TW202229559A - 藉由肝導向基因替代療法治療pku之人類pah表現匣 - Google Patents

藉由肝導向基因替代療法治療pku之人類pah表現匣 Download PDF

Info

Publication number
TW202229559A
TW202229559A TW110136597A TW110136597A TW202229559A TW 202229559 A TW202229559 A TW 202229559A TW 110136597 A TW110136597 A TW 110136597A TW 110136597 A TW110136597 A TW 110136597A TW 202229559 A TW202229559 A TW 202229559A
Authority
TW
Taiwan
Prior art keywords
aav
raav
pah
vector
capsid
Prior art date
Application number
TW110136597A
Other languages
English (en)
Inventor
摩爾 西爾卡 屈厄斯蒂歐
Original Assignee
美商健臻公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商健臻公司 filed Critical 美商健臻公司
Publication of TW202229559A publication Critical patent/TW202229559A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/51Lyases (4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • A61K48/0058Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/16Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced pteridine as one donor, and incorporation of one atom of oxygen (1.14.16)
    • C12Y114/16001Phenylalanine 4-monooxygenase (1.14.16.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y403/00Carbon-nitrogen lyases (4.3)
    • C12Y403/01Ammonia-lyases (4.3.1)
    • C12Y403/01024Phenylalanine ammonia-lyase (4.3.1.24)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14041Use of virus, viral particle or viral elements as a vector
    • C12N2750/14043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14123Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14171Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/008Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/50Vector systems having a special element relevant for transcription regulating RNA stability, not being an intron, e.g. poly A signal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本文提供了用於在肝細胞中表現轉殖基因的表現匣,其中所述轉殖基因編碼PAH多肽。還提供了在有需要的個體中治療苯丙酮尿症(PKU)和/或降低苯丙胺酸水平的方法。本文還提供了用於在有需要的個體中表現PAH多肽的載體(例如,rAAV載體)、病毒顆粒、醫藥組合物和套組。

Description

藉由肝導向基因替代療法治療PKU之人類PAH表現匣
本揭露涉及用於表現苯丙胺酸羥化酶多肽的表現匣。在一些態樣,本揭露涉及使用基因療法治療苯丙酮尿症的組合物和方法。
苯丙酮尿症(PKU)是催化苯丙胺酸(Phe)羥基化為酪胺酸(Tyr)的肝酶苯丙胺酸羥化酶(PAH)的遺傳缺陷。這種疾病是胺基酸代謝最常見的先天性缺陷,在北美的總發病率為1:10000-1:15000,並且在大多數已開發國家藉由新生兒篩查專案檢測到。在沒有任何治療的情況下,嚴重形式的PKU導致高度升高的血液Phe水平,這具有神經毒性,並與智力殘疾相關聯(Kochhar 2012,Ho 2014,Blau 2015)。受影響的蛋白質PAH是一種多結構域蛋白質,其由N-末端調節結構域(1-117)、中心催化結構域(118-410)和C-末端四聚結構域(411-452)組成(Flydal 2013)。迄今為止,已有超過560種致病突變被定位到每個結構域,其中催化區是受影響最頻繁的位點(Erlandsen 2003)。同源多聚體酶藉由結合到N-末端結構域的基質Phe經受磷酸化和變構活化的複雜調節,所述結合藉由改變酶的各種構象和多聚體狀態來微調PAH酶活性(Knappskog 1996,Jaffe 2013,Arturo 2016)。
目前對PKU的治療是使用低蛋白飲食和液體藥物配方對Phe進行終生飲食限制(Kochhar 2012,Ho 2014,Blau 2015)。雖然有效,但藥用食物的味道差和對食物選擇的嚴重限制使得兒童難以堅持飲食,且不遵守飲食的情況穩步增加,並且到青少年後期,近80%的患者具有高於推薦水平的血液Phe水平(Waisbren 2007,Thomas 2017)。也有新的證據表明,儘管很好地堅持Phe限制飲食,但許多患者在各種神經認知和神經精神功能方面存在缺陷,並且注意力缺陷多動障礙(ADHD)的發病率很高。雖然其原因尚不清楚,但潛在的解釋包括腦胺基酸失衡、某些維生素和微量元素的營養缺乏,以及通常由肝臟PAH活動維持穩定的血液Phe水平波動(Cleary 2013,Gonzales 2016,Vogel 2017)。有趣的是,用輔因子四氫生物蝶呤(BH4)(沙丙蝶呤二鹽酸鹽)的合成形式治療輕度PKU患者不僅顯示有效降低血液Phe水平,還表明改善了神經功能,如減少ADHD症狀(Burton 2015)。這種療法藉由充當藥理學分子伴侶來增加殘留的PAH酶活性,並且因此可以藉由提供正常的Phe調節的PAH活性來部分糾正遺傳缺陷(Blau 2015)。最近批准的另一種療法由使用將Phe代謝為反式肉桂酸的細菌苯丙胺酸解胺酶(PAL)的聚乙二醇化形式的酶替代療法組成。這種療法顯著降低血液Phe水平,但對神經學終點似乎不太有效(Longo 2014)。目前還不清楚這種療法或主要基於降低血液Phe水平的任何其他療法,在沒有糾正作為系統Phe水平調節劑和Tyr產生者的PAH功能的情況下,是否能夠解決甚至在順從飲食的PKU患者中觀察到的認知和神經精神問題。
藉由基因 Pah基因轉移將Phe羥化酶活性恢復到PKU患者的肝臟中是治療該疾病的一種有吸引力的方法。如果可以恢復足夠的PAH表現,它應提供穩定且低的血液Phe水平。若干項研究表明,rAAV介導的編碼PAH的cDNA到Pah enu2小鼠肝臟的遞送將血液Phe水平降低到正常範圍內並糾正行為(Mochizuki 2004;Ding 2006;Harding 2006,Yagi 2011,Winn 2018)。平均而言,肝臟中一個rAAV拷貝/細胞或最少10%的正常PAH活性足以糾正肝臟中的缺陷(Hamman 2010,Yagi 2011,Viecelli 2014)。使用野生型肝細胞或來自雜合Pah enu2/+供體的肝細胞在PKU小鼠中的肝細胞再增殖研究表明,用任一種肝細胞進行的肝再增殖中的3%-10%部分降低了血液Phe水平,而肝再增殖中的10%完全糾正了血液Phe水平(Hamman 2010)。最近藉由將功能性 Pah基因拷貝遞送到肝臟的基因療法試驗證明了這一概念;然而,需要相對較大的載體劑量(Chatterjee 2020)。需要一種改進的rAAV載體,以用於將基因有效轉移到肝臟、在肝臟中穩健表現hPAH並且隨後糾正PKU病理。
將本文引用的所有參考文獻(包括專利申請和出版物)都藉由引用以其整體併入。
本發明至少部分基於發明人對編碼苯丙胺酸羥化酶(PAH)的表現匣的開發。所述表現匣能夠在人細胞培養物、PKU小鼠模型的肝臟和非人靈長類動物的肝臟中驅動肝細胞中的轉殖基因表現。另外,所述表現匣產生了具有酶活性的野生型人PAH多肽。因此,具有這種表現匣的rAAV載體可以藉由允許用降低的載體劑量獲得功效,來為PKU基因療法提供途徑。
在一些態樣,本發明提供了一種包含rAAV載體的重組腺相關病毒(rAAV)顆粒,其中所述rAAV載體包含用於在肝細胞中表現轉殖基因的表現匣,其中所述表現匣包含可操作地連接至啟動子和增強子的轉殖基因,其中所述啟動子包括小鼠甲狀腺素轉運蛋白(mTTR)啟動子,並且所述增強子包括一個或兩個修飾的凝血酶原增強子(pPrT2)、一個或兩個修飾的α1-微比庫寧蛋白(microbikunin)增強子(mA1MB2)、修飾的小鼠白蛋白增強子(mEalb)、B型肝炎病毒增強子II(HE11)或CRM8增強子,其中所述轉殖基因編碼PAH多肽;其中所述AAV病毒顆粒包含AAV-XL32或AAV-XL32.1衣殼。在一些實施例中,所述mTTR啟動子是mTTR482啟動子。在一些實施例中,所述增強子在所述mTTR啟動子的5'側。
在一些態樣,本發明提供了一種包含rAAV載體的重組腺相關病毒(rAAV)顆粒,其中所述rAAV載體包含用於在肝細胞中表現轉殖基因的表現匣,其中所述表現匣包含可操作地連接至啟動子和3'元件的轉殖基因,其中所述啟動子包括小鼠甲狀腺素轉運蛋白(mTTR)啟動子,並且所述3'元件是白蛋白3'元件(3'Alb)或連接至人α1抗胰蛋白酶支架/基質附著區(SMAR)的白蛋白3'元件(3'AlbSMAR),其中所述轉殖基因編碼PAH多肽;其中所述AAV病毒顆粒包含AAV-XL32或AAV-XL32.1衣殼。在一些實施例中,所述mTTR啟動子是mTTR482啟動子。在一些實施例中,所述3'元件位於所述轉殖基因的3'側。
在一些態樣,本發明提供了一種重組腺相關病毒(rAAV)顆粒,其包含rAAV載體,用於在肝細胞中表現轉殖基因的表現匣,其中所述表現匣包含可操作地連接至啟動子和增強子和3'元件的轉殖基因,其中所述啟動子包括小鼠甲狀腺素轉運蛋白(mTTR)啟動子,並且所述增強子包括一個或兩個修飾的凝血酶原增強子(pPrT2)、一個或兩個修飾的α1-微比庫寧蛋白增強子(mA1MB2)、修飾的小鼠白蛋白增強子(mEalb)、B型肝炎病毒增強子II(HE11)或CRM8增強子,並且其中所述3'元件是白蛋白3'元件(3'Alb)或連接至人α1抗胰蛋白酶支架/基質附著區(SMAR)的白蛋白3'元件(3'AlbSMAR),其中所述轉殖基因編碼PAH多肽;其中所述AAV病毒顆粒包含AAV-XL32或AAV-XL32.1衣殼。在一些實施例中,所述mTTR啟動子是mTTR482啟動子。在一些實施例中,所述增強子在所述mTTR啟動子的5'側。在一些實施例中,所述3'元件位於所述轉殖基因的3'側。
在上述態樣的一些實施例中,所述表現匣還包含內含子。在一些實施例中,所述內含子是雞β-肌動蛋白/兔β-珠蛋白雜合內含子。在一些實施例中,所述表現匣還包含聚腺核苷酸化信號。在一些實施例中,所述聚腺核苷酸化信號是牛生長激素聚腺核苷酸化信號。
在上述態樣的一些實施例中,所述PAH多肽是野生型PAH多肽。在一些實施例中,所述PAH多肽是人PAH多肽。在一些實施例中,所述PAH多肽包含SEQ ID NO: 1的胺基酸序列。在一些實施例中,所述轉殖基因與SEQ ID NO: 2的核酸序列是至少80%相同的。
在上述態樣的一些實施例中,所述rAAV載體包含側翼為一個或多個AAV反向末端重複(ITR)序列的表現匣。在一些實施例中,如請求項1-18中任一項所述的表現匣的側翼是兩個AAV ITR。在一些實施例中,所述AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV或小鼠AAV血清型ITR。在一些實施例中,所述AAV ITR是AAV2 ITR。在一些實施例中,所述載體是自身互補載體。在一些實施例中,所述載體包含編碼PAH多肽的第一核酸序列和編碼PAH多肽的互補體的第二核酸序列,其中所述第一核酸序列可以與所述第二核酸序列沿著其大部分或全部長度形成股內鹼基對。在一些實施例中,所述第一核酸序列和所述第二核酸序列藉由突變的AAV ITR連接,其中所述突變的AAV ITR包含D區的缺失並且包含末端解股序列的突變。
在上述態樣的一些實施例中,所述AAV衣殼是AAV-XL32衣殼。在一些實施例中,所述AAV-XL32衣殼包含含有與SEQ ID NO: 3至少90%、95%、99%或100%相同的胺基酸序列的AAV-XL32衣殼蛋白。在一些實施例中,所述AAV-XL32衣殼包含VP1、VP2和VP3,其中所述VP1、所述VP2和所述VP3由SEQ ID NO: 4的核酸序列編碼。在一些實施例中,所述AAV衣殼是AAV-XL32.1衣殼。在一些實施例中,所述AAV-XL32.1衣殼包含與SEQ ID NO: 3至少90%、95%、99%或100%相同的胺基酸序列。在一些實施例中,所述AAV-XL32.1衣殼包含VP1、VP2和VP3,其中所述VP1、所述VP2和所述VP3由SEQ ID NO: 6的核酸序列編碼。
在一些態樣,本發明提供了包含本文所述的任何rAAV顆粒的組合物。在一些實施例中,所述組合物還包含醫藥上可接受的載劑。
在一些態樣,本發明提供了包含本文所述的任何rAAV顆粒的細胞。在一些態樣,本發明提供了產生PAH多肽的方法,所述方法包括在產生所述PAH多肽的條件下培養如本文所述的細胞。在一些實施例中,所述方法還包括純化所述PAH多肽的步驟。
在一些態樣,本發明提供了用於治療有需要的個體中的苯丙酮尿症的方法,其包括向所述個體投予如本文所述的rAAV顆粒。在一些態樣,本發明提供了用於治療有需要的個體中的苯丙酮尿症的方法,其包括向所述個體投予如本文所述的組合物。在一些實施例中,本發明提供了用於治療有需要的個體中的苯丙酮尿症的方法,其包括向所述個體投予如本文所述的細胞。在一些實施例中,所述個體缺乏PAH活性。
在一些態樣,本發明提供了用於降低有需要的個體血液中的苯丙胺酸水平的方法,其包括向所述個體投予如本文所述的rAAV顆粒。在一些態樣,本發明提供了用於降低有需要的個體血液中的苯丙胺酸水平的方法,其包括向所述個體投予如本文所述的組合物。在一些態樣,本發明提供了用於降低有需要的個體血液中的苯丙胺酸水平的方法,其包括向所述個體投予如本文所述的細胞。在一些實施例中,與同等匹配對照(peer-matched control)個體的血液中的苯丙胺酸水平相比,治療前個體血液中的苯丙胺酸水平升高。在一些實施例中,將所述rAAV顆粒、所述組合物或所述細胞藉由靜脈內、動脈內、肝內、門靜脈內、腹膜內或皮下投予。在一些實施例中,所述投予與另一種療法組合。在一些實施例中,所述另一種療法是用四氫生物蝶呤治療,用苯丙胺酸解胺酶(PAL)或聚乙二醇化PAL治療,或苯丙胺酸限制飲食。
在一些實施例中,本發明提供了包含如本文所述的rAAV顆粒、組合物或細胞中的任一種的套組。在一些實施例中,所述套組還包括使用說明;緩衝液和/或醫藥上可接受的賦形劑;和/或瓶子、小瓶和/或注射器。
相關申請的交叉引用
本申請要求於2020年10月1日提交的美國臨時申請號63/086,537和2020年12月4日提交的美國臨時申請號63/121,797的優先權權益,將這些申請各自的內容藉由引用以其整體特此併入。 ASCII文字檔序列表的提交
將以下提交的ASCII文字檔的內容藉由引用以其整體併入本文:電腦可讀形式(CRF)的序列表(檔案名:159792017840SEQLIST.TXT,記錄日期:2021年9月22日,大小:31,028位元組)。
在一些態樣,本發明提供了包含編碼PAH多肽的轉殖基因的表現匣、重組腺相關病毒(rAAV)載體和病毒顆粒以及醫藥組合物。在另外的態樣,本發明提供了用於治療苯丙酮尿症(PKU)的方法;例如,藉由增加PAH活性,增加酪胺酸和色胺酸向腦中的轉運,並使包括多巴胺和血清素的腦神經傳導物水平正常化。在又另外的態樣,本發明提供了用本揭露的表現匣治療個體的PKU的套組。 通用技術
熟習此項技術者通常很好地理解並且通常使用常規方法來採用本文描述或引用的技術和程式,例如像描述在以下文獻中的廣泛使用的方法: Molecular Cloning: A Laboratory Manual(Sambrook等人, 第4版, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2012); Current Protocols in Molecular Biology(F.M. Ausubel等人編輯, 2003);系列叢書 Methods in Enzymology(Academic Press, Inc.); PCR 2: A Practical Approach(M.J. MacPherson, B.D. Hames和G.R. Taylor編輯, 1995); Antibodies, A Laboratory Manual(Harlow和Lane編輯, 1988); Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications(R.I. Freshney, 第6版, J. Wiley and Sons, 2010); Oligonucleotide Synthesis(M.J. Gait編輯, 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook(J.E. Cellis編輯, Academic Press, 1998); Introduction to Cell and Tissue Culture(J.P. Mather和P.E. Roberts, Plenum Press, 1998); Cell and Tissue Culture: Laboratory Procedures(A. Doyle, J.B. Griffiths和D.G. Newell編輯, J. Wiley and Sons, 1993-8); Handbook of Experimental Immunology(D.M. Weir和C.C. Blackwell編輯, 1996); Gene Transfer Vectors for Mammalian Cells(J.M. Miller和M.P. Calos編輯, 1987); PCR: The Polymerase Chain Reaction(Mullis等人編輯, 1994); Current Protocols in Immunology(J.E. Coligan等人編輯, 1991); Short Protocols in Molecular Biology(Ausubel等人編輯, J. Wiley and Sons, 2002); Immunobiology(C.A. Janeway等人, 2004); Antibodies(P. Finch, 1997); Antibodies: A Practical Approach(D. Catty.編輯, IRL Press, 1988-1989); Monoclonal Antibodies: A Practical Approach(P. Shepherd和C. Dean編輯, Oxford University Press, 2000); Using Antibodies: A Laboratory Manual(E. Harlow和D. Lane, Cold Spring Harbor Laboratory Press, 1999); The Antibodies(M. Zanetti和J. D. Capra編輯, Harwood Academic Publishers, 1995);和 Cancer: Principles and Practice of Oncology(V.T. DeVita等人編輯, J.B. Lippincott Company, 2011)。 定義
如本文所用的“載體”是指包含有待在體外或在體內遞送至宿主細胞中的核酸的重組質體或病毒。
如本文所用的術語“多核苷酸”或“核酸”是指任何長度的核苷酸(核糖核苷酸或去氧核糖核苷酸)聚合形式。因此,此術語包括但不限於單股、雙股或多股DNA或RNA;基因組DNA;cDNA;DNA-RNA雜合體;或者包含嘌呤和嘧啶鹼基或其他天然的核苷酸鹼基、經化學修飾的或經生化修飾的核苷酸鹼基、非天然的核苷酸鹼基或衍生的核苷酸鹼基的聚合物。多核苷酸的主股可以包含糖和磷酸基團(如典型地可以在RNA或DNA中所見的)或者經修飾的或經取代的糖或磷酸基團。可替代地,多核苷酸的主股可以包含合成亞基(如胺基磷酸酯)的聚合物,並且因此可以是寡去氧核苷胺基磷酸酯(P-NH 2)或混合的胺基磷酸酯-磷酸二酯寡聚物。此外,雙股多核苷酸可以從化學合成的單股多核苷酸產物,藉由合成互補股並在適當的條件下使這些股退火或者是藉由使用DNA聚合酶用適當的引子從頭合成互補股來獲得。
術語“多肽”和“蛋白質”可互換使用以指代胺基酸殘基的聚合物,並且不限於最小長度。胺基酸殘基的此類聚合物可含有天然或非天然胺基酸殘基,並且包括但不限於胺基酸殘基的肽、寡肽、二聚體、三聚體和多聚體。所述定義涵蓋全長蛋白質以及其片段兩者。所述術語還包括多肽的表現後修飾,例如糖基化、唾液酸化、乙醯化、磷酸化等。此外,出於本揭露的目的,“多肽”是指包括對天然序列的修飾(如缺失、添加和取代,在本質上通常是保守的)的蛋白質,只要所述蛋白質保持期望的活性即可。這些修飾可能是故意的(如藉由定點誘變),或者可能是偶然的(如藉由產生蛋白質的宿主的突變或由於PCR擴增引起的錯誤)。
“重組病毒載體”是指包含一個或多個異源序列(即,不是病毒來源的核酸序列)的重組多核苷酸載體。在重組AAV載體的情況下,重組核酸的側翼是至少一個,且在實施例中是兩個反向末端重複序列(ITR)。
“重組AAV載體(rAAV載體)”是指包含側翼是至少一個,且在實施例中是兩個AAV反向末端重複序列(ITR)的一個或多個異源序列(即,不是AAV來源的核酸序列)的多核苷酸載體。當此類rAAV載體存在於已感染合適的輔助病毒(或所述輔助病毒表現合適的協助工具)並且正在表現AAV rep和cap基因產物(即AAV Rep和Cap蛋白)的宿主細胞中時,所述rAAV載體可以被複製並包裝在感染性病毒顆粒中。當將rAAV載體摻入較大多核苷酸中(例如,在染色體中或在用於選殖或轉染的另一種載體如質體中)時,則rAAV載體可以稱為“前載體”,其可以藉由在AAV包裝功能和合適協助工具的存在下複製和衣殼化被“挽救”。rAAV載體可以是多種形式中的任一種,包括但不限於質體、線性人工染色體、與脂質複合、包封在脂質體內、和衣殼化於病毒顆粒(特別是AAV顆粒)中。rAAV載體可以被包裝在AAV病毒衣殼中,以產生“重組腺相關病毒顆粒(rAAV顆粒)”。
“異源的”意指源自基因型不同於其所比較或其所引入或摻入的實體的其餘部分的實體。例如,藉由基因工程技術引入不同細胞類型中的多核苷酸是異源多核苷酸(並且在表現時可以編碼異源多肽)。類似地,摻入病毒載體中的細胞序列(例如,基因或其部分)是相對於所述載體的異源核苷酸序列。
術語“轉殖基因”是指引入細胞並且能夠轉錄成RNA並且任選地在適當條件下轉譯和/或表現的多核苷酸。在多個態樣,它賦予引入它的細胞以所期望的特性,或以其他方式產生所期望的治療或診斷結局。
“雞β-肌動蛋白(CBA)啟動子”是指源自雞β-肌動蛋白基因(例如,原雞( Gallus gallus)β肌動蛋白,以GenBank Entrez Gene ID 396526表示)的多核苷酸序列。如本文所用,“雞β-肌動蛋白啟動子”可以指含有巨細胞病毒(CMV)早期增強子元件、雞β-肌動蛋白基因的啟動子和第一外顯子和內含子、和兔β-珠蛋白基因的剪接受體的啟動子,如Miyazaki, J.等人 (1989) Gene79(2):269-77中所述序列。如本文所用,術語“CAG啟動子”可以互換使用。如本文所用,術語“CMV早期增強子/雞β肌動蛋白(CAG)啟動子”可以互換使用。
如關於病毒滴度使用的術語“基因組顆粒(gp)”、“基因組當量”或“基因組拷貝”是指含重組AAV DNA基因組的病毒顆粒的數量,與感染性或功能性無關。特定載體製劑中的基因組顆粒的數量可以藉由如本文實例中或例如Clark等人 (1999) Hum. Gene Ther., 10:1031-1039;Veldwijk等人 (2002) Mol. Ther., 6:272-278中所述的程式測量。
如本文所用的術語“載體基因組(vg)”可以指包含一組載體(例如,病毒載體)的多核苷酸序列的一種或多種多核苷酸。載體基因組可以衣殼化於病毒顆粒中。根據特定的病毒載體,載體基因組可以包含單股DNA、雙股DNA或單股RNA或雙股RNA。載體基因組可以包括與特定病毒載體相關的內源序列和/或藉由重組技術插入特定病毒載體的任何異源序列。例如,重組AAV載體基因組可以包括位於啟動子側翼的至少一個ITR序列、填充序列、目的序列(例如RNAi)和聚腺核苷酸化序列。完整的載體基因組可以包括載體的全組多核苷酸序列。在一些實施例中,病毒載體的核酸滴度可以按vg/mL測量。適用於測量此滴度的方法在業內是已知的(例如,定量PCR)。
如關於病毒滴度使用的術語“感染單位(iu)”、“感染性顆粒”或“複製單位”是指感染性和可複製型重組AAV載體顆粒的數量,如藉由感染中心測定(也稱為複製中心測定)測量的,如例如McLaughlin等人 (1988) J. Virol., 62:1963-1973中所述。
如關於病毒滴度使用的術語“轉導單位(tu)”是指導致產生功能性轉殖基因產物的感染性重組AAV載體顆粒的數量,如在功能測定中測量的,所述功能測定如本文實例中或例如以下文獻中所述:Xiao等人 (1997) Exp. Neurobiol., 144:113-124中;或Fisher等人 (1996) J. Virol., 70:520-532(LFU測定)。
“反向末端重複”或“ITR”序列是業內熟知的術語,並且是指在病毒基因組末端發現的處於相反方向的相對較短的序列。
“AAV反向末端重複(ITR)”序列是業內熟知的術語,是存在於天然單股AAV基因組的兩端處的大約145個核苷酸的序列。ITR的最外側的125個核苷酸能以兩個替代方向中的任一個存在,導致不同AAV基因組之間以及單個AAV基因組兩端之間的異質性。最外側的125個核苷酸也含有若干個較短的自身互補的區域(指定為A、A'、B、B'、C、C'和D區),允許在ITR的這個部分內發生股內鹼基配對。
“末端解股序列”或“trs”是AAV ITR的D區中的序列,其在病毒DNA複製期間被AAV rep蛋白切割。突變體末端解股序列難以被AAV rep蛋白切割。
“AAV協助工具”是指允許AAV被宿主細胞複製和包裝的功能。AAV協助工具可以按多種形式中的任一種提供,包括但不限於協助AAV複製和包裝的輔助病毒或輔助病毒基因。其他AAV協助工具在業內是已知的,如基因毒性劑。
AAV的“輔助病毒”是指允許AAV(其是缺陷型細小病毒)被宿主細胞複製和包裝的病毒。輔助病毒提供允許AAV複製的“協助工具”。已經鑒定了多種此類輔助病毒,包括腺病毒、皰疹病毒和痘病毒,如牛痘和杆狀病毒。腺病毒涵蓋多種不同子群,但子群C的5型腺病毒(Ad5)是最常用的。人、非人哺乳動物和鳥類來源的許多腺病毒是已知的,並且可從如ATCC等保藏機構獲得。也可從如ATCC等保藏機構獲得的皰疹家族病毒包括例如單純皰疹病毒(HSV)、愛潑斯坦-巴爾(Epstein-Barr)病毒(EBV)、巨細胞病毒(CMV)和假狂犬病病毒(PRV)。用於複製AAV的腺病毒協助工具的例子包括E1A功能、E1B功能、E2A功能、VA功能和E4orf6功能。可從保藏機構獲得的杆狀病毒包括苜蓿銀紋夜蛾( Autographa californica)核型多角體病毒。
如果感染性AAV顆粒與感染性輔助病毒顆粒的比率是至少約10 2:1;至少約10 4:1、至少約10 6:1;或至少約10 8:1或更多,則rAAV的製劑被稱為是“基本上不含”輔助病毒。在一些實施例中,製劑也不含等效量的輔助病毒蛋白(即,如果上述輔助病毒顆粒雜質以受破壞形式存在,將由於這一水平的輔助病毒而存在蛋白質)。病毒和/或細胞蛋白污染通常可以在SDS凝膠上作為考馬斯染色條帶的存在而被觀察到(例如,出現不同於對應於AAV衣殼蛋白VPl、VP2和VP3的那些條帶的條帶)。
關於參考多肽或核酸序列的“序列同一性百分比(%)”定義為在比對序列並引入空位(如果需要)以實現最大序列同一性百分比,並且不將任何保守取代視為序列同一性的一部分之後,候選序列中與參考多肽或核酸序列中的胺基酸殘基或核苷酸相同的胺基酸殘基或核苷酸的百分比。用於確定胺基酸或核酸序列同一性百分比的目的的比對可以用在業內技術範圍內的多種方式實現,例如使用可公開獲得的電腦軟體程式,例如Current Protocols in Molecular Biology(Ausubel等人編輯, 1987), 增刊30, 第7.7.18章, 表7.7.1中描述的那些,並且包括BLAST、BLAST-2、ALIGN或Megalign(DNASTAR)軟體。優選的比對程式是ALIGN Plus(科學教育軟體(Scientific and Educational Software),賓夕法尼亞州(Pennsylvania))。熟習此項技術者可以確定用於測量比對的適當參數,包括為了在被比較的序列的全長上實現最大比對所需要的任何演算法。出於本文的目的,給定胺基酸序列A對、與或相對於給定胺基酸序列B的胺基酸序列同一性%(可替代地這可以用短語表示為對、與或相對於給定胺基酸序列B具有或包含某一胺基酸序列同一性%的給定胺基酸序列A)計算如下:100乘以分數X/Y,其中X是在A和B的程式比對中藉由序列比對程式評定為完全匹配的胺基酸殘基的數量,且其中Y是B中胺基酸殘基的總數量。應理解,當胺基酸序列A的長度不等於胺基酸序列B的長度,A與B的胺基酸序列同一性%將不等於B與A的胺基酸序列同一性%。出於本文的目的,給定核酸序列C對/與/相對於給定核酸序列D的核酸序列同一性%(其可替代地表述為對/與/相對於給定核酸序列D具有或包含某一核酸序列同一性%的給定核酸序列C)計算如下:100乘以分數W/Z,其中W是在C和D的程式比對中藉由序列比對程式評定為完全匹配的核苷酸的數量,且其中Z是D中核苷酸的總數量。應理解,當核酸序列C的長度不等於核酸序列D的長度時,C與D的核酸序列同一性%將不等於D與C的核酸序列同一性%。
“分離的”分子(例如,核酸或蛋白質)或細胞意指它已經從其天然環境的組分中鑒別並分離和/或回收。
“有效量”是足以產生有益或期望結果的量,所述結果包括臨床結果(例如,症狀的改善、臨床終點的實現等)。有效量能以一次或多次投予來投予。就疾病狀態而言,有效量是足以改善、穩定疾病或延遲疾病發展的量。
“個體”或“受試者”是哺乳動物。哺乳動物包括但不限於家養動物(例如牛、綿羊、貓、狗和馬)、靈長類動物(例如人和非人靈長類動物如猴)、兔和齧齒動物(例如小鼠和大鼠)。在某些實施例中,所述個體或受試者是人。
如本文所用,“治療”是用於獲得有益的或期望的臨床結果的途徑。出於本揭露的目的,有益或期望的臨床結果包括但不限於以下:緩解症狀、減小疾病的程度、穩定疾病狀態(例如不惡化)、防止疾病擴散(例如,轉移)、延遲或減緩疾病進展、改善或緩和疾病狀態、以及緩解(無論是部分或是全部),無論是可檢測的還是不可檢測的。“治療”還可以意指與如果沒有接受治療的預期的存活期相比,延長存活期。
如本文所用,術語“預防性治療”是指這樣的治療,其中已知或懷疑個體患有障礙或具有患上障礙的風險,但尚未展示出該障礙的症狀或展示出該障礙的最小症狀。可以在症狀發作之前治療經歷預防性治療的個體。
如本文所用,“苯丙胺酸羥化酶(PAH)”是催化苯丙胺酸芳香側股羥基化生成酪胺酸的酶(EC 1.14.16.1)。PAH是單加氧酶,其使用四氫生物蝶呤(BH4,一種蝶呤輔因子)和非血紅素鐵進行催化。在反應過程中,分子氧被異裂,其中將一個氧原子連續摻入BH4和苯丙胺酸基質中。苯丙胺酸羥基化為酪胺酸是苯丙胺酸分解代謝的限速步驟,並且這種酶活性的缺乏導致常染色體隱性障礙苯丙酮尿症。PAH也可稱為PH、PKU或PKU1。PAH是多結構域蛋白質,其由N-末端調節結構域(1-117)、中心催化結構域(118-410)和C-末端四聚結構域(411-452)組成。人PAH提供於GenBank中;例如,GenBank: AAA60082.1,NCBI參考序列:NP_000268.1(蛋白質),以及NCBI參考序列:NM_000277.3(mRNA)。野生型人PAH的例子是作為SEQ ID NO: 1來提供。
如本文所用,“苯丙酮尿症(PKU)”是指肝酶苯丙胺酸羥化酶(PAH)的遺傳缺陷。在沒有任何治療的情況下,嚴重形式的PKU導致高度升高的血液Phe水平,這具有神經毒性,並與嚴重的精神發育遲滯相關聯。
“mTTR啟動子”是指源自鼠甲狀腺素轉運蛋白基因的多核苷酸序列。mTTR啟動子的例子mTTR482由Kyostio-Moore, (2016)和Nambiar (2017)提供。
“修飾的凝血酶原增強子(mPrT2)”是指源自人凝血酶原基因的多核苷酸序列的兩個拷貝。mPrT2增強子的例子由(McEachern 2006,Jacobs 2008)提供。mPrT2序列的例子由SEQ ID NO: 7提供。
“修飾的α1-微比庫寧蛋白(modified alpha1-microbikunin,mA1MB2)”是指源自人α1-微球蛋白/比庫寧蛋白基因的多核苷酸序列的兩個拷貝。mA1MB2的例子是(McEachern 2006,Jacobs 2008)的增強子。mA1MB2序列的例子由SEQ ID NO: 8提供。
“修飾的小鼠白蛋白增強子(mEalb)”是指源自鼠白蛋白基因的多核苷酸序列。mEalb增強子的例子由(Kramer 2003)提供。mEalb序列的例子由SEQ ID NO: 9提供。
“B型肝炎病毒增強子II(HE11)”是指源自B型肝炎病毒的位於前核區啟動子上游的多核苷酸序列。hEII增強子的例子由(Kramer 2003)提供。HEII序列的例子由SEQ ID NO: 10提供。
“CRM8”是指源自來自人Serpina1基因的多核苷酸序列的順式作用調節模組(Chuah 2014)。CRM8序列的例子由SEQ ID NO: 11提供。
“Alb 3”是指人白蛋白基因編碼區3'側的多核苷酸序列。Alb 3'元件的例子由Wooddell (2008)提供。Alb 3'序列的例子由SEQ ID NO: 12提供。“Alb3'/SMAR”是指連接至人α1-抗胰蛋白酶基因(AF156542)的支架/基質附著區的Alb3'。Alb3'/SMAR序列的例子由SEQ ID NO: 13提供。
本文對“約”某一值或參數的提及包括(並描述)針對該值或參數本身的實施例。例如,提及“約X”的描述包括“X”的描述。
除非另外指示,否則如本文所用,冠詞的單數形式“一個/一種(a)”、“一種/一種(an)”和“所述(the)”包括複數指示物。
應理解,本文所述的公開文本的態樣和實施例包括“包含”態樣和實施例、“由態樣和實施例組成”和/或“基本上由態樣和實施例組成”。 肝臟特異性表現匣
在一些態樣,本發明提供了用於在肝細胞中表現轉殖基因的表現匣,其中所述表現匣包含可操作地連接至啟動子和增強子的轉殖基因,其中所述啟動子包括小鼠甲狀腺素轉運蛋白(mTTR)啟動子,並且所述增強子包括一個或兩個修飾的凝血酶原增強子(mPrT2)、一個或兩個修飾的α1-微比庫寧蛋白增強子(mA1MB2)、修飾的小鼠白蛋白增強子(mEalb)、B型肝炎病毒增強子II(HE11)或CRM8增強子。在一些實施例中,所述mTTR啟動子是mTTR482啟動子。在一些實施例中,所述啟動子包含mTTR核心啟動子和mTTR上游增強子。在一些實施例中,所述增強子在所述mTTR啟動子的5'側。在一些實施例中,所述轉殖基因編碼如本文所述的PAH多肽。
在一些實施例中,本發明提供了用於在肝細胞中表現轉殖基因的表現匣,其中所述表現匣包含可操作地連接至啟動子和3'元件的轉殖基因,其中所述啟動子包括小鼠甲狀腺素轉運蛋白(mTTR)啟動子,並且所述3'元件是白蛋白3'元件(3'Alb)或連接至人α1抗胰蛋白酶支架/基質附著區(SMAR)的白蛋白3'元件(3'AlbSMAR)。在一些實施例中,所述mTTR啟動子是mTTR482啟動子。在一些實施例中,所述3'元件位於所述轉殖基因的3'側。在一些實施例中,所述轉殖基因編碼如本文所述的PAH多肽。
在一些實施例中,本發明提供了用於在肝細胞中表現轉殖基因的表現匣,其中所述表現匣包含可操作地連接至啟動子和增強子和3'元件的轉殖基因,其中所述啟動子包括小鼠甲狀腺素轉運蛋白(mTTR)啟動子,並且所述增強子包括一個或兩個修飾的凝血酶原增強子(mPrT2)、一個或兩個修飾的α1-微比庫寧蛋白增強子(mA1MB2)、修飾的小鼠白蛋白增強子(mEalb)、B型肝炎病毒增強子II(HE11)或CRM8增強子,並且其中所述3'元件是白蛋白3'元件(3'Alb)或連接至人α1抗胰蛋白酶支架/基質附著區(SMAR)的白蛋白3'元件(3'AlbSMAR)。在一些實施例中,所述mTTR啟動子是mTTR482啟動子。在一些實施例中,所述增強子在所述mTTR啟動子的5'側。在一些實施例中,所述3'元件位於所述轉殖基因的3'側。在一些實施例中,所述轉殖基因編碼如本文所述的PAH多肽。
在一些實施例中,本發明提供用於在肝細胞中表現轉殖基因的表現匣,其中所述轉殖基因編碼PAH多肽。在一些實施例中,所述PAH多肽是野生型PAH多肽。在一些實施例中,所述PAH多肽是人PAH多肽。在一些實施例中,所述PAH多肽包含SEQ ID NO: 1的胺基酸序列。在一些實施例中,所述PAH多肽與SEQ ID NO: 1的胺基酸序列是至少90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的。在一些實施例中,所述轉殖基因與SEQ ID NO: 2的核酸序列是至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的。在一些實施例中,所述PAH多肽包含E183殘基。在一些實施例中,所述PAH多肽在胺基酸殘基編號183處包含麩胺酸殘基。在一些實施例中,所述PAH多肽顯示出比包含E183G胺基酸取代的PAH多肽更高的PAH活性水平。
在一些實施例中,編碼PAH多肽的轉殖基因是經密碼子優化的。在一些實施例中,編碼PAH多肽的轉殖基因是經密碼子優化的以在特定細胞如真核細胞中表現。真核細胞可以是特定生物的那些或源自特定生物,所述生物如哺乳動物,包括但不限於人、小鼠、大鼠、兔、狗或非人靈長類動物。通常,密碼子優化是指藉由用更頻繁或最常用於所述宿主細胞的基因中的密碼子替代天然序列的至少一個密碼子來修飾核酸序列以增強在感興趣宿主細胞中的表現,同時保持天然胺基酸序列的過程。各種物種展現出對特定胺基酸的某些密碼子的特別偏好。密碼子使用表很容易獲得,例如在“密碼子使用資料庫”中,並且這些表可以以多種方式修改(例如參見,Nakamura, Y.等人 (2000) Nucleic Acids Res.28:292)。還可獲得用於針對在特定宿主細胞中的表現對特定序列進行密碼子優化的電腦演算法,如Gene Forge(Aptagen;雅各斯區(Jacobus),賓夕法尼亞州)、DNA2.0、GeneArt(GA)或Genscript(GS)以及與CpG含量的降低相結合的GS演算法。在一些實施例中,編碼PAH多肽的轉殖基因使用GA演算法進行密碼子優化。
在一些實施例中,所述表現匣還包含內含子。對於熟習此項技術者而言可用於本發明的各種內含子是已知的,並且包括MVM內含子、F IX截短內含子1、β-珠蛋白SD/免疫球蛋白重股SA、腺病毒SD/免疫球蛋白SA、SV40晚期SD/SA(19S/16S)和雜合腺病毒SD/IgG SA。(Wu等人 2008, Kurachi等人, 1995, Choi等人 2014, Wong等人, 1985, Yew等人 1997, Huang and Gorman (1990)。在一些實施例中,所述內含子是雞β-肌動蛋白(CBA)/兔β-珠蛋白雜合內含子。在一些實施例中,內含子是雞β-肌動蛋白(CBA)/兔β-珠蛋白雜合啟動子和內含子,其中去除了所有ATG位點以最少化錯誤轉譯起始位點(SEQ ID NO: 15)。在一些實施例中,所述內含子是MVM內含子、F IX截短內含子1、β-珠蛋白SD/免疫球蛋白重股SA、腺病毒SD/免疫球蛋白SA、SV40晚期SD/SA(19S/16S)或雜合腺病毒SD/IgG SA。在一些實施例中,所述內含子是雞β-肌動蛋白(CBA)/兔β-珠蛋白雜合內含子。
在一些實施例中,所述表現匣還包含聚腺核苷酸化信號。在一些實施例中,聚腺核苷酸化信號是牛生長激素聚腺核苷酸化信號、SV40聚腺核苷酸化信號或HSV TK pA。在一些實施例中,聚腺核苷酸化信號是合成的聚腺核苷酸化信號,如Levitt, N等人 (1989), Genes Develop. 3:1019-1025中所述。
在一些實施例中,所述表現匣包含填充核酸。在一些實施例中,所述填充核酸可以包含編碼報告多肽的序列。如熟習此項技術者將理解的,所述填充核酸可以位於核酸內的多個區域內,並且可以由核酸內的一個連續序列(例如,在單個位置中的單個填充核酸)或多個序列(例如,在超過一個位置(例如2個位置、3個位置等)中的超過一個填充核酸)構成。在一些實施例中,所述填充核酸可以位於編碼PAH多肽的轉殖基因的下游。在實施例中,所述填充核酸可以位於編碼PAH多肽的轉殖基因的上游(例如,在啟動子與轉殖基因之間)。如熟習此項技術者還將理解的,可以使用各種核酸作為填充核酸。在一些實施例中,所述填充核酸包含人α-1-抗胰蛋白酶(AAT)填充序列或C16 P1染色體16 P1選殖(人C16)填充序列的全部或一部分。在一些實施例中,所述填充序列包含基因的全部或一部分。例如,所述填充序列包含人AAT序列的一部分。熟習此項技術者將理解,基因(例如人AAT序列)的不同部分可以用作填充片段。例如,所述填充片段可以來自基因的5'末端、基因的3'末端、基因的中間部分、基因的非編碼部分(例如內含子)、基因的編碼區(例如外顯子)、或基因的非編碼部分和編碼部分的混合物。熟習此項技術者還將理解,填充序列的全部或一部分可以用作填充序列。在一些實施例中,所述填充序列被修飾以去除內部ATG密碼子。在一些實施例中,所述填充序列包含SEQ ID NO: 16的核苷酸序列。
在一些實施例中,所述表現匣被摻入載體中。在一些實施例中,所述表現匣被摻入病毒載體中。在一些實施例中,所述載體包含SEQ ID NO: 14的核酸序列。在一些實施例中,所述病毒載體是如本文所述的rAAV載體。 載體和病毒顆粒
在某些態樣,用於表現PAH多肽(例如,野生型人PAH多肽)的表現匣包含在載體中。在一些實施例中,本發明設想使用重組病毒基因組來引入編碼PAH多肽的核酸序列,以包裝入病毒顆粒,例如下面描述的病毒顆粒。重組病毒基因組可以包括建立PAH多肽的表現的任何元件,例如啟動子、ITR、核糖體結合元件、終止子、增強子、選擇標記物、內含子、聚A信號和/或複製起點。下面更詳細地描述用於病毒顆粒的例示性病毒基因組元件和遞送方法。 非病毒遞送系統
常規的非病毒基因轉移方法也可以用於將核酸引入細胞或靶組織。非病毒載體遞送系統包括DNA質體、裸核酸和與遞送系統複合的核酸。例如,所述載體可以與脂質(例如陽離子或中性脂質)、脂質體、聚陽離子、奈米顆粒或增強細胞攝取核酸的試劑複合。所述載體可以與適用於本文所述的任何遞送方法的試劑複合。在一些實施例中,所述核酸包含一個或多個病毒ITR(例如AAV ITR)。 病毒顆粒
在一些實施例中,包含用於表現PAH多肽(例如,野生型人PAH多肽)的表現匣的載體是重組腺相關病毒(rAAV)載體、重組腺病毒載體、重組慢病毒載體或重組單純皰疹病毒(HSV)載體。 rAAV 顆粒
在一些實施例中,所述載體是重組AAV(rAAV)載體。在一些實施例中,用於表現PAH多肽(例如,野生型人PAH多肽)的表現匣的側翼是一個或多個AAV反向末端重複(ITR)序列。在一些實施例中,所述病毒顆粒是包含用於表現PAH多肽的表現匣的重組AAV顆粒,所述表現匣的側翼是一個或兩個ITR。在一些實施例中,用於表現PAH多肽的表現匣的側翼是兩個AAV ITR。在一些實施例中,所述載體包含SEQ ID NO: 14的核酸序列。
在一些實施例中,用於表現本揭露的PAH多肽的表現匣可操作地連接在轉錄方向上的組分,控制序列(包括轉錄起始序列和終止序列),從而形成表現匣。表現匣的5'和3'末端的側翼是至少一個功能性AAV ITR序列。“功能性AAV ITR序列”意指ITR序列發揮旨在用於挽救、複製和包裝AAV病毒顆粒的功能。參見Davidson等人, PNAS, 2000, 97(7)3428-32;Passini等人, J. Virol., 2003, 77(12):7034-40;和Pechan等人, Gene Ther., 2009, 16:10-16,其全部藉由引用以其整體併入本文。為了實施本發明的一些態樣,重組載體至少包含為衣殼化所必需的所有AAV序列和用於由rAAV感染的物理結構。用於本發明載體中的AAV ITR無需具有野生型核苷酸序列(例如,如Kotin, Hum. Gene Ther., 1994, 5:793-801中所述),且可藉由插入、缺失或取代核苷酸而改變,或者AAV ITR可來源於幾種AAV血清型中的任一種。目前已知超過40種AAV血清型,並且仍在鑒定出新的血清型和現有血清型的變體。參見Gao等人, PNAS, 2002, 99(18): 11854-6;Gao等人, PNAS, 2003, 100(10):6081-6;和Bossis等人, J. Virol., 2003, 77(12):6799-810。
使用任何AAV血清型都被視為在本發明的範圍內。在一些實施例中,rAAV載體是源自AAV血清型的載體,包括但不限於,AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、山羊AAV、牛AAV或小鼠AAV ITR等。在一些實施例中,AAV中的核酸包含AAV ITR的ITR,所述AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、山羊AAV、牛AAV或小鼠AAV等。在某些實施例中,AAV ITR是AAV2 ITR。
在一些實施例中,載體可以包括填充核酸。在一些實施例中,所述填充核酸可以編碼綠色螢光蛋白。在一些實施例中,所述填充核酸可以位於用於表現本揭露的PAH多肽的表現匣的3'側。
在一些態樣,本發明提供了包含重組自身互補基因組的病毒顆粒。在一些實施例中,所述載體是自身互補載體。具有自身互補基因組的AAV病毒顆粒和使用自身互補的AAV基因組的方法描述在以下文獻中:美國專利號6,596,535;7,125,717;7,765,583;7,785,888;7,790,154;7,846,729;8,093,054;和8,361,457;和Wang Z.,等人, (2003) Gene Ther10:2105-2111,所述文獻各自藉由引用以其整包含自身互補基因組的rAAV將借助其部分互補的序列(例如,轉殖基因的互補編碼股和非編碼股)迅速形成雙股DNA分子。在一些實施例中,本發明提供了包含AAV基因組的AAV病毒顆粒,其中所述rAAV基因組包含第一異源多核苷酸序列(例如,本發明的PAH多肽的編碼股)和第二異源多核苷酸序列(例如,本揭露的PAH多肽的非編碼或反義股),其中所述第一異源多核苷酸序列可以與所述第二多核苷酸序列沿著其大部分或全部長度形成股內鹼基對。
在一些實施例中,第一異源多核苷酸序列和第二異源多核苷酸序列藉由促進股內鹼基配對的序列連接;例如髮夾DNA結構。髮夾結構在業內是已知的,例如在siRNA分子中。在一些實施例中,第一異源多核苷酸序列和第二異源多核苷酸序列藉由突變ITR(例如,右ITR)連接。突變的ITR包含含末端解股序列的D區的缺失。因此,在複製AAV病毒基因組時,rep蛋白將不會在突變的ITR處切割病毒基因組,並且因此,以5'至3'順序包含以下的重組病毒基因組將被包裝在病毒衣殼中:AAV ITR、包括調節序列的第一異源多核苷酸序列、突變的AAV ITR、與第一異源多核苷酸反向的第二異源多核苷酸和第三AAV ITR。
在一些實施例中,第一異源核酸序列和第二異源核酸序列藉由突變的ITR(例如,右ITR)連接。在一些實施例中,ITR包含多核苷酸序列5'-CACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCACGCCCGGGCTTTGCCCGGGCG - 3'(SEQ ID NO: 17)。突變的ITR包含含末端解股序列的D區的缺失。因此,在複製AAV病毒基因組時,rep蛋白將不會在突變的ITR處切割病毒基因組,並且因此,以5'至3'順序包含以下的重組病毒基因組將被包裝在病毒衣殼中:AAV ITR、包括調節序列的第一異源多核苷酸序列、突變的AAV ITR、與第一異源多核苷酸反向的第二異源多核苷酸和第三AAV ITR。
在一些實施例中,所述載體被衣殼化在病毒顆粒中。在一些實施例中,病毒顆粒是包含重組AAV載體的重組AAV病毒顆粒。使用不同的AAV血清型優化特定靶細胞的轉導或靶向特定靶組織(例如,肝臟組織)內的特定細胞類型。rAAV顆粒可以包含相同血清型或混合血清型的病毒蛋白和病毒核酸。例如,在一些實施例中,rAAV顆粒可以包含本發明的AAV2衣殼蛋白和至少一種AAV2 ITR,或其可以包含AAV2衣殼蛋白和至少一種AAV1 ITR。本文提供了生產rAAV顆粒的AAV血清型的任何組合,如同每個組合都已在本文中明確說明一樣。在一些實施例中,本發明提供了包含本發明的AAV2衣殼的rAAV顆粒。在一些實施例中,本發明提供了包含本發明的AAVrh8R衣殼的rAAV顆粒。在一些實施例中,本發明提供了包含本發明的工程化AAV衣殼的rAAV顆粒。在一些實施例中,本發明提供了包含本發明的AAV-XL32衣殼的rAAV顆粒。在一些實施例中,本發明提供了包含本發明的AAV-XL32.1衣殼的rAAV顆粒。
在一些實施例中,所述rAAV顆粒包含AAV1衣殼、AAV2衣殼、AAV3衣殼、AAV4衣殼、AAV5衣殼、AAV6衣殼(例如,如美國授予前公開案2012/0164106中所述的野生型AAV6衣殼或變體AAV6衣殼,如ShH10)、AAV7衣殼、AAV8衣殼、AAVrh8衣殼、AAVrh8R衣殼、AAV9衣殼(例如,如美國授予前公開案2013/0323226中所述的野生型AAV9衣殼或經修飾的AAV9衣殼)、AAV10衣殼、AAVrh10衣殼、AAV11衣殼、AAV12衣殼、酪胺酸衣殼突變體、肝素結合衣殼突變體、AAV2R471A衣殼、AAVAAV2/2-7m8衣殼、AAV DJ衣殼(例如,AAV-DJ/8衣殼、AAV-DJ/9衣殼、或美國授予前公開案2012/0066783中所述的任何其他衣殼)、AAV2 N587A衣殼、AAV2 E548A衣殼、AAV2 N708A衣殼、AAV V708K衣殼、山羊AAV衣殼、AAV1/AAV2嵌合衣殼、牛AAV衣殼、小鼠AAV衣殼、rAAV2/HBoV1衣殼或者美國專利號8,283,151或國際公開號WO/2003/042397中所述的AAV衣殼。在一些實施例中,所述AAV顆粒包含AAV-XL32.1衣殼。在一些實施例中,所述AAV顆粒包含AAV-XL32衣殼。在一些實施例中,所述AAV顆粒包含在國際公開號WO 2019241324 A1中描述的AAV衣殼。在一些實施例中,突變體衣殼蛋白保留形成AAV衣殼的能力。在一些實施例中,所述rAAV顆粒包含AAV5酪胺酸突變體衣殼(Zhong L.等人, (2008) Proc Natl Acad Sci USA105(22):7827-7832。在另外的實施例中,所述rAAV顆粒包含來自進化枝A-F的AAV血清型的衣殼蛋白(Gao等人, J. Virol.2004, 78(12):6381)。在一些實施例中,所述rAAV顆粒包含AAV1衣殼蛋白或其突變體。在其他實施例中,所述rAAV顆粒包含AAV2衣殼蛋白或其突變體。在一些實施例中,所述AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10或AAVrh10。在一些實施例中,所述rAAV顆粒包含AAV血清型1(AAV1)衣殼。在一些實施例中,所述rAAV顆粒包含AAV血清型2(AAV2)衣殼。在一些實施例中,所述重組AAV病毒顆粒包含AAV1、AAV2、AAV8、AAVrh8R、AAV9和/或AAVrh10衣殼。在一些實施例中,AAV1、AAV2、AAV8、AAVrh8R、AAV9和/或AAVrh10衣殼包含酪胺酸突變或乙醯肝素結合突變,例如如下所述。在一些實施例中,所述衣殼是肝臟靶向衣殼;例如但不限於LK03衣殼、HSC15衣殼、17衣殼、AAV-XL-32或AAV-XL32.1衣殼。在一些實施例中,所述衣殼是工程化AAV衣殼(例如,改組衣殼)。工程化AAV衣殼的例子包括但不限於DJ(Grimm D等人, J Virol. 2008, 82:5887-911)、LK03(Lisowski L等人, Nature, 2014, 506:382-6)以及HSC15和HSC17(Smith LJ等人, Mol Ther,2014 Sep;22(9):1625-34)。
已知AAV(例如AAV2、AAV8等)的衣殼包括三種衣殼蛋白:VP1、VP2和VP3。這些蛋白質含有大量重疊的胺基酸序列和獨特的N-末端序列。AAV2衣殼包括60個按二十面體對稱排列的亞基(Xie, Q.,等人(2002) Proc. Natl. Acad. Sci. USA99(16):10405-10)。已經發現VP1、VP2和VP3以1:1:10的比率存在。
在一些實施例中,rAAV顆粒包含a) 包含rAAV衣殼蛋白的rAAV衣殼,所述rAAV衣殼蛋白包含在與硫酸乙醯肝素蛋白聚糖相互作用的一個或多個位置處的一個或多個胺基酸取代,和b) 包含異源核酸和至少一個AAV反向末端重複序列的rAAV載體。
在一些實施例中,rAAV顆粒包含衣殼蛋白的一個或多個胺基酸取代,所述胺基酸取代減少或消除rAAV顆粒與硫酸乙醯肝素蛋白聚糖的結合,和/或其中所述一個或多個胺基酸取代位於基於AAV2的VP1編號來編號的位置484、487、532、585或588處。如本文所用,“基於AAV2的VP1編號”是指對應於AAV2的VP1的所述胺基酸的所述衣殼蛋白的胺基酸。例如,如果一個或多個胺基酸取代位於基於AAV2的VP1編號的位置347、350、390、395、448、451、484、487、527、532、585和/或588處,則所述一個或多個胺基酸取代位於所述衣殼蛋白的對應於AAV2的VP1的胺基酸347、350、390、395、448、451、484、487、527、532、585和/或588的一個或多個胺基酸處。在一些實施例中,所述一個或多個胺基酸取代位於AAV2的VP1的位置484、487、532、585或588處。在一些實施例中,所述一個或多個胺基酸取代位於基於AAV2的VP1編號的AAV3的VP1的位置484、487、532、585或588處。在一些實施例中,所述一個或多個胺基酸取代位於基於AAVrh8R的VP1編號的位置485、488、528、533、586或589處。在一些實施例中,在對應於胺基酸585和/或588(基於AAV2的VP1編號)的一個或多個位置處的一個或多個胺基酸被精胺酸殘基替代(例如,AAV1或AAV6的S586和/或T589;AAV9的S586和/或A589;AAVrh8R的A586和/或T589;AAV8的Q588和/或T591;以及AAVrh10的Q588和/或A591)。在其他實施例中,在對應於胺基酸484、487、527和/或532(基於AAV2的VP1編號)的一個或多個位置處的一個或多個胺基酸(例如精胺酸或離胺酸)被一個或多個非正電荷胺基酸(如丙胺酸)替代(例如AAV1或AAV6的R485、R488、K528和/或K533;AAV9或AAVrh8R的R485、R488、K528和/或R533;以及AAV8或AAVrh10的R487、R490、K530和/或R535)。 XL32 XL32.1 衣殼和衣殼蛋白
在一些實施例中,所述AAV顆粒包含工程化AAV衣殼。在一些實施例中,所述工程化AAV衣殼是AAV-XL32衣殼。在一些實施例中,所述AAV-XL32衣殼包含AAV-XL32衣殼蛋白。在一些實施例中,所述AAV-XL32衣殼包含含有與SEQ ID NO: 3至少80%、85%、90%、95%或99%相同的胺基酸序列的AAV-XL32衣殼蛋白。在一些實施例中,所述AAV-XL32衣殼包含由SEQ ID NO: 4的核酸序列編碼的衣殼蛋白。在一些實施例中,所述AAV-XL32衣殼包含由與SEQ ID NO: 4的核酸序列至少50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的核酸編碼的衣殼蛋白。
在一些實施例中,所述AAV顆粒包含AAV-XL32衣殼。在一些實施例中,所述AAV-XL32衣殼包含VP1、VP2和VP3,其中所述VP1、所述VP2和所述VP3由SEQ ID NO: 4的核酸序列編碼。在一些實施例中,所述AAV-XL32衣殼包含VPX,其中所述VPX由SEQ ID NO: 4的核酸序列編碼。在一些實施例中,所述AAV-XL32衣殼包含衣殼蛋白,其中所述衣殼蛋白由SEQ ID NO: 4的核酸序列內的開放閱讀框編碼。在一些實施例中,所述AAV-XL32衣殼包含一種、兩種、三種或四種衣殼蛋白,其中所述一種、兩種、三種或四種衣殼蛋白由SEQ ID NO: 4的核酸序列內的開放閱讀框編碼。
在一些實施例中,所述AAV顆粒包含AAV-XL32衣殼蛋白。在一些實施例中,所述AAV-XL32衣殼蛋白包含與SEQ ID NO: 3至少80%、85%、90%、95%或99%相同的胺基酸序列。在一些實施例中,所述AAV顆粒包含由SEQ ID NO: 4的核酸序列編碼的衣殼蛋白。在一些實施例中,所述AAV-XL32衣殼包含由與SEQ ID NO: 4的核酸序列至少50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的核酸編碼的衣殼蛋白。在一些實施例中,所述AAV-XL32衣殼蛋白由SEQ ID NO: 4的核酸序列內的開放閱讀框編碼。在一些實施例中,所述AAV顆粒包含一種、兩種、三種或四種衣殼蛋白,其中所述一種、兩種、三種或四種衣殼蛋白由SEQ ID NO: 4的核酸序列內的開放閱讀框編碼。在一些實施例中,所述AAV病毒顆粒包含由SEQ ID NO: 4的核酸序列編碼的AAV衣殼蛋白。在一些實施例中,所述AAV顆粒包含VP1、VP2和VP3,其中所述VP1、VP2和VP3由SEQ ID NO: 4的核酸序列編碼。在一些實施例中,所述AAV顆粒包含VPX,其中所述VPX由SEQ ID NO: 4的核酸序列編碼。在一些實施例中,所述AAV病毒顆粒包括VP1、VP2、VP3和VPX,其中所述VP1、VP2、VP3和VPX由SEQ ID NO: 4的核酸序列編碼。
在一些實施例中,所述AAV顆粒包含工程化AAV衣殼。在一些實施例中,所述工程化AAV衣殼是AAV-XL32.1衣殼。在一些實施例中,所述AAV-XL32.1衣殼包含AAV-XL32.1衣殼蛋白。在一些實施例中,所述AAV-XL32.1衣殼包含含有與SEQ ID NO: 3至少80%、85%、90%、95%或99%相同的胺基酸序列的AAV-XL32.1衣殼蛋白。在一些實施例中,所述AAV-XL32.1衣殼包含由SEQ ID NO: 6的核酸序列編碼的衣殼蛋白。在一些實施例中,所述AAV-XL32.1衣殼包含由與SEQ ID NO: 6的核酸序列至少50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的核酸編碼的衣殼蛋白。
在一些實施例中,所述AAV顆粒包含AAV-XL32.1衣殼。在一些實施例中,所述AAV-XL32.1衣殼包含VP1、VP2和VP3,其中所述VP1、所述VP2和所述VP3由SEQ ID NO: 6的核酸序列編碼。在一些實施例中,所述AAV-XL32.1衣殼包含衣殼蛋白,其中所述衣殼蛋白由SEQ ID NO: 6的核酸序列內的開放閱讀框編碼。
在一些實施例中,所述AAV顆粒包含AAV-XL32.1衣殼蛋白。在一些實施例中,所述AAV-XL32.1衣殼蛋白包含與SEQ ID NO: 3至少80%、85%、90%、95%或99%相同的胺基酸序列。在一些實施例中,所述AAV顆粒包含由SEQ ID NO: 6的核酸序列編碼的衣殼蛋白。在一些實施例中,所述AAV-XL32.1衣殼包含由與SEQ ID NO: 6的核酸序列至少50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的核酸編碼的衣殼蛋白。在一些實施例中,所述AAV-XL32.1衣殼蛋白由SEQ ID NO: 6的核酸序列內的開放閱讀框編碼。在一些實施例中,所述AAV顆粒包含一種、兩種或三種衣殼蛋白,其中所述一種、兩種或三種衣殼蛋白由SEQ ID NO: 6的核酸序列內的開放閱讀框編碼。在一些實施例中,所述AAV病毒顆粒包含由SEQ ID NO: 6的核酸序列編碼的AAV衣殼蛋白。在一些實施例中,所述AAV顆粒包含VP1、VP2和VP3,其中所述VP1、VP2和VP3由SEQ ID NO: 6的核酸序列編碼。在一些實施例中,所述AAV顆粒包含一種、兩種或三種衣殼蛋白,其中所述一種、兩種或三種衣殼蛋白由SEQ ID NO: 6的核酸序列內的開放閱讀框編碼。
在一些實施例中,所述AAV顆粒包含在國際公開號WO 2019241324 A1中描述的AAV衣殼。在一些實施例中,所述AAV顆粒包含在國際公開號WO 2019241324A1中描述的AAV衣殼蛋白。 AAV 顆粒的產生
在業內已知許多方法用於產生rAAV載體,包括轉染、穩定細胞株生產和感染性雜合病毒生產系統,所述系統包括腺病毒-AAV雜合體、皰疹病毒-AAV雜合體(Conway, JE等人, (1997) J. Virology 71(11):8780-8789)和杆狀病毒-AAV雜合體(Urabe, M.等人, (2002) Human Gene Therapy13(16):1935-1943;Kotin, R. (2011) Hum Mol Genet.20(R1): R2-R6)。用於產生rAAV病毒顆粒的rAAV生產培養物都需要:1) 合適的宿主細胞;2) 合適的輔助病毒功能;3) AAV rep和cap基因和基因產物;4) 側翼為至少一個AAV ITR序列(例如,編碼PAH多肽的AAV基因組)的核酸(如治療性核酸);以及5) 支持rAAV產生的合適的培養基和培養基組分。在一些實施例中,合適的宿主細胞是靈長類動物宿主細胞。在一些實施例中,合適的宿主細胞是源自人的細胞株,如HeLa、A549、293或Perc.6細胞。在一些實施例中,合適的輔助病毒功能由野生型或突變體腺病毒(如溫度敏感性腺病毒)、皰疹病毒(HSV)、杆狀病毒或提供協助工具的質體構築體提供。在一些實施例中,AAV rep和cap基因產物可以來自任何AAV血清型。通常但不是必須的,AAV rep基因產物與rAAV載體基因組的ITR具有相同血清型,只要rep基因產物可以發揮複製和包裝rAAV基因組的作用即可。業內已知的合適的培養基可以用於產生rAAV載體。這些培養基包括但不限於Hyclone Laboratories和JRH生產的培養基,包括改良伊格爾培養基(MEM);杜爾貝科改良伊格爾培養基(DMEM);定制配製品,如美國專利號6,566,118描述的那些;以及如美國專利號6,723,551中描述的Sf-900 II SFM培養基,每個專利(特別是關於用於產生重組AAV載體的定制培養基配製品)均藉由引用以其整體併入本文。在一些實施例中,AAV協助工具由腺病毒或HSV提供。在一些實施例中,AAV協助工具由杆狀病毒提供,並且宿主細胞是昆蟲細胞(例如,草地貪夜蛾( Spodoptera frugiperda)(Sf9)細胞)。
用於產生rAAV顆粒的一種方法是三重轉染方法。簡而言之,可以將含rep基因和衣殼基因的質體連同輔助腺病毒質體轉染(例如利用磷酸鈣法)到細胞株(例如,HEK-293細胞)中,並可以收集並任選地純化病毒。因此,在一些實施例中,藉由將編碼rAAV載體的核酸、編碼AAV rep和cap的核酸以及編碼AAV輔助病毒功能的核酸三重轉染到宿主細胞中來產生rAAV顆粒,其中核酸向宿主細胞的轉染產生能夠產生rAAV顆粒的宿主細胞。
在一些實施例中,rAAV顆粒可以藉由生產細胞株方法產生(參見Martin等人, (2013) Human Gene Therapy Methods24:253-269;美國授予前公開號US2004/0224411;和Liu, X.L.等人 (1999) Gene Ther.6:293-299)。簡而言之,可以用含有rep基因、衣殼基因和包含啟動子-異源核酸序列(例如,PAH多肽)的載體基因組的質體穩定地轉染細胞株(例如,HeLa、293、A549或Perc.6細胞株)。可以篩選細胞株,以選擇用於rAAV產生的前導選殖(lead clone),然後可以將其擴增至生產生物反應器,並且用輔助病毒(例如,腺病毒或HSV)感染,以啟動rAAV生產。隨後可以收穫病毒,可以使腺病毒失活(例如,藉由加熱)和/或去除,並且可以純化rAAV顆粒。因此,在一些實施例中,藉由包含編碼rAAV載體的核酸、編碼AAV rep和cap的核酸和編碼AAV輔助病毒功能的核酸中的一種或多種的生產細胞株產生rAAV顆粒。如本文所述,與三重轉染方法相比,生產細胞株方法對於產生具有過大基因組的rAAV顆粒而言可能是有利的。
在一些實施例中,編碼AAV rep和cap基因和/或rAAV基因組的核酸穩定地維持在生產細胞株中。在一些實施例中,將編碼AAV rep和cap基因和/或rAAV基因組的核酸在一種或多種質體上引入細胞株中以產生生產細胞株。在一些實施例中,將AAV rep、AAV cap和rAAV基因組在相同質體上引入細胞中。在其他實施例中,將AAV rep、AAV cap和rAAV基因組在不同質體上引入細胞中。在一些實施例中,用質體穩定地轉染的細胞株在細胞株的多次傳代(例如,5、10、20、30、40、50或超過50次細胞傳代)中維持質體。例如,所述一種或多種質體可以在細胞複製時複製,或者所述一種或多種質體可以整合到細胞基因組中。已經鑒定了使質體能夠在細胞(例如,人細胞)中自主複製的多種序列(參見例如,Krysan, P.J.等人 (1989) Mol. Cell Biol.9:1026-1033)。在一些實施例中,所述一種或多種質體可以含有允許選擇維持質體的細胞的選擇性標記物(例如,抗生素抗性標記物)。通常用於哺乳動物細胞的選擇性標記物包括但不限於殺稻瘟素、G418、潮黴素B、博萊黴素、嘌呤黴素及其衍生物。用於將核酸引入細胞中的方法在業內是已知的,並且包括但不限於病毒轉導、陽離子轉染(例如,使用陽離子聚合物如DEAE-葡聚糖或陽離子脂質如lipofectamine)、磷酸鈣轉染、顯微注射、粒子轟擊、電穿孔和奈米顆粒轉染(關於更多細節,參見例如,Kim, T.K.和Eberwine, J.H. (2010) Anal. Bioanal. Chem.397:3173-3178)。
在一些實施例中,編碼AAV rep和cap基因和/或rAAV基因組的核酸穩定地整合到生產細胞株的基因組中。在一些實施例中,將編碼AAV rep和cap基因和/或rAAV基因組的核酸在一種或多種質體上引入細胞株中以產生生產細胞株。在一些實施例中,將AAV rep、AAV cap和rAAV基因組在相同質體上引入細胞中。在其他實施例中,將AAV rep、AAV cap和rAAV基因組在不同質體上引入細胞中。在一些實施例中,所述一種或多種質體可以含有允許選擇維持質體的細胞的選擇性標記物(例如,抗生素抗性標記物)。用於將核酸穩定地整合到多種宿主細胞株中的方法在業內是已知的。例如,重複選擇(例如,藉由使用選擇性標記物)可以用於選擇已整合含有選擇性標記物(和AAV cap和rep基因和/或rAAV基因組)的核酸的細胞。在其他實施例中,核酸能以位點特異性方式整合到細胞株中以產生生產細胞株。若干位點特異性重組系統是業內已知的,如FLP/FRT(參見例如O’Gorman, S.等人(1991) Science251:1351-1355)、Cre/loxP(參見例如Sauer, B.和Henderson, N. (1988) Proc. Natl. Acad. Sci. 85:5166-5170)以及phi C31-att(參見例如Groth, A.C.等人(2000) Proc. Natl. Acad. Sci. 97:5995-6000)。
在一些實施例中,生產細胞株源自靈長類動物細胞株(例如,非人靈長類動物細胞株,如Vero或FRhL-2細胞株)。在一些實施例中,細胞株源自人細胞株。在一些實施例中,生產細胞株源自HeLa、293、A549或PERC.6®(Crucell)細胞。例如,在將編碼AAV rep和cap基因和/或過大的rAAV基因組的核酸引入和/或穩定維持/整合到細胞株中以產生生產細胞株之前,細胞株是HeLa、293、A549或PERC.6®(Crucell)細胞株或其衍生物。
在一些實施例中,生產細胞株適於在懸浮液中生長。如在業內已知的,錨定依賴性細胞通常不能在沒有基質(如微載體珠)的情況下在懸浮液中生長。使細胞株適於在懸浮液中生長可以包括例如使用缺少鈣和鎂離子的培養基以防止結塊(和任選地消泡劑),使用用滲矽化合物塗布的培養容器,使細胞株在具有攪拌槳的旋動培養中生長,並且在每次傳代時選擇培養物中(而不是在大塊中或在容器的側面上)的細胞。關於進一步的描述,參見例如,ATCC常見問題文件(可在www.atcc.org/Global/FAQs/9/1/Adapting%20a%20monolayer%20cell%20line%20to%20suspension-40.aspx處獲得)和其中引用的參考文獻。
在一些態樣,提供了用於生產本文公開的任何rAAV顆粒的方法,所述方法包括 (a) 在產生rAAV顆粒的條件下培養宿主細胞,其中所述宿主細胞包含 (i) 一種或多種AAV包裝基因,其中每種所述AAV包裝基因編碼AAV複製蛋白和/或衣殼化蛋白;(ii) rAAV前載體,其包含編碼如本文所述的異源核酸、側翼為至少一個AAV ITR的核酸,和 (iii) AAV協助工具;和 (b) 回收由宿主細胞產生的rAAV顆粒。在一些實施例中,所述至少一個AAV ITR選自AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、山羊AAV、牛AAV或小鼠AAV血清型ITR等。例如,在一些實施例中,所述AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10或AAVrh10。在某些實施例中,AAV中的核酸包含AAV2 ITR。在一些實施例中,所述衣殼化蛋白選自AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、山羊AAV、AAV1/AAV2嵌合物、牛AAV、小鼠AAV衣殼、rAAV2/HBoV1血清型、AAV-XL32、或AAV-XL32.1衣殼蛋白或其突變體。在一些實施例中,所述衣殼化蛋白是AAV8衣殼蛋白。在一些實施例中,所述rAAV顆粒包含AAV8衣殼和包含AAV2 ITR的重組基因組,以及編碼治療性轉殖基因/核酸的核酸(例如,用於表現PAH多肽的表現匣)。在一些實施例中,所述衣殼化蛋白是AAV-XL32衣殼蛋白。在一些實施例中,所述衣殼化蛋白是AAV-XL32.1衣殼蛋白。)。在一些實施例中,所述衣殼化蛋白包含SEQ ID NO: 3的胺基酸序列。
本發明的合適的rAAV生產培養基可以補充有0.5%-20%(v/v或w/v)水平的血清或源自血清的重組蛋白。可替代地,如在業內已知的,rAAV載體可以在無血清條件下產生,所述無血清條件也可以稱為不含源自動物的產品的培養基。一般熟習此項技術者可以理解,設計用於支持rAAV載體產生的商業或定制培養基還可以補充有業內已知的一種或多種細胞培養組分,包括但不限於葡萄糖、維生素、胺基酸和/或生長因子,以便提高生產培養物中rAAV的滴度。
rAAV生產培養物可以在適用於所使用的特定宿主細胞的多種條件(在很寬的溫度範圍內、持續不同的時間長度等)下生長。如業內已知的,rAAV生產培養物包括附著依賴性培養物,其可以在合適的附著依賴性容器例如滾瓶、中空纖維篩檢程式、微載體和填充床或流化床生物反應器中培養。rAAV載體生產培養物還可以包括懸浮適應宿主細胞,如HeLa、293和SF-9細胞,它們可以多種方式進行培養,包括例如旋轉瓶、攪拌罐生物反應器和一次性系統(如波袋系統)。
本發明的rAAV載體顆粒可以藉由裂解生產培養物的宿主細胞或藉由從生產培養物中收穫用過的培養基而從rAAV生產培養物中收穫,條件是細胞在業內已知的引起rAAV顆粒從完整細胞釋放到培養基中的條件下培養,如美國專利號6,566,118中更全面地描述的。裂解細胞的合適方法在業內也是已知的,並且包括例如多次冷凍/解凍迴圈、超聲處理、微流化和用化學品(如洗滌劑和/或蛋白酶)處理。
在另外的實施例中,將rAAV顆粒純化。如本文所用的術語“純化的”包括rAAV顆粒的製劑,其缺少至少一些也可存在於rAAV顆粒天然存在或最初所製備的地方的其他組分。因此,例如,分離的rAAV顆粒可以利用純化技術使其從源混合物(如培養裂解物或生產培養上清液)富集而製備。能以多種方式測量富集情況,例如像根據溶液中存在的DNA酶抗性顆粒(DRP)或基因組拷貝(gc)的比例、或根據感染性,或者可以根據源混合物中存在的第二潛在干擾物質(如污染物,包括生產培養污染物或進程內污染物,包括輔助病毒、培養基組分等)來測量。
在一些實施例中,將rAAV生產培養收穫物澄清以除去宿主細胞碎片。在一些實施例中,藉由經由一系列深度篩檢程式過濾來澄清生產培養收穫物,所述深度篩檢程式包括例如DOHC級Millipore Millistak+ HC Pod篩檢程式、A1HC級Millipore Millistak+ HC Pod篩檢程式和0.2 µm Filter Opticap XL1O Millipore Express SHC親水膜篩檢程式。澄清也可以藉由業內已知的多種其他標準技術來實現,如離心或藉由業內已知的0.2 µm或更大孔徑的任何醋酸纖維素篩檢程式過濾。
在一些實施例中,用Benzonase®進一步處理rAAV生產培養收穫物以消化生產培養物中存在的任何高分子量DNA。在一些實施例中,Benzonase®消化在業內已知的標準條件下進行,所述標準條件包括例如1-2.5單位/ml的Benzonase®的終濃度,在範圍從環境溫度至37ºC的溫度下持續30分鐘至幾小時的時間段。
可以使用以下一個或多個純化步驟分離或純化rAAV顆粒:平衡離心;流過式陰離子交換過濾;用於濃縮rAAV顆粒的切向流過濾(TFF);藉由磷灰石色譜捕獲rAAV;輔助病毒的熱滅活;藉由疏水相互作用色譜捕獲rAAV;藉由尺寸排阻色譜(SEC)進行緩衝液交換;奈米過濾;以及藉由陰離子交換色譜、陽離子交換色譜或親和色譜捕獲rAAV。這些步驟可以單獨使用,以各種組合使用,或者以不同順序使用。在一些實施例中,該方法以如下所述的順序包括所有步驟。純化rAAV顆粒的方法見於例如以下文獻中:Xiao等人, (1998) Journal of Virology 72:2224-2232;美國專利號6,989,264和8,137,948;以及WO 2010/148143。 治療方法
本揭露的某些態樣涉及在有需要的個體中治療苯丙酮尿症和/或降低苯丙胺酸水平的方法。在一些實施例中,本發明提供了藉由投予有效量的用於表現本揭露的PAH多肽的表現匣來治療PKU的方法。在一些實施例中,所述PAH多肽是野生型PAH多肽。可以將用於表現PAH多肽的表現匣投予特定的目的組織,或者可以全身投予。在一些實施例中,可腸胃外投予有效量的用於表現PAH多肽的表現匣。腸胃外投予途徑可以包括但不限於靜脈內、腹膜內、骨內、動脈內、大腦內、肌內、鞘內、皮下、腦室內、肝內等。在一些實施例中,來自肝臟以外組織的PAH多肽的表現可能需要輔因子BH4的存在(例如,全身遞送或從核酸共表現)Ding等人, Mol Ther2008, 16:673-681。在一些實施例中,可藉由一種投予途徑投予有效量的用於表現PAH多肽的表現匣。在一些實施例中,可藉由多於一種投予途徑的組合投予有效量的用於表現PAH多肽的表現匣。在一些實施例中,將有效量的用於表現PAH多肽的表現匣投予一個位置。在其他實施例中,可將有效量的用於表現PAH多肽的表現匣投予多於一個位置。在一些實施例中,用於表現PAH多肽的表現匣是DNA。在一些實施例中,用於表現PAH多肽的表現匣是RNA(例如,mRNA)。
在一些實施例中,本發明提供了藉由投予有效量的用於表現本揭露的PAH多肽的表現匣來降低患有PKU的個體的苯丙胺酸水平的方法。在一些實施例中,在投予用於表現PAH多肽的表現匣之後,患有PKU的個體的苯丙胺酸的水平降低至在未患PKU的個體中發現的水平。在一些實施例中,在投予用於表現PAH多肽的表現匣之後,患有PKU的個體的苯丙胺酸水平降低了約10%、20%、30%、40%、50%、60%、70%、80%、90%或更多中的任一個。
在一些實施例中,本發明提供了藉由投予有效量的用於表現本揭露的PAH多肽的表現匣來降低患有PKU的個體的血液中的苯丙胺酸水平的方法。在一些實施例中,在投予用於表現PAH多肽的表現匣之後,患有PKU的個體的血液中的苯丙胺酸的水平降低至在未患PKU的個體的血液中發現的水平。在一些實施例中,在投予用於表現PAH多肽的表現匣之後,患有PKU的個體的血液中的苯丙胺酸水平降低了約10%、20%、30%、40%、50%、60%、70%、80%、90%或更多中的任一個。
在一些實施例中,本發明提供了藉由投予有效量的用於表現本揭露的PAH多肽的表現匣來降低患有PKU的個體的腦中的苯丙胺酸水平的方法。在一些實施例中,在投予用於表現PAH多肽的表現匣之後,患有PKU的個體的腦中的苯丙胺酸的水平降低至在未患PKU的個體中發現的水平。在一些實施例中,在投予用於表現PAH多肽的表現匣之後,患有PKU的個體的腦中的苯丙胺酸水平降低了約10%、20%、30%、40%、50%、60%、70%、80%、90%或更多中的任一個。
在一些實施例中,本發明提供了藉由投予有效量的用於表現本揭露的PAH多肽的表現匣來增加患有PKU的個體的腦中的神經傳導物水平的方法。在一些實施例中,所述神經傳導物是多巴胺、去甲腎上腺素或血清素中的一種或多種。在一些實施例中,在投予用於表現PAH多肽的表現匣之後,患有PKU的個體的腦中的神經傳導物的水平增加至在未患PKU的個體中發現的水平。
在一些實施例中,本發明提供了藉由投予有效量的用於表現本揭露的PAH多肽的表現匣來增加患有PKU的個體的酪胺酸和/或色胺酸水平的方法。在一些實施例中,在投予用於表現PAH多肽的表現匣之後,患有PKU的個體的酪胺酸和/或色胺酸的水平增加至在未患PKU的個體中發現的水平。
在一些實施例中,本發明提供了藉由投予有效量的用於表現本揭露的PAH多肽的表現匣來增加患有PKU的個體的血液中的酪胺酸和/或色胺酸水平的方法。在一些實施例中,在投予用於表現PAH多肽的表現匣之後,患有PKU的個體的血液中的酪胺酸和/或色胺酸的水平增加至在未患PKU的個體中發現的水平。
在一些實施例中,本發明提供了藉由投予有效量的用於表現本揭露的PAH多肽的表現匣來增加患有PKU的個體的腦中的酪胺酸和/或色胺酸水平的方法。在一些實施例中,在投予用於表現PAH多肽的表現匣之後,患有PKU的個體的腦中的酪胺酸和/或色胺酸的水平增加至在未患PKU的個體中發現的水平。
在本發明的一些態樣,將用於表現PAH多肽(例如 野生型人PAH多肽)的表現匣藉由病毒載體遞送至個體。用於基因療法的病毒載體是業內已知的。在一些態樣,本發明提供了藉由投予有效量的編碼本揭露的PAH多肽的慢病毒顆粒來治療PKU的方法。在一些態樣,本發明提供了藉由投予有效量的編碼本揭露的PAH多肽的rAAV顆粒來治療PKU的方法。可以將rAAV投予至特定的目的組織,或者可以全身投予。在一些實施例中,可以腸胃外投予有效量的rAAV。腸胃外投予途徑可以包括但不限於靜脈內、腹膜內、骨內、動脈內、大腦內、肌內、鞘內、皮下、腦室內、肝內等。在一些實施例中,可以藉由一種投予途徑投予有效量的rAAV。在一些實施例中,可以藉由多於一種投予途徑的組合投予有效量的rAAV。在一些實施例中,將有效量的rAAV投予至一個位置。在其他實施例中,可以將有效量的rAAV投予至多於一個位置。
根據治療目標,投予有效量的rAAV(在一些實施例中呈顆粒形式)。例如,在低百分比的轉導可以實現所希望的治療效果的情況下,則治療目標通常是達到或超過此轉導水平。在一些情況下,這種轉導水平可以藉由轉導僅約1%至5%的所期望組織類型的靶細胞,在一些實施例中至少約20%的所期望組織類型的細胞,在一些實施例中至少約50%,在一些實施例中至少約80%,在一些實施例中至少約95%,在一些實施例中至少約99%的所期望組織類型的細胞來實現。可以將rAAV組合物藉由在同一程式期間或者間隔數天、數周、數月或數年的一次或多次投予來投予。可以使用本文所述的任何投予途徑中的一種或多種。在一些實施例中,可以使用多個載體來治療人。
鑒定由AAV病毒顆粒轉導的細胞的方法是業內已知的;例如,免疫組織化學或標記物如增強型綠色螢光蛋白的使用可以用於檢測病毒顆粒的轉導;例如包含具有一個或多個胺基酸取代的rAAV衣殼的病毒顆粒。
在一些實施例中,將有效量的rAAV顆粒同時或依序投予至多於一個位置。在其他實施例中,多於一次(例如重複)地將有效量的rAAV顆粒投予至單個位置。在一些實施例中,多次注射rAAV病毒顆粒間隔不超過1小時、2小時、3小時、4小時、5小時、6小時、9小時、12小時或24小時。
在一些實施例中,本發明提供了用於藉由投予有效量的包含編碼本揭露的PAH多肽的重組病毒載體的醫藥組合物來治療患有PKU之人類的方法。在一些實施例中,所述醫藥組合物包含一種或多種醫藥上可接受的賦形劑。
在一些實施例中,所述方法包括投予有效量的包含編碼本揭露的PAH多肽的重組病毒載體的醫藥組合物,以在有需要的個體中治療PKU。在一些實施例中,病毒顆粒(例如,rAAV顆粒)的病毒滴度至少約為以下中的任一者:5 × 10 12、6 × 10 12、7 × 10 12、8 × 10 12、9 × 10 12、10 × 10 12、11 × 10 12、15 × 10 12、20 × 10 12、25 × 10 12、30 × 10 12或50 × 10 12個基因組拷貝/mL。在一些實施例中,病毒顆粒(例如,rAAV顆粒)的病毒滴度約為以下中的任一者:5 × 10 12至6 × 10 12、6 × 10 12至7 × 10 12、7 × 10 12至8 × 10 12、8 × 10 12至9 × 10 12、9 × 10 12至10 × 10 12、10 × 10 12至11 × 10 12、11 × 10 12至15 × 10 12、15 × 10 12至20 × 10 12、20 × 10 12至25 × 10 12、25 × 10 12至30 × 10 12、30 × 10 12至50 × 10 12或50 × 10 12至100 × 10 12個基因組拷貝/mL。在一些實施例中,病毒顆粒(例如,rAAV顆粒)的病毒滴度約為以下中的任一者:5 × 10 12至10 × 10 12、10 × 10 12至25 × 10 12或25 × 10 12至50 × 10 12個基因組拷貝/mL。在一些實施例中,病毒顆粒(例如,rAAV顆粒)的病毒滴度至少約為以下中的任一者:5 × 10 9、6 × 10 9、7 × 10 9、8 × 10 9、9 × 10 9、10 × 10 9、11 × 10 9、15 × 10 9、20 × 10 9、25 × 10 9、30 × 10 9或50 × 10 9個轉導單位/mL。在一些實施例中,病毒顆粒(例如,rAAV顆粒)的病毒滴度約為以下中的任一者:5 × 10 9至6 × 10 9、6 × 10 9至7 × 10 9、7 × 10 9至8 × 10 9、8 × 10 9至9 × 10 9、9 × 10 9至10 × 10 9、10 × 10 9至11 × 10 9、11 × 10 9至15 × 10 9、15 × 10 9至20 × 10 9、20 × 10 9至25 × 10 9、25 × 10 9至30 × 10 9、30 × 10 9至50 × 10 9或50 × 10 9至100 × 10 9個轉導單位/mL。在一些實施例中,病毒顆粒(例如,rAAV顆粒)的病毒滴度約為以下中的任一者:5 × 10 9至10 × 10 9、10 × 10 9至15 × 10 9、15 × 10 9至25 × 10 9或25 × 10 9至50 × 10 9個轉導單位/mL。在一些實施例中,病毒顆粒(例如,rAAV顆粒)的病毒滴度至少約為以下中的任一者:5 × 10 10、6 × 10 10、7 × 10 10、8 × 10 10、9 × 10 10、10 × 10 10、11 × 10 10、15 × 10 10、20 × 10 10、25 × 10 10、30 × 10 10、40 × 10 10或50 × 10 10個感染單位/mL。在一些實施例中,病毒顆粒(例如,rAAV顆粒)的病毒滴度至少約為以下中的任一者:5 × 10 10至6 × 10 10、6 × 10 10至7 × 10 10、7 × 10 10至8 × 10 10、8 × 10 10至9 × 10 10、9 × 10 10至10 × 10 10、10 × 10 10至11 × 10 10、11 × 10 10至15 × 10 10、15 × 10 10至20 × 10 10、20 × 10 10至25 × 10 10、25 × 10 10至30 × 10 10、30 × 10 10至40 × 10 10、40 × 10 10至50 × 10 10或50 × 10 10至100 × 10 10個感染單位/mL。在一些實施例中,病毒顆粒(例如,rAAV顆粒)的病毒滴度至少約為以下中的任一者:5 × 10 10至10 × 10 10、10 × 10 10至15 × 10 10、15 × 10 10至25 × 10 10或25 × 10 10至50 × 10 10個感染單位/mL。在一些實施例中,所述病毒顆粒是rAAV顆粒。在一些實施例中,所述rAAV顆粒包含XL32衣殼。在一些實施例中,所述rAAV顆粒包含XL32.1衣殼。
在一些實施例中,投予個體的病毒顆粒的劑量至少約為以下中的任一者:1 × 10 8至約6 × 10 13個基因組拷貝/kg體重。在一些實施例中,投予個體的病毒顆粒的劑量約為以下中的任一者:1 × 10 8至約6 × 10 13個基因組拷貝/kg體重。.在一些實施例中,投予個體的病毒顆粒的劑量約為以下中的任一者:1 × 10 10、2 × 10 10、3 × 10 10、4 × 10 10、5 × 10 10、6 × 10 10、7 × 10 10、8 × 10 10、9 × 10 10、1 × 10 11、2 × 10 11、3 × 10 11、4 × 10 11、5 × 10 11、6 × 10 11、7 × 10 11、8 × 10 11、9 × 10 11、1 × 10 12、2 × 10 12、13× 10 12、4 × 10 12、5 × 10 12、6 × 10 12、7 × 10 12、8 × 10 12、9 × 10 12、或1 × 10 13個基因組拷貝/kg體重。
在一些實施例中,投予個體的病毒顆粒的總量至少約為以下中的任一者:1 × 10 9至約1 × 10 14個基因組拷貝。在一些實施例中,投予個體的病毒顆粒的總量約為以下中的任一者:1 × 10 9至約1 × 10 14個基因組拷貝。在一些實施例中,投予個體的病毒顆粒的總量約為以下中的任一者:1 × 10 11、2 × 10 11、3 × 10 11、4 × 10 11、5 × 10 11、6 × 10 11、7 × 10 11、8 × 10 11、9 × 10 11、1 × 10 12、2 × 10 12、3 × 10 12、4 × 10 12、5 × 10 12、6 × 10 12、7 × 10 12、8 × 10 12、9 × 10 12、1 × 10 13、2 × 10 13、13× 10 13、4 × 10 13、5 × 10 13、6 × 10 13、7 × 10 13、8 × 10 13、9 × 10 13、或1 × 10 14個基因組拷貝。
本發明的組合物(例如,包含編碼本揭露的PAH多肽的載體的重組病毒顆粒)可以單獨使用或與用於治療PKU的一種或多種另外的治療劑組合使用。依序投予之間的間隔可以是按至少(或,可替代地,少於)分鐘、小時或天計算。
根據治療目標,投予有效量的rAAV(在一些實施例中呈顆粒形式)。例如,在低百分比的轉導可以實現所希望的治療效果的情況下,則治療目標通常是達到或超過此轉導水平。在一些情況下,這種轉導水平可以藉由轉導僅約1%至5%的靶細胞,在一些實施例中至少約20%的所期望組織類型的細胞,在一些實施例中至少約50%,在一些實施例中至少約80%,在一些實施例中至少約95%,在一些實施例中至少約99%的所期望組織類型的細胞來實現。可以將rAAV組合物藉由在同一程式期間或者間隔數天、數周、數月或數年的一次或多次投予來投予。在一些實施例中,可以使用多個載體來治療哺乳動物(例如,人)。
在一些實施例中,本揭露的rAAV組合物可以用於投予人類。在一些實施例中,本揭露的rAAV組合物可以用於兒科投予。不希望被理論束縛,因為PKU的許多症狀本質上是發展性的(例如 嚴重的精神障礙),因此盡可能早地治療PKU可能是特別有利的。在一些實施例中,將有效量的rAAV(在一些實施例中為顆粒形式)投予年齡小於一個月、小於兩個月、小於三個月、小於四個月、小於五個月、小於六個月、小於七個月、小於八個月、小於九個月、小於十個月、小於十一個月、小於一歲、小於13個月、小於14個月、小於15個月、小於16個月、小於17個月、小於18個月、小於19個月、小於20個月、小於21個月、小於22個月、小於兩歲或小於三歲的患者。
在一些實施例中,本揭露的rAAV組合物可以用於投予年輕成人。在一些實施例中,將有效量的rAAV(在一些實施例中為顆粒形式)投予小於12歲、小於13歲、小於14歲、小於15歲、小於16歲、小於17歲、小於18歲、小於19歲、小於20歲、小於21歲、小於22歲、小於23歲、小於24歲或小於25歲的患者。
在一些實施例中,本發明提供了藉由投予有效量的包含用於表現本揭露的PAH多肽(例如,野生型人PAH多肽)的表現匣的細胞來治療PKU的方法。可以將包含用於表現PAH多肽的表現匣的細胞投予特定的目的組織,或者可以全身投予。在一些實施例中,可腸胃外投予有效量的包含用於表現PAH多肽的表現匣的細胞。腸胃外投予途徑可以包括但不限於靜脈內、腹膜內、骨內、動脈內、大腦內、肌內、鞘內、皮下、腦室內、肝內等。在一些實施例中,所述細胞被包封或在裝置中。在一些實施例中,肝臟外表現PAH的細胞可能需要外源添加或共表現輔因子BH4。在一些實施例中,所述細胞被包封或在還包含BH4的裝置中。在一些實施例中,可藉由一種投予途徑投予有效量的包含用於表現PAH多肽的表現匣的細胞。在一些實施例中,可藉由多於一種投予途徑的組合投予有效量的用於表現PAH多肽的表現匣。在一些實施例中,將有效量的用於表現PAH多肽的表現匣投予一個位置。在其他實施例中,可將有效量的用於表現PAH多肽的表現匣投予多於一個位置。
在一些實施例中,包含用於表現PAH多肽的表現匣的細胞是肝細胞、肌肉細胞、成纖維細胞、內皮細胞、上皮細胞、血細胞、骨髓細胞、幹細胞或誘導多能幹細胞。在一些實施例中,所述細胞還包含外源添加的輔因子BH4和/或共表現的輔因子BH4。
在一些實施例中,所述細胞是細胞株(例如CHO細胞株、HeLa細胞株等)。在一些實施例中,本發明提供了用以產生PAH多肽(例如,野生型人PAH多肽)的方法,所述方法包括在產生PAH多肽的條件下培養包含編碼PAH多肽的表現匣的細胞。在一些實施例中,產生PAH多肽的方法還包括一個或多個純化PAH多肽的步驟。 套組或製品
可以將如本文所述的表現匣(例如,用於表現PAH多肽如野生型人PAH多肽的表現匣)、rAAV載體、顆粒和/或醫藥組合物包含在例如被設計用於在如本文所述的本發明的方法之一中使用的套組或製品中。
通常,所述系統包括適用於本發明方法的套管、一個或多個注射器(例如,1、2、3、4或更多)和一種或多種流體(例如,1、2、3、4或更多)。
注射器可以是任何合適的注射器,只要它能夠連接至用於遞送流體的套管。在一些實施例中,所述系統具有一個注射器。在一些實施例中,所述系統具有兩個注射器。在一些實施例中,所述系統具有三個注射器。在一些實施例中,所述系統具有四個或更多個注射器。適用於本發明方法的流體包括本文所述的流體,例如,各自包含有效量的如本文所述的一種或多種載體的一種或多種流體,以及包含一種或多種治療劑的一種或多種流體。
在一些實施例中,套組包含單一流體(例如,包含有效量載體的醫藥上可接受的流體)。在一些實施例中,套組包含2種流體。在一些實施例中,套組包含3種流體。在一些實施例中,套組包含4種或更多種流體。流體可以包括稀釋劑、緩衝液、賦形劑或本文所述或業內已知的適用於遞送、稀釋、穩定、緩衝或以其他方式運輸用於表現本揭露的PAH多肽或rAAV載體組合物的表現匣的任何其他液體。在一些實施例中,套組包含一種或多種緩衝液,例如水性pH緩衝溶液。緩衝液的例子可以包括但不限於磷酸鹽、檸檬酸鹽、Tris、HEPES和其他有機酸緩衝液。
在一些實施例中,套組包含容器。合適的容器可以包括例如小瓶、袋、注射器和瓶子。容器可以由一種或多種材料(如玻璃、金屬或塑膠)製成。在一些實施例中,將容器用於容納本揭露的rAAV組合物。在一些實施例中,容器還可以容納流體和/或其他治療劑。
在一些實施例中,套組包含另外的治療劑與本揭露的rAAV組合物。在一些實施例中,rAAV組合物和另外的治療劑可以混合。在一些實施例中,rAAV組合物和另外的治療劑可以保持分離。在一些實施例中,rAAV組合物和另外的治療劑可以在同一容器中。在一些實施例中,rAAV組合物和另外的治療劑可以在不同容器中。在一些實施例中,rAAV組合物和另外的治療劑可以同時投予。在一些實施例中,rAAV組合物和另外的治療劑可以在同一天投予。在一些實施例中,rAAV組合物可以在投予另外的治療劑的一天、兩天、三天、四天、五天、六天、七天、兩周、三周、四周、兩個月、三個月、四個月、五個月或六個月內投予。
在一些實施例中,該套組包含在AAV投予之前短暫抑制免疫系統的治療劑。在一些實施例中,在注射病毒之前和之後不久,對患者進行短暫的免疫抑制,以抑制T細胞對AAV顆粒的應答(例如,參見Ferreira等人, Hum. Gene Ther. 25:180-188, 2014)。在一些實施例中,套組還提供環孢黴素、黴酚酸酯和/或甲基潑尼松龍。
本發明的rAAV顆粒和/或組合物還可以被包裝到包括使用說明的套組中。在一些實施例中,套組還包括用於遞送(例如,本文所述的任何類型的腸胃外投予)rAAV顆粒組合物的裝置。在一些實施例中,使用說明包括根據本文所述的方法之一的說明。在一些實施例中,所述說明被印刷在與容器一起提供(例如,附著到容器)的標籤上。在一些實施例中,使用說明包括用於向個體(例如人)投予有效量的rAAV顆粒,例如用於治療個體中的PKU的說明。 例示性實施例
實施例1. 一種包含rAAV載體的重組腺相關病毒(rAAV)顆粒,其中所述rAAV載體包含用於在肝細胞中表現轉殖基因的表現匣,其中所述表現匣包含可操作地連接至啟動子和增強子的轉殖基因,其中所述啟動子包括小鼠甲狀腺素轉運蛋白(mTTR)啟動子,並且所述增強子包括一個或兩個修飾的凝血酶原增強子(pPrT2)、一個或兩個修飾的α1-微比庫寧蛋白增強子(mA1MB2)、修飾的小鼠白蛋白增強子(mEalb)、B型肝炎病毒增強子II(HE11)或CRM8增強子,其中所述轉殖基因編碼PAH多肽;其中所述AAV病毒顆粒包含AAV-XL32或AAV-XL32.1衣殼。
實施例2. 如實施例1所述的rAAV顆粒,其中所述mTTR啟動子是mTTR482啟動子。
實施例3. 如實施例1或2所述的rAAV顆粒,其中所述增強子在所述mTTR啟動子的5'側。
實施例4. 一種包含rAAV載體的重組腺相關病毒(rAAV)顆粒,其中所述rAAV載體包含用於在肝細胞中表現轉殖基因的表現匣,其中所述表現匣包含可操作地連接至啟動子和3'元件的轉殖基因,其中所述啟動子包括小鼠甲狀腺素轉運蛋白(mTTR)啟動子,並且所述3'元件是白蛋白3'元件(3'Alb)或連接至人α1抗胰蛋白酶支架/基質附著區(SMAR)的白蛋白3'元件(3'AlbSMAR),其中所述轉殖基因編碼PAH多肽;其中所述AAV病毒顆粒包含AAV-XL32或AAV-XL32.1衣殼。
實施例5. 如實施例4所述的rAAV顆粒,其中所述mTTR啟動子是mTTR482啟動子。
實施例6. 如實施例4或5所述的rAAV顆粒,其中所述3’元件位於所述轉殖基因的3’側。
實施例7. 一種重組腺相關病毒(rAAV)顆粒,其包含rAAV載體,用於在肝細胞中表現轉殖基因的表現匣,其中所述表現匣包含可操作地連接至啟動子和增強子和3'元件的轉殖基因,其中所述啟動子包括小鼠甲狀腺素轉運蛋白(mTTR)啟動子,並且所述增強子包括一個或兩個修飾的凝血酶原增強子(pPrT2)、一個或兩個修飾的α1-微比庫寧蛋白增強子(mA1MB2)、修飾的小鼠白蛋白增強子(mEalb)、B型肝炎病毒增強子II(HE11)或CRM8增強子,並且其中所述3'元件是白蛋白3'元件(3'Alb)或連接至人α1抗胰蛋白酶支架/基質附著區(SMAR)的白蛋白3'元件(3'AlbSMAR),其中所述轉殖基因編碼PAH多肽;其中所述AAV病毒顆粒包含AAV-XL32或AAV-XL32.1衣殼。
實施例8. 如實施例7所述的rAAV顆粒,其中所述mTTR啟動子是mTTR482啟動子。
實施例9. 如實施例7或8所述的rAAV顆粒,其中所述增強子在所述mTTR啟動子的5'側。
實施例10. 如實施例7-9中任一項所述的rAAV顆粒,其中所述3'元件位於所述轉殖基因的3'側。
實施例11. 如實施例1-10中任一項所述的rAAV顆粒,其中所述表現匣還包含內含子。
實施例12. 如實施例11所述的rAAV顆粒,其中所述內含子是雞β-肌動蛋白/兔β-珠蛋白雜合內含子。
實施例13. 如實施例1-12中任一項所述的rAAV顆粒,其中所述表現匣還包含聚腺核苷酸化信號。
實施例14. 如實施例13所述的rAAV顆粒,其中所述聚腺核苷酸化信號是牛生長激素聚腺核苷酸化信號。
實施例15. 如實施例1-14中任一項所述的rAAV顆粒,其中所述PAH多肽是野生型PAH多肽。
實施例16. 如實施例1-15中任一項所述的rAAV顆粒,其中所述PAH多肽是人PAH多肽。
實施例17. 如實施例1-16中任一項所述的rAAV顆粒,其中所述PAH多肽包含SEQ ID NO: 1的胺基酸序列。
實施例18. 如實施例1-17中任一項所述的rAAV顆粒,其中所述轉殖基因與SEQ ID NO: 2的核酸序列是至少80%相同的。
實施例19. 如實施例1-18中任一項所述的rAAV顆粒,其中所述rAAV載體包含側翼為一個或多個AAV反向末端重複(ITR)序列的表現匣。
實施例20. 如實施例19所述的rAAV顆粒,其中如實施例1-18中任一項所述的表現匣的側翼為兩個AAV ITR。
實施例21. 如實施例19或20所述的rAAV顆粒,其中所述AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR。
實施例22. 如實施例19-21中任一項所述的rAAV顆粒,其中所述AAV ITR是AAV2 ITR。
實施例23. 如實施例19-22中任一項所述的rAAV顆粒,其中所述載體是自身互補載體。
實施例24. 如實施例23所述的rAAV顆粒,其中所述載體包含編碼PAH多肽的第一核酸序列和編碼PAH多肽的補體的第二核酸序列,其中所述第一核酸序列可以與所述第二核酸序列沿著其大部分或全部長度形成股內鹼基對。
實施例25. 如實施例24所述的rAAV顆粒,其中所述第一核酸序列和所述第二核酸序列藉由突變AAV ITR連接,其中所述突變AAV ITR包含D區的缺失,並且包含末端解股序列的突變。
實施例26. 一種包含rAAV載體的rAAV顆粒,其中所述rAAV載體從5'至3'包含AAV2 ITR、修飾的α1-微比庫寧蛋白增強子(mA1MB2)、小鼠甲狀腺素轉運蛋白(mTTR)啟動子、雞β-肌動蛋白/兔β-珠蛋白雜合內含子、密碼子優化之人類PAH基因、牛生長激素聚腺核苷酸化信號、源自α-1-抗胰蛋白酶基因的填充片段和AAV2 ITR。
實施例27. 如實施例1-26中任一項所述的rAAV顆粒,其中所述AAV衣殼是AAV-XL32衣殼。
實施例28. 如實施例27所述的rAAV顆粒,其中所述AAV-XL32衣殼包含含有與SEQ ID NO: 3至少90%、95%、99%或100%相同的胺基酸序列的AAV-XL32衣殼蛋白。
實施例29. 如實施例28所述的rAAV顆粒,其中所述AAV-XL32衣殼包含VP1、VP2和VP3,其中所述VP1、所述VP2和所述VP3由SEQ ID NO: 4的核酸序列編碼。
實施例30. 如實施例1-26中任一項所述的rAAV顆粒,其中所述AAV衣殼是AAV-XL32.1衣殼。
實施例31. 如實施例30所述的rAAV顆粒,其中所述AAV-XL32.1衣殼包含與SEQ ID NO: 3至少90%、95%、99%或100%相同的胺基酸序列。
實施例32. 如實施例30所述的rAAV顆粒,其中所述AAV-XL32.1衣殼包含VP1、VP2和VP3,其中所述VP1、所述VP2和所述VP3由SEQ ID NO: 6的核酸序列編碼。
實施例33. 一種組合物,其包含如實施例1-32中任一項所述的rAAV顆粒。
實施例34. 如實施例33所述的組合物,其中所述組合物還包含醫藥上可接受的載劑。
實施例35. 一種細胞,其包含如實施例1-32中任一項所述的rAAV顆粒。
實施例36. 一種產生PAH多肽的方法,所述方法包括在產生所述PAH多肽的條件下培養如實施例35所述的細胞。
實施例37. 如實施例36所述的方法,其進一步包括純化所述PAH多肽的步驟。
實施例38. 一種用於治療有需要的個體中的苯丙酮尿症的方法,其包括向所述個體投予如實施例1-37中任一項所述的rAAV顆粒。
實施例39. 一種用於治療有需要的個體中的苯丙酮尿症的方法,其包括向所述個體投予如實施例33或34所述的組合物。
實施例40. 一種用於治療有需要的個體中的苯丙酮尿症的方法,其包括向所述個體投予如實施例35所述的細胞。
實施例41. 如實施例38-40中任一項所述的方法,其中所述個體缺乏PAH活性。
實施例42. 一種用於降低有需要的個體的血液中的苯丙胺酸水平的方法,其包括向所述個體投予如實施例1-32中任一項所述的rAAV顆粒。
實施例43. 一種用於降低有需要的個體的血液中的苯丙胺酸水平的方法,其包括向所述個體投予如實施例33或34所述的組合物。
實施例44. 一種用於降低有需要的個體的血液中的苯丙胺酸水平的方法,其包括向所述個體投予如實施例35所述的細胞。
實施例45. 如實施例42-44中任一項所述的方法,其中與同等匹配對照個體的血液中的苯丙胺酸水平相比,治療前個體血液中的苯丙胺酸水平升高。
實施例46. 如實施例38-45中任一項所述的方法,其中將所述rAAV顆粒、所述組合物或所述細胞藉由靜脈內、動脈內、肝內、門靜脈內、腹膜內或皮下投予。
實施例47. 如實施例38-46中任一項所述的方法,其中所述投予與另一種療法組合。
實施例48. 如實施例47所述的方法,其中所述另一種療法是用四氫生物蝶呤治療,用苯丙胺酸解胺酶(PAL)或聚乙二醇化PAL治療,或苯丙胺酸限制飲食。
實施例49. 一種套組,其包含如實施例1-32中任一項所述的rAAV顆粒、如實施例33或34所述的組合物或如實施例35所述的細胞。
實施例50. 如實施例49所述的套組,其中所述套組還包括使用說明;緩衝液和/或醫藥上可接受的賦形劑;和/或瓶子、小瓶和/或注射器。 實例
藉由參考以下實例將更全面地理解本發明。然而,它們不應被解讀為限制本發明的範圍。應理解,本文描述的實例和實施例僅用於說明目的,並且根據它們進行的各種修改或改變將為熟習此項技術者知曉,並且應包括在本申請的精神和範圍內以及所附實施例的範圍內。 實例 1. PAH 編碼序列的體外評估
下面的實例描述了編碼人PAH的載體的產生。具體而言,將具有或不具有E183G胺基酸取代的野生型和變體PAH等位基因選殖到載體中,並測量肝細胞中的PAH表現和活性。 材料與方法 PAH 編碼序列
測試了編碼具有或不具有E183G胺基酸取代的野生型或變體1 PAH之人類PAH cDNA,如下 1中總結的。PAH的“變體1”等位基因具有M180T、K199P、S250P和G256A胺基酸取代,如國際公開號WO 2020077250A1中所述,此文獻藉由引用併入本文。
使用GeneArt(GA)密碼子優化以優化PAH cDNA的密碼子使用。 1. 測試的 PAH 編碼序列的總結
PAH 編碼序列 描述
hPAH/E(也稱為“WT PAH”) 野生型人PAH 胺基酸序列:SEQ ID NO: 1 核酸編碼序列:SEQ ID NO: 2
hPAH/183G 具有E183G胺基酸取代之人類PAH
hPAH-V1/G 具有E183G胺基酸取代之人類PAH變體1 (M180T、E183G、K199P、S250P和G256A)
hPAH-V1/E 人PAH變體1 (M180T、K199P、S250P和G256A)
質體載體和重組 AAV 產生
表現PAH編碼序列,如國際公開號WO 2020077250A1中所述,此文獻藉由引用併入本文。
具體來說,為了增加肝臟啟動子的強度,在質體mTTR482-HI-hFVIII-BGHpA中引入修飾,所述質體含有小鼠甲狀腺素轉運蛋白(mTTR)啟動子、內源性mTTR增強子和牛生長激素(BGH)聚腺核苷酸化(pA)位點(Kyostio-Moore 2016, Nambiar 2017)。在此質體中,用編碼分泌型胚胎鹼性磷酸酶(SEAP)的cDNA替代FVIII cDNA,並且用1069 bp的雞b-肌動蛋白(CBA)/兔β-珠蛋白雜合內含子替代現有內含子。將修飾的α1-微比庫寧蛋白增強子(mA1MB2)(McEachern 2006, Jacobs 2008)的兩個拷貝選殖到mTTR482增強子的上游以產生mA1MB2-mTTR482啟動子。
使用由雞β-肌動蛋白/兔β-珠蛋白內含子製成的雜合內含子,所述雜合內含子經過修飾以消除五個現有的ATG序列以減少錯誤的轉譯起始(也稱為HI2)。
所有載體都含有牛生長激素聚腺核苷酸化位點(BGHpA)。
最後,由α-抗胰蛋白酶基因內含子序列(SerpinA1= A1AT)染色體14 NG_008290.1;nt13638-17363)組成的填充序列(“填充物”)包含在BGHpA與ITR位點之間,以使總載體基因組大小達到4.6 kb。填充序列中的七個ATG位點被修飾為TTG以去除潛在的轉譯起始位點。
若干種具有肝臟啟動子、雜合內含子、PAH cDNA和BGHpA的含AAV2 ITR質體用於rAAV載體的產生。具有AAVXL32血清型衣殼的rAAV載體是使用三重轉染方法、隨後進行CsCl純化(SabTech)或柱純化(Sanofi Vector Core)產生的。藉由針對BGHpA的qPCR將載體批次定量(Nambiar 2017)。 體外培養
所有組織培養試劑均獲自Irvine Scientific(聖安娜,加利福尼亞州)或Invitrogen。為了暫態轉染,將人293或人肝癌細胞(Huh7或HepG2)(8 × 10 5個細胞/孔)鋪板於6孔培養皿中的杜爾貝科改良伊格爾培養基(DMEM)上,所述培養基具有高葡萄糖、10%胎牛血清(FBS)和10 ml/L Pen Strep(10個單位/ml青黴素和10 µg/ml股黴素)。將質體(2 µg)用Lipofectamine 2000(Invitrogen)轉染。在48或72小時後,分別收穫細胞裂解物或培養基用於PAH分析或SEAP活性。 活性測定和蛋白質檢測
為了測量PAH活性,在48小時後,藉由在裂解緩衝液或RIPA緩衝液中裂解細胞產生全細胞裂解物。另外,在一些實驗中,將聲處理或剪切用於增強細胞裂解。在解凍後,將裂解物在測定前以14,000 g旋轉30分鐘。PAH蛋白的酶活性如先前Yew等人2013所述進行了測量,其中做了一些小的修改。另外如先前所述(Heintz 2012)使用13C標記的Phe測量活性。
使用標準方案,使用抗hPAH抗體(LS-C344145; LSBio)進行蛋白質印跡以檢測PAH。藉由由BCA蛋白質測定套組(Pierce)測量的總蛋白含量歸一化體內樣品。根據製造商的說明,並且使用套組標準或內部純化的3xFLAG-mPAH-FL作為蛋白質標準品,藉由FLAG ELISA(SE002-flag;ABSbio)測量FLAG-PAH蛋白水平的定量。 結果
產生了在mA1MB2-mTTR482的控制下編碼PAH的四種載體。具體而言,表現hPAH/183G、hPAH-V1/G、hPAH-V1/E和野生型PAH (“hPAH/E”),並測試在Huh7細胞中的PAH活性( 1A)和蛋白質水平( 1B 、圖 1C)。
野生型PAH展現出最高的PAH活性水平,如 1A所示。對於hPAH/G突變體編碼序列,添加變體1四個胺基酸取代將活性和蛋白質產量提高了10倍。將變體1四個胺基酸取代摻入野生型PAH編碼序列中並沒有增加PAH活性,但確實導致PAH蛋白水平增加2倍( 1B 、圖 1C)。
基於這些結果,選擇野生型PAH作為轉殖基因用於Pah-KO小鼠體內功效研究。 實例 2. 在非人靈長類動物肝臟中衣殼、先導肝臟啟動子和劑量 - 反應性的評價
以下實例描述了評估各種AAV衣殼蛋白轉導肝細胞能力的實驗。此外,測試了mA1M2-mTTR482啟動子在非人靈長類動物(NHP)中促進轉殖基因表現的能力,並進行了劑量-反應實驗以評估向NHP投予XL32.1/mA1MB2-mTTR482-EGFP載體。 材料與方法 AAV 衣殼蛋白
測試了各種AAV衣殼蛋白轉導Huh7細胞和非人靈長類動物(NHP)肝臟的能力。具體而言,在Huh7細胞和NHP中的初始實驗中測試XL32、LK03(Lisowski L等人 , Nature, 2014, 506:382-6)、DJ(Grimm D,等人 J Virol2008, 82:5887-5911)、AAV8和XL14衣殼蛋白( 2A- 2D)。在NHP中的後續劑量-反應實驗中,使用XL32.1衣殼蛋白( 3A-3B 、圖 4A-4C)。
如國際公開號WO 2019241324 A1中所述,XL32和XL32.1是由AAV衣殼基因改組文庫產生的雜合衣殼,所述文庫由AAV血清型1、2、3B、4、6、7、8和9的衣殼基因構成。由於XL32在小鼠肝臟中的富集,因此從文庫中選擇了XL32。除了典型的VPl、VP2和VP3蛋白質產物之外,XL32還產生第四種蛋白質產物(稱為“VPX”),其被認為是由於XL32編碼序列中的弱的非ATG起始密碼子而產生的。具體而言,XL32在從VP1起始密碼子計數的核苷酸219處具有C到G突變。XL32.1源自XL32,藉由定點誘變將C到G突變逆轉回原始C,以匹配野生型AAV7和AAV8序列。根據國際公開號WO 2019241324 A1,XL32.1在載體產量和感染力方面沒有顯示出明顯的差異。XL32和XL32.1的胺基酸序列提供於下 2中。 2.XL32 XL32.1 胺基酸序列
AAV 衣殼蛋白 參考 胺基酸序列 SEQ ID NO:
XL32 和XL32.1 國際公開號WO 2019241324 A1 MAADGYLPDWLEDNLSEGIREWWALKPGAPKPKANQQKQDDGRGLVLPGYKYLGPFNGLDKGEPVNAADAAALEHDKAYDQQLQAGDNPYLRYNHADAEFQERLQEDTSFGGNLGRAVFQAKKRVLEPLGLVEEGAKTAPGKKRPVEPSPQRSPDSSTGIGKKGQQPARKRLNFGQTGDSESVPDPQPLGEPPAAPSGVGPNTMASGGGAPMADNNEGADGVGNASGNWHCDSTWLGDRVITTSTRTWALPTYNNHLYKQISSASTGASNDNHYFGYSTPWGYFDFNRFHCHFSPRDWQRLINNNWGFRPKRLNFKLFNIQVKEVTTNDGVTTIANNLTSTVQVFSDSEYQLPYVLGSAHQGCLPPFPADVFMIPQYGYLTLNNGSQAVGRSSFYCLEYFPSQMLRTGNNFTFSYTFEEVPFHSSYAHSQSLDRLMNPLIDQYLYYLNRTQNQSGSAQNKDLLFSRGSPAGMSVQPKNWLPGPCYRQQRVSKTKTDNNNSNFTWTGASKYNLNGRESIINPGTAMASHKDDKDKFFPMSGVMIFGKESAGASNTALDNVMITDEEEIKATNPVATERFGTVAVNLQSSSTDPATGDVHVMGALPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPPPQILIKNTPVPANPPAEFSATKFASFITQYSTGQVSVEIEWELQKENSKRWNPEVQYTSNYAKSANVDFTVDNNGLYTEPRPIGTRYLTRPL 3
非人靈長類動物( NHP )研究
所有研究均使用2至3歲(3-4 kg)的雄性食蟹猴( Macaca fascicularis,亞洲血統)。在投予載體之前,針對載體衣殼的中和抗體篩選動物。選擇的動物藉由使用輸注泵進行緩慢靜脈內輸注(1 ml/min)到隱靜脈中來接受載體。在不同時間收集血液樣品。在屍檢時,收集來自肝臟和多個其他器官的樣品用於載體生物分佈分析。
對於載體檢測,使用1.4 mm陶瓷珠和Omni Ruptor-24從每個組織中分離總組織DNA,隨後進行蛋白酶K消化和苯酚/氯仿提取。將DNA藉由異丙醇沉澱,離心並重懸浮到Tris-EDTA中。對DNA進行定量,並使用針對每個VG中存在的BGHpA序列的特異性引子,藉由qPCR測量源自載體的DNA的水平(Kyostio-Moore等人2016)。VG的水平表示為每個細胞的拷貝數(每個二倍體細胞基因組使用5 pg dsDNA)。
在添加有蛋白酶抑制劑(Roche)的ELISA套組提取緩衝液PRT(Abcam GFP ELISA套組;ab171581)中使用Omni珠磨器產生用於總EGFP蛋白測量的勻漿。離心後,回收上清液並用套組提取緩衝液PRT稀釋,並根據製造商的說明藉由ELISA對EGFP蛋白水平進行定量。所有數值均表示為ng EGFP/mg總蛋白。藉由BCA測定測量總蛋白。
對於源自載體的轉錄物的定量,使用Omni珠磨器在2 ml管中產生肝臟和脾臟勻漿,所述管中含有1.4 mm陶瓷珠和1 mL Trizol(Thermofisher,A33250)。添加氯仿,混合,然後將水相轉移到SV總RNA套組Promega Z3100中的柱子中。對柱子進行DNA酶處理,並在洗滌柱子後,將RNA在水中洗脫。使用Nanodrop 8000定量總RNA。使用高容量cDNA RT套組(Thermofisher,4368814)藉由隨機引子產生cDNA。使用針對BGHpA序列的特異性引子,藉由qPCR測量源自載體的mRNA的水平。轉錄物的水平表示為每個細胞的拷貝數(每個二倍體細胞基因組使用5 pg dsDNA)或每µg RNA的拷貝數。
肝臟的免疫組織化學和原位雜交分析是用從中性緩衝福馬林固定的石蠟包埋塊中切下的4 µM切片進行的。對於自動化螢光原位雜交(RNAscope)和IHC,所有步驟均在Leica Bond RX儀器(Leica Bios,systems Inc.,布法羅格羅夫(Buffalo Grove),伊利諾依州)上進行。採用連續雙染色模式,以RNAscope 2.5 LS多重螢光測定(Advanced Cell Diagnostics,紐華克(Newark),加利福尼亞州)開始,隨後是IHC。簡而言之,將未烘烤的石蠟切片在60ºC下烘烤30 min並在60ºC下脫石蠟,然後用Bond ER溶液2(以用於靶標檢索)、蛋白酶和過氧化氫預處理,之後在陰性探針DapB(cat#320878,Advanced Cell Diagnostics,紐華克,加利福尼亞州)、陽性探針食蟹猴PPIB(cat#320908)、或靶標探針eGFP(cat#400288,Advanced Cell Diagnostics,紐華克,加利福尼亞州)在42ºC下雜交2小時。使預擴增物和擴增物連續雜交,然後將載玻片與以1:1500稀釋的OPAL690(cat#FP1497001KT,Akoya Biosciences,瑪律堡(Marlborough),馬塞諸塞州)一起孵育。應用HRP阻斷劑,並用Bond ER溶液1對切片進行靶標檢索,之後進行自動化方案的IHC部分。用抗體稀釋劑/阻斷劑(Akoya Biosciences,瑪律堡,馬塞諸塞州)封閉載玻片,隨後與以1 μg/mL使用的兔IgG同種型對照(cat#AB105-C,R&D Systems,明尼阿波里斯(Minneapolis),明尼蘇達州)或兔抗GFP(cat#A11122,Invitrogen/ThermoFisher,沃爾瑟姆(Waltham),馬塞諸塞州)在室溫下培養30 min。應用二抗即抗兔聚合物HRP(cat#PV6119,Leica Biosystems Inc.,布法羅格羅夫,伊利諾依州),並藉由1 : 150稀釋的OPAL570(cat#FP1488001KT,Akoya Biosciences,瑪律堡,馬塞諸塞州)實現檢測。將細胞用Spectral DAPI(Akoya Biosciences,瑪律堡,馬塞諸塞州)複染。藉由Zeiss AxioScan Z1獲取20X圖像。將20x圖像導入HALO(Indema Labs)圖像分析軟體中,並使用FISH-IF v1.1.3成像模組進行分析。 XL32 XL32.1 衣殼蛋白的比較
將使用mA1M2-mTTR482啟動子表現hPAH-V1/G的載體包裝到XL32或XL32.1衣殼內,並投予NHP。藉由IV遞送投予5e12 vg/kg載體,並且在投予後2周藉由qPCR測量肝臟和各種其他器官中每個細胞的載體基因組拷貝數量( 5A)。此外,測量肝臟中的源自載體的mRNA水平( 5B)。 結果 初始 AAV 衣殼研究
為了為PAH基因轉移選擇將為人類基因轉移提供良好可轉譯性的AAV衣殼,產生了各自含有CBA-EGFP載體基因組的五種AAV衣殼。載體在體外顯示出在Huh7細胞中的EGFP檢測的不同水平( 2A)。然後藉由靜脈內途徑將AAV載體遞送至NHP中,隨後在兩周後收集肝臟和各種器官。對於肝臟樣品,在三個不同區域的右內葉中測量VG,並在每個樣品內顯示出可比水平,因此表明葉片內均勻的分佈(數據未顯示)。還藉由定量右內葉和左內葉中的VG評估葉之間的分佈,並在兩種葉中均展現出可比的VG拷貝(數據未顯示)。每隻動物的肝臟中這四個樣品的平均值示於 2B中。用rAAV-XL32的情況下觀察到最高的載體基因轉移,其次是AAV-LK03、AAV8、rAAV-XL14,並且用rAAV-DJ的情況下最低,最高與最低排名的衣殼載體之間的差異為大約22倍。在每個衣殼處理組中,個體動物中的VG水平是可比的。還在脾臟( 2B)以及肌肉、腎臟和心臟( 2C)中測量了VG拷貝。對於XL32,在其他組織中觀察到非常少的載體基因組。總之,藉由全身投予遞送的XL32衣殼載體提供了穩健的肝臟攝取,而在檢查的其他器官中檢測到的具有該衣殼的載體非常少( 2D)。在葉內以及葉之間EGFP的表現示於 2E中。 NHP 劑量反應研究
在第二個NHP研究中,評價藉由XL32.1/mA1MB2-mTTR482-EGFP的肝基因轉移的劑量反應性。載體藉由IV途徑遞送,並在16天後收集組織。對於肝臟分析,兩種肝臟樣品(從右內葉和左內葉收集)顯示出可比的VG水平(數據未顯示)。5e11、2e12、5e12和2e13 vg/kg的劑量群組分別平均具有0.9、3.5、8.8和7.3(M和F)和19.0 VG/細胞( 3A)。因此,除了最高劑量外,其他所有劑量都展現出劑量反應。在兩個最高劑量內,個體動物之間存在變異性,這可能是由於對轉殖基因的免疫應答。在5e12 vg/kg群組中檢測到雄性和雌性動物的可比載體基因組( 3A)。
藉由測量肝臟樣品中源自載體的eGFP mRNA水平來評價載體啟動子功能。總體而言,隨著劑量的增加,每個細胞的轉錄物水平有增加的趨勢( 3B)。測試的最高劑量(2e13 vg/kg)導致低mRNA,這可能是由於對eGFP蛋白的免疫反應(並對應於較低的VG檢測值)。
藉由測量肝臟中的eGFP蛋白水平來評價載體轉導。數據沒有顯示針對eGFP蛋白水平的劑量反應;即使在兩個較低劑量下也檢測到高eGFP水平,而最高劑量導致最低eGFP水平( 3C)。儘管如此,肝臟VG與源自載體的mRNA拷貝之間存在良好的相關性(r2 = 0.57)( 3D)。在mRNA拷貝與eGFP蛋白水平之間也觀察到良好的相關性(r 2= 0.85)( 3E)。這可能表明並非所有載體基因組都具有轉錄活性,但一旦發生轉錄,eGFP蛋白的產生與轉錄物水平成正比。
藉由與eGFP探針雜交來評價載體在肝臟中的攝取和定位,以瞭解攝取了載體的肝細胞%。該探針預期檢測載體DNA和mRNA二者。原位雜交圖像的例子示於 4A中。對載體陽性肝細胞進行定量以估計肝臟中載體陽性細胞的百分比( 4B)。數據證明載體陽性細胞隨著載體劑量的增加而增加。在5e12 vg/kg的劑量下,雄性和雌性動物的肝臟中大約有50%-80%的肝臟細胞呈陽性。肝臟中陽性細胞的百分比與平均VG拷貝數量之間存在良好的相關性( 4C)。 XL32 XL32.1 衣殼蛋白的比較
進行了一項實驗以比較XL32和XL32.1衣殼載體在NHP中的生物分佈。如 5A- 5B所示,XL32和XL32.1導致肝臟中病毒基因組和源自載體的mRNA的水平是可比的。 實例 3. XL32.1/mA1MB2-mTTR482-WT PAH Pah-KO 小鼠中的體內功效
以下實例描述了XL32.1/mA1MB2-mTTR482-WT PAH在Pah-KO小鼠中的體內功效研究。 材料與方法 PAH-KO 小鼠中的功效測試
在8-12周齡時獲得同型合子(HOM)和雜合(HET)Pah-KO雄性小鼠,並根據動物護理和使用的人道準則進行飼養和維持。所有動物程式均經賽諾菲機構動物護理和使用委員會(IACUC)批准。
藉由靜脈內途徑經由尾靜脈投予重組AAVXL32.1載體(6-10隻動物/處理)。藉由異氟烷麻醉處死動物。藉由眶後竇將全血收集到EDTA收集管中,離心並冷凍保存直至分析。在組織收集前將一些動物經由左心室灌注PBS。收集肝臟樣品並冷凍,直至分析。對於腦分析,從顱骨收穫全腦,稱重,矢狀切割,並在-80ºC下冷凍直至分析。 血液和組織分析
藉由UHPLC-MS/MS分析血漿Phe和Tyr水平。對於腦神經傳導物的定量,按照稍作修改的描述(Kankaanpaa 2001)處理腦。對於肝臟樣品,定量載體基因組、PAH活性和蛋白水平。藉由qPCR定量載體基因組的拷貝(Martin 2013)。肝臟勻漿中的PAH蛋白活性按上述方式進行,並依據總蛋白(BCA蛋白測定套組;Pierce)歸一化。 結果
在PKU小鼠模型中測試XL32.1/mA1MB2-mTTR482-WT PAH的功效。使用缺乏任何PAH蛋白產生的Pah-KO模型。將所述載體藉由IV投予成年小鼠,並在處理後評價功效持續35天或4個月。
測量血液和腦中的Phe和Tyr的水平。在腦中測量多巴胺和血清素水平。最後,例如藉由築巢測定來評估行為。
投予後4個月,對腦病理學和白質變化進行深入分析。這些藉由體內MRI和終末白質染色進行評價。 實例 4. XL32.1/mA1MB2-mTTR482-WT hPAH PAH-KO 小鼠中的短期體內功效
在PKU小鼠模型中對XL32.1/mA1MB2-mTTR482-WT hPAH載體(也稱為XL32.1/WT hPAH)進行了5周的體內評價。在Pah基因轉移到肝臟後,觀察到血液Phe水平的劑量依賴性降低和血液Tyr的劑量依賴性增加。這與所處理小鼠的肝臟中載體基因組、源自載體的mRNA和PAH活性的劑量依賴性檢測相關。Phe的降低增加了胺基酸向腦中的轉運和各種神經傳導物水平。肝臟中PAH陽性細胞水平的評價證明,中心周圍檢測到PAH陽性肝細胞,其強度漸增(與載體劑量相關)。總之,我們的工作證明,優化的編碼WT hPAH的rAAVXL32.1載體糾正了PAH-KO小鼠模型中的PKU相關病理,因此支持其用於治療人PKU。 材料與方法
載體產生。如上所述藉由三重轉染產生XL32.1衣殼載體,所述載體編碼從優化的肝臟啟動子和內含子(mA1MB2-mTTR482-HI2)表現的WT hPAH。將載體藉由親和柱、隨後藉由CsCl梯度純化。在動物研究之前,藉由qPCR對載體進行滴定,並在體外測試PAH的產生和功能。
PAH-KO 小鼠中的功效測試。在傑克遜實驗室(Jackson Laboratory)維持了在C57BL/6背景下產生的Pah-KO小鼠群體(Singh等人, 2020;提交)。一些研究還使用WT C57BL/6小鼠作為正常對照。在8-12周齡時獲得同型合子(HOM)和雜合(HET)雄性小鼠,並根據動物護理和使用的人道準則進行飼養和維持。藉由靜脈內途徑經由尾靜脈投予載體(6-10隻動物/處理)。藉由異氟烷麻醉處死動物。藉由眶後竇將全血收集到EDTA收集管中,離心並冷凍保存直至分析。在組織收集前將一些動物經由左心室灌注PBS。收集肝臟樣品並冷凍,直至分析。對於腦分析,從顱骨收穫全腦,稱重,矢狀切割,並在-80ºC下冷凍直至分析。
血液和組織分析。如Singh等人, 2021所述,藉由UHPLC-MS/MS分析血漿Phe和Tyr水平。對於腦神經傳導物的定量,按照稍作修改的描述(Kankaanpaa 2001;Singh 2020)處理腦。藉由qPCR定量各種組織中載體基因組的拷貝(Martin 2013)。肝臟勻漿中的PAH蛋白活性和PAH蛋白檢測如先前所述(Heintz 2012, Nambiar 2017)進行,並依據總蛋白(BCA蛋白測定套組;Pierce)歸一化。
動物行為測定。築巢測定如先前公佈的(Deacon 2006)進行,稍作修改。將動物轉移到乾淨的單獨籠子裡,並提供3.0 gm +/-0.02平方的棉花(Nestlet;cabfm00088, Ancare)。第二天對任何未使用的墊料進行稱重,並由兩個人根據以下評級標準對巢的品質進行評分:1- 未觸及小巢(大於90%完好),2- 小巢部分被撕開(50%-90%完好),3- 小巢大部分被撕碎,但通常沒有可識別的巢位置(少於50%完好),4- 巢可識別但平坦(超過90%的小巢被撕開),5- 具有坑和高牆的完美巢(超過90%的小巢被撕開)。
繪圖和統計分析。所有數據均使用GraphPad Prism(8.0.2版)或Excel(Microsoft)繪圖。使用Excel中的學生t檢驗或GraphPad Prism中的單因素方差分析進行統計分析。 結果
XL32/WT hPAH 基因轉移到 Pah-KO 小鼠後的血液 Phe Tyr 校正。使用缺乏任何PAH蛋白產生的Pah-KO模型來測試IV遞送後XL32/WT PAH載體的功效,並評價功效持續36天。該處理以劑量依賴性方式將血液Phe水平降低至與HET和WT小鼠可比的水平( 6A 6B)。處理還增加了血液Tyr水平,用所有測試的載體劑量均獲得正常的血液Tyr水平( 6C 6D)。
評價所處理小鼠的肝臟的基因轉移效率和肝臟轉導。以1e11、3e11和1e12 vg/小鼠,在肝臟中以劑量依賴性方式檢測到載體DNA,導致平均0.2、1.3和6.8 vg/細胞( 7A)。載體主要在肝臟中檢測到,在其他測試組織(脾臟、心臟、肌肉、腎臟和肺)中測量到的水平低10倍以上( 7B)。劑量依賴性載體DNA檢測轉換為肝臟中源自載體的PAH mRNA的劑量依賴性增加( 7C 和圖 7D)。vg拷貝/細胞與血液Phe水平的相關性證明,血液Phe正常化至少需要0.1 vg/細胞( 7E)。藉由測量肝臟中的PAH活性測試PAH蛋白的功能。低劑量(1e11 vg/小鼠)導致PAH活性與Het小鼠中的活性可比,而兩個較高的劑量超過了在Het肝臟中測量到的活性( 8A)。藉由對肝臟勻漿的蛋白質印跡,還觀察到PAH蛋白水平的類似劑量反應模式( 8B)。為了瞭解轉導的肝細胞的位置,還藉由免疫組織化學(IHC)評價了經處理的肝臟。隨著劑量的漸增,檢測到PAH染色漸增,轉導模式主要是中心周圍( 8C)。
XL32.1/WT hPAH 對腦胺基酸和神經傳導物水平的影響。測量腦中的胺基酸Phe、Tyr和Trp水平。數據證明,處理後的腦Phe水平正常化,因為水平與Het和WT小鼠中測量的水平可比。血液Phe減少還增加了胺基酸Tyr和Trp向腦中的轉運,因為這些胺基酸共用相同的胺基酸轉運蛋白( 9A)。
已知神經傳導物多巴胺和血清素在PKU患者的腦中減少。因此,在載體處理的小鼠的腦中對這些神經傳導物水平進行定量。用rAAVXL32.1/WT hPAH載體處理導致多巴胺、去甲腎上腺素和血清素正常化至Het和WT小鼠中所觀察到的水平( 9B)。
Pah-KO 小鼠的行為分析。進行築巢行為測定以評價腦中的生化變化對動物行為的影響( 10A 10B)。該測定測量小鼠產生巢的能力。然後對這些根據使用的築巢材料的量和巢的整體品質進行評分( 10A)。在處理之前,所有未處理的PKU小鼠的巢得分均顯著低於Het小鼠產生的巢的得分( 10B)。然而,處理36天後,所處理小鼠的得分顯著提高( 10B)。在Het和WT小鼠之間,在築巢得分方面沒有觀察到差異。 總結
我們的數據證明,包含XL32.1衣殼並從優化的肝臟啟動子表現WT hPAH的rAAV載體能夠在處理5周後糾正人PKU的小鼠模型中的多種PKU相關病理。該載體的全身遞送導致Pah-KO小鼠肝臟中載體、源自載體的mRNA和PAH活性的劑量依賴性增加。這與在所有測試劑量下在血液中以及隨後在腦中Phe水平降低和Tyr水平增加相關。血液和腦中Phe的減少也使腦中的神經傳導物多巴胺和血清素水平正常化。這些生化變化與小鼠行為的改善相關。本研究中使用的最低劑量5e12 vg/kg(1e11 vg/小鼠)提供載體平均為0.2 vg/細胞,這導致與在Het小鼠中測量到的肝臟PAH活性可比。 實例 5. XL32.1/mA1MB2-mTTR482-WT hPAH PAH-KO 小鼠中的長期體內功效 材料與方法
載體產生。編碼WT hPAH的XL32.1衣殼載體含有肝臟特異性表現匣,所述肝臟特異性表現匣具有修飾的A1MB2增強子(2個拷貝的α1-微球蛋白)、修飾的小鼠甲狀腺素轉運蛋白核心啟動子和遠端增強子(mTTR482)、雜合內含子2(HI2,為由雞β肌動蛋白/兔β珠蛋白雜合內含子組成的內含子)和牛生長激素(BGH)聚腺核苷酸化位點(BGH)(Nambiar 2017)(完整基因組名稱ITR-/mA1M2-mTTR482-HI2-WT hPAH-BGHpA-填充物-ITR;還稱為XL32.1/WT hPAH)。還構築了兩種另外的具有LP1肝臟啟動子的載體;一種載體含有雜合內含子2(HI2)(與A1MB2-mTTR482構築體中使用的相同)或短內含子(SI,Nathwani 2012)。藉由添加填充序列(A1AT內含子序列)將所有構築體的大小調整為野生型AAV基因組的大小。在體外測試所有含ITR質體暫態轉染到人類肝系Huh7細胞中的情況下的PAH蛋白產生和活性,如先前所述(Singh 2021)進行PAH蛋白質印跡和活性。所有XL32.1衣殼載體均藉由如上所述的三重轉染產生。將用於4個月功效研究的載體藉由親和柱、隨後藉由CsCl梯度純化。將用於1和4個月功效研究的載體藉由親和柱、隨後藉由CsCl梯度純化。藉由針對BGHpA的qPCR將所有載體批次定量(Nambiar 2017)。
PAH-KO 小鼠中進行 4 個月的功效測試。如實例4中所述進行功效測試。在組織收集前將所有動物經由左心室灌注PBS。
血液和組織分析。如實例4中所述進行血液和組織分析。藉由肝臟中的qPCR定量肝臟中的載體DNA拷貝(Nambiar 2017)。肝臟勻漿中的PAH蛋白活性和PAH蛋白檢測如先前所述(Heintz 2012, Nambiar 2017)進行,並藉由總蛋白(BCA蛋白測定套組;Pierce)歸一化。如Singh 2021中所述,將福馬林固定的石蠟包埋肝臟用於PAH IHC。對於IHC陽性細胞百分比的數位量化,使用VISIOPHARM圖像分析軟體(2020.08版)分析IHC載玻片並測量整個肝臟載玻片圖像中的目的區域(ROI)。繪製距細胞核3 μm的周界以測量PAH染色強度,並將每個細胞分類為PAH陽性或陰性。福馬林固定的石蠟包埋肝臟切片還用於藉由使用Advanced Cell Diagnostics, Inc(ACD)的BaseScopeTM Duplex套組以手動模式根據他們的方案進行原位雜交來檢測所選擇動物的載體DNA和轉錄物。使用HALO ISH圖像分析模組(v4.1)分析整個切片的ISH染色。定量的終點是載體DNA和mRNA陽性細胞的%。
腦成像。藉由如Singh 2021所述的方式,在不同時間點對活體動物的腦白質含量進行分析。跨冠狀切片繪製腦周圍的目的區域和可見的胼胝體結構,以計算胼胝體體積。
動物行為測定。如實例4中所述評估動物行為。
繪圖和統計分析。所有數據均使用GraphPad Prism(8.0.2版)或Excel(Microsoft)繪圖。使用圖基多重比較在GraphPad Prism中使用單因素方差分析進行統計分析。 結果 處理 4 個月後 XL32.1/WT PAH 基因轉移對健康、血液 Phe 水平和肝臟 PAH 校正的影響
使用缺乏任何PAH蛋白產生的Pah-KO模型來測試IV遞送後XL32.1/WT PAH載體的功效,並評價功效持續4個月。測試的載體劑量為1e11、3e11和1e12 vg/小鼠,轉換為大約5e12、2e12和5e13 vg/kg。在整個研究中評估動物體重以監測4個月研究期間的生長。在給藥前8天對動物稱重以建立基線體重,然後在載體遞送後第120天研究結束時稱重( 11A 、圖 11B)。用XL32.1/WT PAH處理的所有Pah-KO小鼠的體重均增加,平均增加130%至145%。處理還增加了PAH-KO小鼠的肝臟重量,在所有處理組中其重量達到了在HET和WT小鼠中的肝臟重量( 11C)。因此,肝臟中PAH的表現為經處理的小鼠提供了顯著的生長和健康改善。
XL32.1/WT hPAH載體遞送至肝臟導致血液Phe水平降低( 12A- 12C)。數據證明,在處理群組中血液Phe水平迅速降低,因為在第7天時,與未處理的Pah-KO小鼠的血液Phe水平(2742 ± 70 µM)相比,Phe水平為337 ± 123 µM(1e11 vg/小鼠)、94 ± 14 µM(3e11 vg/小鼠)和70 ± 11 µM(1e12 vg/小鼠)。這些與在HET和WT小鼠中的Phe水平(分別為84 ± 9和62 ± 5 µM)可比( 12B)。在第120天,在未處理的Pah-KO中的血液Phe水平為2612 ± 71 µM,而在處理群組中的Phe水平的平均值為1237 ± 483 µM(1e11 vg/小鼠)、158 ± 32 µM(3e11 vg/小鼠)和64 ± 5 µM(1e12 vg/小鼠)。兩個較高劑量群組中的Phe水平與在HET(110 ± 13 µM)和WT(82 ± 3 µM)小鼠中的Phe水平沒有顯著差異( 12C)。因此,中等和高劑量載體群組(3e11和1e12 vg/小鼠)提供了血液Phe水平的持續正常化。最低劑量(1e11 vg/小鼠)顯示出變異性,其中六隻小鼠中的三隻展現出正常的血液Phe水平。其餘3隻動物最初降低了血液Phe水平,但效果並未持續。
評價所處理小鼠的肝臟的基因轉移效率和肝臟轉導。在1e11、3e11和1e12 vg/小鼠群組的肝臟中以劑量依賴性方式檢測到載體DNA,導致平均vg/細胞水平如下:分別為0.042 vg/細胞 ± 0.02、0.321 vg/細胞 ± 0.111和3.40 vg/細胞 ± 0.49( 13A)。對肝臟中源自載體的mRNA的定量展現出,在每個劑量群組中,平均分別為2.1e6 ± 1.0e6、9.0e6 ± 2.0e6和3.7e7 ± 0.6e7 mRNA拷貝/µg RNA( 13B)。就是說每個劑量的情況下表現增加大約4倍。載體DNA與mRNA水平有很好的相關性(R 2= 0.90)( 13C)。vg拷貝/細胞與血液Phe水平的相關性證明,血液Phe正常化至少需要0.1 vg/細胞( 13D)。低劑量群組中的載體DNA分析揭示,血液Phe正常化的三隻動物含有0.1 vg/細胞,而Phe水平隨時間增加的其餘三隻動物具有小於0.1 vg/細胞。還藉由載體DNA和源自載體的轉錄物的原位雜交確認了載體攝取和基因表現,並且代表性圖像示於 13E中。
藉由測量肝臟中的PAH活性來測試載體表現的PAH的功能。藉由基於MS的測定定量Phe向Tyr的轉化來測量PAH活性。三個處理群組(低至高劑量)中的PAH活性為11.5 ± 7.9 µM(n = 6)、42.8 ± 12.4 µM(n = 8)和168.2 ± 21.4 µM(n = 8) 13C-Tyr/mg蛋白質( 14A)。為進行比較,HET和WT動物中的PAH活性為63.7 ± 5.9 µM(n = 6)和111.8 ± 9.9 µM(n = 6),而未處理的Pah-KO小鼠(HOM,n = 7)中未檢測到PAH活性。該測定證明,在低劑量群組中三隻動物沒有檢測到PAH活性,其中相同的動物具有非常低的載體DNA和mRNA拷貝。PAH活性與載體轉錄物水平密切相關(R 2= 0.88;未顯示)。
為了瞭解肝臟中PAH陽性細胞的水平,使用抗PAH抗體藉由IHC評價肝臟切片。每個處理群組中肝臟中的平均PAH陽性細胞為組1(HOM)0.4 ± 0.1%,組2(低)21.0 ± 8.6%,組3(中)42.2 ± 4.0%,組4(高)52.8 ± 4.6%,組5(HET)93.6 ± 1.7%,以及組6(WT)97.4 ± 0.4%(WT)( 14B)。數據顯示血液Phe正常化需要大約20%的PAH陽性肝臟( 14C)。20% PAH陽性肝臟需求與Hamman等人(2011)公佈的肝臟再增殖結果一致,他們證明了在肝細胞移植實驗中至少需要10%的野生型或雜合肝細胞才能使Pahenu2小鼠的血液Phe水平正常化。PAH IHC的代表性圖像顯示染色強度隨著編碼WT PAH的載體劑量的增加而增加( 14D)。PAH染色顯示不均勻染色模式,其中高陽性細胞簇分散在經處理的肝臟中的陰性細胞中。這與在HET和WT肝臟中觀察到的染色相反,在HET和WT肝臟中整個肝臟切片的染色強度均勻( 14D)。 XL32.1/WT PAH 對腦胺基酸、神經傳導物水平和白質含量的影響
由於腦對Phe的攝取增加,高血液Phe會導致神經毒性。由於使用相同的胺基酸轉運蛋白(LAT1),高血液Phe水平還可以減少腦對其他大的中性胺基酸(Tyr、Trp)的攝取。我們的數據證明,每個處理群組都以低劑量降低了腦Phe水平,顯示出不同的功效( 15A)。平均腦Phe水平為組1(HOM)167 ± 4 µM,組2(低)94 ± 27 µM,組3(中)28 ± 3 µM,組4(高)26 ± 1 µM,組5(HET)30 ± 3 µM,以及組6(WT)30 ± 1 µM。除了低劑量WT PAH載體群組外,所有群組的腦Phe水平都正常化為與在HET和WT小鼠的腦Phe水平可比。血液Phe降低還提高了腦中的Tyr水平:組1(HOM)13 ± 1 µM,組2(低)16 ± 1 µM,組3(中)16 ± 1 µM,組4(高)19 ± 1 µM,組5(HET)20 ± 2 µM,以及組6(WT)20 ± 1 µM。向腦的Trp轉運也得到改善;每個處理組中的平均Trp水平為組1(HOM)4.6 ± 0.2 µM,組2(低)5.7 ± 0.5 µM,組3(中)5.4 ± 0.3 µM,組4(高)6.5 ± 0.3 µM,組5(HET)6.3 ± 0.5 µM,以及組6(WT)6.4 ± 0.3 µM。然而,僅在最高劑量的情況下才觀察到腦Tyr和Trp水平方面的顯著處理效果。
PKU患者腦中的神經傳導物多巴胺和血清素水平降低。已提出基質缺乏(Tyr、Trp)以及Phe對這些神經傳導物合成的毒性作為解釋。這裡的數據證明,將PAH基因遞送至肝臟提高了腦中的神經傳導物多巴胺和血清素水平( 15B)。用3e11和1e12/小鼠劑量處理使神經傳導物水平正常化為與在HET和WT小鼠中的神經傳導物水平可比,而在低劑量群組中觀察到變異性。低劑量群組(1e11 vg/小鼠)中的變異性與其基因轉移效率和隨後的Phe控制相關(3隻有效動物和3隻無效動物)。多巴胺和血清素水平與腦Phe或它們的基質水平(對於多巴胺為Tyr,而對於血清素為Trp)的相關性分析顯示,與它們的胺基酸基質水平相比,Phe的降低提供了更多的改善。因此,多巴胺產生與腦Tyr水平適度相關(R 2= 0.3887),但顯示出與腦中降低的Phe水平更好的相關性(R 2= 0.5057)。類似地,血清素產生與腦中Trp水平增加不太相關(R 2= 0.1938),但顯示出與腦Phe水平降低密切相關(R 2= 0.6418.)。
進行體內MRI研究以評估腦白質交錯,以評價處理對腦健康的功效。應用3D體積MRI分割和測量來量化胼胝體中的MRI特徵外觀。MRI分析顯示,與HET和WT小鼠相比,Pah-KO小鼠中的MRI胼胝體體積顯著較低,並且所有Pah-KO群組在基線評估是可比的( 16A)。在對Pah-KO小鼠處理後106天,所有劑量群組的胼胝體體積均增加,尤其是與每隻單獨動物的基線相比為百分比時( 16B 、圖 16C)。然而,在第106天時間點,沒有一個處理群組將胼胝體體積校正至正常水平;在任何處理群組中腦重量也沒有正常化( 16D)。 Pah-KO 小鼠的行為分析。
PKU患者的焦慮、抑鬱症和運動震顫發生率較高。測量小鼠建巢能力的行為測定已被用於測量這些問題(Deacon 等人, 2006)。正常動物會撕開墊料並將其組織成圓形凸形巢,而患有抑鬱症的動物將不使用或很少使用這種材料。使用的築巢評分示於 17A中。處理前,得分為:組1(HOM)1.7 ± 0.4,組2(低)1.4 ± 0.2,組3(中)1.7 ± 0.4,組4(高)1.8 ± 0.4,組5(HET)5.0 ± 0.0,以及組6(WT)5.0 ± 0.0,並且在未處理的Pah-KO小鼠群組之間沒有顯著差異( 17B)。處理後三十五天,經處理的Pah-KO小鼠的築巢得分顯著提高,組平均值為:組1(HOM)2.1 ± 0.6,組2(低)3.8 ± 0.5,組3(中)4.6 ± 0.2,組4(高)3.9 ± 0.4,組5(HET)5.0 ± 0.0,以及組6(WT)4.9 ± 0.1。經處理的Pah-KO小鼠與HET和WT小鼠的得分沒有顯著差異。在第97天,組平均值與第35天的相似,如下:組1(HOM)1.7 ± 0.3,組2(低)2.5 ± 0.6,組3(中)4.1 ± 0.3,組4(高)4. ± 0.3,組5(HET)5.0 ± 0.0,以及組6(WT)4.9 ± 0.1。與未處理的Pah-KO小鼠相比,除低處理組外的所有組都有顯著改善。類似地,除了低劑量群組之外的所有群組都與HET或WT小鼠沒有顯著差異。 總結
藉由將功能性Pah基因轉移到肝臟以糾正PKU患者肝臟中存在缺陷的PAH活性的基因療法是為PKU患者提供長期Phe控制的有吸引力的策略。我們的數據證明,在為期4個月的研究期間,由XL32.1衣殼組成並從優化的肝臟表現匣(mA1MB2-mTTR482-HI2)表現WT hPAH的rAAV載體能夠糾正人PKU模型Pah-KO小鼠中的多種PKU相關病理。該載體的全身遞送導致Pah-KO小鼠肝臟中載體DNA、源自載體的mRNA、PAH蛋白和PAH活性的劑量依賴性增加。儘管在最低劑量群組中觀察到變異性,但測試的所有三種載體劑量(大約5e11、2e13和5e13 vg/kg)都降低了血液Phe水平。將血液Phe水平校正為各種研究終點表明,4個月研究期間的治療益處需要以下的維持以使血液Phe正常化:至少0.1個載體DNA/細胞、3x106 mRNA/μg RNA和20%的PAH陽性肝臟。20% PAH陽性肝臟需求與Hamman等人(16)公佈的肝臟再增殖結果相似,他們證明了至少需要移植10%的野生型或雜合肝細胞才能使Pahenu2小鼠的血液Phe水平正常化。本實例還證明了腦健康4個月的持續改善,其中胺基酸轉運、神經傳導物多巴胺和血清素水平正常化,並且腦胼胝體體積增加。這些生化變化與小鼠行為的改善相關;處理後35天已經觀察到這種益處,並一直保持到較晚的時間點(第97天)。有趣的是,缺乏持續Phe控制的低劑量組中的三隻動物在所有測量的終點(表明與血液Phe和疾病病理相關)方面展現出較差的值。此外,血液Phe的正常化增加了所處理動物的體重,突出了高苯丙胺酸血症對PKU動物的整體生長和代謝的主要影響。這種生長反映為肝臟重量增加至涉及肝細胞增殖的WT和HET小鼠的水平。儘管如此,中等和高載體群組保持了足夠的載體DNA以提供功效,直到研究結束。此外,在低劑量1e11 vg/小鼠(5×10 12vg/kg)劑量群組中觀察到的變異性使得可限定在可能導致載體基因組丟失的情況下(如肝損傷或增殖)所需的基因轉移閾值水平。
總之,本實例證明,rAAVXL32.1/WT hPAH基因轉移可以降低血液Phe水平,導致以持續的方式改善生長,增加腦白質、腦胺基酸含量和神經傳導物水平以及整體改善行為。體內先導基因組(mA1MB2-mTTR482-HI2)與臨床中已使用的肝臟表現匣(LP1-SI, Nathwani 2011)的比較顯示,先導候選物在小鼠肝臟中導致更高的轉錄物和酶活性水平。因此,先導候選物的較高表現水平與XL32.1衣殼的卓越基因轉移效率相結合,使得可在臨床上用可能較低的載體劑量治療PKU患者,從而提供改善的療法安全性方面。總之,本實例藉由允許用臨床有效、可行和安全的AAV載體劑量進行治療而支持使用該載體治療PKU。 實例 6. 體內肝臟表現元件的比較
針對血友病B試驗中使用的肝臟表現匣(LP1-SI)(Nathwani 2011)評價了上述4個月研究中使用的具有mA1MB2-mTTR482-HI2的XL32.1載體。還評價了具有LP1啟動子和HI2內含子的中間構築體。( 18A)。藉由暫態轉染在人類肝系Huh7細胞中對含ITR質體構築體的測試顯示,與具有LP1啟動子的構築體相比,A1MB2構築體具有更高的PAH蛋白和活性( 18B 、圖 18C)。將三個表現匣包裝到XL32.1衣殼中,並以可比的劑量(3e11 vg/小鼠)投予,並在Pah-KO小鼠中評價5周。將用於表現匣比較的所有rAAV載體藉由CsCl梯度純化。與未處理的Pah-KO小鼠(HOM)相比,所有載體都顯著降低了血液Phe水平,並且Phe水平與在HET小鼠中觀察到的相似( 18D)。細部分析顯示出載體表現水平的差異。肝臟中mRNA水平的定量顯示,與LP1-SI相比,具有mA1MB2-mTTR482啟動子的載體產生更高表現的趨勢,並且當將轉錄物水平歸一化時,用mA1MB2-mTTR482啟動子的情況下觀察到每個VG的mRNA水平是約3倍。平均歸一化RNA水平(mRNA/VG)為:A1MB2,133.9 ± 19.5;LP1-HI2,95.5 ± 11.0;以及LP1-SI,43.0 ± 4.9( 18E)。類似地,與LP1-SI構築體相比,mA1MB2-mTTR482-HI2處理的動物中肝臟PAH酶活性為3倍。研究群組的平均肝臟PAH活性(μM Tyr/mg蛋白質)為:A1MB2,157.4 ± 25.7;LP1-HI2,42.9 ± 10.2;LP1-SI,54.9 ± 13.4;以及HET 67.8 ± 10.9( 18F)。當將PAH活性歸一化為VG拷貝時,這種差異是6倍( 18G)。當將活性歸一化為mRNA拷貝時,觀察到較小的差異(2倍),表明差異的主要原因是增加的來自載體DNA的表現,而非每個mRNA的PAH產生(未顯示)。因此,數據證明,在小鼠肝臟中來自mA1MB2-mTTR482-HI2的表現比來自LP1-SI表現匣的表現更強。 參考文獻Erlandsen H, Patch M, Gamez A, Straub M, Stevens R. Structural studies on phenylalanine hydroxylase and implications towards understanding and treating phenylketonuria. Pediatrics 2003, 112:1557-1565. Kochhar JS, Chan SY, Ong PS, Kang L. Clinical therapeutics for phenuylketonuria. Drug Deliv Transl Res 2012, 2:223-237. Ho G, Christodoulou J. Phenylketonuria: translating research into novel therapies. Transl Pediatr 2014, 4:49-62. Blau N, Longo N. Alternative therapies to address the unmet medical needs of patients with phenylketonuria. Expert Opin Pharmacother 2015, 16:791-800. Walter JH, White FJ, Hall SK, MacDonald A, Rylance G, Boneh A, Francis DE, Shortland GJ, Schmidt M, Vall A. how practical are recommendations for dietary control in phenylketonuria? The Lancet 2002, 360:55-56. Waisbren SE, Noel K, Fahrbach K, Cella C, Frame D, Dorenbaum A, Levy H. Phenylalanine blood levels and clinical outcomes in phenylketonurea: a systemic literature review and meta-analysis. Mol Genet Metab 2007, 92:63-70. Thomas J, Nguyen-Driver M, Bausell H, Breck J, Zambrano J, Birardi V. Strategies for successful ling-term engagement of adults with phenylalanine hydroxylase deficiency returning to clinic. J Inborn Errors Metabolism & Screening 5:1-9. Anderson PJ, Leuzzi V. White matter pathology in phenylketonuria. Mol Gen Metab 2010, 99:S3-S9. Gonzales MJ, Gassio R, Artuch R, Campisto J. Impaired neurotransmission in early-treated phenylketonuria patients. SeminPediatr Neurol 2016, 23:332-340. Enns, GM, Koch R, Brumm V, Blakely E, Suter R, Jurecki E. Suboptimal outcomes in patients with PKU treated early with diet alone: revisiting the evidence. Mol. Genet. Metab. 2010, 101:99-109. Garcia MI, Araya G, Coo S, Waisbren SE, de la Parra A. Mol Gen Metab 2017, 11:54-58. Longo N, Harding CO, Burton BK, Grange DK, Vockley J, Wasserstein M, Rice GM, Musson DG, Gu Z, Sile S. Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicenter, phase 1 dose-escalation trial. Lancet 2014, 384:37-44. Harding CO, Amato RS, Stuy M, Longo N, Burton BK, Posner J, Weng HH, Merilainen M, Gu Z, Jiang J, Vockley J; PRISM-2 Investigators. Pegvaliase for the treatment of phenylketonuria: A pivotal, double-blind randomized discontinuation Phase 3 clinical trial. Mol Genet Metab 2018, March 31 (abstract) Thomas J, Levy H, Amato S, Vockley J, Zori R, Dimmock D, Harding CO, Bilder DA, Weng HH, Olbertz J, Merilainen M, Jiang J, Larimore K,  Gupta S, Gu Z, Nortrup H, PRISM investigators. Mol Genet Metab 2018, March 18 (abstract). Oh H-J, Park E-S, Kang S, Jo I, Jung S-C. Long-term enzymatic and phenotypic correction in the phenylketonuria mouse model by adeno-associated virus vector-mediated gene transfer. Pediatric Research 2004, 56:278-284. Mochizuki S, Mizukami H, Ogura T, Kure S, Ichinohe A, Kojima K, Matsubara Y, Kobayahi E, Okada T, Hoshika A, Ozawa K, Kuma A. Long-term correction of hyperphenylalanemia by AAV-mediated gene transfer leads to behavioral recovery in phenylketonuria mice. Gene Ther 2004, 11:1081-1086. Ding Z, Georgiev P, Thony B. Administration-route and gender-independent long-term therapeutic correction of phenylketonuria in a mouse model by recombinant adeno-associated virus 8 pseudotyped vector-mediated gene transfer. Gene Therapy 2006, 13:587-593. Harding CO, Gillingham MB, Hamman K, Clark H, Goebel-Daghighi E, Bird A, Koeberl DD. Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria. Gene Therapy 2006, 13:457-462. Yagi H, Ogure T, Mizukami H, Urabe M, Hamada H, Yoshikawa H, Ozawa K, Kume A. Complete restoration of phenylalanine oxidation in phenylketonuria mouse by a self-complementary adeno-associated virus vector. J Gene Med 2011, 13:114-122. Yagi H, Sanechika S, Ichinose H, Sumi-Ichinose C, Mizukami H, Urabe M, Ozawa K, Kume A. Recovery of neurogenic amines in phenylketonuria mice after liver-targeted gene therapy. NeuroReport 2012, 23:30-34. Winn SR, Scherer T, Thony B, Ying M, Martinez A, Weber S, Raber J, Harding CO. Blood phenylalanine reduction corrects CNS dopamine and serotonin deficiencies and partially improves behavioral performance in adult phenylketonuric mice. Mol Gen Metabolism 2018, 123:6-20. Hamman, K. J, Winn S. R, Harding CO. Hepatocytes from wild-type or heterozygous donors are equally effective in achieving successful therapeutic liver repopulation in murine phenylketonuria (PKU). Mol Genet Metab 2011, 104: 235-40. Viecelli HM, Harbottle RP, Wong SP, Schlegel A, Chuah MK, VandenDriessche T, Harding CO, Thony B. Treatment of phenylketonuria using minicircle-based naked-DNA gene transfer to murine liver. Hepatology 2014, 60:1035-1043. Chatterjee, S., Sivanandam, V, Wong, Jr, K. K. AAV and Hematopoietic Stem Cells: The Potential of AAVHSCs in Genetic Medicines. Human Gene Ther 2020, 31: 542-552. Sabatino, D. E., Lange, A M., Altynova, E. S., Sarkar R., Zhou, S., Merricks, E. P., Franck, H. G., Nicols, T. C., Arruda, V. R.,Kazazian Jr, H. H. Efficacy and safety of long-term prophylaxis in severe hemophilia A dogs following liver gene therapy using AAV vectors. Mol Ther 2011, 19: 442-9. Singh K, Cornell CS, Jackson R, Kabiri M, Phipps M, Desai M, et al. CRISPR/Cas9 generated knockout mice lacking phenylalanine hydroxylase protein as a novel preclinical model for human phenylketonuria. Scientific Reports 202111: 7254.. Kankaanpää, A., Meririnne, E., Ariniemi, K. & Seppälä, T. Oxalic acid stabilizes dopamine, serotonin, and their metabolites in automated liquid chromatography with electrochemical detection. J. Chromatogr. B. Biomed. Sci. Appl 2001, 753: 413-419. Kyostio-Moore S, Berthelette P, Piraino S, Sookdeo C, Nambiar B, Jackson R, Burnham B, O'Riordan C, Cheng SH, Armentano D. The impact of minimally oversized adeno-associated viral vectors encoding human Factor VIII on vector potency in vivo. Mol Ther Methods Clin Dev 2016, 3:16006. Nambiar B, Cornell Sookdeo C, Berthelette P, Jackson R, Piraino S, Burnham B, Nass S, Souza D, O'Riordan CR, Vincent KA, Cheng SH, Armentano D, Kyostio-Moore S. Characteristics of minimally oversized adeno-associated virus vectors encoding human Factor VIII generated using producer cell lines and triple transfection. Hum Gene Ther Methods 2017, 28:23-38. Deacon, R. M. J. Assessing nest building in mice. Nature Protocols2006, 1:1117-1119. McEachern KA, Nietupski JB, Chuang W-L, Armentano D, Johnson J, Hutto E, Grabowski GA, Cheng SH, Marshall J. AAV8-mediated expression of glucocerebrosidase ameliorates the storage pathology in the visceral organs of a mouse model of Gaucher disease. J Gene Med 2006, 8:719-729. Jacobs F, Snoeys J, Feng Y, van Craeyveld E, Lievens J, Armentano D, Cheng SH, De Geest B. Direct comparison of hepatocyte-specific expression cassettes following adenoviral hydrodynamic gene transfer. Gene Ther 2008, 15:594-603. Kramer MG, Barajas M, Razquin N, Berraondo P, Rodrigo M, Wu C, Qian C, Fortes P, Prieto J. In vitro and in vivo comparative study of liver-specific promoters. Mol Ther 2003, 7:375-385. Chuah MK, Petrus I, De Bleser P, Le Guiner C, Gernoux G, Adjali O, Nair N, Willems J, Evens H, Rincon MY, Matrai J, Di Matteo M, Samara-Kuko E, Yan B, Acosta-Sanchez A, Meliani A, Cherel G, Blouin V, Christophe O, Moullier P, Mingozzi F, VandenDriessche T. Liver-specific transcriptional modules identified by genome-wide in silico analysis enable efficient gene therapy in mice and non-human primates. Mol Ther 2014, 9:1605-1613. Wooddell CI, Reppen T, Wolff JA, Herweijer H. Sustained liver-specific transgene expression from the albumin promoter in mice following hydrodynamic plasmid DNA delivery. J Gene Med 2008, 10:551-563. Nathwani AC, Tuddenham EGD, Rangarajan S, Rosales C, McIntosh J, Linch DC, Chowdary P, Riddell A, Jaquilmac A, Harrington C, O’Beirne J, Rustagi P, Ng CYC, Kay MA, Zhou J, Spence Y, Morton CL, Allay J, Coleman J, Sleep S, Cunningham JM, Srivastava D, Basner-Tschakarjan E, Mingozzi F, High KA, Gray JT, Reiss U, Nienhuis A, Davidoff AM. Jiang J, Larimore K, Gupta S, Gu Z, Northrup H; PRISM investigators. Mol Genet Metab. Adeno-associated virus vector-mediated gene transfer in hemophilia B. NEJM 2011, 365:2357-2365. Martin Martin J, Frederick A, Luo Y, Jackson R, Joubert M, Sol B, Poulin F, Pastor E, Armentano D, Wadsworth S, Vincent K. Generation and characterization of adeno-associated virus cell lines for research and preclinical vector production. Hum Gene Ther Methods 2013;24:253-269. McDonald JD, Charlton CK. Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics 1996, 39:402-405. Yew NS. Yew, Dufour E, Przybylska M, Putelat J, Crawley C, Foster M, Gentry S, Reczek D, Kloss A, Meyzaud A, Horand F, Cheng SJ, Godfrin Y. Erythrocytes encapsulated with phenylalanine hydroxylase exhibit improved pharmacokinetics and lowered plasma phenylalanine levels in normal mice. Mol Gen Metab 2013, 109:339-344. Jiang, H, Lillicrap, D, Patarroyo-White, S, et al. Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood 2006, 108:107-115. Park JW, Lee MH, Choi JO, Park HY, Jung SC. Tissue-specific activation of mitogen-activated kinases for expression of transthyretin by phenylalanine and its metabolite, phenylpyruvic acid. Exp Mol Med 2010, 42:105-115. Ledley FD, Grenett HE, Dunbar BS, Woo SL. Mouse phenylalanine hydroxylase. Homology and divergence from human phenylalanine hydroxylase. Biochem J 1990, 267:399-406. Charron CE, Lewin AS, Laipis PJ. Evidence for dominant-negative interference in the Pahenu2 mouse model of PKU. Mol Ther 2004, 9:S334. Heintz C, Troxler H, Martinez A, Thöny B, Blau N.Heintz C, et al. Quantification of phenylalanine hydroxylase activity by isotope-dilution liquid chromatography-electrospray ionization tandem mass spectrometry.  Mol Genet Metab. 2012 Apr;105(4):559-65. 序列 人類苯丙胺酸羥化酶( GenBank AAA60082.1/NP_000268.1 蛋白 /NM_000277.3 mRNA ;具有 E183 WT PAH 胺基酸序列) MSTAVLENPGLGRKLSDFGQETSYIEDNCNQNGAISLIFSLKEEVGALAKVLRLFEENDVNLTHIESRPS RLKKDEYEFFTHLDKRSLPALTNIIKILRHDIGATVHELSRDKKKDTVPWFPRTIQELDRFANQILSYGA ELDADHPGFKDPVYRARRKQFADIAYNYRHGQPIPRVEYMEE EKKTWGTVFKTLKSLYKTHACYEYNHIF PLLEKYCGFHEDNIPQLEDVSQFLQTCTGFRLRPVAGLLSSRDFLGGLAFRVFHCTQYIRHGSKPMYTPE PDICHELLGHVPLFSDRSFAQFSQEIGLASLGAPDEYIEKLATIYWFTVEFGLCKQGDSIKAYGAGLLSS FGELQYCLSEKPKLLPLELEKTAIQNYTVTEFQPLYYVAESFNDAKEKVRNFAATIPRPFSVRYDPYTQR IEVLDNTQQLKILADSINSEIGILCSALQKIK (SEQ ID NO:1) 人類 WT PAH 編碼序列 ATGAGCACAGCCGTGCTGGAAAACCCCGGCCTGGGCAGAAAGCTGAGCGACTTCGGCCAGGAAACCAGCTACATCGAGGACAACTGCAACCAGAACGGCGCCATCAGCCTGATCTTCAGCCTGAAAGAAGAAGTGGGCGCCCTGGCCAAGGTGCTGCGGCTGTTCGAGGAGAACGACGTGAACCTGACCCACATCGAGAGCCGGCCCAGCAGACTGAAGAAGGACGAGTACGAGTTCTTCACCCACCTGGACAAGCGGAGCCTGCCCGCCCTGACCAACATCATCAAGATCCTGCGGCACGACATCGGCGCCACCGTGCACGAGCTGAGCCGGGACAAGAAAAAGGACACCGTGCCCTGGTTCCCCAGAACCATCCAGGAACTGGACAGATTCGCCAACCAGATCCTGTCCTACGGCGCCGAGCTGGATGCCGACCACCCTGGCTTCAAGGACCCCGTGTACCGGGCCAGACGGAAGCAGTTCGCCGATATCGCCTACAACTACCGGCACGGCCAGCCCATCCCCAGAGTCGAGTACATGGAAGAGGAGAAGAAAACCTGGGGCACCGTGTTCAAGACCCTGAAGTCCCTGTACAAGACCCACGCCTGCTACGAGTACAACCACATCTTCCCACTGCTCGAAAAGTACTGCGGCTTCCACGAGGACAATATCCCTCAGCTGGAGGACGTGTCCCAGTTTCTGCAGACCTGCACCGGCTTCAGACTCAGGCCTGTGGCCGGCCTGCTGAGCAGCAGAGATTTTCTGGGCGGACTGGCCTTCCGGGTGTTCCACTGCACCCAGTACATCAGACACGGCAGCAAGCCCATGTACACCCCTGAGCCCGACATCTGCCACGAGCTGCTGGGACATGTGCCCCTGTTCAGCGACAGAAGCTTCGCCCAGTTCAGCCAGGAAATCGGCCTGGCCTCTCTGGGCGCTCCCGACGAGTATATCGAGAAGCTGGCCACCATCTACTGGTTCACCGTGGAATTCGGCCTGTGCAAGCAGGGCGACAGCATCAAGGCCTATGGCGCCGGACTCCTGTCCAGCTTCGGCGAGCTGCAGTACTGTCTGAGCGAGAAGCCCAAGCTGCTGCCCCTGGAACTGGAAAAGACCGCCATCCAGAACTACACCGTGACCGAGTTCCAGCCCCTGTACTACGTGGCCGAGAGCTTCAACGACGCCAAAGAAAAAGTGCGGAACTTCGCCGCCACCATCCCTCGGCCCTTCAGCGTCAGATACGACCCCTACACCCAGCGGATCGAGGTGCTGGACAACACACAGCAGCTGAAAATTCTGGCCGACTCCATCAACAGCGAGATCGGCATCCTGTGCAGCGCCCTGCAGAAAATCAAGTGA (SEQ ID NO:2) XL32 & XL32.1 衣殼胺基酸序列 MAADGYLPDWLEDNLSEGIREWWALKPGAPKPKANQQKQDDGRGLVLPGYKYLGPFNGLDKGEPVNAADAAALEHDKAYDQQLQAGDNPYLRYNHADAEFQERLQEDTSFGGNLGRAVFQAKKRVLEPLGLVEEGAKTAPGKKRPVEPSPQRSPDSSTGIGKKGQQPARKRLNFGQTGDSESVPDPQPLGEPPAAPSGVGPNTMASGGGAPMADNNEGADGVGNASGNWHCDSTWLGDRVITTSTRTWALPTYNNHLYKQISSASTGASNDNHYFGYSTPWGYFDFNRFHCHFSPRDWQRLINNNWGFRPKRLNFKLFNIQVKEVTTNDGVTTIANNLTSTVQVFSDSEYQLPYVLGSAHQGCLPPFPADVFMIPQYGYLTLNNGSQAVGRSSFYCLEYFPSQMLRTGNNFTFSYTFEEVPFHSSYAHSQSLDRLMNPLIDQYLYYLNRTQNQSGSAQNKDLLFSRGSPAGMSVQPKNWLPGPCYRQQRVSKTKTDNNNSNFTWTGASKYNLNGRESIINPGTAMASHKDDKDKFFPMSGVMIFGKESAGASNTALDNVMITDEEEIKATNPVATERFGTVAVNLQSSSTDPATGDVHVMGALPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPPPQILIKNTPVPANPPAEFSATKFASFITQYSTGQVSVEIEWELQKENSKRWNPEVQYTSNYAKSANVDFTVDNNGLYTEPRPIGTRYLTRPL (SEQ ID NO:3) XL32 衣殼 DNA 序列 ATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACAACCTCTCTGAGGGCATTCGCGAGTGGTGGGCGCTGAAACCTGGAGCCCCGAAGCCCAAAGCCAACCAGCAAAAGCAGGACGACGGCCGGGGTCTGGTGCTTCCTGGCTACAAGTACCTCGGACCCTTCAACGGACTCGACAAGGGGGAGCCCGTCAACGCGGCGGACGCAGCGGCCCTGGAGCACGACAAGGCCTACGACCAGCAGCTGCAGGCGGGTGACAATCCGTACCTGCGGTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGATACGTCTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAGAAGCGGGTTCTCGAACCTCTCGGTCTGGTTGAGGAAGGCGCTAAGACGGCTCCTGGAAAGAAGAGACCGGTAGAGCCATCACCCCAGCGTTCTCCAGACTCCTCTACGGGCATCGGCAAGAAAGGCCAACAGCCCGCCAGAAAAAGACTCAATTTTGGTCAGACTGGCGACTCAGAGTCAGTTCCAGACCCTCAACCTCTCGGAGAACCTCCAGCAGCGCCCTCTGGTGTGGGACCTAATACAATGGCTTCAGGCGGTGGCGCACCAATGGCAGACAATAACGAAGGCGCCGACGGAGTGGGTAATGCCTCAGGAAATTGGCATTGCGATTCCACATGGCTGGGCGACAGAGTCATCACCACCAGCACCCGAACATGGGCCTTGCCCACCTATAACAACCACCTCTACAAGCAAATCTCCAGTGCTTCAACGGGGGCCAGCAACGACAACCACTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGATTTCAACAGATTCCACTGCCATTTCTCACCACGTGACTGGCAGCGACTCATCAACAACAATTGGGGATTCCGGCCCAAGAGACTCAACTTCAAGCTCTTCAACATCCAAGTCAAGGAGGTCACGACGAATGATGGCGTCACGACCATCGCTAATAACCTTACCAGCACGGTTCAAGTCTTCTCGGACTCGGAGTACCAGTTGCCGTACGTCCTCGGCTCTGCGCACCAGGGCTGCCTCCCTCCGTTCCCGGCGGACGTGTTCATGATTCCGCAATACGGCTACCTGACGCTCAACAATGGCAGCCAAGCCGTGGGACGTTCATCCTTTTACTGCCTGGAATATTTCCCTTCTCAGATGCTGAGAACGGGCAACAACTTTACCTTCAGCTACACCTTTGAGGAAGTGCCTTTCCACAGCAGCTACGCGCACAGCCAGAGCCTGGACCGGCTGATGAATCCTCTCATCGACCAGTACCTGTATTACCTGAACAGAACTCAGAATCAGTCCGGAAGTGCCCAAAACAAGGACTTGCTGTTTAGCCGTGGGTCTCCAGCTGGCATGTCTGTTCAGCCCAAAAACTGGCTACCTGGACCCTGTTACCGGCAGCAGCGCGTTTCTAAAACAAAAACAGACAACAACAACAGCAACTTTACCTGGACTGGTGCTTCAAAATATAACCTCAATGGGCGTGAATCCATCATCAACCCTGGCACTGCTATGGCCTCACACAAAGACGACAAAGACAAGTTCTTTCCCATGAGCGGTGTCATGATTTTTGGAAAGGAGAGCGCCGGAGCTTCAAACACTGCATTGGACAATGTCATGATCACAGACGAAGAGGAAATCAAAGCCACTAACCCCGTGGCCACCGAAAGATTTGGGACTGTGGCAGTCAATCTCCAGAGCAGCAGCACAGACCCTGCGACCGGAGATGTGCATGTTATGGGAGCCTTACCTGGAATGGTGTGGCAAGACAGAGACGTATACCTGCAGGGTCCTATTTGGGCCAAAATTCCTCACACGGATGGACACTTTCACCCGTCTCCTCTCATGGGCGGCTTTGGACTTAAGCACCCGCCTCCTCAGATCCTCATCAAAAACACGCCTGTTCCTGCGAATCCTCCGGCAGAGTTTTCGGCTACAAAGTTTGCTTCATTCATCACCCAGTATTCCACAGGACAAGTGAGCGTGGAGATTGAATGGGAGCTGCAGAAAGAAAACAGCAAACGCTGGAATCCCGAAGTGCAGTATACATCTAACTATGCAAAATCTGCCAACGTTGATTTTACTGTGGACAACAATGGACTTTATACTGAGCCTCGCCCCATTGGCACCCGTTACCTCACCCGTCCCCTGTAA(SEQ ID NO:4) XL32.1 衣殼 DNA 序列 ATGGCTGCCGATGGTTATCTTCCAGATTGGCTCGAGGACAACCTCTCTGAGGGCATTCGCGAGTGGTGGGCGCTGAAACCTGGAGCCCCGAAGCCCAAAGCCAACCAGCAAAAGCAGGACGACGGCCGGGGTCTGGTGCTTCCTGGCTACAAGTACCTCGGACCCTTCAACGGACTCGACAAGGGGGAGCCCGTCAACGCGGCGGACGCAGCGGCCCTCGAGCACGACAAGGCCTACGACCAGCAGCTGCAGGCGGGTGACAATCCGTACCTGCGGTATAACCACGCCGACGCCGAGTTTCAGGAGCGTCTGCAAGAAGATACGTCTTTTGGGGGCAACCTCGGGCGAGCAGTCTTCCAGGCCAAGAAGCGGGTTCTCGAACCTCTCGGTCTGGTTGAGGAAGGCGCTAAGACGGCTCCTGGAAAGAAGAGACCGGTAGAGCCATCACCCCAGCGTTCTCCAGACTCCTCTACGGGCATCGGCAAGAAAGGCCAACAGCCCGCCAGAAAAAGACTCAATTTTGGTCAGACTGGCGACTCAGAGTCAGTTCCAGACCCTCAACCTCTCGGAGAACCTCCAGCAGCGCCCTCTGGTGTGGGACCTAATACAATGGCTTCAGGCGGTGGCGCACCAATGGCAGACAATAACGAAGGCGCCGACGGAGTGGGTAATGCCTCAGGAAATTGGCATTGCGATTCCACATGGCTGGGCGACAGAGTCATCACCACCAGCACCCGAACATGGGCCTTGCCCACCTATAACAACCACCTCTACAAGCAAATCTCCAGTGCTTCAACGGGGGCCAGCAACGACAACCACTACTTCGGCTACAGCACCCCCTGGGGGTATTTTGATTTCAACAGATTCCACTGCCATTTCTCACCACGTGACTGGCAGCGACTCATCAACAACAATTGGGGATTCCGGCCCAAGAGACTCAACTTCAAGCTCTTCAACATCCAAGTCAAGGAGGTCACGACGAATGATGGCGTCACGACCATCGCTAATAACCTTACCAGCACGGTTCAAGTCTTCTCGGACTCGGAGTACCAGTTGCCGTACGTCCTCGGCTCTGCGCACCAGGGCTGCCTCCCTCCGTTCCCGGCGGACGTGTTCATGATTCCGCAATACGGCTACCTGACGCTCAACAATGGCAGCCAAGCCGTGGGACGTTCATCCTTTTACTGCCTGGAATATTTCCCTTCTCAGATGCTGAGAACGGGCAACAACTTTACCTTCAGCTACACCTTTGAGGAAGTGCCTTTCCACAGCAGCTACGCGCACAGCCAGAGCCTGGACCGGCTGATGAATCCTCTCATCGACCAGTACCTGTATTACCTGAACAGAACTCAGAATCAGTCCGGAAGTGCCCAAAACAAGGACTTGCTGTTTAGCCGTGGGTCTCCAGCTGGCATGTCTGTTCAGCCCAAAAACTGGCTACCTGGACCCTGTTACCGGCAGCAGCGCGTTTCTAAAACAAAAACAGACAACAACAACAGCAACTTTACCTGGACTGGTGCTTCAAAATATAACCTCAATGGGCGTGAATCCATCATCAACCCTGGCACTGCTATGGCCTCACACAAAGACGACAAAGACAAGTTCTTTCCCATGAGCGGTGTCATGATTTTTGGAAAGGAGAGCGCCGGAGCTTCAAACACTGCATTGGACAATGTCATGATCACAGACGAAGAGGAAATCAAAGCCACTAACCCCGTGGCCACCGAAAGATTTGGGACTGTGGCAGTCAATCTCCAGAGCAGCAGCACAGACCCTGCGACCGGAGATGTGCATGTTATGGGAGCCTTACCTGGAATGGTGTGGCAAGACAGAGACGTATACCTGCAGGGTCCTATTTGGGCCAAAATTCCTCACACGGATGGACACTTTCACCCGTCTCCTCTCATGGGCGGCTTTGGACTTAAGCACCCGCCTCCTCAGATCCTCATCAAAAACACGCCTGTTCCTGCGAATCCTCCGGCAGAGTTTTCGGCTACAAAGTTTGCTTCATTCATCACCCAGTATTCCACAGGACAAGTGAGCGTGGAGATTGAATGGGAGCTGCAGAAAGAAAACAGCAAACGCTGGAATCCCGAAGTGCAGTATACATCTAACTATGCAAAATCTGCCAACGTTGATTTTACTGTGGACAACAATGGACTTTATACTGAGCCTCGCCCCATTGGCACCCGTTACCTCACCCGTCCCCTGTAA (SEQ ID NO:6) 修飾的 PrT2 增強子序列 GCGAGAACTTGTGCCTCCCCGTGTTCC TG ACCTTTG A CCCTCTGTCCTACTTAGACTAA TATT GAC TTTG GGTACTGCAAACAGGAAATGGGGGAGGGA TTCGAT GCGAGAACTTGTGCCTCCCCGTGTTCC TG ACCTTTG A CCCTCTGTCCTACTTAGACTAA TATT GAC TTTG GGTACTGCAAACAGGAAATGGGGGAGGGA(SEQ ID NO:7) 加底線的,肝核因子結合位點; 粗體,引入以產生更高親和力的結合位點的修飾,斜體,重複序列 修飾的 A1MB2 增強子 GGCCCCAGGTTAATTTTTAAAAAGCA GTCAAA GGTC A AAGTGGCCCTTGGCAGCATTTACTCTCTC T A TT GACT TTG GTTAATAATCTCAGGAGCACAAACATTCCTGGAGGCAGGAGAAGAAATCAACATCCTGGACTTATCCTCTGGGCCTCTCCCCACC TTCGAT GGCCCCAGGTTAATTTTTAAAAAGCA GTCAAA GGTC A AAGTGGCCCTTGGCAGCATTTACTCTCTC T ATT GACT TTG GTTAATAATCTCAGGAGCACAAACATTCCTGGAGGCAGGAGAAGAAATCAACATCCTGGACTTATCCTCTGGGCCTCTCCCCACC(SEQ ID NO:8) 加底線的,肝核因子結合位點; 粗體,引入以產生更高親和力的結合位點的修飾,斜體,重複序列 修飾的 Ealb 序列 GTTCCTAGATTACATTACACATTCTGCAAGCATAGCACA G GTCAA AGTTC A ACTTTAATTACTTTCATTTTCTTGTATCCTCACAGCCTAGAAAATAACCTGCGTTACAGCATCCACTCAGTATCCCTTGAGCATGAGGTGACACTACTTAACATAGGGACGAGATGGTACTTTGTGTCTCCTGCTCTGTCAGCAGGGCACTGTACTTGCTGATACCAGGGAA T ATT GATT TG TAAATACCATCATTCCGAACGTGTTTGCCTTGGCCAGTTTTCCATGTACATGCAGAAAGAAGTTTGGGACTGATCAATACAGTCCTCTGCCTTTAAAGCAATAGGAAAAGGCCAACTTGTCTACGTTTAGTATGTGGCTGTAGA (SEQ ID NO:9) 加底線的,肝核因子結合位點; 粗體,引入以產生更高親和力的結合位點的修飾,斜體,重複序列 HEII 增強子 CCATCAGATCCTGCCCAAGGTCTTACATAAGA GGACTCTTGGACTCCCAGCAATGTCAACGACCGACCTTGAGGCCTACTTCAAAGACTGTGTGTTTAAGGACTGGGAGGAGCTGGGGGAGGAGATTAGGTTAAAGGTCTTTGTATTAGGAGGCTG (SEQ ID NO:10) CRM8 增強子 GGGGAGGCTGCTGGTGAATATTAACCAAGGTCACCCCAGTTATCGGAGGAGCAAACAGGGGCTAAGTCCAC (SEQ ID NO:11) 3'Alb 穩定性元件 CTCAATTGGATGACACTAGTCATCACATTTAAAAGCATCTCAGGTAACTATATTTTGAATTTTTTAAAAAAGTAACTATAATAGTTATTATTAAAATAGCAAAGATTGACCATTTCCAAGAGCCATATAGACCAGCACCGACCACTATTCTAAACTATTTATGTATGTAAATATTAGCTTTTAAAATTCTCAAAATAGTTGCTGAGTTGGGAACCACTATTATTTCTATCGATTCAGCAGCCGTAAGTCTAGGACAGGCTTAAATTGTTTTCACTGGTGTAAATTGCAGAAAGATGATCTAAGTAATTTGGCATTTATTTTAATAGGTTTGAAAAACACATGCCATTTTACAAATAAGACTTATATTTGTCCTTTTGTTTTTCAGCCTACCATGAGAATAAGAGAAAGAAAATGAAGATCAAAAGCTTATTCATCTGTTTTTCTTTTTCGTTGGTGTAAAGCCAACACCCTGTCTAAAAAACATAAATTTCTTTAATCATTTTGCCTCTTTTCTCTGTGCTTCAATTAATAAAAAATGGAAAGAATCTAATAGAGTGGTACAGCACTGTTATTTTTCAAAGATGTGTTGCTATCCTGAAAATTCTGTAGGTTCTGTGGAAGTTCCAGTGTTCTCTCTTATTCCACTTCGGTAGAGGATTTCTAGTTTCTTGTGGGCTAATTAAATAAATCATTAATACTCTTCTAAGTTATGGATTATAAACATTCAAAATAATATTTTGACATTATGATAATTCTGAATAAAAGAACAAAAACCATGGTATAGGTAAGGAATATAAAACATGGCTTTTACCTTAGAAAAAACAATTCTAAAATTCATATGGAATCAAAAAAGAGCCTGCAGGTACCCT (SEQ ID NO:12) 3'alb SMAR 穩定性元件 CTCAATTGGATGACACTAGTCATCACATTTAAAAGCATCTCAGGTAACTATATTTTGAATTTTTTAAAAAAGTAACTATAATAGTTATTATTAAAATAGCAAAGATTGACCATTTCCAAGAGCCATATAGACCAGCACCGACCACTATTCTAAACTATTTATGTATGTAAATATTAGCTTTTAAAATTCTCAAAATAGTTGCTGAGTTGGGAACCACTATTATTTCTATCTACTGTTTTAATTAAAATTATCTCTAAGGCATGTGAACTGGCTGTCTTGGTTTTCATCTGTACTTCATCTGCTACCTCTGTGACCTGAAACATATTTATAATTCCATTAAGCTGTGCATATGATAGATTTATCATATGTATTTTCCTTAAAGGATTTTTGTAAGAACTAATTGAATTGATACCTGTAAAGTCTTTATCACACTACCCAATAAATAATAAATCTCTTTGTTCAGCTCTCTGTTTCTATAAATATGTACCAGTTTTATTGTTTTTAGTGGTAGTGATTTTATTCTCTTTCTATATATATACACACACATGTGTGCATTCATAAATATATACAATTTTTATGAATAAAAAATTATTAGCAATCAATATTGAAAACCACTGATTTTTGTTTATGTGAGCAAACAGCAGATTAAAAGGAATTCCTGCAGATTCAGCAGCCGTAAGTCTAGGACAGGCTTAAATTGTTTTCACTGGTGTAAATTGCAGAAAGATGATCTAAGTAATTTGGCATTTATTTTAATAGGTTTGAAAAACACATGCCATTTTACAAATAAGACTTATATTTGTCCTTTTGTTTTTCAGCCTACCATGAGAATAAGAGAAAGAAAATGAAGATCAAAAGCTTATTCATCTGTTTTTCTTTTTCGTTGGTGTAAAGCCAACACCCTGTCTAAAAAACATAAATTTCTTTAATCATTTTGCCTCTTTTCTCTGTGCTTCAATTAATAAAAAATGGAAAGAATCTAATAGAGTGGTACAGCACTGTTATTTTTCAAAGATGTGTTGCTATCCTGAAAATTCTGTAGGTTCTGTGGAAGTTCCAGTGTTCTCTCTTATTCCACTTCGGTAGAGGATTTCTAGTTTCTTGTGGGCTAATTAAATAAATCATTAATACTCTTCTAAGTTATGGATTATAAACATTCAAAATAATATTTTGACATTATGATAATTCTGAATAAAAGAACAAAAACCATGGTATAGGTAAGGAATATAAAACATGGCTTTTACCTTAGAAAAAACAATTCTAAAATTCATATGGAATCAAAAAAGAGCCTGCAGGTACCCT(SEQ ID NO:13) ITR-mA1MB2-mTTR482-HI2-WT hPAH/E-BGHpA- 填充物 -ITR 序列; WT PAH 的編碼序列加有底線 TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTTACCGCGTGGCCCCAGGTTAATTTTTAAAAAGCAGTCAAAGGTCAAAGTGGCCCTTGGCAGCATTTACTCTCTCTATTGACTTTGGTTAATAATCTCAGGAGCACAAACATTCCTGGAGGCAGGAGAAGAAATCAACATCCTGGACTTATCCTCTGGGCCTCTCCCCACCTTCGATGGCCCCAGGTTAATTTTTAAAAAGCAGTCAAAGGTCAAAGTGGCCCTTGGCAGCATTTACTCTCTCTATTGACTTTGGTTAATAATCTCAGGAGCACAAACATTCCTGGAGGCAGGAGAAGAAATCAACATCCTGGACTTATCCTCTGGGCCTCTCCCCACCGATATCTACCTGCTGATCGCCCGGCCCCTGTTCAAACATGTCCTAATACTCTGTCGGGGCAAAGGTCGGCAGTAGTTTTCCATCTTACTCAACATCCTCCCAGTGTACGTAGGATCCTGTCTGTCTGCACATTTCGTAGAGCGAGTGTTCCGATACTCTAATCTCCCGGGGCAAAGGTCGTATTGACTTAGGTTACTTATTCTCCTTTTGTTGACTAAGTCAATAATCAGAATCAGCAGGTTTGGAGTCAGCTTGGCAGGGATCAGCAGCCTGGGTTGGAAGGAGGGGGTATAAAAGCCCCTTCACCAGGAGAAGCCGTCACACAGATCCACAAGCTCCTGCTAGCCAATTGAGTCGCTGCGCGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCGCCTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTGTAATTAGCGCTTGGTTTATTGACGGCTTGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTGAGGGGCTCCGGGAAGGCCCTTTGTGCGGGGGGAGCGGCTCGGGGGGTGCGTGCGTGTGTGTGTGCGTGGGGAGCGCCGCGTGCGGCTCCGCGCTGCCCGGCGGCTGTGAGCGCTGCGGGCGCGGCGCGGGGCTTTGTGCGCTCCGCAGTGTGCGCGAGGGGAGCGGGGCCGGGGGCGGTGCCCCGCGGTGCGGGGGGGGCTGCGAGGGGAACAAAGGCTGCGTGCGGGGTGTGTGCGTGGGGGGGTGAGCAGGGGGTGTGGGCGCGTCGGTCGGGCTGCAACCCCCCCTGCACCCCCCTCCCCGAGTTGCTGAGCACGGCCCGGCTTCGGGTGCGGGGCTCCGTACGGGGCGTGGCGCGGGGCTCGCCGTGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGCGGGGCCGCCTCGGGCCGGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCCGGAGCGCCGGCGGCTGTCGAGGCGCGGCGAGCCGCAGCCATTGCCTTTTTTGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCCCAAATCTGTGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCTCTAGCGGGCGCGGGGCGAAGCGGTGCGGCGCCGGCAGGAAGGAATTGGGCGGGGAGGGCCTTCGTGCGTCGCCGCGCCGCCGTCCCCTTCTCCCTCTCCAGCCTCGGGGCTGTCCGCGGGGGGACGGCTGCCTTCGGGGGGGACGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGGCTCTAGAGCCTCTGCTAACCTTGTTCTTGCCTTCTTCTTTTTCCTACAGCTCCTGGGCAACGTGCTGGTTATTGTGCTGTCTCATCATTTTGGCAAAGAATTCATTTCGAAGCCGCCACC ATGAGCACAGCCGTGCTGGAAAACCCCGGCCTGGGCAGAAAGCTGAGCGACTTCGGCCAGGAAACCAGCTACATCGAGGACAACTGCAACCAGAACGGCGCCATCAGCCTGATCTTCAGCCTGAAAGAAGAAGTGGGCGCCCTGGCCAAGGTGCTGCGGCTGTTCGAGGAGAACGACGTGAACCTGACCCACATCGAGAGCCGGCCCAGCAGACTGAAGAAGGACGAGTACGAGTTCTTCACCCACCTGGACAAGCGGAGCCTGCCCGCCCTGACCAACATCATCAAGATCCTGCGGCACGACATCGGCGCCACCGTGCACGAGCTGAGCCGGGACAAGAAAAAGGACACCGTGCCCTGGTTCCCCAGAACCATCCAGGAACTGGACAGATTCGCCAACCAGATCCTGTCCTACGGCGCCGAGCTGGATGCCGACCACCCTGGCTTCAAGGACCCCGTGTACCGGGCCAGACGGAAGCAGTTCGCCGATATCGCCTACAACTACCGGCACGGCCAGCCCATCCCCAGAGTCGAGTACATGGAAGAGGAGAAGAAAACCTGGGGCACCGTGTTCAAGACCCTGAAGTCCCTGTACAAGACCCACGCCTGCTACGAGTACAACCACATCTTCCCACTGCTCGAAAAGTACTGCGGCTTCCACGAGGACAATATCCCTCAGCTGGAGGACGTGTCCCAGTTTCTGCAGACCTGCACCGGCTTCAGACTCAGGCCTGTGGCCGGCCTGCTGAGCAGCAGAGATTTTCTGGGCGGACTGGCCTTCCGGGTGTTCCACTGCACCCAGTACATCAGACACGGCAGCAAGCCCATGTACACCCCTGAGCCCGACATCTGCCACGAGCTGCTGGGACATGTGCCCCTGTTCAGCGACAGAAGCTTCGCCCAGTTCAGCCAGGAAATCGGCCTGGCCTCTCTGGGCGCTCCCGACGAGTATATCGAGAAGCTGGCCACCATCTACTGGTTCACCGTGGAATTCGGCCTGTGCAAGCAGGGCGACAGCATCAAGGCCTATGGCGCCGGACTCCTGTCCAGCTTCGGCGAGCTGCAGTACTGTCTGAGCGAGAAGCCCAAGCTGCTGCCCCTGGAACTGGAAAAGACCGCCATCCAGAACTACACCGTGACCGAGTTCCAGCCCCTGTACTACGTGGCCGAGAGCTTCAACGACGCCAAAGAAAAAGTGCGGAACTTCGCCGCCACCATCCCTCGGCCCTTCAGCGTCAGATACGACCCCTACACCCAGCGGATCGAGGTGCTGGACAACACACAGCAGCTGAAAATTCTGGCCGACTCCATCAACAGCGAGATCGGCATCCTGTGCAGCGCCCTGCAGAAAATCAAGTGAACTAGTCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGTACCACCGGTCCAGGGGTGAGTGAAGGTTTGGAAGAGTGTAGCAGAATAAGAAACCATGAGTCCCCTCCCTGAGAAGCCCTGAGCCCCCTTGACGACACACATCCCTCGAGGCTCAGCTTCATCATCTGTAAAAGGTGCTGAAACTGACCATCCAAGCTGCCGAAAAAGATTGTGTGGGGATAATTCAAAACTAGAGGAAGATGCAGAATTTCTACATCGTGGCGATGTCAGGCTAAGAGTTGCCATCGTGGCTGTCCATCGATTTTATTGGAATCATATGTTTATTTGAGGGTGTCTTGGATATTACAAATAAATTGTTGGAGCATCAGGCATATTTGGTAATTCTGTCTAAGGCTCCCTGCCCCTTGTTAATTGGCAGCTCAGTTATTCATCCAGGGCAAACATTCTGCTTACTATTCCTGAGAGCTTTCCTCATCCTCTAGATTGGCAGGGGAATTGCAGTTGCCTGAGCAGCCTCCCCTCTGCCATACCAACAGAGCTTCACCATCGAGGCTTGCAGAGTGGACAGGGGCCTCAGGGACCCCTGATCCCAGCTTTCTCATTGGACAGAAGGAGGAGACTGGGGCTGGAGAGGGACCTGGGCCCCCACTAAGGCCACAGCAGAGCCAGGACTTTAGCTGTGCTGACTGCAGCCTGGCTTGCCTCCACTGCCCTCCTTTGCCTCAAGAGCAAGGGAGCCTCAGAGTGGAGGAAGCAGCCCCTGGCCTTGCCTCCCACCTCCCCTCCCCTTTGCTGTTTTCCTGGGACAGTGGGAGCTGGCTTAGATTGCCCTGGGGCCCCCAGGACCCTGGCATTTTAACCCCTCAGGGGCAGGAAGGCAGCCTGAGATACAGAAGAGTCCATCACCTGCTGTATGCCACACACCATCCCCACAGTCGACATTTAAATTAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA (SEQ ID NO:14) 修飾的雞 β- 肌動蛋白( CBA / β- 珠蛋白雜合 / 內含子( HI2 AGTCGCTGCGCGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCGCCTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTGTAATTAGCGCTTGGTTTAT TGACGGCTTGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTGAGGGGCTCCGGGAAGGCCCTTTGTGCGGGGGGAGCGGCTCGGGGGGTGCGTGCGTGTGTGTGTGCGTGGGGAGCGCCGCGTGCGGCTCCGCGCTGCCCGGCGGCTGTGAGCGCTGCGGGCGCGGCGCGGGGCTTTGTGCGCTCCGCAGTGTGCGCGAGGGGAGCGGGGCCGGGGGCGGTGCCCCGCGGTGCGGGGGGGGCTGCGAGGGGAACAAAGGCTGCGTGCGGGGTGTGTGCGTGGGGGGGTGAGCAGGGGGTGTGGGCGCGTCGGTCGGGCTGCAACCCCCCCTGCACCCCCCTCCCCGAGTTGCTGAGCACGGCCCGGCTTCGGGTGCGGGGCTCCGTACGGGGCGTGGCGCGGGGCTCGCCGTGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGCGGGGCCGCCTCGGGCCGGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCCGGAGCGCCGGCGGCTGTCGAGGCGCGGCGAGCCGCAGCCATTGCCTTTT TTGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCCCAAATCTGTGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCTCTAGCGGGCGCGGGGCGAAGCGGTGCGGCGCCGGCAGGAAGGAA TTGGGCGGGGAGGGCCTTCGTGCGTCGCCGCGCCGCCGTCCCCTTCTCCCTCTCCAGCCTCGGGGCTGTCCGCGGGGGGACGGCTGCCTTCGGGGGGGACGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGGCTCTAGAGCCTCTGCTAACC TTGTTC TTGCCTTCTTCTTTTTCCTACAGCTCCTGGGCAACGTGCTGGTTATTGTGCTGTCTCATCATTTTGGCAAAGAATTC (SEQ ID NO:15) 0.9 kb A1AT 內含子填充序列 CCAGGGGTGAGTGAAGGTTTGGAAGAGTGTAGCAGAATAAGAAACCATGAGTCCCCTCCCTGAGAAGCCCTGAGCCCCCTTGACGACACACATCCCTCGAGGCTCAGCTTCATCATCTGTAAAAGGTGCTGAAACTGACCATCCAAGCTGCCGAAAAAGATTGTGTGGGGATAATTCAAAACTAGAGGAAGATGCAGAATTTCTACATCGTGGCGATGTCAGGCTAAGAG TTGCCATCGTGGCTGTCCATCGATTTTATTGGAATCATATGTTTATTTGAGGGTGTCTTGGATATTACAAATAAA TTGTTGGAGCATCAGGCATATTTGGTAATTCTGTCTAAGGCTCCCTGCCCCTTGTTAATTGGCAGCTCAGTTATTCATCCAGGGCAAACATTCTGCTTACTATTCCTGAGAGCTTTCCTCATCCTCTAGATTGGCAGGGGAA TTGCAG TTGCCTGAGCAGCCTCCCCTCTGCCATACCAACAGAGCTTCACCATCGAGGC TTGCAGAGTGGACAGGGGCCTCAGGGACCCCTGATCCCAGCTTTCTCATTGGACAGAAGGAGGAGACTGGGGCTGGAGAGGGACCTGGGCCCCCACTAAGGCCACAGCAGAGCCAGGACTTTAGCTGTGCTGACTGCAGCCTGGCTTGCCTCCACTGCCCTCCTTTGCCTCAAGAGCAAGGGAGCCTCAGAGTGGAGGAAGCAGCCCCTGGCCTTGCCTCCCACCTCCCCTCCCCT TTGCTGTTTTCCTGGGACAGTGGGAGCTGGCTTAGA TTGCCCTGGGGCCCCCAGGACCCTGGCATTTTAACCCCTCAGGGGCAGGAAGGCAGCCTGAGATACAGAAGAGTCCATCACCTGCTGTATGCCACACACCATCCCCACAGTCGACATTTAAATT (SEQ ID NO:16)
1A- 1C示出PAH蛋白的體外比較以及野生型PAH和PAH變體的活性水平。將四種表現質體(n=2/質體)轉染到人肝細胞株Huh7細胞中,並且72小時後收集細胞製備裂解物。 1A示出PAH活性水平。13C-Phe用作基質並且測定運行30 min。產生的產物(13C-Tyr)的量藉由LC-MS/MS測量,並針對總蛋白對值進行歸一化。樣品的身份指示於x軸上,從左到右包括模擬對照、hPAH/G、hPAH-V1/G、hPAH/E(野生型hPAH)、hPAH-V1/E、和鼠PAH(mPAH)。y軸示出PAH活性水平(μM 13C Tyr/mg蛋白質)。 1B示出顯示PAH蛋白水平的蛋白質印跡。將細胞裂解物(15 µg/泳道)在SDS-PAGE凝膠上運行,轉移到膜上,然後用對人和小鼠PAH蛋白二者均有反應的抗PAH抗體探測。樣品的身份在印跡上方指示,從左到右包括hPAH-V1/G、野生型hPAH/E、hPAH-V1/E、hPAH/G和mPAH。 1C示出藉由蛋白質印跡使用AzureSpot軟體確定的PAH蛋白水平的量化。樣品的身份指示於x軸上,從左到右包括hPAH-V1/G、野生型hPAH/E、hPAH-V1/E、hPAH/G和mPAH。在 1A- 1C中,“hPAH-V1/G”指示具有E183G胺基酸取代之人類PAH變體1;“WT hPAH/E”指示具有E183殘基的野生型人PAH;“hPAH-V1/G”指示具有E183殘基之人類PAH變體1;“hPAH/G”指示具有E183G胺基酸取代的突變人PAH;以及“mPAH”指示帶有FLAG標籤的小鼠PAH,其用作陽性對照。
2A- 2E示出比較AAV衣殼用於向非人靈長類動物(NHP)的肝細胞和器官進行基因轉移以及驗證NHP中的A1M2-mTTR啟動子的實驗結果。 2A示出用含有CBA-EGFP表現匣的AAV載體轉導之人類肝細胞株(Huh7細胞)中的EGFP蛋白水平,從左到右所述載體使用AAV8、AAV-DJ、AAV-LK03、AAV-XL14和AAV-XL32衣殼載體。 2B示出NHP肝臟(深灰色)和脾臟(淺灰色)中載體基因組/細胞的水平。在IV遞送5e12 vg/kg後2周後,藉由qPCR測量載體基因組拷貝。示出了投予載體後14天每隻動物肝臟和脾臟中的VG拷貝。肝臟的值代表從不同位置收集的四個樣品的平均值。脾臟的值是從脾臟中間部分收集的兩個相鄰樣品的平均值。 2C示出了NHP腎臟(深灰色)、肌肉(淺灰色)和心臟(中灰色)中載體基因組/細胞的水平。值代表從每個組織收集的兩個相鄰樣品的平均值。衣殼蛋白的身份沿x軸指示,從左到右包括AAV8、AAV-DJ、AAV-LK03、AAV-XL14或AAV-XL32。 2D示出所比較的五種衣殼的載體生物分佈比較的總結。被投予了載體的NHP的肝臟、脾臟、肌肉、心臟或腎臟的載體基因組/細胞的水平顯示在y軸上,所述載體為AAV8、AAV-DJ、AAV-LK03、AAV-XL14或AAV-XL32衣殼載體,如在x軸上從左到右所指示。圖2E示出在投予AAV8、AAV-DJ、AAV-LK03、AAV-XL14或AAV-XL32衣殼載體後右內葉的三部分和左內葉的一部分中EGFP的表現。
3A- 3E示出針對NHP肝臟基因轉移,測量XL32.1/ mA1MB2-mTTR482--EGFP的劑量-反應的實驗結果。 3A示出在投予了僅媒劑對照或5e11、2e12、5e12和2e13 vg/kg劑量的XL32.1/ mA1MB2-mTTR482-(如x軸所指示)的NHP中,在NHP肝臟中載體基因組的豐度,如y軸所指示。平均載體基因組拷貝/細胞指示在底部X軸小圖中(n = 3/給藥群組)。M,雄性NHP,F,雌性NHP(顯著性:*,p < 0.05;**,p < 0.01)。 3B示出在投予了僅媒劑對照或5e11、2e12、5e12和2e13 vg/kg劑量的XL32.1/mA1MB2-mTTR482-EGFP(如x軸所指示)的NHP中,在NHP肝臟中源自載體的轉錄物的水平,如y軸所指示。 3C示出在投予了僅媒劑對照或5e11、2e12、5e12和2e13 vg/kg劑量的XL32.1/ mA1MB2-mTTR482-EGFP(如x軸所指示)的NHP中的EGFP蛋白水平,如y軸所指示。 3D示出肝臟載體基因組與源自載體的mRNA拷貝之間的相關性(該分析中省略了高劑量2e13 vg/kg)。 3E示出肝臟中源自載體的mRNA拷貝與eGFP蛋白水平之間的相關性。
4A- 4C示出在投予NHP的XL32.1/ mA1MB2-mTTR482-EGFP的劑量-反應研究中肝臟原位雜交分析的結果。 4A示出用以檢測肝臟中的載體的代表性原位雜交的圖像。在動物#203(2e12 vg/kg組)中的檢測顯示為右側的例子(藉由qPCR為3 vg/細胞)。 4B示出在投予了僅媒劑對照或5e11、2e12、5e12和2e13 vg/kg劑量的XL32.1/ mA1MB2-mTTR482-EGFP(如x軸所指示)的NHP中,藉由原位雜交檢測到的肝臟中EGFP-載體DNA陽性細胞的百分比,如y軸所指示。 4C示出藉由qPCR確定的平均VG拷貝數(y軸)與如藉由原位雜交確定的VG陽性細胞的百分比(x軸 之間的相關性。
5A-5B示出在NHP中XL32和XL32.1衣殼載體的生物分佈的比較。 5A示出肝臟和各種其他器官中載體基因組/細胞的水平。肝臟的值代表每組3隻動物的平均值(對每隻動物測試來自右內葉和左內葉的一個樣品),並且其他器官的值是三隻動物的平均值(一個樣品/動物)。圖5B示出肝臟中源自載體的mRNA的水平。每個值代表每個處理組的平均值(每隻動物 n = 2)。
6A- 6D示出在Pah-KO小鼠中XL32.1/WT hPAH的功效。 6A示出血液Phe水平的時間歷程。 6B示出第36天的血液Phe水平(為了觀察差異不包括HOM)。 6C示出血液Tyr水平的時間歷程。 6D示出第36天的血液Tyr水平。將載體(具有mA1MB2-mTTR482啟動子)以1e11、3e11和1e12 vg/小鼠的劑量藉由IV途徑投予成年雄性同型合子Pah-KO小鼠。載體處理群組含有n = 8-10隻動物/組,HET,n = 10,以及C57BL66,n = 5。縮寫:HOM,同型合子Pah-KO小鼠;HET,雜合Pah-KO小鼠;C57BL/6,野生型小鼠。
7A- 7E示出在Pah-KO小鼠的肝臟中藉由XL32.1/WT hPAH的基因轉移和轉導的分析。 7A示出肝臟中的載體DNA拷貝。 7B示出所有測試組織(肝臟、脾臟、肌肉、腎臟和肺)中的載體DNA。 7C示出肝臟中源自載體的mRNA的水平。 7D示出肝臟中每個細胞的載體基因組與源自載體的mRNA水平的相關性。 7E示出肝臟中的載體基因組與血液Phe水平的相關性。每個數據點代表一隻動物。每個細胞的歸一化基於5 pg DNA/細胞(vg/細胞)和30 pg/細胞(mRNA/細胞)。縮寫:HOM,同型合子PAH-KO小鼠
8A- 8C示出在Pah-KO小鼠的肝臟中在用XL32.1/WT hPAH遞送後PAH活性和蛋白水平的分析。 8A示出肝臟勻漿中的PAH活性。 8B示出藉由蛋白質印跡對PAH蛋白的檢測。 8C示出藉由PAH免疫組織化學對PAH陽性細胞的定位。載體處理群組含有n = 8-10隻動物/組,HET,n = 10,以及C57BL,n = 5。對於蛋白質印跡,每個群組中的三隻代表性動物用於分析,並且藉由b-肌動蛋白探測指示它們相等的蛋白質負載量。
9A 9B示出XL32.1/WT hPAH遞送至肝臟對腦胺基酸和神經傳導物水平的影響。 9A示出腦Phe、Tyr和Trp水平。 9B示出腦神經傳導物多巴胺、去甲腎上腺素和血清素水平。每個數據點代表一隻動物。對於腦胺基酸分析,載體處理群組含有n = 7-10隻動物/組,HET,n = 9,以及C57BL/6,n = 5。對於腦神經傳導物分析,載體處理群組含有n=7隻動物/組,HET,n = 6,以及C57BL/6,n = 4。藉由單因素方差分析進行統計分析。
10A 10B示出XL32.1/WT hPAH遞送後Pah-KO小鼠的行為分析。 10A示出從1(品質差)至5(品質高)分範圍內的每個得分的巢品質圖像。 10B示出rAAV-XL32.1/WT hPAH處理之前和之後的動物評分。每個數據點代表一隻動物。載體處理群組含有n = 8-10隻動物/組,HET,n = 10,以及C57BL/6,n = 5,藉由單因素方差分析進行統計分析。
11A- 11C示出在向Pah-KO小鼠投予AAVXL32.1/WT hPAH後的4個月研究期間的動物生長。 11A示出與處理前的HET和WT(C57BL/6)小鼠相比,Pah-KO小鼠(HOM和處理群組)中的體重顯著不同。 11B示出,在用WT PAH處理4個月後,與未處理的HOM小鼠相比,兩個較高劑量群組的體重顯著增加。 11C示出處理組中肝臟重量增加,並且與HET和WT小鼠相似。顯著性,*,p < 0.05;**,p < 0.01,***,p < 0.001,以及****,p < 0.0001,藉由單因素方差分析與圖基多重比較得出。每個數據點代表一隻動物(每組n,HOM = 9;低劑量,n = 6;中劑量,n = 8,高劑量,n = 8,HET,n = 8,以及WT,n = 8)。縮寫:HOM,同型合子Pah-KO小鼠;HET,雜合Pah-KO小鼠;WT,野生型C57BL/6小鼠。劑量vg/小鼠。
12A- 12C示出在向Pah-KO小鼠投予AAVXL32.1/WT hPAH後的4個月研究期間的血漿Phe水平。 12A示出120天內每個群組中的平均血液Phe水平。處理後7天( 12B)和120天( 12C)單獨小鼠的血液Phe水平。與未處理的HOM小鼠相比,所有處理組(劑量vg/小鼠)顯著降低了血液Phe水平。在任一時間點,與HET和WT小鼠相比,3e11和1e12劑量的WT PAH處理組之間沒有顯著差異。劑量1e11展現出變異性,且與HET/WT不可比。動物數量、統計分析和縮寫如 11A- 11C圖例。
13A- 13E示出向Pah-KO小鼠投予AAVXL32.1/WT hPAH後4個月肝臟中的載體DNA和mRNA。 13A示出肝臟中的載體DNA拷貝,並且 13B示出肝臟中源自載體的mRNA水平。兩個終點均顯示劑量-反應性增加。在肝臟中每個細胞的載體基因組與源自載體的mRNA水平存在良好相關性( 13C),並且在肝臟中載體基因組與血液Phe水平存在相關性( 13D)。後者顯示血液Phe正常化(100 uM)至少需要0.1 VG/細胞。 13E示出在每個處理群組中,在H&E染色切片中所示的載體DNA(紅色)以及轉錄物(綠色)的原位檢測的代表性圖像。動物數量、統計分析和縮寫如 11A- 11C中。
14A- 14D示出向Pah-KO小鼠投予AAVXL32.1/WT hPAH後4個月,肝臟中的PAH活性和PAH蛋白檢測。 14A示出肝臟勻漿中的PAH活性。在1e11和3e11處理群組中的PAH酶活性與在HET小鼠中的活性沒有顯著差異,而1e12處理產生的PAH活性顯著高於在正常小鼠中觀察到的。 14B示出在肝臟切片中藉由PAH IHC確認PAH蛋白的產生,並且使用HALO分析來定量PAH陽性細胞的百分比。 14C示出這與肝臟中載體DNA拷貝的相關性,顯示血液Phe正常化(100 μM)至少需要20%的PAH陽性細胞。 14D示出所有研究群組的PAH IHC的代表性圖像。每個圖像(動物#)中PAH陽性細胞百分比是:HOM(#4),0%;1e11(#19),38%;3e11(#21),62%;1e12(#34),72%;HET(#46),94%,和WT(#56),99%。
15A 15B示出向Pah-KO小鼠投予AAVXL32.1/WT hPAH後4個月的腦胺基酸和神經傳導物水平。 15A示出腦Phe、Tyr和Trp水平。儘管在低(1e11 vg/小鼠)劑量群組中觀察到了變異性,但所有處理群組都顯著降低了腦Phe水平。在該組中,具有較高腦Phe水平的三隻動物與較高的血液Phe和較低的肝臟基因轉移相關。 15B示出腦神經傳導物多巴胺、去甲腎上腺素和血清素水平。同樣,低劑量組中具有較低神經傳導物水平的三隻動物代表具有較高血液Phe水平的動物。動物數量、統計分析和縮寫如 11A- 11C圖例。
16A-16C示出AAVXL32.1/WT hPAH遞送至肝臟對腦白質含量的影響。藉由MRI定量胼胝體體積來分析白質含量。這是在處理前( 16A)和處理後106天( 16B)在活體動物中測量的。 16C示出每隻動物胼胝體體積的變化百分比。在4個月的研究中,所有經處理的動物都有顯著的增加,而在HET和WT動物中沒有觀察到變化。未處理的Pah-KO小鼠(HOM)在此時間期間顯示出輕微的下降。 16D示出研究結束時(處理後第120天)的腦重量。只有3e11劑量群組顯示腦重量顯著增加,並沒有達到正常動物的腦重量。動物數量、統計分析和縮寫如 11A- 11C圖例。
17A 和圖 17B示出向Pah-KO小鼠投予AAVXL32.1/WT hPAH後的4個月研究期間的行為分析。 17A示出藉由築巢測定評估的行為,其中對巢的品質進行評分(1分,無巢或品質差,至5分,高品質)。 17B示出在處理前以及處理後35天和97天進行的築巢測定的結果。在第35天觀察到築巢得分的改善,並持續到處理後第97天。低劑量組中得分較低的三隻動物代表血液Phe水平較高的動物。動物數量、統計分析和縮寫如 11A- 11C圖例。
18A- 18G示出XL32.1/WT hPAH載體與各種肝臟表現匣的體外和體內比較。 18A示出載體圖。rAAVXL32.1/mA1MB2-mTTR482-WT hPAH(A1MB2)代表與4個月研究中使用的相同載體。rAAVXL32.1/LP1-HI2含有LP1啟動子,具有的內含子與用於rAAVXL32.1/mA1MB2-mTTR482--WT hPAH的內含子相同。rAAVXL32.1/LP1-SI構築體具有的啟動子和內含子與用於血友病B試驗(Nathwani 2011)的啟動子和內含子相同。為了在人肝系中進行體外分析,將每個含有ITR的質體構築體三重複暫態轉染到Huh7細胞中,並在3天後產生細胞裂解物。 18B示出在體外在人細胞中的PAH蛋白水平。每條泳道運行10 µg細胞裂解物,並使用抗PAH抗體藉由蛋白質印跡分析PAH水平。β-肌動蛋白檢測顯示相同的負載量。 18C示出在體外在人細胞中的PAH活性測定。Phe到Tyr的轉化是藉由比色測定來測量,並針對藉由BCA測量的總蛋白歸一化。數據證明藉由A1MB2構築體在人肝細胞中產生的PAH蛋白和活性更高。對於體內分析,將每個載體以3e11 vg/小鼠IV投予PAH-KO小鼠中,並評價5周。 18D示出載體遞送後36天的血漿Phe水平。 18E示出每個處理群組中源自肝臟載體的轉錄物水平。 18F示出每個處理群組中的肝臟PAH活性。 18G示出在每隻動物中藉由載體DNA歸一化的PAH活性。由於觀察到肝臟中載體DNA水平的變異性,因此藉由載體DNA將PAH活性歸一化。顯著性,*,p < 0.05;**,p < 0.01,***,p < 0.001,以及****,p < 0.0001,藉由單因素方差分析與圖基多重比較得出。每個數據點代表一隻動物(所有組n = 10,除了HOM,n = 4)。
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011

Claims (50)

  1. 一種包含rAAV載體的重組腺相關病毒(rAAV)顆粒,其中所述rAAV載體包含用於在肝細胞中表現轉殖基因的表現匣,其中所述表現匣包含可操作地連接至啟動子和增強子的轉殖基因,其中所述啟動子包括小鼠甲狀腺素轉運蛋白(mTTR)啟動子,並且所述增強子包括一個或兩個修飾的凝血酶原增強子(pPrT2)、一個或兩個修飾的α1-微比庫寧蛋白增強子(mA1MB2)、修飾的小鼠白蛋白增強子(mEalb)、B型肝炎病毒增強子II(HE11)或CRM8增強子,其中所述轉殖基因編碼PAH多肽; 其中所述AAV病毒顆粒包含AAV-XL32或AAV-XL32.1衣殼。
  2. 如請求項1所述的rAAV顆粒,其中所述mTTR啟動子是mTTR482啟動子。
  3. 如請求項1或2所述的rAAV顆粒,其中所述增強子在所述mTTR啟動子的5'側。
  4. 一種包含rAAV載體的重組腺相關病毒(rAAV)顆粒,其中所述rAAV載體包含用於在肝細胞中表現轉殖基因的表現匣,其中所述表現匣包含可操作地連接至啟動子和3'元件的轉殖基因,其中所述啟動子包括小鼠甲狀腺素轉運蛋白(mTTR)啟動子,並且所述3'元件是白蛋白3'元件(3'Alb)或連接至人類α1抗胰蛋白酶支架/基質附著區(SMAR)的白蛋白3'元件(3'AlbSMAR),其中所述轉殖基因編碼PAH多肽; 其中所述AAV病毒顆粒包含AAV-XL32或AAV-XL32.1衣殼。
  5. 如請求項4所述的rAAV顆粒,其中所述mTTR啟動子是mTTR482啟動子。
  6. 如請求項4或5所述的rAAV顆粒,其中所述3'元件位於所述轉殖基因的3'側。
  7. 一種重組腺相關病毒(rAAV)顆粒,其包含rAAV載體,用於在肝細胞中表現轉殖基因的表現匣,其中所述表現匣包含可操作地連接至啟動子和增強子和3'元件的轉殖基因,其中所述啟動子包括小鼠甲狀腺素轉運蛋白(mTTR)啟動子,並且所述增強子包括一個或兩個修飾的凝血酶原增強子(pPrT2)、一個或兩個修飾的α1-微比庫寧蛋白(microbikunin)增強子(mA1MB2)、修飾的小鼠白蛋白增強子(mEalb)、B型肝炎病毒增強子II(HE11)或CRM8增強子,並且其中所述3'元件是白蛋白3'元件(3'Alb)或連接至人類α1抗胰蛋白酶支架/基質附著區(SMAR)的白蛋白3'元件(3'AlbSMAR),其中所述轉殖基因編碼PAH多肽; 其中所述AAV病毒顆粒包含AAV-XL32或AAV-XL32.1衣殼。
  8. 如請求項7所述的rAAV顆粒,其中所述mTTR啟動子是mTTR482啟動子。
  9. 如請求項7或8所述的rAAV顆粒,其中所述增強子在所述mTTR啟動子的5'側。
  10. 如請求項7-9中任一項所述的rAAV顆粒,其中所述3'元件位於所述轉殖基因的3'側。
  11. 如請求項1-10中任一項所述的rAAV顆粒,其中所述表現匣還包含內含子。
  12. 如請求項11所述的rAAV顆粒,其中所述內含子是雞β-肌動蛋白/兔β-珠蛋白雜合內含子。
  13. 如請求項1-12中任一項所述的rAAV顆粒,其中所述表現匣還包含聚腺核苷酸化信號。
  14. 如請求項13所述的rAAV顆粒,其中所述聚腺核苷酸化信號是牛生長激素聚腺核苷酸化信號。
  15. 如請求項1-14中任一項所述的rAAV顆粒,其中所述PAH多肽是野生型PAH多肽。
  16. 如請求項1-15中任一項所述的rAAV顆粒,其中所述PAH多肽是人類PAH多肽。
  17. 如請求項1-16中任一項所述的rAAV顆粒,其中所述PAH多肽包含SEQ ID NO: 1的胺基酸序列。
  18. 如請求項1-17中任一項所述的rAAV顆粒,其中所述轉殖基因與SEQ ID NO: 2的核酸序列是至少80%相同的。
  19. 如請求項1-18中任一項所述的rAAV顆粒,其中所述rAAV載體包含側翼為一個或多個AAV反向末端重複(ITR)序列的表現匣。
  20. 如請求項19所述的rAAV顆粒,其中如請求項1-18中任一項所述的表現匣的側翼是兩個AAV ITR。
  21. 如請求項19或20所述的rAAV顆粒,其中所述AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV或小鼠AAV血清型ITR。
  22. 如請求項19-21中任一項所述的rAAV顆粒,其中所述AAV ITR是AAV2 ITR。
  23. 如請求項19-22中任一項所述的rAAV顆粒,其中所述載體是自身互補載體。
  24. 如請求項23所述的rAAV顆粒,其中所述載體包含編碼所述PAH多肽的第一核酸序列和編碼所述PAH多肽的互補體的第二核酸序列,其中所述第一核酸序列可以與所述第二核酸序列沿著其大部分或全部長度形成股內鹼基對。
  25. 如請求項24所述的rAAV顆粒,其中所述第一核酸序列和所述第二核酸序列藉由突變的AAV ITR連接,其中所述突變的AAV ITR包含D區的缺失並且包含末端解股序列的突變。
  26. 一種包含rAAV載體的rAAV顆粒,其中所述rAAV載體從5'至3'包含AAV2 ITR、修飾的α1-微比庫寧蛋白增強子(mA1MB2)、小鼠甲狀腺素轉運蛋白(mTTR)啟動子、雞β-肌動蛋白/兔β-珠蛋白雜合內含子、密碼子優化之人類PAH基因、牛生長激素聚腺核苷酸化信號、源自α-1-抗胰蛋白酶基因的填充片段和AAV2 ITR。
  27. 如請求項1-26中任一項所述的rAAV顆粒,其中所述AAV衣殼是AAV-XL32衣殼。
  28. 如請求項27所述的rAAV顆粒,其中所述AAV-XL32衣殼包含含有與SEQ ID NO: 3至少90%、95%、99%或100%相同的胺基酸序列的AAV-XL32衣殼蛋白。
  29. 如請求項28所述的rAAV顆粒,其中所述AAV-XL32衣殼包含VP1、VP2和VP3,其中所述VP1、所述VP2和所述VP3由SEQ ID NO: 4的核酸序列編碼。
  30. 如請求項1-26中任一項所述的rAAV顆粒,其中所述AAV衣殼是AAV-XL32.1衣殼。
  31. 如請求項30所述的rAAV顆粒,其中所述AAV-XL32.1衣殼包含與SEQ ID NO: 3至少90%、95%、99%或100%相同的胺基酸序列。
  32. 如請求項30所述的rAAV顆粒,其中所述AAV-XL32.1衣殼包含VP1、VP2和VP3,其中所述VP1、所述VP2和所述VP3由SEQ ID NO: 6的核酸序列編碼。
  33. 一種組合物,其包含如請求項1-32中任一項所述的rAAV顆粒。
  34. 如請求項33所述的組合物,其中所述組合物還包含醫藥上可接受的載劑。
  35. 一種細胞,其包含如請求項1-32中任一項所述的rAAV顆粒。
  36. 一種產生PAH多肽的方法,所述方法包括在產生所述PAH多肽的條件下培養如請求項35所述的細胞。
  37. 如請求項36所述的方法,其進一步包括純化所述PAH多肽的步驟。
  38. 一種用於治療有需要的個體中的苯丙酮尿症的方法,其包括向所述個體投予如請求項1-37中任一項所述的rAAV顆粒。
  39. 一種用於治療有需要的個體中的苯丙酮尿症的方法,其包括向所述個體投予如請求項33或34所述的組合物。
  40. 一種用於治療有需要的個體中的苯丙酮尿症的方法,其包括向所述個體投予如請求項35所述的細胞。
  41. 如請求項38-40中任一項所述的方法,其中所述個體缺乏PAH活性。
  42. 一種用於降低有需要的個體的血液中的苯丙胺酸水平的方法,其包括向所述個體投予如請求項1-32中任一項所述的rAAV顆粒。
  43. 一種用於降低有需要的個體的血液中的苯丙胺酸水平的方法,其包括向所述個體投予如請求項33或34所述的組合物。
  44. 一種用於降低有需要的個體的血液中的苯丙胺酸水平的方法,其包括向所述個體投予如請求項35所述的細胞。
  45. 如請求項42-44中任一項所述的方法,其中與同等匹配對照個體的血液中的苯丙胺酸水平相比,治療前所述個體血液中的苯丙胺酸水平升高。
  46. 如請求項38-45中任一項所述的方法,其中將所述rAAV顆粒、所述組合物或所述細胞藉由靜脈內、動脈內、肝內、門靜脈內、腹膜內或皮下投予。
  47. 如請求項38-46中任一項所述的方法,其中所述投予與另一種療法組合。
  48. 如請求項47所述的方法,其中所述另一種療法是用四氫生物蝶呤治療,用苯丙胺酸解胺酶(PAL)或聚乙二醇化PAL治療,或苯丙胺酸限制飲食。
  49. 一種套組,其包含如請求項1-32中任一項所述的rAAV顆粒、如請求項33或34所述的組合物或如請求項35所述的細胞。
  50. 如請求項49所述的套組,其中所述套組還包含使用說明;緩衝液和/或醫藥上可接受的賦形劑;和/或瓶子、小瓶和/或注射器。
TW110136597A 2020-10-01 2021-09-30 藉由肝導向基因替代療法治療pku之人類pah表現匣 TW202229559A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063086537P 2020-10-01 2020-10-01
US63/086,537 2020-10-01
US202063121797P 2020-12-04 2020-12-04
US63/121,797 2020-12-04

Publications (1)

Publication Number Publication Date
TW202229559A true TW202229559A (zh) 2022-08-01

Family

ID=78599166

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110136597A TW202229559A (zh) 2020-10-01 2021-09-30 藉由肝導向基因替代療法治療pku之人類pah表現匣

Country Status (12)

Country Link
US (1) US20220112520A1 (zh)
EP (1) EP4222251A1 (zh)
JP (1) JP2023544165A (zh)
KR (1) KR20230079172A (zh)
AU (1) AU2021355481A1 (zh)
BR (1) BR112023003929A2 (zh)
CA (1) CA3193866A1 (zh)
CO (1) CO2023003418A2 (zh)
IL (1) IL301677A (zh)
MX (1) MX2023003805A (zh)
TW (1) TW202229559A (zh)
WO (1) WO2022072657A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896135B (zh) * 2022-11-02 2024-03-01 苏州诺洁贝生物技术有限公司 优化的pah基因和表达盒及其用途

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566118B1 (en) 1997-09-05 2003-05-20 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
US6989264B2 (en) 1997-09-05 2006-01-24 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
DK1916258T3 (da) 1999-08-09 2014-07-28 Genzyme Corp Forøgelse af ekspression af en enkeltstrenget, heterolog nukleotidsekvens fra rekombinante, virale vektorer ved en sådan udformning af sekvensen at den danner intrastrengbasepar
NZ522840A (en) 2000-06-01 2004-12-24 Univ North Carolina A parvovirus vector that carries a duplexed genome resulting in co-packaging of strands of plus and minus polarity tethered together
US6723551B2 (en) 2001-11-09 2004-04-20 The United States Of America As Represented By The Department Of Health And Human Services Production of adeno-associated virus in insect cells
EP1310571B1 (en) 2001-11-13 2006-02-15 The Trustees of The University of Pennsylvania A Method of identifying unknown adeno-associated virus (AVV) sequences and a kit for the method
US7510872B2 (en) 2003-02-26 2009-03-31 Nationwide Children's Hospital Recombinant adeno-associated virus production
EP2277996B1 (en) 2003-05-21 2014-09-03 Genzyme Corporation Methods for producing preparations of recombinant AAV virions substantially free of empty capsids
US7765583B2 (en) 2005-02-28 2010-07-27 France Telecom System and method for managing virtual user domains
WO2006119432A2 (en) 2005-04-29 2006-11-09 The Government Of The U.S.A., As Rep. By The Sec., Dept. Of Health & Human Services Isolation, cloning and characterization of new adeno-associated virus (aav) serotypes
US7588772B2 (en) 2006-03-30 2009-09-15 Board Of Trustees Of The Leland Stamford Junior University AAV capsid library and AAV capsid proteins
WO2008021290A2 (en) * 2006-08-09 2008-02-21 Homestead Clinical Corporation Organ-specific proteins and methods of their use
WO2010148143A1 (en) 2009-06-16 2010-12-23 Genzyme Corporation Improved methods for purification of recombinant aav vectors
DK2675902T3 (da) 2011-02-17 2019-06-03 Univ Pennsylvania Sammensætninger og fremgangsmåder til at ændre vævsspecificitet og forbedre aav9-medieret genoverførsel
EP3147295B2 (en) * 2011-08-24 2023-11-22 The Board of Trustees of the Leland Stanford Junior University New avv capsid proteins for nucleic acid transfer
WO2016081927A2 (en) * 2014-11-21 2016-05-26 University Of Florida Research Foundation, Inc. Genome-modified recombinant adeno-associated virus vectors
US11382941B2 (en) * 2016-12-30 2022-07-12 The Trustees Of The University Of Pennsylvania Gene therapy for treating Phenylketonuria
EP3807297A4 (en) 2018-06-12 2022-03-23 The University of North Carolina at Chapel Hill SYNTHETIC LIVER ADENO-ASSOCIATED VIRUS CAPSIDS AND USES THEREOF
SG11202103614RA (en) 2018-10-12 2021-05-28 Genzyme Corp Generation of improved human pah for treatment of severe pku by liver-directed gene replacement therapy

Also Published As

Publication number Publication date
WO2022072657A1 (en) 2022-04-07
EP4222251A1 (en) 2023-08-09
IL301677A (en) 2023-05-01
JP2023544165A (ja) 2023-10-20
CO2023003418A2 (es) 2023-03-27
BR112023003929A2 (pt) 2023-04-11
AU2021355481A1 (en) 2023-06-08
US20220112520A1 (en) 2022-04-14
CA3193866A1 (en) 2022-04-07
KR20230079172A (ko) 2023-06-05
MX2023003805A (es) 2023-04-12

Similar Documents

Publication Publication Date Title
US20230295663A1 (en) Compositions and methods of treating amyotrophic lateral sclerosis (als)
US11752181B2 (en) Compositions and methods of treating Huntington's disease
US20210348135A1 (en) Generation of improved human pah for treatment of severe pku by liver-directed gene replacement therapy
US20210095313A1 (en) Adeno-associated virus (aav) systems for treatment of genetic hearing loss
US20220228170A1 (en) Compositions useful in treatment of metachromatic leukodystrophy
JP2020535803A (ja) バリアントRNAi
CN112805382A (zh) 针对α-突触核蛋白的变体RNAi
JP2024056832A (ja) ムコリピドーシスii型を治療するためのアデノ随伴ウイルスベクター
US20220112520A1 (en) Human pah expression cassette for treatment of pku by liver-directed gene replacement therapy
EP3931337A1 (en) Compositions useful in treatment of krabbe disease
CN116648503A (zh) 通过肝导向基因替代疗法治疗pku的人pah表达盒
WO2023139496A1 (en) Gene therapy for gaucher disease
WO2024100633A1 (en) Gene therapy for frontotemporal dementia
JP2023509443A (ja) 改善されたaav-abcd1コンストラクトならびに副腎白質ジストロフィー(ald)および/または副腎脊髄ニューロパチー(amn)の処置または予防のための使用
TW202345914A (zh) 用於dm-1肌強直性營養不良之靶向基因療法
Kimura et al. Production of adeno-associated virus vectors for in vitroand in vivo applications