TW202238455A - Training data creation assistance apparatus and training data creation assistance method - Google Patents
Training data creation assistance apparatus and training data creation assistance method Download PDFInfo
- Publication number
- TW202238455A TW202238455A TW111104665A TW111104665A TW202238455A TW 202238455 A TW202238455 A TW 202238455A TW 111104665 A TW111104665 A TW 111104665A TW 111104665 A TW111104665 A TW 111104665A TW 202238455 A TW202238455 A TW 202238455A
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- normal
- abnormal
- training
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20224—Image subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Signal Processing (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Image Analysis (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Image Processing (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本發明係有關一種支援訓練資料之製作的訓練資料製作支援裝置及訓練資料製作支援方法。The present invention relates to a training data production support device and a training data production support method for supporting training data production.
對於製品或食品等之商品,在自製造過程至流通前之各步驟,被適當地進行用以判定是否為良品的檢查。例如,於日本專利特開2011-119471號公報中記載有一種缺陷檢查裝置,其用以檢查於半導體晶圓之製造步驟中所產生之各種缺陷。Products such as products and foods are properly inspected to determine whether they are good or not in each step from the manufacturing process to distribution. For example, Japanese Patent Laid-Open No. 2011-119471 discloses a defect inspection device for inspecting various defects generated during the manufacturing steps of semiconductor wafers.
於該缺陷檢查裝置中,其生成顯示複數個檢查對象之晶圓的複數個SEM(掃描型電子顯微鏡)圖像。使用者自所生成之複數個SEM圖像中指定顯示良品之晶圓的SEM圖像來作為範本。藉由計算範本以外之複數個SEM圖像(檢查圖像)其每一個與範本的差,用來檢測檢查圖像所顯示之晶圓的電路圖案上的缺陷。In this defect inspection apparatus, a plurality of SEM (scanning electron microscope) images showing a plurality of wafers to be inspected are generated. The user designates a SEM image showing a good wafer as a template from among the plurality of generated SEM images. By calculating the difference between each of a plurality of SEM images (inspection images) other than the template and the template, it is used to detect defects on the circuit pattern of the wafer shown in the inspection image.
在缺陷檢查裝置中,即使為不具有缺陷之檢查對象物,其存在有可能被判定為具有缺陷的情形。於此情形下,雖然其不具有缺陷,但是由於被取得錯誤之檢查結果而將檢查對象物廢棄,因而會造成良率降低。因此,期盼能以更高之精度來進行檢查。In the defect inspection device, there are cases where it may be judged to have a defect even if it is an inspection target object that does not have a defect. In this case, although it does not have a defect, the inspection target object is discarded due to an erroneous inspection result being obtained, resulting in a decrease in yield. Therefore, it is desired to perform inspection with higher accuracy.
本發明之目的在於提供一種訓練資料製作支援裝置及訓練資料製作支援方法,其可容易地製作使用高精度來進行檢查的訓練資料。An object of the present invention is to provide a training data creation support device and a training data creation support method capable of easily creating training data that can be inspected with high precision.
(1)本發明一態樣之訓練資料製作支援裝置,其支援被使用於檢查對象物之再檢查的訓練資料之製作,其具備有:異常資料取得部,其取得異常資料,該異常資料係顯示事先被判定為具有缺陷的檢查對象物之圖像;正常資料取得部,其以與藉由異常資料取得部所取得之異常資料相對應之方式,取得顯示正常之檢查對象物之圖像的正常資料;差分資料生成部,其生成差分資料,該差分資料係顯示藉由異常資料取得部所取得的異常資料、與以相對應於該異常資料之方式藉由正常資料取得部所取得的正常資料的差分;及提示部,其根據藉由差分資料生成部所生成的差分資料,以提示檢查對象物之部分之圖像。 在該訓練資料製作支援裝置中,根據顯示事先被判定為具有缺陷的檢查對象物之圖像的異常資料、與顯示正常之檢查對象物之圖像的正常資料的差分的差分資料,以提示檢查對象物之部分之圖像。在根據差分資料所顯示之圖像中的檢查對象物之部分,需要再檢查之可能性很高。因此,使用者可藉由確認所提示之圖像,製作用以再檢查該部分的訓練資料。藉此,其可容易地製作使用高精度以進行檢查的訓練資料。 (1) A training data creation support device according to an aspect of the present invention, which supports the creation of training data used for re-inspection of inspection objects, and is equipped with: an abnormal data acquisition unit, which acquires abnormal data, and the abnormal data is Displaying an image of an inspection object judged to have a defect in advance; a normal data acquisition unit that acquires an image showing a normal inspection object in a manner corresponding to the abnormal data acquired by the abnormal data acquisition unit Normal data; a differential data generation unit that generates differential data showing the abnormal data obtained by the abnormal data acquisition unit and the normal data obtained by the normal data acquisition unit in a manner corresponding to the abnormal data. a data difference; and a presentation unit for presenting an image of a portion of the inspection object based on the difference data generated by the difference data generation unit. In this training material creation support device, the inspection is presented based on the difference data showing the difference between the abnormal data showing the image of the inspection object judged to be defective in advance and the normal data showing the image of the normal inspection object. An image of a part of an object. There is a high possibility that re-inspection is required for the part of the inspection target object in the image displayed based on the difference data. Therefore, the user can create training materials for rechecking the part by confirming the displayed image. With this, it is possible to easily create training data for inspection using high precision.
(2)訓練資料製作支援裝置,其亦可更進一步具備有:受理部,其受理藉由提示部所提示的差分資料之選擇;及登錄部,其登錄藉由受理部受理有選擇的差分資料來作為訓練資料。在此情形下,登錄藉由使用者所選擇之差分資料來作為訓練資料。藉此,其可更容易地製作訓練資料。(2) The training data production support device may be further equipped with: a reception unit that accepts the selection of differential data presented by the presentation unit; and a registration unit that accepts the selected differential data for registration by the reception unit as training material. In this case, the difference data selected by the user is registered as the training data. In this way, it is easier to create training materials.
(3)受理部亦可更進一步受理藉由提示部所提示的差分資料之修正,登錄部亦可登錄修正後之差分資料來作為訓練資料。於此情形下,其可更適當地修正在根據差分資料之圖像中所需要進行檢查對象物的再檢查之部分。藉此,其可製作使用更高精度以進行檢查的訓練資料。(3) The acceptance unit can further accept the correction of the difference data presented by the prompt unit, and the registration unit can also register the corrected difference data as training data. In this case, it is possible to more appropriately correct the portion of the image based on the difference data that requires re-inspection of the inspection object. With this, it can produce training data that uses higher precision for inspection.
(4)正常資料取得部亦可以與異常資料對應之方式取得複數個正常資料,差分資料生成部亦可根據異常資料、與相對應於該異常資料的複數個正常資料,以生成複數個差分資料。於此情形下,自一個異常資料生成多數個差分資料。藉此,可提高訓練資料製作之作業效率。 (4) The normal data acquisition unit can also obtain a plurality of normal data in a manner corresponding to the abnormal data, and the differential data generation unit can also generate a plurality of differential data based on the abnormal data and the plurality of normal data corresponding to the abnormal data . In this case, a plurality of difference data are generated from one anomalous data. Thereby, the operation efficiency of training material production can be improved.
(5)正常資料取得部亦可以與異常資料相對應之方式取得複數個正常資料,差分資料生成部亦可根據異常資料、與相對應於該異常資料的複數個正常資料之平均,以生成差分資料。根據該構成,即使在複數個正常資料中之任一個中意外地被混入有與缺陷無關之雜訊成分的情形下,亦對複數個正常資料進行平均,因此雜訊成分幾乎不對平均後之正常資料之像素值產生影響。因此,可製作用以使用更高精度來進行檢查的訓練資料。(5) The normal data acquisition part can also obtain a plurality of normal data corresponding to the abnormal data, and the difference data generation part can also generate a difference based on the average of the abnormal data and the plurality of normal data corresponding to the abnormal data material. According to this configuration, even if a noise component unrelated to a defect is accidentally mixed into any of the plurality of normal data, the plurality of normal data is averaged, so the noise component is hardly equal to the averaged normal data. The pixel value of the data is affected. Therefore, training data for inspection with higher precision can be produced.
(6)正常資料取得部亦可以與複數個異常資料相對應之方式取得正常資料,差分資料生成部亦可根據各異常資料、與相對應於該異常資料的正常資料,來生成差分資料。於此情形下,可使用共同之正常資料高速地製作訓練資料。(6) The normal data obtaining unit can also obtain normal data corresponding to a plurality of abnormal data, and the differential data generating unit can also generate differential data based on each abnormal data and the normal data corresponding to the abnormal data. In this case, training data can be created at high speed using common normal data.
(7)藉由正常資料取得部所取得的正常資料,亦可包含顯示:事先未被判定為具有缺陷的檢查對象物之圖像的圖像資料。於此情形下,其可容易取得顯示正常之檢查對象物之圖像的正常資料。(7) The normal data acquired by the normal data acquisition unit may include image data showing images of inspection objects that have not been previously judged to have defects. In this case, it is possible to easily obtain normal data showing an image of a normal inspection object.
(8)藉由正常資料取得部所取得的正常資料,亦可包含主資料(master data),該主資料係顯示檢查對象物之設計圖。於此情形下,其可容易取得顯示正常之檢查對象物之圖像的正常資料。(8) The normal data obtained by the normal data acquisition unit may also include master data, which is a design drawing showing the object to be inspected. In this case, it is possible to easily obtain normal data showing an image of a normal inspection object.
(9)正常資料取得部亦可取得根據檢查對象物之加工精度作修正的主資料來作為正常資料。根據該構成,即使於檢查對象區域為微細之情形下,亦可容易取得顯示正常檢查對象物之圖像的正常資料。(9) The normal data acquisition department can also obtain the master data corrected according to the processing accuracy of the inspection object as normal data. According to this configuration, even when the inspection target area is fine, normal data showing an image of a normal inspection target object can be easily acquired.
(10)藉由異常資料取得部所取得之異常資料及藉由正常資料取得部所取得之正常資料,被設定非檢查對象區域,而差分資料生成部亦可將所被設定之非檢查對象區域排除在外,來生成差分資料,如此亦可。於此情形下,其可防止於差分資料所顯示之圖像中含有檢查對象區域以外之部分。藉此,可製作用來實施更高精度檢查的訓練資料。(10) The abnormal data obtained by the abnormal data acquisition unit and the normal data obtained by the normal data acquisition unit are set as non-inspection target areas, and the differential data generation unit can also set the set non-inspection target areas Excluded to generate differential data, and so on. In this case, it is possible to prevent the image displayed by the differential data from including parts other than the inspection target area. Thereby, it is possible to create training data for performing higher-precision inspections.
(11)異常資料取得部亦可更進一步取得缺陷資訊,該缺陷資訊係顯示有關與所取得之異常資料相對應之檢查對象物的缺陷之種類,差分資料生成部亦可對生成之差分資料提供藉由異常資料取得部所取得的缺陷資訊。於此情形下,使用者不需要進行對訓練資料提供缺陷資訊之作業。藉此,則可減輕使用者之負擔,並且可提高訓練資料製作之作業效率。此外,由於其不會產生伴隨著使用者之作業的錯誤產生,因此可製作更準確之訓練資料。(11) The abnormal data acquisition department can further obtain defect information, which shows the type of defect of the inspection object corresponding to the obtained abnormal data, and the differential data generation department can also provide the generated differential data. Defect information acquired by the Abnormal Data Acquisition Department. In this case, the user does not need to perform the operation of providing defect information to the training data. Thereby, the burden on the user can be reduced, and the work efficiency of training material production can be improved. In addition, since it does not cause errors accompanying the user's work, more accurate training materials can be produced.
(12)異常資料取得部亦可取得被二值化處理的異常資料,正常資料取得部亦可取得被二值化處理的正常資料。於此情形下,由於將異常資料及正常資料之資料量削減,因此可高速地製作訓練資料。(12) The abnormal data acquisition unit can also acquire binarized abnormal data, and the normal data acquisition unit can also acquire binarized normal data. In this case, since the amount of abnormal data and normal data is reduced, training data can be created at high speed.
(13)本發明之另一態樣之訓練資料製作支援方法,其支援被使用於檢查對象物之再檢查的訓練資料之製作的訓練資料製作支援方法,其包含以下之步驟:取得異常資料的步驟,該異常資料係顯示事先被判定為具有缺陷的檢查對象物之圖像;以與所取得之異常資料相對應之方式,取得顯示正常之檢查對象物之圖像的正常資料的步驟;生成差分資料的步驟,該差分資料係顯示所取得之異常資料、與以相對應於該異常資料之方式所取得之正常資料的差分;及根據所生成之差分資料,提示檢查對象物之部分之圖像的步驟。(13) Another aspect of the present invention is a training data production support method, which supports the production of training data used for re-inspection of inspection objects, and includes the following steps: acquiring abnormal data Steps, the abnormal data is to display the image of the inspection object judged to have defects in advance; the step of obtaining normal data showing the image of the normal inspection object in a manner corresponding to the obtained abnormal data; generating The step of differential data, the differential data is to show the difference between the obtained abnormal data and the normal data obtained in a manner corresponding to the abnormal data; and a diagram showing the portion of the object to be inspected based on the generated differential data like steps.
若根據該訓練資料製作支援方法,則根據顯示事先被判定為具有缺陷的檢查對象物之圖像的異常資料、與顯示正常之檢查對象物之圖像的正常資料之差分的差分資料而來提示檢查對象物之部分之圖像。在根據差分資料所顯示之圖像中之檢查對象物之部分,其需要再檢查之可能性很高。因此,使用者可藉由確認所提示之圖像,而製作用以再檢查該部分的訓練資料。藉此,則可容易製作可更高精度來進行檢查的訓練資料。When the support method is created based on the training data, it is presented based on the difference data showing the difference between the abnormal data showing the image of the inspection object judged to be defective in advance and the normal data showing the image of the normal inspection object. An image of a portion of an object to be inspected. The part of the inspection object in the image displayed based on the differential data is highly likely to require re-inspection. Therefore, the user can create training data for rechecking the part by confirming the displayed image. This makes it possible to easily create training data that can be inspected with higher accuracy.
[1]第一實施形態
(1)處理系統
以下,使用圖式,對本發明之實施形態之訓練資料製作支援裝置及訓練資料製作支援方法進行說明。於以下之說明中,將訓練資料製作支援裝置簡稱為支援裝置。圖1為顯示包含本發明之第一實施形態之支援裝置的處理系統之構成的圖。如圖1所示,處理系統100係包含處理裝置10、檢查裝置20及資料庫記憶裝置30。
[1] First Embodiment
(1) Processing system
Hereinafter, a training data production support device and a training data production support method according to an embodiment of the present invention will be described using drawings. In the following description, the training data creation support device is simply referred to as a support device. FIG. 1 is a diagram showing the configuration of a processing system including a supporting device according to a first embodiment of the present invention. As shown in FIG. 1 , the
處理裝置10係由CPU(中央運算處理裝置)11、RAM(隨機存取記憶體)12、ROM(唯讀記憶體)13、記憶裝置14、操作部15、顯示裝置16及輸入輸出I/F(介面)17所構成。CPU11、RAM12、ROM13、記憶裝置14、操作部15、顯示裝置16及輸入輸出I/F17,係與匯流排18連接。The
RAM12係作為CPU11之作業區域來使用。在ROM13記憶有系統程式。記憶裝置14係包含有硬碟或半導體記憶體等之記憶媒體,且記憶訓練資料製作支援程式(以下,簡稱為支援程式)。支援程式亦可被記憶在ROM13或其他外部記憶裝置。藉由CPU11、RAM12及ROM13,來構成用以執行訓練資料製作支援處理(以下,簡稱為支援處理)的支援裝置40。支援處理其支援訓練資料之製作。RAM12 is used as a working area of CPU11. There are system programs in ROM13 memory. The
操作部15係鍵盤、滑鼠或觸控面板等之輸入裝置。使用者藉由操作操作部15,可對支援裝置40提供既定之指示。顯示裝置16係液晶顯示裝置等之顯示裝置,且顯示用以受理藉由使用者所產生之指示的GUI(Graphical User Interface)等。輸入輸出I/F17連接於檢查裝置20。The
檢查裝置20係例如為AOI(自動光學檢查)裝置,且藉由依序拍攝檢查對象物而生成分別顯示複數個檢查對象物之圖像的複數個圖像資料,並且,記憶所被生成之各圖像資料。對所記憶之各圖像資料賦予固有之識別號碼。The
以下,雖然以基板作為檢查對象物之一例來對檢查裝置20進行說明,但是檢查對象物不被限定於基板。再者,所謂基板係指半導體基板、液晶顯示裝置或有機EL(Electro Luminescence)顯示裝置等之FPD(Flat Panel Display)用基板、光碟用基板、磁碟用基板、磁光碟用基板、光罩用基板、陶瓷基板或太陽能電池用基板等。Hereinafter, the
檢查裝置20根據所記憶之各圖像資料依既定之演算法作處理,而檢查與各圖像資料相對應的基板。檢查裝置20,根據深度學習而對對應於各圖像資料的基板作檢查如此亦可。於檢查中,判定基板是否具有缺陷。此外,對於被判斷為具有缺陷的基板,則判定該缺陷之種類。The
於檢查裝置20中,即使為不具有缺陷之基板,亦存在有被判定為具有缺陷的情形。雖然不具有缺陷但是由於錯誤之判定而將基板廢棄,則會造成良率降低。因此,藉由監督式學習對被判定為具有缺陷的基板進行再檢查。支援裝置40係支援被使用於再檢查的訓練資料之製作。資料庫記憶裝置30係包含伺服器等之大容量之記憶裝置。於資料庫記憶裝置30登錄有所被製作之訓練資料。以下,對支援裝置40之詳細構成進行說明。In the
(2)支援裝置
圖2為顯示圖1之支援裝置40之構成的圖。圖3為顯示被使用於訓練資料之製作之各種資料的圖。圖4為顯示在訓練資料之製作中之顯示裝置16之顯示畫面之一例的圖。如圖2所示,支援裝置40係包含異常資料取得部41、正常資料取得部42、差分資料生成部43、提示部44、受理部45及登錄部46,來作為功能部。圖1之CPU11執行被記憶於ROM13或記憶裝置14等的支援程式,藉此實現支援裝置40之功能部。亦可藉由電子電路等之硬體來實現支援裝置40之功能部之一部分或全部。
(2) Support device
FIG. 2 is a diagram showing the configuration of the supporting
異常資料取得部41係自檢查裝置20取得圖像資料(以下,稱為異常資料),該圖像資料係顯示藉由檢查裝置20事先被判定為具有缺陷的各基板之圖像。圖像資料可顯示基板整體之圖像,若為相同區域亦可顯示基板之部分之圖像。於圖3之左上部顯示出根據藉由異常資料取得部41所取得之異常資料的基板之圖像的一部分。The abnormality
正常資料取得部42係以與藉由異常資料取得部41所取得之各異常資料相對應之方式,取得顯示正常之基板圖像的圖像資料(以下,稱為正常資料)。於本例中,正常資料係顯示藉由檢查裝置20事先未被判定為具有缺陷的基板之圖像的既定之圖像資料,且自檢查裝置20所取得。於圖3之左下部,顯示出根據藉由正常資料取得部42所取得之正常資料的基板之圖像之一部分。
The normal
異常資料與正常資料相互對應。例如,於藉由異常資料取得部41取得有異常資料之情形下,亦可藉由正常資料取得部42取得具有該異常資料之識別號碼之前一個的識別號碼且顯示正常之基板圖像的圖像資料,來作為正常資料。或者,當藉由異常資料取得部41取得異常資料之情形時,亦可藉由正常資料取得部42取得具有該異常資料之識別號碼之後一個的識別號碼且顯示正常之基板圖像的圖像資料,來作為正常資料。Abnormal data correspond to normal data. For example, in the case that abnormal data is obtained by the abnormal
差分資料生成部43係藉由算出藉由異常資料取得部41所取得的異常資料、與以相對應於該異常資料之方式藉由正常資料取得部42所取得的正常資料的各像素值之差分,來生成新的圖像資料。在此,將藉由差分資料生成部43所生成的圖像資料稱為差分資料。於圖3之右部,顯示出根據藉由差分資料生成部43所生成之差分資料的基板圖像。差分資料係顯示在基板中需要再檢查之可能性高的部分之圖像。因此,差分資料可成為顯示在基板中需要再檢查之部分的標記。The differential
提示部44藉由使顯示裝置16顯示GUI50(圖4)而對使用者提示各差分資料,該GUI50係包含根據藉由差分資料生成部43所生成之各差分資料的圖像。如圖4所示,GUI50包含圖像顯示區域51、登錄鍵52及修正鍵53。於圖像顯示區域51顯示出測定對象物之複數個圖像。於本例中,根據差分資料之圖像以與根據異常資料之圖像相重疊之方式被顯示於圖像顯示區域51,但是其亦可於圖像顯示區域51僅顯示根據差分資料之圖像。The
受理部45接受差分資料登錄之指示。具體而言,受理部45係在藉由提示部44所顯示之GUI50中自操作部15受理選擇所登錄之差分資料來作為訓練資料。使用者可藉由一面辨識顯示於圖像顯示區域51的圖像,一面利用操作部15選擇任意之圖像,而藉由操作登錄鍵52,選擇顯示該圖像的差分資料作為訓練資料的指示供給至受理部45。登錄部46係將藉由受理部45受理選擇的差分資料而作為訓練資料登錄於資料庫記憶裝置30。The accepting
此外,受理部45可受理差分資料之修正。使用者,藉由使用操作部15選擇圖像顯示區域51之任意圖像,並藉由操作修正鍵53以對受理部45指示與該圖像相對應的差分資料之修正。此外,使用者亦可於選擇之圖像中,使用操作部15來進行指定需要再檢查之部分的塗色等。In addition, the accepting
當藉由受理部45受理指定之情形下,差分資料生成部43則對所被選擇之差分資料賦予顯示受理指定之部分的標記。藉此,對差分資料進行修正。在進行差分資料之修正之後,當被操作登錄鍵52時,登錄部46則將修正後之差分資料作為訓練資料登錄於資料庫記憶裝置30。When the designation is accepted by the accepting
(3)支援處理
圖5為顯示藉由圖2之支援裝置40所進行之支援處理的流程圖。圖5之支援處理,係藉由圖1之CPU11在RAM12上執行被記憶於ROM13或記憶裝置14等的支援程式而來執行。以下,使用圖2之支援裝置40及圖5之流程圖對支援處理進行說明。
(3) Support processing
FIG. 5 is a flowchart showing support processing performed by the
首先,異常資料取得部41係自檢查裝置20取得各異常資料(步驟S1)。接著,正常資料取得部42自檢查裝置20取得與於步驟S1中所取得之各異常資料相對應的正常資料(步驟S2)。步驟S1、S2亦可同時被執行。First, the abnormality
然後,差分資料生成部43根據於步驟S1、S2中分別所取得之相互對應之異常資料及正常資料,生成各差分資料(步驟S3)。然後,提示部44藉由使顯示裝置16顯示根據於步驟S3中所生成之各差分資料的圖像,對使用者提示各差分資料(步驟S4)。Then, the difference
接著,受理部45判定是否受理在步驟S4中所提示之差分資料中之任一個差分資料之修正(步驟S5)。當不受理差分資料之修正時,受理部45進入至步驟S7。當受理任一個差分資料之修正時,差分資料生成部43藉由對該差分資料賦予顯示受理有修正之指定之部分的標記,而修正差分資料(步驟S6),且進入至步驟S7。Next, the
於步驟S7中,受理部45判定是否有於步驟S4中所提示之差分資料或於步驟S6中所修正之差分資料中之任一個差分資料的登錄之指示(步驟S7)。當未指示有差分資料之登錄時,受理部45進入至步驟S9。當指示有任一個之差分資料之登錄時,登錄部46將所指示之差分資料作為訓練資料登錄於資料庫記憶裝置30(步驟S8),並進入至步驟S9。In step S7, the
於步驟S9中,登錄部46判定是否有結束之指示(步驟S9)。使用者可藉由使用操作部15進行既定之操作,來指示結束或繼續。當未指示有結束之情形時,登錄部46返回至步驟S5。當更進一步登錄差分資料時,使用者指示繼續而不指示結束。當指示結束時,登錄部46則結束支援處理。In step S9, the
(4)效果
於本實施形態之支援裝置40中,藉由異常資料取得部41取得異常資料,該異常資料係顯示事先被判定為具有缺陷的檢查對象物之圖像。藉由正常資料取得部42,以與藉由異常資料取得部41所取得之異常資料相對應之方式,取得顯示正常之檢查對象物之圖像的正常資料。藉由差分資料生成部43生成差分資料,該差分資料顯示藉由異常資料取得部41所取得之異常資料、與以與該異常資料對應之方式藉由正常資料取得部42所取得之正常資料的差分。在根據差分資料所顯示之圖像中,檢查對象物之部分被需要再檢查之可能性很高。
(4) Effect
In the
因此,根據利用差分資料生成部43所生成的差分資料,則藉由提示部44被提示檢查對象物之部分圖像。受理部45受理利用提示部44所提示的差分資料之選擇。登錄部46將利用受理部45受理選擇的差分資料作為訓練資料而登錄於資料庫記憶裝置30。在此情形下,使用者藉由一面辨識所提示之圖像一面選擇與期望之圖像相對應的差分資料,藉此則可將被選擇之差分資料登錄作為訓練資料。藉此,其可更容易地製作訓練資料。Therefore, the partial image of the object to be inspected is presented by the
此外,受理部45更進一步受理藉由提示部44所被提示的差分資料之修正。登錄部46登錄修正後之差分資料以作為訓練資料。於此情形下,使用者可更適當地修正根據差分資料在圖像中所需要進行檢查對象物之再檢查的部分。藉此,則可製作可實施更高精度檢查的訓練資料。In addition, the accepting
(5)變形例
圖6為顯示於第一變形例中被使用於訓練資料之製作的各種資料的圖。於第一變形例中,使用者可將顯示檢查對象區域外的非檢查對象區域預先登錄於檢查裝置20。當登錄有非檢查對象區域時,檢查裝置20則於所生成之圖像資料中設定非檢查對象區域。
(5) Modification
FIG. 6 is a diagram showing various data used for creation of training data in the first modified example. In the first modified example, the user may pre-register the non-inspection target area outside the displayed inspection target area in the
因此,如圖6之左上部所示,於藉由異常資料取得部41所取得之異常資料中設定有非檢查對象區域。同樣地,如圖6之左下部所示,於藉由正常資料取得部42所取得之正常資料中設定有非檢查對象區域。於此情形下,如圖6之右部所示,當將所設定之非檢查對象區域排除在外時,差分資料生成部43則藉由計算異常資料與相對應於該異常資料之正常資料的各像素值之差分,以生成差分資料。在差分資料中之非檢查對象區域之像素值亦可被設定為0。Therefore, as shown in the upper left part of FIG. 6 , a non-inspection target area is set in the abnormality data obtained by the abnormality
在此情形下,其可防止對檢查對象區域外之部分提供顯示需要再檢查之部分的標記。藉此,則可製作更高精度進行檢查的訓練資料。此外,由於檢查對象區域外之部分不再被檢查,因此可藉由使用所製作之訓練資料,高速地進行基板之再檢查。In this case, it is possible to prevent a mark showing a portion requiring re-inspection from being provided for a portion outside the inspection target area. This makes it possible to create training data for inspection with higher accuracy. In addition, since parts outside the inspection target area are not inspected, board re-inspection can be performed at high speed by using the prepared training data.
圖7為顯示於第二變形例中被使用於訓練資料之製作的各種資料的圖。如圖7之左上部所示,異常資料取得部41取得異常資料,並且取得顯示在該異常資料所顯示之圖像中基板之缺陷種類的缺陷資訊。如圖7之右部所示,差分資料生成部43係對所生成之差分資料提供藉由異常資料取得部41所取得之缺陷資訊。於GUI50之圖像顯示區域51中,根據差分資料,圖像亦可顯示缺陷之種類的態樣(例如色彩)。FIG. 7 is a diagram showing various data used for creation of training data in the second modification. As shown in the upper left part of FIG. 7 , the abnormality
在此情形下,使用者不需要進行對訓練資料提供缺陷資訊的作業。藉此,可減輕使用者之負擔,並且可提高訓練資料製作之作業效率。此外,由於不會產生伴隨著使用者所致作業的錯誤,因此可製作更準確之訓練資料。In this case, the user does not need to perform the operation of providing defect information to the training data. Thereby, the burden on the user can be reduced, and the work efficiency of training material production can be improved. In addition, more accurate training materials can be created because no errors will occur due to user-induced operations.
圖8為顯示於第三變形例中被使用於訓練資料之製作的各種資料的圖。於第三變形例中,使用者可於檢查裝置20預先設定對圖像資料進行二值化處理的內容。在設定有進行二值化處理之情形下,檢查裝置20生成被二值化的圖像資料。FIG. 8 is a diagram showing various data used for creation of training data in the third modified example. In the third modification, the user can preset the contents of binarization processing on the image data in the
因此,如圖8之左上部所示,異常資料取得部41取得被二值化處理的異常資料。同樣地,如圖8之左下部所示,正常資料取得部42取得被二值化處理的正常資料。如圖8之右部所示,差分資料生成部43係藉由計算被二值化的異常資料與相對應於該異常資料被二值化之正常資料的各像素值之差分,來生成差分資料。Therefore, as shown in the upper left part of FIG. 8 , the abnormality
於此情形下,由於圖像資料之資料量被削減,因此可高速地製作訓練資料。此外,藉由使用所被製作之訓練資料,則可高速地進行基板之再檢查。In this case, since the amount of image data is reduced, training data can be created at high speed. In addition, by using the prepared training data, the re-inspection of the board can be performed at high speed.
[2]第二實施形態
於第一實施形態中,雖然正常資料取得部42係以一個正常資料與一個異常資料相對應之方式取得正常資料,但是本實施形態並不被限定於此。以下對在第二〜第四實施形態中之支援處理,與在第一實施形態中之支援處理不同之處進行說明。
[2] Second Embodiment
In the first embodiment, although the normal
圖9為顯示於第二實施形態中被使用於訓練資料之製作的各種資料的圖。於本實施形態中,如圖9之左下部所示,以複數個正常資料與一個異常資料相對應之方式取得複數個正常資料。差分資料生成部43係藉由計算一個異常資料與相對應於該異常資料之各正常資料的各像素值之差分,來生成差分資料。因此,如圖9之右部所示,對應於一個異常資料生成有複數個差分資料。Fig. 9 is a diagram showing various data used for creation of training data in the second embodiment. In this embodiment, as shown in the lower left part of FIG. 9 , a plurality of normal data is acquired in such a manner that a plurality of normal data corresponds to one abnormal data. The differential
根據該構成,自一個異常資料生成多數個差分資料。藉此,可提高訓練資料製作之作業效率。According to this configuration, a plurality of difference data are generated from one abnormal data. Thereby, the operation efficiency of training material production can be improved.
[3]第三實施形態
圖10為顯示於第三實施形態中被使用於訓練資料之製作的各種資料的圖。於本實施形態中,如圖10之左下部所示,以複數個正常資料與一個異常資料相對應之方式,取得複數個正常資料。差分資料生成部43係藉由計算一個異常資料、與相對應於該異常資料之複數個正常資料之平均的各像素值之差分,來生成差分資料。因此,如圖10之右部所示,對應於一個異常資料生成有一個差分資料。
[3] Third Embodiment
Fig. 10 is a diagram showing various data used for creation of training data in the third embodiment. In this embodiment, as shown in the lower left part of FIG. 10, a plurality of normal data is obtained in such a manner that a plurality of normal data corresponds to one abnormal data. The differential
根據該構成,即使於複數個正常資料之任一個中意外地混入有與缺陷無關之雜訊成分時,複數個正常資料被平均,因此雜訊成分幾乎不會對平均後之正常資料之像素值產生影響。因此,藉由使用平均後之正常資料,則可製作用以更高精度地進行檢查的訓練資料。According to this configuration, even if a noise component unrelated to a defect is accidentally mixed in any of the plurality of normal data, the plurality of normal data is averaged, so the noise component hardly affects the pixel value of the averaged normal data. make an impact. Therefore, by using the averaged normal data, it is possible to create training data for inspection with higher accuracy.
[4]第四實施形態
圖11為顯示於第四實施形態中被使用於訓練資料之製作的各種資料的圖。於本實施形態中,如圖11之左上部所示,以一個正常資料與複數個異常資料相對應之方式,取得正常資料。差分資料生成部43係根據各異常資料、與對應於該異常資料的正常資料,來生成差分資料。因此,如圖11之右部所示,其生成分別與複數個異常資料相對應的複數個差分資料。
[4] Fourth Embodiment
Fig. 11 is a diagram showing various data used for creation of training data in the fourth embodiment. In this embodiment, as shown in the upper left part of FIG. 11 , normal data is obtained in such a manner that one normal data corresponds to a plurality of abnormal data. The difference
根據該構成,由於不需要於每次取得異常資料時皆取得正常資料,因此可使用共同之正常資料而高速地製作訓練資料。於本實施形態中,亦可藉由正常資料取得部42取得顯示預先所被準備之正常基板之圖像的圖像資料來作為正常資料。於此情形下,在支援處理中之步驟S2,亦可於步驟S1之前執行。According to this configuration, since normal data does not need to be obtained every time abnormal data is obtained, training data can be created at high speed using common normal data. In this embodiment, image data showing an image of a normal substrate prepared in advance may be acquired by the normal
預先所被準備之圖像資料,雖然亦可為藉由檢查裝置20所生成之圖像資料中之任一個,但是亦可為顯示基板之設計圖的CAD資料等之主資料。在此,於藉由檢查裝置20所生成之圖像資料與主資料中,圖像中之基板的圖案寬度或圖案的角部之曲率半徑等,會因藉由蝕刻等所進行之基板的加工精度而不同。因此,可根據基板之加工精度,以變更圖像中之圖案寬度或圖案之角部的曲率半徑等之方式對主資料進行修正。
The image data prepared in advance may be any of the image data generated by the
此外,即使於第一至第三實施形態中,雖然自檢查裝置20取得顯示藉由檢查裝置20事先未被判定為具有缺陷的基板之圖像的圖像資料來作為正常資料,但是本實施形態不被限定於此。正常資料之至少一個,係預先被準備之主資料或者被修正之主資料亦可。In addition, even in the first to third embodiments, although the image data showing the image of the substrate that was not previously judged to have a defect by the
[5]其他實施形態
於上述實施形態中,支援裝置40雖然包含受理部45及登錄部46,但是本實施形態則不被限定於此。支援裝置40亦可不包含受理部45及登錄部46。於此情形下,使用者亦可藉由確認於GUI50所被提示之圖像,以製作用以再檢查該部分的訓練資料。藉此,其容易製作可實施高精度檢查的訓練資料。
[5] Other embodiments
In the above-mentioned embodiment, the
[6]請求項之各構成要件與實施形態之各部分的對應關係 以下,雖然對請求項之各構成要件與實施形態之各要件的對應例進行說明,但是本發明並不被限定於下述例。作為請求項之各構成要件,其亦可使用具有請求項所記載之構成或功能的其他各種要件。 [6] Correspondence between each constituent element of the claim and each part of the embodiment Hereinafter, although the corresponding example of each constituent requirement of a claim and each requirement of an embodiment is demonstrated, this invention is not limited to the following example. As each constituent element of the claim, various other elements having the constitution or function described in the claim may also be used.
於上述實施形態中,支援裝置40係訓練資料製作支援裝置之一例,異常資料取得部41係異常資料取得部之一例,正常資料取得部42係正常資料取得部之一例。差分資料生成部43係差分資料生成部之一例,提示部44係提示部之一例,受理部45係受理部之一例,登錄部46係登錄部之一例。In the above embodiment, the
10:處理裝置 11:CPU(中央運算處理裝置) 12:RAM(隨機存取記憶體) 13:ROM(唯讀記憶體) 14:記憶裝置 15:操作部 16:顯示裝置 17:輸入輸出I/F(介面) 18:匯流排 20:檢查裝置 30:資料庫記憶裝置 40:支援裝置 41:異常資料取得部 42:正常資料取得部 43:差分資料生成部 44:提示部 45:受理部 46:登錄部 50:GUI 51:圖像顯示區域 52:登錄鍵 53:修正鍵 100:處理系統 10: Processing device 11: CPU (central processing unit) 12: RAM (random access memory) 13: ROM (read-only memory) 14: memory device 15: Operation department 16: Display device 17: Input and output I/F (interface) 18: busbar 20: Check device 30: Database memory device 40: Support device 41: Abnormal Data Acquisition Department 42: Normal Data Acquisition Department 43: Differential data generation department 44: Prompt Department 45: Reception Department 46: Registration Department 50: GUI 51: Image display area 52: Login key 53: Correction key 100: Processing system
圖1係顯示包含本發明之第一實施形態的支援裝置之處理系統之構成的圖。 圖2係顯示圖1之支援裝置之構成的圖。 圖3係顯示被使用於訓練資料之製作之各種資料的圖。 圖4係顯示在訓練資料之製作中之顯示裝置之顯示畫面之一例的圖。 圖5係顯示藉由圖2之支援裝置所進行之支援處理的流程圖。 圖6係顯示於第一變形例中之被使用於訓練資料之製作的各種資料的圖。 圖7係顯示於第二變形例中之被使用於訓練資料之製作的各種資料的圖。 圖8係顯示於第三變形例中之被使用於訓練資料之製作的各種資料的圖。 圖9係顯示於第二實施形態中被使用於訓練資料之製作之各種資料的圖。 圖10係顯示於第三實施形態中被使用於訓練資料之製作的各種資料的圖。 圖11係顯示於第四實施形態中被使用於訓練資料之製作的各種資料的圖。 FIG. 1 is a diagram showing the configuration of a processing system including a support device according to a first embodiment of the present invention. FIG. 2 is a diagram showing the configuration of the supporting device in FIG. 1 . Fig. 3 is a diagram showing various kinds of data used in the creation of training data. Fig. 4 is a diagram showing an example of a display screen of a display device during preparation of training materials. FIG. 5 is a flowchart showing support processing performed by the support device in FIG. 2 . FIG. 6 is a diagram showing various data used for creation of training data in the first modification. FIG. 7 is a diagram showing various data used for creation of training data in the second modified example. FIG. 8 is a diagram showing various data used for creation of training data in the third modified example. Fig. 9 is a diagram showing various kinds of data used for creation of training data in the second embodiment. Fig. 10 is a diagram showing various data used for creation of training data in the third embodiment. Fig. 11 is a diagram showing various data used for creation of training data in the fourth embodiment.
15:操作部 15: Operation Department
16:顯示裝置 16: Display device
20:檢查裝置 20: Check device
30:資料庫記憶裝置 30: Database memory device
40:支援裝置 40: Support device
41:異常資料取得部 41: Abnormal Data Acquisition Department
42:正常資料取得部 42: Normal Data Acquisition Department
43:差分資料生成部 43: Differential data generation department
44:提示部 44: Prompt Department
45:受理部 45: Reception Department
46:登錄部 46: Registration Department
100:處理系統 100: Processing system
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021044995A JP2022144121A (en) | 2021-03-18 | 2021-03-18 | Teacher data creation support device and teacher data creation support method |
JP2021-044995 | 2021-03-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202238455A true TW202238455A (en) | 2022-10-01 |
TWI837586B TWI837586B (en) | 2024-04-01 |
Family
ID=83452186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111104665A TWI837586B (en) | 2021-03-18 | 2022-02-09 | Training data creation assistance apparatus and training data creation assistance method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2022144121A (en) |
KR (1) | KR20220130577A (en) |
CN (1) | CN115170461A (en) |
TW (1) | TWI837586B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9646191B2 (en) * | 2015-09-23 | 2017-05-09 | Intermec Technologies Corporation | Evaluating images |
EP3596449A4 (en) * | 2017-03-14 | 2021-01-06 | University of Manitoba | Structure defect detection using machine learning algorithms |
TWI683262B (en) * | 2018-06-08 | 2020-01-21 | 財團法人工業技術研究院 | Industrial image inspection method and system and computer readable recording medium |
JP7137487B2 (en) * | 2019-01-22 | 2022-09-14 | 株式会社日立ハイテク | Image evaluation device and method |
CN112037166A (en) * | 2020-07-10 | 2020-12-04 | 武汉迈格驷友科技有限公司 | Surface defect detection method and detection device |
-
2021
- 2021-03-18 JP JP2021044995A patent/JP2022144121A/en active Pending
-
2022
- 2022-02-09 TW TW111104665A patent/TWI837586B/en active
- 2022-02-09 KR KR1020220017104A patent/KR20220130577A/en unknown
- 2022-03-16 CN CN202210304428.XA patent/CN115170461A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2022144121A (en) | 2022-10-03 |
CN115170461A (en) | 2022-10-11 |
KR20220130577A (en) | 2022-09-27 |
TWI837586B (en) | 2024-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI684000B (en) | Method of generating an examination recipe and system thereof | |
US8711348B2 (en) | Method of inspecting wafer | |
JP4950550B2 (en) | Pattern misalignment measuring method and program | |
KR100882252B1 (en) | Semiconductor substrate defects detection device and method of detection of defects | |
CN105719993B (en) | A kind of method of correcting electronic microscope electron beam and wafer position deviation | |
KR20130091286A (en) | A system, a method and a computer program product for cad-based registration | |
JP2002131253A (en) | Method and system for inspecting defect of substrate | |
CN106165065B (en) | High density for generating mask is registrated method, system and the computer program product of mapping graph | |
TW471016B (en) | Defect detection using gray level signatures | |
KR20030055848A (en) | Method for detecting defects on the wafer and apparatus for the same | |
TW202238455A (en) | Training data creation assistance apparatus and training data creation assistance method | |
JP2009031214A (en) | Method and device for pattern inspection | |
US7079966B2 (en) | Method of qualifying a process tool with wafer defect maps | |
JP2002093875A (en) | Method of evaluating hazardous spot information on pattern of semiconductor device | |
KR20160140276A (en) | Method of inspecting electronic components | |
JP2005321308A (en) | Array inspection apparatus | |
JP2010190738A (en) | Method, apparatus and program for failure analysis of semiconductor integrated circuit | |
KR100883284B1 (en) | Wiring correction method | |
JP2007072173A (en) | Pattern inspection apparatus, pattern inspection method, and reticle | |
JP2008261692A (en) | Substrate inspection system and substrate inspection method | |
JP4599810B2 (en) | Overlay inspection method | |
JP4943777B2 (en) | DEFECT DATA PROCESSING DEVICE, DEFECT DATA PROCESSING SYSTEM, AND DEFECT DATA PROCESSING METHOD | |
CN109211924A (en) | The defects of chip manufacturing proces detection method | |
JP2014163710A (en) | Substrate processing device | |
JP2894078B2 (en) | Failure analysis device and failure analysis method for integrated circuit device |