TW202231655A - 用於診斷及治療之改良的膽囊收縮素-2受體(cck2r)標靶 - Google Patents

用於診斷及治療之改良的膽囊收縮素-2受體(cck2r)標靶 Download PDF

Info

Publication number
TW202231655A
TW202231655A TW111104376A TW111104376A TW202231655A TW 202231655 A TW202231655 A TW 202231655A TW 111104376 A TW111104376 A TW 111104376A TW 111104376 A TW111104376 A TW 111104376A TW 202231655 A TW202231655 A TW 202231655A
Authority
TW
Taiwan
Prior art keywords
peptidomimetic
gabob
dota
trp
asp
Prior art date
Application number
TW111104376A
Other languages
English (en)
Inventor
安東 阿曼德斯 赫爾曼
古根伯格 主 瑞德厚芬 伊莉莎貝斯 封
Original Assignee
奧地利因斯布魯克醫科大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奧地利因斯布魯克醫科大學 filed Critical 奧地利因斯布魯克醫科大學
Priority to TW111104376A priority Critical patent/TW202231655A/zh
Publication of TW202231655A publication Critical patent/TW202231655A/zh

Links

Images

Abstract

本發明提供用於治療性及診斷性目的之有價值的肽模擬物以及基於此等肽模擬物之組合物、方法、用途及套組。特定言之,本發明之該等肽模擬物係被CCK2R表現細胞,例如癌細胞併入。舉例而言,此允許選擇性地破壞癌細胞或選擇性地對表現CCK2R之癌細胞進行成像。

Description

用於診斷及治療之改良的膽囊收縮素-2受體(CCK2R)標靶
本發明尤其係關於一種具有針對特定膽囊收縮素-2受體(CCK2R)標靶之改良特性的肽模擬物及其診斷性及治療性用途。膽囊收縮素受體經分類為兩種受體亞型:CCK1R及CCK2R。已在各種腫瘤,諸如神經內分泌腫瘤、甲狀腺髓質癌(MTC)、小細胞肺癌(SCLC)、平滑肌肉瘤/平滑肌瘤、胃腸道間質瘤、胰島素瘤、VIP瘤(vipoma)、類癌、星形細胞瘤、間質卵巢癌、乳房及子宮內膜腺癌以及其他腫瘤中識別出CCK2R (Reubi JC等人,Cancer Res 1997, 57: 1377-1386;Reubi JC, Curr Top Med Chem 2007, 7: 1239-1242;Sanchez C等人,Mol Cell Endocrinol 2012, 349: 170-179),但CCK1R僅表現於有限數目之人類腫瘤中。已基於CCK2R、膽囊收縮素(CCK)或胃泌素之內源性配位體研發出不同的放射性標記之肽探針。兩種肽CCK及胃泌素以幾乎相同的親和力及效能結合於CCK2R且在C端共用共同的生物活性區Trp-Met-Asp-Phe (Dufresne M等人,Physiol Rev 2006, 86: 805-847),經證明其為受體結合所必需的(Tracy HJ等人,Nature 1964, 204: 935-938)。由於母體肽之極短生理半衰期,因此一般需要肽之額外合成修飾以在代謝上穩定用於醫學應用之直鏈胺基酸序列(Fani M等人,Theranostics 2012, 2: 481-501)。此類修飾亦已經研究用於放射性標記之CCK及胃泌素類似物(Roosenburg S等人,Amino Acids 2011, 41: 1049-1058)。除基於Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH 2(CCK8)及Leu-Glu-Glu-Glu-Glu-Glu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH 2(小胃泌素,MG)之放射性配位體外,亦已提議非肽配位體(Wayua C等人,J Nucl Med 2015, 56: 113-119)。近年來亦可藉由光學成像螢光CCK2R標靶之MG類似物(dQ-MG-754)在攜帶自大腸直腸腺癌細胞衍生之腫瘤異種移植的裸鼠中證實CCK2R特定腫瘤攝取(Kossatz S等人,Biomaterials 2013, 34: 5172-5180)。藉由使用與特吡萊辛(tubulysin) B (將細胞毒性藥物選擇性地遞送至CCK2R陽性腫瘤)結合之強效CCK2R配位體Z-360,可在臨床前動物模型中觀察到腫瘤消退(Wayua C等人,Mol Pharm 2015, 12: 2477-2483)。
使用放射性標記之[二伸乙三胺五乙酸 0,D-Glu 1]小胃泌素(DTPA-MG0),已獲得良好腫瘤標靶特性,然而,亦觀測到極高的腎臟攝取,其在用 90Y-標記之DTPA-MG0治療的患者中引起嚴重的腎臟副作用(Béhé M等人,Biopolymers 2002, 66: 399-418)。然而,對於患有MTC及SCLC之患者之腫瘤偵測, 111In-DTPA-MG0已證實優於生長抑制素受體閃爍攝影術及2-去氧-2-[ 18F]氟-D-葡萄糖正電子發射斷層攝影術(FDG PET)且亦已展示在具有低生長抑制素受體表現之神經內分泌腫瘤中具有額外價值(Gotthardt M等人,Eur J Nucl Med Mol Imaging 2006, 33: 1273-1279;Gotthardt M等人,Endocr Relat Cancer 2006, 13: 1203-1211)。
藉由經截短 111In-標記之肽類似物([1,4,7,10-四氮雜環十二-1,4,7,10-四乙酸 0,D-Glu 1,DesGlu 2-6]小胃泌素(DOTA-MG11)),在動物研究中顯示出明顯減小的腎臟攝取(Behe M等人,Eur J Nucl Med Mol Imaging 2005: 32, S78)且第一臨床研究中經證實(Fröberg AC等人,Eur J Nucl Med Mol Imaging 2009, 36: 1265-1272)。然而,由於活體內抗酶促降解穩定性明顯降低及低於五分鐘之較低生物半衰期(Breeman WA等人,Nucl Med Biol 2008, 35: 839-849),藉由 111In-DOTA-MG11僅觀察到不良診斷性功效。為提高酶促穩定性且改良特異性受體標靶同時減小腎臟滯留,已在肽之N端區中嘗試對肽序列之不同修飾(Aloj L等人,Eur J Nucl Med Mol Imaging 2011, 38: 1417-1425;Laverman P等人,Eur J Nucl Med Mol Imaging 2011, 38: 1410-1416)。僅非常少的修飾亦已在C端區中嘗試且限於用諸如正白胺酸或高丙炔基甘胺酸之非天然胺基酸取代甲硫胺酸以防止與受體親和力喪失相關的甲硫胺酸氧化(Mather SJ等人,J Nucl Med 2007, 48: 615-622;Roosenburg S等人,Bioconjug Chem 2010, 21: 663-670)。然而,注射有用 177Lu標記之此等不同新型肽類似物之BALB/c小鼠的血液及尿液之分析已展示在已注射後10 min,不能偵測到完整的放射性配位體(Ocak M等人,Eur J Nucl Med Mol Imaging 2011, 38: 1426-1435)。同樣,非典型胺基酸甲氧基丁胺酸(methoxinine)最近已用於取代氧化敏感性甲硫胺酸殘基且化學穩定MG類似物(Grob NM等人,J Pept Sci 2017, 23: 38-44),而未改良生物半衰期。上述研究明確表示迄今為止採用的化學修飾並不能成功改良活體內生物半衰期及標靶特性。
本發明人先前已產生兩種具有結構 111In-DOTA-DGlu-Ala-Tyr-Gly-Trp-Met-Asp-1Nal-NH 2111In-DOTA-DGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-(NMe)Phe-NH 2111In-標記之肽類似物,分別被稱為 111In-DOTA-MGS1及 111In-DOTA-MGS4 (Klingler M等人,Eur J Nucl Med Mol Imaging 2017, 44: S228)。另外,本發明人先前研發出DOTA-DGlu-Ala-Tyr-Gly-Trp-(NMe)Nle-Asp-1NaI-NH 2(WO 2018/224665 A1),被稱為DOTA-MGS5,其展示良好穩定性及細胞內化特性。
基於其他研發,本發明人意外地發現靶向CCK2R之肽模擬物之新群組擁有優異特性,特定言之具有改良的生物分佈及穩定性,其使得本發明之肽模擬物尤其適用於成像及治療性應用。
本發明之目標為改良CCK2R標靶肽模擬物之穩定性(例如血清之半衰期)及生物分佈特徵。特定言之,本發明減少肽模擬物之腎臟滯留且因此避免或減小腎毒性。此目標係藉由本發明之以下實施例及態樣根據本發明達成。
在一個態樣中,本發明提供一種具有以下結構之肽模擬物 X- 連接子 -βAla-Trp-(NMe)Nle-Asp-1NaI 其中X為包含放射核種之螯合劑或包含放射核種之輔基。
在一些實施例中,螯合劑螯合放射核種。在一些實施例中,放射核種共價結合於輔基。
在一些實施例中,放射核種係選自由以下組成之群: 225Ac、 212Bi、 213Bi、 62Cu、 64Cu、 67Cu、 69Cu、 66Ga、 67Ga、 68Ga、 111In、 113mIn、 177Lu、 186Re、 188Re、 43Sc、 44Sc、 47Sc、 155Tb、 161Tb、 99mTc、 86Y、 90Y、 169Yb、 175Yb、 52Fe、 169Er、 72As、 97Ru、 203Pb、 212Pb、 51Cr、 52mMn、 89Zr、 105Rh、 166Dy、 166Ho、 153Sm、 149Pm、 151Pm、 172Tm、 121Sn、 117mSn、 142Pr、 143Pr、 198Au、 199Au、 123I、 124I、 125I、Al 18F及 18F。
在本發明之一些實施例中,放射核種為鹵素(放射鹵基)。特定言之,當X為輔基時放射核種可為鹵素且放射鹵基共價結合於輔基以經由連接子將放射鹵基偶合至肽序列βAla-Trp-(NMe)Nle-Asp-1NaI。
在一些實施例中,螯合劑為
Figure 02_image001
,其中星號指示螯合劑直接結合於連接子之位置。舉例而言,經標記之羰基碳可直接結合於連接子之氮,進而與該連接子形成醯胺鍵。
在一較佳實施例中,肽模擬物具有結構DOTA-連接子-βAla-Trp-(NMe)Nle-Asp-1NaI。
在一些實施例中,連接子係選自由以下組成之群:GABA-GABA、GABOB-GABOB或γDGlu-γDGlu。
在一些實施例中,放射核種係選自由以下組成之群:Al 18F、 225Ac、 212Bi、 213Bi、 62Cu、 64Cu、 67Cu、 69Cu、 66Ga、 67Ga、 68Ga、 111In、 113mIn、 177Lu、 186Re、 188Re、 43Sc、 44Sc、 47Sc、 155Tb、 161Tb、 99mTc、 86Y、 90Y、 169Yb及 175Yb,特定言之在肽模擬物包含螯合劑且放射核種藉由螯合劑螯合時。待藉由螯合劑,諸如DOTA螯合之較佳放射核種為 90Y、 111In、 68Ga或 177Lu。Al 18F可藉由DOTA螯合。
較佳地,肽模擬物包含5至10個胺基酸。舉例而言,肽模擬物可包含5、6、7、8、9或10個胺基酸。如本文中所用之DOTA係指1,4,7,10-四氮雜環十二烷-1,4,7,10-四乙酸。在一較佳實施例中,肽模擬物為DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI,其中GABOB係指γ-胺基-β-羥基丁酸。較佳的是肽模擬物包含藉由DOTA蟄合之放射核種。
本發明之肽模擬物特異性結合於CCK2R。
本發明之連接子將胺基酸聚合物βAla-Trp-(NMe)Nle-Asp-1NaI與DOTA連結。在一些實施例中,連接子並不減小或大體上減小胺基酸聚合物βAla-Trp-(NMe)Nle-Asp-1NaI對CCK2R之結合親和力。
在一些實施例中,本發明之肽模擬物之放射核種係選自由以下組成之群: 225Ac、 212Bi、 213Bi、 62Cu、 64Cu、 67Cu、 69Cu、 66Ga、 67Ga、 68Ga、 111In、 113mIn、 177Lu、 186Re、 188Re、 43Sc、 44Sc、 47Sc、 155Tb、 161Tb、 99mTc、 86Y、 90Y、 169Yb及 175Yb。較佳地,放射核種為 90Y、 111In、 68Ga或 177Lu。藉由螯合劑,諸如DOTA蟄合之其他放射核種亦可由熟習此項技術者選定。
較佳地,本發明之肽模擬物之C端經醯胺化。
在一些實施例中,肽模擬物為 68Ga-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2( 68Ga-DOTA-MGSA)。在其他實施例中,肽模擬物為 177Lu-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2( 177Lu-DOTA-MGSA)。
肽模擬物DOTA-MGSA,特定言之 68Ga-DOTA-MGSA及 177Lu-DOTA-MGSA為本發明之較佳實施例。特定言之,較佳藉由 68Ga-DOTA-MGSA或 177Lu-DOTA-MGSA來實施本發明之不同方法及用途。
較佳地,肽模擬物包含5至10個胺基酸。最佳地,肽模擬物包含7個胺基酸。在一些實施例中,7個胺基酸為GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI。
在另一態樣中,本發明提供一種產生本發明之肽模擬物之方法,其包含合成肽模擬物。在一些實施例中,產生肽模擬物之方法包含熟習此項技術者已知的固相肽合成。
在本發明之一個態樣中,本發明提供一種醫藥組合物,其包含本發明之肽模擬物及醫藥學上可接受之載劑。本發明之醫藥組合物可用於治療性或診斷性目的。視既定用途而定,熟習此項技術者可選擇醫藥學上可接受之載劑。
在本發明之另一態樣中,本發明提供一種本發明之肽模擬物用於對腫瘤進行成像之用途。在一些實施例中,待成像之腫瘤在腫瘤細胞之表面上表現CCK2R。
在本發明之另一態樣中,本發明提供一種對癌細胞進行成像之方法,其中該方法包含以下步驟:a)使癌細胞與本發明之肽模擬物接觸,從而使放射核種與癌細胞接觸,及b)視覺化與癌細胞接觸之放射核種。在一些實施例中,使癌細胞與本發明之肽模擬物接觸之步驟包含向患者投與肽模擬物。在一些實施例中,該患者罹患癌症。在一些實施例中,該癌症在癌細胞之表面上表現CCK2R。較佳地,成像方法使用肽模擬物 68Ga-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2177Lu-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
待根據本發明之技術性教示治療、診斷或成像之癌症可選自本申請案中其他地方所揭示之癌症。
在本發明之一個態樣中,本發明提供用於治療癌症之本發明之肽模擬物。較佳地,該癌症在癌細胞之表面上表現CCK2R。
在本發明之另一態樣中,本發明提供用於診斷癌症之本發明之肽模擬物。較佳地,該癌症在癌細胞之表面上表現CCK2R。
在本發明之另一態樣中,本發明提供一種治療罹患疾病之患者的方法,該方法包含向患者投與本發明之肽模擬物。較佳地,該疾病為癌症,且更佳地,該癌症在癌細胞之表面上表現CCK2R。
在本發明之另一態樣中,本發明提供一種診斷患者之癌症的方法,其中該方法包含以下步驟:a)使患者之癌細胞與本發明之肽模擬物接觸,從而使放射核種與癌細胞接觸,及b)視覺化與癌細胞接觸之放射核種。在一些實施例中,待診斷之癌症在癌細胞之表面上表現CCK2R。
在較佳實施例中,本發明之肽模擬物特異性結合於CCK2R。特異性結合於CCK2R使得標靶表現CCK2R之細胞及組織,而非不表現CCK2R之細胞及組織。本發明之肽模擬物之此特徵適用於診斷性及治療性目的,例如用於診斷及治療特定類型之癌症,特定言之表現CCK2R之癌症。然而,本發明之教示不限於癌症,且係關於與CCK2R表現相關聯之任何疾病。特定言之,本發明之肽模擬物適用於診斷性及治療性目的,此係因為其顯示表現CCK2R之細胞之高細胞攝取(細胞內化)量。此外,本發明之肽模擬物為有用的,此係因為其尤其穩定地抗降解,尤其藉由蛋白酶之血清降解,較佳藉由多種蛋白水解酶之活體內代謝降解。此外,本發明之肽模擬物為有用的,此係因為其不積聚於腎臟中,或僅以對用本發明之肽模擬物治療或診斷之患者無害之低含量積聚於腎臟中。
強調本文中所揭示之態樣及實施例之任何組合或各別技術特徵亦在本文中經揭示作為本發明之一部分。熟習此項技術者應理解,本發明不限於上文明確列舉之實施例,且亦包括上文或下文未明確揭示之組合。此類組合例如由組合上文所提及之本發明之態樣、實施例或特徵與下文在本發明之實施方式中所揭示之本發明之態樣、實施例或特徵產生。熟習此項技術者將瞭解,實際上應連同下文進一步給出之實施方式之對應部分以及本申請案中所闡明之實例來考慮上述態樣及實施例。此外,本說明書中給出的任何標題不應理解為限制於標題下所揭示之主題,亦即,一個標題下所揭示之主題可結合不同標題下所描述之主題進行讀取。
本發明之其他態樣、實施例、特徵及優勢將根據以下詳細描述而變得顯而易見。然而,應理解,指示本發明之較佳實施例的實施方式及特定實例僅以說明方式給出,因為一般熟習此項技術者將根據自實施方式對本發明之精神及範疇內的各種改變及修改顯而易見。
本說明書中所引用之所有公開案(包括(但不限於)專利、專利申請案及科學公開案)出於所有目的均以引用的方式併入本文中,如同每一個別公開案特定地且個別地指示以引用的方式併入。
術語「包含(comprising)」以及諸如「包含(comprises/comprised)」之其他文法形式之使用不具限制性。術語「包含(comprising/comprises/comprised)」應理解為係指本發明之一實施例之開放式描述,其可(但不一定必須)包括除明確陳述的技術特徵以外之額外技術特徵。在相同意義上,術語「涉及」以及諸如「涉及(involves/involved)」之其他個別文法形式不具限制性。相同情況適用於術語「包括(including)」及諸如「包括(includes/included)」之其他文法形式。貫穿本說明書之章節標題僅出於組織性目的。特定言之,其並不意欲作為對其中所描述之各種實施例的限制,且應理解,一個子標題下所描述之實施例(及其中之特徵)可與另一子標題下所描述之實施例(及其中之特徵)自由地組合。此外,術語「包含」、「涉及」及「包括」及其任何文法形式不應解譯為僅僅係指包括其明確敍述之額外特徵之實施例。此等術語同樣指代僅由明確提及之彼等特徵組成的實施例。
如本文中所使用,術語「肽模擬物」、「肽類似物」或「肽衍生物」或「肽結合物」係指包含兩種或更多種胺基酸之聚合物的化合物,該聚合物包含與胺基酸不同之至少一種非天然胺基酸、假肽鍵或化學部分,諸如報導子基團或細胞毒性基團,包括螯合劑、輔基、連接子或藥物動力學調節劑。特定言之,本發明之肽模擬物包含基團X,其中X為包含放射核種之螯合劑或包含放射核種之輔基及連接子。如本文所定義之肽模擬物通常模仿天然肽之生物活性。在本發明之情況下,本發明之肽模擬物模仿天然CCK2R配位體(諸如胃泌素)特異性結合於CCK2R之能力(就具有該能力而言)。
如本文中所使用,術語「胺基酸聚合物」係指兩種或更多種胺基酸之聚合物。
如本文中所用,術語「胺基酸」係指在其單體狀態下含有至少一個胺(-NH 2)及一個羧基(-COOH)官能基之化合物。兩個胺基酸可藉由肽鍵彼此共價鍵結。若胺基酸經由假肽鍵與另一胺基酸結合,則如下文所描述,視假肽鍵之性質而定,胺或羧基可經其他化學部分置換。較佳地,如本文中所用,術語「胺基酸」係指α-胺基酸或β-胺基酸。如本文所使用,術語「胺基酸」包括蛋白型胺基酸丙胺酸(Ala);精胺酸(Arg);天冬醯胺(Asn);天冬胺酸(Asp);半胱胺酸(Cys);麩醯胺酸(GIn);麩胺酸(Glu);甘胺酸(Gly);組胺酸(His);異白胺酸(Ile);白胺酸(Leu);離胺酸(Lys);甲硫胺酸(Met);苯丙胺酸(Phe);脯胺酸(Pro);絲胺酸(Ser);蘇胺酸(Thr);色胺酸(Trp);酪胺酸(Tyr);纈胺酸(Val)及硒半胱胺酸(Sec)。如本文中所用,術語「胺基酸」亦包括非天然胺基酸。
在本申請案之意義上,「非天然胺基酸」為天然出現或化學合成之非蛋白型胺基酸,例如正白胺酸(Nle)、甲氧基丁胺酸、高炔基甘胺酸、鳥胺酸、正纈胺酸、高絲胺酸及其他胺基酸類似物,諸如描述於Liu CC, Schultz PG, Annu Rev Biochem 2010, 79: 413-444及Liu DR, Schultz PG, Proc Natl Acad Sci U S A 1999, 96: 4780-4785中之彼等類似物。如本文中所用,非天然胺基酸可為例如呈D-形式之蛋白型胺基酸,例如DGlu。額外涵蓋的非天然胺基酸為對位、鄰位或間位取代之苯丙胺酸,諸如對乙炔基苯基苯丙胺酸、4-Cl-苯丙胺酸(Cpa)、4-胺基-苯丙胺酸及4-NO 2-苯丙胺酸、高脯胺酸、高丙胺酸、β-丙胺酸、1-萘基丙胺酸(1NaI)、2-萘基丙胺酸(2NaI)、對-苯甲醯基-苯丙胺酸(Bpa)、聯苯丙胺酸(Bip)、高苯丙胺酸(hPhe)、高丙炔基甘胺酸(Hpg)、疊氮高丙胺酸(Aha)、環己基丙胺酸(Cha)、胺基己酸(Ahx)、2-胺基丁酸(Abu)、疊氮正白胺酸(Anl)、三級白胺酸(Tle)、4-胺基-胺甲醯基-苯丙胺酸(Aph(Cbm))、4-胺基-氫乳清醯基(hydroorotyl)-苯丙胺酸(Aph(Hor))、S-乙醯胺基甲基-L-半胱胺酸(Cys(Acm))、3-苯并噻吩基丙胺酸、4-胺基-3-羥基-6-甲基庚酸(Sta)。此等非天然胺基酸中之一些已經研究用於生長抑制素及鈴蟾素類似物(Fani M等人,J Nucl Med 2011, 52: 1110-1118;Ginj M等人,Proc Natl Acad Sci U S A 2006, 103: 16436-16441;Ginj M等人,Clin Cancer Res 2005, 11: 1136-1145;Mansi R, J Med Chem 2015, 58: 682-691)。
如本文中所使用,術語「疏水性胺基酸」係指於生理pH (約pH 7.4)下具有淨零電荷之胺基酸。疏水性胺基酸可為蛋白型疏水性胺基酸或非天然疏水性胺基酸。蛋白型疏水性胺基酸為例如絲胺酸、蘇胺酸、半胱胺酸、硒半胱胺酸、甘胺酸、脯胺酸、丙胺酸、纈胺酸、異白胺酸、白胺酸、甲硫胺酸、苯丙胺酸、酪胺酸或色胺酸。較佳蛋白型疏水性胺基酸為脯胺酸、異白胺酸、白胺酸、苯丙胺酸、酪胺酸及色胺酸。非天然疏水性胺基酸為例如正白胺酸(Nle)、甲氧基丁胺酸、三級白胺酸(Tle)、1-萘基丙胺酸(1NaI)、2-萘基丙胺酸(2NaI)、3-苯并噻吩基丙胺酸、對-苯甲醯基-苯丙胺酸(Bpa)、聯苯丙胺酸(Bip)、高苯丙胺酸(hPhe)、高丙炔基甘胺酸(Hpg)、疊氮高丙胺酸(Aha)、環己基丙胺酸(Cha)、胺基己酸(Ahx)、2-胺基丁酸(Abu)、疊氮正白胺酸(Anl)、2-胺基辛炔酸(Aoa)、正纈胺酸(Nva)、對-乙炔基苯丙胺酸、4-Cl-苯丙胺酸、高脯胺酸及高丙胺酸。
在一些實施例中,本發明之肽模擬物的細胞攝取(亦即,結合於細胞膜且內化至細胞中)達至如實例2中所描述之分析中之總活性之至少約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%或約95%的程度。
在一些實施例中,本發明之肽模擬物特異性結合於CCK2R。本發明之肽模擬物之結合親和力可為CCK8、小胃泌素或五肽胃泌素(pentagastrin)對於CCK2R之結合親和力之至少約2%、約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%、約95%或約100%。在本發明之一些實施例中,肽模擬物之結合親和力可甚至比CCK8、小胃泌素或五肽胃泌素對於CCK2R之結合親和力高,例如如WO 2018/224665 A1之實例4中所描述的分析中之CCK8、小胃泌素或五肽胃泌素對於CCK2R之結合親和力的至少約110%、約120%、約130%、約140%、約150%、約160%、約170%、約180%、約190%、約200%、約500%、約1000%、約1500%或約2000%。
在本發明之上下文中,特異性結合於CCK2R意謂本發明之肽模擬物結合於可經CCK2R之同源配位體(諸如胃泌素)或同源配位體之放射性標記之變異體(諸如[ 125I]Tyr 12-標記之胃泌素-I)置換的CCK2R。半最大抑制濃度(IC50)為如上文所解釋之此特異性結合的量測值且可自如WO 2018/224665 A1之實例4中所描述的分析中獲得。
根據本發明之結合親和力係藉由量測半最大抑制濃度(IC50)來測定,其中結合親和力與IC50值具有反向關係,其意謂結合親和力隨著IC50值減小而增大且結合親和力隨著IC50值增大而減小。因此,約50%之結合親和力意謂IC50值為CCK8、小胃泌素或五肽胃泌素對於CCK2R之IC50值的約兩倍。
如本文中所用,術語「帶電胺基酸」包括在約7.4之生理pH下具有非零淨電荷之胺基酸且包括蛋白型及非天然胺基酸,例如蛋白型胺基酸Arg、Lys、His、Glu及Asp。
肽模擬物之結構以熟習此項技術者已知的三個-字母胺基酸碼指示,在左側以肽模擬物之胺基酸序列βAla-Trp-(NMe)Nle-Asp-1NaI之N端(胺基端)開始且在右側以肽模擬物之C端結束。舉例而言,若結構X-連接子-βAla-Trp-(NMe)Nle-Asp-1NaI,例如DOTA-連接子-βAla-Trp-(NMe)Nle-Asp-1NaI中之連接子不包含胺基酸,則胺基酸βAla形成肽模擬物之N端。在結構X-連接子-βAla-Trp-(NMe)Nle-Asp-1NaI中,1NaI形成C端,其可較佳地經醯胺化。
連接本發明之肽模擬物之兩個胺基酸(諸如序列βAla-Trp-(NMe)Nle-Asp-1NaI中之胺基酸)之化學鍵可為肽鍵,亦即醯胺鍵(-CONH-)。如本文中所用之肽鍵可形成於胺基(與一個胺基酸之α碳連接)與羧基(與另一胺基酸之α碳連接)之間。肽鍵亦可形成於胺基與羧基之間,該胺基及該羧基中之一者不與胺基酸之α碳連接,但與胺基酸之側鏈(異肽鍵),例如離胺酸之側鏈中之胺基連接。連結兩個胺基酸之化學鍵亦可為假肽鍵。在較佳實施例中,除非另外規定,否則連接肽模擬物之兩個胺基酸之化學鍵(「-」)為醯胺鍵。
如本文中所用,術語「假肽鍵」係指連接兩個胺基酸且不為醯胺鍵(-CONH-)之鍵。假肽鍵亦可包括於醯胺化C端中。此項技術中已知之任何假肽鍵涵蓋於本發明之上下文中,例如-CH 2NH-、-CONRCH 2-、-CONCH 3- (後者亦稱為N-Me)或-CONR-,其中R為烷基,較佳地甲基、乙基、正丙基、異丙基、正丁基、二級丁基、異丁基、三級丁基、正戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1,1-二甲基丙基、1-甲基-2-甲基丙基、2,2-二甲基丙基或1-乙基丙基。
本文中,兩個胺基酸之間的化學鍵之屬性(identity)可在經由鍵連接之胺基酸之間的圓括號或方括號中指示,例如Trp-(NMe)Nle。在此情況下,兩個胺基酸Trp及Nle係經結構-CONCH 3-之假肽鍵連接,其中Trp之羧基與Nle之胺基在釋放一個水分子之情況下以縮合反應進行反應且使所得醯胺氮經甲基化。針對兩個胺基酸Trp及Nle以及假肽鍵N-Me例示性給出之以下拼寫在本文中可互換地使用以指示假肽鍵之性質:「Trp-(N-Me)-Nle」、「Trp-(N-Me)Nle」及「Trp(N-Me)-Nle」。亦涵蓋烷基酯、烷基醚及脲鍵作為假肽鍵。亦涵蓋已顯示穩定肽模擬物且改良腫瘤標靶之其他假肽鍵(諸如1,2,3-三唑) (Mascarin A等人,Bioconjug Chem 2015, 26: 2143-2152)或其他醯胺鍵生物電子等排體(bioisoster)。
在一些實施例中,假肽鍵之存在係藉由術語「psi」指示,如此項技術中常用。舉例而言,X 4-psi[CH 2NH]-X 5指示兩個胺基酸X 4及X 5係經由假肽鍵-CH 2NH-連接。在一些實施例中,假肽鍵可為-psi[CH 2-NH-CO-NH]-、-psi[CH 2-NH]-、-psi[CH 2-CH 2]-、-psi[CS-NH]-或-psi[Tz]-。
在一些實施例中,假肽鍵為:-COO-、-COS-、-COCH 2-、-CSNH-、-CH 2CH 2-、-CHCH-、-CC-、-NHCO-、-CH 2S-、-CH2-NH-CO-NH-及-CH 2O-。
在本發明之上下文中,同等地涵蓋L-及D-胺基酸。除非另外說明,否則本發明之任何胺基酸可以L-或D-形式存在。L-形式係藉由在胺基酸之名稱之前直接列舉「L」來指示,D-形式係藉由在胺基酸之名稱之前直接列舉「D」來指示。舉例而言,「DGlu」係指D-形式之胺基酸麩胺酸且「LGlu」係指L-形式之胺基酸麩胺酸。在較佳實施例中,肽模擬物之胺基酸中之一者、多者或全部的對映異構形式為L-形式。舉例而言,若命名法涵蓋兩種對映異構形式,例如就「Asp」情況而言,則較佳的對映異構形式為L-形式(如同「LAsp」)。
術語「螯合劑」如此項技術中所使用且係指有機化合物,該等有機化合物為藉由金屬原子形成兩個或更多個配位鍵之多牙配位體。
在本發明之較佳實施例中,肽模擬物之C端(羧基端)經修飾以例如減少蛋白分解降解、增加存放期及/或改良細胞攝取。C端可例如經-NR'R"基團醯胺化,其中R'及R''獨立地為氫或如本文中所定義之經取代或未經取代之烷基。在一些實施例中,R'及R''獨立地為乙基、丙基、丁基、戊基或己基。在一較佳實施例中,本發明之肽模擬物在C端藉由NH 2基團醯胺化。C端亦可經類型-C(O)OR'''之酯修飾,其中R'''可為如本文所定義之經取代或非經取代之烷基,例如乙基、丙基、丁基、戊基或己基。
如本文中所用,術語「烷基」係指具有1至20個(C1-C20)、較佳地1至15個(C1-C15)、更佳地1至10個(C1-C10)且最佳1至5個(C1-C5)碳原子之直鏈或分支鏈飽和脂族烴。舉例而言,「烷基」可指甲基、乙基、正丙基、異丙基、正丁基、二級丁基、異丁基、三級丁基、正戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1,1-二甲基丙基、1-甲基-2-甲基丙基、2,2-二甲基丙基及1-乙基丙基。
「烷基」基團可經例如鹵素(諸如,氟、氯及溴)、胺(諸如,一級胺(-NH 2)、一級醯胺、羥基(-OH)、其他含氧、含硫或含氮官能基、雜環或芳基取代基(諸如,苯基及萘基)取代。
本發明之肽模擬物包含5至10個胺基酸。如本文中所用,術語「包含5至10個胺基酸」意謂肽模擬物不具有大於10個胺基酸且不低於5個胺基酸。
尤佳為包含5、6、7、8、9或10個胺基酸之肽模擬物。最佳為包含7個胺基酸之肽模擬物。
在本發明之一些實施例中,肽模擬物包含配位放射核種,例如金屬放射核種,諸如 225Ac、 212Bi、 213Bi、 62Cu、 64Cu、 67Cu、 69Cu、 66Ga、 67Ga、 68Ga、 111In、 113mIn、 177Lu、 186Re、 188Re、 43Sc、 44Sc、 47Sc、 155Tb、 161Tb、 99mTc、 86Y、 90Y、 169Yb或 175Yb之螯合劑DOTA。
在本發明之尤佳實施例中,肽模擬物之DOTA基團配位放射核種 90Y、 111In、 68Ga或 177Lu。
在本發明之一些實施例中,放射核種不具有治療作用,諸如細胞毒性作用。在一些實施例中,放射核種至少不具有治療學上相關程度上之細胞毒性作用。熟習此項技術者能夠判定足以例如以成像方法偵測到但不足以具有治療作用之放射核種之投與劑量/放射性劑量。因此,在本發明之一些實施例中,例如在成像方法及任何診斷性用途或方法中,使用足以偵測但不具有治療作用之放射核種劑量。如本文中所用,無治療作用之放射核種稱為「非治療性放射核種」。因此,本發明亦係關於放射核種之非治療性實施例。舉例而言,本發明包括非治療性放射核種。
可用於成像之較佳非治療性放射核種為 64Cu、 67Ga、 68Ga、 123I、 124I、 125I、 131I、 111In、 177Lu、 203Pb、 97Ru、 44Sc、 152Tb、 155Tb、 99mTc、 167Tm、 86Y及 89Zr。 細胞毒性基團
在一些實施例中,肽模擬物包含細胞毒性基團。如本文中所用,術語「細胞毒性基團」係指直接地或間接地造成細胞死亡之任何材料或化學部分,包含該細胞毒性基團之肽模擬物結合於該細胞或該肽模擬物已藉由該細胞內化。
細胞毒性基團可為例如化學治療劑或放射核種。若肽模擬物包含之化學治療劑或放射核種藉由CCK2R表現細胞內化,則藉由化學治療劑或放射核種殺滅CCK2R表現細胞。在一些實施例中,亦可在不內化包含細胞毒性基團之肽模擬物的情況下殺滅肽模擬物結合之細胞。
化學治療劑可選自由以下組成之群:長春鹼(vinblastine)單醯肼、特吡萊辛(tubulysin) B醯肼、放線菌微素、全反式視黃酸、氮胞苷、博萊黴素(bleomycin)、硼替佐米(bortezomib)、卡鉑、卡培他濱(capecitabine)、順鉑、苯丁酸氮芥、環磷醯胺、阿糖胞苷、道諾黴素(daunorubicin)、多西他賽(docetaxel)、去氧氟尿苷(doxifluridine)、小紅莓(doxorubicin)、表柔比星(epirubicin)、埃坡黴素(epothilone)、依託泊苷(etoposide)、氟尿嘧啶(fluorouracil)、吉西他濱(gemcitabine)、羥基尿素(hydroxyurea)、艾達黴素(idarubicin)、伊馬替尼(imatinib)、伊立替康(irinotecan)、氮芥(mechlorethamine)、巰基嘌呤(mercaptopurine)、甲胺喋呤(methotrexate)、米托蒽醌(mitoxantrone)、奧沙利鉑((oxaliplatin)、太平洋紫杉醇(paclitaxel)、培美曲塞(pemetrexed)、替尼泊甙(teniposide)、硫鳥嘌呤(tioguanine)、拓朴替康((topotecan)、茵朵替康(indotecan)、茵米替康(indimitecan)、美登素(mertansine)、恩他新(emtansine)、伐柔比星(valrubicin)、維羅非尼(vemurafenib)、長春鹼(vinblastine)、長春新鹼(vincristine)、長春地辛(vindesine)及長春瑞賓(vinorelbine)。
可使用之放射核種包括金屬及鹵素放射核種。本發明之放射核種可為例如選自以下之放射性同位素:P、Sc、Cr、Mn、Fe、Co、Cu、Zn、Ga、As、Br、Sr、Y、Tc、Ru、Rh、Pd、Ag、In、Sn、Sb、Te、I、Pr、Pm、Sm、Gd、Tb、Y、Ho、Er、Lu、Ta、W、Re、Os、Ir、Au、Hg、Tl、Pb、Bi、Po、At、Ra、Ac、Th及Fm。較佳放射核種包括(但不限於) 225Ac、 111Ag、 77As、 211At、 198Au、 199Au、 212Bi、 213Bi、 77Br、 58Co、 51Cr、 67Cu、 152Dy、 159Dy、 165Dy、 169Er、 255Fm、 67Ga、 159Gd、 195Hg、 161Ho、 166Ho、 123I、 125I、 131I、 111In、 192Ir、 194Ir、 96Ir、 177Lu、 189mOs、 32P、 212Pb、 109Pd、 149Pm、 142Pr、 143Pr、 223Ra、 186Re、 188Re、 105Rh、 119Sb、 47Sc、 153Sm、 117mSn、 121Sn、 89Sr、 149Tb、 161Tb, 、 99mTc、 127Te、 227Th201Tl及 90Y。 光敏劑
在本發明之一些實施例中,肽模擬物包含光敏劑。
如本文中所使用,術語「光敏劑」係指在曝露於光(諸如單態氧或對細胞材料或生物分子(包括細胞膜及細胞結構)有害的其他氧化自由基)時變得有毒或釋放有毒物質之材料或化學部分,且此類細胞或膜損害可最終殺死細胞。如本文所定義之光敏劑為此項技術中已知且可供熟習此項技術者使用。光敏劑之細胞毒性作用可用於治療各種異常或病症,包括贅生性疾病。此類治療已知為光動力治療(PDT)且涉及向身體之受影響區域投與光敏劑,隨後曝光於活化光以活化光敏劑且將其轉化為細胞毒性形式,由此殺滅受影響細胞或減弱其增殖性潛能。
光敏劑藉由多種機制直接地或間接地發揮其作用。因此舉例而言,某些光敏劑在藉由光活化時直接變得有毒,而其他光敏劑用以產生毒性物種(例如氧化劑,諸如單態氧或氧衍生之自由基),其對細胞材料及生物分子(諸如脂質、蛋白質及核酸)具有破壞性,且最終殺死細胞。
在一些實施例中,光敏劑包括例如補骨脂素(psoralens)、卟啉(porphyrins)、二氫卟酚(chlorins)及酞菁。卟啉光敏劑藉由產生毒性氧物種而間接起作用且為尤佳的。卟啉為血紅素合成中天然存在之前驅體。特定言之,當藉由酶亞鐵螯合酶之作用將鐵(Fe 2+)併入原卟啉IX (PpIX)中時,產生血紅素。PpIX為極強效光敏劑。可用於本發明之上下文中之其他光敏劑為胺基乙醯丙酸(ALA)、矽酞菁Pc 4、間四羥基苯基二氫卟酚(mTHPC)及單-L-天冬胺醯基二氫卟酚e6 (NPe6)、卟吩姆鈉(porfimer sodium)、維替泊芬(verteporfin)、替莫泊芬(temoporfin)、胺基乙醯丙酸甲酯、胺基乙醯丙酸己酯、他拉泊芬(laserphyrin)-PDT、BF-200 ALA、安非尼克斯(amphinex)及氮雜二吡咯亞甲基(azadipyrromethenes)。 連接子
本發明之肽模擬物包含具有序列βAla-Trp-(NMe)Nle-Asp-1NaI之胺基酸聚合物。肽模擬物所包含胺基酸之總數目如本文所定義受限制。除胺基酸聚合物βAla-Trp-(NMe)Nle-Asp-1NaI以外,本發明之肽模擬物亦包含如本文所定義之連接子及基團X。X為包含放射核種之螯合劑或包含放射核種之輔基。
連接子將基團X及胺基酸聚合物與序列βAla-Trp-(NMe)Nle-Asp-1NaI連接。較佳地,連接子與序列βAla-Trp-(NMe)Nle-Asp-1NaI以及基團X形成共價鍵。在一些實施例中,連接子與螯合劑、輔基或序列βAla-Trp-(NMe)Nle-Asp-1NaI形成醯胺鍵。在一些實施例中,連接子與螯合劑及序列βAla-Trp-(NMe)Nle-Asp-1NaI形成醯胺鍵。在一些實施例中,連接子與基團X形成酯鍵。
在一些實施例中,連接子與序列βAla-Trp-(NMe)Nle-Asp-1NaI之胺基酸聚合物的β-Ala之胺基形成醯胺鍵。
在一些實施例中,連接子為雙官能分子,其可在服從固相肽合成之條件下在一側上與序列βAla-Trp-(NMe)Nle-Asp-1NaI之β-Ala的胺基且在另一側上與基團X (例如,DOTA)形成共價鍵。
在一些實施例中,連接子為分子量低於1000 Da、低於900 Da、低於800 Da、低於700 Da、低於600 Da、低於500 Da、低於400 Da、低於300 Da、低於200 Da或低於100 Da之較小有機分子。在一些實施例中,連接子之分子量係在50與300 Da之間,50與400Da之間、50與500 Da之間、50與600 Da之間、50與700 Da之間、50與800 Da之間、50與900 Da之間或50與1000 Da之間。
較佳地,連接子並不干擾具有序列βAla-Trp-(NMe)Nle-Asp-1NaI之胺基酸聚合物與CCK2R之特異性結合。
連接子可充當影響例如肽模擬物之親水性及藥物動力學之藥物動力學調節劑。舉例而言,在一些實施例中,連接子可增加肽模擬物之腎臟對比腫瘤的比率。
連接子可為全部呈L-或D-形式之天然或非天然胺基酸,諸如Gly、Ala、Gln、Glu、His;或由此等胺基酸中之一或多者或任何其他化學部分組成之胺基酸聚合物,諸如聚乙二醇或碳水化合物以及胺基烷壬基,例如胺基己醯基或胺基苯甲醯基或哌啶部分。在一些實施例中,連接子可為6-胺基己酸、2-胺基丁酸、4-胺基丁酸、4-胺基-1-羧基甲基哌啶或脲或允許在肽模擬物中引入官能基之另一化學部分。可包含於連接子中之較佳分子為γ-胺基-丁酸(GABA)、γ-胺基-β-羥基丁酸(GABOB)或DGlu。
在一些實施例中,連接子為上述連接子的組合。舉例而言,連接子可包含上文提及的分子(諸如胺基酸)中之兩者、三者、四者或五者或由其組成。舉例而言,連接子可由兩個分子6-胺基己酸、2-胺基丁酸、4-胺基丁酸或DGlu組成。在一些實施例中,連接子藉由羥基或羧基進一步官能化以增大連接子之親水性。舉例而言,胺基烷壬基可經一或多個羥基或羧基取代。
在一些實施例中,連接子為GABOB-GABOB,其係指經由醯胺鍵縮合之γ-胺基-β-羥基丁酸之兩個分子。在一些實施例中,連接子為GABA-GABA,其係指經由醯胺鍵縮合之γ-胺基-丁酸之兩個分子。在一些實施例中,連接子為γ-DGlu-γ-DGlu (γDGlu-γDGlu)。
如本文中所用,「藥物動力學調節劑」意謂影響肽模擬物之藥物動力學,諸如親水性、生物降解及清除率之化學部分。舉例而言,藥物動力學調節劑可增加肽模擬物在血流中之半衰期。 螯合劑及輔基
為引入放射核種,本發明之肽模擬物包含螯合劑或輔基。螯合劑或輔基結合於放射核種且可經由肽模擬物對於CCK2R受體之親和力而經靶向細胞,例如癌細胞,諸如腫瘤細胞。經由連接子將螯合劑或輔基與序列βAla-Trp-(NMe)Nle-Asp-1NaI連接。
可在經由連接子將螯合劑或輔基與序列βAla-Trp-(NMe)Nle-Asp-1NaI的胺基酸聚合物結合之前或之後,執行將放射核種引入至螯合劑或輔基中。
在一些實施例中,螯合劑配位如本文中所提及之金屬放射核種。
螯合劑可含有用於金屬複合之不同供體基團,諸如氧、氮、硫、(羧基、膦酸鹽、羥氰酸鹽、胺、硫醇、硫代羧酸鹽或其衍生物),且包含非環狀及巨環螯合劑,諸如聚胺基聚羧酸配位體。
在一些實施例中,螯合劑係選自由以下組成之群:二伸乙三胺基五乙酸(DTPA)、乙二胺四乙酸(EDTA)、1,4,7-三氮雜環壬烷-1,4,7-參[亞甲基(2-羧基乙基)]膦酸(TRAP)、1,4,7,10-四氮雜環十二烷-1,4,7,10-四乙酸(DOTA)、1,4,7-三氮雜環壬烷-1,4,7-三乙酸(NOTA)、1,4,7-三氮雜環壬烷-1,4-二乙酸(NODA)、1,4,8,11-四氮雜環十四烷-1,4,8,11-四乙酸(TETA)以及其衍生物,諸如藉由戊二酸臂官能化之DOTA或NOTA (DOTAGA、NOTAGA)。亦涵蓋其他螯合劑,特定言之用於螯合放射金屬之螯合劑。
所涵蓋的例如用於螯合 99mTc之其他螯合劑包括(但不限於)二醯胺二硫醇(N 2S 2)、三醯胺硫醇(N 3S)、四胺(N 4)及肼基煙酸(HYNIC)。HYNIC通常與共配位體組合使用以完成金屬之配位層,其包括且不限於乙二胺-N,N′-二乙酸(EDDA)及麥黃酮(tricine)。在一些實施例中,使用有機金屬水合離子 99mTc(CO) 3(H 2O) 3,三羰基複合物可藉由用單牙、二牙及三牙螯合劑更換水分子以形成穩定複合物來產生,亦包括點擊螯合(click-to-chelate)方法。
例如適用於藉由 68Ga標記肽模擬物之其他螯合劑包括(但不限於) N,N′-雙[2-羥基-5-(羧基乙基)苯甲基]乙二胺-N,N′-二乙酸(HBED-CC)、基於鐵載體(siderophore)之配位體(諸如去鐵胺)、羥基吡啶酮配位體(諸如去鐵酮及參(羥基吡啶酮) (THP))及其衍生物。
在一些實施例中,螯合劑為
Figure 02_image003
,其中星號指示螯合劑直接結合於連接子之位置。在一些實施例中,
Figure 02_image005
結合於連接子之氮或氧原子。舉例而言,用星號標記之羰基碳可結合於連接子之胺,由此在螯合劑與連接子之間形成醯胺鍵。在一些實施例中,
Figure 02_image007
結合於連接子之GABA、GABOB或DGlu的胺。
較佳螯合劑為DOTA或其衍生物,諸如DO2A、DO3AM nBu、DO3AM en、DO3AM pNO2Bn、DO3AM C5H12-CO2H、DOTAM、DTMA及DOTA-(gly) 4
本發明之較佳輔基藉由鹵素(諸如碘、溴或氟)之放射核種,例如本文中所提及之彼等放射核種標記。在一些實施例中,輔基將選自由以下組成之群:波爾頓-亨特試劑(Bolton-Hunter reagent)、N-丁二醯亞胺基-5-(三烷基錫烷基)-3-吡啶羧酸酯或用於放射碘化之N-丁二醯亞胺基-4-[ 131I]碘苯甲酸酯([ 131I]SIB)。在一些實施例中,輔基將選自包含(但不限於)以下之基團:4-[ 18F]氟苯甲醯甲基溴、N-丁二醯亞胺基-4-[ 18F]氟苯甲酸酯([ 18F]SFB)、N-丁二醯亞胺基-4-([ 18F]氟甲基)苯甲酸酯、4-[ 18F]氟苯甲醛、6-[ 18F]氟菸鹼酸四氟苯基酯([ 18F]F-Py-TFP);含矽之建構嵌段,諸如3-(二-三級丁基[ 18F]氟矽基)苯甲酸N-丁二醯亞胺酯([ 18F]SiFB);基於碳水化合物之輔基,諸如[ 18F]氟-去氧葡萄糖,較佳地2-[ 18F]氟-2-去氧葡萄糖([ 18F]FDG)及[ 18F]氟-去氧甘露糖,較佳地[ 18F]2-氟-2-去氧甘露糖或其衍生物;基於順丁烯二醯亞胺及基於雜環甲碸之 18F-合成子; 18F-標記之輔基,諸如允許經由點擊化學標記之 18F-疊氮化合物或 18F-炔烴、 18F-標記之有機三氟硼酸酯及[ 18F]氟吡啶。在一些實施例中,使用氟化鋁(Al 18F)之基於螯合劑之標記方法應用於放射氟化。
在一些實施例中,結合於輔基之放射鹵基係選自由以下組成之群: 1 23I、 124I、 125I、 131I及 18F。 本發明之其他態樣及實施例
本發明亦係關於一種產生如本文所述之本發明肽模擬物之方法。可能藉由熟習此項技術者可獲得的標準有機化學方法及固相肽合成方法產生本發明肽模擬物。該方法至少包含合成肽模擬物之胺基酸聚合物(Behrendt R等人,J Pept Sci 2016, 22: 4-27;Jones J, Amino Acid and Peptide Synthesis, Oxford University Press, New York 2002;Goodman M, Toniolo C, Moroder L, Felix A, Houben-Weyl Methods of Organic Chemistry, Synthesis of Peptides and Peptidomimetics, workbench edition set, Thieme Medical Publishers, 2004)。
本發明進一步係關於用於治療性或診斷性用途之醫藥組合物,其包含本文中所描述之肽模擬物及醫藥學上可接受之載劑。根據本發明之醫藥組合物可用於治療CCK2R相關疾病,諸如表徵為CCK2R表現或過度表現之疾病。在一些實施例中,本發明之醫藥組合物可用於治療癌症,特定言之,表徵為CCK2R表現之此類癌症。在本發明之一些實施例中,本發明之醫藥組合物可用於將細胞毒性基團,諸如化學治療劑或放射核種遞送至CCK2R表現腫瘤細胞。因此,本發明之醫藥組合物可用於靶向癌症治療。
本發明亦係關於一種套組,其包含本發明之一或多種組分,例如根據本發明之醫藥組合物或根據本發明之肽模擬物。套組可進一步包含資訊小冊,該資訊小冊提供如何製備或使用本發明之肽模擬物、醫藥組合物或診斷性組合物的解釋。在一些實施例中,套組包含隨時可用之本發明之醫藥組合物。在另一實施例中,套組包含足以製備醫藥組合物之隨時可用的兩種或更多種組合物。舉例而言,在一些實施例中,套組可包含:包含肽模擬物之第一組合物,該肽模擬物包含螯合劑;及包含報導子或細胞毒性基團之第二組合物。為製備最終診斷性或治療性組合物,熟習此項技術者將遵循套組中所提供之資訊小冊且將第一及第二組合物組合以產生即用型診斷性或治療性組合物。
本發明之組合物可用於診斷性目的。可向患者投與本發明之診斷性組合物作為診斷性過程之部分,例如以允許對CCK2R表現細胞或組織,例如CCK2R表現腫瘤細胞進行成像。本發明之診斷性組合物可用於成像方法,諸如根據本發明之成像方法,例如對腫瘤細胞進行成像之方法。
本發明亦係關於一種本文中所述之本發明之肽模擬物用於將放射核種遞送至細胞之用途。較佳地,將放射核種遞送至表現CCK2R之細胞,例如表現CCK2R之癌細胞。可活體內或活體外使用本發明肽模擬物。舉例而言,本發明之肽模擬物可用於將報導子基團或細胞毒性基團遞送至人類或動物,例如哺乳動物,諸如小鼠、大鼠、兔、倉鼠或其他哺乳動物。在本發明之一些實施例中,肽模擬物可用於將報導子基團或細胞毒性基團遞送至活體外細胞,例如在細胞培養物中培養的永生化或原代細胞株。
本發明亦係關於一種如本文中所述之對細胞進行成像之方法。本文中所述之對細胞進行成像之方法利用本文中所述之肽模擬物。在本發明之一些實施例中,對細胞進行成像之方法利用如本文中所述之非治療性肽模擬物。本發明之對細胞進行成像之方法可涉及或可基於已建立的成像方法,諸如電腦斷層掃描(CT)、磁共振成像(MRI)、閃爍攝影術、SPECT、PET或其他類似技術。基於所使用之個別成像方法,熟習此項技術者將選擇適當的放射核種。可活體內或活體外進行本發明對細胞進行成像之方法。在本發明之一些實施例中,使細胞與本發明之肽模擬物接觸涉及將本文中所述之肽模擬物投與至患者,例如罹患癌症(例如涉及CCK2R表現之癌症)之患者。在一些較佳實施例中,該細胞為腫瘤細胞。因此,在一些較佳實施例中,使腫瘤細胞與肽模擬物接觸。在一些較佳實施例中,該腫瘤細胞表現CCK2R。
在一些實施例中,本發明亦係關於一種治療罹患涉及CCK2R表現之疾病,例如表徵為腫瘤細胞中表現CCK2R之癌症之患者的方法。此治療患者之方法涉及向患者投與本發明之肽模擬物。
在一些實施例中,本發明係關於用於治療之本文中所述之肽模擬物。在本發明之較佳實施例中,肽模擬物用於治療癌症。較佳地,癌症為在腫瘤細胞之表面上表現CCK2R之癌症。
本發明之肽模擬物適用於各種類型的癌症之診斷性檢查及治療,例如:甲狀腺癌,諸如甲狀腺髓質癌(MTC);肺癌,諸如小細胞肺癌(SCLC);胃腸道間質瘤;神經系統腫瘤,諸如星形細胞瘤及脊膜瘤;間質卵巢癌;胃腸道癌;神經內分泌腫瘤;胃腸胰臟腫瘤;神經母細胞瘤;生殖系統腫瘤,諸如乳房癌瘤、子宮內膜癌瘤、卵巢癌及前列腺癌瘤;胰島素瘤;VIP瘤;支氣管及回腸類癌;平滑肌肉瘤;平滑肌瘤及粒層細胞腫瘤。在一些較佳實施例中,上述癌症類型表現CCK2R。
在本發明之一些實施例中,肽模擬物具有以下結構中之一者:
Figure 02_image009
( 68Ga-DOTA-MGSA)或
Figure 02_image011
( 177Lu-DOTA-MGSA)、
Figure 02_image013
( 68Ga-DOTA-MGSB)、
Figure 02_image015
( 177Lu-DOTA-MGSB)、
Figure 02_image017
( 68Ga-DOTA-MGSC)或
Figure 02_image019
( 177Lu-DOTA-MGSC)。
在一些實施例中,肽模擬物具有以下結構:
Figure 02_image021
在本發明之一些實施例中,肽模擬物之連接子-βAla-Trp-(NMe)Nle-Asp-1NaI部分為
Figure 02_image023
,其經由GABOB-GABOB連接子之N端一級胺結合於X。在一較佳實施例中,X為包含放射核種之螯合劑。
在本發明之一些實施例中,肽模擬物之連接子-βAla-Trp-(NMe)Nle-Asp-1NaI部分為
Figure 02_image025
,其經由GABA-GABA連接子之N端一級胺結合於X。在一較佳實施例中,X為包含放射核種之螯合劑。
在本發明之一些實施例中,肽模擬物之連接子-βAla-Trp-(NMe)Nle-Asp-1NaI部分為
Figure 02_image027
,其經由γDGlu-γDGlu連接子之N端一級胺結合於X。在一較佳實施例中,X為包含放射核種之螯合劑。 實例 實例 1 合成肽模擬物
合成本發明之肽模擬物係使用標準9-茀基甲氧基羰基(Fmoc)化學物質執行。
使用含過量受Fmoc保護之胺基酸、1-羥基-7-氮雜苯并三唑(HOAt)及(2-(7-氮雜-1H-苯并三唑-1-基)-1,1,3,3-四甲基脲鎓六氟磷酸鹽(HATU)之鹼性培養基將肽模擬物組裝在含Rink Amide MBHA樹脂(Novabiochem, Hohenbrunn, Germany)之N,N-二甲基甲醯胺(DMF)上。藉由適當的保護基團遮蔽胺基酸之反應性側鏈。組裝所需胺基酸序列之後,執行DOTA (參(tBu)酯)偶合,隨後肽模擬物自樹脂裂解伴隨移除酸不穩定性保護基。HPLC純化及凍乾之後,以約10%產率及化學純度≥95%獲得肽模擬物,如藉由RP-HPLC及MALDI-TOF MS證實。用不同放射金屬放射性標記本發明肽模擬物係藉由將肽溶解於水溶液(諸如25-50%乙醇或PBS)中且將該溶液與酸性溶液(諸如含有放射金屬之氫氯酸)及用於pH調節之溶液(諸如乙酸鈉溶液或抗壞血酸溶液)混合且在高溫(90-95℃)下培育混合物大致10-30 min,使用標準放射性標記協定來執行。用不同放射金屬進行放射性標記會產生高標記產率及放射化學純度。肽模擬物及放射性標記之衍生物之HPLC分析係在由Dionex UltiMate 3000泵(Dionex, Gemering, Deutschland)、280 nm下之UV偵測(UltiMate 3000可變UV-偵測器)及放射偵測(Gabi Star, Raytest, Straubenhardt, Germany)組成之Dionex層析系統上且使用Phenomenex Jupiter 4µ Proteo 90A 250×4.6 (C12)管柱及1 mL/min之流動速率以及含水之0.1% TFA (溶劑A)及含乙腈之0.1% TFA (溶劑B)之梯度系統:0-3 min 10% B、3-18 min 10-55% B、18-20 min 80% B、20-21 min 10% B、21-25 min 10%來執行。
以下肽模擬物(表1)係根據以上方法合成: 表1
名稱 結構
DOTA-MGSA DOTA-Gabob-Gabob-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
DOTA-MGSB DOTA-Gaba-Gaba-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
DOTA-MGSC DOTA-γDGlu-γDGlu-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
DOTA-MGS5 DOTA-DGlu-Ala-Tyr-Gly-Trp-(NMe)Nle-Asp-1NaI-NH 2
實例 2 :肽模擬物展示較高細胞內化
此等研究係使用1.0百萬A431-CCK2R細胞以及經空載體單獨(A431-模擬)轉染之相同細胞株作為對照根據先前公開協定(Guggenberg E等人,Bioconjug Chem 2004, 15: 864-871)進行。補充有1% (v/v)胎牛血清之DMEM用作內化培養基且在A431模擬細胞中研究非特異性細胞攝取代替執行阻斷研究。將細胞一式三份藉由10,000至500,000 cpm,例如10,000至60,000 cpm之放射性標記之肽模擬物(對應於分析中之0.4 nM及約600 fmol之最終濃度之總肽模擬物)培育且在37℃下培育2 h。A431-CCK2R及A431-模擬細胞中之內化部分相對於所添加之總活性來表示(相對於總體的%)。對於每一放射性標記之肽,展現以一式三份執行之一種代表性分析的平均值。
如圖1中所展示,較高受體特異性細胞內化係藉由與不同連接子,諸如MGSA中之GABOB-GAB、MGSB中之GABA-GABA及MGSC中之γDGlu-γDGlu結合之肽模擬物達成。在A431-CCK2R細胞上培育2 h之後, 68Ga-標記之肽模擬物的細胞內化之值對於 68Ga-DOTA-MGSA為36.9±5.8%,對於 68Ga-DOTA-MGSB為43.1±3.1%且對於 68Ga-DOTA-MGSC為47.6±3.4%,然而A431-模擬細胞之攝取為可忽略的(<2%)。 實例 3 :本發明之肽模擬物展示改良的活體內生物分佈
在7週齡雌性無胸腺BALB/c裸鼠(Charles River, Sulzfeld, Germany)中執行評估放射性標記之本發明CCK2R標靶肽類似物之腫瘤攝取的生物分佈研究。所有動物實驗係根據奧地利動物保護法(the Austrian animal protection laws)及經奧地利科學部(the Austrian Ministry of Science)批准來進行。為誘導腫瘤異種移植,分別在右側及左側皮下注射A431-CCK2R及A431-模擬細胞(200 μl中含2百萬個細胞)。當腫瘤達到大致0.2 ml之大小時,進行生物分佈研究。5隻小鼠組經由側尾部靜脈內注射肽模擬物,標記為 177Lu (大致0.5 MBq及0.02 nmol肽模擬物;圖2)。連同投與 177Lu-標記之肽之一隻額外小鼠經共注射1000倍莫耳過量之未經標記之肽(約20 nmol)以阻斷受體特異性攝取(圖3)。注射後(p.i.) 4 h時間段之後,藉由頸椎脫位術處死動物,移除腫瘤及其他組織(血液、肺、心臟、肌肉、骨骼、脾、腸、肝、腎臟、胃、胰臟),稱重且在γ計數器中量測其放射性。對於 177Lu-DOTA-MGSA組中之一隻小鼠,骨骼樣本過小而無法量測放射性,且 177Lu-DOTA-MGS5組中之一隻動物並不建立A431-模擬異種移植。結果表示為每公克組織之注射活性百分比(IA/g%),且由解剖組織中所量測之活性計算腫瘤對比器官的活性比(圖2及圖3)。
在圖4中,概括相較於 177Lu-DOTA-MGS5及先前技術之其他肽模擬物,本發明之 177Lu-標記之肽模擬物在注射後4 h時的生物分佈研究之結果(Klingler M等人,J Nucl Med 2019, 60: 1010-1016)。在大部分組織中觀察到所有放射性配位體之具有快速血液清除率、顯著的腎分泌及較低非特異性攝取之有利生物分佈特徵。在具有不同胺基酸序列之放射性標記之肽模擬物的腎臟攝取中觀察到不同(亦參見圖2)。根據三種 177Lu-標記之肽模擬物研究, 177Lu-DOTA-MGSA顯示2.0±0.3 % IA/g之最低腎臟攝取。觀察到 177Lu-DOTA-MGS5之3.5±0.9 % IA/g之較高腎臟攝取。本發明之肽模擬物進一步展示對於 177Lu-DOTA-MGSA,在A431-CCK2R異種移植中之較高特異性腫瘤攝取之值為32.1±4.1 % IA/g,其結果相較於例如 177Lu-DOTA-MGS5 (22.9±4.7 % IA/g;p = 0.01035)顯著增大。
如圖4中所展示,腫瘤攝取亦與其他 177Lu-標記之肽模擬物( 177Lu-DOTA-MGS8:34.7±9.4 % IA/g, 177Lu-DOTA-MGS10:33.3±6.3 % IA/g, 177Lu-DOTA-MGS12:28.6±8.0 % IA/g, 177Lu-DOTA-MGS11:35.1±6.3 % IA/g)相當(Klingler M等人,J Med Chem 2020, 63: 14668-14679)。最驚人地,當相較於 177Lu-DOTA-MGS5 (6.967.0±2.23;p < 0.00001)時, 177Lu-DOTA-MGSA之腫瘤與腎臟比(16.7±2.7)顯著增大。
當相較於其他 177Lu-標記之肽模擬物( 177Lu-DOTA-MGS8:9.58±3.84,p < 0.014; 177Lu-DOTA-MGS10:6.51±2.29,p < 0.0001; 177Lu-DOTA-MGS12:4.52±1.41,p < 0.00013; 177Lu-DOTA-MGS11:7.72±2.26,p < 0.0012;圖5)時, 177Lu-DOTA-MGSA之腫瘤對比腎臟的比率亦增大。值低於<0.5% IA/g之A431-模擬腫瘤異種移植之攝取為極低的且藉由共注射過量的未經標記之肽將A431-CCK2R異種移植中之攝取有效地阻斷至值0.39至0.54 % IA/g,因此證實所研究的 177Lu-標記之肽之受體-特異性腫瘤攝取(圖3)。共注射過量的未經標記之肽進一步引起消除胃及胰臟之受體-特異性攝取,以及減小腎臟攝取。
在肽受體放射核種放射治療中,通常向患者投與多個治療週期以達成60 Gy之累積吸收之腫瘤輻射劑量,使得達成最佳治療作用。需要滿足腎臟之<27 Gy之累積劑量以避免腎毒性(Konijnenberg MW等人,EJNMMI Res 201, 4, 47)。經遞送至腎臟之輻射劑量為限制可向患者投與之放射性總量之主要因素。因此,放射性標記之肽模擬物之腎臟攝取會影響可在腫瘤病變中達成的累積輻射劑量。不受理論束縛,咸信本發明之肽模擬物之較高腫瘤攝取及改良腫瘤對比腎臟的比率組合允許在靶向放射治療中投與較高放射性總量,在腫瘤病變中達成較高吸收劑量,同時限制遞送至健康組織(尤其腎臟)之輻射劑量。不存在關於放射性標記之CCK2R標靶肽類似物的腫瘤對比腎臟的比率得到可比改良的類似報告。本發明之肽模擬物因此呈現突出的特性。 實例 4 :本發明之肽模擬物具有增加的活體內穩定性
為進一步表徵活體內放射性標記之肽模擬物的穩定性,在靜脈內注射有 177Lu-標記之肽模擬物之5至6週齡雌性BALB/c小鼠(Charles River, Sulzfeld, Germany)中進行代謝研究。所有動物實驗係根據奧地利動物保護法及經奧地利科學部批准來進行。為允許藉由放射-HPLC監測代謝物,小鼠經由側尾部靜脈注射較高量的放射性(20至40 MBq 177Lu,對應於約1 nmol總肽)且注射後(p.i.) 30 min藉由頸椎脫位術安樂死。收集血液樣本且藉由放射-HPLC評估降解。為此目的,血液樣本係藉由ACN沈澱,在2000 g下離心2 min且在使用包括放射偵測及配備有Phenomenex Jupiter Proteo C12管柱(90 Å,4 µm,250 × 4.6 mm)或Bischoff Chromatography Nucleosil C18管柱(120 Å,5 µm,250 × 4.6 mm)之UV偵測之Dionex層析系統使用水/乙腈/0.1% TFA梯度系統進行HPLC分析之前用水(1:1/v:v)稀釋。
本發明之放射性標記之肽模擬物展示活體內抗酶促降解之極高穩定性。注射後30 min時存在於血液中之完整放射性配位體之百分比為84.4%且將其與先前技術之其他 177Lu-標記之肽模擬物( 177Lu-DOTA-MGS5:77.0%, 177Lu-DOTA-MGS8:56.8%, 177Lu-DOTA-MGS10:86.1%, 177Lu-DOTA-MGS12:73.3%)進行比較。在注射後10 min之時間點,92.8%之 177Lu-DOTA-MGSA為完整的且僅85.9%之 177Lu-DOTA-MGS5。當相較於 177Lu-標記之PP-F11及PP-F11N時,活體內穩定性的結果亦顯著增加。 PP-F11: DOTA-DGlu-DGlu-DGlu-DGlu-DGlu-DGlu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH 2PP-F11N: DOTA-DGlu-DGlu-DGlu-DGlu-DGlu-DGlu-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH 2
PP-F11及PP-F11N中之所有鍵(「-」)為醯胺鍵且其對映異構形式未經明確指示的所有胺基酸皆呈L-形式。
此等兩種肽衍生物係藉由用五個D-麩胺酸殘基取代戊-Glu序列且用PP-F11N中之Nle額外取代Met自MG0衍生。產生旨在改良代謝穩定性及藥物動力學的兩種肽結合物且首先描述於2012 (Kroselj M等人,Eur J Nucl Med Mol Imaging 2012, 39: S533-S534及WO 2015/067473 A1)中。對於注射後30 min時的相同時間點, 177Lu-PP-F11及 177Lu-PP-F11N分別顯示存在於血液中之5.5%及12.7%的完整放射性配位體值,且結果為幾乎完全降解。
在圖6中,呈現對於 177Lu-PP-F11及 177Lu-PP-F11N以及 177Lu-DOTA-MGS5、 177Lu-DOTA-MGS8及 177Lu-DOTA-MGSA,在注射後30 min時獲得的血液樣本(實線)及放射性標記之後的放射化學純度(虛線)之例示性放射層析圖。
因此,如相較於例如先前技術之PP-F11及PP-F11N,本發明之肽模擬物顯示高得多的抗酶促降解穩定性。意外地,如根據本發明,不同位置中之取代組合允許使肽模擬物完全穩定。
不受任何特定理論限制,吾人當前咸信改良的活體內穩定性可促成改良的腫瘤攝取及滯留。極高腫瘤攝取及腫瘤滯留且最驚人地極有利的腫瘤對比背景的活性比(尤其對於腎臟)使得本發明肽模擬物尤其適用於CCK2R相關疾病(諸如癌症)之診斷性及治療性用途。
本發明將在以下部分中更詳細地描述且在展示於以下之附圖中說明: 圖1:在A431-CCK2R及A431-模擬細胞上培育2 h之後, 68Ga-標記之DOTA肽模擬物變異體 68Ga-DOTA-MGSA (MGSA)、 68Ga-DOTA-MGSB (MGSB)及 68Ga-DOTA-MGSC (MGSC)之細胞內化。 圖2:相較於 177Lu-DOTA-MGS5,在本發明之 177Lu-標記之肽模擬物DOTA-MGSA注射後4 h,攜帶A431-CCK2R及A431-模擬腫瘤異種移植之裸鼠中之生物分佈,值表示為注射活性/公克百分比(IA/g%;均值±SD,n=5)。 圖3:相較於 177Lu-DOTA-MGS5及共注射過量未經標記之肽,在本發明之 177Lu-標記之肽模擬物DOTA-MGSA注射後4 h,攜帶A431-CCK2R及A431-模擬腫瘤異種移植裸鼠中之生物分佈,值表示為注射活性/公克百分比(IA/g% ;n=1)。 圖4:相較於其他 177Lu-標記之肽模擬物,在 177Lu-DOTA-MGSA注射後4 h,攜帶A431-CCK2R及A431-模擬腫瘤異種移植之裸鼠中之生物分佈。值表示為注射活性/公克百分比(IA/g%;均值±SD,對於DOTA-MGSA及DOTA-MGS5,n=5;對於其他肽模擬物,n=4)。 圖5:在注射後4 h,自攜帶A431-CCK2R及A431-模擬腫瘤異種移植之裸鼠之生物分佈研究中獲得不同 177Lu-標記之肽模擬物的腫瘤對比腎臟的比率(對於DOTA-MGSA及DOTA-MGS5,n=5;對於其他肽模擬物,n=4)。 圖6:在注射後30 min,相較於其他 177Lu-標記之肽,靜脈內注射本發明之 177Lu-標記之肽模擬物DOTA-MGSA之後如藉由自BALB/c小鼠獲得的血液樣本之放射-HPLC分析的抗酶促降解穩定性:放射性標記之後的放射化學純度(虛線),血液樣本之放射-HPLC(實線)。

          <![CDATA[<110> 奧地利因斯布魯克醫科大學(Medizinische Universitaet Innsbruck)]]>
          <![CDATA[<120> 用於診斷及治療之改良的膽囊收縮素-2受體(CCK2R)標靶]]>
          <![CDATA[<130> TW 110103889]]>
          <![CDATA[<160> 7]]>
          <![CDATA[<170> BiSSAP 1.3.6]]>
          <![CDATA[<210> 1]]>
          <![CDATA[<211> 8]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> 人工序列]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> 人工肽]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> 在C端醯胺化]]>
          <![CDATA[<400> 1]]>
          Asp Tyr Met Gly Trp Met Asp Phe 
          1               5               
          <![CDATA[<210> 2]]>
          <![CDATA[<211> 13]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> 人工序列]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> 人工肽]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> 在C端醯胺化]]>
          <![CDATA[<400> 2]]>
          Leu Glu Glu Glu Glu Glu Ala Tyr Gly Trp Met Asp Phe 
          1               5                   10              
          <![CDATA[<210> 3]]>
          <![CDATA[<211> 8]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> 人工序列]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 1]]>
          <![CDATA[<223> 藉由111銦螯合之DOTA (1,4,7,10-四氮雜環十二烷-1,4,7,10-四乙酸)修飾之D-Glu]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> 111In-DOTA-MGS1]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 8]]>
          <![CDATA[<223> Xaa =在C端醯胺化之1-萘基丙胺酸(1Nal)]]>
          <![CDATA[<400> 3]]>
          Xaa Ala Tyr Gly Trp Met Asp Xaa 
          1               5               
          <![CDATA[<210> 4]]>
          <![CDATA[<211> 8]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> 人工序列]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 1]]>
          <![CDATA[<223> 藉由111銦螯合之DOTA (1,4,7,10-四氮雜環十二烷-1,4,7,10-四乙酸)修飾之D-Glu]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> 111In-DOTA-MGS4]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 6]]>
          <![CDATA[<223> Xaa =結合至Trp之Nle-CONCH3- 假肽]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 8]]>
          <![CDATA[<223> Xaa =在C端結合、醯胺化之苯丙胺酸-CONCH3- 假肽]]>
          <![CDATA[<400> 4]]>
          Xaa Ala Tyr Gly Trp Xaa Asp Xaa 
          1               5               
          <![CDATA[<210> 5]]>
          <![CDATA[<211> 8]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> 人工序列]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 1]]>
          <![CDATA[<223> DOTA (1,4,7,10-四氮雜環十二烷-1,4,7,10-四乙酸)修飾之D-Glu]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> DOTA-MGS5]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 6]]>
          <![CDATA[<223> Xaa =結合至Trp之Nle-CONCH3- 假肽]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 8]]>
          <![CDATA[<223> Xaa =在C端醯胺化之1-萘基丙胺酸(1Nal)]]>
          <![CDATA[<400> 5]]>
          Xaa Ala Tyr Gly Trp Xaa Asp Xaa 
          1               5               
          <![CDATA[<210> 6]]>
          <![CDATA[<211> 5]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> 人工序列]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 1]]>
          <![CDATA[<223> β-丙胺酸,其視情況具有藉由連接子連接之DOTA,連接子可為2x GABOB、2x GABA、1x DGlu或2x γ-DGlu]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> 結合至CCK2R之肽模擬物]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 3]]>
          <![CDATA[<223> Xaa =結合至Trp之Nle-CONCH3- 假肽]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 5]]>
          <![CDATA[<223> Xaa = 1Nal]]>
          <![CDATA[<400> 6]]>
          Xaa Trp Xaa Asp Xaa 
          1               5   
          <![CDATA[<210> 7]]>
          <![CDATA[<211> 5]]>
          <![CDATA[<212> PRT]]>
          <![CDATA[<213> 人工序列]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 1]]>
          <![CDATA[<223> β-丙胺酸,其具有藉由連接子連接之DOTA,連接子可為2x GABOB、2x GABA、1x DGlu或2x γ-DGlu,DOTA藉由68Ga或177Lu螯合]]>
          <![CDATA[<220> ]]>
          <![CDATA[<223> 結合至CCK2R之經放射核種螯合之肽模擬物]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 3]]>
          <![CDATA[<223> Xaa =結合至Trp之Nle-CONCH3- 假肽]]>
          <![CDATA[<220> ]]>
          <![CDATA[<221> MOD_RES]]>
          <![CDATA[<222> 5]]>
          <![CDATA[<223> Xaa = 1Nal,在C端經醯胺化]]>
          <![CDATA[<400> 7]]>
          Xaa Trp Xaa Asp Xaa 
          1               5   
          
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004

Claims (40)

  1. 一種肽模擬物,其具有以下結構: X-連接子-βAla-Trp-(NMe)Nle-Asp-1NaI, 其中X為包含放射核種之螯合劑或包含放射核種之輔基。
  2. 如請求項1之肽模擬物,其中該螯合劑或該輔基結合於放射核種,該放射核種選自由以下組成之群: 225Ac、 212Bi、 213Bi、 62Cu、 64Cu、 67Cu、 69Cu、 66Ga、 67Ga、 68Ga、 111In、 113mIn、 177Lu、 186Re、 188Re、 43Sc、 44Sc、 47Sc、 155Tb、 161Tb、 99mTc、 86Y、 90Y、 169Yb、 175Yb、 52Fe、 169Er、 72As、 97Ru、 203Pb、 212Pb、 51Cr、 52mMn、 89Zr、 105Rh、 166Dy、 166Ho、 153Sm、 149Pm、 151Pm、 172Tm、 121Sn、 117mSn、 142Pr、 143Pr、 198Au、 199Au、 123I、 124I、 125I、Al 18F及 18F。
  3. 如請求項1之肽模擬物,其中該螯合劑為
    Figure 03_image029
    ,其中星號指示該螯合劑直接結合於該連接子之位置。
  4. 如請求項1之肽模擬物,其中該放射核種藉由該螯合劑螯合。
  5. 如請求項1之肽模擬物,其中該放射核種藉由共價鍵結合於該輔基。
  6. 如請求項5之肽模擬物,其中該放射核種為鹵素之放射核種。
  7. 如請求項1之肽模擬物,其中該肽模擬物為DOTA-連接子-βAla-Trp-(NMe)Nle-Asp-1NaI。
  8. 如請求項1至7中任一項之肽模擬物,其中該連接子係選自由以下組成之群:GABA-GABA、GABOB-GABOB或γDGlu-γDGlu。
  9. 如請求項8之肽模擬物,其中該肽模擬物為DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI。
  10. 如請求項9之肽模擬物,其中該肽模擬物包含藉由DOTA螯合之放射核種。
  11. 如請求項10之肽模擬物,其中該放射核種係選自由以下組成之群: 225Ac、 212Bi、 213Bi、 62Cu、 64Cu、 67Cu、 69Cu、 66Ga、 67Ga、 68Ga、 111In、 113mIn、 177Lu、 186Re、 188Re、 43Sc、 44Sc、 47Sc、 155Tb、 161Tb、 99mTc、 86Y、 90Y、 169Yb、Al 18F及 175Yb。
  12. 如請求項11之肽模擬物,其中該放射核種為 90Y、 111In、 68Ga、 225Ac或 177Lu。
  13. 如請求項12之肽模擬物,其中該肽模擬物為 68Ga-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
  14. 如請求項12之肽模擬物,其中該肽模擬物為 177Lu-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
  15. 一種產生如請求項1至14中任一項之肽模擬物之方法,其包含合成該肽模擬物。
  16. 一種醫藥組合物,其包含如請求項1至14中任一項之肽模擬物及醫藥學上可接受之載劑。
  17. 一種如請求項1至14中任一項之肽模擬物或如請求項16之醫藥組合物之用途,其用於對腫瘤進行成像。
  18. 一種對細胞進行成像之方法,其中該方法包含以下步驟: a)     使該等細胞與如請求項1至14中任一項之肽模擬物或如請求項16之醫藥組合物接觸,由此使該放射核種與該等細胞接觸,及 b)     視覺化與該等細胞接觸之該放射核種。
  19. 如請求項18之方法,其中接觸包含向患者投與該肽模擬物。
  20. 如請求項18或19之方法,其中該等細胞在該等細胞之表面上表現CCK2R。
  21. 如請求項18或19之方法,其中該等細胞為癌細胞。
  22. 如請求項18或19之方法,其中該肽模擬物為 68Ga-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
  23. 一種如請求項1至14中任一項之肽模擬物或如請求項16之醫藥組合物用於製造醫藥品之用途,其中該醫藥品係用於治療。
  24. 如請求項23之用途,其中該肽模擬物為 68Ga-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2177Lu-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
  25. 一種如請求項1至14中任一項之肽模擬物或如請求項16之醫藥組合物用於製造醫藥品之用途,其中該醫藥品係用於治療癌症。
  26. 如請求項25之用途,其中該癌症在癌細胞之表面上表現CCK2R。
  27. 如請求項25或26之用途,其中該肽模擬物為 68Ga-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2177Lu-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
  28. 一種如請求項1至14中任一項之肽模擬物或如請求項16之醫藥組合物用於製造診斷試劑之用途,其中該診斷試劑係用於診斷癌症。
  29. 如請求項28之用途,其中該癌症在癌細胞之表面上表現CCK2R。
  30. 如請求項28或29之用途,其中該肽模擬物為 68Ga-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
  31. 一種如請求項1至14中任一項之肽模擬物或如請求項16之醫藥組合物用於製造醫藥品之用途,其中該醫藥品係用於治療罹患疾病之患者。
  32. 如請求項31之用途,其中該疾病為癌症。
  33. 如請求項32之用途,其中該癌症在癌細胞之表面上表現CCK2R。
  34. 如請求項31至33中任一項之用途,其中該肽模擬物為 68Ga-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2177Lu-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
  35. 一種如請求項1至14中任一項之肽模擬物或如請求項16之醫藥組合物用於製造診斷試劑之用途,其中該診斷試劑係用於診斷患者之癌症之方法中,其中該方法包含以下步驟 a)     使該患者之癌細胞與該診斷試劑接觸,由此使該放射核種與該癌細胞接觸,及 b)     視覺化與該癌細胞接觸之該放射核種。
  36. 如請求項35之用途,其中該癌症在癌細胞之表面上表現CCK2R。
  37. 如請求項35或36之用途,其中該肽模擬物為 68Ga-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2177Lu-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
  38. 一種如請求項1至14中任一項之肽模擬物或如請求項16之醫藥組合物之用途,其用於區分癌細胞與健康細胞。
  39. 如請求項38之用途,其中該癌症在癌細胞之表面上表現CCK2R。
  40. 如請求項38或39之用途,其中該肽模擬物為 68Ga-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2177Lu-DOTA-GABOB-GABOB-βAla-Trp-(NMe)Nle-Asp-1NaI-NH 2
TW111104376A 2021-02-02 2021-02-02 用於診斷及治療之改良的膽囊收縮素-2受體(cck2r)標靶 TW202231655A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111104376A TW202231655A (zh) 2021-02-02 2021-02-02 用於診斷及治療之改良的膽囊收縮素-2受體(cck2r)標靶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111104376A TW202231655A (zh) 2021-02-02 2021-02-02 用於診斷及治療之改良的膽囊收縮素-2受體(cck2r)標靶

Publications (1)

Publication Number Publication Date
TW202231655A true TW202231655A (zh) 2022-08-16

Family

ID=83782447

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111104376A TW202231655A (zh) 2021-02-02 2021-02-02 用於診斷及治療之改良的膽囊收縮素-2受體(cck2r)標靶

Country Status (1)

Country Link
TW (1) TW202231655A (zh)

Similar Documents

Publication Publication Date Title
Langer et al. Peptides as carrier for tumor diagnosis and treatment
JP7195665B2 (ja) 診断及び治療のための、改善された薬物動態及びコレシストキニン-2受容体(cck2r)への標的化
JP5784911B2 (ja) ボンベシンアナログペプチドアンタゴニスト複合体
FI101938B (fi) Polypeptidijohdannaisia
MX2007003750A (es) Agentes de contraste enfocadores del receptor activador de plasminogeno de urocinasa (upar).
JPH09509419A (ja) ペプチド−キレート化剤複合体
AU2001268982B2 (en) Rgd (arg-gly-asp) coupled to (neuro)peptides
CA2464002C (en) Pacap compositions and methods for tumor imaging and therapy
TW202231655A (zh) 用於診斷及治療之改良的膽囊收縮素-2受體(cck2r)標靶
US20240091390A1 (en) Improved cholecystokinin-2 receptor (cck2r) targeting for diagnosis and therapy
TW202241926A (zh) 用於診斷及治療之改良的膽囊收縮素-2受體(cck2r)標靶
EP2710027A1 (en) Bombesin receptor targeting peptide incorporating a 1, 2, 3-triazole group in the backbone for preparing in vivo diagnostic and therapeutic agents
JP2023506297A (ja) 癌のイメージングおよび治療のための修飾されたgrprアンタゴニストペプチド