TW202240960A - 用於電極之間隔物、電極堆疊及電池與其系統及方法 - Google Patents

用於電極之間隔物、電極堆疊及電池與其系統及方法 Download PDF

Info

Publication number
TW202240960A
TW202240960A TW110142836A TW110142836A TW202240960A TW 202240960 A TW202240960 A TW 202240960A TW 110142836 A TW110142836 A TW 110142836A TW 110142836 A TW110142836 A TW 110142836A TW 202240960 A TW202240960 A TW 202240960A
Authority
TW
Taiwan
Prior art keywords
electrode
web
layer
active material
spacer
Prior art date
Application number
TW110142836A
Other languages
English (en)
Inventor
傑瑞米 J 戴爾頓
羅伯特 S 布薩卡
艾司霍克 羅西里
姆拉里 拉瑪布拉曼尼安
布魯諾 A 韋德斯
金恆 李
安東尼 卡爾卡特拉
班傑明 L 卡杜查
Original Assignee
美商易諾維營運公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商易諾維營運公司 filed Critical 美商易諾維營運公司
Publication of TW202240960A publication Critical patent/TW202240960A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/477Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一種電池包括電極總成。該電極總成具有單位胞元群,各單位胞元包括處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層。該電極層具有電極活性材料,且該相對電極層具有相對電極活性材料。該電極活性材料及該相對電極材料中之一者為陰極活性材料,且該電極活性材料及該相對電極材料中之另一者為陽極活性材料。該單位胞元群之子集包括位於該電極集電器層與該相對電極集電器層之間的一對間隔物部件。該相對電極活性材料的至少一部分在由x及z軸界定之共同平面中位於該等間隔物部件之間。

Description

用於電極之間隔物、電極堆疊及電池與其系統及方法
本發明之領域大體上係關於能量儲存技術,諸如電池技術。更特定言之,本發明之領域係關於用於能量儲存系統之總成,諸如供包括鋰基電池之二次電池使用之電極的系統及方法。
鋰基二次電池歸因於其相對較高之能量密度、功率及貯藏壽命而變成所要能量源。鋰二次電池之實例包括非水性電池,諸如鋰離子及鋰聚合物電池。
諸如電池、燃料電池及電化電容器之已知能量儲存裝置典型地具有二維層狀架構,諸如平面或螺旋捲繞(亦即,凝膠卷)層壓結構,其中各層壓物之表面面積大約等於其幾何佔用面積(忽略孔隙度及表面粗糙度)。
圖1說明通常以10指示之已知層狀型二次電池之截面圖。電池10包括與正電極20接觸之正電極集電器15。負電極25藉由隔板30與正電極20分隔開。負電極25與負電極集電器35接觸。如圖1中所展示,電池10以堆疊形式形成。堆疊有時由負電極集電器35上方之另一隔板層(圖中未示)覆蓋,且接著滾捲且置放於罩(圖中未示)中以組裝電池10。在充電過程期間,載流子離子(典型地為鋰)離開正電極20且行進穿過隔板30進入負電極25中。視所使用之陽極材料而定,載流子離子嵌入(例如位於負電極材料之基質中,而不形成合金)或與負電極材料形成合金。在放電過程期間,載流子離子離開負電極25且行進返回隔板30且返回至正電極20中。
與層狀二次電池相比,三維二次電池可提供增加的容量及壽命。然而,生產此類三維二次電池在製造及成本上具有挑戰。迄今,所使用之精密製造技術可產生具有改良週期壽命之二次電池,但代價為產率及製造成本。然而,當加速已知製造技術時,可引起電池之缺陷數目增加、容量損失及壽命減少。
因此,將需要生產三維電池,同時解決已知技術中之問題。
一實施例包括一種用於在充電狀態與放電狀態之間循環的二次電池。電池包含殼體及安置於殼體內之電極總成,其中電極總成具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸。電極總成包含單位胞元群,各單位胞元包含在縱向方向上處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層。電極層包含電極活性材料,且相對電極層包含相對電極活性材料。電極活性材料及相對電極材料中之一者為陰極活性材料,且電極活性材料及相對電極材料中之另一者為陽極活性材料。單位胞元群之子集進一步包含在電極集電器層與相對電極集電器層之間位於堆疊連續中的一對間隔物部件。間隔物部件中之一者在橫向方向上與另一間隔物部件間隔開。相對電極層之相對電極活性材料的至少一部分位於間隔物部件之間,使得相對電極活性材料之部分及間隔物部件位於由x及z軸界定之共同平面中。
另一實施例包括一種電極總成,其具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸。電極總成包含單位胞元群,各單位胞元包含在縱向方向上處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層。電極層包含電極活性材料,且相對電極層包含相對電極活性材料。電極活性材料及相對電極材料中之一者為陰極活性材料,且電極活性材料及相對電極材料中之另一者為陽極活性材料。單位胞元群之子集進一步包含在電極集電器層與相對電極集電器層之間位於堆疊連續中的一對間隔物部件。間隔物部件中之一者在橫向方向上與另一間隔物部件間隔開。相對電極層之相對電極活性材料的至少一部分位於間隔物部件之間,使得相對電極活性材料之部分及間隔物部件位於由x及z軸界定之共同平面中。
另一實施例包括一種製造供與二次電池一起使用之單位胞元的方法。方法包含在縱向方向上連續地堆疊電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層。電極層包含電極活性材料,且相對電極層包含相對電極活性材料。電極活性材料及相對電極材料中之一者為陰極活性材料,且電極活性材料及相對電極材料中之另一者為陽極活性材料。方法包括將一對間隔物部件置放於電極集電器層與相對電極集電器層之間的堆疊連續中。間隔物部件中之一者在橫向方向上與另一間隔物部件間隔開。相對電極層之相對電極活性材料的至少一部分位於間隔物部件之間,使得相對電極活性材料之部分及間隔物部件位於由x軸及z軸界定之共同平面中。
另一實施例包括一種製造供與二次電池一起使用之電極總成的方法。方法包含在縱向方向上連續地堆疊電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層。電極層包含電極活性材料,且相對電極層包含相對電極活性材料。電極活性材料及相對電極材料中之一者為陰極活性材料,且電極活性材料及相對電極材料中之另一者為陽極活性材料。方法包括將一對間隔物部件置放於電極集電器層與相對電極集電器層之間的堆疊連續中。間隔物部件中之一者在橫向方向上與另一間隔物部件間隔開。相對電極層之相對電極活性材料的至少一部分位於間隔物部件之間,使得相對電極活性材料之部分及間隔物部件位於由x軸及z軸界定之共同平面中。
另一實施例包括一種用於合併複數個電極材料幅材之方法。方法包含沿著第一幅材合併路徑退繞電極材料之第一幅材,該第一幅材包含由對應弱化撕裂圖案劃定之電極子單元群及第一輸送特徵群。方法進一步包括沿著第一幅材合併路徑下游之第二幅材合併路徑退繞電極材料之第二幅材,該第二幅材包含由對應弱化撕裂圖案劃定之電極子單元群及第二輸送特徵群。過程亦包括鄰近於第一幅材合併路徑及第二幅材合併路徑在幅材合併方向上輸送包含複數個突出部之帶。複數個突出部經組態以與第一幅材之第一輸送特徵及第二幅材之第二輸送特徵嚙合。方法進一步包括將間隔物部件群插入於電極材料之第一幅材與電極材料之第二幅材之間。方法包括在第一幅材合併位置下游之第二幅材合併位置處將電極材料之第二幅材覆蓋於電極材料之第一幅材上,在電極材料之第一幅材與電極材料之第二幅材之間捕獲間隔物部件群。
又一實施例包括一種用於在充電狀態與放電狀態之間循環的電池,該電池包含殼體及安置於殼體內之電極總成,其中電極總成具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸。電極總成包含單位胞元群,各單位胞元具有主體、第一邊緣邊限、在橫向方向上與第一邊緣邊限分隔開之第二邊緣邊限、前部、在縱向方向上與前部分隔開之背部、頂部及在豎直方向上與頂部分隔開之底部,各主體包含在縱向方向上處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層。電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料。第一邊緣邊限及第二邊緣邊限中之每一者包含:(i)電極集電器層、隔板層及相對電極集電器層;及(ii)帶間隔物,帶間隔物中之每一者黏著至(i)電極集電器、(ii)電極層、(iii)隔板及(iv)相對電極集電器中之至少一者,相對電極層具有第一末端及在橫向方向上與第一末端間隔開的第二末端以界定相對電極層之橫向範圍,相對電極層之橫向範圍在第一邊緣邊限及第二邊緣邊限之前終止。
又一實施例包括一種用於在電池中之充電狀態與放電狀態之間循環的電極總成,該電池包含殼體及安置於殼體內之電極總成,其中電極總成具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸。電極總成包含單位胞元群,各單位胞元具有主體、第一邊緣邊限、在橫向方向上與第一邊緣邊限分隔開之第二邊緣邊限、前部、在縱向方向上與前部分隔開之背部、頂部及在豎直方向上與頂部分隔開之底部,各主體包含在縱向方向上處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層。電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料。第一邊緣邊限及第二邊緣邊限中之每一者包含:(i)電極集電器層、隔板層及相對電極集電器層;及(ii)帶間隔物,帶間隔物中之每一者黏著至(i)電極集電器、(ii)電極層、(iii)隔板及(iv)相對電極集電器中之至少一者,相對電極層具有第一末端及在橫向方向上與第一末端間隔開的第二末端以界定相對電極層之橫向範圍,相對電極層之橫向範圍在第一邊緣邊限及第二邊緣邊限之前終止。
又一實施例包括一種用於經組態以在充電狀態與放電狀態之間循環之電池的單位胞元,單位胞元具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸,單位胞元具有主體、第一邊緣邊限、在橫向方向上與第一邊緣邊限分隔開之第二邊緣邊限、前部、在縱向方向上與前部分隔開之背部、頂部及在豎直方向上與頂部之底部,主體包含在縱向方向上處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層、相對電極層及相對電極集電器層。電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料。主體之第一邊緣邊限及第二邊緣邊限中之每一者包含:(i)電極集電器層、隔板層及相對電極集電器層;及(ii)安置於第一邊緣邊限中之第一帶間隔物及安置於第二邊緣邊限中之第二帶間隔物;第一帶間隔物及第二帶間隔物中之每一者黏著至(i)電極集電器、(ii)電極層、(iii)隔板及(iv)相對電極集電器中之至少一者,相對電極層具有第一末端及在橫向方向上與第一末端間隔開的第二末端以界定相對電極層之橫向範圍,相對電極層之橫向範圍在第一邊緣邊限及第二邊緣邊限之前終止。
又一實施例包括一種用於經組態以在充電狀態與放電狀態之間循環之電池的電極總成,電極總成具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸,電極總成具有主體、第一邊緣邊限、在橫向方向上與第一邊緣邊限分隔開之第二邊緣邊限、前部、在縱向方向上與前部分隔開之背部、頂部及在豎直方向上與頂部之底部,主體包含在縱向方向上處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層、相對電極層及相對電極集電器層。電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料。主體之第一邊緣邊限及第二邊緣邊限中之每一者包含:(i)電極集電器層、隔板層及相對電極集電器層;及(ii)安置於第一邊緣邊限中之第一帶間隔物及安置於第二邊緣邊限中之第二帶間隔物;第一帶間隔物及第二帶間隔物中之每一者黏著至(i)電極集電器、(ii)電極層、(iii)隔板及(iv)相對電極集電器中之至少一者,相對電極層具有第一末端及在橫向方向上與第一末端間隔開的第二末端以界定相對電極層之橫向範圍,相對電極層之橫向範圍在第一邊緣邊限及第二邊緣邊限之前終止。
另一實施例包括一種製備用於經組態以在充電狀態與放電狀態之間循環之電池的單位胞元的方法,該方法包含:在縱向方向上在堆疊連續中堆疊電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層,其中電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料;在第一邊緣邊限及第二邊緣邊限內將帶間隔物黏著至電極集電器層、電極層、隔板層、相對電極層或相對電極集電器層中之至少一者,使得第一邊緣邊限及第二邊緣邊限包含(i)電極集電器層、隔板層及相對電極集電器層,及(ii)帶間隔物,其中相對電極層具有第一末端及在橫向方向上與第一末端間隔開的第二末端以界定相對電極層之橫向範圍,且相對電極層設置成使得相對電極層之橫向範圍在第一邊緣邊限及第二邊緣邊限之前終止。
另一實施例包括一種製備用於經組態以在充電狀態與放電狀態之間循環之電池的電極總成的方法,該方法包含:在縱向方向上在堆疊連續中堆疊電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層,其中電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料;在第一邊緣邊限及第二邊緣邊限內將帶間隔物黏著至電極集電器層、電極層、隔板層、相對電極層或相對電極集電器層中之至少一者,使得第一邊緣邊限及第二邊緣邊限包含(i)電極集電器層、隔板層及相對電極集電器層,及(ii)帶間隔物,其中相對電極層具有第一末端及在橫向方向上與第一末端間隔開的第二末端以界定相對電極層之橫向範圍,且相對電極層設置成使得相對電極層之橫向範圍在第一邊緣邊限及第二邊緣邊限之前終止。
相關申請之交叉參考
本申請案主張2020年11月18日申請之美國臨時專利申請案63/115,266及2020年11月18日申請之美國臨時申請案第63/115,578號的優先權。此等臨時申請案均以全文引用之方式併入本文中。
參考2019年8月06日申請之美國專利申請案第16/533,082號,其主張2018年8月06日申請之美國臨時專利申請案第62/715,233號的優先權;且參考2018年11月15日申請之國際專利申請案第PCT/US2018/061245號,其主張2017年11月15日申請之美國臨時申請案第62/586,737號及2018年8月06日申請之62/715,233的優先權,此等申請案中之每一者以全文引用之方式併入本文中。 定義
除非上下文另外清楚地指示,否則如本文中所使用,「一(a、an)」及「該」(亦即,單數形式)係指複數個指示物。舉例而言,在一種情況下,提及「電極」包括單一電極及複數個類似電極兩者。
如本文中所使用之「約」及「大約」係指加或減所陳述之值之10%、5%或1%。舉例而言,在一種情況下,約250 µm將包括225 µm至275 µm。藉助於其他實例,在一種情況下,約1,000 µm將包括900 µm至1,100 µm。除非另外指示,否則本說明書及申請專利範圍中所使用之表示數量(例如量測值及其類似者)等之所有數字應理解為在所有情況中皆經術語「約」修飾。因此,除非有相反指示,否則在以下說明書及所附申請專利範圍中所闡述之數字參數為近似值。各數字參數應至少根據所報導之有效數位之數目且藉由應用一般捨位技術來解釋。
在二次電池的上下文中,如本文中所使用的「陽極」係指二次電池中之負電極。
如本文中所使用之「陽極材料」或「陽極活性」意謂適用作二次電池之負電極的材料。
在二次電池之上下文中,如本文中所使用之「陰極」係指二次電池中之正電極。
如本文中所使用之「陰極材料」或「陰極活性」意謂適用作二次電池之正電極的材料。
「轉化化學活性材料」或「轉化化學材料」係指在二次電池之充電及放電循環期間經歷化學反應的材料。
除非上下文另外清楚地指示,否則如本文中所使用之「相對電極」可指二次電池之與電極相對的負或正電極(陽極或陰極)。
在二次電池在充電與放電狀態之間循環之上下文中,如本文中所使用之「循環」係指使電池充電及/或放電以使循環中之電池自第一狀態(亦即,充電或放電狀態)移動至與第一狀態相對的第二狀態(亦即,若第一狀態為放電,則為充電狀態,或若第一狀態為充電,則為放電狀態),且接著使電池移動回到第一狀態以完成循環。舉例而言,二次電池在充電與放電狀態之間的單一循環可包括,當在充電循環中時,使電池自放電狀態充電至充電狀態,且接著放電回到放電狀態以完成循環。單一循環亦可包括,當在放電循環中時,電池自充電狀態放電至放電狀態,且接著充電回到充電狀態以完成循環。
如本文中所使用之「電化學活性材料」意謂陽極活性或陰極活性材料。
除非上下文另外清楚地指示,否則如本文中所使用之「電極」可指二次電池之負或正電極(陽極或陰極)。
如本文中所使用之「電極集電器層」可指陽極(例如負)集電器層或陰極(例如正)集電器層。
除非上下文另外清楚地指示,否則如本文中所使用之「電極材料」可指陽極材料或陰極材料。
除非上下文另外清楚地指示,否則如本文中所使用之「電極結構」可指適用於電池中之陽極結構(例如負電極結構)或陰極結構(例如正電極結構)。
如本文中所使用之「縱向軸」、「橫向軸」及「豎直軸」係指互相垂直之軸線(亦即,各自彼此正交)。舉例而言,如本文中所使用之「縱向軸」、「橫向軸」及「豎直軸」類似於用於界定三維態樣或定向之卡氏座標系統。因而,本文中所揭示主題之元件描述不限於用於描述元件之三維定向的一或多個特定軸線。換言之,當提及所揭示主題之三維態樣時,軸線可為可互換的。「弱化區」係指已經受諸如劃刻、切割、孔洞或類似者之處理操作之幅材的一部分,使得弱化區域之局部斷裂強度低於非弱化區域之斷裂強度。
本發明之實施例係關於用於生產諸如三維二次電池之電池之電極組件,同時保持或改良電池容量及電池壽命且減少製造製程期間缺陷之出現的設備、系統及方法,其提高電池組件之製造速度。
將參考圖2描述用於生產供電池使用之包括電極及隔板之電極組件的例示性系統。通常以100指示之電極生產(或製造)系統包括多個離散台、系統、組件或設備,其用以實現供電池使用之精密電極之高效生產。首先相對於圖2大體描述生產系統100,且隨後在引入更廣生產系統100之後接著進一步描述各組件之額外細節。
在所說明例示性實施例中,生產系統100包括用於固持及退繞基底材料幅材104之基底退繞輥102。基底材料幅材104可為適合於生產用於二次電池之電極總成的電極材料幅材(亦即,陽極材料幅材或陰極材料幅材)、隔板材料或其類似物。基底材料幅材104為已捲繞成輥形式之薄片材料,其具有大小經設定以供置放於基底退繞輥102上之中心通孔。在一些實施例中,基底材料幅材104為多層材料,其包括例如其至少一個主表面上的電極集電器層(亦即,陽極集電器層或陰極集電器層)及電化學活性材料層(亦即,陽極活性材料層或陰極活性材料層),且在其他實施例中,基底材料幅材可為單層(例如隔板材料幅材)。基底退繞輥102可由金屬、金屬合金、複合物、塑膠或允許生產系統100如本文中所描述一般起作用的任何其他材料形成。在一個實施例中,退繞輥102由不鏽鋼製成且直徑為3吋(76.2 mm)。
如圖2之實施例中所見,基底材料幅材104橫跨邊緣導引件106,以促進基底材料幅材104之退繞。在一個實施例中,邊緣導引件106使用透射型光學感測器以偵測基底材料幅材104之一個邊緣相對於固定參考點的位置。將回饋自邊緣導引件106發送至通常為退繞輥102之「幅材轉向」輥,該退繞輥102將在垂直於基底材料幅材104之行進方向的方向上移動。在此實施例中,基底材料幅材104接著圍繞惰輪108a傳遞且進入拼接台110。惰輪108a (亦可稱為空轉輥)有助於維持基底材料幅材104之恰當定位及張力,以及改變基底材料幅材104之方向。在圖2中所展示之實施例中,惰輪108a在豎直方向上收納基底材料幅材104,且部分圍繞惰輪108a纏繞以使得基底材料幅材104在與輸入方向成基本上九十度之輸出方向上離開惰輪108a。然而,應瞭解,在不脫離本發明之範疇的情況下,輸入及輸出方向可變化。在一些實施例中,生產系統100可使用多個惰輪108a至108x,以在基底材料幅材輸送穿過生產系統100時改變基底材料幅材的方向一或多次。惰輪108a至108x可由金屬、金屬合金、複合物、塑膠或允許生產系統100如本文中所描述一般起作用的任何其他材料形成。在一個實施例中,惰輪108a至108x由不鏽鋼製成且尺寸為1吋(25.4 mm)直徑× 18吋(457.2 mm)長度。
拼接台110經組態以促進將兩個單獨幅材拼接在一起。在一個適合實施例中,當第一基底材料幅材104退繞時,使得基底材料幅材104之後邊緣(圖中未示)停在拼接台110內,第二基底材料幅材104之前邊緣(圖中未示)退繞至拼接台110中,使得第一幅材之後邊緣及第二幅材之前邊緣彼此鄰近。使用者可接著塗覆黏著劑(諸如黏著帶)以將第二幅材之前邊緣接合至第一幅材之後邊緣,以在兩個幅材之間形成接縫且產生連續的基底材料幅材。可針對眾多基底材料幅材104重複此類過程,如由使用者所指定。因此,拼接台110允許將多個基底材料幅材拼接在一起以形成一個連續幅材之可能性。應瞭解,在其他實施例中,使用者可視需要將相同或不同材料之幅材拼接在一起。
在一個適合實施例中,在離開拼接台110之後,基底材料幅材104接著在下幅材方向WD上輸送,使得其可進入軋輥112。軋輥112經組態以促進控制基底材料幅材104輸送穿過生產系統100之速度。在一個實施例中,軋輥112包括其間具有界定輥隙之空間的至少兩個相鄰輥。輥隙之大小經設定以使得基底材料幅材104與兩個相鄰輥114中之每一者相抵,其中壓力足以允許輥摩擦以移動基底材料幅材104,但壓力足夠低以避免對基底材料幅材104造成任何顯著變形或損害。在一些適合實施例中,由相鄰輥114 (例如軋輥)施加之與基底材料幅材104相抵之壓力設定在0至210磅的力之間,該力貫穿基底材料幅材104在橫向幅材方向XWD上之橫向幅材跨度S w(亦即,幅材在橫向幅材方向XWD上的邊緣至邊緣距離) (圖6、8A),諸如0磅、5磅、10磅、15磅、20磅、25磅、30磅、35磅、40磅、45磅、50磅、55磅、60磅、65磅、70磅、75磅、80磅、85磅、90磅、95磅、100磅、110磅、120磅、130磅、140磅、150磅、160磅、170磅、180磅、190磅、200磅或210磅之力。
在一個適合實施例中,相鄰輥114中之至少一者為柔性輥,其可為由電動馬達驅動之高摩擦輥,且相鄰輥中之另一者為低摩擦被動輥。柔性輥可具有由橡膠或聚合物製成之至少一個外部表面,其能夠在基底材料幅材104上提供足夠夾持以在基底材料幅材104上提供推力或拉力,從而使其輸送穿過生產系統100。在一個實施例中,相鄰輥114中之至少一者為直徑為約3.863吋(98.12 mm)之鋼輥。在另一實施例中,相鄰輥114中之至少一者為直徑為約2.54吋(64.51 mm)之橡膠輥。在又一實施例中,相鄰輥114中之一或多者包括置放在其上之橡膠圈,該橡膠圈可經調整以用於在沿著輥之寬度的任何位置處置放,每一圈具有約3.90吋(99.06 mm)之外徑。在一個實施例中,一或多個橡膠圈置放在輥上以在其連續外邊緣處接觸基底材料幅材104,從而在下幅材方向WD上驅動基底材料幅材104。因此,藉由經由使用者介面116控制高摩擦輥之旋轉速率來控制基底材料幅材104之速度。在實施例中,幅材在幅材方向上之速度經控制為0.001 m/s至10 m/s。在實施例中,幅材在幅材方向WD上之最大速度由幅材及系統組件之慣性指定,使得幅材如本文進一步描述維持恰當對準、平坦度及拉緊。在其他實施例中,相鄰輥114中之每一者可由高摩擦或低摩擦材料製成,其允許生產系統100如本文中所描述一般起作用。應瞭解,相鄰輥114中之任一者或兩者可連接至馬達(圖中未示),以用於控制基底材料幅材104穿過輥隙之速度。生產系統100可包括一或多個額外軋輥122、132以便於控制基底材料幅材104輸送穿過生產系統100之速度,該速度可經由使用者介面116控制。在使用多個軋輥時,軋輥中之每一者可經由使用者介面116設定成相同速度,使得基底材料幅材104平穩地輸送穿過生產系統100。在實施例中,基底材料幅材104在幅材方向WD上之速度經控制為0.001 m/s至10 m/s。
生產系統100亦可包括浮輥118。如圖2中所見,所說明浮輥118包括彼此間隔開但圍繞浮輥118之一對輥之間的中心軸連接的一對輥。浮輥118之一對輥可圍繞中心軸旋轉,藉此被動地調整基底材料幅材104上的張力。舉例而言,若基底材料幅材104上的張力超過預定臨限值,則浮輥118之一對輥圍繞中心軸旋轉以減小幅材上之張力。因此,浮輥118可單獨使用浮輥之質量(例如一對輥中之一或多者的質量)、彈簧、扭桿或其他可為使用者可調整的或可經由使用者介面116控制的偏置/張力裝置,以確保在基底材料幅材上始終維持恰當張力。在一個實施例中,例如藉由使用由鋁製成之中空輥,浮輥118之質量及浮輥之慣性經減小或最小化以允許幅材張力處於或低於500公克力。在其他實施例中,浮輥118之輥由其他輕量材料製成,該等輕量材料諸如碳纖維、鋁合金、鎂、其他輕量金屬及金屬合金、玻璃纖維或允許質量足夠低以提供處於或低於500公克力之幅材張力的任何其他適合材料。在又一實施例中,浮輥118之輥經配衡以允許基底材料幅材104中之張力為或低於250公克力。
生產系統100包括一或多個雷射系統120a、120b、120c。圖2中所展示之實施例包括三個雷射系統120a至120c,但應瞭解,可使用任何數目的雷射系統以允許生產系統100如本文中所描述一般起作用。參考圖3對雷射系統120a至120c進行進一步描述。在一個適合實施例中,雷射系統120a至120c中之至少一者包括雷射裝置300,其經組態以朝著切割充氣室304 (圖3)發射雷射光束302。在所說明之實施例中,切割充氣室304包括夾盤306及真空308。夾盤306之細節最佳地展示於圖4及13中,其進一步描述於下文中。在一個適合實施例中且如圖3中所說明,一或多個檢測裝置310、312鄰近於雷射系統120,該一或多個檢測裝置310、312可為諸如相機之視覺檢測裝置或允許生產系統100如本文中進一步描述一般起作用的任何其他適合檢測系統。
圖2中所說明的例示性生產系統100包括一或多個清潔台,諸如刷塗台124及氣刀126。各清潔台經組態以自基底材料幅材104移除碎屑(圖中未示)或以其他方式促進碎屑之移除,如本文中進一步描述。
圖2之生產系統100包括用以識別缺陷之檢測系統128及用以標記基底材料幅材104以識別所識別缺陷之位置的相關聯缺陷標記裝置130,如本文中進一步描述。
在一個適合實施例中,基底材料幅材104經由重繞輥134與間葉材料幅材138一起再捲繞,該間葉材料幅材經由間葉輥136退繞以產生具有由間葉材料138分隔開之電極層的一卷電極140。在一些實施例中,基底材料幅材104可經由重繞輥134再捲繞,而無間葉材料幅材138。
應注意,一系列軋輥112、122、132、惰輪108a至108x及浮輥118a至118x可共同稱為用於將基底材料幅材104輸送穿過生產系統100之輸送系統。如本文中所使用,輸送系統或基底材料幅材104之輸送係指基底材料幅材104在幅材方向WD上穿過生產系統的預期移動。
參考圖5,基底材料幅材104可為適合於生產如本文所描述之供電池使用之電極組件的任何材料。舉例而言,基底材料幅材104可為電絕緣隔板層500、陽極材料502或陰極材料504。在一個適合實施例中,基底材料幅材104為適用作二次電池中之隔板的電絕緣及離子可滲透聚合編織材料。
在另一適合實施例中且仍參考圖5,基底材料幅材104為陽極材料幅材502,其可包括陽極集電器層506及陽極活性材料層508。陽極集電器層506可包含導電金屬,諸如銅、銅合金或適用作陽極集電器層之任何其他材料。陽極活性材料層508可形成為陽極集電器層506之第一表面上的第一層及陽極集電器層506之第二相對表面上的第二層。在另一實施例中,陽極集電器層506與陽極活性材料層508可互混。第一表面及第二相對表面可稱為基底材料幅材104之主表面或前表面及後表面。如本文中所使用,主表面係指由以下各者形成之平面所界定之表面:基底材料幅材在下幅材方向WD上之長度,及基底材料幅材104在橫向幅材方向XWD上之跨度。
一般而言,在基底材料幅材104為陽極材料幅材時,其陽極活性材料層將(各自)具有至少約10 μm之厚度。舉例而言,在一個實施例中,陽極活性材料層將(各自)具有至少約40 μm之厚度。藉助於其他實例,在一個此類實施例中,陽極活性材料層將(各自)具有至少約80 μm之厚度。藉助於其他實例,在一個此類實施例中,陽極活性材料層將(各自)具有至少約120 μm之厚度。然而,典型地,陽極活性材料層將(各自)具有小於約60 μm或甚至小於約30 μm之厚度。
一般而言,負電極活性材料可選自由以下各項組成的群:(a)矽(Si)、鍺(Ge)、錫(Sn)、鉛(Pb)、銻(Sb)、鉍(Bi)、鋅(Zn)、鋁(Al)、鈦(Ti)、鎳(Ni)、鈷(Co)及鎘(Cd);(b) Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Ni、Co或Cd與其他元素之合金或金屬間化合物;(c) Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Fe、Ni、Co、V或Cd之氧化物、碳化物、氮化物、硫化物、磷化物、硒化物及碲化物,及其混合物、複合材料或含鋰複合材料;(d) Sn之鹽及氫氧化物;(e)鈦酸鋰、錳酸鋰、鋁酸鋰、含鋰氧化鈦、鋰過渡金屬氧化物、ZnCo2O4;(f)石墨及碳之粒子;(g)鋰金屬;及(h)其組合。
例示性陽極活性材料包括碳材料,諸如石墨及軟性或硬性碳,或石墨烯(例如單壁或多壁碳奈米管),或能夠嵌入鋰或與鋰形成合金之一系列金屬、半金屬、合金、氧化物、氮化物及化合物中之任一者。能夠構成陽極材料之金屬或半金屬之特定實例包括石墨、錫、鉛、鎂、鋁、硼、鎵、矽、Si/C複合材料、Si/石墨摻合物、氧化矽(SiOx)、多孔Si、金屬間Si合金、銦、鋯、鍺、鉍、鎘、銻、銀、鋅、砷、鉿、釔、鋰、鈉、石墨、碳、鈦酸鋰、鈀及其混合物。在一個例示性實施例中,陽極活性材料包含鋁、錫或矽,或其氧化物、其氮化物、其氟化物或其其他合金。在另一例示性實施例中,陽極活性材料包含矽或其合金或氧化物。
在一個實施例中,使陽極活性材料微結構化以提供顯著的空隙體積分數,從而隨著充電及放電過程期間鋰離子(或其他載流子離子)併入至負電極活性材料中或離開負電極活性材料,適應體積膨脹及收縮。一般而言,陽極活性材料層(中之每一者)之空隙體積分數為至少0.1。然而,典型地,陽極活性材料層(中之每一者)之空隙體積分數不大於0.8。舉例而言,在一個實施例中,陽極活性材料層(中之每一者)之空隙體積分數為約0.15至約0.75。藉助於其他實例,在一個實施例中,陽極活性材料層(中之每一者)之空隙體積分數為約0.2至約0.7。藉助於其他實例,在一個實施例中,陽極活性材料層(中之每一者)之空隙體積分數為約0.25至約0.6。
視微結構化陽極活性材料之組成及其形成方法而定,微結構化陽極活性材料可包含大孔、微孔或中孔材料層或其組合,諸如微孔與中孔之組合或中孔與大孔之組合。微孔材料之特徵典型地在於小於10 nm之孔尺寸、小於10 nm之壁尺寸、1至50微米之孔深度及一般藉由「多孔」及不規則外觀、不光滑壁及分支鏈孔表徵之孔形態。中孔材料之特徵典型地在於10至50 nm之孔尺寸、10至50 nm之壁尺寸、1至100微米之孔深度及一般藉由作為在某種程度上輪廓分明或樹枝狀的孔之分支鏈孔表徵之孔形態。大孔材料之特徵典型地在於大於50 nm之孔尺寸、大於50 nm之壁尺寸、1至500微米之孔深度及可為不同直鏈、分支鏈或樹枝狀且有光滑或粗糙壁之孔形態。另外,空隙體積可包含敞開或閉合的空隙或其組合。在一個實施例中,空隙體積包含敞開空隙,亦即,負電極活性材料含有在負電極活性材料之側表面處具有開口之空隙,鋰離子(或其他載流子離子)可經由該等開口進入或離開陽極活性材料;例如,鋰離子可在離開陰極活性材料之後經由空隙開口進入陽極活性材料。在另一實施例中,空隙體積包含閉合的空隙,亦即,陽極活性材料含有由陽極活性材料圍封之空隙。一般而言,敞開的空隙可為載流子離子提供更大界面表面面積,而閉合的空隙往往不易受固體電解質界面影響,同時各自為載流子離子進入後陽極活性材料之膨脹提供空間。在某些實施例中,因此,較佳地,陽極活性材料包含敞開及閉合的空隙之組合。
在一個實施例中,陽極活性材料包含多孔鋁、錫或矽或其合金、氧化物或氮化物。多孔矽層可例如藉由陽極化,藉由蝕刻(例如藉由將諸如金、鉑、銀或金/鈀之貴重金屬沈積於單晶矽之表面上且用氫氟酸與過氧化氫之混合物蝕刻表面)或藉由諸如圖案化化學蝕刻之此項技術中已知之其他方法形成。另外,多孔陽極活性材料將通常具有至少約0.1但小於0.8之孔隙度分數,且具有約1至約100微米的厚度。舉例而言,在一個實施例中,陽極活性材料包含多孔矽,具有約5至約100微米之厚度,且具有約0.15至約0.75之孔隙度分數。藉助於其他實例,在一個實施例中,陽極活性材料包含多孔矽,具有約10至約80微米之厚度,且具有約0.15至約0.7之孔隙度分數。藉助於其他實例,在一個此類實施例中,陽極活性材料包含多孔矽,具有約20至約50微米之厚度,且具有約0.25至約0.6之孔隙度分數。藉助於其他實例,在一個實施例中,陽極活性材料包含多孔矽合金(諸如矽化鎳),具有約5至約100微米之厚度,且具有約0.15至約0.75之孔隙度分數。
在另一實施例中,陽極活性材料層包含鋁、錫或矽或其合金之纖維。個別纖維可具有約5 nm至約10,000 nm之直徑(厚度尺寸)及一般對應於陽極活性材料之厚度的長度。矽之纖維(奈米線)可例如藉由化學氣相沈積或此項技術中已知之其他技術(諸如氣相液體固體(VLS)生長及固體液體固體(SLS)生長)形成。另外,陽極活性材料將通常具有至少約0.1但小於0.8之孔隙度分數,且具有約1至約200微米的厚度。舉例而言,在一個實施例中,陽極活性材料包含矽奈米線,具有約5至約100微米之厚度,且具有約0.15至約0.75之孔隙度分數。藉助於其他實例,在一個實施例中,陽極活性材料包含矽奈米線,具有約10至約80微米之厚度,且具有約0.15至約0.7之孔隙度分數。藉助於其他實例,在一個此類實施例中,陽極活性材料包含矽奈米線,具有約20至約50微米之厚度,且具有約0.25至約0.6之孔隙度分數。藉助於其他實例,在一個實施例中,陽極活性材料包含矽合金(諸如矽化鎳)之奈米線,具有約5至約100微米之厚度,且具有約0.15至約0.75之孔隙度分數。
在又其他實施例中,負電極(亦即,電極或相對電極)塗佈有選自由以下各項組成之群的顆狀鋰材料:穩定鋰金屬粒子,例如碳酸鋰穩定鋰金屬粉末、矽酸鋰穩定鋰金屬粉末,或穩定鋰金屬粉末或墨水之其他源。可藉由以約0.05至5 mg/cm 2,例如約0.1至4 mg/cm 2或甚至約0.5至3 mg/cm 2之裝載量將鋰粒狀材料噴塗、裝載或以其他方式安置至負電極活性材料層上來將粒狀鋰材料施加於負電極活性材料層上。鋰粒狀材料之平均粒度(D 50)可為5至200 µm,例如約10至100 µm、20至80 µm,或甚至約30至50 µm。平均粒度(D 50)可定義為對應於基於累積體積之粒度分佈曲線中之50%的粒度。可例如使用雷射繞射法量測平均粒度(D 50)。
一般而言,陽極集電器將具有至少約10 3西門子/cm之電導率。舉例而言,在一個此類實施例中,陽極集電器將具有至少約10 4西門子/cm之導電率。藉助於其他實例,在一個此類實施例中,陽極集電器將具有至少約10 5西門子/cm之導電率。適用作陽極集電器之例示性導電材料包括金屬,諸如銅、鎳、鈷、鈦及鎢,及其合金。
再次參考圖5,在另一適合實施例中,基底材料幅材104為陰極材料幅材504,其可包括陰極集電器層510及陰極活性材料層512。陰極材料之陰極集電器層510可包含鋁、鋁合金、鈦或適用作陰極集電器層之任何其他材料。陰極活性材料層512可形成為陰極集電器層510之第一表面上的第一層及陰極集電器層510之第二相對表面上的第二層。陰極活性材料層512可塗佈至陰極集電器層510之一側或兩側上。類似地,陰極活性材料層512可塗佈至陰極集電器層510之一個或兩個主表面上。在另一實施例中,陰極集電器層510可與陰極活性材料層512互混。
一般而言,在基底材料幅材104為陰極材料幅材時,其陰極活性材料層將(各自)具有至少約20 μm之厚度。舉例而言,在一個實施例中,陰極活性材料層將(各自)具有至少約40 μm之厚度。藉助於其他實例,在一個此類實施例中,陰極活性材料層將(各自)具有至少約60  μm之厚度。藉助於其他實例,在一個此類實施例中,陰極活性材料層將(各自)具有至少約100 μm之厚度。然而,典型地,陰極活性材料層將(各自)具有小於約90 μm或甚至小於約70 μm之厚度。
在一個實施例中,正電極可包含或可為嵌入型化學活性材料、轉化化學活性材料或其組合。
適用於本發明之例示性轉化化學材料包括但不限於S (或呈鋰化狀態之Li 2S)、LiF、Fe、Cu、Ni、FeF 2、FeO dF 3.2d、FeF 3、CoF 3、CoF 2、CuF 2、NiF 2,其中0 ≤ d ≤ 0.5,及其類似物。
例示性陰極活性材料亦包括廣泛範圍之嵌入型陰極活性材料中之任一者。舉例而言,對於鋰離子電池,陰極活性材料可包含選自過渡金屬氧化物、過渡金屬硫化物、過渡金屬氮化物、鋰過渡金屬氧化物、鋰過渡金屬硫化物之陰極活性材料,且可選擇性地使用鋰過渡金屬氮化物。此等過渡金屬氧化物、過渡金屬硫化物及過渡金屬氮化物之過渡金屬元素可包括具有d-殼或f-殼之金屬元素。此類金屬元素之特定實例為Sc、Y、鑭系元素、錒系元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pb、Pt、Cu、Ag及Au。額外陰極活性材料包括LiCoO 2、LiNi 0.5Mn 1.5O 4、Li(Ni xCo yAl z)O 2、LiFePO 4、Li 2MnO 4、V 2O 5、氧硫化鉬、磷酸鹽、矽酸鹽、釩酸鹽、硫、含硫化合物、氧(空氣)、Li(Ni xMn yCo z)O 2及其組合。
一般而言,陰極集電器將具有至少約10 3西門子/cm之電導率。舉例而言,在一個此類實施例中,陰極集電器將具有至少約10 4西門子/cm之導電率。藉助於其他實例,在一個此類實施例中,陰極集電器將具有至少約10 5西門子/cm之導電率。例示性陰極集電器包括金屬,諸如鋁、鎳、鈷、鈦及鎢,及其合金。
再次參考圖5,在另一適合實施例中,基底材料幅材104為電絕緣但離子可滲透隔板材料幅材。電絕緣隔板層500適於使陽極群之各部件與二次電池之陰極群之各部件電隔離。電絕緣隔板層500將通常包括可由非水性電解質滲透之微孔隔板材料;舉例而言,在一個實施例中,微孔隔板材料包括孔,該等孔具有至少50 Å,更典型地在約2,500 Å範圍內之直徑,及在約25%至約75%範圍內,更典型地在約35%至55%範圍內之孔隙度。
一般而言,在基底材料幅材104為電絕緣隔板材料幅材時,電絕緣隔板材料將具有至少約4 μm之厚度。舉例而言,在一個實施例中,電絕緣隔板材料將具有至少約8 μm之厚度。藉助於其他實例,在一個此類實施例中,電絕緣隔板材料將具有至少約12 μm之厚度。藉助於其他實例,在一個此類實施例中,電絕緣隔板材料將具有至少約15 μm之厚度。然而,典型地,電絕緣隔板材料將具有小於約12 μm或甚至小於約10 μm之厚度。
一般而言,隔板可選自具有用以在單位胞元之正與負活性材料之間傳導載流子離子之容量的廣泛範圍之隔板。舉例而言,隔板可包含可由液體非水性電解質滲透的微孔隔板材料。替代地,隔板可包含能夠在單位胞元之正與負電極之間傳導載流子離子的凝膠或固體電解質。
在一個實施例中,隔板可包含基於聚合物之電解質。例示性聚合物電解質包括PEO基聚合物電解質、聚合物陶瓷複合物電解質、聚合物陶瓷複合物電解質及聚合物陶瓷複合物電解質。
在另一實施例中,隔板可包含基於氧化物之電解質。例示性基於氧化物之電解質包括鈦酸鋰鑭(Li 0.34La 0.56TiO 3)、Al摻雜的鋯酸鋰鑭(Li 6.24La 3Zr 2Al 0.24O 11.98)、Ta摻雜的鋯酸鋰鑭(Li 6.4La 3Zr 1.4Ta 0.6O 12)及磷酸鋰鋁鈦(Li 1.4Al 0.4Ti 1.6(PO 4) 3)。
在另一實施例中,隔板可包含固體電解質。例示性固體電解質包括基於硫化物之電解質,諸如鋰錫磷硫化物(Li 10SnP 2S 12)、鋰磷硫化物(β-Li 3PS 4)及鋰磷硫氯化物碘化物(Li 6PS 5Cl 0.9I 0.1)。
在一個實施例中,隔板包含微孔隔板材料,該微孔隔板材料包含粒狀材料及黏結劑且具有至少約20體積%之孔隙度(空隙分數)。微孔隔板材料之孔將具有至少50 Å之直徑且將典型地處於約250至2,500 Å範圍內。微孔隔板材料將通常具有小於約75%之孔隙度。在一個實施例中,微孔隔板材料具有至少約25體積%之孔隙度(空隙分數)。在一個實施例中,微孔隔板材料將具有約35%至55%之孔隙度。
微孔隔板材料之黏結劑可選自廣泛範圍的無機或聚合材料。舉例而言,在一個實施例中,黏結劑為選自由以下各項組成之群的有機材料:矽酸鹽、磷酸鹽、鋁酸鹽、鋁矽酸鹽及氫氧化物,諸如氫氧化鎂、氫氧化鈣等。舉例而言,在一個實施例中,黏結劑為衍生自含有偏二氟乙烯、六氟丙烯、四氟丙烯及其類似物之單體之氟聚合物。在另一實施例中,黏結劑為具有不同分子量及密度範圍中之任一者之聚烯烴,諸如聚乙烯、聚丙烯或聚丁烯。在另一實施例中,黏結劑選自由以下各項組成之群:乙烯-二烯-丙烯三元共聚物、聚苯乙烯、聚甲基丙烯酸甲酯、聚乙二醇、聚乙酸乙烯酯、聚乙烯醇縮丁醛、聚縮醛及聚乙二醇二丙烯酸酯。在另一實施例中,黏結劑選自由以下各項組成之群:甲基纖維素、羧甲基纖維素、苯乙烯橡膠、丁二烯橡膠、苯乙烯-丁二烯橡膠、異戊二烯橡膠、聚丙烯醯胺、聚乙烯醚、聚丙烯酸、聚甲基丙烯酸及聚氧化乙烯。在另一實施例中,黏結劑選自由以下各項組成之群:丙烯酸酯、苯乙烯、環氧樹脂及聚矽氧。在另一實施例中,黏結劑為前述聚合物中之兩者或更多者之共聚物或摻合物。
微孔隔板材料所包含之粒狀材料亦可選自廣泛範圍的材料。一般而言,此類材料在操作溫度下具有相對較低電子及離子導電率,且並不在接觸微孔隔板材料之電池電極或集電器之操作電壓下腐蝕。舉例而言,在一個實施例中,粒狀材料具有小於1×10 -4S/cm之載流子離子(例如鋰)之導電率。藉助於其他實例,在一個實施例中,粒狀材料具有小於1×10 -5S/cm之載流子離子之導電率。藉助於其他實例,在一個實施例中,粒狀材料具有小於1×10 - 6S/cm之載流子離子之導電率。例示性粒狀材料包括粒狀聚乙烯、聚丙烯、TiO 2-聚合物複合材料、二氧化矽氣凝膠、煙霧狀二氧化矽、矽膠、二氧化矽水凝膠、二氧化矽乾凝膠、二氧化矽溶膠、膠態二氧化矽、氧化鋁、二氧化鈦、氧化鎂、高嶺土、滑石、矽藻土、矽酸鈣、矽酸鋁、碳酸鈣、碳酸鎂,或其組合。舉例而言,在一個實施例中,粒狀材料包含粒狀氧化物或氮化物,諸如TiO 2、SiO 2、Al 2O 3、GeO 2、B 2O 3、Bi 2O 3、BaO、ZnO、ZrO 2、BN、Si 3N 4、Ge 3N 4。參見例如P. Arora及J. Zhang,「Battery Separators」,Chemical Reviews 2004,104, 4419-4462。在一個實施例中,粒狀材料將具有約20 nm至2微米,更典型地200 nm至1.5微米之平均粒度。在一個實施例中,粒狀材料將具有約500 nm至1微米之平均粒度。
在一替代實施例中,微孔隔板材料所包含之粒狀材料可能受諸如燒結、黏結、固化等技術束縛,同時維持電解質進入所要之空隙分數以提供電池功能之離子導電率。
在組裝的能量儲存裝置中,微孔隔板材料由適用作二次電池電解質之非水性電解質滲透。典型地,非水性電解質包含鋰鹽及/或溶解於有機溶劑及/或溶劑混合物中之鹽的混合物。例示性鋰鹽包括無機鋰鹽,諸如LiClO 4、LiBF 4、LiPF 6、LiAsF 6、LiCl及LiBr;及有機鋰鹽,諸如LiB(C 6H 5) 4、LiN(SO 2CF 3) 2、LiN(SO 2CF 3) 3、LiNSO 2CF 3、LiNSO 2CF 5、LiNSO 2C 4F 9、LiNSO 2C 5F 11、LiNSO 2C 6F 13及LiNSO 2C 7F 15。使鋰鹽溶解之例示性有機溶劑包括環酯、鏈酯、環醚及鏈醚。環酯之特定實例包括碳酸伸丙酯、碳酸伸丁酯、γ-丁內酯、碳酸伸乙烯酯、2-甲基-γ-丁內酯、乙醯基-γ-丁內酯及γ-戊內酯。鏈酯之特定實例包括碳酸二甲酯、碳酸二乙酯、碳酸二丁酯、碳酸二丙酯、碳酸甲基乙酯、碳酸甲基丁酯、碳酸甲基丙酯、碳酸乙基丁酯、碳酸乙基丙酯、碳酸丁基丙酯、丙酸烷基酯、丙二酸二烷基酯,及乙酸烷基酯。環醚之特定實例包括四氫呋喃、烷基四氫呋喃、二烷基四氫呋喃、烷氧基四氫呋喃、二烷氧基四氫呋喃、1,3-二氧雜環戊烷、烷基-1,3-二氧雜環戊烷,及1,4-二氧雜環戊烷。鏈醚之特定實例包括1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、二乙醚、乙二醇二烷基醚、二乙二醇二烷基醚、三乙二醇二烷基醚,及四乙二醇二烷基醚。
在一個實施例中,微孔隔板可由包括鋰鹽與高純度有機溶劑之混合物的非水性有機電解質滲透。此外,電解質可為使用聚合物電解質或固體電解質之聚合物。
在一個實施例中,基底材料幅材104可具有黏著帶層(圖中未示),其分別黏著至陽極活性材料層508或陰極活性材料層512之一個或兩個表面。接著可稍後在剝蝕及切割(下文所描述)之後移除黏著層,以移除非所需材料或碎屑。
參考圖2至6進一步描述雷射系統120a至120c之實施例。基底材料幅材104在幅材方向WD上進入雷射系統120。在一個實施例中,基底材料幅材104在尚未經剝蝕或切割之第一條件400下進入雷射系統120a。因此,第一條件400下的基底材料幅材104應基本上不具有缺陷或自初始狀態更改。基底材料幅材104經過夾盤306,該夾盤包括複數個真空孔406。真空孔406與真空308流體連接,以在基底材料幅材104經過真空孔406時對其施加真空壓力。真空孔406可交錯及/或倒角以允許基底材料幅材104更易於在無擦損之情況下經過彼處。孔之截面面積必須足夠小以防止基底材料幅材104在其中被抽出,但足夠大以允許恰當氣流自真空穿過。真空壓力有助於使基底材料幅材104在其輸送穿過夾盤306時維持處於基本上平坦/平面狀態。在一些適合實施例中,雷射系統120對焦點敏感,且在此類實施例中,關鍵為使基底材料幅材104保持在距雷射輸出313一基本上恆定距離處,以確保當在切割或剝蝕過程期間接觸基底材料幅材104時,雷射光束302處於焦點中。因此,穿過真空孔406之真空壓力可例如經由使用者介面116即時地監測及調整,以確保基底材料幅材104在夾盤306上保持基本上平坦且在處理時不翹起或屈曲。真空孔之截面形狀可為圓形、方形、矩形、橢圓形或允許夾盤306如本文中所描述一般起作用之任何其他形狀。
如圖4中所見,夾盤306包括由上游邊緣412及下游邊緣414界定之開口410。所說明夾盤306包括下游邊緣414上之斜面416。在此實施例中,斜面416促進基底材料幅材104經過下游邊緣414而不使下游邊緣414鉤住或擋住基底材料幅材104。斜面416之角度α可介於1度與90度之間,諸如5度、10度、15度、20度、25度、30度、35度、40度、45度、50度、55度、60度、65度、70度、75度、80度、85度,或允許斜面416如本文中所描述一般起作用的任何其他角度。舉例而言,在所說明實施例中,角度α為大約25度。已發現,若斜面416之角度α大於經過斜面416之基底材料幅材104的偏轉,則效能得以改良。斜面416的上邊緣418可成圓角,以提供自斜面416至夾盤306的表面的平滑移轉。
在一個適合實施例中,夾盤306由鋁形成。然而,夾盤306可由鋁合金、複合材料、金屬或金屬合金或允許夾盤306如本文中所描述一般起作用之任何其他適合材料形成。
在一個適合實施例中,基底材料幅材104首先藉由雷射光束302 (圖3)剝蝕以在基底材料幅材104中產生剝蝕部404 (圖4)。在一個實施例中,基底材料幅材104為陽極材料502,且剝蝕部404移除陽極活性材料層508以暴露陽極集電器層506 (圖5)。在另一實施例中,基底材料幅材104為陰極材料504,且剝蝕部404移除陰極活性材料層512以暴露陰極集電器層510。在一個實施例中,剝蝕部404經組態為電極凸片520 (適於將陰極集電器及陽極集電器分別電連接至二次電池之正及負端子)。在使用雷射系統120a以在基底材料幅材104中形成剝蝕部404時,雷射光束302之功率經設定為能夠基本上完全或完全移除塗佈層但將不損害或切穿集電器層的位準。在使用中,例如經由使用者介面116控制雷射光束302,以在基底材料幅材104處於運動中且在下幅材方向WD上輸送時產生剝蝕部404。在基底材料幅材104之每一側上產生剝蝕部404,如圖5中最佳地展示。在一個實施例中,在製成剝蝕部404之後,雷射系統120a形成基準特徵602,如本文中進一步描述。在另一實施例中,可使用多個雷射以各自剝蝕基底材料幅材104之一部分以各自產生一或多個剝蝕部404,以增加生產系統100之輸送量。
進一步參考圖2、3及4,在生產過程之另一階段中,基底材料幅材104在下幅材方向WD上朝著雷射系統120a之切割區域408輸送。切割區域408包括夾盤306之開口410。在一個實施例中,開口410與真空308流體連通,以在基底材料幅材104經過開口410時對其施加真空壓力。在一個適合實施例中,開口410在橫向幅材方向XWD上比基底材料幅材104更寬,使得基底材料幅材104在橫向幅材方向XWD上之整個寬度懸浮於開口410上方。在一個實施例中,可存在第二真空,其經組態以均衡基底材料幅材104相對於夾盤306的壓力。在此實施例中,壓力之均衡便於在基底材料幅材104經過開口410時使其維持在基本上平坦/平面狀態中且處於一致高度,此便於使雷射光束302聚焦於基底材料幅材104上。在一個實施例中,載體幅材可用於支撐基底材料幅材104。在一些實施例中,載體幅材使用低黏性黏著劑或靜電紡紗以可移除方式附接至基底材料幅材。在此類實施例中,附接具有足夠黏著性以在處理期間保持附接至基底材料幅材,但可移除而不會對基底材料幅材造成損壞。在一個實施例中,載體幅材為在基底材料幅材104之處理期間不吸收正使用之雷射波長的材料,使得載體幅材將不被切穿、汽化或剝蝕,且因此可再用於其他基底材料幅材。
雷射系統120a經組態以切割一或多個圖案(諸如個別電極圖案800 (圖8),其亦可稱為電極撕裂圖案),該等圖案各自為基底材料幅材104中的電極結構之群之部件,同時基底材料幅材處於開口410上方。參考圖6,圖案可包括界定電極在橫向幅材方向XWD上之縱向邊緣的一或多個縱向邊緣切口600。當基底材料幅材在下幅材方向WD上輸送時,使用在橫向幅材方向XWD上切割基底材料幅材104的雷射光束302切割縱向邊緣切口600。橫向幅材方向XWD正交於下幅材方向WD。應注意,在一個實施例中,為了產生基本上垂直於下幅材方向WD之縱向邊緣切口600,雷射光束302必須經控制以相對於下幅材方向WD以一角度行進,以考慮基底材料幅材104在下幅材方向WD上之移動。舉例而言,當基底材料幅材104在下幅材方向WD上移動時,雷射光束302之路徑在初始切割位置604處投影至基底材料幅材104上,且接著在幅材方向上與基底材料幅材104之運動同步。因此,雷射光束302之路徑經控制以在橫向幅材方向XWD及下幅材方向WD兩者上行進,直至到達末端切割位置606以產生縱向邊緣切口600。在此實施例中,將補償因數應用於雷射光束302之路徑以允許在基底材料幅材在幅材方向WD上連續行進時在橫向幅材方向XWD上進行切割。應瞭解,雷射光束302行進之角度基於基底材料幅材104在下幅材方向WD上的速度而變化。在另一實施例中,基底材料幅材104在雷射處理操作期間暫時停止,且因此雷射光束302之路徑無需考慮基底材料幅材在下幅材方向WD上行進之運動。此類實施例可稱為步驟製程或步驟及重複製程。在雷射處理期間,雷射系統120a至120c中之一或多者使用重複對準特徵,諸如基準特徵602,以在雷射處理操作期間調整/對準雷射光束302,例如以補償基底材料幅材104之定位中的可能變化。
應瞭解,儘管如本文所描述之雷射處理操作使得在橫向幅材方向XWD上界定縱向邊緣切口600,使得在橫向幅材方向XWD上對準電極圖案中之重複圖案,但在其他實施例中,可控制本文中所描述之雷射處理操作以使得縱向邊緣切口600及所有相關聯切口、孔洞及剝蝕操作分別垂直地定向。舉例而言,縱向邊緣切口600可在下幅材方向WD上對準,使得電極圖案800之群在下幅材方向WD而非橫向幅材方向XWD上對準。
在一個實施例中,雷射系統120a切割電極圖案中之一或多者之間的連接桿614。連接桿614可用於在電極圖案之群組之間劃定。舉例而言,在圖6中所展示之實施例中,在五個個別電極圖案之群組之間切割連接桿614。然而,在其他實施例中,連接桿614可包括於任何數目的個別電極圖案之後,或根本不存在。連接桿分別由上游連接桿邊緣切口616及下游連接桿邊緣切口618界定。在一些實施例中,連接桿614大小經設定以在處理期間向幅材提供額外結構剛性。
另外,在一個適合實施例中,雷射系統120a在基底材料幅材104中切割一或多個重複對準特徵,諸如複數個基準特徵602。在一個實施例中,基準特徵602為基準通孔。在基底材料幅材104上的已知位置處切割基準特徵602。基準特徵602在圖6中展示為圓形,但可為如圖5中所展示之矩形,或允許生產系統100如本文中所描述一般起作用之任何大小或形狀。基準特徵602由量測位置及行進速度的視覺檢測系統310、312中之一或多者追蹤。基準特徵602之量測接著用於精確地允許基底材料幅材104上的圖案在下幅材方向WD及橫向幅材方向XWD兩者上前後對準。雷射系統120a亦可切割複數個定軌器孔612,其可用於對準基底材料幅材104,或可用作與齒輪1210 (圖12)嚙合以用於基底材料幅材104之輸送、定位及張力控制的孔。定軌器孔612可為圓形、方形或允許生產系統100如本文中所描述一般起作用之任何其他形狀。在另一適合實施例中,基底材料幅材104在退繞且輸送穿過生產系統100之前在其中預切割複數個定軌器孔612及/或基準特徵602。在一個實施例中,基準特徵602與電極圖案800之比為一比一。在其他實施例中,基準特徵與電極圖案800之比可為一比二或一比多。
參考圖2及6,在一個適合實施例中,雷射系統120a在基底材料幅材104中切割第一孔洞608及第二孔洞610作為電極圖案之部分。第一孔洞608亦可稱為「外部孔洞」,此係因為其在橫向幅材方向XWD上位於電極圖案外部,且第二孔洞610亦可稱為「內部孔洞」,此係因為其在橫向幅材方向XWD上位於外部孔洞內側。孔洞608、610最佳地展示於圖7中,其為基底材料幅材104之部分611 (圖6)的放大圖。第一孔洞608藉由使用雷射光束302進行雷射切割而形成,而基底材料幅材定位於夾盤306中之開口410上方。第一孔洞608在與下幅材方向WD對準之方向上形成為線性狹縫(例如貫穿切口)。重要地,第一孔洞608未延伸跨過電極之整個寬度W e。實際上,外部開封帶700保持在孔洞608之上游及下游邊緣兩者上,以確保電極圖案保持連接至基底材料幅材104。
類似地,進一步參考圖6及7,第二孔洞610形成在第一孔洞608內側(在橫向幅材方向XWD上)。在一個適合實施例中,第二孔洞610形成為在下幅材方向WD上由內部開封帶702分隔開之一條狹縫。在所展示實施例中,第二孔洞610與通孔704相交。在所說明之實施例中,內部開封帶702之長度為外部開封帶700的至少兩倍,使得將外部開封帶分隔開所需之斷裂力大約為將內部開封帶702與基底材料幅材104分隔開所需之斷裂力的一半。在其他實施例中,第一開封帶與第二開封帶之斷裂強度之比可變化,但較佳地,外部開封帶700具有低於內部開封帶702之斷裂強度,使得在對基底材料幅材104之邊緣施加拉力或剪應力之後,外部開封帶700將在內部開封帶702之前斷裂。
參考圖3、4及6,藉由在夾盤306之開口410上方針對縱向邊緣切口600、基準特徵602以及第一孔洞608及第二610執行雷射切割,其允許碎屑下降穿過開口410且亦允許真空308收集在雷射切割過程期間形成的碎屑。
在一個適合實施例中,雷射系統120a經組態為第一剝蝕台。在此實施例中,雷射系統120a在基底材料幅材104之第一表面上形成如上文所描述之剝蝕部404。在離開雷射系統120a後,基底材料幅材經過惰輪108d,其以一方式翻轉基底材料幅材104,該方式使得基底材料幅材之第二表面(與第一表面相對)經定位以供雷射系統120b處理,該雷射系統120b在此實施例中經組態為第二剝蝕台。在此實施例中,雷射系統120b經組態以使用基準特徵602以確保在下幅材方向WD及橫向幅材方向XWD上對準。因此,雷射系統120b對基底材料幅材104之相對表面執行第二剝蝕製程,使得基底材料幅材104之各表面上的剝蝕部404在下幅材方向WD及橫向幅材方向XWD上對準。在一個實施例中,剝蝕部404經組態為電極之集電器凸片。
在一個實施例中,圖2中所見之雷射系統120c經組態為雷射切割台。在此實施例中,雷射系統120c執行雷射切割,諸如縱向邊緣切口600以及第一孔洞608及第二孔洞610。
在一個適合實施例中,雷射系統120a至120c之雷射裝置300中之一或多者為20瓦特之光纖雷射。在實施例中,雷射系統120a至120c之適合雷射裝置300具有10瓦特至5,000瓦特範圍內之雷射功率,諸如10 W至100 W、100 W至250 W、250 W至1 kW、1 kW至2.5 kW、2.5 kW至5 kW。適合雷射裝置300將包括具有150 nm至10.6 µm之波長之雷射光束,諸如150 nm至375 nm、375 nm至750 nm、750 nm至1,500 nm及1,500 nm至10.6 µm。在實施例中,雷射裝置300將能夠具有連續波(cw)、微秒(µs)、奈秒(ns)、皮秒(ps)及飛秒(fs)脈衝類型中之一或多者的雷射脈衝寬度類型。此等雷射類型中之任一者可單獨或組合地用作雷射系統120a至120c之雷射裝置300。在其他適合實施例中,雷射裝置300為能夠允許雷射系統120a至120c如本文中所描述一般執行之任何其他雷射。
在一些實施例中,基底材料幅材104可包括在裝載至生產系統100中之前已經機器衝壓或雷射切割之基準特徵602。在另一適合實施例中,基準特徵602可隨後經機械衝壓以在基底材料幅材之第一表面上形成剝蝕部404。在其他適合實施例中,生產系統100可包括一或多個額外機械衝壓,其可用以形成縱向邊緣切口600及/或第一孔洞608及第二孔洞610中之一或多者。
在一個實施例中,輸送機系統之輥中之一或多者可並非為完美的圓形,使得輥具有偏心率。在此情況下,尤其在偏心輥為軋輥之情況下,基底材料幅材可以一方式輸送,該方式使得基底材料幅材104之位置取決於偏心輥之哪一部分與幅材接觸而以不同方式前進。舉例而言,若偏心之部分半徑超出輥之預期半徑,則當輥之較大半徑部分正推動/拉動幅材時,幅材相較於預期可在下幅材方向WD上進一步前進。同樣地,若偏心輥具有減小之半徑部分,則幅材可相較於預期在下幅材方向WD上前進更少距離。因此,在一個實施例中,偏心輥可經映射以判定半徑與徑向位置。接著可控制雷射系統120a至120c以基於輥之映射而調整雷射光束302位置以考慮偏心率。在一個實施例中,輥之映射可儲存於使用者介面116之記憶體中。
在已離開雷射系統120a至120c中之一或多者後,基底材料幅材可輸送至一或多個清潔台,諸如刷塗台124及氣刀126。在一個適合實施例中,刷塗台124包括在橫向幅材方向XWD上行進之刷子1000 (圖10及11)。刷子1000包括由刷毛固持器1004固持之一組刷毛1002。刷子1000經組態以允許刷毛1002密切接觸基底材料幅材104之表面且自其移除或去除任何碎屑。刷毛1002對基底材料幅材104之表面的接觸壓力必須足夠低以使得其不會破裂、斷裂或以其他方式造成電極圖案之缺陷,且將電極圖案維持為附接至基底材料幅材104。在一個實施例中,刷毛1002與基底材料幅材104之表面之間的法向力為0至2磅,諸如0.1磅、0.2磅、0.3磅、0.4磅、0.5磅、0.6磅、0.7磅、0.8磅、0.9磅、1.0磅、1.1磅、1.2磅、1.3磅、1.4磅、1.5磅、1.6磅、1.7磅、1.8磅、1.9磅或2.0磅。在其他實施例中,法向力可大於2.0磅。
在一個實施例中,刷毛1002之長度為¾吋(19.05 mm)。在一個實施例中,刷毛1002插入或夾持在刷毛固持器1004內大約1/8吋處。刷毛之直徑可為.003吋(0.076 mm)至.010吋(0.254 mm),諸如.003吋(0.076)、.004吋(0.101 mm)、0.005吋(0.127 mm)、0.006吋(0.152 mm)、0.007吋(0.177 mm)、0.008吋(0.203 mm)、0.009吋(0.228 mm)及0.010吋(0.254 mm)。在一個適合實施例中,刷毛1002為尼龍刷毛。然而,在其他實施例中,刷毛1002可為允許刷子1000如本文中所描述一般起作用的任何其他天然或合成材料。
進一步參考圖10及11,在一個適合實施例中,為了實現刷子1000在橫向幅材方向XWD上之移動,刷子1000經由諸如軸承、襯套或類似者之可旋轉耦接件1008連接至曲柄臂1006。曲柄臂1006經由第二可旋轉耦接件1012可旋轉地耦接至驅動輪1010。可旋轉耦接件耦接至偏離驅動輪1010中心之位置,使得曲柄臂1006在橫向幅材方向XWD上以來回運動方式振盪刷子1000。驅動輪1010耦接至馬達1014以實現驅動輪之旋轉。位置感測器1016感測耦接至驅動輪1010之刷子位置標記1018之位置。因此,位置感測器1016可量測驅動輪1010每時之相位(例如角度位置)及旋轉。在一個實施例中,驅動輪1010經控制在0至300轉/分鐘(「rpm」)(例如刷子1000之0至300衝程/分鐘)範圍內,諸如0 rpm、25 rpm、50 rpm、75 rpm、100 rpm、125 rpm、150 rpm、175 rpm、200 rpm、225 rpm、250 rpm、275 rpm及300 rpm。在其他實施例中,驅動輪1010之rpm可大於300 rpm。應注意,歸因於曲柄臂1006連接至驅動輪1010,驅動輪1010之恆定rpm將引起刷子1000之正弦速度變動。
在一個適合實施例中,第二刷子(圖中未示)位於接觸基底材料幅材104之相對表面的位置中。在此實施例中,可基本上與第一刷子1000相同的第二刷子經組態以在與第一刷子相對之方向上行進,且適當地與第一刷子成180度異相。可經由位置感測器1016及第二刷子之等效位置感測器判定第一刷子及第二刷子之相位。在此實施例中,第一刷子及第二刷子之刷毛共同的接觸壓力必須足夠低以使得其不會破裂、斷裂或以其他方式造成電極圖案之缺陷,且將電極圖案維持為附接至基底材料幅材104。
在一個實施例中,刷子1000具有刷毛寬度1022,該刷毛寬度在橫向幅材方向XWD上比基底材料幅材104在橫向幅材方向XWD上之寬度寬。舉例而言,在一個實施例中,刷毛寬度1022具有足夠寬度,使得當刷子1000在橫向幅材方向XWD上振盪時,刷毛1002在刷子1000之整個運動範圍中保持與基底材料幅材104之表面接觸。刷子1000之振盪速率及由刷毛1002抵靠基底材料幅材104之表面施加的壓力可藉由使用者使用使用者介面116來控制。
刷塗台124可裝配有真空系統,該真空系統經組態以經由刷台孔口1020產生真空以抽空已自基底材料幅材104之一或多個表面刷去的碎屑。在此實施例中,碎屑可自基底材料幅材104刷去且下落,或經由刷台孔口1020抽吸。刷台孔口1020說明為圓形,但可為允許刷塗台124如本文中所描述一般起作用之任何形狀。此外,刷台孔口1020之上邊緣可經倒角,及/或在適當位置交錯以允許基底材料幅材104更易於在不使基底材料幅材之邊緣在其上經擦損的情況下經過。在一個實施例中,真空度可經控制為0至140吋H 2O,諸如0 in H 2O、10 in H 2O、20 in H 2O、30 in H 2O、40 in H 2O、50 in H 2O、60 in H 2O、70 in H 2O、80 in H 2O、90 in H 2O、100 in H 2O、110 in H 2O、120 in H 2O、130 in H 2O及140 in H 2O。在一些實施例中,真空之流動速率經控制為約0至425立方呎/每分鐘(「cfm」),諸如0 cfm、25 cfm、50 cfm、75 cfm、100 cfm、125 cfm、150 cfm、175 cfm、200 cfm、225 cfm、250 cfm、275 cfm、300 cfm、325 cfm、350 cfm、375 cfm、400 cfm及425 cfm。在其他實施例中,真空度及流動速率可分別大於140 in H 2O及425 cfm。將真空度及流動速率控制在一範圍內,使得將碎屑自基底材料幅材104吸走,而基底材料幅材104與輸送系統組件之間不產生不必要摩擦。在一些實施例中,此類真空度及流動速率適用於使用真空之系統的所有其他組件。
在另一適合實施例中,第一刷子及第二刷子中之一或多者可包括量測或監測刷子施加於電極材料幅材802上的壓力的負荷感測器。如圖8中所展示,電極材料幅材802係指在已如本文所描述一般處理之後的幅材,使得電極圖案800之群已形成於其中。在此實施例中,第一刷子及第二刷子可經由使用者介面116控制以基於刷子刷毛磨損或電極厚度或表面粗糙度之變化而維持對電極材料幅材802之均勻刷塗壓力。
在另一適合實施例中,第一刷子及第二刷子中之一或多者經組態以至少部分地在下幅材方向WD上以等效於電極材料幅材802之速度變化率的速度變化率移動,從而使刷子與電極材料幅材802之間的在下幅材方向WD上的速度差維持基本上為零。
在又一適合實施例中,刷塗台124可裝配有相位量測感測器1016,以判定第一刷子及第二刷子之相位。在一個此類實施例中,相位感測器可量測第一刷子及第二刷子之內部感測器旗標1018之位置。在此實施例中,相位量測感測器1016判定第一及第二刷子是否在預定相位差範圍內,諸如180度異相、90度異相或零度異相或允許生產系統100如本文中所描述一般起作用的任何其他適合相位差。如本文中所使用,刷子之「相位」係指刷子之角度位置,使得兩個獨立刷子之刷毛將在「同相」時對準。
在再一實施例中,超音波換能器(圖中未示)可經組態以將超音波振動施加至第一及第二刷子中之一或多者以促進碎屑自電極材料幅材802移除。
進一步參考圖2,在一個適合實施例中,基底材料幅材104輸送穿過氣刀126。如本文所使用,術語氣刀係指使用在基底材料幅材104處吹送之高壓空氣的裝置。高壓空氣接觸基底材料幅材104之表面且自其移除碎屑。氣刀126經控制以在一壓力/速度下供應空氣,使得其不會破裂、斷裂或以其他方式造成電極圖案之缺陷,且將電極圖案維持為附接至基底材料幅材104。在另一實施例中,第二氣刀126經組態以在基底材料幅材104之相對表面處吹送空氣且自其移除碎屑。在此實施例中,第二氣刀可在與第一氣刀相同之方向上或在與第一氣刀相對之方向上或在允許氣刀126如本文中所描述一般起作用之任何其他方向上吹送空氣。在一個實施例中,氣刀126台裝配有促進已藉由氣刀126移除之碎屑的移除之真空。
參考圖8,在已藉由雷射系統120a至120c處理且藉由刷塗台124及氣刀126清潔之後,基底材料幅材104作為含有基底材料幅材104內之電極圖案800之群的幅材(統稱為電極材料幅材802)離開清潔台。
進一步參考圖2、8及12,在一個實施例中,電極材料幅材802經過檢測裝置128。檢測裝置128為經組態以分析電極材料802且識別其上之缺陷的裝置。舉例而言,在一個實施例中,檢測裝置128為包括攝影機1200之視覺檢測裝置,該攝影機1200可為數位攝影機,諸如經組態以分析電極材料幅材802上之電極圖案的數位3D攝影機。在一個實施例中,攝影機1200為包括具有48兆像素靈敏度之CMOS的數位光攝影機。攝影機1200光學耦接至透鏡1202,其可為寬視場透鏡。在一個實施例中,透鏡1202為遠心透鏡。藉由透鏡安裝件1204將透鏡1202固持於適當位置,該透鏡安裝件1204在一個實施例中可在豎直方向V上調整以控制透鏡1202之焦點。透鏡1202旨在當其經過檢測板1206時聚焦於電極幅材802。在一個實施例中,檢測板1206包括透明或半透明頂部1208,其允許來自容納於檢測板1206內之光源(圖中未示)的光穿過其照射以產生背光。在一個適合實施例中,光之強度及/或顏色可經由使用者介面116控制。在一個實施例中,一或多個額外照明源(諸如上游光及下游光)在位於檢測台128內時照明電極材料幅材802。在一些實施例中,可獨立控制照明源中之每一者之強度及顏色。在一個實施例中,背光包括漫射低角度環形光。電極材料幅材802可藉由經組態以嚙合電極材料幅材802之定軌器孔612的齒輪1210固定且輸送穿過檢測板1206。藉此,電極材料幅材802抵靠檢測板1206固持,以基本上消除電極材料幅材802之捲曲。檢測板前邊緣1214及檢測板後邊緣1216中之每一者可經倒角(例如以類似於角度α之角度),以允許電極材料幅材在無擦損的情況下平穩地經過。
繼續參考圖12,在一個實施例中,檢測裝置128包括觸發感測器1212,其偵測電極材料幅材802之預定特徵,諸如基準特徵602、縱向邊緣切口600或允許檢測裝置128如本文中所描述一般起作用之任何其他特徵。在偵測預定特徵之後,觸發感測器1212將信號直接發送或經由使用者介面116間接發送至攝影機1200,以觸發攝影機1200以使電極材料幅材802之電極成像。在使電極成像後,攝影機1200可經組態以偵測一或多個度量值,諸如電極之高度、已由雷射裝置120a至120c (圖2)中之一者切割之特徵的大小或形狀、電極之間的間距(距離)或允許檢測裝置如本文中所描述一般起作用之任何其他特徵。舉例而言,在一個適合實施例中,檢測裝置128偵測剝蝕部404 (圖4)、縱向邊緣切口600、基準特徵602、定軌器孔612、個別電極結構之間的間距、定軌器孔612之橫向幅材及幅材方向之偏移以及第一孔洞608及第二孔洞610 (圖6)在大小、形狀、置放及定向方面是否在預定義容限內。在一個適合實施例中,使用者可控制使用使用者介面116檢測哪些特徵。
在一個實施例中,電極材料幅材802在由檢測裝置128分析期間保持基本上平坦,諸如藉由將平衡真空或流體(例如空氣)流施加至電極材料幅材802之相對側上。在此實施例中,藉由使電極材料幅材802在檢測期間為平坦的,可對電極材料幅材802進行更精確成像及分析,且因此實現較高品質誤差及缺陷偵測。在一個實施例中,檢測系統可經組態以提供基底材料幅材104及/或電極材料幅材802之內嵌度量衡。舉例而言,檢測裝置128可經組態以在幅材在下幅材方向WD上輸送時量測諸如電極圖案之幅材厚度、大小及形狀及類似者的度量值。可將此等度量值傳輸至使用者介面116以供檢視或記憶體儲存,或以其他方式用於調整生產系統100之生產參數。
在一個實施例中,在檢測系統判定缺陷存在於電極材料幅材802 (圖8)上的情況下,標記裝置130 (圖2)將標記電極材料幅材以識別此缺陷。標記裝置130可為雷射蝕刻裝置、印表機、打印記裝置或能夠置放指示缺陷存在於電極材料幅材802上之標記的任何其他標記裝置。在另一適合實施例中,標記裝置130可控制以藉由識別編號(ID)及已知良好電極(KGE)中之一或多者標記電極材料幅材802,從而允許能夠藉由諸如等級A、等級B、等級C或其類似物之等級進一步標記電極材料幅材802,從而指示電極材料幅材802內之特定電極的品質量測(諸如缺陷之數目或類型)。
在將基底材料幅材104處理成電極材料幅材802後,與未經處理基底材料幅材104相比,電極材料幅材802在下幅材方向WD上之幅材強度減小25%至90%。參考圖8A,展示了電極材料幅材802之一部分。在此實施例中,電極材料幅材802包括電極簇EC,該電極簇EC包含由連接桿614分隔開之五個電極圖案800。然而,應瞭解,在其他實施例中,電極簇EC可包括任何數目的電極圖案,其包括連接桿614之間的一或多個,諸如2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或任何其他數目個電極圖案800。距離L EC定義為在下幅材方向WD上在電極簇EC之第一電極圖案之中心點至第二電極簇EC中之第一電極之中心點的距離。
在例示性實施例中,幅材在橫向幅材方向上之橫向幅材跨度S W為3X mm,且各電極圖案800在下幅材方向WD上之寬度W EP為X mm。在此實施例中,與未經處理基底材料幅材104相比,下幅材方向WD上之幅材強度減小33%。幅材強度之減小計算為寬度W EP除以橫向幅材跨度S W(亦即,X mm / 3X mm = 0.33)。
在另一例示性實施例中,幅材在橫向幅材方向上之橫向幅材跨度S W為1.5X mm,且各電極圖案800在下幅材方向WD上之寬度W EP為1.3X mm。在此實施例中,與未經處理基底材料幅材104相比,下幅材方向WD上之幅材強度減小87%。幅材強度之減小計算為W EP/ S w(亦即,1.3X / 1.5X = 0.87)。使用具有至少力回饋且可包括位移回饋之機電或液壓材料測試器,諸如英斯特朗(Instron)品牌測試機器將下幅材方向WD上之幅材強度驗證且量測為電極材料幅材802之斷裂強度。
在另一例示性實施例中,與基底材料幅材104相比,電極材料幅材802在橫向幅材方向XWD上之強度減小。在第一例示性實施例中,下幅材方向WD上之電極簇寬度W EC為6X mm,連接桿614在下幅材方向WD上之寬度W TB為X mm,且電極圖案在下幅材方向WD上之寬度W EP為X mm,且電極圖案在橫向幅材方向XWD上之長度L E為1.7X mm。在此實施例中,與未經處理基底材料幅材104相比,電極材料幅材802在橫向幅材方向XWD上之強度減小約77%。在另一例示性實施例中,電極簇長度L EC為10X mm,連接桿614之寬度W TB為0X mm (亦即,無連接桿),且電極圖案之寬度W EP為2X mm,且電極圖案之長度L E為1.7X mm。在此實施例中,與未經處理基底材料幅材104相比,電極材料幅材802在橫向幅材方向XWD上之強度減小約92%。使用具有至少力回饋且可包括位移回饋之機電或液壓材料測試器,諸如英斯特朗品牌測試機器將橫向幅材方向XWD上之幅材強度驗證且量測為電極材料幅材802之斷裂強度。
進一步參考圖9,接著將電極材料幅材802輸送至重繞輥134,在該重繞輥處,電極材料幅材與間葉材料幅材138捲繞在一起以產生具有交替的電極材料幅材802及間葉材料幅材138之層的線軸900。
在一個適合實施例中,使用者介面116可包括經組態以儲存及執行指令從而使生產系統100如本文中所描述一般起作用之處理器及記憶體。使用者介面116可進一步包括諸如LCD或LED顯示器之顯示裝置及一組控制件或虛擬控制件,其允許使用者控制及調整生產系統100之參數以及檢視度量值,諸如幅材輸送速度、張力、缺陷數目及允許生產系統100如本文中所描述一般起作用之任何其他參數。
在使用中,參考圖2,生產系統100之基底退繞輥102裝載有基底材料幅材104。基底材料幅材104穿過邊緣導引件106,以促進基底材料幅材104之退繞。在此實施例中,基底材料幅材104接著圍繞惰輪108a傳遞且進入拼接台110。惰輪108a用於促進維持基底材料幅材104之恰當定位及張力,以及改變基底材料幅材104之方向。惰輪108a在豎直方向上收納基底材料幅材104,且部分圍繞惰輪108a纏繞以使得基底材料幅材104在與輸入方向成基本上九十度之輸出方向上離開惰輪108a。然而,應瞭解,在不脫離本發明之範疇的情況下,輸入及輸出方向可變化。在一些實施例中,生產系統100可使用多個惰輪108a至108x,以在基底材料幅材輸送穿過生產系統100時改變基底材料幅材的方向一或多次。在此實施例中,使用者經由惰輪108a至108x退繞基底材料104,例如圖2中所展示。
在一個實施例中,拼接台110用於將兩個單獨幅材拼接在一起。在此實施例中,第一基底材料幅材104退繞,使得基底材料幅材104之後邊緣(圖中未示)停在拼接台110內,且第二基底材料幅材104之前邊緣(圖中未示)退繞至拼接台110中,使得第一幅材之後邊緣及第二幅材之前邊緣彼此鄰近。使用者接著塗覆黏著劑(諸如黏著帶)以將第二幅材之前邊緣接合至第一幅材之後邊緣,以在兩個幅材之間形成接縫且產生連續的基底材料幅材。可針對眾多基底材料幅材104重複此類過程,如由使用者所指定。
在一個適合實施例中,在離開拼接台110之後,基底材料幅材104在下幅材方向WD上輸送至軋輥112。軋輥112經由使用者介面116控制以調整/維持基底材料幅材104輸送穿過生產系統100之速度。基底材料幅材104壓靠軋輥112中之兩個相鄰輥114中之每一者,其中壓力足以允許輥摩擦以移動基底材料幅材104,但壓力足夠低以避免對基底材料幅材104造成任何顯著變形或損害。
在一個實施例中,在使用期間,藉由經由使用者介面116控制軋輥112之高摩擦輥之旋轉速率來控制基底材料幅材104之速度。在其他實施例中,生產系統100可包括一或多個額外軋輥122、132以便於控制基底材料幅材104之速度,且基底材料幅材穿過其輸送。在此實施例中,額外軋輥122、132之速度可經由使用者介面116控制。在使用中,當使用多個軋輥時,軋輥112、122、132中之每一者的速度中之每一者可經由使用者介面116視需要設定為相同速度或不同速度,使得基底材料幅材104平穩地輸送穿過生產系統100。
在使用中,在一個實施例中,基底材料幅材經由浮輥118退繞。在此實施例中,浮輥118之一對輥可圍繞其中心軸旋轉,以被動地調整基底材料幅材104上的張力。
進一步參考圖2,在使用時,基底材料幅材輸送穿過一或多個雷射系統120a、120b、120c。圖2中所展示之實施例包括三個雷射系統120a至120c,但應瞭解,可使用任何數目的雷射系統以允許生產系統100如本文中所描述一般起作用。
另外參考圖2至6進一步描述生產系統之使用。基底材料幅材104在下幅材方向WD上輸送穿過雷射系統120a至120c。在一個實施例中,基底材料幅材104在尚未經剝蝕或切割之第一條件400下輸送至雷射系統120a中。基底材料幅材104輸送經過夾盤306,且因此經過複數個真空孔406。真空孔406與真空308流體連接,且真空308經由使用者介面116控制,以在基底材料幅材104經過真空孔406時對其施加真空壓力。真空壓力經控制以使基底材料幅材104在其輸送穿過夾盤306時維持處於基本上平坦/平面狀態。在一個使用實施例中,穿過真空孔406之真空壓力經由使用者介面116即時地監測及調整,以確保基底材料幅材104在夾盤306上保持基本上平坦且在處理時不翹起或屈曲。
參考圖4,基底材料幅材104輸送經過夾盤306之開口410,且進一步經過下游邊緣414上之斜面416。在此實施例中,斜面416促進基底材料幅材104經過下游邊緣414而不使下游邊緣414鉤住或擋住基底材料幅材104。
進一步參考圖3至5,在一個使用實施例中,基底材料幅材104由雷射光束302 (圖3)剝蝕以在基底材料幅材104中產生剝蝕部404 (圖4)。在一個實施例中,基底材料幅材104為陽極材料502,且剝蝕部404移除陽極活性材料層508以暴露陽極集電器層506 (圖5)。在另一實施例中,基底材料幅材104為陰極材料504,且剝蝕部404移除陰極活性材料層512以暴露陰極集電器層510。
在使用期間,在使用雷射系統120a以在基底材料幅材104中形成剝蝕部404時,雷射光束302之功率經由使用者介面116控制為能夠基本上完全或完全移除塗佈層但將不損害或切穿集電器層的位準。在使用中,例如經由使用者介面116控制雷射光束302,以在基底材料幅材104處於運動中且在下幅材方向WD上輸送時產生剝蝕部404。雷射光束302經控制以使得在基底材料幅材104之各外側上產生剝蝕部404,如圖5中最佳地展示。在一個使用實施例中,在製成剝蝕部404之後,雷射系統120a經控制以在基底材料幅材104中切割基準特徵602,如本文中進一步描述。在一些實施例中,使用多個雷射以各自剝蝕基底材料幅材104之一部分以各自產生一或多個剝蝕部404,以增加生產系統100之輸送量。
進一步參考圖2、3及4,在使用生產過程之另一階段中,基底材料幅材104在下幅材方向WD上朝著雷射系統120a之切割區域408輸送。在此實施例中,開口410與真空308流體連通,且真空308經控制以在基底材料幅材104經過開口410時對其施加真空壓力。在另一實施例中,控制第二真空以均衡基底材料幅材104相對於夾盤306的壓力。在此實施例中,壓力之均衡經監測及控制以在基底材料幅材104經過開口410時使其維持在基本上平坦/平面狀態中且處於一致高度,以便於使雷射光束302聚焦於基底材料幅材104上。
在一個使用實施例中,當基底材料幅材在開口410上方時,雷射系統120a經控制以在基底材料幅材104中切割一或多個圖案。參考圖6,雷射系統經控制以切割一或多個縱向邊緣切口600以界定電極在橫向幅材方向XWD上之縱向邊緣。當基底材料幅材在下幅材方向WD上輸送時,使用雷射光束302藉由在橫向幅材方向XWD上切割基底材料幅材104來切割縱向邊緣切口600。舉例而言,在一個實施例中,雷射光束302之路徑運動經控制及/或與基底材料幅材104在下幅材方向WD上之運動同步。因此,雷射光束302之路徑相對於下幅材方向WD成角度地行進,以考慮基底材料幅材104在下幅材方向WD上之移動。在此實施例中,將補償因數應用於雷射光束302之路徑以允許在基底材料幅材在下幅材方向WD上連續行進時在橫向幅材方向XWD上進行切割。在此實施例中,當基底材料幅材104在幅材方向WD上移動時,雷射在初始切割位置604處投影至基底材料幅材104上,且接著經控制以在橫向幅材方向XWD及幅材方向WD兩者上行進直至到達末端切割位置606以產生縱向邊緣切口600。應瞭解,控制雷射光束302行進所處的角度基於基底材料幅材104在下幅材方向WD上之速度而變化。在另一實施例中,基底材料幅材104在雷射處理操作期間暫時停止,且因此雷射光束302之路徑無需考慮基底材料幅材104之行進運動。此類實施例可稱為步驟製程或步驟及重複製程。在雷射處理期間,雷射系統120a至120c中之一或多者使用重複對準特徵,諸如基準特徵602,以在雷射處理操作期間調整及/或對準雷射光束302,例如以補償基底材料幅材104之定位中的可能變化。
進一步參考圖6,在一個使用實施例中,雷射系統120a經控制以切割重複對準特徵中之一或多者,諸如基底材料幅材104中之複數個基準特徵602。在基底材料幅材104上的預定/已知位置處切割基準特徵602。在一個使用實施例中,基準特徵602由視覺檢測系統310、312中之一或多者追蹤以量測基底材料幅材104之位置及行進速度。基準特徵602之量測接著用於精確地維持基底材料幅材104上的圖案在下幅材方向WD及橫向幅材方向XWD兩者上之前後對準。在一些使用實施例中,雷射系統120a切割複數個定軌器孔612及/或基準特徵602。在其他實施例中,基準特徵602已預先形成至基底材料幅材104中,使得雷射系統120a至120c中之一或多者使用其來定位/對準,如上文所描述。
參考圖2及6,在一個適合之使用實施例中,當基底材料幅材在下幅材方向WD上運動時,雷射系統120a經控制以在基底材料幅材104中切割第一孔洞608及第二孔洞610作為電極圖案之部分。第一孔洞608藉由使用雷射光束302進行雷射切割而形成,而基底材料幅材定位於夾盤306中之開口410上方。第一孔洞608在與下幅材方向WD對準之方向上形成為線性狹縫(例如貫穿切口)。重要地,第一孔洞608經切割使得其不延伸跨過電極之整個寬度W e。實際上,雷射系統120a經控制以切割圖案,使得外部開封帶700保持在孔洞608之上游及下游邊緣兩者上,以確保電極圖案保持連接至基底材料幅材104。
進一步參考圖6及7,在使用中,自第一孔洞608內側(在橫向幅材方向XWD上)切割第二孔洞610。在此使用實施例中,第二孔洞610切割為在下幅材方向WD上由內部開封帶702分隔開之一條狹縫。在所展示實施例中,第二孔洞610經切割以與通孔704相交。在所說明的實施例中,將內部開封帶702切割為外部開封帶700之長度的至少兩倍,但可以不同長度切割以便允許生產系統100如本文中所描述一般起作用。
在使用中,參考圖3、4及6,允許來自在夾盤306之開口410上方針對縱向邊緣切口600、基準特徵602以及第一孔洞608及第二孔洞610之雷射切割的碎屑下降穿過開口410,且真空308經控制以收集在雷射切割過程期間形成的碎屑。
在一個適合之使用實施例中,雷射系統120a經組態為第一剝蝕台。在此實施例中,雷射系統120a經控制以在基底材料幅材104之第一表面上形成如上文所描述之剝蝕部404。在離開雷射系統120a後,基底材料幅材輸送經過惰輪108d以使基底材料幅材104以一方式翻轉,該方式使得基底材料幅材104之第二表面(與第一表面相對)經定位以供雷射系統120b處理。在此實施例中,雷射系統120b經組態為第二剝蝕台,且使用基準特徵602以確保剝蝕部404在下幅材方向WD及橫向幅材方向XWD上對準。因此,雷射系統120b經控制以對基底材料幅材104之相對表面執行第二剝蝕製程,使得基底材料幅材104之各表面上的剝蝕部404在幅材方向WD及橫向幅材方向XWD上對準。
在一個使用實施例中,圖2中所展示之雷射系統120c經組態為雷射切割台。在此實施例中,雷射系統120c經控制以執行用於縱向邊緣切口600以及第一孔洞608及第二孔洞610的雷射切割。
進一步參考圖2、10及11,在一個使用實施例中,在已離開雷射系統120a至120c中之一或多者後,基底材料幅材接著輸送穿過一或多個清潔台,諸如刷塗台124及氣刀126。在一個適合之使用實施例中,基底材料幅材104輸送穿過刷塗台124,且刷毛1002經控制以密切接觸基底材料幅材104之表面且自其移除或去除任何碎屑。刷毛1002對基底材料幅材104之表面的接觸壓力經控制以足夠低以使得其不會破裂、斷裂或以其他方式造成電極圖案之缺陷,且將電極圖案維持為附接至基底材料幅材104。
進一步參考圖10至11,在一個適合之使用實施例中,藉由控制馬達1014以使驅動輪1010旋轉來控制刷子1000以在橫向幅材方向XWD上移動。位置感測器1016經控制以感測刷子位置標記1018之位置以量測驅動輪1010之每時之相位(例如角度位置)及旋轉。
在一個適合之使用實施例中,第二刷子(圖中未示)經控制以接觸基底材料幅材104之相對表面。在此實施例中,可基本上與第一刷子1000相同的第二刷子經控制以在與第一刷子相對之方向上行進,且適當地與第一刷子成180度異相。可經由位置感測器1016及第二刷子之等效位置感測器監測第一刷子及第二刷子之相位。在此實施例中,第一刷子及第二刷子之刷毛共同的接觸壓力經控制以足夠低以使得其不會破裂、斷裂或以其他方式造成電極圖案之缺陷,且將電極圖案維持為附接至基底材料幅材104。
在使用中,刷子1000之振盪速率及由刷毛1002抵靠基底材料幅材104之表面施加的壓力可藉由使用者使用使用者介面116來控制。
在一個使用實施例中,刷塗台124裝配有真空系統,且經控制以經由刷台孔口1020產生真空以抽空已自基底材料幅材104之一或多個表面刷去的碎屑。在此實施例中,碎屑自基底材料幅材104刷去且下落,或經由刷台孔口1020抽吸。
在另一適合之使用實施例中,第一刷子及第二刷子中之一或多者包括經量測或經監測以判定刷子施加於電極材料幅材802上的壓力的負荷感測器。在此實施例中,第一刷子及第二刷子經由使用者介面116控制以基於刷子刷毛磨損或電極厚度或表面粗糙度之變化而維持對電極材料幅材802之均勻刷塗壓力。
在另一適合之使用實施例中,第一刷子及第二刷子中之一或多者經控制以至少部分地在下幅材方向WD上以等效於電極材料幅材802之速度變化率的速度變化率移動,從而使刷子與電極材料幅材802之間的在下幅材方向WD上的速度差維持基本上為零。
在又一適合之使用實施例中,刷塗台124裝配有判定第一刷子及第二刷子之相位的相位量測感測器1016。在此實施例中,相位感測器量測第一刷子及第二刷子之內部感測器旗標1018之位置。在此實施例中,相位量測感測器1016判定第一及第二刷子是否在預定相位差範圍內,諸如180度異相、90度異相或零度異相或允許生產系統100如本文中所描述一般起作用的任何其他適合相位差,且允許校正其或經由使用者介面116或其他警告裝置向使用者提供刷子並未恰當地定相的警告。
在再一使用實施例中,超音波換能器(圖中未示)經激活以將超音波振動施加至第一刷子及第二刷子中之一或多者以促進碎屑自電極材料幅材802移除。
進一步參考圖2,在一個適合之使用實施例中,基底材料幅材104輸送穿過氣刀126。在此實施例中,高壓空氣經控制以接觸基底材料幅材104之表面以自其移除碎屑。氣刀126例如經由使用者介面116控制以在一壓力/速度下供應空氣,使得其不會破裂、斷裂或以其他方式造成電極圖案中之缺陷,且將電極圖案維持為附接至基底材料幅材104。在另一實施例中,第二氣刀126經控制以在基底材料幅材104之相對表面處吹送空氣以自其移除碎屑。在此實施例中,第二氣刀經控制以在與第一氣刀相同之方向上或在與第一氣刀相對之方向上或在允許氣刀126如本文中所描述一般起作用之任何其他方向上吹送空氣。在另一實施例中,氣刀126台裝配有經控制以促進已藉由氣刀126移除之碎屑的移除之真空。
參考圖8,在已藉由雷射系統120a至120c處理且藉由刷塗台124及氣刀126清潔之後,基底材料幅材104作為含有基底材料幅材104內之複數個電極圖案800之幅材(統稱為電極材料幅材802)離開清潔台。
進一步參考圖2、8及12,在一個使用實施例中,電極材料幅材802輸送穿過檢測裝置128。檢測裝置128經控制以分析電極材料802且識別其上之缺陷。舉例而言,在一個實施例中,檢測裝置128為包括攝影機1200之視覺檢測裝置。透鏡1202旨在當其經過檢測板1206時聚焦於電極幅材802。在一個使用實施例中,檢測板1206包括透明或半透明頂部1208,其允許來自容納於檢測板1206內之光源(圖中未示)的光穿過其照射。在一個適合實施例中,光之強度及/或顏色經由使用者介面116控制。在一個使用實施例中,電極材料幅材802藉由嚙合電極材料幅材802之定軌器孔612的齒輪1210而輸送經過檢測板1206。藉此,電極材料幅材802抵靠檢測板1206固持,以基本上消除電極材料幅材802之捲曲。
另外參考圖12,在一個使用實施例中,檢測裝置128包括觸發感測器1212,該觸發感測器1212經控制以偵測電極材料幅材802之預定特徵,諸如基準特徵602、縱向邊緣切口600或允許檢測裝置128如本文中所描述一般起作用之任何其他特徵。在偵測預定特徵之後,觸發感測器1212將信號直接發送或經由使用者介面116間接發送至攝影機1200,以觸發攝影機1200以使電極材料幅材802之電極成像。在使電極成像後,攝影機1200經控制以偵測一或多個度量值,諸如電極之高度、已由雷射裝置120a至120c (圖2)中之一者切割之特徵的大小或形狀、電極之間的間距(距離)或允許檢測裝置如本文中所描述一般起作用之任何其他特徵。舉例而言,在一個適合實施例中,檢測裝置128經控制以偵測剝蝕部404 (圖4)、縱向邊緣切口600、基準特徵602以及第一孔洞608及第二孔洞610 (圖6)、個別電極結構橫向幅材方向XWD尺寸、個別電極結構下幅材方向WD尺寸、個別電極活性區域偏移及電極材料幅材802的任何其他剝蝕或切口在大小、形狀、置放、橫向間距、縱向間距及定向方面是否在預定義容限內,且經由使用者介面116將此資訊呈現給使用者。在一個適合實施例中,使用者可控制使用使用者介面116檢測哪些特徵。在又一實施例中,檢測裝置128可偵測用於電極材料幅材802之一或多個電極結構的叢集識別碼。
在一個使用實施例中,檢測系統128用於提供基底材料幅材104及/或電極材料幅材802之內嵌度量衡。在此實施例中,檢測裝置128經控制以在幅材在縱向方向上輸送時量測諸如電極圖案之幅材厚度、大小及形狀及類似者的度量值。將此等度量值傳輸至使用者介面116以供檢視或記憶體儲存,或以其他方式用於調整生產系統100之生產參數。
在一個使用實施例中,若檢測系統判定缺陷存在於電極材料幅材802 (圖8)上,則標記裝置130 (圖2)經控制以標記電極材料幅材802,以使用雷射蝕刻裝置、印表機、打印記裝置或能夠置放指示缺陷存在於電極材料幅材802上之標記的任何其他標記裝置來識別此類缺陷。在另一適合之使用實施例中,標記裝置130經控制以藉由識別編號(ID)及已知良好電極(KGE)中之一或多者標記電極材料幅材802,從而允許能夠藉由諸如等級A、等級B、等級C或其類似物之等級進一步標記電極材料幅材802,從而指示電極材料幅材802內之特定電極的品質量測(諸如缺陷之數目或類型)。
進一步參考圖9,接著將電極材料幅材802輸送至重繞輥134,在該重繞輥處,電極材料幅材與間葉材料幅材138捲繞在一起以產生具有交替的電極材料幅材802及間葉材料幅材138之層的線軸900。
在一個適合之使用實施例中,基底材料幅材104經由重繞輥134與間葉材料幅材138一起再捲繞,該間葉材料幅材經由間葉輥136退繞以產生具有由間葉材料138分隔開之電極層的一卷電極140。在一些實施例中,基底材料幅材104經由重繞輥134再捲繞,而無間葉材料幅材138。
在一個實施例中,基底材料幅材104具有黏著帶層(圖中未示),其分別黏著至陽極活性材料層508或陰極活性材料層512之一個或兩個表面。在此實施例中,在使用中,在剝蝕及切割(上文所描述)之後移除黏著層,以移除非所需材料或碎屑。
在一個使用實施例中,輸送機系統之輥中之一或多者並非為完美的圓形,使得輥具有偏心率。在此類實施例中,偏心輥可經映射以判定半徑與徑向位置。接著控制雷射系統120a至120c以基於輥之映射而調整雷射光束302位置以考慮偏心率。
參考圖14至16,電極材料幅材802用於產生電池。在此實施例中,電極材料幅材之個別線軸1402、1404以及1406A及1406B各自退繞且在合併區1408中合併,且在衝壓及堆疊區1410中以交替組態堆疊,該交替組態包括藉由隔板材料1406分隔開之陰極1402及陽極1404之至少一個層。應瞭解,電極材料之線軸1402、1404以及1406A及1406B已生產為如本文所描述之電極材料幅材802。
參考圖14A及15A,描述了合併區1408及合併製程之額外細節。在合併區1408中,電極材料幅材之線軸1402、1404以及1406A及1406B個別地在由箭頭U指示之方向上退繞。在一個實施例中,電極材料之線軸1402、1404以及1406A及1406B為上文所描述之電極140之輥。在圖14A中所展示之實施例中,線軸1406為其中形成有各自由外部孔洞608及縱向邊緣切口600限界之個別電極隔板1506之群的捲繞幅材隔板材料之線軸。線軸1402為其中形成有各自由外部孔洞608及縱向邊緣切口600限界之個別陰極電極1502之群的捲繞陰極材料幅材之線軸。線軸1404為其中形成有各自由外部孔洞608及縱向邊緣切口600限界之個別陽極電極1504之群的捲繞幅材陽極材料之線軸。
如圖15A中最佳地所見,電極材料之線軸1402、1404、1406中之每一者由具有連續外邊緣1508 (其中已形成定軌器孔612)及界定幅材之外部周邊的幅材邊緣邊界1510的幅材形成。應瞭解,在其他實施例中,合併製程期間的電極材料之線軸1402、1404及1406之次序及置放可變化,只要隔板材料置放於陽極材料及陰極材料之任何相鄰層之間以防止短路即可。
當電極材料之線軸1402、1404及1406中之每一者退繞時,線軸1402、1404及1406中之每一者之退繞幅材經控制以在與合併鏈輪1414嚙合之前形成懸重曲線1412,例如圖14B中所展示。在實施例中,合併鏈輪1414可具有半徑R s(圖14H),其為19 mm或更大,諸如38 mm、51 mm、76 mm、114 mm、152 mm,或允許系統如本文中所描述一般起作用的任何其他半徑。應注意,如本文中所描述之其他鏈輪、線軸及輥中之任一者或全部可具有允許系統如本文中所描述一般起作用的相同或類似半徑。自實際角度來看,在一些實施例中,需要減小合併鏈輪1414 (及任何其他鏈輪、線軸或輥)之大小,使得其佔據更少空間,且因此可使系統更小。此外,應注意,使用較小鏈輪、線軸及輥減少在幅材在系統中處理時行進的總路徑長度,此可有助於減少浪費及改良幅材之對準,如本文中所描述。合併鏈輪1414中之每一者包括大小、形狀及位置經設定以與幅材之定軌器孔612精確地嚙合或對準的輪齒1416 (例如,銷或突出部)之群。舉例而言,若定軌器孔612具有方形截面形狀,則輪齒1416將具有對應的方形截面形狀。然而,定軌器孔612及輪齒1416之大小及形狀(包括任何錐形)可為允許系統如本文中所描述一般起作用的任何大小及形狀,諸如以下截面形狀、方形、矩形、圓形、橢圓形、三角形、多邊形或其組合。
參考圖14A、14B及14H,來自電極材料之線軸1402、1404、1406之幅材圍繞各別合併鏈輪1414在圓形途徑中移動,直至其與倒齒鏈輪1418嚙合為止。在實施例中,倒齒鏈輪1418之半徑為19 mm或更大,諸如38 mm、51 mm、76 mm、114 mm、152 mm,或允許系統如本文中所描述一般起作用的任何其他半徑。倒齒鏈輪1418中之每一者包括經組態以與合併鏈輪1414之輪齒1416嚙合的倒齒1420之群,而來自線軸1402、1404及1406之幅材中之各別幅材位於其間,以促進在退繞製程期間維持來自電極材料之線軸1402、1404、1406之幅材之恰當定位及張力。在一個適合實施例中,合併鏈輪1414由馬達驅動,且其速度經控制以確保來自電極材料之線軸1402、1404、1406之幅材的恰當拉緊。在另一實施例中,合併鏈輪1414自由旋轉,且電極材料之線軸1402、1404及1406之速度經控制以確保來自電極材料之線軸1402、1404、1406之幅材的恰當拉緊。在一個此類實施例中,諸如光學感測器或物理感測器之迴路感測器1422判定懸重曲線1412之下垂量(曲率),該懸重曲線接著用於計算來自電極材料之線軸1402、1404、1406之幅材上的張力。舉例而言,若垂度經判定為太大(亦即,張力過低),則合併鏈輪1414之速度增大,或電極材料之線軸1402、1404、1406的速度減小,以便使垂度減小(亦即,增大張力)至預定範圍內。替代地,若垂度經判定為太小(亦即,張力過高),則合併鏈輪1414之速度減小,或電極材料之線軸1402、1404、1406的速度增大,以便使垂度增大(亦即,減小張力)至預定範圍內。在一個實施例中,垂度以控制來自電極材料之線軸1402、1404、1406之幅材接觸合併鏈輪1414之角度α CL為目標。在一個此類實施例中,在自豎直之逆時針方向上量測之α CL為0 o至90 o,例如在實施例中,α CL為0°、5°、10°、15°、20°、25°、30°、35°、40°、45°、50°、55°、60°、65°、70°、75°、80°、85°或90°。在另一實施例中,α CL經控制為距真空張力器1442 +/-5度內。在圖14H、視角(i)中所展示之實施例中,α CL可使用時脈位置指示,其中12:00係指頂部豎直位置,且順時針方向上之每一小時係指30度之移動。因此,在圖14H、視角(i)中所展示之實施例中,來自線軸1402、1404、1406之幅材在合併鏈輪1414上之10:30位置處接觸合併鏈輪1414,且刷子1440定位於11:00位置處。
在來自線軸1402、1404、1406之電極材料幅材退繞至倒齒鏈輪1418上之後,接著在傳送位置1426處導引各幅材且將其傳送至銷板1424上。在一個實施例中,控制來自線軸1402、1404、1406之電極材料幅材上的張力,使得各幅材在6點鐘位置處(例如,豎直向下地)傳送至銷板1424上。銷板1424包括一系列銷1428,該等銷之大小及形狀經設定以與來自線軸1402、1404、1406之電極材料幅材的定軌器孔612以及倒齒鏈輪1418之倒齒1420精確嚙合。因此,當來自線軸1402、1404、1406之電極材料幅材中之每一者傳送至銷板1424上時,該每一電極材料幅材包夾於銷板1424與倒齒鏈輪1418之間,同時銷1428延伸穿過定軌器孔612且進入倒齒1420中以促進來自線軸1402、1404、1406之電極材料幅材至銷板1424之對準。
在一個實施例中,倒齒鏈輪1418在Z方向上定位於銷板1424上方之適合高度處,諸如1微米至10毫米,以允許幅材在其上傳送之前在銷板1424上方浮動。就此而言,「浮動」係指具有不與倒齒鏈輪1418或銷板1424接觸之部分的幅材,使得幅材部分鬆弛以促進定軌器孔612至銷1428之自對準。在實施例中,倒齒鏈輪1418在銷板1424上方之高度可自動或手動地調整,以便確保定軌器孔612至銷1428之自對準。倒齒鏈輪1418在銷板1424上方之高度亦可取決於來自線軸1402、1404、1406之電極材料幅材中的哪些傳送至銷板1424而變化。
在一個實施例中,輥隙(亦即,間隙)形成在倒齒鏈輪1418與銷板1424之間,使得來自線軸1402、1404、1406之電極材料幅材具有足夠空間以在倒齒鏈輪1418與銷板1424之間自由地浮動。在一個實施例中,倒齒鏈輪1418在Z方向上定位於銷板1424上方之適合高度處以產生1微米至10毫米之間隙,以允許幅材在其上傳送之前在銷板1424上方浮動。就此而言,「浮動」係指具有不與倒齒鏈輪1418或銷板1424接觸之部分的幅材,使得幅材部分鬆弛以促進定軌器孔612至銷1428之自對準。在實施例中,倒齒鏈輪1418在銷板1424上方之高度可自動或手動地調整,以便確保定軌器孔612至銷1428之自對準。倒齒鏈輪1418在銷板1424上方之高度亦可取決於來自線軸1402、1404、1406之電極材料幅材中的哪些傳送至銷板1424而變化。在此實施例中,藉由允許來自線軸1402、1404、1406之電極材料幅材具有足夠量之浮動(亦即,不與倒齒鏈輪1418或銷板1424接觸之幅材)以將各別定軌器孔612自調整且因此對準於銷板1424,減少或消除來自線軸1402、1404、1406之各別電極材料幅材的少量可能未對準。在一個適合實施例中,鬆弛足以使倒齒鏈輪1418與銷板1424之間的來自線軸1402、1404、1406之電極材料幅材成S形曲線。應瞭解,當來自線軸1402、1404、1406之電極材料幅材的各層置放於銷板1424上時,形成於倒齒鏈輪1418與銷板1424之間的後續(亦即,下游)輥隙之大小將增大以考慮來自置放於其上之線軸1402、1404、1406之電極材料幅材的前一層。在一個適合實施例中,輥隙距離增加量等於來自置放於銷板1424上之線軸1402、1404、1406之電極材料幅材的前一層的厚度。
在一個實施例中,如圖14A中所示,存在四個電極材料幅材之線軸1402、1406A、1404、1406B。在此實施例中,線軸1402、1406、1404、1406定位成使得其可依序退繞且合併至銷板1424上。在此實施例中,銷板1424自位於第一傳送位置1426上游的預合併位置1430延伸。銷板1424延伸至超過最後傳送位置1426X (圖14A)之下游位置。在此實施例中,四個電極材料幅材之線軸1402、1406A、1404、1406B中之每一者分別具有其自有傳送位置1426、1426A、1426B及1425X。應瞭解,在其他實施例中,額外電極材料線軸可退繞及合併,且因此可包括用於各額外線軸之額外傳送位置。
參考圖14A至14C,合併來自線軸1402、1406A、1404、1406B之電極材料幅材之個別層(例如依序分層)以形成合併材料幅材1432。合併來自線軸1402、1406A、1404、1406B之電極材料幅材之各層,使得合併材料幅材之各層豎直對準,例如使得各電極圖案之縱向軸A E(圖7)、各層之電極圖案的定軌器孔612、基準特徵602及縱向邊緣切口600及孔洞608、610 (圖6)中之一或多者在幅材方向及橫向幅材方向XWD兩者上對準。幅材對準之變化可在稍後操作(諸如衝壓及堆疊)中造成缺陷,且因此在一些實施例中,在來自線軸1402、1406A、1404、1406B之幅材合併時維持該等線軸之對準為至關重要的。應注意,隔板材料線軸1406A及1406B可為相同或不同隔板材料。如本文中所使用,在通常描述隔板材料幅材之線軸時,1406A及1406B可通常稱為隔板材料幅材之線軸1406。
合併材料幅材1432之各層已依序逐層傳送(如在以上過程中描述為豎直對準)。亦即,在此實施例中,由來自線軸1406之隔板材料幅材構成的初始層在傳送位置1426處傳送至銷板1424。隨後,在位於傳送位置1426下游之傳送位置1426A處,將來自線軸1402之陰極材料幅材自線軸1406傳送至隔板材料幅材頂上。接下來,在傳送位置1426A下游之傳送位置1426B處,將來自線軸1406之第二隔板材料層(經由獨立線軸)自線軸1406傳送至隔板材料層頂上。在此實施例中,在傳送位置1426X處,將來自線軸1404之陽極材料幅材層自線軸1406傳送至第二隔板材料幅材層頂上。一旦已堆疊或合併所有四個層,四個層層壓幅材便稱為合併材料幅材1432。在各層傳送至銷板1424期間,合併材料幅材1432之各層上的目標下幅材張力為零。在一個實施例中,合併材料網1432之各層上的下幅材張力分別由來自各線軸1402、1404、1406之幅材的質量及在合併鏈輪1414與銷板1424之銷1428之間的此幅材之下垂量判定。
在各層之傳送期間,應瞭解,銷板1424之銷1428之大小經設定以延伸穿過材料之各層且進入倒齒鏈輪1418之倒齒1420,以維持各層相對於彼此之對準。在傳送位置中之每一者處,輥隙(亦即,間隙)形成於各別倒齒鏈輪1418與銷板1424之間的傳送位置1426處,該銷板經設定在幅材上方之100至1000 μm之固定間隙距離處。在一個實施例中,輥隙經設定為幅材之厚度的大約3倍。舉例而言,若幅材在Z方向上之厚度為100微米,則輥隙間隙在Z方向上將為大約300微米。應瞭解,各別倒齒鏈輪1418與銷板1424之間的實際間隙距離在各下游傳送位置1426處增大,以考慮已傳送至銷板1424上之各前一層的所添加厚度。在一個實施例中,間隙距離在各後續下游傳送位置處之增加量大約等於所添加層在Z方向上之高度。在一個實施例中,輥隙間隙約為各別傳送位置1426處之合併材料幅材之高度的三倍。如圖14E中所展示,銷板1424之銷1428可在如圖14E之上部圖中所展示之Z方向上具有恆定截面面積,或可錐形化以在Z方向上具有接近於銷板1424之較大截面面積。在銷1428具有此錐形之實施例中,合併材料幅材理想地擱置於銷板1424上方,在Z方向上大致在銷1428的中部。亦應瞭解,在其他實施例中,層之排序可取決於所要結果而不同,且因此,線軸1402、1404、1406中之每一者之定位可置放於對應傳送位置處,以促進來自電極材料之線軸1402、1404及1406之幅材的恰當分層。亦應瞭解,可包括額外電極材料線軸,且對應數目個傳送位置可用以促進來自額外線軸之額外幅材分層。
圖15中展示合併材料幅材1432之一個實施例的截面圖1500。在此實施例中,合併材料幅材1432包含呈堆疊形式之在中心中之陽極集電器層506、陽極活性材料層508、隔板500、陰極活性材料層512及陰極集電器層510。可藉由使來自陽極1404、隔板1406及陰極1402之線軸的幅材之層交替以形成所要數目個用於合併材料幅材1432之層來合併額外層。在一個實施例中,陽極1404、隔板1406及陰極1402之線軸可為電極140之輥,如上文所描述。
在一些實施例中,銷板1424包括個別單獨銷板(各自類似於銷板1424)之群,該等單獨銷板各自彼此鄰接且索引化以形成連續銷板流。在此實施例中,至關重要的是,個別銷板相對於彼此精確地定位,使得在每一層傳送至銷板上時維持合併材料幅材1432之層的恰當對齊。因此,在一些實施例中,可藉由夾具或諸如銷、磁體、突出部或類似物之其他對準裝置來固持各銷板1424,以維持銷板1424之恰當對齊。銷板1424經由輸送機構1436在幅材方向上輸送,該輸送機構1436經控制為以與倒齒鏈輪1418相同的速度行進,使得合併材料幅材1432之層與銷板1424之銷1428恰當地對準。在一個實施例中,銷1428與倒齒1420之嚙合在下幅材方向WD上推動銷板1424。因此,在此類實施例中,維持銷板1424與倒齒鏈輪1418之間的恰當速度。
在一個實施例中,在傳送位置1426、1426A至1426X中之一或多者處,電極缺陷感測器1434經定位而使得來自線軸1402、1404及1406之電極材料幅材鄰近於缺陷感測器1434而傳遞。應注意,如本文中所使用,1426X用以指如本文所描述之任何數目的額外傳送位置。缺陷感測器1434經組態以偵測來自線軸1402、1404及1406的電極材料幅材中之缺陷。舉例而言,缺陷感測器1434可經組態以偵測幅材之缺失電極、未對準或缺失定軌器孔612、基準特徵602、剝蝕部、切口、孔洞或來自線軸1402、1404及1406之電極材料幅材中之其他弱化區域。在缺陷感測器1434偵測到來自線軸1402、1404及1406之電極材料幅材中之缺陷的情況下,可使用與缺陷感測器1434共置之標記裝置標記幅材以指示缺陷。缺陷之標記可用於後續製程步驟中以確保來自線軸1402、1404及1406之電極材料幅材的缺陷部分未用於下文進一步描述之堆疊階段中,或在成為堆疊胞元1704之部分之前以其他方式安置。
參考圖14D,製造系統之一個實施例包括電極材料拉緊區段1438,其經組態以在進入傳送位置1426之前平坦化來自線軸1402、1404及1406之電極材料幅材。在一些情況下,來自線軸1402、1404及1406之電極材料幅材可傾向於捲曲或呈杯狀,使得幅材具有U形。經推測,捲曲可由歸因於縱向邊緣切口600之幅材結構弱化引起,其使得幅材之中心部分下垂。此外,沿著來自線軸1402、1404及1406之電極材料幅材的縱向邊緣之電氣或靜態電荷堆積可使得此等邊緣向內捲曲。若來自線軸1402、1404及1406之電極材料幅材具有此類捲曲,則定軌器孔612之位置及相對定軌器孔612之間的間距將不與合併鏈輪1414對準。
因此,為了修復捲曲,拉緊區段1438可包括反向旋轉刷1440 (圖14D、14F、14G、14H)及真空張力器1442中之至少一者。在一個實施例中,反向旋轉刷1440在橫向幅材方向XWD上藉由電動馬達(圖中未示)在相對方向W b上驅動。在一個實施例中,反向旋轉刷具有25 mm至150 mm之外徑D b及10 mm至50 mm之內徑D a。在一個實施例中,反向旋轉刷具有直徑為5 mm至25 mm之中心通孔1441,該中心通孔1441之中心界定一軸線,反向旋轉刷1440圍繞該軸線旋轉。反向旋轉刷1440中之每一者具有2 mm至20 mm之厚度T B。反向旋轉刷包括複數個刷毛1443,其可由天然或合成材料製成,諸如動物毛髮、尼龍、碳纖維、高密度聚乙烯、高溫尼龍、PEEK、聚酯、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、金屬、金屬合金、塑膠及其類似物。在較佳實施例中,刷毛1443由尼龍製成。刷毛材料應經適當選擇以允許刷子如本文中所描述一般起作用而不對幅材造成磨損或其他損害。反向旋轉刷1440可調整地定位以鄰近地平坦化電極材料幅材1402、1404及1406,使得反向旋轉刷1440帶著足夠壓力以刷子俯仰角α bp(圖14G)接觸幅材,以在與合併鏈輪1414嚙合之前使來自線軸1402、1404及1406之電極材料幅材的縱向邊緣變直及平坦化。在一些實施例中,可監測及調整反向旋轉刷1440之旋轉速度及接觸壓力以確保獲得來自線軸1402、1404及1406之電極材料幅材之足夠平坦度。在一個實施例中,例如圖14H、視角(ii)中所展示,刷子速度經參考為速度向量V bs,該速度向量V bs具有在橫向幅材方向XWD上之速度分量V b及在下幅材方向WD上之速度分量V s。在實施例中,速度分量V b可經設定(諸如藉由調整刷子之旋轉速度(例如rpm))為介於50 mm/sec至250 mm/sec之間,諸如50 mm/sec、60 mm/sec、70 mm/sec、80 mm/sec、90 mm/sec、100 mm/sec、110 mm/sec、120 mm/sec、130 mm/sec、140 mm/sec、150 mm/sec、160 mm/sec、170 mm/sec、180 mm/sec、190 mm/sec、200 mm/sec、210 mm/sec、220 mm/sec、230 mm/sec、240 mm/sec或250 mm/sec,或其中之任何速度。在實施例中,速度分量V s可經設定(諸如藉由調整幅材在幅材方向WD上之速度)為10 mm/sec至100 mm/sec,諸如10 mm/sec、20 mm/sec、30 mm/sec、40 mm/sec、50 mm/sec、60 mm/sec、70 mm/sec、80 mm/sec、90 mm/sec、100 mm/sec或其中之任何速度。因此,幅材上之刷尖速度可經計算為 V bs= sqrt(V b 2+V s 2)。在一些實施例中,V bs可在51 mm/sec至270 mm/sec之範圍內。
在一個實施例中,拉緊區段包括去離子器裝置1447,其經組態以減少或消除來自線軸1402、1404及1406之電極材料幅材上的靜態電荷。在此類實施例中,去離子器裝置1447置放於上游,恰好在真空張力器1442及反向旋轉刷1440前。在一些實施例中,去離子器裝置1447經組態以中和組件(諸如真空張力器1442)之電荷,該組件可由諸如PVC之塑膠管材形成。舉例而言,若不使用去離子器,則當來自線軸1406之隔板材料經過真空張力器時,或當小粒子由氣流攜載穿過真空張力器時,其可在真空張力器1442上堆積靜態電荷。因此,去離子器裝置1447可用於中和真空張力器1442上之電荷,因此允許來自線軸1402、1404及1406之電極材料幅材經過,藉此不會電吸引至真空張力器1442。應注意,儘管已關於真空張力器1442描述去離子器裝置,但可在受電荷影響且得益於電荷中和之系統內的任何組件上使用一或多個去離子器裝置1447,該等組件諸如與來自線軸1402、1404及1406之電極材料幅材接觸或極接近於該等電極材料幅材之任何組件。在一些實施例中,去離子器裝置1447為DC電離棒。在一些實施例中,去離子器裝置1447能夠進行用於諸如20 mm至200 mm之短程應用之脈衝式DC電離。在一些實施例中,脈衝之頻率可自動或由使用者控制而設定為1 Hz至20 Hz,以便調整去離子器裝置1447對受影響組件之影響。在一些實施例中,去離子器裝置1447經組態有用作離化器發射器之金屬銷,諸如鈦銷或類似者。此類銷在脈衝式DC模式下可具有-3kV至+7.5kV之輸出,其有助於允許80:20至20:80之正負電荷離子比。在其他實施例中,去離子器裝置1447、真空張力器1442及反向旋轉刷1440之次序可變化。在另一實施例中,可藉由使受影響組件接地來防止電荷堆積。在此實施例中,接地帶或接地導線(圖中未示)電連接至受影響裝置,諸如真空張力器1442,從而藉由提供電荷以具有接地之路徑來防止電荷堆積。在又一實施例中,可藉由用導電塗層塗佈受影響裝置以防止電荷堆積來防止組件之電荷堆積。
在一個適合實施例中,反向旋轉刷1440之旋轉速度保持足夠低以減少或消除由接觸電極材料幅材1402、1404及1406之反向旋轉刷1440的摩擦而引起的過量磨損或熱量堆積。在一個實施例中,反向旋轉刷1440經組態以使來自線軸1402、1404及1406之電極材料幅材中存在之褶皺光滑或以其他方式減少。在一個實施例中,反向旋轉刷1440經組態以減少或消除電極材料幅材1402、1404及1406中之微褶皺。在此類實施例中,微褶皺為幅材中之過小而無法藉由去離子器1447或真空張力器1442移除之褶皺。在一個此類實施例中,微褶皺經界定為大約為由去離子器1447或真空張力器1442移除之大褶皺之量值之百分之二十的褶皺。在一個適合實例中,若大型褶皺在Z方向上之量值為大約100 mm,則微褶皺在Z方向上將具有20 mm或更小的量值。在其他實施例中,大褶皺之量值可在1 mm至250 mm之間,且微褶皺之量值可為0.2 mm至約50 mm。
在另一實施例中,除反向旋轉刷1440以外或替代該反向旋轉刷,材料拉緊區段1438包括真空張力器1442,其包括位於來自線軸1402、1404及1406之電極材料幅材附近的真空張力器1442之表面上的複數個真空孔口1444。在此實施例中,真空經由真空張力器1442抽吸,其經由真空孔口1444產生吸力。真空張力器1442相對於豎直方向成角度α vac(圖14G)定位。來自真空孔口1444之吸力產生跨面向真空孔口1444之來自線軸1402之電極材料幅材的表面的流體流(通常為氣流)。由於流體流跨面向真空孔口1444之來自線軸1402、1404、1406之電極材料幅材的表面的速度比在來自線軸1402、1404、1406之電極材料幅材的相對側上的速度更快,因此效應(亦即,柏努利(Bernoulli)效應)拉動來自線軸1402、1404及1406之電極材料幅材使其與真空張力器1442相抵,且促進定軌器孔612與合併鏈輪1414之輪齒1416的對準。
進一步參考圖14B,在一個適合實施例中,合併鏈輪1414之輪齒1416以一方式錐形化,該方式使得促進定軌器孔612之外邊緣隨著定軌器孔612經安放至輪齒1416上而在橫向幅材方向XWD上被拉開。舉例而言,輪齒1416可錐形化以在近端(接近於合併鏈輪1414之中心)處具有較大截面且截面連續地變化,以在遠側方向(亦即,合併鏈輪1414之中心的遠側)上具有較小截面。因此,輪齒1416之錐形對來自線軸1402、1404及1406之電極材料幅材施加足夠橫向幅材張力,以消除幅材在橫向幅材方向XWD上之下垂及捲曲。在此實施例中,真空張力器1442之真空孔口1444僅位於電極材料幅材1402、1404及1406與合併鏈輪1414之輪齒1416的合併點處或附近,此係因為在此點後,電極材料幅材1402、1404及1406經由藉由輪齒1416之錐形施加至來自線軸1402、1404及1406之電極材料幅材的張力而抵靠合併鏈輪1414安放。
在一個實施例中,反向旋轉刷1440位於真空張力器1442之在幅材方向WD上的下游位置中。然而,在其他實施例中,反向旋轉刷與真空張力器1442共置或在其上游。在一個實施例中,傳送位置1426、1426A至1426X中之每一者包括反向旋轉刷1440及真空張力器。在另一實施例中,僅傳送隔板材料幅材之傳送台包括反向旋轉刷1440,但所有傳送台包括真空張力器1442。
參考圖19,在一個實施例中,對準特徵偵測系統1900定位於合併區1408之下游。在實施例中,當在幅材方向WD及橫向幅材方向XWD中之每一者上自層之中心點量測時,合併材料幅材之層的對準在1 mm內。對準特徵偵測系統1900包括光學感測器1902及背光1904。光學感測器可為數位攝影機或能夠允許裝置如本文中所描述一般起作用之其他光敏裝置。在此實施例中,光學感測器1902經定位而使得其在來自背光1904之光已穿過合併材料幅材1432之後捕獲此光,使得合併材料幅材1432之輪廓由光學感測器1902捕獲。藉由光學感測器1902分析合併材料幅材1432之輪廓以精確地定位基準特徵602。如由光學感測器1902定位之基準特徵602之位置可由使用者介面116 (圖1)儲存,且用於確保合併材料幅材1432精確地定位以供後續處理。因此,精確定位意謂合併材料幅材之各層經豎直對準,例如以使得各電極圖案、定軌器孔612、基準特徵602之縱向軸A E(圖7)及各層之電極圖案之邊緣(縱向邊緣切口600、孔洞608、610) (圖6)在幅材方向及橫向幅材方向XWD兩者上對準。在一個實施例中,如下文進一步描述,如由光學感測器1902定位之基準特徵602的位置用以控制收納單元2010及對準銷2012之位置與基準特徵602之對準。因此,重要的是各層之基準特徵對準。在一個實施例中,收納單元2010經控制以在幅材方向WD上將對準銷之中心對準至基準特徵602之中心的+/- 10 μm至50 μm內。在另一實施例中,收納單元2010為控制器,使得對準銷2012之中心經控制以在橫向幅材方向XWD上與基準特徵602在+/- 10 μm至50 μm內對準。
參考圖20及20A,在一個實施例中,使用大容量堆疊系統2000。在此實施例中,合併區1408類似於如上文所描述之彼合併區。然而,在此實施例中,利用齒形帶2002 (由虛線表示)。在一個實施例中,齒形帶2002包含不鏽鋼且包括輸送輪齒2033之群(圖20A),該等輸送輪齒之大小、形狀及位置經設定以嚙合來自線軸1402、1404及1406之電極材料幅材及隨後合併材料幅材1432的定軌器孔612或基準特徵602中之一或多者。齒形帶2002經組態以穿過合併區1408以及堆疊及衝壓區2004以環形組態操作。齒形帶2002使用一或多個同步鏈輪2006輸送,該等同步鏈輪與齒形帶2002之驅動部分嚙合以控制其速度,其與上文所描述之合併區1408內的製程同步。
進一步參考圖20,大容量堆疊系統包括在衝壓及堆疊區1410內之自動夾具裝載總成2008。自動夾具裝載總成包括一或多個收納單元2010。在圖20中所展示之實施例中,沿著齒形帶2002之路徑存在依序對準的四個收納單元2010。在一個實施例中,收納單元2010中之每一者由同一致動裝置(其可為驅動收納單元2010之運動的凸輪)驅動以使所有收納單元2010同時運動。在其他實施例中,收納單元2010中之每一者可獨立地經控制或驅動。
參看圖21及圖22,各收納單元2010包含自收納器基底2014延伸之一或多個對準銷2012。對準銷2012經組態以與基準特徵602或定軌器孔612中之一或多者嚙合。各收納單元2010可耦接至2軸運動控制裝置,諸如伺服器、馬達或類似者,其允許收納單元2010在橫向幅材方向XWD以及下幅材方向WD上移動。在一個實施例中,基於如由光學感測器1902定位之基準特徵602之位置而控制運動控制裝置。在此實施例中,基準特徵602之位置用以控制運動控制裝置以定位收納單元2010,使得其對準銷2012恰當地定位以穿過合併材料幅材1432之對應基準特徵602。運動控制裝置將經控制以針對在衝壓及堆疊區1410中執行之各衝壓操作恰當地定位收納單元2010,如下文進一步描述。
另外參考圖23及26A至26C,描述衝壓及堆疊操作。在此實施例中,合併材料幅材1432自合併區1408輸送至衝壓及堆疊區1410。合併材料幅材1432在其藉由齒形帶2002輸送時經過衝頭2016下方及收納單元2010上方,該齒形帶2002藉由同步鏈輪2006中之一或多者輸送。在一個實施例中,衝頭2016經控制以如雙箭頭所指示在Z方向上(例如豎直地)以上下運動方式移動。在一個實施例中,收納單元2010經控制以如雙箭頭所指示在Z方向上(例如豎直地)以上下運動方式移動。
參考圖24A至24C,在一個實施例中,各收納單元2010具有如上文所描述之單對對準銷2012,其經設定大小且間隔開以與各電極子單元2018之基準特徵602相對應。在一個實施例中,對準銷2012經組態以僅嚙合基準特徵602之內部周邊的一部分。舉例而言,在一個實施例中,基準特徵602具有基本上矩形內部周邊,且對準銷2012經組態以僅接觸外邊緣2400、下幅材邊緣2402及上幅材邊緣2404,而不接觸基準特徵602之內邊緣2406 (圖24D)。在單一衝壓操作期間,單一電極子單元2018經衝壓且裝載至收納單元2010上。在另一實施例中,對準銷2012及基準特徵602經對應地設定大小及定位以使得在對準銷2012與基準特徵602之所有邊緣(外邊緣2400、下幅材邊緣2402、上幅材邊緣2404及內邊緣2406)之間存在間隙。在此實施例中,對準銷2012與外邊緣2400、下幅材邊緣2402、上幅材邊緣2404及內邊緣2406中之每一者之間可存在約50微米之間隙。在其他實施例中,對準銷2012與外邊緣2400、下幅材邊緣2402、上幅材邊緣2404及內邊緣2406中之每一者之間的間隙可處於0至2000微米之範圍內,諸如0微米、50微米、100微米、150微米、200微米、250微米、300微米、350微米、400微米、450微米、500微米、550微米、600微米、650微米、700微米、750微米、800微米、850微米、900微米、950微米、1000微米、1050微米、1100微米、1150微米、1200微米、1250微米、1300微米、1350微米、1400微米、1450微米、1500微米、1550微米、1600微米、1650微米、1700微米、1750微米、1800微米、1850微米、1900微米、1950微米及200微米。在一個實施例中,對準銷2012與下幅材邊緣2402及上幅材邊緣2404之間的間隙各自處於50微米至2000微米範圍內。在又其他實施例中,對準銷2012與外邊緣2400、下幅材邊緣2402、上幅材邊緣2404及內邊緣2406中之每一者之間的間隙可為相同或不同間隙以允許系統如本文所描述一般起作用。
如圖24E中所展示,收納單元2010可包括可移動平台2034,其在Z方向上移動且在朝著衝頭2016之方向上維持Z方向力。可移動平台2034經控制以在衝壓製程期間緊靠合併材料幅材1432移動以防止當電極子單元2018與合併材料幅材1432分隔開時電極子單元之不均勻移位,如2018'處所展示。亦應瞭解,電極子單元2018之層的任何未對準,例如若各層之基準特徵602並不在幅材方向WD及橫向幅材方向XWD上精確地對準(例如導致減小的橫截面積),則其可在對準銷2012上產生額外摩擦,從而引起電極子單元之不均勻移位,如2018'處所展示。在一個實施例中,可移動平台2034經控制以接觸合併材料幅材1432之電極子單元2018 (例如零間隙)。在其他實施例中,可移動平台2034經控制以處於合併材料幅材1432之0至1000微米之範圍內,例如0微米、50微米、100微米、150微米、200微米、250微米、300微米、350微米、400微米、450微米、500微米、550微米、600微米、650微米、700微米、750微米、800微米、850微米、900微米、950微米或1000微米。在一個實施例中,可移動平台2034附接至滾珠軸承滑動機構,從而允許在Z方向上移動。在一個實施例中,可移動平台2034可耦接至齒輪驅動機構,該齒輪驅動機構由步進馬達驅動,該步進馬達經激活以僅在各衝壓操作之前及/或僅在各衝壓操作之後移動。
在實施例中,衝頭2016由金屬或金屬合金製成,諸如不鏽鋼、鋁、鈦、鋼、其他金屬及其合金。在其他實施例中,衝頭2016可由允許系統如本文中所描述一般起作用之任何材料製成,諸如塑膠、碳纖維、木材及類似物。衝頭應具有足夠強度及剛性以使得其不會在對電極子單元2018施加力時變形。參考圖26A至26C,在一個實施例中,衝頭2016具有衝頭面2017,其大小及形狀經設定以基本上覆蓋面向衝頭面2017之電極子單元2018的整個表面。在一個實施例中,衝頭面2017包括大小及形狀經設定以與基準特徵602相同或基本上相同的基準孔2019。因此,對準銷2012可在衝壓操作期間穿過基準孔2019。在一個實施例中,衝頭2016具有衝頭面2017,該衝頭面大小經設定以在橫向幅材方向上略小於電極子單元2018。舉例而言,在一個實施例中,電極子單元2018可具有在橫向幅材方向XWD上延伸超過衝頭面2017之遠端2021 0至100微米的部分2023,如圖26C中所展示。在一個實施例中,衝頭面2017可在幅材方向WD上略大於電極子單元2018,使得衝頭面2017在幅材方向WD上延伸超過縱向邊緣2026進入縱向邊緣切口600 0至100微米。在一個實施例中,衝壓面2017不包括用於切割電極子單元2018之任何尖銳切割邊緣,其在一些情況下可能導致污染電極子單元2018之層。實際上,衝頭面2017具有鈍邊緣且使用向下力將電極子單元2018與幅材分隔開以使孔洞斷裂,如本文中所描述。
在一個實施例中,衝頭2016將Z方向力施加至電極子單元2018,該電極子單元2018將此力傳輸至可移動平台2034,該可移動平台2034對其施加反作用力(例如藉由控制步進馬達產生固持轉矩)。在一個實施例中,此等反作用力造成電極子單元中之輕微壓縮,該輕微壓縮促進克服對準銷與電極子單元2018之基準特徵602之間的靜摩擦,其促進維持具有垂直於對準銷2012之理想平面的電極子單元2018之平行度。在一個實施例中,由衝頭2016施加至可移動平台2034之力使得可移動平台2034在Z方向上移動等於電極子單元2018之高度的距離,因此沿著由縱向邊緣切口600及孔洞608形成之路徑使弱化區斷裂,且因此準備好接受下一電極子單元2018。在另一實施例中,可移動平台2034可經控制以在各電極子單元2018已由衝頭2016衝壓之後例如藉由使用步進馬達來在Z方向上移動遠離衝頭2016一預定距離,該預定距離等於電極子單元2018之z方向尺寸。可移動平台2034因此有助於在衝壓操作期間維持電極子單元垂直於對準銷2012。
如圖24C中所展示,例如合併材料幅材1432接著可前進以將額外電極子單元2018置放於待衝壓及堆疊之位置中,且此過程可繼續直至預定數目個電極子單元2018裝載至收納單元2010上為止。在圖24C中所展示之實施例中,存在三個堆疊電極子單元2018,但應瞭解,任何數目的電極子單元可堆疊在收納單元2010上。在實施例中,經堆疊之電極子單元2018之數目可處於1至300之範圍內。在本發明實施例中,各電極子單元包含四個層,但可包含根據本發明之任何數目的層。
在一個實施例中,在發起衝壓操作之前,大容量堆疊系統2000驗證電極子單元2018中沒有缺陷(如由電極缺陷感測器1434判定),在偵測到缺陷的情況下,系統經控制以避免有缺陷電極子單元2018之衝壓及堆疊。在使用多個收納單元2010及對應衝頭2016之一個實施例中,若在電極子單元2018中之一者上發現缺陷,則所有收納單元2010及對應衝頭2016經控制以跳過衝壓及堆疊操作,且合併材料幅材1432向前輸送至一位置以使得所有收納單元2010及對應衝頭2016在無缺陷電極子單元2018下對準。
在一個實施例中,為了使電極子單元2018中之每一者與合併材料幅材1432分隔開,衝頭2016在Z方向上朝著合併材料幅材1432移動,例如距合併材料幅材之表面約0.15 mm至約0.50 mm內。收納夾具之對準銷2012經控制以在Z方向上朝著合併材料幅材1432之相對表面移動。可使用光學感測器1902驗證對準銷2012與衝頭2016之對準。若判定對準銷2012並未與衝頭2016恰當地對準,則衝頭2016、收納單元2010或合併材料幅材1432中之一或多者可在幅材方向WD上移動直至實現令人滿意的對準為止。在此類實施例中,收納單元2010及衝頭2016中之一或多者可經組態以經由機動托架總成(圖中未示)在幅材方向上平移。一旦實現對準銷2012與衝頭2016之令人滿意之對準,收納單元便在Z方向上移動,使得對準銷2012移動穿過基準特徵602且進入衝頭2016中之對應衝頭孔2020中。在一個實施例中,對準銷2012進入衝頭孔2020中至少2 mm處。在一個實施例中,衝頭孔2020之大小及形狀經設定以緊密匹配於對準銷2012之外徑,以最小化衝壓及堆疊操作期間的任何移位或未對準。
接下來,控制衝頭2016在Z方向上朝著收納單元2010之移動,例如超過合併材料幅材1432之相對表面至少5 mm。在衝頭2016移動時,電極子單元2018沿著形成電極子單元2018之外部周邊的弱化區與合併材料幅材1432分隔開。舉例而言,弱化區可包含沿著各層之電極圖案的縱向邊緣切口600及孔洞608 (圖6)之路徑。在此類實施例中,孔洞608斷裂,由此自合併材料幅材1432釋放電極子單元2018。此類經衝壓電極子單元2018下游之幅材稱為廢幅材2022。在一個實施例中,合併材料幅材1432之層已置放成使得陽極材料1404處於頂部上(亦即,待由衝頭2016接觸)。在另一實施例中,合併材料幅材1432之層已置放成使得陰極材料1402處於頂部上(亦即,待由衝頭2016接觸)。在另一實施例中,合併材料幅材1432之層已置放成使得隔板材料1406處於頂部上(亦即,待由衝頭2016接觸)。在一些實施例中,較佳地,陽極材料1404或陰極材料1402由衝頭2016接觸,此係因為其具有比隔板材料1406更高的質量。因此,在此類實施例中,當衝頭2016在衝壓操作之後收縮時,陽極材料1404及陰極材料1402不大可能在Z方向上被拉回遠離合併材料幅材1432。舉例而言,在隔板材料1406為低質量的實施例中,其可在某些條件下在衝頭2016收縮時由於真空效應而被衝頭2016拉起。在此類實施例中,因此需要使合併材料幅材1432之頂層為陽極材料1404或陰極材料1402,以避免此效應。
在電極子單元已與合併材料幅材1432分隔開之後,衝頭2016在Z方向上移動遠離收納單元2010且收納單元在Z方向上移動遠離衝頭2016。在一個實施例中,衝頭2016及收納單元2010兩者同時移動。在其他實施例中,衝頭2016及收納單元2010中之每一者經控制以依序移動。在一個實施例中,衝頭2016及收納單元2010中之每一者在Z方向上遠離合併材料幅材1432之各別表面移動,以與其相距約0.5 mm。
應瞭解,儘管圖23僅說明單個衝頭2016及收納單元2010,但在其他實施例中,可同時使用對應衝頭2016及收納單元2010以增大在單位時間期間與合併材料幅材1432分隔開之電極子單元的數目。舉例而言,在一個實施例中,諸如圖20中所展示之實施例,使用一系列四個衝頭2016及收納單元2010。在又其他實施例中,可能存在1至100個同時運行之衝頭2016及收納單元2010中之每一者。應進一步注意,在一些實施例中,上述衝壓及堆疊操作間歇地執行(亦即,在合併材料幅材停止時)。然而,在其他實施例中,系統可經組態以使得衝壓及堆疊操作為連續的,使得合併材料幅材在衝壓及堆疊操作期間保持在幅材方向WD上運動。
在電極子單元已與合併材料幅材1432分隔開之後,下游剩餘幅材稱為廢幅材2022,其使用與廢幅材2022之定軌器孔612嚙合之拆分鏈輪2024 (圖25)在幅材方向WD上輸送。舉例而言,如圖25中所展示,廢幅材2022包括具有定軌器孔612及連接桿614之幅材部分。廢幅材亦可包括任何未衝壓電極子單元2025,其由於未衝壓電極子單元2025中之一或多者的未對準或其他缺陷而未經衝壓。在一個實施例中,廢幅材2022重新捲繞至廢幅材引出輥2026上。廢幅材2022因此自齒形帶2002乾淨地移除,其因此促進齒形帶2002以連續迴路方式在幅材方向WD上向前前進以收納待處理之合併材料幅材1432。
在一個實施例中,大容量堆疊系統2000包括一或多個橫向幅材帶張力器2028。橫向幅材帶張力器2028經組態以與齒形帶2002之副輪齒組2032 (圖20A)嚙合。副輪齒組2032位於齒形帶2002之相對側上,其中鏈輪2006與齒形帶2002嚙合。橫向幅材帶張力器2028用以在橫向幅材方向上對合併材料幅材1432提供橫向幅材張力,以促進基準特徵602之對準及定位。在一個實施例中,橫向幅材帶張力器2028包括嚙合副輪齒組2032之一組倒齒。橫向幅材帶張力器可附連至伺服器、馬達或其他運動控制裝置以使橫向幅材帶張力器2028在橫向幅材方向XWD上移動。當橫向幅材帶張力器2028在橫向幅材方向XWD上向外移動(遠離幅材之中心)時,合併材料幅材1432上之橫向幅材張力增大。同樣地,當橫向幅材帶張力器2028在橫向幅材方向上向內(在朝著幅材之中心的方向上)移動時,施加在合併材料幅材1432上之橫向幅材張力減小。橫向幅材帶張力器2028中之每一者可個別地經控制以在沿著合併材料幅材1432之行進路徑的不同點處對合併材料幅材1432施加不同量之橫向幅材張力。因此,橫向幅材帶張力器2028用以促進合併材料幅材1432之平坦化(例如,去褶皺、去捲曲、去下垂等)。在一些實施例中,外部孔洞608之斷裂強度之0%至50%範圍內的橫向幅材帶張力由橫向幅材帶張力器2028提供。在實施例中,橫向幅材帶張力器2028有益於藉由使合併材料幅材1432平坦化而防止基準特徵602因由下垂、褶皺或捲曲引起之變形而未對準。
在一些實施例中,若藉由同步鏈輪2006將足夠的下幅材張力施加至合併材料幅材1432,則合併材料幅材1432可在下幅材方向上延伸,從而使基準特徵602在下幅材方向上比預期更遠地間隔開。在此類實施例中,控制齒形帶2002以減小其速度,此引起合併材料幅材1432在幅材方向WD上的下幅材張力相應減小,或替代地,可控制齒形帶2002以增大速度,此引起合併材料幅材1432在幅材方向WD上的張力相應增大。
在衝壓操作期間,電極子單元2018經組態成以藉由外部孔洞608及內部孔洞610 (圖15A)之強度所界定的預定方式與合併材料幅材1432分隔開。在一個實施例中,外部孔洞具有比內部孔洞610更低的斷裂強度(亦即,更容易破裂)。在此實施例中,電極子單元2018將沿著由外部孔洞608及縱向邊緣切口600界定之路徑與合併材料幅材分隔開。
在一個實施例中,預定數目個電極子單元2018堆疊於收納單元2010上以形成多單元電極堆疊2030 (圖24C)。應瞭解,堆疊電極子單元2018中之每一者經對準以使得各別基準特徵602、縱向邊緣切口600及孔洞608、610在幅材方向WD及橫向幅材方向XWD上對準。多單元電極堆疊2030接著置放於具有壓力板1604、1606之加壓限制1602中,該等壓力板1604、1606在由壓力箭頭P所展示之方向上將壓力施加至多單元電極堆疊2030。可使用使用者介面116調整施加至多單元電極堆疊2030之壓力,以控制由壓力板1604、1606施加至多單元電極堆疊2030的壓力P。一旦足夠壓力P已施加至多單元電極堆疊2030,對準銷1600便可在移除方向R上移動,此使得第二孔洞610沿著其長度斷裂,使得剝蝕部404 (例如電極凸片520)成為多單元電極堆疊2030之外邊緣,如圖16C中所展示。
在孔洞610已斷裂之後,多單元電極堆疊2030行進至凸片焊接台以將匯流條1700及1702焊接至剝蝕部404以形成堆疊胞元1704。在焊接之前,匯流條1700、1702穿過各別電極之匯流條開口1608置放。在一個實施例中,一旦匯流條1700、1702已穿過匯流條開口1608置放,則在焊接之前,剝蝕部404分別朝著匯流條1700、1702向下摺疊。在此實施例中,匯流條1700為銅匯流條且焊接至陽極集電器層506之剝蝕部404 (陽極凸片),且匯流條1702為鋁匯流條且焊接至陰極集電器層510之剝蝕部404 (陰極凸片)。然而,在其他實施例中,匯流條1700及1702可為任何適合的導電材料,以允許電池1804如本文中所描述一般起作用。焊接可使用雷射焊機、摩擦焊接、超音波焊接或用於將匯流條1700、1702焊接至電極凸片520的任何適合之焊接方法進行。在一個實施例中,匯流條1700及1702中之每一者分別與陽極及陰極的所有電極凸片520電接觸。
在堆疊胞元1704形成後,堆疊胞元行進至封裝台1800。在封裝台1800處,堆疊胞元1704塗佈有絕緣封裝材料以形成電池封裝1802,該絕緣封裝材料諸如多層鋁聚合物材料、塑膠或類似物。在一個實施例中,電池封裝1802經使用真空抽空且經用電解質材料經由開口(圖中未示)填充。可使用熱密封、雷射焊接、黏著劑或任何適合密封方法圍繞堆疊胞元1704密封絕緣封裝材料。匯流條1700及1702保持暴露,且未由電池封裝1802覆蓋以允許使用者將匯流條連接至待供電的裝置或連接至電池充電器。一旦電池封裝1802置放於堆疊胞元1704上,其便界定完整電池1804。在此實施例中,完整電池為3D鋰離子型電池。在其他實施例中,完整電池可為適用於使用本文所描述之裝置及方法生產的任何電池類型。在一些實施例中,電池1804包含一或多個電極子單元2900a至2900f或單位胞元3300,如本文中進一步描述。
在一個實施例中,陽極群之各部件具有底部、頂部及縱向軸A E(圖7)。在一個實施例中,縱向軸A E在橫向幅材方向XWD上自其底部延伸至頂部。在替代實施例中,縱向軸A E在下幅材方向WD上自其底部延伸至頂部。在一個實施例中,陽極群之部件由為陽極材料502之基底材料幅材104形成。另外,陽極群之各部件具有沿著電極之縱向軸(A E)量測之長度(L E) (圖6A)、在負電極結構及正電極結構之交替序列前進之方向(亦即,幅材方向WD)上量測的寬度(W E),及在正交於長度(L E)及寬度(W E)之量測方向中之每一者的方向(「Z方向」)上量測的高度(H E) (圖6A)。陽極群之各部件亦具有對應於正交於其縱向軸之平面中的電極投影之側面之長度總和的周長(P E)。
陽極群部件之部件之長度(L E)將視能量儲存裝置及其預期用途而變化。然而,一般而言,陽極群之部件將通常具有在約5 mm至約500 mm範圍內的長度(L E)。舉例而言,在一個此類實施例中,陽極群之部件具有約10 mm至約250 mm之長度(L E)。藉助於其他實例,在一個此類實施例中,陽極群之部件具有約25 mm至約100 mm之長度(L E)。
陽極群之部件之寬度(W E)亦將視能量儲存裝置及其預期用途而變化。然而,一般而言,陽極群之各部件將通常具有在約0.01 mm至2.5 mm範圍內之寬度(W E)。舉例而言,在一個實施例中,陽極群之各部件之寬度(W E)將在約0.025 mm至約2 mm範圍內。藉助於其他實例,在一個實施例中,陽極群之各部件之寬度(W E)將在約0.05 mm至約1 mm範圍內。
陽極群之部件之高度(H E)亦將視能量儲存裝置及其預期用途而變化。然而,一般而言,陽極群之部件將通常具有在約0.05 mm至約10 mm範圍內之高度(H E)。舉例而言,在一個實施例中,陽極群之各部件之高度(H E)將在約0.05 mm至約5 mm範圍內。藉助於其他實例,在一個實施例中,陽極群之各部件之高度(H E)將在約0.1 mm至約1 mm範圍內。根據一個實施例,陽極群之部件包括一或多個具有第一高度之第一電極部件及一或多個具有除第一高度以外的第二高度之第二電極部件。在又一實施例中,一或多個第一電極部件及一或多個第二電極部件的不同高度可經選擇以適應電極總成(例如多層子堆疊1501 (圖15))的預定形狀(諸如沿著縱向及/或橫向軸中之一或多者具有不同高度的電極總成形狀),及/或提供二次電池之預定效能特性。
一般而言,陽極群之部件具有基本上大於其寬度(W E)及其高度(H E)中之每一者之長度(L E)。舉例而言,在一個實施例中,對於陽極群之各部件,L E與W E及H E中之每一者的比分別為至少5:1 (亦即,L E與W E的比分別為至少5:1,且L E與H E的比分別為至少5:1)。藉助於其他實例,在一個實施例中,L E與W E及H E中之每一者的比為至少10:1。藉助於其他實例,在一個實施例中,L E與W E及H E中之每一者的比為至少15:1。藉助於其他實例,在一個實施例中,對於陽極群之各部件,L E與W E及H E中之每一者的比為至少20:1。
在一個實施例中,陽極群之部件之高度(H E)與寬度(W E)的比分別為至少0.4:1。舉例而言,在一個實施例中,對於陽極群之各部件,H E與W E之比將分別為至少2:1。藉助於其他實例,在一個實施例中,H E與W E的比將分別為至少10:1。藉助於其他實例,在一個實施例中,H E與W E的比將分別為至少20:1。然而,典型地,H E與W E的比通常將分別小於1,000:1。舉例而言,在一個實施例中,H E與W E的比將分別小於500:1。藉助於其他實例,在一個實施例中,H E與W E的比將分別低於100:1。藉助於其他實例,在一個實施例中,H E與W E的比將分別低於10:1。藉助於其他實例,在一個實施例中,對於陽極群之各部件,H E與W E之比將分別在約2:1至約100:1範圍內。
在一個實施例中,陰極群之部件由為陰極材料504之基底材料幅材104形成。現參考圖6B,陰極群之各部件具有底部、頂部以及在橫向幅材方向XWD上及在大體上垂直於負電極結構及正電極結構之交替序列前進之方向的方向上自其底部延伸至頂部的縱向軸(A CE)。另外,陰極群之各部件具有沿著平行於橫向幅材方向XWD之縱向軸(A CE)量測的長度(L CE)、在負電極結構及正電極結構之交替序列前進之下幅材方向WD上量測的寬度(W CE),及在垂直於長度(L CE)及寬度(W CE)之量測方向中之每一者的方向上量測的高度(H CE)。
陰極群之部件之長度(L CE)將視能量儲存裝置及其預期用途而變化。然而,一般而言,陰極群之各部件將通常具有在約5 mm至約500 mm範圍內的長度(L CE)。舉例而言,在一個此類實施例中,陰極群之各部件具有約10 mm至約250 mm之長度(L CE)。藉助於其他實例,在一個此類實施例中,陰極群之各部件具有約25 mm至約100 mm之長度(L CE)。
陰極群之部件之寬度(W CE)亦將視能量儲存裝置及其預期用途而變化。然而,一般而言,陰極群之部件將通常具有在約0.01 mm至2.5 mm範圍內之寬度(W CE)。舉例而言,在一個實施例中,陰極群之各部件的寬度(W CE)將在約0.025 mm至約2 mm範圍內。藉助於其他實例,在一個實施例中,陰極群之各部件的寬度(W CE)將在約0.05 mm至約1 mm範圍內。
陰極群之部件之高度(H CE)亦將視能量儲存裝置及其預期用途而變化 然而,一般而言,陰極群之部件將通常具有在約0.05 mm至約10 mm範圍內之高度(H CE)。舉例而言,在一個實施例中,陰極群之各部件之高度(H CE)將在約0.05 mm至約5 mm範圍內。藉助於其他實例,在一個實施例中,陰極群之各部件的高度(H CE)將在約0.1 mm至約1 mm範圍內。根據一個實施例,陰極群之部件包括一或多個具有第一高度之第一陰極部件及一或多個具有除第一高度以外的第二高度之第二陰極部件。在又一實施例中,一或多個第一陰極部件及一或多個第二陰極部件之不同高度可經選擇以適應電極總成之預定形狀(諸如沿著縱向及/或橫向軸中之一或多者具有不同高度之電極總成形狀),及/或提供二次電池之預定效能特性。
一般而言,陰極群之各部件具有基本上大於寬度(W CE)且基本上大於其高度(H CE)之長度(L CE)。舉例而言,在一個實施例中,對於陰極群之各部件,L CE與W CE及H CE中的每一者的比分別為至少5:1 (亦即,L CE與W CE的比分別為至少5:1,且L CE與H CE的比分別為至少5:1)。藉助於其他實例,在一個實施例中,對於陰極群之各部件,L CE與W CE及H CE中的每一者之比為至少10:1。藉助於其他實例,在一個實施例中,對於陰極群之各部件,L CE與W CE及H CE中的每一者之比為至少15:1。藉助於其他實例,在一個實施例中,對於陰極群之各部件,L CE與W CE及H CE中的每一者之比為至少20:1。
在一個實施例中,陰極群之部件之高度(H CE)與寬度(W CE)的比分別為至少0.4:1。舉例而言,在一個實施例中,對於陰極群之各部件,H CE與W CE的比將分別為至少2:1。藉助於其他實例,在一個實施例中,對於陰極群之各部件,H CE與W CE的比分別為至少10:1。藉助於其他實例,在一個實施例中,對於陰極群之各部件,H CE與W CE的比將分別為至少20:1。然而,典型地,對於陽極群之各部件,H CE與W CE的比通常將分別小於1,000:1。舉例而言,在一個實施例中,對於陰極群之各部件,H CE與W CE的比將分別小於500:1。藉助於其他實例,在一個實施例中,H CE與W CE的比將分別小於100:1。藉助於其他實例,在一個實施例中,H CE與W CE的比將分別小於10:1。藉助於其他實例,在一個實施例中,對於陰極群之各部件,H CE與W CE之比將分別在約2:1至約100:1範圍內。
在一個實施例中,陽極集電器506之電導率亦基本上大於負電極活性材料層之電導率。舉例而言,在一個實施例中,當存在用以將能量儲存於裝置中的所施加電流或用以使裝置放電的所施加負載時,陽極集電器506之電導率與負電極活性材料層之電導率之比為至少100:1。藉助於其他實例,在一些實施例中,當存在用以將能量儲存於裝置中的所施加電流或用以使裝置放電的所施加負載時,陽極集電器506之電導率與負電極活性材料層之電導率之比為至少500:1。藉助於其他實例,在一些實施例中,當存在用以將能量儲存於裝置中的所施加電流或用以使裝置放電的所施加負載時,陽極集電器506之電導率與負電極活性材料層之電導率之比為至少1000:1。藉助於其他實例,在一些實施例中,當存在用以將能量儲存於裝置中的所施加電流或用以使裝置放電的所施加負載時,陽極集電器506之電導率與負電極活性材料層之電導率之比為至少5000:1。藉助於其他實例,在一些實施例中,當存在用以將能量儲存於裝置中的所施加電流或用以使裝置放電的所施加負載時,陽極集電器506之電導率與負電極活性材料層之電導率之比為至少10,000:1。
一般而言,陰極集電器層510可包含金屬,諸如鋁、碳、鉻、金、鎳、NiP、鈀、鉑、銠、釕、矽與鎳之合金、鈦或其組合(參見A. H. Whitehead及M. Schreiber, Journal of the Electrochemical Society, 152(11) A2105-A2113 (2005)之「Current collectors for positive electrodes of lithium-based batteries」)。藉助於其他實例,在一個實施例中,陰極集電器層510包含金或其合金,諸如矽化金。藉助於其他實例,在一個實施例中,陰極集電器層510包含鎳或其合金,諸如矽化鎳。 間隔物
參考圖27至32D,描述具有間隔物部件之本發明之實施例。在一個實施例中,間隔物部件2700a至2700d添加至基底材料幅材104。在其他實施例中,間隔物部件2700a至2700d添加至電極材料幅材1402、1404及1406中之一或多者。在一個實施例中,間隔物部件2700a至2700d為連續或非連續有機或無機材料帶。間隔物部件2700a至2700d可在Z軸及X軸中之一或多者中為連續或非連續的。在一些實施例中,間隔物部件2700a至2700d由電絕緣材料及/或可離子滲透聚合編織材料製成。在一個實施例中,間隔物部件2700a至2700d由與隔板層500或隔板材料1406相同的材料製成。在一些實施例中,間隔物部件2700a至2700d包含聚對苯二甲酸伸乙酯(PET)或聚醯亞胺(PI)。在其他實施例中,間隔物部件2700a至2700d包含導電材料。應注意,儘管間隔物部件提及為間隔物部件2700a至2700d,但可能存在1或大於1的任何數目個間隔物部件,且在一些實施例中,不使用間隔物部件。
一般而言,間隔物部件包含間隔物材料,該間隔物材料包含聚合材料、諸如黏著帶之複合物、電極集電器、電極活性材料、相對電極活性材料、相對電極集電器、隔板材料或(在電池環境中)化學上惰性之材料。舉例而言,在一個實施例中,間隔物部件包含具有接受載流子離子之容量的陽極活性材料;在此實施例中,通常較佳地,陽極活性材料包含石墨、石墨烯或具有小於每莫耳間隔物材料一莫耳載流子離子之載流子離子容量的其他陽極活性材料。藉助於其他實例,在一個實施例中,間隔物部件包含具有接受載流子離子之容量的陰極活性材料。藉助於其他實例,在一個實施例中,間隔物部件可包含聚合材料(例如均聚物、共聚物或聚合物摻合物);在此類實施例中,間隔物部件可包含衍生自含有以下各項之單體的氟聚合物:偏二氟乙烯、六氟丙烯、四氟丙烯、聚烯烴(諸如聚乙烯、聚丙烯或聚丁烯)、乙烯-二烯-丙烯三元共聚物、聚苯乙烯、聚甲基丙烯酸甲酯、聚乙二醇、聚乙酸乙烯酯、聚乙烯縮丁醛、聚縮醛及聚乙二醇二丙烯酸酯、甲基纖維素、羧甲基纖維素、苯乙烯橡膠、丁二烯橡膠、苯乙烯-丁二烯橡膠、異戊二烯橡膠、聚丙烯醯胺、聚乙烯醚、聚丙烯酸、聚甲基丙烯酸、聚丙烯腈、聚偏二氟乙烯聚丙烯腈、聚氧化乙烯、丙烯酸酯、苯乙烯、環氧樹脂、聚矽氧、聚偏二氟乙烯-共-六氟丙烯、聚偏二氟乙烯-共-三氯乙烯、聚甲基丙烯酸甲酯、聚丙烯腈、聚乙烯吡咯啶酮、聚乙酸乙烯酯、聚乙烯-共-乙酸乙烯酯、聚氧化乙烯、乙酸纖維素、乙酸丁酸纖維素、乙酸丙酸纖維素、氰基乙基普魯蘭、聚乙烯氰基乙醇、氰基乙基纖維素、氰基乙基蔗糖、普魯蘭、羧甲基纖維素、丙烯腈-苯乙烯-丁二烯共聚物、聚醯亞胺、聚偏二氟乙烯-六氟丙烯、聚偏二氟乙烯-三氯乙烯、聚甲基丙烯酸甲酯、聚丙烯腈、聚乙烯吡咯啶酮、聚乙酸乙烯酯、乙烯乙酸乙烯酯共聚物、聚氧化乙烯、乙酸纖維素、乙酸丁酸纖維素、乙酸丙酸纖維素、氰基乙基普魯蘭、聚乙烯氰基乙醇、氰基乙基纖維素、氰基乙基蔗糖、普魯蘭、羧甲基纖維素、丙烯腈苯乙烯丁二烯共聚物、聚醯亞胺、聚對苯二甲酸伸乙酯、聚對苯二甲酸伸丁酯、聚酯、聚縮醛、聚醯胺、聚醚醚酮、聚醚碸、聚苯醚、聚苯硫醚、聚乙烯萘及/或其組合或共聚物。
在一個實施例中,間隔物部件呈具有基底及設置於基底之一個表面上之黏著層的黏著帶形式。黏著帶基底之組成不受特定限制,且可使用已知可用於黏著帶之各種基底。一般而言,塑膠膜為較佳的,且特定實例包括聚烯烴膜,諸如聚乙烯、聚丙烯、聚對苯二甲酸伸乙酯、聚對苯二甲酸伸丁酯、聚苯硫醚、聚醯亞胺或聚醯胺膜。在一些實施例中,聚烯烴、聚對苯二甲酸伸乙酯及聚醯亞胺膜就適合於電池應用之耐熱性及耐化學性而言可為較佳的。黏著帶基底可具有介於約4至200 µm之範圍內,例如介於6至150 µm或甚至約25至100 µm之範圍內的厚度。構成黏著帶之黏著層的黏著劑可包含例如基於橡膠的黏著劑、丙烯酸黏著劑、基於聚矽氧之黏著劑或其組合。
在一些實施例中,間隔物部件2700a至2700d可在Z軸方向上為連續的(例如連續帶或條帶),可在Z軸或X軸方向(或此兩者)上為非連續的(例如一系列非連續帶、突起部或類似物),或可為多孔的(例如在間隔物部件2700a至2700d之體積內具有空隙)。
在一個實施例中,間隔物部件2700a至2700d可在本文中所描述之拼接、切割或穿孔操作中之任一者或全部之前施加至基底材料幅材104。在其他實施例中,在本文中所描述之拼接、切割或穿孔操作中之一或多者之後施加間隔物部件2700a、2700b。在間隔物部件2700a至2700d在本文中所描述之拼接、切割或穿孔操作之前施加的實施例中,間隔物部件亦將具有本文中所描述之拼接、切割或穿孔操作中之一或多者,以便在其中切割通孔2704 (圖27)。通孔2704之大小、形狀及位置經設定以與基底材料幅材104之通孔704對準。在一個實施例中,本文中描述為用於在基底材料幅材104中切割通孔704之過程可類似地用於在間隔物部件2700a至2700d中切割通孔2704。間隔物部件2700a至2700d具有Y軸方向上的寬度W sl、X軸方向上的長度L sl及Z軸方向上的高度H sl(圖27及28)。X軸、Y軸及Z軸方向各自互相垂直且與x、y、z卡氏座標系統有關。寬度W sl可經預定以使得在組裝電極子單元時,間隔物部件使子單元之相鄰層之間的在Y軸方向上的距離增大指定量。應注意,在實施例中,基底材料幅材可為隔板層500、陽極材料502或陰極材料504中之任一者。
在一個實施例中,寬度W sl大於或等於Y軸方向上之陰極活性材料層512寬度之50%。在又一實施例中,寬度W sl大於或等於陰極活性材料層512的50%加上Y軸方向上之陰極集電器層510寬度之寬度。在另一實施例中,寬度W sl大於或等於陰極活性材料層512的50%加上Y軸方向上之膨脹間隙3002之寬度W G
在一個實施例中,間隔物部件2700a至2700d為帶材料,其具有施加至間隔物部件之第一表面2720的黏著劑,該黏著劑將間隔物部件2700a至2700d固定至基底材料幅材104。在一些實施例中,黏著劑為將間隔物部件2700a至2700d永久地固定至基底材料幅材104的強黏著劑。在其他實施例中,黏著劑為將間隔物部件2700a至2700d以可移除方式固定至基底材料幅材104的弱黏著劑。如本文中所使用,強黏著劑定義為具有足夠強度之黏著劑,其中無法在不損害間隔物部件2700a、2700b或2700c、2700d及/或基底材料幅材104中之一者或兩者的情況下自基底材料幅材104移除間隔物部件2700a至2700d。如本文中所使用,弱黏著劑定義為具有足夠強度以將間隔物部件2700a至2700d黏著至基底材料幅材104,但允許在不引起對至少基底材料幅材104之材料損害的情況下移除間隔物部件。在使用弱黏著劑的實施例中,在移除時,較佳地,黏著層不在基底材料幅材104上留下任何殘餘物。在另一實施例中,間隔物部件具有施加至第一表面2720及第二相對表面2721兩者的黏著劑。在此實施例中,釋放層可施加至第二表面2021,其在黏著至相鄰層之前經移除。在又其他實施例中,間隔物部件2700a至2700d在不黏著至任何層的情況下施加。在另一實施例中,使用諸如3D印刷過程的印刷過程來施加間隔物部件2700a至2700d。在再一實施例中,藉由將間隔物部件2700a至2700d熔融或焊接至各別層來施加間隔物部件2700a至2700d。
在又一實施例中,間隔物部件可在如本文所描述之合併及堆疊操作中之一或多者期間添加。舉例而言,在一個實施例中,間隔物部件材料之額外線軸退繞且在合併材料幅材之相鄰層之間的所要位置處合併至合併材料幅材中。在此實施例中,間隔物部件可形成以與來自電極材料線軸1402、1404及1406之幅材類似之方式合併的材料幅材之部分。在又一實施例中,間隔物部件可形成兩個單獨條帶,一個條帶用於2700a及2700b中之每一者,其中條帶中之每一者使用其自有定軌器孔輸送且使用與藉由合併來自電極材料線軸1402、1404及1406之幅材而描述之過程類似的過程合併。
在又一實施例中,參考圖35,在堆疊操作期間添加間隔物部件。在此實施例中,諸如陽極集電器層506及陽極活性材料層508之第一電極堆疊至收納器2014上。隨後,隔板500堆疊於其上。接下來,一對個別間隔物部件3700a、3700b堆疊至隔板500上。個別間隔物部件3700a、3700b可由與間隔物部件2700a、2700b類似的材料製成,且其大小及形狀可類似地設定。然而,在此實施例中,個別間隔物部件3700a、3700b中之每一者在堆疊過程期間各自向下按壓對準銷2012,而非合併至合併材料幅材中。個別間隔物部件3700a、3700b可為環形,具有大小及形狀經設定以對應於對準銷2012之中心孔,使得個別間隔物部件中之每一者可在無黏結或材料損壞的情況下沿著對準銷向下滑動至位置中。在個別間隔物部件3700a、3700b堆疊至隔板500上之後,陰極層堆疊於其上。在此實施例中,陰極層包含共用陰極集電器510,且在其各相對側上具有陰極活性材料層512、512'。在此實施例中,已在鄰接個別間隔物部件3700a、3700b之區域中剝蝕或以其他方式移除陰極活性材料層512。由於個別間隔物部件3700a、3700b在Y軸方向上具有大於陰極活性材料層512在Y軸方向上之寬度的寬度W sl,因此在間隔物500與陰極活性材料層512之間界定膨脹間隙3002。如所說明,一旦個別間隔物部件3700a、3700b及/或陰極層(510、512、512')經堆疊,隔板500便在其遠端501、503處摺疊/彎曲(例如貼合)成「L」形狀部分。在此實施例中,第二對個別間隔物部件3700c、3700d置放至相對陰極活性材料層512'上。在此實施例中,相對陰極活性材料層512'已類似地剝蝕,或另外自鄰接個別間隔物層3700c、3700d之區域移除陰極活性材料。因此,陰極活性材料層在X軸方向上之長度加上一對個別間隔物層3700a、3700b在X軸方向上之長度等於陰極集電器510之在X軸方向上的長度。在此實施例中,第二對個別間隔物部件3700c、3700d置放至相對陰極活性材料層512'上。第二隔板500'類似地堆疊至個別間隔物部件3700c、3700d上。在一個實施例中,第二對間隔物部件3700c、3700d中之每一者之寬度W sl大於陰極活性材料層512'之寬度,因此在間隔物500'與陰極活性材料層512'之間產生第二膨脹間隙(圖中未示)。在一個實施例中,包含陽極活性材料層508'及陽極集電器506'之鏡像陽極層堆疊至隔板層500'上,從而完成電極子單元總成。應注意,在一些實施例中,以與隔板500類似之方式,隔板500'在其遠端處摺疊/彎曲(例如貼合)成「L」形狀部分。在一些實施例中,以上過程可重複任何數目次,直至已堆疊所要數目個子單元為止。
在一個實施例中,間隔物部件2700a至2700d經定位而使得間隔物部件2700a至2700d之整體在朝著電極中心點2702之橫向幅材方向上處於由內部孔洞608界定的外邊界內部。在其他實施例中,間隔物部件2700a、2700b可定位成與內部孔洞608或外部孔洞610部分重疊。相對於間隔物部件2700a至2700d之使用及置放,此類間隔物部件可以與上文相對於基底材料幅材104所描述之方式基本上類似的方式類似地應用於電極材料幅材1402、1404及1406或陽極集電器層506、陽極活性材料層508、隔板500、陰極活性材料層512及陰極集電器510中之一或多者。
現將相對於堆疊電極子單元2900a至2900d及堆疊胞元2904描述間隔物部件2700a至2700d之使用。電極子單元2900a至2900d類似於電極子單元2018,不同之處在於電極子單元2900a至2900e包括一或多個間隔物部件2700a至2700d。堆疊胞元2904類似於堆疊胞元1704,不同之處在於堆疊胞元2904使用電極子單元2900a至2900d中之一或多者組裝。堆疊胞元2904可包括一或多個電極子單元2900a至2900e,諸如1至100個電極子單元2900a至2900d。在其他實施例中,堆疊胞元2904可包括如特定應用可能所需要的任何數目的電極子單元2900a至2900d。
現參考圖29及30A至30F描述電極子單元2900a至2900f。如圖30A中所展示,沿著堆疊胞元2904之剖面線30A-D截取的截面說明堆疊胞元2904之電極子單元2900a之群中的電極子單元2900a之截面。在此實施例中,各電極子單元2900a包括陰極(相對電極)集電器層510、陰極活性層(相對電極) 512、隔板層500、陽極活性材料層(電極) 508、陽極集電器層506及間隔物部件2700a、2700b。在此實施例中,間隔物部件2700a、2700b以使得隔板層在各遠端3000a、3000b處(在橫向幅材方向上)摺疊成具有「L形」3008以與陰極集電器層510接觸之方式直接鄰近於隔板層500定位。在此實施例中,間隔物部件2700a、2700b自陽極集電器506之下邊界3006延伸至豎直地(在Z方向上)在陰極活性材料層512之上邊界3004與下邊界3010之間的區。在此實施例中,間隔物部件2700a、2700b各自具有足夠寬度W sl,使得膨脹間隙3002界定於隔板層500與陽極活性材料層508之間。寬度W sl經控制以使得膨脹間隙3002具有如所指定之寬度W G。在實施例中,高度H G經設定為0微米(例如無間隙)至1000微米,諸如1 µm、2 µm、5 µm、10 µm、20 µm、50 µm、100 µm、200 µm、300 µm、400 µm、500 µm、600 µm、700 µm、800 µm、900 µm或1000 µm,或更大。
在一些實施例中,間隔物部件2700a至2700d在橫向幅材方向上所定位之位置稱為邊限2701a、2701b。邊限2701a、2701b定義為自幅材(或電極子單元,或單位胞元)之外邊緣2750延伸至間隔物部件2700a至2700d之內邊緣2752。電極層之對應於相對電極(例如包含陰極集電器層510及陰極活性材料層512)及/或電極(例如包含陽極集電器506及陽極活性材料層508)之邊限2701a、2701b的此區可稱為相對電極或電極之側接部分。換言之,在一些實施例中,側接部分(3027a、3027b) (參見圖30A)為陽極層或陰極層之與間隔物部件對準或鄰接至間隔物部件的部分。側接部分3027a、3027b之間的陽極層或陰極層之區可稱為其中心部分或主體部分。
在一些實施例中,邊限2701a、2701b (例如第一邊緣邊限2701a及第二邊緣邊限2701b)針對單位胞元在橫向幅材方向上包括陽極(例如電極)集電器層506、隔板層500及陰極(例如相對電極)集電器層510,及間隔物部件2700a至2700d (例如帶間隔物),該等帶間隔物中之每一者黏著至以下各項中之至少一者:(i)電極集電器,(ii)電極層,(iii)隔板,及(iv)相對電極集電器。主體2725為間隔物部件2700a至2700d之在橫向幅材方向上接近於電極子單元2900a至2900d之中心的幅材、電極子單元或單位胞元之部分(亦即,邊限2701a與2701b之間的區域)。主體2725在Z方向上包括陽極(例如電極)集電器層506、陽極活性材料層508、隔板層500、陰極(例如相對電極)集電器層510、陰極活性材料層512及膨脹間隙3002中之每一者中的一或多者,但無間隔物部件2700a至2700d。在另一實施例中,各電極子單元2900b包括陰極(相對電極)集電器層510、陰極主動層(相對電極) 512、隔板層500、陽極活性材料層(電極) 508、陽極集電器層506及間隔物部件2700a、2700b。在此實施例中,間隔物部件2700a、2700b以使得隔板層在各遠端3000a、3000b處(在橫向幅材方向上)摺疊/彎曲(例如貼合)成具有「L形」3008以與陰極集電器層510接觸之方式直接鄰近於隔板層500定位。在此實施例中,間隔物部件2700a、2700b自陽極集電器506之下邊界3006延伸至與陰極活性材料層512之上邊界3004豎直對準的區。在此實施例中,間隔物部件2700a、2700b各自具有足夠寬度W sl,使得膨脹間隙3002界定於隔板層500與陽極活性材料層508之間。寬度W sl經控制以使得膨脹間隙3002具有如所指定之高度W G。在實施例中,寬度W G經設定為0微米(例如無間隙)至1000微米,諸如1 µm、2 µm、5 µm、10 µm、20 µm、50 µm、100 µm、200 µm、300 µm、400 µm、500 µm、600 µm、700 µm、800 µm、900 µm或1000 µm,或更大。
在一些實施例中,間隔物部件2700a至2700d具有在X軸方向上之長度L sl。長度L sl等於已剝蝕或以其他方式移除(例如自遠端3015a、3015b及3021a、3021b,如圖30E及30F中所展示)之陽極活性材料層及/或陰極活性材料層之在X軸方向上的偏移。在實施例中,間隔物部件2700a至2700d之長度L sl經設定為0微米至500微米,諸如100微米、200微米、300微米、400微米或500微米或更多,如在X軸方向上所量測,因此產生0微米至500微米,諸如100微米、200微米、300微米、400微米或500微米或更多之等效偏移。
在一些實施例中,相對電極層(陰極集電器510及陰極活性材料層512一起)之側接部分3027a、3027b在Y軸方向上之寬度小於或等於相對電極之中心部分之寬度的50%,諸如小於中心部分之寬度的40%或諸如小於中心部分之寬度的20%,或諸如小於中心部分之寬度的10%。
由膨脹間隙3002佔據的體積亦可稱為空隙分數,且表示為堆疊胞元2904內之開放空間(亦即,空隙)與活性材料之比。藉由具有由具有更大寬度W sl的間隔物部件2700a、2700b促進的更大寬度W G,提供更高空隙分數或更大膨脹間隙3002。一般情況下,較大膨脹間隙3002為堆疊胞元提供用於活性材料之更多空間,該等活性材料在一些實施例中可能在放電或充電操作期間腫脹。然而,在一些實施例中,增大的膨脹間隙3002大小係以電池容量為代價的,此係因為膨脹間隙3002及帶間隔物2700a、2700b並不構成活性材料且因此並不添加至堆疊胞元2904之理論電池容量。
如圖30B中所展示,展示另一實施例,其中沿著堆疊胞元2904之剖面線30A-D截取的截面說明堆疊胞元2904之電極子單元2900b之群中的電極子單元2900b之截面。在此實施例中,各電極子單元2900b包括陰極(相對電極)集電器層510、陰極活性層(相對電極) 512、隔板層500、陽極活性材料層(電極) 508、陽極集電器層506及間隔物部件2700a、2700b。在此實施例中,間隔物部件2700a、2700b以使得隔板層在各遠端3000a、3000b處(在橫向幅材方向上)摺疊/彎曲(例如貼合)成具有「L形」3008以與陽極活性材料層508接觸之方式直接鄰近於隔板層500定位。在此實施例中,間隔物部件2700a、2700b自陽極活性材料層508之下邊界3007延伸至與陰極活性材料層512之上邊界3004豎直對準的區。在此實施例中,間隔物部件2700a、2700b各自具有足夠寬度W sl,使得膨脹間隙3002界定於隔板層500與陽極活性材料層508之間。寬度W sl經控制以使得膨脹間隙3002具有如所指定之寬度W G。在實施例中,寬度W G經設定為0微米(例如無間隙)至1000微米,諸如1 µm、2 µm、5 µm、10 µm、20 µm、50 µm、100 µm、200 µm、300 µm、400 µm、500 µm、600 µm、700 µm、800 µm、900 µm或1000 µm,或更大。
如圖30C中所展示,展示另一實施例,其中沿著堆疊胞元2904之剖面線30A-D截取的截面說明堆疊胞元2904之電極子單元2900c之群中的電極子單元2900c之截面。此實施例類似於圖30B中所展示之實施例,不同之處在於陽極及陰極層經調換,使得陰極層展示於頂部上且陽極層展示於底部上。在此實施例中,各電極子單元2900b包括陰極(相對電極)集電器層510、陰極活性層(相對電極) 512、隔板層500、陽極活性材料層(電極) 508、陽極集電器層506及間隔物部件2700a、2700b。在此實施例中,間隔物部件2700a、2700b以使得隔板層在各遠端3000a、3000b處(在橫向幅材方向上)摺疊/彎曲(例如貼合)成具有「L形」以與陽極集電器層506接觸之方式直接鄰近於隔板層500定位。在此實施例中,間隔物部件2700a、2700b自陰極集電器層510之下邊界延伸至與陽極活性材料層508之上邊界豎直對準的區。在此實施例中,間隔物部件2700a、2700b各自具有足夠寬度W sl,使得膨脹間隙3002界定於隔板層500與陰極活性材料層512之間。寬度W sl經控制以使得膨脹間隙3002具有如所指定之寬度W G。在實施例中,寬度W G經設定為0微米(例如無間隙)至1000微米,諸如1 µm、2 µm、5 µm、10 µm、20 µm、50 µm、100 µm、200 µm、300 µm、400 µm、500 µm、600 µm、700 µm、800 µm、900 µm或1000 µm,或更大。
如圖30D中所展示,展示另一實施例,其中沿著堆疊胞元2904之剖面線30A-D截取的截面說明堆疊胞元2904之電極子單元2900d之群中的電極子單元2900d之截面。在此實施例中,電極子單元2900d包括第一陽極集電器層506a、第一陽極活性材料層508a、第一隔板層500a、第一膨脹間隙3002a、第一陰極活性材料層512a、陰極集電器層510、第二陰極活性材料層512b、第二膨脹間隙3002b、第二隔板層500b、第二陽極活性材料層508b、第二陽極集電器層506b。此實施例亦包括間隔物部件2700a、2700b及第二間隔物部件2700c、2700d。在此實施例中,間隔物部件2700a、2700b以使得第一隔板層500a在各遠端3000a、3000b處(在橫向幅材方向上)摺疊成具有「L形」3008以與陽極集電器層506a接觸之方式直接鄰近於第一隔板層500a定位。在此實施例中,間隔物部件2700a、2700b在與陽極活性材料層508a之下邊界3012豎直對準之位置處自第一隔板層500a延伸至陰極集電器層510之上邊界3014。因此,間隔物部件2700a、2700b促進膨脹間隙3002a界定於第一隔板層500a與第一陰極活性材料層512a之間。此外,第二間隔物部件2700c、2700d在鄰近於第二隔板層2700c、2700d之與第二陽極活性材料層508b之上邊界3018豎直對準的位置處定位於陰極集電器層510之下邊界3016與第二隔板層500b之間。因此,第二膨脹間隙3002b界定於第二陰極活性材料層512b與第二隔板層500b之間。寬度W sl經控制以使得膨脹間隙3002a、3002b分別具有如所指定之寬度W Ga及W Gb。在實施例中,寬度W Ga及W Gb設定為0微米(例如無間隙)至1000微米,諸如1 µm、2 µm、5 µm、10 µm、20 µm、50 µm、100 µm、200 µm、300 µm、400 µm、500 µm、600 µm、700 µm、800 µm、900 µm或1000 µm,或更大。
如圖30E中所展示,展示另一實施例,其中沿著堆疊胞元2904之剖面線30A-D截取的截面說明堆疊胞元2904之電極子單元2900e之群中的電極子單元2900e之截面。在此實施例中,各電極子單元2900e包括陰極(相對電極)集電器層510、陰極活性層(相對電極) 512、隔板層500、陽極活性材料層(電極) 508、陽極集電器層506及間隔物部件2700a、2700b。在此實施例中,間隔物部件2700a、2700b直接鄰近於隔板層500、陰極活性材料層512及陰極集電器層510定位。在此實施例中,間隔物部件2700a、2700b在Y軸方向上自隔板500之下邊界3011延伸至陰極集電器510之上邊界3013。陰極活性材料層已在其遠端3015a、3015b處剝蝕或以其他方式移除等於間隔物部件2700a、2700b之長度L sl的量,使得陰極活性材料層512之在X軸方向上的總長度加上兩個間隔物部件2700a、2700b之長度L sl等於陰極集電器層510之在X軸方向上的長度。在此實施例中,間隔物部件2700a、2700b各自為寬度W sl,其等於陰極活性材料層512之在Y軸方向上的寬度,或更大。在寬度W sl大於陰極活性材料層512在Y軸方向上之寬度的實施例中,膨脹間隙3002界定於陰極活性材料層512與隔板500之間。在實施例中,寬度W sl經控制以使得膨脹間隙3002具有如所指定之寬度W G。在實施例中,寬度W G經設定為0微米(例如無間隙)至1000微米,諸如1 µm、2 µm、5 µm、10 µm、20 µm、50 µm、100 µm、200 µm、300 µm、400 µm、500 µm、600 µm、700 µm、800 µm、900 µm或1000 µm,或更大。
如圖30F中所展示,展示另一實施例,其中沿著堆疊胞元2904之剖面線30A-D截取的截面說明堆疊胞元2904之電極子單元2900f之群中的電極子單元2900f之截面。在此實施例中,各電極子單元2900f包括陰極(相對電極)集電器層510、陰極活性層(相對電極) 512、隔板層500、陽極活性材料層(電極) 508、陽極集電器層506及間隔物部件2700a至2700b。在此實施例中,間隔物部件2700a、2700b直接鄰近於隔板層500、陰極活性材料層512及陰極集電器層510定位。在此實施例中,間隔物部件2700a、2700b在Y軸方向上自隔板500之下邊界3011延伸至陰極集電器510之上邊界3013。陰極活性材料層已在其遠端3015a、3015b處剝蝕或以其他方式移除等於間隔物部件2700a、2700b之長度L sl的量,使得陰極活性材料層512之在X軸方向上的總長度加上兩個間隔物部件2700a、2700b之長度L sl等於陰極集電器層510之在X軸方向上的長度。在此實施例中,間隔物部件2700a、2700b各自為寬度W sl,其等於陰極活性材料層512之在Y軸方向上的寬度,或更大。在寬度W sl大於陰極活性材料層512在Y軸方向上之寬度的實施例中,膨脹間隙3002界定於陰極活性材料層512與隔板500之間。在實施例中,寬度W sl經控制以使得膨脹間隙3002a具有如所指定之寬度W G。在實施例中,寬度W G經設定為0微米至1000微米。在此實施例中,間隔物部件2700c、2700d在Y軸方向上自隔板500之上邊界3017延伸至陽極集電器506之下邊界3019。陽極活性材料層508已在其遠端3021a、3021b處剝蝕或以其他方式移除等於間隔物部件2700c、2700d之長度L sl的量,使得陽極活性材料層508之在X軸方向上的總長度加上兩個間隔物部件2700c、2700d之長度L sl等於陽極集電器層506之在X軸方向上的長度。在此實施例中,間隔物部件2700c、2700d各自為寬度W sl,其等於陽極活性材料層512之在Y軸方向上的寬度,或更大。在寬度W sl大於陰極活性材料層508在Y軸方向上之寬度的實施例中,膨脹間隙3002b界定於陽極活性材料層508與隔板500之間。在實施例中,寬度W sl經控制以使得膨脹間隙3002b具有如所指定之寬度W G。在實施例中,寬度W G經設定為0微米(例如無間隙)至1000微米,諸如1 µm、2 µm、5 µm、10 µm、20 µm、50 µm、100 µm、200 µm、300 µm、400 µm、500 µm、600 µm、700 µm、800 µm、900 µm或1000 µm,或更大。
在一些實施例中,舉例而言,如圖30A、30C、30D、30E及30F中所展示,相對電極層(例如包含陰極集電器510及陰極活性材料層512)之陰極活性材料512 (例如相對電極活性材料)的至少一部分位於間隔物部件2700a、2700b之間,使得相對電極活性材料之部分及間隔物部件位於由x及z軸界定的共同平面中。
現參考圖31A至31D描述電極子單元2900a至2900d之額外描述。圖31A至31D說明沿著圖29之區段31A-D截取之電極子單元2900a至2900d之截面圖,且圖32A至32D說明沿著圖29之區段32A-D截取之電極子單元2900a至2900d之截面圖。
如圖31A中所展示,在沿著圖29之區段31A-D截取的區段處,電極子單元2900a自左至右包括陽極集電器層506、陽極活性材料層508、膨脹間隙3002、隔板層500、陰極活性材料層512及陰極集電器層510。在所展示之實施例中,電極子單元2900a之層由包圍電極子單元2900a之外殼2901限界。值得注意地,在電極子單元2900a之此區段處,並不存在間隔物部件2700a、2700b。然而,存在由間隔物部件2700a、2700b促進之膨脹間隙3002。參考圖32,在電極子單元2900a之此區段中,可見間隔物部件2700a、2700b,但不可見膨脹間隙3002。
如圖31B中所展示,在沿著圖29之區段31A-D截取的區段處,電極子單元2900b自左至右包括陽極集電器層506、陽極活性材料層508、膨脹間隙3002、隔板層500、陰極活性材料層512及陰極集電器層510。在所展示之實施例中,電極子單元2900a之層由包圍電極子單元2900b之外殼2901限界。值得注意地,在電極子單元2900b之此區段處,並不存在間隔物部件2700a、2700b。然而,存在由間隔物部件2700a、2700b促進之膨脹間隙3002。參考圖32B,在電極子單元2900b之此區段中,可見間隔物部件2700a、2700b,但不可見膨脹間隙3002。
如圖31C中所展示,在沿著圖29之區段31A-D截取的區段處,電極子單元2900c自左至右包括陰極集電器層510、陰極活性材料層512、膨脹間隙3002、隔板層500、陽極活性材料層508及陽極集電器層506。在所展示之實施例中,電極子單元2900c之層由包圍電極子單元2900c之外殼2901限界。值得注意地,在電極子單元2900c之此區段處,並不存在間隔物部件2700a、2700b。然而,存在由間隔物部件2700a、2700b促進之膨脹間隙3002。參考圖32C,在電極子單元2900c之此區段中,可見間隔物部件2700a、2700b,但不可見膨脹間隙3002。
如圖31D中所展示,在沿著圖29之區段31A-D截取的區段處,電極子單元2900c自左至右包括第一陽極集電器層506a、第一陽極活性材料層508a、第一隔板層500a、第一膨脹間隙3002a、第一陰極活性材料層512a、陰極集電器層510、第二陰極活性材料層512b、第二膨脹間隙3002b、第二隔板層500b、第二陽極活性材料層508b、第二陽極集電器層506b。在所展示之實施例中,電極子單元2900c之層由包圍電極子單元2900c之外殼2901限界。值得注意地,在電極子單元2900c之此區段處,並不存在間隔物部件2700a至2700d。然而,存在由間隔物部件2700a至2700d促進之膨脹間隙3002a、3002b。參考圖32D,在電極子單元2900d之此區段中,可見間隔物部件2700a至2700d,但不可見膨脹間隙3002a、3002b。
應瞭解,堆疊胞元可包括呈重複堆疊配置的任何數目個電極子單元2900a至2900d。在堆疊時,電極子單元2900a至2900d堆疊成使得隔板層500始終處於相鄰陽極活性材料層508與陰極活性材料層512之間,以便防止堆疊胞元2904之短路。如本文中所論述,隔板層500適於使陽極活性材料層508與陰極活性材料層512電隔離,同時准許其間之載流子離子交換。
在實施例中,如上文所描述之膨脹間隙3002 (及3002a、3002b)用於在堆疊胞元2904內為活性材料提供空間以供膨脹。在具有堆疊胞元2904之電池1804之充電及放電循環後,載流子離子在電極(508、512)與相對電極結構(508、512)之間行進,且可嵌入至位於行進方向內之陽極或陰極活性電極材料中。載流子離子嵌入及/或摻合至電極材料中之效應可使材料腫脹或膨脹。因此,由膨脹間隙3002提供之空隙允許材料在其中膨脹,而不對電池1804造成結構損害。在一些情況下,若膨脹間隙3002提供不足的空隙,或若並不使用間隔物部件2700a至2700d,且因此並不提供膨脹間隙,則電池1804可腫脹至其外殼斷裂或發生內部短路的點。因此,取決於所使用之電池1804及材料之所要效能,應視需要使用間隔物部件2700a至2700d提供適合膨脹間隙3002。在一些實施例中,膨脹間隙體積與活性材料體積之空隙分數可小於55%,諸如小於50%、小於45%、小於40%及/或甚至小於35%。在另一實施例中,空隙分數可大於90%,諸如大於95%、大於98%及/或甚至大於99%。
在一個實施例中,間隔物部件2700a至2700d可包含導電材料以便維持電極集電器層與相對電極活性材料層之間的電連接。安置於電極集電器層與相對電極活性材料層之間的間隔物部件2700a至2700d亦可包含突起部、表面粗糙度或施加預期膨脹間隙及/或空隙分數的其他特徵。在其他實施例中,間隔物部件270a至270d可包含與相鄰結構(電極結構、相對電極結構、隔板、電池外殼材料等)或與電池1804或堆疊胞元2904中之電解質及/或載流子離子在離子上、電學上及電化學上相容(例如不腐蝕)中之一或多者的材料。此外,在結構(例如電極活性材料、相對電極集電器、電極活性材料、相對電極集電器、隔板)自身具備突起部及/或用作間隔物以實現特定區中之膨脹間隙及/或增大的空隙分數的其他特徵(例如表面粗糙度)的情況下,突起部及/或其他特徵可與電池中之相鄰結構、電解質及/或載流子離子類似地相容。
在一些實施例中,膨脹間隙3002或經計算空隙分數可設置於複數個電極子單元2900a至2900d上方。舉例而言,在一個實施例中,單個電極子單元2900a至2900d中之膨脹間隙3002或空隙分數可小於整個電池1804或堆疊胞元2904之整體預期膨脹間隙或空隙分數,但電極子單元2900a至2900d中之其他者可包含較大膨脹間隙3002或空隙分數以適應電極子單元2900a至2900d中之其他者中的較小膨脹間隙3002或空隙分數。舉例而言,在一個實施例中,群中之每隔一個電極子單元2900a至2900d可包含為2x之膨脹間隙3002及/或空隙分數以適應基本上不具有間隙及/或空隙分數或具有較小膨脹間隙或空隙分數之電極子單元2900a至2900d中的其他者,其中電極子單元之群上方的累積間隙意欲為 N乘以x (其中 N為群中之個別電極子單元之數目)。在另一實施例中,群中之每隔5個電極子單元可包含為5x之膨脹間隙及/或空隙分數以適應基本上不具有膨脹間隙及/或空隙分數之其他單位胞元,其中單位胞元之群上方的累積間隙意欲為 N乘以x (其中 N為群中之電極子單元之數目)。在又一實施例中,群中之每隔10個電極子單元可包含為10x之膨脹間隙及/或空隙分數以適應基本上不具有膨脹間隙及/或空隙分數之其他電極子單元,其中電極子單元之群上方的累積間隙意欲為 N乘以x (其中 N為群中之單位胞元之數目)。在另一實施例中,對於意欲為 N乘以x (其中 N為群中之電極子單元之數目)之電極子單元之群上方的累積間隙,群中之電極子單元中的膨脹間隙及/或空隙分數可為意欲用於群之平均間隙及/或空隙的至少1%、至少5%、至少10%及/或至少15%(例如( N乘以x)/(群中之單位胞元的數目)),且可為意欲用於群之平均膨脹間隙及/或空隙的小於90%、小於80%、小於75%、小於50%、小於35%、小於20%、小於10%及/或小於5% (例如( N乘以x)/(群中之電極子單元的數目))。群中之單位胞元之數目 N可為例如至少2、5、8、10、15、20、25、30、40、50、75、80、80、100、150、200、300、500、800、1000或甚至更大,及/或電極子單元之數目 N可對應於電池1804中之電極子單元的整體數目。
在一些實施例中,可在將電極子單元之群堆疊至堆疊胞元2904中之前移除一或多個電極子單元之間隔物部件2700a至2700d。舉例而言,在一些實施例中,可以界定於基底材料層之遠側(在X軸方向上)的邊限設置間隔物部件2700a至2700d,使得間隔物部件在橫向幅材方向XWD上處於孔洞608、610中之一或多者之外(遠側),使得當孔洞在本文中所描述之衝壓及堆疊操作期間斷裂時,間隔物部件2700a至2700d經移除且並不成為堆疊胞元2904之部分。在此類實施例中,由間隔物部件2700a至2700d形成之膨脹間隙3002甚至在自電極子單元移除間隔物部件2700a至2700d之後仍保持。
參考圖33,關於電極子單元3018之實施例描述例示性單位胞元3300。電極子單元與如本文所描述之電極子單元2018或2900a至2900d相同或類似。在圖33中所展示之實施例中,電極子單元3018自上而下包含呈堆疊組態之陽極活性材料層3508a、陽極集電器層3506、陽極活性材料層3508b、隔板3500a、陰極活性材料層3512a、陰極集電器層3510、陰極活性材料層3512b及隔板500b。應注意,陽極活性材料層3508a、3508b可與陽極活性材料層508相同或類似,陽極集電器層3506可與陽極集電器506相同或類似,陰極活性材料層3512a、3512b可與陰極活性材料層512相同或類似,陰極集電器3510可與陰極集電器510相同或類似,且隔板3500a、3500b可與隔板500相同或類似,如本文所描述。在一個實施例中,單位胞元3300僅包含電極子單元3018的一部分。在此實施例中,單位胞元3300自上而下包含陽極集電器3506的一部分、陽極活性材料層3508b、隔板3500a、陰極活性材料層512a及陰極集電器3510的一部分。應注意,電極子單元3018可視需要包含至少一個單位胞元3300及任何數目的額外完整或部分單位胞元。然而,在一個實施例中,單個單位胞元3300僅包含陽極集電器3506、陽極活性材料層3508b、隔板3500a、陰極活性材料層512a及陰極集電器3510。
如圖33B中所展示,三個電極子單元3018彼此鄰近地堆疊,以形成堆疊胞元3020。電極子單元3018經堆疊(以與關於電極子單元2018所描述之方式類似的方式)以界定堆疊電極子單元3020群。在圖33B中所展示之實施例中,存在在Y軸方向上彼此豎直相鄰的一系列三個電極子單元3018。此堆疊電極子單元3020群因此包含三個單位胞元3300、兩個單位胞元3300'及兩個部分單位胞元3025a及3025b。單位胞元3300'等效於單位胞元3300,但為單位胞元3300在Y軸方向上之鏡像。在此實施例中,部分單位胞元3025a僅包含陽極活性材料層3508a及陽極集電器3506的一部分,且部分單位胞元3025b包含陰極集電器3510的一部分、陰極活性材料層3512b及隔板3500b。在其他實施例中,電極子單元3018之分層配置可在層之次序及數目方面變化。
在一些實施例中,參考圖34A、34B,一或多個主體間隔物3400可設置於電極子單元3400之主體2725 (例如中心部分)內。電極子單元3400可與電子單元2018、3018及2900a至2900d相同或類似,但添加有一或多個主體間隔物3400。在此實施例中,主體間隔物藉由提供膨脹間隙3002而執行類似於間隔物部件2700a至2700d之功能。主體間隔物在本文中亦稱為補充間隔物。然而,在此實施例中,在鄰近於陽極活性材料層508時,如圖34A中所展示,主體間隔物3402可包含與陽極活性材料層508相同的材料。在另一實施例中,諸如圖34B中所展示之實施例,在鄰近於陰極活性材料層512時,主體間隔物3402可包含與陰極活性材料層512相同的材料。在其他實施例中,主體間隔物3402可包含犧牲材料,該犧牲材料在膨脹間隙3002形成之後任何時間溶解或以其他方式移除。主體間隔物3400可包含連續間隔物,或在主體區域2725之所要層上方分散的複數個離散間隔物。在又其他實施例中,主體間隔物3400亦可包含足以提供所要膨脹間隙3002的一系列凸塊、突起部或表面粗糙度。
儘管以下實施例提供以說明本發明之態樣,但實施例並不意欲為限制性的且亦可提供其他態樣及/或實施例。
實施例1.  一種用於在充電狀態與放電狀態之間循環的二次電池,該電池包含殼體及安置於殼體內之電極總成,其中電極總成具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸,電極總成包含單位胞元群,各單位胞元包含在縱向方向上處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層,電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料,單位胞元群之子集進一步包含一對間隔物部件,該對間隔物部件在電極集電器層與相對電極集電器層之間位於堆疊連續中,間隔物部件中之一者在橫向方向上與另一間隔物部件間隔開,相對電極層之相對電極活性材料的至少一部分位於間隔物部件之間以使得相對電極活性材料之部分及間隔物部件位於由x及z軸界定之共同平面中。
實施例1A.     一種電極總成,其具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸。電極總成包含單位胞元群,各單位胞元包含在縱向方向上處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層。電極層包含電極活性材料,且相對電極層包含相對電極活性材料。電極活性材料及相對電極材料中之一者為陰極活性材料,且電極活性材料及相對電極材料中之另一者為陽極活性材料。單位胞元群之子集進一步包含在電極集電器層與相對電極集電器層之間位於堆疊連續中的一對間隔物部件。間隔物部件中之一者在橫向方向上與另一間隔物部件間隔開。相對電極層之相對電極活性材料的至少一部分位於間隔物部件之間,使得相對電極活性材料之部分及間隔物部件位於由x及z軸界定之共同平面中。
實施例1B. 一種用於在電池中之充電狀態與放電狀態之間循環的電極總成,該電池包含殼體及安置於殼體內之電極總成,其中電極總成具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸。電極總成包含單位胞元群,各單位胞元具有主體、第一邊緣邊限、在橫向方向上與第一邊緣邊限分隔開之第二邊緣邊限、前部、在縱向方向上與前部分隔開之背部、頂部及在豎直方向上與頂部分隔開之底部,各主體包含在縱向方向上處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層。電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料。第一邊緣邊限及第二邊緣邊限中之每一者包含:(i)電極集電器層、隔板層及相對電極集電器層;及(ii)帶間隔物,帶間隔物中之每一者黏著至(i)電極集電器、(ii)電極層、(iii)隔板及(iv)相對電極集電器中之至少一者,相對電極層具有第一末端及在橫向方向上與第一末端間隔開的第二末端以界定相對電極層之橫向範圍,相對電極層之橫向範圍在第一邊緣邊限及第二邊緣邊限之前終止。
實施例1C. 一種用於經組態以在充電狀態與放電狀態之間循環之電池的電極總成,電極總成具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸,電極總成具有主體、第一邊緣邊限、在橫向方向上與第一邊緣邊限分隔開之第二邊緣邊限、前部、在縱向方向上與前部分隔開之背部、頂部及在豎直方向上與頂部之底部,主體包含在縱向方向上處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層、相對電極層及相對電極集電器層。電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料。主體之第一邊緣邊限及第二邊緣邊限中之每一者包含:(i)電極集電器層、隔板層及相對電極集電器層;及(ii)安置於第一邊緣邊限中之第一帶間隔物及安置於第二邊緣邊限中之第二帶間隔物;第一帶間隔物及第二帶間隔物中之每一者黏著至(i)電極集電器、(ii)電極層、(iii)隔板及(iv)相對電極集電器中之至少一者,相對電極層具有第一末端及在橫向方向上與第一末端間隔開的第二末端以界定相對電極層之橫向範圍,相對電極層之橫向範圍在第一邊緣邊限及第二邊緣邊限之前終止。
實施例1D.     一種用於在充電狀態與放電狀態之間循環的二次電池,該電池包含殼體及安置於殼體內之電極總成,其中電極總成具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸,電極總成包含單位胞元群,各單位胞元包含在縱向方向上處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層,電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料,單位胞元群之子集進一步包含一對間隔物部件,該對間隔物部件在電極集電器層與相對電極集電器層之間位於堆疊連續中,該等間隔物部件中之一者在橫向方向上與該對間隔物部件中之另一間隔物部件間隔開,相對電極層之相對電極活性材料的至少一部分位於對間隔物部件之間以使得相對電極活性材料之部分及間隔物部件位於由x及z軸界定之共同平面中。
實施例2.  如實施例1至1C中任一項中所闡述之二次電池或電極總成,其中相對電極層具有中心部分及在中心部分之相對側上的一對側接部分,該等側接部分具有等於或小於中心部分之寬度之50%的寬度。
實施例3.  如任一先前實施例中所闡述之二次電池或電極總成,其中側接部分之寬度小於中心部分之寬度的40%。
實施例4.  如任一先前實施例中所闡述之二次電池或電極總成,其中側接部分之寬度小於中心部分之寬度的30%。
實施例5.  如任一先前實施例中所闡述之二次電池或電極總成,其中側接部分之寬度小於中心部分之寬度的20%。
實施例6.  如任一先前實施例中所闡述之二次電池或電極總成,其中側接部分之寬度小於中心部分之寬度的10%。
實施例7.  如任一先前實施例中所闡述之二次電池或電極總成,其中相對電極層具有在與相對電極集電器層之界面與與隔板層界面之間量測的最大寬度,共同平面出現於最大寬度之至少50%上。
實施例8.  如任一先前實施例中所闡述之二次電池或電極總成,其中共同平面出現於最大寬度之至少60%上。
實施例9.  如任一先前實施例中所闡述之二次電池或電極總成,其中共同平面出現於最大寬度之至少70%上。
實施例10. 如任一先前實施例中所闡述之二次電池或電極總成,其中共同平面出現於最大寬度之至少80%上。
實施例11. 如技術方案10中所闡述之二次電池或電極總成,其中共同平面出現於最大寬度之至少90%上。
實施例12. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件具有在橫向方向上延伸之長度,間隔物部件之長度等於或小於500 μm。
實施例13. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件之長度小於400 μm。
實施例14. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件之長度小於300 μm。
實施例15. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件之長度小於200 μm。
實施例16. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件之長度小於100 μm。
實施例17. 如任一先前實施例中所闡述之二次電池或電極總成,其中相對電極層具有第一末端及在橫向方向上與第一末端間隔開之第二末端,相對電極層之第一末端鄰近於間隔物部件中之一者且相對電極層之第二末端鄰近於間隔物部件中之另一者。
實施例18. 如任一先前實施例中所闡述之二次電池或電極總成,其中第一末端及第二末端對應於該對側接部分。
實施例19. 如任一先前實施例中所闡述之二次電池或電極總成,其中相對電極材料為陰極活性材料,且電極活性材料為陽極活性材料。
實施例20. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極材料為陰極活性材料,且相對電極活性材料為陽極活性材料。
實施例21. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件安置於隔板層與電極層之間。
實施例22. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件安置於隔板層與電極集電器層之間。
實施例23. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件安置於隔板與相對電極層之間。
實施例24. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件安置於隔板層與相對電極集電器層之間。
實施例25. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件黏著至電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層中之至少一者。
實施例26. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件黏著至電極集電器層。
實施例27. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件黏著至電極層。
實施例28. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件黏著至隔板層。
實施例29. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件黏著至相對電極集電器層。
實施例30. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極層具有第一末端及在橫向方向上與第一末端間隔開的第二末端以界定電極層之橫向範圍,電極層之橫向範圍在單位胞元之端部之前終止。
實施例31. 如任一先前實施例中所闡述之二次電池或電極總成,其中(i)單位胞元群之部件在縱向方向上處於堆疊連續中,(ii)單位胞元群包含單位胞元之相鄰對的兩個集合,(iii)相鄰對之兩個集合中之一者共用共同電極集電器層且相鄰對之兩個集合中之另一者共用共同相對電極集電器層。
實施例32. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元群包含至少5個部件。
實施例33. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元群包含至少10個部件。
實施例34. 如任一先前實施例中所闡述之二次電池或電極總成,單位胞元群包含至少25個部件。
實施例35. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元群包含至少50個部件。
實施例36. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元群包含至少100個部件。
實施例37. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元群包含至少250個部件。
實施例38. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元群包含至少500個部件。
實施例39. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含電絕緣材料。
實施例40. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元包含補充間隔物。
實施例41. 如任一先前實施例中所闡述之二次電池或電極總成,其中補充間隔物包含與隔板層相同的材料。
實施例42. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元包含含有穩定鋰金屬粒子之補充間隔物。
實施例43. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元包含補充間隔物,該補充間隔物包含選自由碳酸鋰穩定鋰金屬粉末、矽酸鋰穩定鋰金屬粉末組成之群的穩定鋰金屬粒子。
實施例44. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元包含補充間隔物,該補充間隔物包含藉由以約0.05至5 mg/cm 2之裝載量噴塗、裝載或以其他方式安置穩定鋰金屬粒子而施加的穩定鋰金屬粒子。
實施例45. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元包含補充間隔物,該補充間隔物包含藉由以約0.1至4 mg/cm 2之裝載量噴塗、裝載或以其他方式安置穩定鋰金屬粒子而施加的穩定鋰金屬粒子。
實施例46. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元包含補充間隔物,該補充間隔物包含藉由以約0.5至3 mg/cm 2之裝載量噴塗、裝載或以其他方式安置穩定鋰金屬粒子而施加的穩定鋰金屬粒子。
實施例47. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元包含補充間隔物,該補充間隔物包含具有約5至200 µm之平均粒度(D 50)的穩定鋰金屬粒子。
實施例48. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元包含補充間隔物,該補充間隔物包含具有約10至100 µm之平均粒度(D 50)的穩定鋰金屬粒子。
實施例49. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元包含補充間隔物,該補充間隔物包含具有約20至80 µm之平均粒度(D 50)的穩定鋰金屬粒子。
實施例50. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元包含補充間隔物,該補充間隔物包含具有約30至50 µm之平均粒度(D 50)的穩定鋰金屬粒子。
實施例51. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含選自由以下各項組成之群的間隔物材料:聚合材料、複合材料、由電極集電器包含之材料、電極活性材料、相對電極活性材料、由相對電極集電器包含之材料、由隔板包含之材料或在電池環境中化學上惰性之材料。
實施例52. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含陽極活性材料。
實施例53. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含具有小於每莫耳間隔物材料一莫耳載流子離子之載流子離子容量的陽極活性材料。
實施例54. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含石墨或石墨烯。
實施例55. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含陰極活性材料。
實施例56. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含聚合材料。
實施例57. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含均聚物、共聚物或聚合物摻合物。
實施例58. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含衍生自含有以下各項之單體的氟聚合物:偏二氟乙烯、六氟丙烯、四氟丙烯、聚烯烴(諸如聚乙烯、聚丙烯或聚丁烯)、乙烯-二烯-丙烯三元共聚物、聚苯乙烯、聚甲基丙烯酸甲酯、聚乙二醇、聚乙酸乙烯酯、聚乙烯縮丁醛、聚縮醛及聚乙二醇二丙烯酸酯、甲基纖維素、羧甲基纖維素、苯乙烯橡膠、丁二烯橡膠、苯乙烯-丁二烯橡膠、異戊二烯橡膠、聚丙烯醯胺、聚乙烯醚、聚丙烯酸、聚甲基丙烯酸、聚丙烯腈、聚偏二氟乙烯聚丙烯腈、聚氧化乙烯、丙烯酸酯、苯乙烯、環氧樹脂、聚矽氧、聚偏二氟乙烯-共-六氟丙烯、聚偏二氟乙烯-共-三氯乙烯、聚甲基丙烯酸甲酯、聚丙烯腈、聚乙烯吡咯啶酮、聚乙酸乙烯酯、聚乙烯-共-乙酸乙烯酯、聚氧化乙烯、乙酸纖維素、乙酸丁酸纖維素、乙酸丙酸纖維素、氰基乙基普魯蘭、聚乙烯氰基乙醇、氰基乙基纖維素、氰基乙基蔗糖、普魯蘭、羧甲基纖維素、丙烯腈-苯乙烯-丁二烯共聚物、聚醯亞胺、聚偏二氟乙烯-六氟丙烯、聚偏二氟乙烯-三氯乙烯、聚甲基丙烯酸甲酯、聚丙烯腈、聚乙烯吡咯啶酮、聚乙酸乙烯酯、乙烯乙酸乙烯酯共聚物、聚氧化乙烯、乙酸纖維素、乙酸丁酸纖維素、乙酸丙酸纖維素、氰基乙基普魯蘭、聚乙烯氰基乙醇、氰基乙基纖維素、氰基乙基蔗糖、普魯蘭、羧甲基纖維素、丙烯腈苯乙烯丁二烯共聚物、聚醯亞胺、聚對苯二甲酸伸乙酯、聚對苯二甲酸伸丁酯、聚酯、聚縮醛、聚醯胺、聚醚醚酮、聚醚碸、聚苯醚、聚苯硫醚、聚乙烯萘及/或其組合或共聚物。
實施例59. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含氟聚合物。
實施例60. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含聚烯烴。
實施例61. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含選自由聚乙烯、聚丙烯及聚丁烯之均聚物、共聚物及聚合物摻合物組成之群的聚烯烴。
實施例62. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含聚乙烯或聚丙烯。
實施例63. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含具有基底及設置於基底之一個表面上之黏著層的黏著帶。
實施例64. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含具有基底及設置於基底之一個表面上之黏著層的黏著帶,其中黏著帶基底包含選自由以下各項組成之群的聚合膜:聚乙烯、聚丙烯、聚對苯二甲酸伸乙酯、聚對苯二甲酸伸丁酯、聚苯硫醚、聚醯亞胺及聚醯胺膜,及其組合。
實施例65. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含具有基底及設置於基底之一個表面上之黏著層的黏著帶,其中黏著帶基底包含選自由聚烯烴、聚對苯二甲酸伸乙酯及聚醯亞胺膜組成之群的聚合膜。
實施例66. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含具有基底及設置於基底之一個表面上之黏著層的黏著帶,其中黏著帶基底具有在約4至200 µm範圍內的厚度。
實施例67. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含具有基底及設置於基底之一個表面上之黏著層的黏著帶,其中黏著帶基底具有在約6至150 µm範圍內的厚度。
實施例68. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含具有基底及設置於基底之一個表面上之黏著層的黏著帶,其中黏著帶基底具有在約25至100 µm範圍內的厚度。
實施例69. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含具有基底及設置於基底之一個表面上之黏著層的黏著帶,其中構成黏著帶之黏著層之黏著劑包含基於橡膠的黏著劑、丙烯酸黏著劑、基於聚矽氧的黏著劑或其組合。
實施例70. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含與隔板層相同的材料。
實施例71. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含導電材料。
實施例72. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件包含與電極層相同的材料。
實施例73. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件部分地界定單位胞元之橫向端部。
實施例74. 如任一先前實施例中所闡述之二次電池或電極總成,其中在電池在充電狀態與放電狀態之間循環時,間隔物部件適應電極層及相對電極層中之至少一者在縱向方向上之膨脹。
實施例75. 如任一先前實施例中所闡述之二次電池或電極總成,其中間隔物部件適應電極層之膨脹。
實施例76. 如任一先前實施例中所闡述之二次電池或電極總成,其中隔板層的第一部分位於由x及z軸界定之第一平面中,且隔板層之一對第二部分位於由x及z軸界定之第二平面中,第二平面在縱向方向上自第一平面偏移。
實施例77. 如任一先前實施例中所闡述之二次電池或電極總成,其中隔板層之第一部分安置成與相對電極層面對面嚙合,且隔板層之第二部分安置成鄰近於相對電極層之第一末端及第二末端。
實施例78. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極層具有橫向範圍且相對電極層具有橫向範圍,電極層之橫向範圍大於相對電極層之橫向範圍。
實施例79. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極層之橫向範圍比相對電極層之橫向範圍大小於500 μm。
實施例80. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極層之橫向範圍比相對電極層之橫向範圍大小於400 μm。
實施例81. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極層之橫向範圍比相對電極層之橫向範圍大小於300 μm。
實施例82. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極層之橫向範圍比相對電極層之橫向範圍大小於200 μm。
實施例83. 如技術方案82中所闡述之二次電池或電極總成,其中電極層之橫向範圍比相對電極層之橫向範圍大小於100 μm。
實施例84. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極層具有橫向範圍且相對電極層具有橫向範圍,電極層之橫向範圍等於相對電極層之橫向範圍。
實施例85. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元具有在豎直方向上量測之高度,且間隔物部件具有在豎直方向上量測之高度,單位胞元之高度等於間隔物部件之高度。
實施例86. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元具有在豎直方向上量測之高度,且間隔物部件具有在豎直方向上量測之高度,單位胞元之高度大於間隔物部件之高度。
實施例87. 如任一先前實施例中所闡述之二次電池或電極總成,其中單位胞元具有在豎直方向上量測之高度,且間隔物部件具有在豎直方向上量測之高度,單位胞元之高度小於間隔物部件之高度。
實施例88. 如任一先前實施例中所闡述之二次電池或電極總成,其中該對間隔物部件界定第一對間隔物部件,且單位胞元群之子集進一步包含在電極集電器層與相對電極集電器層之間位於堆疊連續中的第二對間隔物部件。
實施例89. 如任一先前實施例中所闡述之二次電池或電極總成,其中第一對間隔物部件中之間隔物部件安置於隔板層之一側上,且第二對間隔物部件中之間隔物部件安置於隔板層上的相對側上。
實施例90. 如任一先前實施例中所闡述之二次電池或電極總成,其中第一對間隔物部件中之間隔物部件安置於隔板層與相對電極集電器層之間,且第二對間隔物部件中之間隔物部件安置於隔板層與電極集電器層之間。
實施例91. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極活性材料及相對電極材料中之一者為選自由以下各項組成之群的陽極活性材料:(a)矽(Si)、鍺(Ge)、錫(Sn)、鉛(Pb)、銻(Sb)、鉍(Bi)、鋅(Zn)、鋁(Al)、鈦(Ti)、鎳(Ni)、鈷(Co)及鎘(Cd);(b) Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Ni、Co或Cd與其他元素之合金或金屬間化合物;(c) Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Fe、Ni、Co、V或Cd之氧化物、碳化物、氮化物、硫化物、磷化物、硒化物及碲化物,及其混合物、複合材料或含鋰複合材料;(d) Sn之鹽及氫氧化物;(e)鈦酸鋰、錳酸鋰、鋁酸鋰、含鋰氧化鈦、鋰過渡金屬氧化物、ZnCo 2O 4;(f)石墨及碳之粒子;(g)鋰金屬;及(h)其組合。
實施例92. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極活性材料及相對電極材料中之一者為選自由以下各項組成之群的陽極活性材料:矽(Si)、鍺(Ge)、錫(Sn)、鉛(Pb)、銻(Sb)、鉍(Bi)、鋅(Zn)、鋁(Al)、鈦(Ti)、鎳(Ni)、鈷(Co)及鎘(Cd)。
實施例93. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極活性材料及相對電極材料中之一者為選自由以下各項組成之群的陽極活性材料:Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Ni、Co或Cd與其他元素之合金及金屬間化合物。
實施例94. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極活性材料及相對電極材料中之一者為選自由以下各項組成之群的陽極活性材料:Si、Ge、Sn、Pb、Sb、Bi、Zn、Al、Ti、Fe、Ni、Co、V及Cd之氧化物、碳化物、氮化物、硫化物、磷化物、硒化物及碲化物。
實施例95. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極活性材料及相對電極材料中之一者為選自由以下各項組成之群的陽極活性材料:Si之氧化物、碳化物、氮化物、硫化物、磷化物、硒化物及碲化物。
實施例96. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極活性材料及相對電極材料中之一者為選自由矽以及矽之氧化物及碳化物組成之群的陽極活性材料。
實施例97. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極活性材料及相對電極材料中之一者為包含鋰金屬之陽極活性材料。
實施例98. 如任一先前實施例中所闡述之二次電池或電極總成,其中電極活性材料及相對電極材料中之一者為選自由石墨及碳組成之群的陽極活性材料。
實施例99. 如任一先前實施例中所闡述之二次電池或電極總成,其中在殼體內,二次電池進一步包含非水性有機電解質。
實施例100.    如任一先前實施例中所闡述之二次電池或電極總成,其中在殼體內,二次電池進一步包含含有鋰鹽與有機溶劑之混合物的非水性電解質。
實施例101.    如任一先前實施例中所闡述之二次電池或電極總成,其中在殼體內,二次電池進一步包含聚合物電解質。
實施例102.    如任一先前實施例中所闡述之二次電池或電極總成,其中在殼體內,二次電池進一步包含固體電解質。
實施例103.    如任一先前實施例中所闡述之二次電池或電極總成,其中在殼體內,二次電池進一步包含選自由基於硫化物的電解質組成之群的固體電解質。
實施例104.    如任一先前實施例中所闡述之二次電池或電極總成,其中在殼體內,二次電池進一步包含選自由以下各項組成之群的固體電解質:鋰錫磷硫化物(Li 10SnP 2S 12)、鋰磷硫化物(β-Li 3PS 4)及鋰磷硫氯化物碘化物(Li 6PS 5Cl 0.9I 0.1)。
實施例105.    如任一先前實施例中所闡述之二次電池或電極總成,其中在殼體內,二次電池進一步包含基於聚合物的電解質。
實施例106.    如任一先前實施例中所闡述之二次電池或電極總成,其中在殼體內,二次電池進一步包含選自由以下各項組成之群的聚合物電解質:PEO基聚合物電解質、聚合物陶瓷複合物電解質(固體)、聚合物陶瓷複合物電解質及聚合物陶瓷複合物電解質。
107.   如任一先前實施例中所闡述之二次電池或電極總成,其中在殼體內,二次電池進一步包含選自由基於氧化物的電解質組成之群的固體電解質。
實施例108.    如任一先前實施例中所闡述之二次電池或電極總成,其中在殼體內,二次電池進一步包含選自由以下各項組成之群的固體電解質:鈦酸鋰鑭(Li 0.34La 0.56TiO 3)、Al摻雜的鋯酸鋰鑭(Li 6.24La 3Zr 2Al 0.24O 11.98)、Ta摻雜的鋯酸鋰鑭(Li 6.4La 3Zr 1.4Ta 0.6O 12)及磷酸鋰鋁鈦(Li 1.4Al 0.4Ti 1.6(PO 4) 3)。
實施例109.    如任一先前實施例中所闡述之二次電池或電極總成,其中電極活性材料及相對電極材料中之一者為選自由嵌入化學正電極及轉化化學正電極組成之群的陰極活性材料。
實施例110.    如任一先前實施例中所闡述之二次電池或電極總成,其中電極活性材料及相對電極材料中之一者為包含嵌入化學正電極材料之陰極活性材料。
實施例111.    如任一先前實施例中所闡述之二次電池或電極總成,其中電極活性材料及相對電極材料中之一者為包含轉化化學正電極活性材料之陰極活性材料。
實施例112.    如任一先前實施例中所闡述之二次電池或電極總成,其中電極活性材料及相對電極材料中之一者為選自由以下各項組成之群的陰極活性材料:S (或呈鋰化狀態之Li 2S)、LiF、Fe、Cu、Ni、FeF 2、FeO dF 3.2d、FeF 3、CoF 3、CoF 2、CuF 2、NiF 2,其中0 ≤ d ≤ 0.5。
實施例113.    一種製造供與二次電池一起使用之單位胞元的方法,該方法包含:在縱向方向上連續地堆疊電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層,電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料;以及將一對間隔物部件置放於電極集電器層與相對電極集電器層之間的堆疊連續中,該等間隔物部件中之一者在橫向方向上與另一間隔物部件間隔開,相對電極層之相對電極活性材料的至少一部分位於間隔物部件之間,使得相對電極活性材料之部分及間隔物部件位於由x軸及z軸界定之共同平面中。
實施例113A. 一種製造供與二次電池一起使用之電極總成的方法。方法包含在縱向方向上連續地堆疊電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層。電極層包含電極活性材料,且相對電極層包含相對電極活性材料。電極活性材料及相對電極材料中之一者為陰極活性材料,且電極活性材料及相對電極材料中之另一者為陽極活性材料。方法包括將一對間隔物部件置放於電極集電器層與相對電極集電器層之間的堆疊連續中。間隔物部件中之一者在橫向方向上與另一間隔物部件間隔開。相對電極層之相對電極活性材料的至少一部分位於間隔物部件之間,使得相對電極活性材料之部分及間隔物部件位於由x軸及z軸界定之共同平面中。
實施例113B.  一種製備用於經組態以在充電狀態與放電狀態之間循環之電池的電極總成的方法,該方法包含:在縱向方向上在堆疊連續中堆疊電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層,其中電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料;在第一邊緣邊限及第二邊緣邊限內將帶間隔物黏著至電極集電器層、電極層、隔板層、相對電極層或相對電極集電器層中之至少一者,使得第一邊緣邊限及第二邊緣邊限包含(i)電極集電器層、隔板層及相對電極集電器層,及(ii)帶間隔物,其中相對電極層具有第一末端及在橫向方向上與第一末端間隔開的第二末端以界定相對電極層之橫向範圍,且相對電極層設置成使得相對電極層之橫向範圍在第一邊緣邊限及第二邊緣邊限之前終止。
實施例113C.  一種製造如實施例1至112中任一項中所闡述之二次電池或電極總成的方法,該方法包含如實施例113、113A及113B中任一項之方法。
實施例113D. 一種製造供與二次電池一起使用之單位胞元的方法,單位胞元具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸,該方法包含:在縱向軸方向上連續地堆疊電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層,電極層包含電極活性材料,且相對電極層包含相對電極活性材料,其中電極活性材料及相對電極材料中之一者為陰極活性材料且電極活性材料及相對電極材料中之另一者為陽極活性材料;以及將一對間隔物部件置放於電極集電器層與相對電極集電器層之間的堆疊連續中,該等間隔物部件中之一者在橫向方向上與另一間隔物部件間隔開,相對電極層之相對電極活性材料的至少一部分位於間隔物部件之間,使得相對電極活性材料之部分及間隔物部件位於由x軸及z軸界定之共同平面中。
實施例114.    如實施例113至113C中任一項中所闡述之方法,其中間隔物部件置放於隔板層與電極層之間。
實施例115.    如任一先前實施例中所闡述之方法,其中間隔物部件置放於隔板層與電極集電器層之間。
實施例116.    如任一先前實施例中所闡述之方法,其中間隔物部件置放於隔板與相對電極層之間。
實施例117.    如任一先前實施例中所闡述之方法,其中間隔物部件置放於隔板層與相對電極集電器層之間。
實施例118.    如任一先前實施例中所闡述之方法,其中間隔物部件黏著至電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層中之至少一者。
實施例119.    如任一先前實施例中所闡述之方法,其中間隔物部件黏著至電極集電器層。
實施例120.    如任一先前實施例中所闡述之方法,其中間隔物部件黏著至電極層。
實施例121.    如任一先前實施例中所闡述之方法,其中間隔物部件黏著至隔板層。
實施例122.    如任一先前實施例中所闡述之方法,其中間隔物部件黏著至相對電極集電器層。
實施例123.    如任一先前實施例中所闡述之方法,其進一步包含將補充間隔物置放於電極集電器層與相對電極集電器層之間的堆疊連續中。
實施例124.    如任一先前實施例中所闡述之方法,其中隔板層的第一部分堆疊為與相對電極層面對面嚙合,且隔板層之第二部分堆疊為鄰近於相對電極層之第一末端及第二末端。
實施例125.    如任一先前實施例中所闡述之方法,其中電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層堆疊在對準銷上。
實施例126.    如任一先前實施例中所闡述之方法,其中該對間隔物部件在電極集電器層與相對電極集電器層之間置放於對準銷上。
實施例127.    一種用於合併複數個電極材料幅材之方法,方法包含:沿著第一幅材合併路徑退繞電極材料之第一幅材,該第一幅材包含由對應弱化撕裂圖案劃定之電極子單元群及第一輸送特徵群;沿著第一幅材合併路徑下游之第二幅材合併路徑退繞電極材料之第二幅材,該第二幅材包含由對應弱化撕裂圖案劃定之電極子單元群及第二輸送特徵群;鄰近於第一幅材合併路徑及第二幅材合併路徑在幅材合併方向上輸送包含複數個突出部之帶,複數個突出部經組態以與第一幅材之第一輸送特徵及第二幅材之第二輸送特徵嚙合;將間隔物部件群插入於電極材料之第一幅材與電極材料之第二幅材之間;以及在第一幅材合併位置下游之第二幅材合併位置處將電極材料之第二幅材覆蓋於電極材料之第一幅材上,在電極材料之第一幅材與電極材料之第二幅材之間捕獲間隔物部件群。
實施例127A. 一種用於合併複數個電極材料幅材之方法,方法包含:沿著第一幅材合併路徑退繞電極材料之第一幅材,該第一幅材包含由對應弱化撕裂圖案劃定之電極子單元群及第一輸送特徵群;沿著第一幅材合併路徑下游之第二幅材合併路徑退繞電極材料之第二幅材,該第二幅材包含由對應弱化撕裂圖案劃定之電極子單元群及第二輸送特徵群;鄰近於第一幅材合併路徑及第二幅材合併路徑在幅材合併方向上輸送包含複數個突出部之帶,複數個突出部經組態以與第一幅材之第一輸送特徵及第二幅材之第二輸送特徵嚙合;將間隔物部件群插入於電極材料之第一幅材與電極材料之第二幅材之間;以及在第一幅材合併位置下游之第二幅材合併位置處將電極材料之第二幅材覆蓋於電極材料之第一幅材上,在電極材料之第一幅材與電極材料之第二幅材之間捕獲間隔物部件群。
實施例128.    如任一先前實施例中所闡述之方法,其中將間隔物部件群插入於電極材料之第一幅材與電極材料之第二幅材之間包含退繞包含間隔物部件群之幅材以及在電極材料之第一幅材與電極材料之第二幅材之間合併間隔物部件幅材。
實施例129.    如任一先前實施例中所闡述之方法,其中將間隔物部件群插入於電極材料之第一幅材與電極材料之第二幅材之間包含退繞包含間隔物部件群之幅材以及退繞包含複數個隔板部件之幅材,以及合併鄰近於隔板部件幅材且在電極材料之第一幅材與電極材料之第二幅材之間的間隔物部件幅材。
此書面說明書使用實例來揭示本發明,包括最佳模式,且亦使得熟習此項技術者能夠實踐本發明,包括製造且使用任何裝置或系統且執行任何所併入之方法。本發明之可獲專利範疇係藉由申請專利範圍所界定,且可包括熟習此項技術者所想到之其他實例。若此等其他實例具有並非不同於申請專利範圍字面語言之構成要素,或若該等其他實例包括與申請專利範圍字面語言無實質差異之等效構成要素,則該等實例意欲在申請專利範圍之範疇內。
10:電池 15:正電極集電器 20:正電極 25:負電極 30:隔板 30A-D:區段 31A-D:區段 32A-D:區段 35:負電極集電器 100:生產系統 102:基底退繞輥 104:基底材料幅材 106:邊緣導引件 108a~108x:惰輪 110:拼接台 112:軋輥 114:輥 116:使用者介面 118:浮輥 118a~118x:浮輥 120:雷射系統 120a:雷射系統 120b:雷射系統 120c:雷射系統 122:軋輥 124:刷塗台 126:氣刀 128:檢測系統 130:缺陷標記裝置 132:軋輥 134:重繞輥 136:間葉輥 138:間葉材料幅材 140:電極 300:雷射裝置 302:雷射光束 304:切割充氣室 306:夾盤 308:真空 310:檢測裝置 312:檢測裝置 313:雷射輸出 400:條件 404:剝蝕部 406:真空孔 408:切割區域 410:開口 412:上游邊緣 414:下游邊緣 416:斜面 418:上邊緣 500:電絕緣隔板層 500':隔板 500a:第一隔板層 500b:第二隔板層 501:遠端 502:陽極材料 503:遠端 504:陰極材料 506:陽極集電器層 506':陽極集電器 506a:第一陽極集電器層 506b:第二陽極集電器層 508:陽極活性材料層 508':陽極活性材料層 508a:第一陽極活性材料層 508b:第二陽極活性材料層 510:陰極集電器層 512:陰極活性材料層 512':陰極活性材料層 512a:第一陰極活性材料層 512b:第二陰極活性材料層 520:電極凸片 600:縱向邊緣切口 602:基準特徵 604:初始切割位置 606:末端切割位置 608:第一孔洞 610:第二孔洞 611:部分 612:定軌器孔 614:連接桿 616:上游連接桿邊緣切口 618:下游連接桿邊緣切口 700:外部開封帶 702:內部開封帶 704:通孔 800:電極圖案 802:電極材料幅材 900:線軸 1000:刷子 1002:刷毛 1004:刷毛固持器 1006:曲柄臂 1008:可旋轉耦接件 1010:驅動輪 1012:可旋轉耦接件 1014:馬達 1016:位置感測器 1018:刷子位置標記 1020:刷台孔口 1022:刷毛寬度 1200:攝影機 1202:透鏡 1204:透鏡安裝件 1206:檢測板 1208:頂部 1210:齒輪 1212:觸發感測器 1214:檢測板前邊緣 1216:檢測板後邊緣 1402:線軸 1404:線軸 1406:隔板材料 1406A:線軸 1406B:線軸 1408:合併區 1410:衝壓及堆疊區 1412:懸重曲線 1414:合併鏈輪 1416:輪齒 1418:倒齒鏈輪 1420:倒齒 1422:迴路感測器 1424:銷板 1426:傳送位置 1426A:傳送位置 1426B:傳送位置 1426X:傳送位置 1428:銷 1430:預合併位置 1432:合併材料幅材 1434:缺陷感測器 1436:輸送機構 1438:電極材料拉緊區段 1440:反向旋轉刷 1441:中心通孔 1442:真空張力器 1443:刷毛 1444:真空孔口 1447:去離子器裝置 1500:截面圖 1501:多層子堆疊 1502:陰極電極 1504:陽極電極 1506:電極隔板 1508:外邊緣 1510:幅材邊緣邊界 1600:對準銷 1602:加壓限制 1604:壓力板 1606:壓力板 1608:匯流條開口 1700:匯流條 1702:匯流條 1704:堆疊胞元 1800:封裝台 1802:電池封裝 1804:電池 1900:對準特徵偵測系統 1902:光學感測器 1904:背光 2000:堆疊系統 2002:齒形帶 2004:堆疊及衝壓區 2006:同步鏈輪 2008:自動夾具裝載總成 2010:收納單元 2012:對準銷 2014:收納器基底 2016:衝頭 2017:衝頭面 2018:電極子單元 2018':不均勻移位 2019:基準孔 2020:衝頭孔 2021:遠端 2022:廢幅材 2023:部分 2024:拆分鏈輪 2025:未衝壓電極子單元 2026:縱向邊緣 2028:橫向幅材帶張力器 2030:多單元電極堆疊 2032:副輪齒組 2033:輸送輪齒 2034:可移動平台 2400:外邊緣 2402:下幅材邊緣 2404:上幅材邊緣 2406:內邊緣 2700a:間隔物部件 2700b:間隔物部件 2700c:間隔物部件 2700d:間隔物部件 2701a:邊限 2701b:邊限 2702:電極中心點 2704:通孔 2720:第一表面 2721:第二相對表面 2725:主體 2750:外邊緣 2752:內邊緣 2900a:電極子單元 2900b:電極子單元 2900c:電極子單元 2900d:電極子單元 2900e:電極子單元 2900f:電極子單元 2901:外殼 2904:堆疊胞元 3000a:遠端 3000b:遠端 3002:膨脹間隙 3002a:第一膨脹間隙 3002b:第二膨脹間隙 3004:上邊界 3006:下邊界 3007:下邊界 3008:L形 3010:下邊界 3011:下邊界 3012:下邊界 3013:上邊界 3014:上邊界 3015a:遠端 3015b:遠端 3016:下邊界 3017:上邊界 3018:上邊界 3019:下邊界 3020:堆疊胞元 3021a:遠端 3021b:遠端 3025a:部分單位胞元 3025b:部分單位胞元 3027a:側接部分 3027b:側接部分 3300:單位胞元 3300':單位胞元 3400:電極子單元 3402:主體間隔物 3500a:隔板 3500b:隔板 3506:陽極集電器層 3508a:陽極活性材料層 3508b:陽極活性材料層 3510:陰極集電器層 3512a:陰極活性材料層 3512b:陰極活性材料層 3700a:間隔物部件 3700b:間隔物部件 3700c:間隔物部件 3700d:間隔物部件 A-A:線 A CE:縱向軸 A E:縱向軸 C:部分 D a:內徑 D b:外徑 D 50:平均粒度 EC:電極簇 H CE:高度 H E:高度 H G:高度 H sl:高度 L CE:長度 L E:長度 L EC:電極簇長度 L sl:長度 P:箭頭 P E:周長 R:移除方向 R s:半徑 S w:橫向幅材跨度 T B:厚度 U:箭頭 V:豎直方向 V b:速度分量 V s:速度分量 V bs:速度向量 W b:相對方向 W CE:寬度 WD:下幅材方向 W E:寬度 W EC:寬度 W EP:寬度 W G:寬度 W Ga:寬度 W Gb:寬度 W sl:寬度 W TB:寬度 XWD:橫向幅材方向 α:角度 α bp:俯仰角 α CL:角度 α vac:角度
圖1為現有層狀電池之截面。
圖2為根據本發明之電極製造系統之一個適合實施例的示意圖。
圖3為根據本發明之雷射系統之一個適合實施例的放大示意圖。
圖4為根據本發明之切割充氣室之一個適合實施例的等角視圖。
圖5為在已經由本發明之電極製造系統處理之後形成為電極之例示性基底材料幅材的截斷俯視圖。
圖6為其上形成有電極圖案之例示性基底材料幅材的俯視圖。
圖6A為作為例示性負電極之基底材料幅材之一部分的透視圖。
圖6B為作為例示性正電極之基底材料幅材之一部分的透視圖。
圖7為其上形成有例示性電極圖案之基底材料幅材之一部分的放大俯視圖。
圖8為在已經由本發明之電極製造系統處理之後形成為包括電極圖案之電極材料幅材的基底材料之等角視圖。
圖8A為圖8之電極材料幅材之一部分的俯視圖。
圖9為本發明之電極製造系統之重繞輥之一個適合實施例的等角視圖。
圖10為本發明之刷塗台之一個適合實施例的俯視圖。
圖11為圖10中所展示之例示性刷塗台之側視圖。
圖12為根據本發明之檢測台之一個適合實施例的等角視圖。
圖13為根據本發明之一個適合實施例的夾盤之俯視圖。
圖14為根據本發明之合併及堆疊配置之部分示意圖。
圖14A為根據本發明之堆疊裝置的部分側視圖。
圖14B為說明圖14A之堆疊裝置的退繞區段之一部分的增強詳細視圖。
圖14C1至14C3分別說明根據本發明之合併配置之側視圖、正視圖及俯視圖。
圖14D為本發明之電極製造系統之電極材料拉緊區段的等角視圖。
圖14E1至14E2包括根據本發明之實施例的非錐形(頂部)及錐形(底部)突出部之側視圖,且圖14E3至14E4包括根據本發明之實施例的非錐形(頂部)及錐形(底部)突出部之俯視圖。
圖14F1展示根據本發明之實施例的反向旋轉刷之等角視圖(左),圖14F2展示根據本發明之實施例的反向旋轉刷之俯視圖,且圖14F3展示根據本發明之實施例的反向旋轉刷之側視圖(右)。
圖14G展示根據本發明之實施例的圖14B中所展示之幅材與合併鏈輪之初始接觸點的放大圖。
圖14H1至14H3分別展示根據本發明之實施例的與合併鏈輪相互作用之幅材的三個視圖,俯視圖、側視圖及透視圖。
圖15為根據本發明之電極之多層堆疊的截面。
圖15A為根據本發明之電極材料幅材之部分俯視圖。
圖16A為根據本發明之電極子單元之多層堆疊的側視圖。
圖16B為圖16A之電極子單元之多層堆疊的部分俯視圖。
圖16C為在第二孔洞斷裂之後的圖16A之多層堆疊的部分俯視圖。
圖17為根據本發明之堆疊胞元的等角視圖。
圖18A及圖18B為其上置放有電池封裝之堆疊胞元的連續等角視圖。
圖19為本發明之系統之合併區段的側視圖。
圖20為本發明之大容量堆疊系統的側視圖。
圖20A為圖20之大容量堆疊系統之齒形下方的部分近距視圖。
圖21為根據本發明之收納單元的透視圖。
圖22為圖21之收納單元的正視圖。
圖23為本發明之衝壓及堆疊系統之實施例的示意圖。
圖24A、24B及24C分別為本發明之突顯電極子單元之合併材料幅材、電極子單元及一系列堆疊電極子單元之俯視圖。
圖24D為包括電極子單元群之合併材料幅材之實施例的截斷視圖。
圖24E為本發明之收納單元的等角視圖。
圖24F為說明其上堆疊有電極子單元之群之收納單元的正視圖。
圖25為本發明之衝壓及堆疊系統之拆分鏈輪的等角視圖。
圖26A為在根據本發明之實施例之衝壓操作期間的衝頭之俯視圖。
圖26B為圖26A中所展示之衝頭的等角視圖。
圖26C為圖26A之部分C的詳細視圖。
圖27說明根據本發明之實施例的電極材料幅材上之間隔物部件。
圖28為沿著具有圖27之間隔物部件之電極材料幅材的線A-A的截面圖。
圖29為根據本發明之實施例的包括間隔物部件之堆疊胞元的等角視圖。
圖30A至30F為根據本發明之不同實施例的沿著展示單個電極子單元之圖29之區段30A-D截取的截面圖。
圖31A至31D為根據本發明之不同實施例的沿著展示單個電極子單元之圖29之區段31A-D截取的截面圖。
圖32A至32D為根據本發明之不同實施例的沿著展示單個電極子單元之圖29之區段32A-D截取的截面圖。
圖33A至33B說明根據本發明之實施例的單位胞元及電極子單元之實施例。
圖34A至34B說明根據包括補充間隔物之本發明之不同實施例的沿著展示單個電極子單元之圖29之區段30A-D截取的截面圖。
圖35說明根據本發明之實施例的包括堆疊之間隔物部件的電極子單元。
500:電絕緣隔板層
506:陽極集電器層
508:陽極活性材料層
510:陰極集電器層
512:陰極活性材料層
2700a:間隔物部件
2700b:間隔物部件
2701a:邊限
2701b:邊限
2720:第一表面
2721:第二相對表面
2725:主體
2900a:電極子單元
3000a:遠端
3000b:遠端
3002:膨脹間隙
3004:上邊界
3006:下邊界
3008:L形
3010:下邊界
3027a:側接部分
3027b:側接部分
WG:寬度

Claims (30)

  1. 一種用於在充電狀態與放電狀態之間循環的二次電池,該電池包含殼體及安置於該殼體內之電極總成,其中: 該電極總成具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸, 該電極總成包含單位胞元群,各單位胞元包含在縱向方向上處於堆疊連續中之電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層, 該電極層包含電極活性材料,且該相對電極層包含相對電極活性材料,其中該電極活性材料及該相對電極材料中之一者為陰極活性材料且該電極活性材料及該相對電極材料中之另一者為陽極活性材料, 該單位胞元群之子集進一步包含一對間隔物部件,該對間隔物部件在該電極集電器層與該相對電極集電器層之間位於該堆疊連續中,該等間隔物部件中之一者在橫向方向上與該對間隔物部件中之另一間隔物部件間隔開,該相對電極層之該相對電極活性材料的至少一部分位於該對間隔物部件之間以使得該相對電極活性材料之該部分及該等間隔物部件位於由該x及該z軸界定之共同平面中。
  2. 如請求項1之二次電池,其中該相對電極層具有中心部分及該中心部分之相對側上的一對側接部分,該等側接部分具有等於或小於該中心部分之寬度之50%的寬度,且其中該中心部分為該相對電極活性材料之位於該共同平面中的該部分。
  3. 如請求項1之二次電池,其中該相對電極層具有中心部分及該中心部分之相對側上的一對側接部分,該等側接部分具有等於或小於該中心部分之寬度之30%的寬度,且其中該側接部分為該相對電極活性材料之位於該共同平面中的該部分。
  4. 如請求項1之二次電池,其中該相對電極層具有在與該相對電極集電器層之界面與與該隔板層之界面之間量測的最大寬度,該共同平面出現於該最大寬度之至少50%上。
  5. 如請求項1之二次電池,其中該等間隔物部件中之每一者具有在該橫向方向上延伸之長度,該等間隔物部件之該長度等於或小於500 μm。
  6. 如請求項1之二次電池,其中該相對電極層具有第一末端及在該橫向方向上與該第一末端間隔開的第二末端,該相對電極層之該第一末端鄰近於該等間隔物部件中之一者且該相對電極層之該第二末端鄰近於該等間隔物部件中之另一者。
  7. 如請求項6之二次電池,其中該第一末端及該第二末端對應於該對側接部分。
  8. 如請求項1之二次電池,其中該等間隔物部件安置於該隔板層與該電極層之間。
  9. 如請求項1之二次電池,其中該等間隔物部件安置於該隔板層與該電極集電器層之間。
  10. 如請求項1之二次電池,其中該等間隔物部件安置於該隔板與該相對電極層之間。
  11. 如請求項1之二次電池,其中該等間隔物部件安置於該隔板層與該相對電極集電器層之間。
  12. 如請求項1之二次電池,其中該等間隔物部件黏著至該電極集電器層、該電極層、該隔板層、該相對電極層及該相對電極集電器層中之至少一者。
  13. 如請求項1之二次電池,其中該電極層具有第一末端及在該橫向方向上與該第一末端間隔開的第二末端以界定該電極層之橫向範圍,該電極層之該橫向範圍在該單位胞元之端部之前終止。
  14. 如請求項1之二次電池,其中(i)該單位胞元群之該等部件在該縱向方向上處於堆疊連續中,(ii)該單位胞元群包含單位胞元之相鄰對的兩個集合,(iii)該等相鄰對之該兩個集合中之一者共用共同電極集電器層且該等相鄰對之該兩個集合中之另一者共用共同相對電極集電器層。
  15. 如請求項1之二次電池,其中該等間隔物部件包含電絕緣材料。
  16. 如請求項1之二次電池,其中該單位胞元包含含有穩定鋰金屬粒子之補充間隔物。
  17. 如請求項1之二次電池,其中該等間隔物部件包含黏著帶,該黏著帶具有基底及設置於該基底之一個表面上的黏著層。
  18. 如請求項1之二次電池,其中該等間隔物部件包含與該隔板層相同的材料。
  19. 如請求項1之二次電池,其中該等間隔物部件部分地界定該單位胞元之橫向端部。
  20. 如請求項1之二次電池,其中在該電池在該充電狀態與該放電狀態之間循環時,該等間隔物部件適應該電極層及該相對電極層中之至少一者在該縱向方向上之膨脹。
  21. 如請求項1之二次電池,其中該隔板層的第一部分位於由該x軸及該z軸界定之第一平面中,且該隔板層之一對第二部分位於由該x軸及該z軸界定之第二平面中,該第二平面在該縱向方向上自該第一平面偏移。
  22. 如請求項21之二次電池,其中該隔板層之該第一部分安置成與該相對電極層面對面嚙合,且該隔板層之該等第二部分安置成鄰近於該相對電極層之第一末端及第二末端。
  23. 一種製造供與二次電池一起使用之單位胞元的方法,該單位胞元具有分別對應於三維卡氏座標系統之x、y及z軸的互相垂直之橫向、縱向及豎直軸,該方法包含: 在該縱向軸方向上連續地堆疊電極集電器層、電極層、隔板層、相對電極層及相對電極集電器層,該電極層包含電極活性材料,且該相對電極層包含相對電極活性材料,其中該電極活性材料及該相對電極材料中之一者為陰極活性材料且該電極活性材料及該相對電極材料中之另一者為陽極活性材料,以及 將一對間隔物部件置放於該電極集電器層與該相對電極集電器層之間的堆疊連續中,該等間隔物部件中之一者在橫向方向上與該另一間隔物部件間隔開,該相對電極層之該相對電極活性材料的至少一部分位於該等間隔物部件之間,使得該相對電極活性材料之該部分及該等間隔物部件位於由該x軸及該z軸界定之共同平面中。
  24. 如請求項23之方法,其中該等間隔物部件置放於該隔板層與該電極層或該相對電極層之間。
  25. 如請求項23之方法,其中該等間隔物部件置放於該隔板層與該電極集電器層或該相對電極集電器層之間。
  26. 如請求項23之方法,其中該等間隔物部件黏著至該電極集電器層、該電極層、該隔板層、該相對電極層及該相對電極集電器層中之至少一者。
  27. 如請求項23之方法,其中該對間隔物部件置放於該電極集電器層與該相對電極集電器層之間。
  28. 一種用於合併複數個電極材料幅材之方法,該方法包含: 沿著第一幅材合併路徑退繞該電極材料之第一幅材,該第一幅材包含由對應弱化撕裂圖案劃定之電極子單元群及第一輸送特徵群, 沿著該第一幅材合併路徑下游之第二幅材合併路徑退繞該電極材料之第二幅材,該第二幅材包含由對應弱化撕裂圖案劃定之電極子單元群及第二輸送特徵群; 鄰近於該第一幅材合併路徑及該第二幅材合併路徑在幅材合併方向上輸送包含複數個突出部之帶,該複數個突出部經組態以與該第一幅材之該等第一輸送特徵及該第二幅材之該等第二輸送特徵嚙合; 將間隔物部件群插入於電極材料之該第一幅材與電極材料之該第二幅材之間;以及 在該第一幅材合併位置下游之第二幅材合併位置處將電極材料之該第二幅材覆蓋於電極材料之該第一幅材上,在電極材料之該第一幅材與電極材料之該第二幅材之間捕獲該間隔物部件群。
  29. 如請求項28之方法,其中將間隔物部件群插入於電極材料之該第一幅材與電極材料之該第二幅材之間包含退繞包含間隔物部件群之幅材以及在電極材料之該第一幅材與電極材料之該第二幅材之間合併該間隔物部件幅材。
  30. 如請求項29之方法,其中電極材料之該第一幅材包含中心部分及該中心部分之相對側上的一對側接部分,該等側接部分具有等於或小於該中心部分之寬度之50%的寬度,且其中插入該間隔物部件群包含在電極之該第一幅材之該等側接部分處合併該間隔物部件幅材。
TW110142836A 2020-11-18 2021-11-17 用於電極之間隔物、電極堆疊及電池與其系統及方法 TW202240960A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063115578P 2020-11-18 2020-11-18
US202063115266P 2020-11-18 2020-11-18
US63/115,266 2020-11-18
US63/115,578 2020-11-18

Publications (1)

Publication Number Publication Date
TW202240960A true TW202240960A (zh) 2022-10-16

Family

ID=78695504

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110142837A TW202234730A (zh) 2020-11-18 2021-11-17 電極總成、二次電池及製造方法
TW110142836A TW202240960A (zh) 2020-11-18 2021-11-17 用於電極之間隔物、電極堆疊及電池與其系統及方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110142837A TW202234730A (zh) 2020-11-18 2021-11-17 電極總成、二次電池及製造方法

Country Status (5)

Country Link
US (2) US20230411792A1 (zh)
EP (2) EP4002536A1 (zh)
KR (1) KR20230109680A (zh)
TW (2) TW202234730A (zh)
WO (2) WO2022108954A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662714B (zh) 2012-08-16 2017-09-29 艾诺维克斯公司 三维电池的电极结构
KR102658953B1 (ko) 2015-05-14 2024-04-18 에노빅스 코오퍼레이션 에너지 저장 디바이스들에 대한 종방향 구속부들
JP7059203B2 (ja) 2016-05-13 2022-04-25 エノビクス・コーポレイション 3次元電池の寸法的制限
TWI757370B (zh) 2016-11-16 2022-03-11 美商易諾維公司 具有可壓縮陰極之三維電池
US10256507B1 (en) 2017-11-15 2019-04-09 Enovix Corporation Constrained electrode assembly
WO2022265975A1 (en) * 2021-06-15 2022-12-22 Enovix Corporation Spacers for providing protection of electrochemical battery enclosures and systems and methods therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576891B2 (ja) * 2004-06-07 2010-11-10 パナソニック株式会社 非水電解質二次電池
DE102014221261A1 (de) * 2014-10-20 2016-04-21 Robert Bosch Gmbh Separator und galvanische Zelle mit robuster Trennung von Kathode und Anode
KR102658953B1 (ko) 2015-05-14 2024-04-18 에노빅스 코오퍼레이션 에너지 저장 디바이스들에 대한 종방향 구속부들
JP7059203B2 (ja) 2016-05-13 2022-04-25 エノビクス・コーポレイション 3次元電池の寸法的制限
JP6926946B2 (ja) * 2017-10-26 2021-08-25 トヨタ自動車株式会社 組電池
CN111492507B (zh) * 2017-10-30 2022-12-30 阿科玛股份有限公司 锂离子电池隔膜
TW202347861A (zh) * 2017-11-15 2023-12-01 美商易諾維公司 電極總成及蓄電池組
US11211639B2 (en) * 2018-08-06 2021-12-28 Enovix Corporation Electrode assembly manufacture and device
CN112673504B (zh) * 2018-09-28 2024-03-01 松下知识产权经营株式会社 锂二次电池

Also Published As

Publication number Publication date
WO2022108954A1 (en) 2022-05-27
EP4002537A1 (en) 2022-05-25
EP4002536A1 (en) 2022-05-25
WO2022109019A1 (en) 2022-05-27
US20230299425A1 (en) 2023-09-21
KR20230109680A (ko) 2023-07-20
US20230411792A1 (en) 2023-12-21
TW202234730A (zh) 2022-09-01

Similar Documents

Publication Publication Date Title
US11411253B2 (en) Apparatus, systems and methods for the production of electrodes, electrode stacks and batteries
TW202240960A (zh) 用於電極之間隔物、電極堆疊及電池與其系統及方法
JP7289321B2 (ja) 半固体電極および電池製造の連続的および半連続的方法
TW202228319A (zh) 生產用於電池之電極的裝置、系統及方法
KR101561445B1 (ko) 신규한 구조의 전극 제조장치
KR101334618B1 (ko) 전극조립체의 폴딩 장치
US11811047B2 (en) Apparatus, systems and methods for the production of electrodes for use in batteries
KR20170114351A (ko) 제조 공정성이 향상된 전극조립체 제조 장치
JP2012225848A (ja) 膜厚分布測定装置および塗膜形成装置
WO2016063612A1 (ja) 二次電池用電極の製造方法および製造装置と、二次電池用電極および二次電池
US7000665B2 (en) Stacking apparatus and method for assembly of polymer batteries
KR20190083829A (ko) 테이프 공급 장치
CN116762198A (zh) 用于电极的间隔物、电极堆叠及电池与其系统及方法
KR20170052962A (ko) 단위셀 정렬 수단을 포함하는 전극조립체 제조 장치
JP2005116213A (ja) テープ貼付装置および方法
JP6097331B2 (ja) 枚葉積層型リチウムイオン電池の製造装置、および枚葉積層型リチウムイオン電池の製造方法
JP2000315518A (ja) シート状電池要素の製造装置
CN116648324A (zh) 用激光在幅材中刻划电极结构群组的方法
KR101480742B1 (ko) 전극조립체의 폴딩 장치
KR20230148664A (ko) 라미네이션 장치, 단위 셀의 제조방법 및 단위 셀
KR20220151454A (ko) 이차전지용 복합 고체전해질 분리막 제조장치
CN115579451A (zh) 锂金属电池阴极材料用锂箔层压装置