TW202238253A - 用於euv微影之相移空白罩幕及光罩幕 - Google Patents

用於euv微影之相移空白罩幕及光罩幕 Download PDF

Info

Publication number
TW202238253A
TW202238253A TW111102057A TW111102057A TW202238253A TW 202238253 A TW202238253 A TW 202238253A TW 111102057 A TW111102057 A TW 111102057A TW 111102057 A TW111102057 A TW 111102057A TW 202238253 A TW202238253 A TW 202238253A
Authority
TW
Taiwan
Prior art keywords
layer
phase shift
blank mask
euv lithography
shift layer
Prior art date
Application number
TW111102057A
Other languages
English (en)
Other versions
TWI838682B (zh
Inventor
申澈
金用大
李鍾華
梁澈圭
朴珉洸
禹美京
Original Assignee
韓商S&S技術股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210053875A external-priority patent/KR20220108686A/ko
Priority claimed from KR1020210077681A external-priority patent/KR20220168092A/ko
Application filed by 韓商S&S技術股份有限公司 filed Critical 韓商S&S技術股份有限公司
Publication of TW202238253A publication Critical patent/TW202238253A/zh
Application granted granted Critical
Publication of TWI838682B publication Critical patent/TWI838682B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

一種用於EUV微影之一空白罩幕包括一基板、一反射層、一頂蓋層及一相移層。該相移層由含有釕(Ru)及鉻(Cr)之一材料製成,且釕(Ru)及鉻(Cr)之一總含量為50at%至100at%。該相移層可進一步含有硼(B)或氮(N)。本發明之相移層相對於一基於鉭(Ta)之相移層具有一較高相對反射率(相對於該相移層下方之該反射層之一反射率的相對反射率)且具有170°至230°之一相移量。當最終藉由使用使用此空白罩幕製造之一光罩幕來製造7nm或更小之一圖案時,有可能獲得極佳解析度。

Description

用於EUV微影之相移空白罩幕及光罩幕
本發明係關於一種相移空白罩幕及一種光罩幕,且更具體而言,係關於一種用於包括用於相對於EUV曝光光移位相位之相移層之極紫外光(EUV)微影的相移空白罩幕及一種使用該相移空白罩幕製造之光罩幕。
近年來,用於製造半導體之微影技術自ArF、ArFi及多重(MP)微影技術演進成EUV微影技術。EUV微影技術為一種備受關注之用於製造10nm或更小之半導體裝置的技術,此係因為EUV微影藉由使用13.5nm之曝光波長實現解析度改良及製程簡化。
同時,EUV微影技術可不使用現有折射光學系統,諸如使用KrF或ArF光之光微影,此係因為EUV光由所有材料良好吸收,且波長下之材料之折射率接近1。出於此原因,在EUV微影中,使用使用反射光學系統之反射光罩幕。
空白罩幕為光罩幕之原料,且經組態以在基板上包括兩個薄膜以形成反射結構:反射EUV光之多層反射層及吸收EUV光之吸收層。光罩幕藉由圖案化空白罩幕之吸收層而製造,且使用藉由使用反射層之反射率與吸收層之反射率之間的對比差異而在晶圓上形成圖案之原理。
同時,近年來,需要開發用於在未來製造10nm或更小之半導體裝置之空白罩幕,具體而言,7nm或5nm或更小及3nm或更小。然而,當在5nm或更小(例如,3nm)之製程中使用當前二元光罩幕時,存在需要應用雙重圖案化微影(double patterning lithography;DPL)技術之問 題。因此,正嘗試開發能夠實現比包括如上文所描述之吸收層之二元空白罩幕更高的解析度之相移空白罩幕。
圖1為說明用於極紫外光微影之相移空白罩幕之基本結構的圖。用於極紫外光微影之相移空白罩幕經組態以包括:基板102;反射層104,其堆疊於基板102上;相移層108,其形成於反射層104上;及抗蝕劑層110,其形成於相移層108上。
在如上文所描述之用於EUV微影之相移空白罩幕中,相移層108一般易於製造光罩幕,且較佳地係使用在晶圓印刷期間具有極佳效能之材料。舉例而言,基於鉭(Ta)之材料可視為相移層材料。然而,由於基於鉭(Ta)之材料具有相對較高折射率(高n)及較高消光係數(高k),因此難以實施所需反射率及相移量。特定而言,基於鉭(Ta)之材料可一般形成為具有55nm至65nm之厚度以實現約180°之相位量,但由於反射層104之相對反射率小於5%而難以具有與相移層108相同的高晶圓印刷效應。因此,當相移層108之所需反射率較高時,鉭(Ta)不適合用作相移層108之材料。
同時,相移層108較佳以非晶形式組態以在蝕刻期間改良圖案保真度。
一般而言,薄膜之應力由總指示讀數(△TIR)表示。在形成薄膜圖案之製程中,薄膜應力之釋放現象導致圖案對齊之改變。此等問題取決於圖案大小及密度而以不同方式出現。為了有效地控制此等圖案大小及密度,有必要使薄膜具有較低應力。
另外,需要相移層108具有較低表面粗糙度。在現有二元空白罩幕之情況下,曝光光之反射率較低,且因此,由於表面粗糙度之漫反射效應相對不顯著,但漫反射效應隨著相移層需要5%或更高反射率而增加。舉例而言,當相移層之表面粗糙度增加時,反射率可由於曝光光之漫反射而降低或對比度可由於經反射光之閃焰現象而降低,且晶圓PR圖案之線邊緣粗糙度(line edge roughness;LER)及線寬粗糙度(line width roughness;LWR)可劣化。
本發明提供一種用於EUV微影之相移空白罩幕,其能夠滿足相移層所需之較高反射率及適當相移量。
另外,本發明提供一種用於EUV微影之高品質相移空白罩幕,其能夠藉由控制相移層之表面粗糙度而在晶圓印刷期間改良諸如對比度、LER及LWR之特性。
根據本發明,用於極紫外光微影之空白罩幕包括:基板;反射層,其形成於基板上;及相移層,其形成於反射層上,其中相移層由含有釕(Ru)及鉻(Cr)之材料製成。
相移層中釕(Ru)及鉻(Cr)之總含量可為50at%至100at%。
相移層可由進一步含有鉬(Mo)、矽(Si)及鈦(Ti)中之至少一者之材料製成。
相移層可由進一步含有硼(B)之材料製成。在此情況下,硼(B)之含量可為5at%至50at%。
相移層可由進一步含有氮(N)、氧(O)、碳(C)及氫(H)中之至少一者之材料製成。
相移層可由進一步含有45at%或更低之氮(N)之材料製成。
可藉由使用具有Ru:Cr=40at%至99at%:1at%至60at%之組合物比的濺鍍靶或具有Ru:Cr:B=40at%至95at%:1at%至50at%:1at%至20at%之組合物比的濺鍍靶來形成相移層。
相移層可經組態以使得Cr之含量大於之Ru之含量,且由此在具有13.5nm之波長之極紫外光曝光光下,相對於反射層之反射率之相對反射率可為3%至15%。
相移層可經組態以使得Cr之含量小於或等於Ru之含量,且由此在具有13.5nm之波長之極紫外光曝光光下,相對於反射層之反射率之相對反射率可為15%至30%。
相移層可具有170°至220°之相移量。
相移層可具有30nm至70nm之厚度。
相移層可具有300nm或更小之平坦度。
相移層可具有0.5nmRMS或更低之粗糙度。
由Si、SiO、SiN、SiC、SiON、SiCO、SiCN及SiCON中之任一者製成之硬罩幕可形成於相移層上。
相移層可具有兩個或更多個層之多層結構。相移層之最上層可由進一步含有氧(O)之材料製成,且最上層下方之層可由不含氧(O)之材料製成。最上層中氧(O)之含量可為1at%至60at%。最上層可具有1nm至10nm之厚度。最上層可由以下製成:Si、SiN、SiC、SiO、SiCN、SiCO、SiNO及SiCON中之任一者,TaO、TaCO、TaON及TaCON中之任一者或RuTaO、RuTaON、RuTaBO及RuTaBON中之任一者。由Cr、CrN、CrC、CrO、CrCN、CrON、CrCO及CrCON中之任一者製成之硬罩幕可形成於最上層上。
當相移層具有兩個或更多個層之多層結構時,相移層之最上層可由CrO、CrCO、CrON及CrCON中之任一者製成。由Si、SiO、SiN、SiC、SiON、SiCO、SiCN及SiCON中之任一者製成之硬罩幕可形成於相移層上。
在相移層中,蝕刻速率可朝向下部部分增加,或相移層之下部部分處之蝕刻速率可大於其他部分中之至少一些的蝕刻速率。為此目的,相移層可經組態以使得Cr之含量逐漸向下減少,或相移層可具有兩個或更多個層之多層結構,但可形成相移層以使得相移層之最下層由具有比其他層中之至少一者更少Cr或不含有Cr之材料製成。
對相移層具有蝕刻選擇性之蝕刻終止層可形成於反射層與相移層之間。蝕刻終止層可由含有以下中之至少一者之材料製成:矽(Si)、鉬(Mo)、鉻(Cr)、鈦(Ti)、鎢(W)、鉭(Ta)、鈮(Nb)及釕(Ru),或由材料中添加氧(O)、氮(N)、碳(C)、氫(H)及硼(B)中之至少一者之化合物製成。
由含有釕(Ru)之材料製成之頂蓋層可形成於反射層與蝕刻終止層之間。在此情況下,蝕刻終止層可由含有鉭(Ta)及氧(O)之材料製成。
蝕刻終止層可以兩個或更多個層之結構形成。在此情況下,蝕刻終止層之最上層可由含有鉭(Ta)及氧(O)之材料製成,且蝕刻終止層之最上層下方之層由含有鉭且不含氧(O)之材料製成。
當頂蓋層形成於反射層上時,相移層可包括:第一層,其由含有鉭(Ta)之材料製成且充當用於相移層下方之頂蓋層之蝕刻終止層;及第二層,其形成於第一層上,其由含有釕(Ru)及鉻(Cr)之材料製成且控制相移層之反射率及相移量。
第一層可由進一步含有硼(B)、鈮(Nb)、鈦(Ti)、鉬(Mo)及鉻(Cr)中之至少一者之材料製成。第一層可由進一步含有氮、碳及氧中之至少一者之材料製成。第一層可具有50at%或更低之氮含量。第一層可具有50at%或更低之Ta含量。
第一層可具有7nm或更小之厚度。
第一層可由進一步含有硼(B)之材料製成,且由此易於實施以使得相移層相對於反射層之相對反射率為14%至15%。
第一層可由進一步含有鈮(Nb)之材料製成,且由此易於實施以使得相移層相對於反射層之相對反射率為20%或更高。
同時,根據本發明,提供一種使用用於極紫外光微影之具有如上文所描述之組態的空白罩幕製造之光罩幕。
根據本發明,提供一種用於極紫外光微影之相移空白罩幕,其包括相對於基於鉭(Ta)之相移層具有較高相對反射率(相對於相移層下方之反射層之反射率的相對反射率)且具有170°至230°之相移量的相移層。此外,根據本發明,提供一種用於極紫外光微影之相移空白罩幕,其中相移層之表面粗糙度為0.5nmRMS或更低,且進一步0.3nmRMS或更低。
當最終藉由使用使用此空白罩幕製造之光罩幕來製造7nm或更小之一圖案時,有可能獲得極佳解析度。
102:基板
104:反射層
108:相移層
110:抗蝕劑層
201:導電層
202:基板
204:反射層
205:頂蓋層
207:蝕刻終止層
208:相移層
208-1:第一層
208-2:第二層
208a:最下層
208b:下層
208n:最上層
209:硬罩幕層
210:抗蝕劑層
圖1為說明用於極紫外光微影之習知相移空白罩幕之基本結構的圖。
圖2為說明用於根據本發明之極紫外光微影之相移空白罩幕的圖。
圖3至圖7為說明圖2之相移層之詳細組態的第一實施例至第五實施例的圖。
在下文中,將參考圖式更詳細地描述本發明。
圖2為說明用於根據本發明之極紫外光微影之相移空白罩幕的圖。
根據本發明之用於極紫外光微影之相移空白罩幕包括:基板202;反射層204,其堆疊於基板202上;頂蓋層205,其堆疊於反射層204上;相移層208,其堆疊於頂蓋層205上;硬罩幕層209,其堆疊於相移層208上;及抗蝕劑層210,其堆疊於硬罩幕層209上;及抗蝕劑層210,其堆疊於硬罩幕層209上。另外,根據本發明之空白罩幕可進一步包括:導電層201,其形成於基板202之背面上;及蝕刻終止層207,其形成於頂蓋層205與相移層208之間。另外,吸收層(未說明)可另外提供於相移層208與抗蝕劑層210之間。
基板202由低熱膨脹材料(low thermal expansion material;LTEM)基板形成,該低熱膨脹材料基板具有0±1.0×10-7/℃且較佳0±0.3×10-7/℃之較低熱膨脹係數以防止由曝光期間之熱量所導致的圖案變形及應力,使得基板202適合作使用EUV曝光光之反射空白罩幕之玻璃基板。作為基板202之材料,可使用基於SiO2-TiO2之玻璃、基於多組分之玻璃陶瓷或其類似物。
基板202需要低水平之平坦度,以便控制反射光在曝光期間之圖案位置誤差。平坦度由總指示讀數(total indicated reading;TIR)值表示,且基板202較佳地具有較低TIR值。基板202之平坦度在132mm2之面積內或在142mm2之面積內為100nm或更小,且較佳地為50nm或更小。
反射層204用以反射EUV曝光光,且具有每一層具有不同折射率之多層結構。特定而言,藉由交替地堆疊40層至60層Mo層及Si層來形成反射層204。反射層204之最上層較佳地由Si之保護層形成以防 止反射層204氧化。
反射層204需要相對於13.5nm之波長之高反射率以改良影像對比度。此多層反射層之反射強度取決於曝光光之入射角及每一層的厚度而變化。舉例而言,當曝光光之入射角為5°至6°時,Mo層及Si層較佳地分別形成為具有2.8nm及4.2nm之厚度。
反射層204相對於13.5nm之EUV曝光光較佳地具有60%或更高,且較佳地為64%或更高之反射率。
當反射層204之表面平坦度定義為總指示讀數(TIR)時,TIR具有1,000nm或更小,較佳地500nm或更小,且更佳地300nm或更小之值。當反射層204之表面TIR較高時,誤差出現在反射EUV曝光光之位置處,且隨著位置誤差增加,圖案位置誤差增加。
反射層204具有0.5nmRms或更低,較佳地0.3nmRms或更低,且更佳地0.1nmRms或更低之表面粗糙度之值,以便抑制相對於EUV曝光光之漫反射。
頂蓋層205形成於反射層204上,且防止反射層204之氧化膜之形成以維持反射層204相對於EUV曝光光的反射率,且防止反射層在相移層208之圖案化期間經蝕刻。作為較佳實例,頂蓋層205由含有釕(Ru)之材料製成。頂蓋層205較佳地形成為2nm至5nm之厚度。當頂蓋層205之厚度為2nm或更小時,難以展現作為頂蓋層205之功能,且當頂蓋層205之厚度為5nm或更大時,存在EUV曝光光之反射率降低的問題。
蝕刻終止層207選擇性地提供於頂蓋層205與相移層208之間,且用以在用於圖案化相移層208之乾式蝕刻製程或清潔製程期間保護下部頂蓋層205。蝕刻終止層207較佳地由相對於相移層208具有10或更高之蝕刻選擇性之材料製成。
當蝕刻終止層207形成時,蝕刻終止層207與蝕刻終止層207上之相移層208一起經圖案化以充當相移層208之一部分。在此情況下,相移層208之反射率意謂蝕刻終止層207及相移層208之整個堆疊結構的反射率。
考慮到蝕刻終止層207影響整個相移量及反射率且亦影響 相移層208所需之蝕刻終止層207之蝕刻選擇性的實情,判定形成蝕刻終止層207之材料。蝕刻終止層207可由含有以下中之至少一者之材料製成:矽(Si)、鉬(Mo)、鉻(Cr)、鈦(Ti)、鎢(W)、鉭(Ta)、鈮(Nb)及釕(Ru),或由材料中添加氧(O)、氮(N)、碳(C)、氫(H)及硼(B)中之至少一者之化合物製成。
當相移層208及頂蓋層205含有相同材料時,例如當相移層208及頂蓋層205由含有釕(Ru)之材料製成時,蝕刻終止層207可由對釕(Ru)具有蝕刻選擇性之材料製成。亦即,由於基於釕(Ru)之相移層208一般具有藉由基於氯之氣體蝕刻的性質,蝕刻終止層207可由藉由基於氟之氣體蝕刻之材料製成。特定而言,蝕刻終止層207可由以下製成:含有矽(Si)、鉬(Mo)、鉭(Ta)、鈮(Nb)及硼(B)中之至少一者之材料,或含有氧(O)、氮(N)及碳(C)中之至少一者之材料。
當蝕刻終止層207由含有鉭(Ta)之材料製成時,較佳地係蝕刻終止層進一步含有氧(O)。由於鉭(Ta)在其含有氧(O)時藉由基於氟之氣體蝕刻,因此蝕刻終止層207對蝕刻終止層207上之相移層208具有蝕刻選擇性。同時,當蝕刻終止層207由基於鉭(Ta)之單層形成時,在圖案化之後由於鉭(Ta)之天然氧化而出現氧化。當包括鉭(Ta)之蝕刻終止層207進一步含有氧(O)時,有可能減小由氧化現象所導致之不規則表面。
同時,當蝕刻終止層207含有氧(O)時,由Ru材料製成之頂蓋層205損壞,其影響反射率之降低等。因此,較佳地係蝕刻終止層207形成為不含氧。因此,當蝕刻終止層207由含有鉭(Ta)之材料製成時,蝕刻終止層207以兩個或更多個層之結構形成,但較佳地係最上層進一步含有氧(O)且最上層下方之層形成為不含氧(O)。因為下層不含氧,所以通過基於氯之氣體蝕刻蝕刻終止層207之下層。在此情況下,由於蝕刻終止層207下方之頂蓋層205含有釕(Ru),因此可藉由基於氯之氣體來蝕刻頂蓋層205。可藉由使用不含氧(O)之基於氯(Cl)之氣體作為蝕刻氣體來蝕刻蝕刻終止層207的下部部分而蝕刻頂蓋層205,且由此可最小化頂蓋層205之蝕刻損壞。
用於蝕刻終止層207之蝕刻氣體可與用於形成於蝕刻終止層207上之相移層208的蝕刻氣體相同或不同。舉例而言,當蝕刻氣體相同時,可藉由終點偵測(end point detection;EPD)系統,藉由使蝕刻終止層207及相移層208之組合物或組合物比不同來確認蝕刻終點。
另外,蝕刻終止層207可由在形成最終圖案時移除之材料製成。為了移除蝕刻終止層207,可使用在乾式蝕刻、濕式蝕刻及清潔期間自其移除蝕刻終止層207之材料。特定而言,可藉由在清潔期間使用SC-1、SPM、APM、超高頻音波或熱-去離子水(Hot-DI water)作為清潔溶液來移除蝕刻終止層207。
蝕刻終止層207具有0.5nm至10nm之厚度,且較佳地1nm至7nm之厚度。當蝕刻終止層207具有10nm或更大之厚度時,最終形成之相移層208之圖案的反射率降低,且當蝕刻終止層207具有0.5nm或更小之厚度時,難以執行作為蝕刻終止層207之作用。
相移層208使曝光光之相位移位且反射曝光光,藉此導致對由反射層204反射之曝光光之破壞性干涉以使曝光光消光。相移層208由具有較高透射率同時促進相對於曝光光之波長之相移控制的材料製成。作為此類材料,釕(Ru)及鉻(Cr)用於本發明中。含有Ru及Cr之材料具有極佳耐化學性,且具有能夠塗覆一般在乾式蝕刻期間使用之基於氟(F)及基於氯(Cl)之氣體的優勢。具體而言,含有Ru及Cr之材料可易於藉由基於氯之氣體蝕刻。同時,相移層208可進一步含有除Ru及Cr以外之鉬(Mo)、矽(Si)、鈦(Ti)、鈮(Nb)及硼(B)中之至少一者。
Ru及Cr判定相移層208之反射率及相移量。由於Ru具有比Cr低之折射率,因此可藉由控制Ru及Cr之組合物比而控制相移層208之相移量。相移層208中所含之Ru及Cr之含量的總和較佳地為50at%至100at%。當Ru及Cr之含量為50at%或更低時,難以確保3%至30%之反射率且控制相移量。
考慮到所需反射率來判定相移層208中所含之Ru及Cr之比。由於Ru具有比Cr低之消光係數,因此當Ru之含量相比於Cr之含量相對增加時,相移層208之反射率增加。
當需要較低反射率時,相移層208經組態以使得Cr之含量可大於Ru之含量。特定而言,當相移層208由Cr:Ru=50at%至99at%:1at%至50at%製成時,易於實施3%至15%之相對反射率。此處,相對反射率意謂相移層208相對於包括頂蓋層205之反射層204之反射率的反射率。舉例而言,當包括頂蓋層205之反射層204之反射率為65%,且相移層208之反射率為3.3%時,相移層208相對於反射層204之相對反射率為5.08%。在本發明中,反射率意謂相對於具有13.5nm之波長之EUV曝光光的反射率。
當需要較高反射率時,相移層208經組態以使得Cr之含量可小於或等於Ru之含量。特定而言,當相移層208由Cr:Ru=1at%至50at%:50at%至99at%製成時,易於實施15%至30%之相對反射率。
同時,含有Ru及Cr之相移層208較佳地形成為進一步含有硼(B)。硼(B)使相移層之薄膜結晶度為非晶形以改良在圖案形成期間之圖案輪廓。另外,硼(B)用以在濺鍍之後降低薄膜之表面粗糙度,此係由於該硼(B)具有比Ru及Cr低之原子量。因此,易於控制在相移層208之表面上出現之漫反射等。另外,由於硼(B)在光學上具有比Ru及Cr低之消光係數(k),因此當相移層含有硼(B)時,有必要實施在3%至30%範圍內之預定反射率及約180°之相移量。另外,隨著硼(B)之含量增加,包括Ru及Cr之相移層208之蝕刻速率增加,由此改良圖案輪廓,尤其係圖案之LER及LWR。可藉由基於氟之蝕刻氣體及基於氯之蝕刻氣體兩者來蝕刻Ru。特定而言,當使用氧(O)及/或氬(Ar)氣體連同基於氯之氣體執行蝕刻時,蝕刻速率增加。在此情況下,當相移層208含有硼(B)時,更易於增加蝕刻速率。
另一方面,當硼(B)之含量較高時,硼(B)往往會在清潔製程期間相對易受清潔溶液影響。因此,相移層208中所含之硼(B)之含量較佳地為5at%至50at%。
相移層208可由進一步含有氮(N)、氧(O)、碳(C)及氫(H)中之至少一者之材料製成。具體而言,當相移層208含有氮(N)時,改良最終用相移層圖案化之光罩幕中之圖案之邊緣粗糙度。在此情況 下,氮(N)之含量較佳地控制為45at%或更低。
相移層208可由單層或兩個或更多個層之多層形成。
當相移層208以兩個或更多個層之結構形成時,至少一個層可以其中不存在氧(O)之結構形成,且其他層具有氧(O)。在此情況下,在具有兩個或更多個層之結構之相移層208中,較佳地係最上層含有氧(O)且最上層下方之層不含有氧(O)。由於最上層中含氧(O),因此可最終改良相移層208之最上層中之193nm的ArF檢測波長之對比度。
具有兩個或更多個層之結構之相移層208之最上層可由如上文所描述本發明的相移層208之主要材料製成,亦即,含有Ru及之材料。特定而言,相移層208之最上層可由RuCrO、RuCrON、RuCrBO及RuCrBON中之任一者製成。
另外,最上層可由不含Ru及/或Cr之材料製成。特定而言,相移層208之最上層可由以下形成:Si、SiN、SiC、SiO、SiCN、SiCO、SiNO及SiCON中之任一者之Si化合物,TaO、TaCO、TaON及TaCON之Ta氧化物化合物或CrO、CrCO、CrON及CrCON中之任一者的Cr氧化物化合物。在此情況下,相移層208之除了最上層以外之下層可由含有Ru及Cr之材料製成,例如RuCr、RuCrN、RuCrB及RuCrBN中之任一者。當最上層及其下層由於材料差異或取決於最上層及其下層是否含有氧(O)而具有蝕刻選擇性時,最上層具有降低檢測波長下之反射率之效應且充當最上層之下層的硬罩幕層。在此情況下,圖2之硬罩幕層209可不單獨地形成。
同時,當相移層208由單層形成時,有可能使用13.5nm之檢測波長執行檢測。此係因為反射層204與相移層208之間的反射率差至少為20%或更大。
同時,相移層208除了最上層以外之下層可由單層形成或可由兩個或更多個層形成。
稍後將參考圖3至圖7描述相移層208具有兩個或更多個層之結構之情況的特定實施例。
當相移層208包括最上層及最上層下方之層時,最上層具有1nm至10nm,且較佳地2nm至5nm之厚度。當最上層具有1nm或更小 之厚度時,難以確保最上層下方之層之蝕刻選擇性,且當最上層具有10nm或更大之厚度時,難以減小用於刻蝕最上層之抗蝕劑層210之厚度。
用於形成相移層208之濺鍍靶可由以下製成:RuCR合金,其具有Ru:Cr=40at%至99at%:1at%至60at%之組合物比;或RuCrB材料,其具有Ru:Cr:B=40at%至95at%:1at%至50at%:1at%至20at%之組合物比。
相移層208具有170°至220°,較佳地170至190°,且更佳地175°至185°之相移量。相移層208較佳地根據最終形成之圖案之形狀及大小具有最佳化相移量。
如上文所描述,當蝕刻終止層207形成時,反射率及相移量意謂整個相移層208及蝕刻終止層207之反射率及相移量。
為了減少遮蔽效應,相移層208隨著厚度減小而極佳。相移層208具有30nm至70nm之厚度,且較佳地40nm至60nm之厚度。
為了減少充電現象,相移層208隨著薄片電阻減小而有利。本發明之相移層208具有1000Ω/□或更低,較佳地500Ω/□或更低,且更佳地100Ω/□或更低之薄片電阻。
相移層208較佳地具有較低平坦度(△TIR)以減小對齊效應。本發明之相移層208具有300nm或更低,較佳地200nm,且更佳地100nm或更低之平坦度。
相移層208較佳地具有較低表面粗糙度,以便防止由於表面上之漫反射之閃焰現象且降低反射光之強度。本發明之相移層208具有0.5nmRMS或更低之粗糙度,且較佳地具有0.3nmRMS或更低之粗糙度。
本發明之相移層208在光罩幕之清潔期間具有極佳耐化學性,且特定而言,根據本發明之相移層208在SC-1及SPM製程之後具有1nm或更小的厚度改變。
視情況提供硬罩幕層209,且其充當用於圖案化硬罩幕層209下方之相移層208之蝕刻罩幕。硬罩幕209可由Si、SiO、SiN、SiC、SiON、SiCO、SiCN及SiCON中之任一者製成。硬罩幕層209較佳地由藉由基於氯之氣體蝕刻之材料製成,以便最小化在蝕刻期間產生之副產物。為此目的,硬罩幕層209可由Cr化合物製成,特定而言,Cr、CrN、CrC、 CrN、CrCN、CrCO、CrON及CrCON中之任一者。
考慮到相移層208之最上層之材料,硬罩幕層209之材料選擇為具有對最上層之蝕刻選擇性。當相移層208含有Ru及Cr時,藉由與基於氟(F)之氣體相比較的基於氯(Cl)之蝕刻劑相對快速的蝕刻相移層208。因此,硬罩幕層209較佳地由藉由基於氟(F)之蝕刻材料蝕刻之材料製成。舉例而言,硬罩幕層209可由基於Si之材料或Si中另外添加C、O及N中之至少一者的材料製成,且特定而言,硬罩幕層209可由以下中之任一者製成:Si、SiC、SiO、SiN、SiCO、SiCN、SiON及SiCON。較佳地,硬罩幕層209由SiON製成。硬罩幕層209較佳地形成為具有5nm或更小之厚度。
當相移層208具有兩個或更多個層之結構時,硬罩幕層209由對相移層208之最上層具有蝕刻選擇性之材料製成。舉例而言,當相移層208之最上層可由以下製成時:Si、SiN、SiC、SiO、SiCN、SiCO、SiNO及SiCON中之任一者,TaO、TaCO、TaON及TaCON中之任一者或RuTaO、RuTaON、RuTaBO及RuTaBON中之任一者,硬罩幕層209可由Cr、CrN、CrC、CrO、CrCN、CrON、CrCO及CrCON中之任一者製成。另外,當最上層由CrO、CrCO、CrON及CrCON中之任一者製成時,硬罩幕層可由Si、SiO、SiN、SiC、SiON、SiCO、SiCN及SiCON中之任一者製成。
抗蝕劑層210由化學增幅型抗蝕劑(chemically amplified resist;CAR)形成。抗蝕劑層210具有40nm至100nm,且較佳地40nm至80nm之厚度。
導電層201形成於基板202之背側上。導電層201具有較低薄片電阻值以用以提高電子夾盤與用於EUV之空白罩幕之間的黏著力,且防止由於與電子夾盤之摩擦而產生粒子。導電層201具有100Ω/□或更低,較佳地50Ω/□或更低,且更佳地20Ω/□或更低之薄片電阻。
導電層201可以單一膜、連續膜或多層膜之形式經組態。導電層201可由例如鉻(Cr)或鉭(Ta)作為主要組分製成。
在下文中,將參考圖3至圖7描述圖2之空白罩幕中相移層208之特定組態之實施例。圖3至7僅說明在圖2之組態中之相移層208的 一部分。
在圖3之第一實施例中,相移層208由最上層208n及下層208b之兩個層形成,其中下層208b由RuCrBN製成,且最上層208n由RuCrBNO製成。
同時,在含有Ru之材料之情況下,存在圖案輪廓劣化之問題,且具體而言,存在圖案之下部部分中可出現基腳之問題。為了防止此問題,在相移層208中,較佳地係蝕刻速率朝向基板202增加,亦即,朝向相移層208之下部部分增加,或相移層208之下部部分中之蝕刻速率大於相移層208的其他部分中之至少一些的蝕刻速率。
為此目的,在圖3之實施例中,下層208b經組態以使得Cr之含量逐漸向下減少。因此,隨著相移層208向下,蝕刻速率增加。
圖4及圖5之第二實施例及第三實施例展示其他特定組態,其中可藉由在圖3之實施例之組態中朝向下部部分增加蝕刻速率來改良圖案輪廓。在圖4及圖5之實施例中,相移層208進一步包括除最上層208n及下層208b以外之下層208a,且最上層208n及下層208b之組態與圖3之實施例相同。
在圖4中,最下層208a由與下層208b相同之材料製成,且最下層208a含有比下層208b少之Cr。當下層208b由多個層形成時,最下層208a可具有比構成下層208b之多個層中之至少任一者少的Cr。此外,在圖5中,最下層208a由不含Cr之材料製成。且特定而言由RuB或Ru製成。
根據圖3至圖5之實施例,蝕刻速率隨著相移層208向下而增加,或與相移層208上之層相比較,最下層208a之蝕刻速率增加,且由此防止相移層208之圖案之基腳。
圖6為說明第四實施例之圖。
本發明實施例之相移層208具有14%至15%之相對反射率。另外,相移層208具有170°至230°之相移量,且較佳地具有例如182°至195°之相移量,其中NILS之效應在晶圓印刷期間最大化。
在本實施例中,相移層208以在最下部分處之第一層208-1 及第一層208-1上之第二層208-2的二層結構組態。第二層208-2由含有RuCr之材料製成,且第一層208-1由含有鉭(Ta)之材料製成。
第一層208-1用以在蝕刻第二層208-2時防止下部頂蓋層205損壞。由於第一層208-1下方之頂蓋層205含有Ru,且第二層208-2亦由RuCr製成且含有Ru,第一層208-1可在相移層208之第二層208-2之刻蝕期間經蝕刻。因此,由於第一層208-1由對第二層208-2及頂蓋層205具有蝕刻選擇性之材料製成,因此第一層208-1充當蝕刻終止層。在此情況下,如在圖2之先前技術中之分離蝕刻終止層207為不必要的。較佳地,第一層208-1由相對於第二層208-2及頂蓋層205具有10或更高之蝕刻選擇性之材料製成。第一層208-1具有執行蝕刻終止層功能所需之最小厚度,且較佳地具有7nm或更低之厚度。
第一層208-1由鉭(Ta)單獨製成,或由鉭(Ta)中添加硼(B)、鈮(Nb)、鈦(Ti)、鉬(Mo)及鉻(Cr)中之至少一者之材料製成。此外,第一層208-1可由材料中添加氮、碳及氧中之至少一者之材料製成。作為一實例,當第一層208-1由鉭(Ta)之單一化合物製成時,第一層208-1可由Ta、TaN、TaC、TaO、TaON、TaCO、TaCN及TaCON中之一者製成。
另外,第一層208-1用以控制包括第二層208-2之整個相移層208之反射率及相移量。為此目的,第一層208-1及第二層208-2可具有組合物、組合物比及厚度之各種組合。特定而言,為增加整個相移層208之反射率,將第一層208-1之厚度控制為7nm或更低或5nm或更低,或為了降低整個相移層208之消光係數(k),第一層208-1可經組態成進一步含有硼(B)。較佳地,第一層208-1由如圖3中所說明之TaBN製成。當相移層208含有硼(B)時,相移層208易於控制以具有14at%至15at%之相對反射率。
第一層208-1較佳地經組態以含有50at%或更高之Ta。當Ta為50at%或更低時,存在以下問題:第二層208-2及頂蓋層205之蝕刻選擇性降低,且蝕刻速率相對較慢,且由此難以形成極佳圖案輪廓。當氮(N)含於第一層208-1中時,氮之含量較佳地為50at%或更低。當氮添加至鉭(Ta)中時,蝕刻速率減緩,因此上部第二層208-2在蝕刻第一層208-1 時損壞。因此,第一層208-1含有50at%或更低之氮,因此可防止對第二層208-2之損壞。
同時,第一層208-1可由單層或多層形成。作為一實例,第一層208-1可以由Ta製成之下層及由TaO製成之上層的二層結構形成。
在第一層208-1之蝕刻製程中,較佳地係使用無氧蝕刻氣體以便最小化下部頂蓋層205或上部第二層208-2之光損失。
相移層208之第二層208-2具有25nm至50nm之厚度,且更佳地30nm至40nm之厚度。相移層208之總厚度較佳地經組態為55nm或更小。第二層208-2可由單層或兩個或更多個層之多層形成。
第二層208-2之組合物可與如圖3之描述中所描述的相移層208之組合物相同。
圖7為說明第五實施例之圖。為便於說明及描述,如在圖6中之相同附圖標號經指派至圖7之每一層。省略關於圖6所描述之內容中對應於圖7之組態的內容之交疊描述,但此等內容同等地應用於圖7。
本發明實施例之相移層208具有20%或更高之相對反射率。另外,相移層208具有170°至230°之相移量,且較佳地具有例如182°至195°之相移量,其中NILS之效應在晶圓印刷期間最大化。
與圖7之第五實施例及圖6之實施例相比較,第一層208-1之材料不同。亦即,在圖7之實施例中,第一層208-1由TaNbN製成。由於Nb具有比Ta低之消光係數(k),因此當Nb添加至Ta中時,第一層208-1之反射率可增加。因此,藉由控制Ta及Nb之含量,有可能控制第一層208-1對反射率之控制程度。特定言之,Nb含量愈高,第一層208-1之反射率愈高。因此,整個相移層208之反射率增加,且因此易於實施高相對反射率。第一層208-1具有1at%至50at%,較佳地5at%至50at%,且更佳地10at%至40at%之含量,因此整個相移層208之反射率可為20%或更高。
第一層208-1具有執行蝕刻終止層功能所需之最小厚度,且較佳地具有7nm或更低之厚度。第二層208-2具有25nm至40nm之厚度,且較佳地30nm至32nm之厚度。
在上文中,本發明已參考圖式特定地經由本發明之實例進行 描述,但實施例僅出於說明及解釋本發明之目的而使用且並不用於限制申請專利範圍中所描述之本發明的含義或範疇。因此,本揭露之技術領域中具有通常知識者可理解,根據實施例,各種修改及等效的其他實施例為可能的。因此,本發明之實際技術範疇應由隨附申請專利範圍之精神判定。
208:相移層
208b:下層
208n:最上層

Claims (37)

  1. 一種用於極紫外光微影之空白罩幕,其包含:
    一基板;
    一反射層,其形成於該基板上;及
    一相移層,其形成於該反射層上,
    其中該相移層由含有釕(Ru)及鉻(Cr)之一材料製成。
  2. 如請求項1之用於極紫外光微影之空白罩幕,其中該相移層之釕(Ru)及鉻(Cr)之一總含量為50at%至100at%。
  3. 如請求項1之用於極紫外光微影之空白罩幕,其中該相移層由進一步含有鉬(Mo)、矽(Si)及鈦(Ti)中之至少一者之一材料製成。
  4. 如請求項1之用於極紫外光微影之空白罩幕,其中該相移層由進一步含有硼(B)之一材料製成,且硼(B)之含量為5at%至50at%。
  5. 如請求項4之用於極紫外光微影之空白罩幕,其中該相移層由進一步含有氮(N)、氧(O)、碳(C)及氫(H)中之至少一者之一材料製成。
  6. 如請求項4之用於極紫外光微影之空白罩幕,其中該相移層由進一步含有45at%或更低之氮(N)之一材料製成。
  7. 如請求項1之用於極紫外光微影之空白罩幕,其中藉由使用具有Ru:Cr=40at%至99at%:1at%至60at%之一組合物比的一濺鍍靶或具有Ru:Cr:B=40at%至95at%:1at%至50at%:1at%至20at%之一組合物比的一濺鍍靶來形成該相移層。
  8. 如請求項1之用於極紫外光微影之空白罩幕,其中形成該相移層以使得Cr之一含量大於Ru之一含量。
  9. 如請求項8之用於極紫外光微影之空白罩幕,其中該相移層在具有13.5nm之一波長之極紫外光曝光光下相對於該反射層之一反射率具有3%至15%之一相對反射率。
  10. 如請求項1之用於極紫外光微影之空白罩幕,其中形成該相移層以使得Cr之一含量小於或等於Ru之一含量。
  11. 如請求項10之用於極紫外光微影之空白罩幕,其中該相移層在具有13.5nm之一波長之極紫外光曝光光下相對於該反射層之一反射率具 有15%至30%之一相對反射率。
  12. 如請求項1之用於極紫外光微影之空白罩幕,其中該相移層具有170°至220°之一相移量。
  13. 如請求項1之用於極紫外光微影之空白罩幕,其中該相移層具有30nm至70nm之一厚度。
  14. 如請求項1之用於極紫外光微影之空白罩幕,其中該相移層具有300nm或更小之一平坦度。
  15. 如請求項1之用於極紫外光微影之空白罩幕,其中該相移層具有0.5nmRMS或更低之一粗糙度。
  16. 如請求項1至15中任一項之用於極紫外光微影之空白罩幕,其進一步包含:
    一硬罩幕,其形成於該相移層上且由Si、SiO、SiN、SiC、SiON、SiCO、SiCN及SiCON中之任一者製成。
  17. 如請求項1至15中任一項之用於極紫外光微影之空白罩幕,其中該相移層具有兩個或更多個層之一多層結構,且
    該相移層之一最上層由進一步含有氧(O)之一材料製成,且該最上層下方之一層由不含氧(O)之一材料製成。
  18. 如請求項17之用於極紫外光微影之空白罩幕,其中該最上層中氧(O)之一含量為1at%至60at%且具有1nm至10nm之一厚度。
  19. 如請求項17之用於極紫外光微影之空白罩幕,其中該最上層由以下製成:Si、SiN、SiC、SiO、SiCN、SiCO、SiNO及SiCON中之任一者;TaO、TaCO、TaON及TaCON中之任一者;或RuTaO、RuTaON、RuTaBO及RuTaBON中之任一者。
  20. 如請求項19之用於極紫外光微影之空白罩幕,其進一步包含:
    一硬罩幕,其形成於該最上層上,且由Cr、CrN、CrC、CrO、CrCN、CrON、CrCO及CrCON中之任一者製成。
  21. 如請求項1至15中任一項之用於極紫外光微影之空白罩幕,其中該相移層具有兩個或更多個層之一多層結構,且
    該相移層之一最上層由CrO、CrCO、CrON及CrCON中之任一者製成。
  22. 如請求項21之用於極紫外光微影之空白罩幕,其進一步包含:
    一硬罩幕,其形成於該相移層上且由Si、SiO、SiN、SiC、SiON、SiCO、SiCN及SiCON中之任一者製成。
  23. 如請求項1之用於極紫外光微影之空白罩幕,其中在該相移層中,一蝕刻速率朝向一下部部分增加,或該相移層之一下部部分處之一蝕刻速率大於其他部分中之至少一些的蝕刻速率。
  24. 如請求項23之用於極紫外光微影之空白罩幕,其中形成該相移層以使得Cr之一含量逐漸向下減少。
  25. 如請求項23之用於極紫外光微影之空白罩幕,其中該相移層具有兩個或更多個層之一多層結構,且
    該相移層之一最下層由比其他層中之至少一者具有較少Cr或不含有Cr的一材料製成。
  26. 如請求項1之用於極紫外光微影之空白罩幕,其進一步包含:
    一蝕刻終止層,其形成於該反射層與該相移層之間且對該相移層具有一蝕刻選擇性。
  27. 如請求項26之用於極紫外光微影之空白罩幕,其中該蝕刻終止層由含有矽(Si)、鉬(Mo)、鉻(Cr)、鈦(Ti)、鎢(W)、鉭(Ta)、鈮(Nb)及釕(Ru)中之至少一者之一材料製成,或由該材料中添加氧(O)、氮(N)、碳(C)、氫(H)及硼(B)中之至少一者之一化合物製成。
  28. 如請求項26之用於極紫外光微影之空白罩幕,其進一步包含:
    一頂蓋層,其形成於該反射層與該蝕刻終止層之間且由含有釕(Ru)之一材料製成,
    其中該蝕刻終止層由含有鉭(Ta)及氧(O)之一材料製成。
  29. 如請求項28之用於極紫外光微影之空白罩幕,其中該蝕刻終止層以兩個或更多個層之一結構形成,且
    該蝕刻終止層之一最上層由含有鉭(Ta)及氧(O)之一材料製成,且該蝕刻終止層之該最上層下方之一層由含有鉭且不含氧(O)之一材料製成。
  30. 如請求項1至15中任一項之用於極紫外光微影之空白罩幕,其進一步 包含:
    一頂蓋層,其形成於該反射層上,
    其中該相移層包括:
    一第一層,其由含有鉭(Ta)之一材料製成且充當用於該相移層下方之該頂蓋層的一蝕刻終止層;及
    一第二層,其形成於該第一層上,由含有釕(Ru)及鉻(Cr)之一材料製成,且控制該相移層之該反射率及相移量。
  31. 如請求項30之用於極紫外光微影之空白罩幕,其中該第一層由進一步含有硼(B)、鈮(Nb)、鈦(Ti)、鉬(Mo)及鉻(Cr)中之至少一者之一材料製成。
  32. 如請求項30之用於極紫外光微影之空白罩幕,其中該第一層由進一步含有氮、碳及氧中之至少一者之一材料製成。
  33. 如請求項32之用於極紫外光微影之空白罩幕,其中該第一層具有50at%或更低之氮之一含量。
  34. 如請求項30之用於極紫外光微影之空白罩幕,其中該第一層具有50at%或更高之Ta之一含量及7nm或更小的一厚度。
  35. 如請求項30之用於極紫外光微影之空白罩幕,其中該第一層由進一步含有硼(B)之一材料製成,且
    該相移層相對於該反射層具有14%至15%之一相對反射率。
  36. 如請求項30之用於極紫外光微影之空白罩幕,其中該第一層由進一步含有鈮(Nb)之一材料製成,且
    該相移層相對於該反射層具有20%或更高之一相對反射率。
  37. 一種光罩幕,其使用如請求項1之用於極紫外光微影之該空白罩幕製造。
TW111102057A 2021-01-27 2022-01-18 用於euv微影之相移空白罩幕及光罩幕 TWI838682B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2021-0011135 2021-01-27
KR20210011135 2021-01-27
KR10-2021-0053875 2021-04-26
KR1020210053875A KR20220108686A (ko) 2021-01-27 2021-04-26 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크
KR10-2021-0077681 2021-06-15
KR1020210077681A KR20220168092A (ko) 2021-06-15 2021-06-15 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크

Publications (2)

Publication Number Publication Date
TW202238253A true TW202238253A (zh) 2022-10-01
TWI838682B TWI838682B (zh) 2024-04-11

Family

ID=82495464

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111102057A TWI838682B (zh) 2021-01-27 2022-01-18 用於euv微影之相移空白罩幕及光罩幕

Country Status (3)

Country Link
US (1) US11940725B2 (zh)
JP (1) JP7285911B2 (zh)
TW (1) TWI838682B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240051502A (ko) 2022-10-13 2024-04-22 주식회사 에스앤에스텍 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크
KR20240051503A (ko) 2022-10-13 2024-04-22 주식회사 에스앤에스텍 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653053B2 (en) 2001-08-27 2003-11-25 Motorola, Inc. Method of forming a pattern on a semiconductor wafer using an attenuated phase shifting reflective mask
US6875546B2 (en) 2003-03-03 2005-04-05 Freescale Semiconductor, Inc. Method of patterning photoresist on a wafer using an attenuated phase shift mask
KR100701424B1 (ko) 2005-12-27 2007-03-30 주식회사 하이닉스반도체 위상 반전 마스크 및 그 제조 방법
US7771895B2 (en) * 2006-09-15 2010-08-10 Applied Materials, Inc. Method of etching extreme ultraviolet light (EUV) photomasks
KR101681338B1 (ko) 2008-10-29 2016-11-30 호야 가부시키가이샤 포토마스크 블랭크, 포토마스크 및 그 제조 방법
US9261774B2 (en) 2013-11-22 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Extreme ultraviolet lithography process and mask with reduced shadow effect and enhanced intensity
JP6301127B2 (ja) * 2013-12-25 2018-03-28 Hoya株式会社 反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
JP6499440B2 (ja) 2014-12-24 2019-04-10 Hoya株式会社 反射型マスクブランク及び反射型マスク
JP6968945B2 (ja) 2016-03-28 2021-11-24 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法
JP6739960B2 (ja) 2016-03-28 2020-08-12 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法
JP6677139B2 (ja) * 2016-09-28 2020-04-08 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランクの製造方法
WO2018181891A1 (ja) 2017-03-31 2018-10-04 凸版印刷株式会社 位相シフトマスクブランク、位相シフトマスク及び位相シフトマスクの製造方法
KR20180127197A (ko) * 2017-05-18 2018-11-28 주식회사 에스앤에스텍 극자외선용 블랭크 마스크 및 이를 이용한 포토마스크
JP6729508B2 (ja) * 2017-06-29 2020-07-22 信越化学工業株式会社 フォトマスクブランク及びフォトマスク
WO2019225736A1 (ja) 2018-05-25 2019-11-28 Hoya株式会社 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
KR20210013008A (ko) 2018-05-25 2021-02-03 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크, 그리고 반사형 마스크 및 반도체 장치의 제조 방법
KR20210088582A (ko) 2018-11-15 2021-07-14 도판 인사츠 가부시키가이샤 반사형 포토마스크 블랭크 및 반사형 포토마스크
JP6678269B2 (ja) * 2019-03-15 2020-04-08 Hoya株式会社 反射型マスクブランク及び反射型マスク

Also Published As

Publication number Publication date
JP2022115074A (ja) 2022-08-08
JP7285911B2 (ja) 2023-06-02
US11940725B2 (en) 2024-03-26
TWI838682B (zh) 2024-04-11
US20220236635A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
JP7502510B2 (ja) 反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
US9864267B2 (en) Reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP6058757B1 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
TWI441238B (zh) 反射型光罩基板及其製造方法、反射型光罩、以及半導體裝置之製造方法
TWI838682B (zh) 用於euv微影之相移空白罩幕及光罩幕
CN111344633B (zh) 掩模坯料、相移掩模及制造方法、半导体器件的制造方法
TWI818444B (zh) 用於euv微影之相移空白罩幕及光罩幕
US11467485B2 (en) Blankmask and photomask for extreme ultraviolet lithography
KR20220108686A (ko) 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크
KR20220121399A (ko) 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크
KR102473558B1 (ko) 극자외선 리소그래피용 하프톤 위상반전 블랭크 마스크 및 포토마스크
KR102583075B1 (ko) 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크
KR20220168092A (ko) 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크
KR20220168094A (ko) 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크
KR20220168093A (ko) 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크
KR20220096701A (ko) 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크
KR20220121401A (ko) 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크
CN117891122A (zh) 用于euv光刻的相移空白掩模及光掩模
CN117891123A (zh) 用于euv光刻的相移空白掩模及光掩模
KR20220121400A (ko) 극자외선 리소그래피용 위상반전 블랭크마스크 및 포토마스크
KR20230031473A (ko) 크롬 및 니오븀을 함유한 하드마스크막을 구비한 극자외선 리소그래피용 블랭크마스크 및 포토마스크
KR20210022479A (ko) 극자외선용 블랭크마스크 및 포토마스크
TW202416047A (zh) 用於euv微影之相移空白遮罩及光罩
KR20230123181A (ko) 텔루륨과 안티몬을 포함하는 흡수막을 구비한 극자외선 리소그래피용 블랭크마스크 및 이를 이용하여 제작된 포토마스크
JP2021096397A (ja) 反射型マスクブランク、反射型マスク、反射型マスクの製造方法、及び反射型マスクの修正方法