TW202240180A - 發光元件測試方法 - Google Patents

發光元件測試方法 Download PDF

Info

Publication number
TW202240180A
TW202240180A TW110113127A TW110113127A TW202240180A TW 202240180 A TW202240180 A TW 202240180A TW 110113127 A TW110113127 A TW 110113127A TW 110113127 A TW110113127 A TW 110113127A TW 202240180 A TW202240180 A TW 202240180A
Authority
TW
Taiwan
Prior art keywords
light
emitting
emitting elements
emitting element
electrode
Prior art date
Application number
TW110113127A
Other languages
English (en)
Inventor
許生杰
林家輝
劉柏均
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW110113127A priority Critical patent/TW202240180A/zh
Priority to US17/717,770 priority patent/US20220326297A1/en
Publication of TW202240180A publication Critical patent/TW202240180A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一種發光元件測試方法,包含:步驟一:提供一晶圓,包含複數個發光元件,將複數個發光元件中N個發光元件作為一發光元件群組;步驟二:由發光元件群組中選擇n個發光元件,其中1<n<N,並同時測試n個發光元件,以得到發光元件群組的一子群組光性參數;步驟三:重複輪流實施步驟二,以得到複數個子群組光性參數;以及步驟四:由複數個子群組光性參數得到發光元件群組中各發光元件的個別光性參數。

Description

發光元件測試方法
本身申請案係關於一種發光元件測試方法,具體而言,關於一種使用多組探針的發光元件測試方法。
固態發光元件中的發光二極體(LEDs)具有具低耗電量、低產熱、壽命長、體積小、反應速度快以及良好光電特性,例如具有穩定的發光波 長等特性,故已被廣泛的應用於家用裝置、指示燈及光電產品等。
習知的發光二極體包含一基板、一n型半導體層、一活性層及一p型半導體層形成於基板上、以及分別形成於p型/n型半導體層上的p、n電極。當透過電極對發光二極體通電,且在一特定值的順向偏壓時,來自p型半導體層的電洞及來自n型半導體層的電子在活性層內結合以放出光。發光二極體在製作完後,必須測試發光二極體之光電特性,以判斷發光二極體之品質是否符合規格。然而,隨著發光二極體應用於不同的光電產品,當發光二極體的尺寸縮小時,如何有效且正確的量測其光電特性,為本技術領域人員所研究開發的目標之一。
本申請案揭露一種發光元件測試方法,包含:步驟一:提供一晶圓,包含複數個發光元件,將複數個發光元件中N個發光元件作為一發光元件群組;步驟二:由發光元件群組中選擇n個發光元件,其中1<n<N,並同時測試n個發光元件,以得到發光元件群組的一子群組光性參數;步驟三:重複輪流實施步驟二,以得到複數個子群組光性參數;以及步驟四:由複數個子群組光性參數得到發光元件群組中各發光元件的個別光性參數。
下文中,將參照圖示詳細地描述本發明之示例性實施例,已使得本發明領域技術人員能夠充分地理解本發明之精神。本發明並不限於以下之實施例,而是可以以其他形式實施。在本說明書中,有一些相同的符號,其表示具有相同或是類似之結構、功能、原理的元件,且為業界具有一般知識能力者可以依據本說明書之教導而推知。為說明書之簡潔度考量,相同之符號的元件將不再重述。
圖1顯示本申請案一實施例發光元件測試方法。圖2A顯示一晶圓100之上視圖。圖2B顯示圖2A中區域R之局部上視圖。圖3A至圖3D顯示本申請案一實施例發光元件測試方法中,區域R之局部上視圖。
參照圖1、圖2A、圖2B及圖3A,於本實施例發光元件測試方法實施步驟中,首先提供晶圓100,其中晶圓100包含複數個發光元件1,發光元件1包含一基板10,以及半導體疊層(圖未示)形成於基板1的第一表面10a上,將複數個發光元件1中N個發光元件1作為一發光元件群組,如圖3A所示,在此選擇發光元件1a、1b、1c、1d作為一發光元件群組G1供以下實施例說明。於一實施例中,複數個發光元件1以陣列方式設置於晶圓100中,發光元件1包含一第一電極20以及一第二電極30,分別電性連接發光元件1的不同電性半體導體層(圖未示)。發光元件1之結構將詳述如後。
接著,參照圖1及圖3A,由任一發光元件群組中的N個發光元件1中選擇n個發光元件,其中1<n<N,同時測試此n個發光元件,以得到發光元件群組的一子群組光性參數。於一實施中,以n組探針同時測試此n個發光元件,各組探針係連接至一量測設備。以圖3A作為一示例,於發光元件群組G1中的4個發光元件1a、1b、1c、1d中選擇n個發光元件1,以四組探針40分別接觸發光元件1a、1b、1c及1d,每組探針40包含第一探針40a分別接觸發光元件1的第一電極20,以及第二探針40b接觸發光元件1的第二電極20。於一實施例中,在同時測試此n個發光元件步驟中,僅對此四組探針40中的n組探針40輸入一額定電壓或一額定電流以導通n個對應的發光元件1,並以n組探針同時測試此n個發光元件。例如,在圖3A中,n為3,僅藉由三組探針40對三個對應的發光元件1a、1b、1c輸入額定電壓或額定電流,以同時測試此三個發光元件1a、1b、1c。而位於發光元件1d上的探針40,並未通以電壓或電流,探針40則以虛線輪廓表示。在量測設備取得三個發光元件1a、1b、1c的總光性資料後,可得到第一子群組光性參數。光性參數例如為發光元件的亮度、發光頻譜或發光波長。第一子群組光性參數為三個發光元件1a、1b、1c的亮度總和、發光頻譜之疊加或發光波長的疊加。
接著,參照圖1,於步驟三中,在發光元件群組G1中對此N個發光元件重複輪流實施步驟二,以得到複數個子群組光性參數。重複輪流實施步驟二的過程詳述如下。參照圖3B,在得到三個發光元件1a、1b、1c的第一子群組光性參數後,接著僅用四組探針40中的三組探針40對三個對應的發光元件1b、1c、1d輸入額定電壓或額定電流,以同時測試此三個發光元件1b、1c、1d。而位於發光元件1a上的探針40,並未通以電壓或電流。同樣地,可得到一第二子群組光性參數,為三個發光元件1b、1c、1d的亮度總和、發光頻譜之疊加或發光波長的疊加。接著參照圖3C,僅用三組探針40對三個對應的發光元件1a、1c、1d輸入額定電壓或額定電流,以同時測試此三個發光元件1a、1c、1d。而位於發光元件1b上的探針40,並未通以電壓或電流。如此一來,可得到一第三子群組光性參數,為三個發光元件1a、1c、1d的亮度總和、發光頻譜之疊加或發光波長的疊加。接著參照圖3D,僅用三組探針40對三個對應的發光元件1a、1b、1d輸入額定電壓或額定電流,以同時測試此三個發光元件1a、1b、1d。而位於發光元件1c上的探針40,並未通以電壓或電流。如此一來,可得到一第四子群組光性參數,為三個發光元件1a、1b、1d的亮度總和、發光頻譜之疊加或發光波長的疊加。
在本實施例中,以四個發光元件為一發光元件群組G1,並選擇其中三個發光元件同時做測試,直至發光元件群組G1中所有任選三個發光元件的組合皆已測試完成,得到四個子群組光性參數,接著可同樣再進行另一發光元件群組的測試。於一實施例,在另一發光元件群組的測試時,發光元件群組中發光元件1的數量可等於或不等於其他發光元件群組中發光元件1的數量。於本申請案中,N及n可依量測設備的設計以及量測者的需求而設定。
於另一實施例,在同時測試此n個發光元件步驟中,可以用n組探針接觸n個發光單元,並以此n組探針測試此n個發光單元。於此情況下,單一發光元件群組G1中在單一點測時序下,會有(N-n)的發光元件1未與探針接觸。
接著,參照圖1,於步驟四中,由複數個子群組光性參數得到發光元件群組中各發光元件的個別光性參數。於一實施例中,將每一發光單元的個別光性參數設定為一未知光性參數,因此N個發光元件具有N個未知光性參數。將N個未知光性參數與步驟三所量測得到的複數個子群組光性參數組成複數個運算式,並利用該複數個運算式求得N個未知光性參數,即每一發光單元的個別光性參數。同樣以圖3A至圖3D作為一示例,在前述步驟三完成後,可以得到四組子群組光性參數。於一實施例中,光性參數為亮度。為方便說明,量測得到的四組子群組光性參數以亮度P1至P4表示,發光元件1a至1d的個別亮度分別以未知光性參數x1至x4表示。以P及x1至x4所組成之運算式如下所示: x1+x2+x3 = P1; x2+x3+x4 = P2; x1+x3+x4 = P3;以及 x1+x2+x4 = P4
藉由上述四個運算式,可以求得四個未知光性參數x1至x4,即每一發光單元的個別亮度。
於另一實施例中,光性參數為發光頻譜。為方便說明,四組子群組光性參數分別以發光頻譜W1(λ i)至W4(λ i)表示,發光元件1a至1d的個別發光頻譜分別以未知光性參數s1(λ i)至s4(λ i)表示,λ i表示波長。以W(λ i)及s1(λ i)至s4(λ i)所組成之運算式如下所示: s1(λ i)+s2(λ i)+s3(λ i) = W1(λ i); s2(λ i)+s3(λ i)+s4(λ i) = W2(λ i); s1(λ i)+s3(λ i)+s4(λ i) = W3(λ i);以及 s1(λ i)+s2(λ i)+s4(λ i) = W4(λ i) 藉由上述四個運算式,可以求得每一發光元件1a、1b、1c及1d的個別發光頻譜。
在習知的測試方法中,以探針直接量測每一發光元件以得到每一發光元件的光電特性。然而,當發光元件尺寸縮小,意即在同一面積的晶圓內發光元件的數量將增加,以習知方法量測之,將增加發光元件的測試時間。此外,由於發光元件尺寸縮小,單一發光元件的亮度也減少,進而影響量測設備之收光及積分時間,需要較長時間才可精準量測單一發光元件的亮度與波長。於本申請案實施例中,即使發光元件尺寸縮小且單一發光元件的亮度降低,在一發光元件群組中同時導通多個發光元件並進行量測,得到複數個子群組光性參數,再透過運算處理各複數個子群組量測數值,以得到各別發光元件的光性參數,藉以縮短收光、測試時間,提升整體測試效率。
以圖3A至圖3D作為一示例,N個發光元件為連續排列於同一行或同一列中。於另一實施例中,N個發光元件可以二維陣列排列,例如四個發光元件以一2×2陣列排列。於另一實施例中,N個發光元件為非連續排列於同一行、同一列或排列成陣列。這裡非連續係指N個發光元件之間有其他發光元件設置於其間。
於另一實施例中,參照圖4,選擇N個發光元件1(1a、1b、1c、1d)作為一發光元件群組G1,發光元件1(1a、1b、1c、1d)為非連續排列,其間設置有發光元件1e。進行量測之前,可用影像方式先判斷晶圓100中是否存在失效的發光元件,再進行測試。例如,發光元件1a、1b、1c、1d之間的任一發光元件1e為失效,則不對發光元件1e進行測試。
於另一實施例中,同樣參照圖4,選擇N個發光元件1(1a、1b、1c、1d)作為一發光元件群組G1,發光元件1(1a、1b、1c、1d)為非連續排列,其間設置有發光元件1e。在步驟一至步驟四完成後,可得到發光元件1(1a、1b、1c、1d)的個別光電參數。假設鄰近發光元件的光電特性為近似,可以把發光元件1a、1b、1c及1d的個別光電參數之平均值作為發光元件1e的個別光電參數。或者,可以把發光元件1a、1b、1c及1d的個別光電參數,作為與其相鄰的發光元件1e的個別光電參數。於此情況下,則無須再對發光元件1e進行測試,可以節省測試時間。圖4以非連續排列成陣列的四個發光元件1a-1d為例,然而本實施例並不限於此,非連續排列於同一行或同一列的複數個發光元件亦可使用本實施例之測試方法進行量測。
發光元件1的結構詳述如下。
圖5顯示本申請案一實施例發光元件1之截面圖。如圖5所示,發光元件1包含基板10,半導體疊層12位於基板第一表面10a,其中半導體疊層12在基板第一表面10a上依序包含一第一半導體層121、一活性層123和一第二半導體層122,第一半導體層121具有一第一表面121a不被活性層123和第二半導體層122所覆蓋。透明導電層18位於第二半導體層122上,第一電極20位於第一半導體層第一表面121a上,以及第二電極30位於透明導電層18上。保護層50位於半導體疊層12上。在基板10相對於第一表面10a的第二表面10b,可選擇性地設置有反射結構16。
基板10可以是一成長基板,包括用於生長磷化鎵銦(AlGaInP)的砷化鎵(GaAs)基板、及磷化鎵(GaP)基板,或用於生長氮化銦鎵(InGaN)或氮化鋁鎵(AlGaN)的藍寶石(Al 2O 3)基板,氮化鎵(GaN)基板,碳化矽(SiC)基板、及氮化鋁(AlN)基板。基板10可以是一圖案化基板,即,基板10在其第一表面10a上具有圖案化結構(圖未示)。於一實施例中,從半導體疊層12發射的光可以被基板10的圖案化結構所折射,從而提高發光元件的亮度。此外,圖案化結構減緩或抑制了基板10與半導體疊層12之間因晶格不匹配而導致的錯位,從而改善半導體疊層12的磊晶品質。於另一實施例中,基板10可以是一暫時基板,半導體疊層12例如以磊晶成長形成於成長基板後,藉由一黏著層附著於基板10上,再移除成長基板。於另一實施例中,基板10可以是一永久基板,半導體疊層12例如以磊晶成長形成於成長基板後,暫時固定於一暫時基板,移除成長基板後,再將半導體疊層12由暫時基板轉置固定於永久基板並移除暫時基板。半導體疊層12藉由一黏著層附著於基板10上。黏著層相對於發光疊層12所發之光為透明,其材料可為絕緣材料與/或導電材料。絕緣材料包含高分子材料、玻璃、介電材料例如氧化鋁、氧化矽、氧化鈦、氧化鉭、氮化矽,或旋塗玻璃(SOG)。導電材料包含金屬氧化物像是氧化銦錫(ITO)、類金剛石碳(DLC)等。作為暫時基板或永久基板的基板10對於半導體疊層12產生的光是透明的,並且其材料包括導電材料,複合材料,金屬基複合材料(MMC),陶瓷基複合材料(CMC),聚合物基複合材料或絕緣材料。絕緣材料包括藍寶石,鑽石,玻璃,聚合物,環氧樹脂,石英,壓克力等。
於一實施例中,在完成晶圓10中複數個發光元件1測試後,接著再分裂基板10得到獨立的複數個發光元件1。於另一實施例中,可先分裂基板10得到獨立的複數個發光元件1,再進行測試。於分裂步驟後的複數個發光元件1仍以陣列形式排列固定於一載體,例如固定於藍膜,於此情況下,複數個獨立的發光元件1仍定義為晶圓100。
在本申請案的一實施例中,在基板10上形成半導體疊層12的方法包含有機金屬化學氣相沉積(MOCVD)、分子束磊晶法(MBE)、氫化物氣相磊晶(HVPE)或離子鍍,例如濺鍍或蒸鍍等。
半導體疊層12更包含緩衝結構(圖未示)在基板第一表面10a與第一半導體層121之間。緩衝結構、第一半導體層121、活性層123和第二半導體層122構成半導體疊層12。緩衝結構可減小上述的晶格不匹配並抑制錯位,從而改善磊晶品質。緩衝層的材料包括GaN、AlGaN或AlN。在一實施例中,緩衝結構包括多個子層(圖未示)。子層包括相同材料或不同材料。在本申請案的一實施例中,第一半導體層121和第二半導體層122,例如為包覆層(cladding layer)或侷限層(confinement layer),具有不同的導電型態、電性、極性或用於提供電子或電洞的摻雜元素。例如,第一半導體層121是n型半導體,以及第二半導體層122是p型半導體。活性層123形成於第一半導體層121與第二半導體層122之間。電子與電洞在電流驅動下在活性層123中結合,將電能轉換成光能以發光。可藉由改變半導體疊層12中一個或多個層別的物理特性和化學組成,來調整發光元件1或半導體疊層12所發出的光之波長。
半導體疊層12的材料包括Al xIn yGa (1-x-y)N或Al xIn yGa (1-x-y)P的III-V族半導體材料,其中0≤x,y≤1;x+y≤1。根據活性層的材料,當半導體疊層12的材料是AlInGaP系列時,可以發出波長介於570nm和780nm之間的紅光或波長介於550nm和570nm之間的黃光。當半導體疊層12的材料是InGaN系列時,可以發出波長介於380nm和490nm之間的藍光或深藍光或波長介於490nm和550nm之間的綠光。活性層123可以是單異質結構(single heterostructure;SH)、雙異質結構(double heterostructure; DH)、雙面雙異質結構(double-side double heterostructure;DDH)、多重量子井(multi-quantum well;MQW)。活性層123的材料可以是i型、p型或n型半導體。
透明導電層18與第二半導體層122電性接觸,用以橫向分散電流。於另一實施例中,透明導電層18可包含開口(圖未示)位於第二電極30下方,暴露第二半導體層122,第二電極30可經由透明導電層18之開口接觸第二半導體層122。透明導電層18可以是金屬或是透明導電材料,其中金屬可選自具有透光性的薄金屬層,透明導電材料對於活性層123所發出的光線為透明,包含石墨烯、銦錫氧化物(ITO)、氧化鋁鋅(AZO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)或銦鋅氧化物(IZO)等材料。
第一電極20位於第一半導體層第一表面121a上,與第一半導體層121電性連接。第二電極30與第二半導體層121電性連接。第一電極20及第二電極30分別包含一焊盤電極。於圖5中,僅示例性地繪示第一電極20及第二電極30的焊盤電極。於另一實施例中,第一電極20及/或第二電極30更包含延伸自焊盤電極的指狀電極(圖未示)。第一電極20及第二電極30的焊盤電極用以打線或焊接,使發光元件1和外部電源或外部電子元件電性連接。第一電極20與第二電極30之材料包含金屬,例如鉻(Cr)、鈦(Ti)、金(Au)、鋁(Al)、銅(Cu)、銀(Ag)、錫(Sn)、鎳(Ni)、銠(Rh)或鉑(Pt)等金屬或上述材料之合金或疊層。
保護層50包含開孔501及502,於本實施例中,如圖5所示,保護層50覆蓋半導體疊層12、透明導電層18及部分的第一電極20和第二電極30,並分別經由開孔501及502露出第一電極20和第二電極30,更詳言之,露出第一電極20和第二電極30的焊盤電極。
圖6顯示本申請案另一實施例發光元件1’之截面圖。不同於前述實施例,發光元件1’為一覆晶式元件(flip-chip),以覆晶方式將發光元件1’的第一電極20’及第二電極30’連接至一載板(圖未示),使發光元件1’與載板上的電路(圖未示)接合,以達到和外部電子元件或外部電源的連接。
發光元件1’包含反射結構28覆蓋透明導電層18。反射結構28可包含金屬反射層,例如是單層金屬或是由複數層金屬所形成之疊層。於一實施例中,反射結構28包含阻障層(圖未示)及反射層(圖未示),阻障層形成並覆蓋於反射層上,阻障層可以防止反射層之金屬元素的遷移、擴散或氧化。反射層的材料包含對於半導體疊層12所發射的光線具有高反射率的金屬材料,例如銀(Ag)、金(Au)、鋁(Al)、鈦(Ti)、鉻(Cr)、銅(Cu)、鎳(Ni)、鉑(Pt)、釕(Ru)或上述材料之合金或疊層。阻障層的材料包括鉻(Cr)、鉑(Pt)、鈦(Ti)、鎢(W)、鋅(Zn) 或上述材料之合金或疊層。半導體疊層12所發出的光線,經由反射結構28的反射,從基板10之下表面10b被摘出,增加發光元件1’的亮度。
發光元件1’包含保護層26覆蓋半導體疊層12以及半導體疊層12之側壁,於一實施例中,保護層26更可覆蓋基板第一表面10a。保護層26包含開孔261及262分別露出第一半導體層121及反射結構28。保護層26的材料為非導電材料,包含有機材料,例如Su8、苯并環丁烯(BCB)等,或是無機材料,例如矽膠(Silicone)、玻璃(Glass)等,或是介電材料,例如為氧化矽(SiO x)、氮化矽(SiN x)等。於一實施例中,保護層26由一對或複數對不同折射率的材料交互堆疊所形成,藉由不同折射率材料的選擇搭配其厚度設計,保護層26形成一反射結構,對特定波長範圍的光線提供反射功能,例如為一分佈式布拉格反射器。當保護層26形成反射結構時,半導體疊層12所發出的光線,經由保護層26的反射,從基板10之下表面10b被摘出,可增加發光元件1’的亮度。發光元件1’的測試方法與發光元件1的測試方法類似,差異在於量測設備的收光系統為一下收光系統,亦即,複數個發光元件1’以電極朝上置於一透明載板(圖未示)上,收光系統位於透明載板下方接收待測試子群組發光元件的光,以量測其光性參數。於另一實施例中,複數個發光元件1’以固金方式分別接著於一測試電路板的複數個墊片上,複數個發光元件1’基板10朝上,此時量測設備的收光系統就可如同前述實施例發光元件出光面朝上,以上收光的方式量測。此時可藉由前述實施例的測試方式,以N個發光元件1’組成發光元件群組,在N個發光元件1’中選擇n個發光元件1’,經由墊片對此n個發光元件1’輸入一額定電壓或一額定電流以導通此n個發光元件1’,以同時測試此n個發光元件1’。
於一實施例中,當保護層26為一反射結構時,反射結構28可以省略。
發光元件1’包含第一電極20’和第二電極30’。第一電極20’經由開口261與第一半導體層121電性連接,第二電極30’經由開口262與反射結構28、透明導電層18以及第二半導體層122電性連接。第一電極20’及第二電極30’包含金屬材料,例如鉻(Cr)、鈦(Ti)、鎢(W)、金(Au)、鋁(Al)、銦(In)、錫(Sn)、鎳(Ni)、銠(Rh)、鉑(Pt)等金屬或上述材料之疊層或合金。第一電極20’及第二電極30’可由單個層或是多個層所組成。
於一實例中,由上視觀之,發光元件1(或1’)具有一對角線長度介於100 μm至350 μm;於一實施例中,對角線長度介於100 μm至300 μm。於一實例中,發光元件1(或1’)中,第一電極20(或20’)與第二電極30(或30’)之間距小於100 μm;於一實施例中,間距小於60 μm。
惟上述實施例僅為例示性說明本申請案之原理及其功效,而非用 於限制本申請案。任何本申請案所屬技術領域中具有通常知識者均可在不 違背本申請案之技術原理及精神的情況下,對上述實施例進行修改及變 化。舉凡依本申請案申請專利範圍所述之形狀、構造、特徵及精神所為之 均等變化與修飾,均應包括於本申請案之申請專利範圍內。
1、1’、1a-1d、1e:發光元件 10:基板 10a:基板第一表面 10b:基板第二表面 100:晶圓 12:半導體疊層 121:第一半導體層 122:第二半導體層 123:活性層 16:反射結構 18:透明導電層 20、20’:第一電極 30、30’:第二電極 26:保護層 261、262:保護層開口 36:絕緣層 50:保護層 501、502:開孔 40:探針 40a:第一探針 40b:第二探針 G1:發光元件群組
﹝圖1﹞顯示本申請案一實施例發光元件測試方法。 ﹝圖2A﹞顯示本申請案一實施例晶圓之上視圖。 ﹝圖2B﹞顯示圖2A中區域R之局部上視圖。 ﹝圖3A至圖3D﹞顯示本申請案一實施例發光元件測試方法中,區域R之局部上視圖。 ﹝圖4﹞顯示本申請案另一實施例發光元件測試方法中,區域R之局部上視圖。 ﹝圖5﹞顯示本申請案一實施例發光元件。 ﹝圖6﹞顯示本申請案另一實施例發光元件。

Claims (10)

  1. 一種發光元件測試方法,包含: 步驟一:提供一晶圓,包含複數個發光元件,將該複數個發光元件中N個發光元件作為一發光元件群組; 步驟二:由該發光元件群組中選擇n個發光元件,其中1<n<N,並同時測試該n個發光元件,以得到該發光元件群組的一子群組光性參數; 步驟三:重複輪流實施該步驟二,以得到複數個該子群組光性參數;以及 步驟四:由該複數個子群組光性參數得到該發光元件群組中各該發光元件的一個別光性參數。
  2. 如請求項1之發光元件測試方法,其中該子群組光性參數及該個別光性參數包含亮度、光譜或波長。
  3. 如請求項1之發光元件測試方法,其中該子群組光性參數為該n個發光元件的該個別光性參數之總和或疊加。
  4. 如請求項3之發光元件測試方法,其中該步驟四包含: 將該個別光性參數設定為一未知光性參數,該N個發光元件之該個別光性參數包含N個未知光性參數; 該N個未知光性參數與該複數個子群組光性參數組成複數個運算式;以及 利用該複數個運算式求得該N個未知光性參數。
  5. 如請求項1之發光元件測試方法,其中該N個發光元件各包含一第一電極以及一第二電極;以及 其中該步驟二包含: 以n組探針同時測試該n個發光元件,該n組探針各包含一第一探針以及一第二探針,將該n組探針的該第一探針及該第二探針分別接觸該n個發光元件的該第一電極及該第二電極; 向該n組探針通入一額定電流或一額定電壓;以及 測量該n個發光元件以得到該子群組光性參數。
  6. 如請求項1之發光元件測試方法,其中該N個發光元件各包含一第一電極以及一第二電極,該第一電極與該第二電極之間距小於100 μm。
  7. 如請求項1之發光元件測試方法,其中該N個發光元件分別包含一對角線長度介於100 μm至300 μm。
  8. 如請求項1之發光元件測試方法,其中該複數個發光元件以一陣列排列設置,該N個發光元件位於同一行、同一列或以一二維陣列排列。
  9. 如請求項1之發光元件測試方法,其中步驟三包含:重複輪流實施該步驟二直至該發光元件群組中所有不同該n個發光元件的組合皆已同時測試,得到該複數個子群組光性參數。
  10. 如請求項1之發光元件測試方法,其中該晶圓為未分裂的晶圓或分裂後的晶圓。
TW110113127A 2021-04-12 2021-04-12 發光元件測試方法 TW202240180A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110113127A TW202240180A (zh) 2021-04-12 2021-04-12 發光元件測試方法
US17/717,770 US20220326297A1 (en) 2021-04-12 2022-04-11 Method for testing light-emitting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110113127A TW202240180A (zh) 2021-04-12 2021-04-12 發光元件測試方法

Publications (1)

Publication Number Publication Date
TW202240180A true TW202240180A (zh) 2022-10-16

Family

ID=83510688

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110113127A TW202240180A (zh) 2021-04-12 2021-04-12 發光元件測試方法

Country Status (2)

Country Link
US (1) US20220326297A1 (zh)
TW (1) TW202240180A (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8476918B2 (en) * 2010-04-28 2013-07-02 Tsmc Solid State Lighting Ltd. Apparatus and method for wafer level classification of light emitting device
US9040896B2 (en) * 2011-07-01 2015-05-26 James Albert Walker Optoelectronic-device wafer probe and method therefor
CN113991003A (zh) * 2015-12-01 2022-01-28 夏普株式会社 图像形成元件及其制造方法
KR102558296B1 (ko) * 2018-07-10 2023-07-24 삼성전자주식회사 전자 장치, 마이크로 led 모듈 제조 방법 및 컴퓨터 판독가능 기록 매체

Also Published As

Publication number Publication date
US20220326297A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
US9627435B2 (en) Light emitting device
US7993943B2 (en) GaN based LED with improved light extraction efficiency and method for making the same
US11862751B2 (en) Light-emitting diode testing circuit, light-emitting diode testing method and manufacturing method
US20230282797A1 (en) Light emitting device and led display apparatus having the same
US11705539B2 (en) Optoelectronic device with transparent insulated current blocking region and uniform current spreading
CN114023861A (zh) Micro-LED芯片结构及其制作方法
CN113169253A (zh) 微型发光二极管以及微型发光二极管的制造方法
KR100646636B1 (ko) 발광 소자 및 이의 제조 방법
US12002842B2 (en) Light emitting device and manufacturing method thereof
CN110828625B (zh) 一种倒装芯片及其制作方法
CN112447892A (zh) 发光元件及其制造方法
KR20230031858A (ko) 발광 소자 및 이를 포함하는 조명 장치 및 디스플레이 장치
TW202240180A (zh) 發光元件測試方法
CN211017112U (zh) 一种倒装芯片
CN115020440A (zh) 一种用于小间距高亮度的led显示屏制作方法及led显示屏
CN114284411B (zh) 发光二极管及其制备方法
TWM593068U (zh) 發光元件