TW202223319A - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
TW202223319A
TW202223319A TW109142284A TW109142284A TW202223319A TW 202223319 A TW202223319 A TW 202223319A TW 109142284 A TW109142284 A TW 109142284A TW 109142284 A TW109142284 A TW 109142284A TW 202223319 A TW202223319 A TW 202223319A
Authority
TW
Taiwan
Prior art keywords
channel
flow channel
plate
heat
inlet
Prior art date
Application number
TW109142284A
Other languages
English (en)
Other versions
TWI797511B (zh
Inventor
施威宏
劉宗鑫
吳文傑
劉文鈞
楊勝仲
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW109142284A priority Critical patent/TWI797511B/zh
Publication of TW202223319A publication Critical patent/TW202223319A/zh
Application granted granted Critical
Publication of TWI797511B publication Critical patent/TWI797511B/zh

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Power Steering Mechanism (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一種熱交換器,其包含至少一熱源流道板、至少一冷源流道板、以及至少一儲熱板。各熱源流道板之入口互相堆疊而形成第一入口通道,且各熱源流道板之出口互相堆疊而形成第一出口通道。各冷源流道板之入口互相堆疊而形成第二入口通道,且各冷源流道板之出口互相堆疊而形成第二出口通道。上述至少一儲熱板與至少一熱源流道板及至少一冷源流道板相互堆疊。

Description

熱交換器
本揭露是有關於一種熱交換技術,且特別是有關於一種具維溫功能之熱交換器。
熱交換器係使二流體以間接熱傳導的方式進行熱量交換,藉以提供冷卻或加熱功能的設備。依構造型式,熱交換器主要可分為殼管式熱交換器、鰭片式熱交換器、以及板式熱交換器。
板式熱交換器具熱傳性能佳、體積小、重量輕、安裝與維護容易、成本低、與使用壽命長等優勢,因此板式熱交換器應用性相當廣,為很常見的熱交換器。板式熱交換器一般係由多個熱流道板與冷流道板交錯疊裝而成。冷流道板與熱流道板中的工作流體透過板件的熱傳導來間接進行熱量交換。
低溫域熱源常有熱能供應變化大之現象,因而不僅影響有機朗肯循環(ORC)系統等熱力循環發電系統的發電效能,甚至可能造成運轉斷斷續續而使得系統機組的壽命大幅縮減。由於低溫域熱源所在場域之剩餘面積通常甚為緊迫,因此需要更高熱交換密度的熱交換器。
故,亟需一種可在一定時間內提供即時穩定熱量給熱力循環冷端吸熱的高熱交換密度熱交換器,以提高熱力循環發電系統於低溫域產業的應用性。
因此,本揭露之一目的就是在提供一種熱交換器,其透過調整一或多個熱源流道板、冷源流道板、及儲熱板的順序,來達到吸收餘熱,並於熱源溫度降低時釋放出熱量以維持熱源溫度,或是當冷源溫度上升時吸收熱量以保持冷源溫度,故此熱交換器具維溫功能,可維持溫度穩定。
根據本揭露之上述目的,提出一種熱交換器。此熱交換器包含至少一熱源流道板、至少一冷源流道板、以及至少一儲熱板。各熱源流道板之入口互相堆疊而形成第一入口通道,且各熱源流道板之出口互相堆疊而形成第一出口通道。各冷源流道板之入口互相堆疊而形成第二入口通道,且各冷源流道板之出口互相堆疊而形成第二出口通道。儲熱板與熱源流道板及冷源流道板相互堆疊。
依據本揭露之一實施例,上述之熱源流道板與冷源流道板各包含一主流道。此主流道包含入口區、出口區、數個次流道區、以及至少一彎折區。這些次流道區連接在入口區與出口區之間,且沿第一方向依序排列。每個次流道區包含數個次流道,每個次流道沿第二方向延伸。第二方向垂直第一方向。彎折區連接這些次流道區之相鄰二者。
依據本揭露之一實施例,上述之次流道區彼此實體相隔。
依據本揭露之一實施例,上述之主流道另具有雜質沉澱區,此雜質沉澱區位於入口區靠近相鄰的次流道區之一側。
依據本揭露之一實施例,上述第一入口通道與第二入口通道之軸向均垂直熱源流道板與冷源流道板而形成穩壓區。
依據本揭露之一實施例,上述之熱源流道板、冷源流道板、或各熱源流道板與冷源流道板包含流道板以及鏡像流道板。鏡像流道板與流道板相對合併。
依據本揭露之一實施例,上述之儲熱板包含儲存板以及相變化材料。儲存板包含至少一儲存槽。相變化材料填充於此至少一儲存槽中。
依據本揭露之一實施例,上述之儲存槽為數個,且這些儲存槽沿一方向延伸。
依據本揭露之一實施例,上述之儲存板包含多孔結構,且此多孔結構之孔隙度等於或大於0.8。
依據本揭露之一實施例,上述之相變化材料之相變化溫度為等於或大於80℃,或者為等於或小於25℃。
依據本揭露之一實施例,上述之熱源流道板與冷源流道板之數量均為數個,且這些熱源流道板與冷源流道板任意交錯方式排列。
本揭露之熱交換器可依場域需求調整熱源流道板、冷源流道板、與儲熱板之數量與疊層順序,設計與使用彈性高,而可提高應用性。其次,每個流道板於入口處設計有雜質沉澱區,藉此可避免流道阻塞而影響流道板之熱傳表現。再者,每個流道板之主流道包含數個次流道區以及連接二相鄰之次流道區的彎折區。由於次留道區中之次流道的流道截面積小於彎折區,因此次流道流出之流體在彎折區中的速度加快且互相混合,可均勻流體溫度,同時將加速後之流體送入下一個次流道區。
此外,本揭露之熱交換器的所有熱源流道板具有相同之第一入口通道與第一出口通道,且所有冷源流道板具有相同之第二入口通道與第二出口通道。由於第一入口通道與第二入口通道可形成穩壓區,熱源流體與冷源流體可分別從第一入口通道與第二入口通道幾乎同時地提供給所有的熱源流道板與冷源流道板。因此,各層熱源流道板中的流體流速均勻,且各層冷源流道板中的流體流速均勻,可使各層流道板的熱傳效果一致化。故,本揭露之熱交換器包含愈多層流道板其壓阻愈低,使得可供應之冷熱源流量愈大,而可提高熱交換功率密度。
本揭露之熱交換器的儲熱板可包含高孔隙度之多孔結構,可最大化儲存空間。儲熱板更可具有多個儲存槽。而儲存槽內填充有相變化材料。藉此,可提高熱傳導效率與儲熱效能,而可縮短熱交換器之維溫反應時間,並可增加熱交換器之維溫時間。
本揭露之熱交換器主要包含互相疊合之至少一熱源流道板、至少一冷源流道板、以及至少一儲熱板。舉例而言,請參照圖1A與1B,其係分別繪示依照本揭露之一實施方式的一種熱交換器的立體示意圖、以及沿圖1A之AA剖切線剖切後之熱交換器的局部立體示意圖。此實施方式之熱交換器100a包含互相疊合之二熱源流道板200、二冷源流道板300、以及一儲熱板400。舉例而言,儲熱板400具有彼此相對之第一側402與第二側404。在此熱交換器100a中,一熱源流道板200與一冷源流道板300依序堆疊在儲熱板400之第一側402上,另一熱源流道板200與另一冷源流道板300則依序疊合在儲熱板400之第二側404下。在一些示範例子中,可利用擴散焊接方式或硬焊方式,結合這些熱源流道板200、冷源流道板300、與儲熱板400。
請先參照圖2,其係繪示依照本揭露之一實施方式的一種熱交換器之熱源流道板的上視示意圖。熱源流道板200可由熱傳導率佳之材料所製成。熱源流道板200可為金屬板,例如不鏽鋼板、鋁板、或銅板。每個熱源流道板200具有入口210與出口220。如圖2所示之例子,入口210與出口220可分別位於熱源流道板200的二對角落處。在其他例子中,熱源流道板之入口與出口可分別設於熱源流道板之同一側的相對二角落處。
熱交換器100a之熱源流道板200共用相同的一個熱源流體入口通道與相同一個熱源流體出口通道。如圖1A所示,在熱交換器100a包含數個熱源流道板200的例子中,這些熱源流道板200的入口210互相堆疊而形成貫通之第一入口通道210c,而這些熱源流道板200的出口220互相堆疊而形成貫通之第一出口通道220c。在一些示範例子中,第一入口通道210c之軸向210a與第一出口通道220c之軸向220a實質垂直熱源流道板200與冷源流道板300。在熱交換器100a僅包含一個熱源流道板200的例子中,此熱源流道板200之入口210與出口220可分別為第一入口通道210c與第一出口通道220c。
由於熱交換器100a之所有熱源流道板200具有相同之第一入口通道210c與第一出口通道220c,因此熱源流體HF從第一入口通道210c灌入時,第一入口通道210c可形成穩壓區,使得熱源流體HF可幾乎同時流入各熱源流道板200中,並使熱源流體HF在各熱源流道板200中有均勻流速。藉此,可使每個熱源流道板200的熱傳效果一致化,而可提升熱交換器100a之熱交換效率。
每個熱源流道板200包含主流道230。此主流道230從入口210曲折蜿蜒至出口220,並與入口210及出口220流體連通。因此,主流道230亦與圖1A所示之第一入口通道210c及第一出口通道220c流體連通。在一些例子中,如圖2所示,主流道230可包含入口區232、出口區234、數個次流道區236、以及至少一轉折區238。入口區232鄰接且流體連通入口210。出口區234鄰接且流體連通出口220。
入口區232為位於熱源流道板200之入口210與鄰接之次流道區236之間的流場回流區。主流道230可另具有雜質沉澱區239,其中雜質沉澱區239位於入口區232靠近相鄰的次流道區236之一側。熱源流體HF從入口210流進入口區232後,熱源流體HF中的雜質因回流而沉澱在雜質沉澱區239處。主流道230具有雜質沉澱區239的設計可避免雜質阻塞次流道區236的流道,進而可避免影響熱源流道板200的熱傳表現。
這些次流道區236則連接在入口區232與出口區234之間,且均與入口區232及出口區234流體連通。次流道區236依序排列入口區232與出口區234之間。舉例而言,這些次流道區236沿第一方向D1依序排列。在主流道230中,這些次流道區236中位於最上游者與入口區232鄰接,而位於最下游者與出口區234鄰接。這些次流道區236可具有相同寬度,亦可根據實際使用需求而設計各次流道區236之寬度,因而這些次流道區236亦可具有不同寬度。
每個次流道區236包含多個次流道236a。這些次流道236a依序排列在次流道區236中。舉例而言,這些次流道236a可沿第二方向D2延伸,而彼此平行。在一些示範例子中,第二方向D2與第一方向D1實質垂直。這些次流道236a的流道寬度可彼此相同,亦可根據實際使用需求而設計成具有不同流道寬度。
轉折區238連接於二相鄰之次流道區236之間。在一些示範例子中,每個熱流道板200上的這些次流道區236彼此實體相隔,且係藉由轉折區238連接。由於轉折區238係連接二個次流道區236,因此轉折區238之數量與次流道區236之數量有關。在圖2所示之例子中,次流道區236的數量有三個,因而轉折區238有二個以將次流道區236兩兩連接在一起。
轉折區238為熱源流體HF從位於上游之次流道區236轉向流入下一個次流道區236的區域。由於次流道236a中之流道寬度縮小而到轉折區238時流道寬度放大,因此流出次流道區236的熱源流體HF可在轉折區238中進行混合,使熱源流體HF之溫度均勻,更可因流入轉折區238時的流阻下降而加速,因而可順利進入下一個次流道區236。
在一些例子中,一個熱源流道板架構可包含二流道板,其中一個流道板可如圖2所示之熱源流道板200,而另一個流道板則為此熱源流道板200的鏡像流道板。此熱源流道板架構為熱源流道板200與其鏡像流道板相對合併而成,即熱源流道板200之主流道230與此鏡像流道板之主流道相面對拼接而成。藉此,可增加熱源流道板架構之流道的高度。
熱源流體HF從熱源流道板200之入口210流入入口區232,再從入口區232流入與其鄰接之次流道區236中的次流道236a。接著,熱源流體HF從次流道區236流入下游之轉折區238,並經由轉折區238而轉向流入下一個次流道區236中的次流道236a。接下來,熱源流體HF從此次流道區236流入下游之轉折區238,而經由轉折區238再轉向流入下一個次流道區236中的次流道236a。隨後,熱源流體HF由此次流道區236流入出口區234,再從出口220流出熱源流道板200。
請參照圖3,其係繪示依照本揭露之一實施方式的一種熱交換器之冷源流道板的上視示意圖。冷源流道板300同樣可利用熱傳導率佳之材料製成。冷源流道板300可為金屬板,例如不鏽鋼板、鋁板、或銅板。每個冷源流道板300具有入口310與出口320。入口310與出口320可分別位於冷源流道板300的二對角落處。在其他例子中,冷源流道板之入口與出口可分別設於冷源流道板之同一側的相對二角落處。
在熱交換器100a中,所有冷源流道板300具有相同之冷源流體入口通道與相同之冷源流體出口通道。如圖1A所示,在熱交換器100a包含多個冷源流道板300的例子中,這些冷源流道板300的入口310互相堆疊而形成貫通之第二入口通道310c,這些出口320則互相堆疊而形成貫通之第二出口通道320c。在一些示範例子中,第二入口通道310c之軸向310a與第二出口通道320c之軸向320a實質垂直熱源流道板200與冷源流道板300。當熱交換器100a僅包含一個冷源流道板300時,此冷源流道板300之入口310與出口320可分別為第二入口通道310c與第二出口通道320c。
由於熱交換器100a之所有冷源流道板300具有相同之第二入口通道310c與第二出口通道320c,如此當冷源流體CF灌入第二入口通道310c時,第二入口通道310c可形成穩壓區,而使得冷源流體CF可大致同時流入各冷源流道板300中。藉此,可使冷源流體CF在各冷源流道板300中具有均勻流速,而使得這些冷源流道板300的熱傳效果一致化,進而可提升熱交換器100a之熱交換效率。
每個冷源流道板300包含主流道330。主流道330從入口310曲折蜿蜒至出口320。主流道330與入口310及出口320流體連通,因此主流道330亦與圖1A所示之第二入口通道310c及第二出口通道320c流體連通。在一些例子中,如圖3所示,主流道330可包含入口區332、出口區334、數個次流道區336、以及至少一轉折區338。入口區332鄰接且流體連通入口310,出口區334鄰接且流體連通出口320。
入口區332係位於入口310與鄰接之次流道區336之間的流場回流區。主流道330可另具有雜質沉澱區339,其中雜質沉澱區339位於入口區332靠近相鄰的次流道區336之一側。冷源流體CF從入口310流進入口區332後,冷源流體CF中的雜質可因回流而沉澱在雜質沉澱區339。藉由這樣的流道設計可避免雜質阻塞次流道區336的流道,而可維持冷源流道板300的熱傳效果。
所有次流道區336連接在入口區332與出口區334之間,且均與入口區332及出口區334流體連通。次流道區336可依序排列入口區332與出口區334之間。這些次流道區336可例如沿第一方向D1依序排列。這些次流道區336於主流道330中位於最上游者與入口區332鄰接,而位於最下游者與出口區334鄰接。這些次流道區336可具有相同寬度,亦可根據實際使用需求而設計各次流道區336之寬度,因而這些次流道區336可具有不同寬度。
每個次流道區336包含多個次流道336a。這些次流道336a依序排列在次流道區336中。這些次流道336a可例如沿第二方向D2延伸,且彼此平行。這些次流道336a的流道寬度可彼此相同,亦可根據實際使用需求而設計成具有不同的流道寬度。
轉折區338連接二相鄰之次流道區336。同樣的,每個冷流道板300上的這些次流道區336可彼此實體隔開,並藉由轉折區338連接。二相鄰之次流道區336透過一個轉折區338來連接,因此轉折區338之數量與次流道區336之數量有關。如圖3所示,次流道區336的數量有三個,因而利用二個轉折區338將這三個次流道區336兩兩連接在一起。
轉折區338為冷源流體CF從位於上游之次流道區336轉向流入下一個次流道區336的區域,因此流出次流道區336的冷源流體CF可在轉折區338中進行混合,使冷源流體CF之溫度均勻。此外,由於次流道336a的流道寬度小,而轉折區338時流道寬度大,因此冷源流體CF流入轉折區338時的流阻下降而獲得加速,進而可順利流入下一個次流道區336。
冷源流體CF從冷源流道板300之入口310流入主流道330的入口區332,再從入口區332流入鄰接之次流道區336的次流道336a中。接下來,冷源流體CF從此次流道區336流入下游之轉折區338,再經由轉折區338而轉向流入下一個次流道區336之次流道336a內。冷源流體CF接著從此次流道區336流入下游之轉折區338,並在轉折區338轉向而流入下一個次流道區336的次流道336a中。冷源流體CF再由此次流道區336流入出口區334,而從出口320流出冷源流道板300。
在一些例子中,一個冷源流道板架構可包含二流道板相對合併而成,其中一個流道板可如圖3所示之冷源流道板300,而另一個流道板則為此冷源流道板300的鏡像流道板。藉此,可增加冷源流道板架構之流道的高度。
在一些例子中,當熱源流道板200與冷源流道板300互相疊合時,熱源流道板200之次流道區236與冷源流道板300之次流道區336互相對應疊合,以利熱交換的進行。亦即,這些次流道區236之尺寸與位置分別與疊合之次流道區336的尺寸與位置對應。此外,熱源流體HF在熱源流道板200之主流道230中的流向與冷源流體CF在冷源流道板300之主流道330中對應對齊處的流向可相同。在一些示範例子中,熱源流體HF在熱源流道板200之主流道230中的流向與冷源流體CF在冷源流道板300之主流道330中對應對齊處的流向可相反,藉此可進一步提升熱源流體HF與冷源流體CF之間的熱交換效率。
請同時參照圖4A與圖4B,其係分別繪示依照本揭露之一實施方式的一種熱交換器之儲熱板的上視示意圖與側視示意圖。在一些例子中,儲熱板400主要可包含儲存板410與相變化材料420。儲存板410包含一或多個儲存槽412。在圖4A與圖4B所示之例子中,儲存板410包含多個儲存槽412。即,儲存板410包含多個隔間牆414,其中這些隔間牆414彼此間隔排列。這些隔間牆414可例如以一定間隔依序排列,因而使得隔間牆414所隔出之儲存槽412具有相同寬度。在其他例子中,這些隔間牆414之間的間隔可彼此不同、或者可不全然相同,因而使得儲存槽412具有不同寬度、或者部分具相同寬度而部分具不同寬度。這些隔間牆414可例如沿第一方向D1延伸,且彼此平行。在這樣的例子中,這些隔間牆414所形成的儲存槽412的方向同樣沿第一方向D1延伸,且彼此平行。儲存板410只包含一個儲存槽412時,儲存板410為不具任何隔間牆414之全中空槽。
儲存板410之材料可為金屬,例如不鏽鋼、鋁板、或銅板。在一些示範例子中,儲存板410包含多孔結構,例如高孔隙度的多孔結構。舉例而言,儲存板410之多孔結構的孔隙度等於或大於約0.8。在一些實驗例中,儲存板410為孔隙度0.8的不鏽鋼板、銅板、與鋁板且充填石蠟時,熱傳導係數較單純石蠟提高196倍至368倍。
相變化材料420填充於儲存板410之儲存槽412中。可依工作溫度,選用對應的相變化材料420。在一些示範例子中,相變化材料420之相變化溫度可為等於或大於80℃,或者可為等於或小於25℃。相變化材料420可例如為石蠟系列材料或熔鹽系列材料。
由於相變化材料420填充於儲存板410之儲存槽412中,多孔結構的儲存板410可最大化儲存空間,提高儲熱量與儲熱效能。而多個儲存槽412的儲存板410設計可提高熱傳導效率。藉此,可縮短熱交換器之維溫反應時間,並可增加熱交換器100a之維溫時間。
請參照圖5A與圖5B,其係分別繪示依照本揭露之一實施方式的一種熱交換器之流道板疊層結構的立體示意圖、以及沿圖5A之BB剖切線剖切後之熱交換器之流道板疊層結構的剖面示意圖。流道板疊層結構500包含互相疊合之數個流道板510。這些流道板510中包含有數個熱源流道板與數個冷源流道板。流道板疊層結構500包含第一入口通道510c與第一出口通道512c、以及第二入口通道514c與第二出口通道516c。第一入口通道510c與第一出口通道512c分別位於流道板疊層結構500之二對角落,第二入口通道514c與第二出口通道516c分別位於流道板疊層結構500之其他二對角落。舉例而言,第一入口通道510c與第一出口通道512c可分別為熱源流體之入口通道與出口通道,即均與熱源流道板連通之通道。第二入口通道514c與第二出口通道516c可分別為冷源流體之入口通道與出口通道,即均與冷源流道板連通之通道。
如圖5B之剖面圖所示,將流體F,例如熱源流體,灌入第一入口通道510c時,流體F可迅速充填第一入口通道510c而注滿整個第一入口通道510c,形成穩壓區。接著,第一入口通道510c內的流體F可幾乎同時流入與第一入口通道510c連通之各流道板510中。流體F流經流道板510後而可大致同時流入第一出口通道512c。
本揭露之熱交換器之熱源流道板200、冷源流道板300、與儲熱板400之數量與堆疊順序可依需求搭配,不限於圖1A與圖1B所示之實施方式。在一些例子中,熱交換器可包含多個熱源流道板200與多個冷源流道板300以及至少一儲熱板400,而這些熱源流道板200與冷源流道板300可以依序交錯方式堆疊。在一些示範例子中,這些熱源流道板200與冷源流道板300可以非依序交錯方式排列堆疊,即可以任意交錯方式排列。
請參照圖6,其係繪示依照本揭露之一實施方式的一種熱交換器的側視示意圖。此熱交換器100b包含四個熱源流道板200、二個冷源流道板300、以及二個儲熱板400。在此熱交換器100b中,於第一個儲熱板400上依序堆疊有第一個熱源流道板200、第一個冷源流道板300、與第二個熱源流道板200。接著,將第二個儲熱板400堆疊在第二個熱源流道板200上,再於第二個儲熱板400上依序堆疊第三個熱源流道板200、第二個冷源流道板300、與第四個熱源流道板200。熱交換器100b之熱源流道板200與冷源流道板300並非以依序交錯方式堆疊,而是以任意交錯方式排列。
針對本揭露之實施例之熱交換器進行模擬。在熱交換器包含10層熱源流道板與10層冷源流道板以及相變化材料之儲熱板的例子中,熱源流道板與冷源流道板之總和體積為1052.3cm 3,儲熱板之體積為501.1cm 3,熱交換器之總和體積為1553.4cm 3。此外,熱源流體與冷源流體在熱交換器中的流動方向互為反向。在入口溫度熱源100℃與冷源20℃,且熱源流體與冷源流體之質量流率為0.275 kg/s條件下,熱交換量為56.7 kW,且壓阻為22.3 kPa。若將熱交換器之熱源流道板與冷源流道板各增加為16層,熱交換器之壓阻可進一步降為14.4 kPa。而若熱交換器僅包含各1層的熱源流道板與冷源流道板,其壓阻將高達213 kPa以上。由實驗結果可知,本揭露之熱交換器具有疊層數越多,壓阻越低的效果,而可供應之冷熱源流量越大,進而可提高熱交換功率密度。
由上述之實施方式可知,本揭露之一優點就是因為本揭露之熱交換器可依場域需求調整熱源流道板、冷源流道板、與儲熱板之數量與疊層順序,設計與使用彈性高,而可提高應用性。其次,每個流道板於入口處設計有雜質沉澱區,藉此可避免流道阻塞而影響流道板之熱傳表現。再者,每個流道板之主流道包含數個次流道區以及連接二相鄰之次流道區的彎折區。由於次留道區中之次流道的流道截面積小於彎折區,因此次流道流出之流體在彎折區中的速度加快且互相混合,可均勻流體溫度,同時將加速後之流體送入下一個次流道區。
本揭露之另一優點就是因為本揭露之熱交換器的所有熱源流道板具有相同之第一入口通道與第一出口通道,且所有冷源流道板具有相同之第二入口通道與第二出口通道。由於第一入口通道與第二入口通道可形成穩壓區,熱源流體與冷源流體可分別從第一入口通道與第二入口通道幾乎同時地提供給所有的熱源流道板與冷源流道板。因此,各層熱源流道板中的流體流速均勻,且各層冷源流道板中的流體流速均勻,可使各層流道板的熱傳效果一致化。故,本揭露之熱交換器包含愈多層流道板其壓阻愈低,使得可供應之冷熱源流量愈大,而可提高熱交換功率密度。
本揭露之又一優點就是因為本揭露之熱交換器的儲熱板可包含高孔隙度之多孔結構,可最大化儲存空間。儲熱板更可具有多個儲存槽。而儲存槽內填充有相變化材料。藉此,可提高熱傳導效率與儲熱效能,而可縮短熱交換器之維溫反應時間,並可增加熱交換器之維溫時間。
雖然本揭露已以實施例揭示如上,然其並非用以限定本揭露,任何在此技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。
100a:熱交換器 100b:熱交換器 200:熱源流道板 210:入口 210a:軸向 210c:第一入口通道 220:出口 220a:軸向 220c:第一出口通道 230:主流道 232:入口區 234:出口區 236:次流道區 236a:次流道 238:轉折區 239:雜質沉澱區 300:冷源流道板 310:入口 310a:軸向 310c:第二入口通道 320:出口 320a:軸向 320c:第二出口通道 330:主流道 332:入口區 334:出口區 336:次流道區 336a:次流道 338:轉折區 339:雜質沉澱區 400:儲熱板 402:第一側 404:第二側 410:儲存板 412:儲存槽 414:隔間牆 420:相變化材料 500:流道板疊層結構 510:流道板 510c:第一入口通道 512c:第一出口通道 514c:第二入口通道 516c:第二出口通道 CF:冷源流體 D1:第一方向 D2:第二方向 F:流體 HF:熱源流體
為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: [圖1A]係繪示依照本揭露之一實施方式的一種熱交換器的立體示意圖; [圖1B]係繪示沿圖1A之AA剖切線剖切後之熱交換器的局部立體示意圖; [圖2]係繪示依照本揭露之一實施方式的一種熱交換器之熱源流道板的上視示意圖; [圖3]係繪示依照本揭露之一實施方式的一種熱交換器之冷源流道板的上視示意圖; [圖4A]係繪示依照本揭露之一實施方式的一種熱交換器之儲熱板的上視示意圖; [圖4B]係繪示依照本揭露之一實施方式的一種熱交換器之儲熱板的側視示意圖; [圖5A]係繪示依照本揭露之一實施方式的一種熱交換器之流道板疊層結構的立體示意圖; [圖5B]係繪示沿圖5A之BB剖切線剖切後之熱交換器之流道板疊層結構的剖面示意圖;以及 [圖6]係繪示依照本揭露之一實施方式的一種熱交換器的側視示意圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
100a:熱交換器
200:熱源流道板
210a:軸向
210c:第一入口通道
220a:軸向
220c:第一出口通道
300:冷源流道板
310a:軸向
310c:第二入口通道
320a:軸向
320c:第二出口通道
400:儲熱板
402:第一側
404:第二側
410:儲存板
420:相變化材料
D1:第一方向
D2:第二方向

Claims (11)

  1. 一種熱交換器,包含: 至少一熱源流道板,其中各該至少一熱源流道板之一入口互相堆疊而形成一第一入口通道,且各該至少一熱源流道板之一出口互相堆疊而形成一第一出口通道; 至少一冷源流道板,其中各該至少一冷源流道板之一入口互相堆疊而形成一第二入口通道,且各該至少一冷源流道板之一出口互相堆疊而形成一第二出口通道;以及 至少一儲熱板,與該至少一熱源流道板及該至少一冷源流道板相互堆疊。
  2. 如請求項1所述之熱交換器,其中各該至少一熱源流道板與該至少一冷源流道板包含一主流道,該主流道包含: 一入口區; 一出口區; 複數個次流道區,連接在該入口區與該出口區之間,且沿一第一方向依序排列,其中每一該些次流道區包含複數個次流道,每一該些次流道沿一第二方向延伸,該第二方向垂直該第一方向;以及 至少一彎折區,連接該些次流道區之相鄰二者。
  3. 如請求項2所述之熱交換器,其中該些次流道區彼此實體相隔。
  4. 如請求項2所述之熱交換器,其中該主流道另具有一雜質沉澱區,該雜質沉澱區位於該入口區靠近相鄰的該次流道區之一側。。
  5. 如請求項1所述之熱交換器,其中每一該第一入口通道與該第二入口通道之一軸向垂直該至少一熱源流道板與該至少一冷源流道板而形成一穩壓區。
  6. 如請求項1所述之熱交換器,其中該至少一熱源流道板、該至少一冷源流道板、或每一該至少一熱源流道板與該至少一冷源流道板包含: 一流道板;以及 一鏡像流道板,與該流道板相對合併。
  7. 如請求項1所述之熱交換器,其中該至少一儲熱板包含: 一儲存板,包含至少一儲存槽;以及 一相變化材料,填充於該至少一儲存槽中。
  8. 如請求項7所述之熱交換器,其中該儲存槽為複數個,且該些儲存槽沿一方向延伸。
  9. 如請求項7所述之熱交換器,其中該儲存板包含一多孔結構,且該多孔結構之一孔隙度等於或大於0.8。
  10. 如請求項7所述之熱交換器,其中該相變化材料之一相變化溫度為等於或大於80℃,或者為等於或小於25℃。
  11. 如請求項1所述之熱交換器,其中該熱源流道板與該冷源流道板之數量均為複數個,且該些熱源流道板與該些冷源流道板任意交錯方式排列。
TW109142284A 2020-12-01 2020-12-01 熱交換器 TWI797511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109142284A TWI797511B (zh) 2020-12-01 2020-12-01 熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109142284A TWI797511B (zh) 2020-12-01 2020-12-01 熱交換器

Publications (2)

Publication Number Publication Date
TW202223319A true TW202223319A (zh) 2022-06-16
TWI797511B TWI797511B (zh) 2023-04-01

Family

ID=83062590

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109142284A TWI797511B (zh) 2020-12-01 2020-12-01 熱交換器

Country Status (1)

Country Link
TW (1) TWI797511B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117073430A (zh) * 2022-11-04 2023-11-17 山东大学 一种设置多折流直板的板式换热器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI591309B (zh) * 2015-12-08 2017-07-11 財團法人金屬工業研究發展中心 熱交換組件以及熱交換系統
EP3240372A1 (en) * 2016-04-27 2017-11-01 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Heat capacitive component carrier and method to produce said component carrier
CN108871032A (zh) * 2018-05-16 2018-11-23 东南大学 一种仿生梯级相变储能装置
TWI769445B (zh) * 2020-04-10 2022-07-01 國立成功大學 熱交換單元及熱交換儲熱系統

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117073430A (zh) * 2022-11-04 2023-11-17 山东大学 一种设置多折流直板的板式换热器
CN117073430B (zh) * 2022-11-04 2024-04-26 山东大学 一种设置多折流直板的板式换热器

Also Published As

Publication number Publication date
TWI797511B (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
CN103994675B (zh) 热交换器
US8474516B2 (en) Heat exchanger having winding micro-channels
US20110226448A1 (en) Heat exchanger having winding channels
EP3059542B1 (en) Laminated header, heat exchanger, and air-conditioner
CN108955316B (zh) 一种多股流印刷电路板式换热器
JP2019518925A (ja) 熱交換器および熱交換モジュール
WO2013172181A1 (ja) 熱交換器及び冷凍サイクル装置
CN105526813A (zh) 一种微通道散热器
TW202223319A (zh) 熱交換器
KR102352040B1 (ko) 전기소자 냉각용 열교환기
CN106931821A (zh) 一种换热板和气体‑液体换热器
CN114623707A (zh) 一种用于多流体换热的紧凑式换热器及换热方法
JP3747780B2 (ja) 熱交換器
TWI769445B (zh) 熱交換單元及熱交換儲熱系統
JP5046748B2 (ja) 給湯システムのガスクーラ
JP2013064569A (ja) プレートフィン型熱交換器及びその制御方法
KR100993035B1 (ko) 열교환기용 주름관 및 그를 포함한 열교환기
CN114585870A (zh) 热交换器和包括多个热交换器的热交换器装置
KR101645400B1 (ko) 액화천연가스 기화장치
JP2010117102A (ja) 熱交換器
JP6354868B1 (ja) 水熱交換器
JP2000180076A (ja) 水・冷媒熱交換器
JP2013089507A (ja) 電池モジュール
JP2018132298A (ja) 水熱交換器
JPS5821195B2 (ja) 開放型散水式蒸発装置