展開的溫度(Tm)。
表7A和7B顯示了通過nanoDSF評估的LukA和LukAB類毒素蛋白的熱穩定性。顯示了蛋白質展開開始的溫度(Tonset)和蛋白質展開轉變的中點(Tm1 ),以及具有和不具有穩定取代的可比構建體之間的Tm差異(ΔTm)。
7A.CC45遺傳背景中的單取代和混合CC8/CC45遺傳背景中的組合取代。
毒素名稱 LukA LukB Tonset Tm1 Δ Tm a
CC45毒素 CC45 LukA E321A CC45 LukB wt 40.3 47.3 --
CC8/CC45毒素 CC8 LukA E320A CC45 LukB wt 37.7 43.9 --
  CC45 LukA E321A Lys81Met CC45 LukB wt 40.5 47.4 0.1
  CC45 LukA E321A Ser139Ala CC45 LukB wt 40.5 47.4 0.1
  CC45 LukA E321A Val111Ile CC45 LukB wt 40.0 47.7 0.4
  CC45 LukA E321A Val190Ile CC45 LukB wt 40.5 47.5 0.2
  CC45 LukA E321A Thr247Val CC45 LukB wt 41.3 47.3 0
  CC45 LukA E321A CC45 LukB Val53Leu 40.7 47.8 0.5
RARPR-15 CC45 LukA E321A Lys81Met Ser139Ala Val111Ile Val191Ile CC45 LukB wt 41.2 48.9 1.6
RARPR-33 CC8 LukA E320A Lys80Met Ser138Ala Val110Ile Val190Ile CC45 LukB Val53Leu 40.0 47.9 4.0
LukA單體 CC8 LukA E320A Lys80Met Ser138Ala Val110Ile Val190Ile Thr246Val Tyr71Cys Asp137Cys Gly146Cys Gly153Cys 無LukB 45.2 61.8 --
LukA單體 CC45 LukA E321A Lys81Met Ser139Ala Val111Ile Val191Ile Thr247Val Tyr72Cys Asp138Cys Gly147Cys Gly154Cys 無LukB 51.9 58.1 --
a ΔTm表示與攜帶一個或多個取代的相應LukAB蛋白相比,沒有穩定取代和二硫鍵的CC45或CC8/CC45毒素的Tm值之間的差異。 LukA單體包括一個N-端PelB信號序列,用於指導表達到大腸杆菌的周質,以支持二硫鍵的形成。 攜帶支持二硫鍵形成的成對半胱氨酸取代對的LukAB二聚體在大腸杆菌Origami 2(DE3)細胞的細胞質中表達。
7B.CC8遺傳背景中的單取代和混合物CC8/CC45遺傳背景中的組合取代。
毒素名稱 LukA LukB Tonset Tm1 Δ Tm a
CC45毒素 CC45 LukA E321A CC45 LukB wt 37.8 45.3 --
CC8/CC45毒素 CC8 LukA E320A CC45 LukB wt 35.3 42.2 --
  CC8 LukA E320A Lys80Met CC45 LukB wt 38.8 44.9 2.7
  CC8 LukA E320A Ser138Ala CC45 LukB wt 38.9 44.7 2.5
  CC8 LukA E320A Val110Ile CC45 LukB wt 38.0 44.0 1.8
  CC8 LukA E320A Val190Ile CC45 LukB wt 37.2 43.5 1.3
  CC8 LukA E320A Thr246Ile CC45 LukB wt 36.4 43.1 0.9
  CC8 LukA E320A Lys80Met Ser138Ala Val110Ile Val190Ile Thr246Val CC45 LukB wt 40.5 46.8 4.6
RARPR-33 CC8 LukA E320A Lys80Met Ser138Ala Val110Ile Val190Ile CC45 LukB Val53Leu 38.8 46.3 4.1
結果 :熱穩定性分析(表7A)顯示,CC45 LukA E321A/CC45 LukB蛋白的Tm值比CC8 LukA E321A/CC45 LukB混合蛋白的Tm值高3℃。CC45 LukA中的單個取代,與CC45 LukB wt結合,導致Tm適度增加0~0.4℃。LukB中的Val53Leu取代導致Tm增加0.5℃。由於混合LukB類毒素包括CC8 LukA背景,在CC8 LukA中測試了單個氨基酸取代,並與野生型CC45 LukB結合(表7B)。如CC45 LukA所示,CC8 LukA中的單個取代也使Tm值高於野生型LukA。LukA (RARPR-15)中取代的組合產生的Tm值比CC45 LukA E321A/CC45 LukB蛋白高1.6℃,而CC8 LukA取代與LukBVal53Leu (RARPR-33)的組合產生的Tm值比CC8 LukA E321A/CC45 LukB混合高4℃。在兩個數據集中觀察到RARPR-33的熱穩定性增加(表7A和7B)。盡管nanoDSF可能會對在低於50℃時展開的蛋白質產生一些可變性,但在4.0℃和4.1℃的數據集上,使用每組中的對照樣品測定的ΔTm值是一致的。LukA單體包括取代的組合和半胱氨酸取代對,並且顯示出≥58℃的升高的Tm值,表明二硫鍵對增加熱穩定性的進一步貢獻。
實施例 1-9 的討論 :
本文所述的穩定的LukAB變體異二聚體類毒素具有幾個特征,使得它們非常適合作為金黃色葡萄球菌疫苗抗原候選物。
首先,本文所述的LukA單體和LukAB二聚體類毒素,包括RARPR-30、RARPR-31、RARPR-32、RARPR-33、RARPR-34和RARPR-15,與野生型毒素和其他已知類毒素(即CC8Δ10和CC45Δ10類毒素)相比,顯示出對分化的人THP-1和人多形核白細胞的細胞毒性顯著降低。即使濃度高達2.5mg/ml,RARPR-33仍無細胞毒性,證明其完全衰減。
其次,相對於僅含有單個取代的相應類毒素,在LukA和LukB變異體蛋白中引入的取代基的組合顯著增強了異二聚體RARPR複合物的熱穩定性。特別地,LuCA(RARPR-15)中取代的組合產生了比CC45 LukAE321A/CC45 LukB蛋白高1.6℃的Tm值,並且CC8 LukA取代與LukBVal53Leu (RARPR-33)的組合導致了比CC8 LukAE321A/CC45 LukB雜種高4℃的Tm值。
除了減弱的細胞毒性和增強的熱穩定性之外,本文所述的LukAB RARPR類毒素,特別是RARPR-15、RARPR-33和RARPR-34,與野生型CC45和CC8毒素、野生型雜交毒素和類毒素,包括E323A類毒素和D39A/R23E類毒素相比,誘導了相當的或更廣泛的毒素中和反應和更高滴度的中和抗體。
總之,減弱的細胞毒性、改善的熱穩定性、強大的免疫原性和廣泛的中和抗體特征使本文所述的LukAB RARPR類毒素成為理想的疫苗抗原候選物。
盡管本文已經詳細描述了優選的實施例,但是對於相關領域的技術人員來說,很明顯,在不脫離本發明的精神的情況下,可以進行各種修改、添加、替換等,因此這些都被認為在所附申請專利範圍限定的本發明的範圍內。
圖1是15個不同的金黃色葡萄球菌LukA氨基酸序列的比對,包括克隆複合物(CC) 8 (SEQ ID NO:1)的LukA;CC45 (SEQ ID NO:2);CC30(SEQ ID NO:27)的HMPREF 0772 _ 044(TC60);CC30(SEQ ID NO:36)的SAR2108(MRSA 252);CC45(SEQ ID NO:34)的SALG _ 02329(A9635);CC398 (SEQ ID NO:35)的SAPIG 2061(ST398);CC10(SEQ ID NO:37) 的SATG _ 01930(D139);CC8(SEQ ID NO:26)的NEWMAN;CC151(SEQ ID NO:32)的SAB1876C(RF122);CC5(SEQ ID NO:38)的SAV2005(Mu50);CC5(SEQ ID NO:31)的SA1813(N315);CC8(SEQ ID NO:33)的SACOL 2006;CC7(SEQ ID NO:29)的HMPRE0776_ 0173 USA 300(TCH 959);CC72(SEQ ID NO:28)的HMPREF0774_ 2356 TCH 130;和CC1(SEQ ID NO:30)的MW1942(MW2)。通過比對產生的大部分LukA序列的氨基酸序列被表述為SEQ ID NO:25。本文所述的氨基酸取代的位置也在每個LukA序列中得到鑒定。 圖2是14個不同的金黃色葡萄球菌LukB氨基酸序列的比對,包括LukB CC8 (SEQ ID NO:15);CC45 (SEQ ID NO:16);CC45(SEQ ID NO:40)的A9635;CC30(SEQ ID NO:43)的E1410;CC30(SEQ ID NO:45)的MRSA 252;CC10(SEQ ID NO:42)的D139;CC5(SEQ ID NO:46)的Mu.50;CC239(SEQ ID NO:44)的JKD6008;CC8(SEQ ID NO:41)的COL;CC8(SEQ ID NO:50)的USA 300_ FPR 3757;CC8(SEQ ID NO:51)的NEWMAN;CC151(SEQ ID NO:48)的RF122;CC1(SEQ ID NO:47)的MW2;和CC72(SEQ ID NO:49)的TCH130。通過比對產生的大多數LukB序列的氨基酸序列被表述為SEQ ID NO:39。本文所述的氨基酸取代的位置也在每個LukB序列中得到鑒定。 圖3示出了用於免疫的不同LukAB變體的細胞毒性。通過滴定不同LukAB變體對原代人多形核白細胞(PMNs,n=4)進行1小時的中毒處理。用細胞滴度評估細胞活力。數據來自4個供體的平均值±SEM,在兩個獨立的實驗中獲得。 圖4A–4B示出了用不同LukAB變體免疫的小鼠中針對LukAB CC8或CC45的抗體滴度。Envigo Hsd:向ND4 (4周齡)小鼠(n = 5/抗原)皮下注射20μg LukAB,所述LukAB溶於50 μl 10%甘油1X TBS中與50μl佐劑TiterMax® Gold混合液。一組5只小鼠也接受了由等體積的10%甘油1X TBS和TiterMax® Gold組成的模擬免疫。在相同抗原佐劑混合物的兩次增強免疫(增強免疫之間間隔2周)之後,通過心臟穿刺對小鼠進行放血並獲得血清。收集來自具有指示性免疫抗原的免疫小鼠的血清,並連續稀釋,以確定CC8 LukAB(圖4A)或CC45 LukAB(圖4B)的抗體滴度。用2μg/ml的CC8或CC45 LukAB塗布平板。熱力圖顯示重複測量的平均吸光度值。 圖5提供了用針對各種LukAB毒素的不同LukAB變體進行免疫得到的小鼠的血清的中和曲線。在用指示抗原免疫的小鼠的4-0.031%血清存在的情況下,用0.156 μg/ml (LD90)指示性的LukAB變體對人PMNs (n=4)中毒處理1小時。在使用前,收集具有指示性免疫抗原的免疫小鼠的血清並進行熱滅活。用細胞滴度評估細胞活力。熱力圖顯示了4名供體死亡細胞的平均百分比,黑色代表無細胞死亡,白色代表100%細胞死亡。 圖6A-6C示出了在不存在或存在用2%(圖6A)、1%(圖6B)和0.5%(圖6C)來自指示性抗原免疫的小鼠血清的情況下,用LukAB毒素序列變體的LD90中毒後死亡的人多形核白細胞的百分比。數據以死亡細胞的百分比表示。無陰影的細胞代表細胞死亡率最低,最深灰色陰影的細胞代表細胞死亡率最高。 圖7A-7D示出了高濃度的LukAB RARPR-33處理沒有產生細胞毒性。將來自健康供體(n=4-6)的新鮮分離的人多形核白細胞與不同濃度的LukAB變體一起孵育1小時。細胞活力通過細胞滴度的吸光度來確定(圖7A和7B)。死亡細胞的百分比是通過減去背景(健康細胞+ PBS)並歸一化到設定為100%死亡的Triton X100處理的細胞來計算的。顯示為平均值±SEM。從健康供體(n=4-6)中分離的人多形核白細胞與不同濃度的LukAB變體一起孵育2小時。通過乳酸脫氫酶(LDH)釋放確定(圖7C和7D)細胞活力。顯示為平均值±SEM。 圖8A-8D示出了高濃度的LukAB RARPR-33和D39A/R23E類毒素的作用。來自健康供體(n=5)的新鮮分離的人多形核白細胞與不同濃度的LukAB變體一起孵育2小時。細胞活力通過細胞滴度的吸光度來確定(圖8A和8B)。死亡細胞的百分比是通過減去背景(健康細胞+ PBS)並歸一化到設定為100%死亡的Triton X100處理的細胞來計算的。顯示為平均值±SEM。從健康供體(n=5)中分離的人多形核白細胞與不同濃度的LukAB變體一起孵育2小時。通過LDH釋放確定(圖8C和8D)細胞活力。顯示為平均值±SEM。 圖9示出了用兩種不同LukAB類毒素進行免疫得到的小鼠的血清對各種LukAB毒素的中和曲線。在用兩種不同抗原免疫的小鼠的0.125%血清存在的情況下,用0.156 μg/ml (LD90)指示性的LukAB毒素變體對人PMNs (n=4)進行中毒處理1小時。收集用兩種指示性免疫抗原進行免疫得到的小鼠的血清並在使用前進行熱滅活。用細胞滴度測定細胞活力。條形圖顯示了4種不同供體的平均值±SEM。使用非配對t檢驗確定統計顯著性,P<0.05被認為是顯著的。*P<0.05,**P<0.001,***P<0.0001。
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0038
Figure 12_A0101_SEQ_0039
Figure 12_A0101_SEQ_0040
Figure 12_A0101_SEQ_0041
Figure 12_A0101_SEQ_0042
Figure 12_A0101_SEQ_0043
Figure 12_A0101_SEQ_0044
Figure 12_A0101_SEQ_0045
Figure 12_A0101_SEQ_0046
Figure 12_A0101_SEQ_0047
Figure 12_A0101_SEQ_0048
Figure 12_A0101_SEQ_0049
Figure 12_A0101_SEQ_0050
Figure 12_A0101_SEQ_0051
Figure 12_A0101_SEQ_0052
Figure 12_A0101_SEQ_0053
Figure 12_A0101_SEQ_0054
Figure 12_A0101_SEQ_0055
Figure 12_A0101_SEQ_0056
Figure 12_A0101_SEQ_0057
Figure 12_A0101_SEQ_0058
Figure 12_A0101_SEQ_0059
Figure 12_A0101_SEQ_0060
Figure 12_A0101_SEQ_0061
Figure 12_A0101_SEQ_0062
Figure 12_A0101_SEQ_0063
Figure 12_A0101_SEQ_0064
Figure 12_A0101_SEQ_0065
Figure 12_A0101_SEQ_0066
Figure 12_A0101_SEQ_0067
Figure 12_A0101_SEQ_0068
Figure 12_A0101_SEQ_0069
Figure 12_A0101_SEQ_0070
Figure 12_A0101_SEQ_0071
Figure 12_A0101_SEQ_0072
Figure 12_A0101_SEQ_0073
Figure 12_A0101_SEQ_0074
Figure 12_A0101_SEQ_0075
Figure 12_A0101_SEQ_0076
Figure 12_A0101_SEQ_0077
Figure 12_A0101_SEQ_0078
Figure 12_A0101_SEQ_0079
Figure 12_A0101_SEQ_0080
Figure 12_A0101_SEQ_0081
Figure 12_A0101_SEQ_0082
Figure 12_A0101_SEQ_0083
Figure 12_A0101_SEQ_0084
Figure 12_A0101_SEQ_0085
Figure 12_A0101_SEQ_0086
Figure 12_A0101_SEQ_0087
Figure 12_A0101_SEQ_0088
Figure 12_A0101_SEQ_0089
Figure 12_A0101_SEQ_0090
Figure 12_A0101_SEQ_0091
Figure 12_A0101_SEQ_0092
Figure 12_A0101_SEQ_0093
Figure 12_A0101_SEQ_0094
Figure 12_A0101_SEQ_0095
Figure 12_A0101_SEQ_0096
Figure 12_A0101_SEQ_0097
Figure 12_A0101_SEQ_0098
Figure 12_A0101_SEQ_0099
Figure 12_A0101_SEQ_0100
Figure 12_A0101_SEQ_0101
Figure 12_A0101_SEQ_0102
Figure 12_A0101_SEQ_0103
Figure 12_A0101_SEQ_0104
Figure 12_A0101_SEQ_0105
Figure 12_A0101_SEQ_0106
Figure 12_A0101_SEQ_0107
Figure 12_A0101_SEQ_0108
Figure 12_A0101_SEQ_0109
Figure 12_A0101_SEQ_0110
Figure 12_A0101_SEQ_0111
Figure 12_A0101_SEQ_0112
Figure 12_A0101_SEQ_0113
Figure 12_A0101_SEQ_0114
Figure 12_A0101_SEQ_0115
Figure 12_A0101_SEQ_0116
Figure 12_A0101_SEQ_0117
Figure 12_A0101_SEQ_0118
Figure 12_A0101_SEQ_0119
Figure 12_A0101_SEQ_0120
Figure 12_A0101_SEQ_0121
Figure 12_A0101_SEQ_0122
Figure 12_A0101_SEQ_0123
Figure 12_A0101_SEQ_0124
Figure 12_A0101_SEQ_0125
Figure 12_A0101_SEQ_0126
Figure 12_A0101_SEQ_0127
Figure 12_A0101_SEQ_0128
Figure 12_A0101_SEQ_0129
Figure 12_A0101_SEQ_0130
Figure 12_A0101_SEQ_0131
Figure 12_A0101_SEQ_0132
Figure 12_A0101_SEQ_0133
Figure 12_A0101_SEQ_0134
Figure 12_A0101_SEQ_0135
Figure 12_A0101_SEQ_0136
Figure 12_A0101_SEQ_0137
Figure 12_A0101_SEQ_0138
Figure 12_A0101_SEQ_0139
Figure 12_A0101_SEQ_0140
Figure 12_A0101_SEQ_0141
Figure 12_A0101_SEQ_0142
Figure 12_A0101_SEQ_0143
Figure 12_A0101_SEQ_0144
Figure 12_A0101_SEQ_0145
Figure 12_A0101_SEQ_0146
Figure 12_A0101_SEQ_0147
Figure 12_A0101_SEQ_0148
Figure 12_A0101_SEQ_0149
Figure 12_A0101_SEQ_0150
Figure 12_A0101_SEQ_0151
Figure 12_A0101_SEQ_0152
Figure 12_A0101_SEQ_0153
Figure 12_A0101_SEQ_0154
Figure 12_A0101_SEQ_0155
Figure 12_A0101_SEQ_0156
Figure 12_A0101_SEQ_0157
Figure 12_A0101_SEQ_0158
Figure 12_A0101_SEQ_0159
Figure 12_A0101_SEQ_0160
Figure 12_A0101_SEQ_0161
Figure 12_A0101_SEQ_0162
Figure 12_A0101_SEQ_0163
Figure 12_A0101_SEQ_0164
Figure 12_A0101_SEQ_0165
Figure 12_A0101_SEQ_0166

Claims (84)

  1. 一種SEQ ID NO:25變異的金黃色葡萄球菌殺白細胞素A (LukA)多肽,所述LukA變異多肽包含: 對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113和Val193的一個或多個氨基酸殘基上的氨基酸取代。
  2. 如請求項1所述的LukA變異多肽,其中所述LukA變異多肽進一步包含: 對應於SEQ ID NO:25的Glu323的氨基酸殘基上的氨基酸取代。
  3. 如請求項2所述的LukA變異多肽,其中對應於Glu323的氨基酸殘基上的氨基酸取代包括穀氨酸到丙氨酸(Glu323Ala)的取代。
  4. 如請求項1~3中任一項所述的LukA變異多肽,其中對應於Lys83的氨基酸殘基上的氨基酸取代包括賴氨酸到甲硫氨酸(Lys83Met)的取代。
  5. 如請求項1~4中任一項所述的LukA變異多肽,其中對應於Ser141的氨基酸殘基上的氨基酸取代包括絲氨酸到丙氨酸(Ser141Ala)的取代。
  6. 如請求項1~5中任一項所述的LukA變異多肽,其中對應於Val113的氨基酸殘基上的氨基酸取代包括纈氨酸到異亮氨酸(Val113Ile)的取代。
  7. 如請求項1~6中任一項所述的LukA變異多肽,其中對應於Val193的氨基酸殘基上的氨基酸取代包括纈氨酸到異亮氨酸(Val193Ile)的取代。
  8. 如請求項2~7中任一項所述的LukA變異多肽,其中所述LukA變異多肽包含對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113、Val193和Glu323的每個氨基酸殘基上的氨基酸取代。
  9. 如請求項8所述的LukA變異多肽,其中所述氨基酸取代包括Lys83Met、Ser141Ala、Val113Ile、Val193Ile和Glu323Ala。
  10. 如請求項1所述的LukA變異多肽,其中所述變體是SEQ ID NO:1的CC8LukA變體,其包含對應於SEQ ID NO:1中的Lys80Met、Ser138Ala、Val110Ile、Val190Ile和Glu320Ala的氨基酸取代。
  11. 如請求項10所述的LukA變異多肽,其中所述LukA變異多肽包含SEQ ID NO:3的氨基酸序列。
  12. 如請求項1所述的LukA變異多肽,其中所述變體是SEQ ID NO:2的CC45 LukA變體,其包含對應於SEQ ID NO:2中Lys81Met、Ser139Ala、Val111Ile、Val191Ile和Glu321Ala的氨基酸取代。
  13. 如請求項12所述的LukA變異多肽,其中所述LukA變異多肽包含SEQ ID NO:4的氨基酸序列。
  14. 如請求項1~13中任一項所述的LukA變異多肽,其中所述LukA變異多肽進一步包含: 對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的一個或多個氨基酸殘基上的氨基酸取代。
  15. 如請求項14所述的LukA變異多肽,其中對應於Tyr74的氨基酸殘基上的氨基酸取代包括酪氨酸至半胱氨酸(Tyr74Cys)的取代。
  16. 如請求項14或15所述的LukA變異多肽,其中對應於Asp140的氨基酸殘基上的氨基酸取代包括天冬醯胺到半胱氨酸(Asp140Cys)的取代。
  17. 如請求項14~16中任一項所述的LukA變異多肽,其中對應於Gly149的氨基酸殘基上的氨基酸取代包括甘氨酸到半胱氨酸(Gly149Cys)的取代。
  18. 如請求項14~17中任一項所述的LukA變異多肽,其中在對應於Gly156的氨基酸殘基上的氨基酸取代包括甘氨酸到半胱氨酸(Gly156Cys)的取代。
  19. 如請求項14~18中任一項所述的LukA變異多肽,其中所述LukA變異多肽包含對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的每個氨基酸殘基上的氨基酸取代。
  20. 如請求項14所述的LukA變異多肽,其中所述變體是SEQ ID NO:1的CC8 LukA變體,包含對應於SEQ ID NO:1的Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Glu320Ala、Tyr71Cys、Asp137Cys、Gly146Cys和Gly153Cys的氨基酸取代。
  21. 如請求項20所述的LukA變異多肽,其中所述LukA變異多肽包含SEQ ID NO:5的氨基酸序列。
  22. 如請求項14所述的LukA變異多肽,其中所述變體是SEQ ID NO:2的CC45 LukA變體,包含對應於SEQ ID NO:2的Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Glu321Ala、Tyr72Cys、Asp138Cys、Gly147Cys和Gly154Cys的氨基酸取代。
  23. 如請求項22所述的LukA變異多肽,其中所述LukA變異多肽包含SEQ ID NO:6的氨基酸序列。
  24. 如請求項1~23中任一項所述的LukA變異多肽,其中所述LukA變異多肽進一步包含: 對應於SEQ ID NO:25的氨基酸殘基Thr249的氨基酸殘基上的氨基酸取代。
  25. 如請求項24所述的LukA變異多肽,其中對應於Thr249的氨基酸殘基上的氨基酸取代包括蘇氨酸到纈氨酸(Thr249Val)的取代。
  26. 如請求項25所述的LukA變異多肽,其中所述變異LukA蛋白包含SEQ ID NO:7或SEQ ID NO:8的氨基酸序列。
  27. 如請求項1~26中任一項所述的LukA變異多肽,還包含:氨基末端信號序列。
  28. 如請求項27所述的LukA變異多肽,其中所述氨基末端信號序列包含SEQ ID NO:23的氨基酸序列。
  29. 如請求項1~28中任一項所述的LukA變異多肽,還包含:氨基末端純化序列。
  30. 一種編碼請求項1~29中任一項所述的LukA變異多肽的核酸分子。
  31. 一種包含請求項30所述的核酸分子的表達載體。
  32. 一種包含請求項31所述的表達載體的宿主細胞。
  33. 一種SEQ ID NO:39變異的金黃色葡萄球菌殺白細胞素B(LukB)蛋白或多肽,所述LukB變異多肽包含: 對應於SEQ ID NO:39的氨基酸殘基Val53的氨基酸殘基上的氨基酸取代。
  34. 如請求項33所述的LukB變異多肽,其中對應於Val53的氨基酸殘基上的氨基酸取代包括纈氨酸到亮氨酸(Val53Leu)的取代。
  35. 如請求項33所述的LukB變異多肽,其中所述變體是SEQ ID NO:15的CC8 LukB變體,其包含對應於SEQ ID NO:15的Val53Leu的氨基酸取代。
  36. 如請求項35所述的LukB變異多肽,其中所述LukB變異多肽包含SEQ ID NO:17的氨基酸序列。
  37. 如請求項33所述的LukB變異多肽,其中所述變體是SEQ ID NO:16的CC45 LukB變體,包含對應於SEQ ID NO:16的Val53Leu的氨基酸取代。
  38. 如請求項37所述的LukB變異多肽,其中所述LukB變異多肽包含SEQ ID NO:18的氨基酸序列。
  39. 如請求項33或34所述的LukB變異多肽,其中所述變體進一步包括對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基上的氨基酸取代。
  40. 如請求項39所述的LukB變異多肽,其中對應於Glu45的氨基酸殘基上的氨基酸取代包括穀氨酸到半胱氨酸(Glu45Cys)的取代。
  41. 如請求項39或40所述的LukB變異多肽,其中對應於Glu109的氨基酸殘基上的氨基酸取代包括穀氨酸到半胱氨酸(Glu109Cys)的取代。
  42. 如請求項39~41中任一項所述的LukB變異多肽,其中對應於Thr121的氨基酸殘基上的氨基酸取代包括蘇氨酸到半胱氨酸(Thr121Cys)的取代。
  43. 如請求項39~42中任一項所述的LukB變異多肽,其中對應於Arg154的氨基酸殘基上的氨基酸取代包括精氨酸到半胱氨酸(Arg154Cys)的取代。
  44. 如請求項39~43中任一項所述的LukB變異多肽,其中所述LukB變異多肽包含對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基上的氨基酸取代。
  45. 如請求項39所述的LukB變異多肽,其中所述變體是SEQ ID NO:15的CC8 LukB變體,包含對應於SEQ ID NO:15的Val53Leu、Glu45Cys、Glu109Cys、Thr121Cys和Arg154Cys的氨基酸取代。
  46. 如請求項45所述的LukB變異多肽,其中所述LukB變異多肽包含SEQ ID NO:19的氨基酸序列。
  47. 如請求項33所述的LukB變異多肽,其中所述變體是SEQ ID NO:16的CC45 LukB變體,包含對應於SEQ ID NO:16的Val53Leu、Glu45Cys、Glu110Cys、Thr123Cys和Arg155Cys的氨基酸取代。
  48. 如請求項47所述的LukB變異多肽,其中所述LukB變異多肽包含SEQ ID NO:20的氨基酸序列。
  49. 一種SEQ ID NO:39變異的金黃色葡萄球菌殺白細胞素B(LukB)蛋白或多肽,所述LukB變異多肽包含: 對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基上的氨基酸取代。
  50. 如請求項49所述的LukB變異多肽,其中對應於Glu45的氨基酸殘基上的氨基酸取代包括穀氨酸到半胱氨酸(Glu45Cys)的取代,對應於Thr121的氨基酸殘基上的氨基酸取代包括蘇氨酸到半胱氨酸(Thr121Cys)的取代。
  51. 如請求項49或50所述的LukB變異多肽,其中對應於Glu109的氨基酸殘基上的氨基酸取代包括穀氨酸到半胱氨酸(Glu109Cys)的取代,對應於Arg154的氨基酸殘基上的氨基酸取代包括精氨酸到半胱氨酸(Arg154Cys)的取代。
  52. 如請求項49~51中任一項所述的LukB變異多肽,其中所述LukB變異多肽包含對應於SEQ ID NO:39的氨基酸Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基上的氨基酸取代。
  53. 如請求項52所述的LukB變異多肽,其中所述變體是SEQ ID NO:15的CC8 LukB變體,其包含對應於SEQ ID NO:15的Glu45Cys、Glu109Cys、Thr121Cys和Arg154Cys的氨基酸取代。
  54. 如請求項53所述的LukB變異多肽,其中所述LukB變異多肽包含SEQ ID NO:21的氨基酸序列。
  55. 如請求項52所述的LukB變異多肽,其中所述變體是SEQ ID NO:16的CC45 LukB變體,包含對應於SEQ ID NO:16的Glu45Cys、Glu110Cys、Thr123Cys和Arg155Cys的氨基酸取代。
  56. 如請求項55所述的LukB變異多肽,其中所述LukB變異多肽包含SEQ ID NO:22的氨基酸序列。
  57. 如請求項33~56中任一項所述的LukB變異多肽,還包含:氨基末端信號序列。
  58. 如請求項57所述的LukB變異多肽,其中氨基末端信號序列包含SEQ ID NO:23的氨基酸序列。
  59. 如請求項33~58中任一項所述的LukB變異多肽,還包含:氨基末端純化標簽。
  60. 一種編碼請求項33~59中任一項所述的LukB變異多肽的核酸分子。
  61. 一種包含請求項60所述的核酸分子的表達載體。
  62. 一種表達載體,包括: 可操作地偶聯的請求項30所述的核酸分子與請求項60所述的核酸分子。
  63. 一種包含請求項61或62所述的表達載體的宿主細胞。
  64. 一種金黃色葡萄球菌疫苗組合物,包含: 請求項1~29中任一項所述的一種或多種變異LukA蛋白或多肽。
  65. 如請求項64所述的疫苗組合物,其中所述LukA變異多肽是SEQ ID NO:1的變體。
  66. 如請求項64或65所述的疫苗組合物,進一步包括: 一種殺白細胞素B(LukB)蛋白或多肽,所述LukB蛋白或多肽與SEQ ID NO:15的氨基酸序列具有至少85%的序列相似性。
  67. 如請求項64或65所述的疫苗組合物,進一步包括: 一種殺白細胞素B(LukB)蛋白或多肽,所述LukB蛋白或多肽與SEQ ID NO:16的氨基酸序列具有至少85%的序列相似性。
  68. 如請求項67所述的疫苗組合物,其中所述LukA變異多肽包含對應於SEQ ID NO:1的氨基酸殘基Lys80、Ser138、Val110、Val190和Glu320Ala的一個或多個氨基酸殘基上的氨基酸取代。
  69. 如請求項68所述的疫苗組合物,其中所述LukA變異多肽包含SEQ ID NO:3的氨基酸序列,並且所述LukB多肽包含SEQ ID NO:18的氨基酸序列。
  70. 如請求項68所述的疫苗組合物,其中所述LukA變異多肽包含SEQ ID NO:3的氨基酸序列,並且所述LukB蛋白或多肽包含SEQ ID NO:15的氨基酸序列。
  71. 如請求項68所述的疫苗組合物,其中所述LukA變異多肽包含SEQ ID NO:3的氨基酸序列,並且所述LukB蛋白或多肽包含SEQ ID NO:17的氨基酸序列。
  72. 如請求項64所述的疫苗組合物,其中所述LukA變異多肽是SEQ ID NO:2的變體。
  73. 如請求項72所述的疫苗組合物,進一步包括: 一種殺白細胞素B(LukB)蛋白或多肽,所述LukB蛋白或多肽與SEQ ID NO:16的氨基酸序列具有至少85%的序列相似性。
  74. 如請求項72所述的疫苗組合物,進一步包括: 一種殺白細胞素B(LukB)蛋白或多肽,所述LukB蛋白或多肽與SEQ ID NO:15的氨基酸序列具有至少85%的序列相似性。
  75. 如請求項73所述的疫苗組合物,其中所述LukA變異多肽包含對應於SEQ ID NO:2的氨基酸殘基Lys81、Ser139、Val111、Val191和Glu321Ala的一個或多個氨基酸殘基上的氨基酸取代。
  76. 如請求項75所述的疫苗組合物,其中所述LukA變異多肽包含SEQ ID NO:4的氨基酸序列,並且所述LukB蛋白或多肽包含SEQ ID NO:16的氨基酸序列。
  77. 一種金黃色葡萄球菌疫苗組合物,包含: 請求項33~56中任一項所述的一種或多種變異LukB蛋白或多肽。
  78. 如請求項77所述的疫苗組合物,進一步包括: 一種殺白細胞素A (LukA)蛋白或多肽,所述LukA蛋白或多肽與SEQ ID NO:1 (CC8)的氨基酸序列具有至少85%的序列相似性。
  79. 如請求項77所述的疫苗組合物,進一步包括: 一種殺白細胞素A (LukA)蛋白或多肽,所述LukA蛋白或多肽與SEQ ID NO:2 (CC45)的氨基酸序列具有至少85%的序列相似性。
  80. 一種金黃色葡萄球菌疫苗組合物,包含: 請求項1~32中任一項所述的LukA變異多肽,和 請求項33~56中任一項所述的LukB變異多肽。
  81. 如請求項64~80中任一項所述的疫苗組合物,進一步包括: 佐劑。
  82. 如請求項64~81中任一項所述的疫苗組合物,進一步包括: 一種或多種額外的金黃色葡萄球菌抗原。
  83. 一種在受試者中產生針對金黃色葡萄球菌的免疫應答的方法,所述方法包括: 在所述受試者中有效產生針對金黃色葡萄球菌的所述免疫應答的條件下,向所述受試者施用請求項64~81中任一項所述的疫苗組合物。
  84. 如請求項64~81中任一項所述的疫苗組合物,其中所述疫苗組合物用於在受試者中產生針對金黃色葡萄球菌的免疫應答的方法中。
TW110136365A 2021-09-29 2021-09-29 變異的金黃色葡萄球菌LukA和LukB多肽和疫苗組合物 TW202313660A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110136365A TW202313660A (zh) 2021-09-29 2021-09-29 變異的金黃色葡萄球菌LukA和LukB多肽和疫苗組合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110136365A TW202313660A (zh) 2021-09-29 2021-09-29 變異的金黃色葡萄球菌LukA和LukB多肽和疫苗組合物

Publications (1)

Publication Number Publication Date
TW202313660A true TW202313660A (zh) 2023-04-01

Family

ID=86943317

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110136365A TW202313660A (zh) 2021-09-29 2021-09-29 變異的金黃色葡萄球菌LukA和LukB多肽和疫苗組合物

Country Status (1)

Country Link
TW (1) TW202313660A (zh)

Similar Documents

Publication Publication Date Title
US20180043005A1 (en) Immunogenic composition comprising elements of c. difficile cdtb and/or cdta proteins
HUE033342T2 (en) C. difficile toxin A and toxin B proteins are isolated polypeptides and their applications
JP5922573B2 (ja) ブドウ球菌クランピング因子aの変異体を含む免疫原性組成物
US20240115688A1 (en) Novel Antigens
JP2012532626A (ja) 無毒化されたEscherichiacoli免疫原
Huang et al. Biochemical and immunological characterization of truncated fragments of the receptor-binding domains of C. difficile toxin A
JP2023025066A (ja) ワクチン構築物およびブドウ球菌感染症に対するその使用
TW202313660A (zh) 變異的金黃色葡萄球菌LukA和LukB多肽和疫苗組合物
US20240050546A1 (en) Variant staphylococcus aureus luka and lukb polypeptides and vaccine compositions
KR20230165808A (ko) 스태필로코쿠스 아우레우스 백신 조성물
WO2020078420A1 (en) Immunogenic preparations and methods against clostridium difficile infection
CN117355328A (zh) 金黄色葡萄球菌疫苗组合物
CN115151559A (zh) 葡萄球菌肽和使用方法
WO2016112065A1 (en) Immunogenic composition comprising engineered alpha-hemolysin oligopeptides
WO2014189942A2 (en) Compositions and methods for diagnosing, preventing, and treating salmonella typhi and salmonella paratyphi infection
US20190276502A1 (en) Fusion polypeptides derived from staphylococcus aureus antigens
CN117979992A (zh) 钩端螺旋体毒力调节蛋白及其用途
KR20160036828A (ko) 탄저병의 예방 또는 치료를 위한 약제학적 조성물