TW202220240A - 包括可變形層及壓電層之mems用複合結構及其製作方法 - Google Patents

包括可變形層及壓電層之mems用複合結構及其製作方法 Download PDF

Info

Publication number
TW202220240A
TW202220240A TW110137091A TW110137091A TW202220240A TW 202220240 A TW202220240 A TW 202220240A TW 110137091 A TW110137091 A TW 110137091A TW 110137091 A TW110137091 A TW 110137091A TW 202220240 A TW202220240 A TW 202220240A
Authority
TW
Taiwan
Prior art keywords
substrate
layer
piezoelectric layer
composite structure
single crystal
Prior art date
Application number
TW110137091A
Other languages
English (en)
Inventor
布魯諾 奇瑟蘭
法蘭索瓦札維耶 達哈斯
Original Assignee
法商索泰克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商索泰克公司 filed Critical 法商索泰克公司
Publication of TW202220240A publication Critical patent/TW202220240A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/308Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Micromachines (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本發明涉及一種複合結構(100),其包括: - 包含至少一孔穴(31)之一受體底材(3),該至少一孔穴(31)被界定在該受體底材中且完全沒有固體材料或填滿一犧牲固體材料, -設置在該受體底材(3)上之一單晶半導體層(1),該單晶半導體層在該複合結構的整個範圍內具有一自由表面及0.1微米至100微米之間的厚度, -一壓電層(2),其牢牢固定於該單晶半導體層(1)且設置在該單晶半導體層(1)及該受體底材(3)之間。 本發明還涉及一種基於一孔穴(31)上方一可移動薄膜(50)之元件,其由複合結構(100)形成。本發明最後涉及一種製作上述複合結構之方法。

Description

包括可變形層及壓電層之MEMS用複合結構及其製作方法
本發明涉及微電子及微系統領域。本發明尤其涉及一種複合結構,其包括壓電層及具有彈性的單晶半導體層,其能夠在至少一個孔穴上方變形。本發明還涉及一種用於製作該複合結構之方法。
在微機電系統(MEMS)及致動器領域中,底材及組件通常包括一薄壓電層設置在可變形層(deformable layer)上;後者具有彈性故可移動或變形,其形式通常爲在孔穴上方的可移動薄膜。應注意的是,術語「薄膜」在此以廣義使用,且包括密封或有孔的薄膜、橫樑(beam)或能夠彎曲及/或變形的任何其他形式之薄膜。可變形層為薄膜提供機械強度,而壓電層引起或偵測薄膜之變形。這個概念也擴展到聲波濾波器領域。
薄膜壓電體—尤其是PZT(鋯鈦酸鉛)—通常對侵蝕性的外部環境很敏感,因此若長時間暴露在環境中,就容易降解。舉例而言,感測器或致動器(如麥克風、揚聲器或壓電微加工超音波傳感器(pMUT))就是如此。因此,有必要在製作過程中提供在壓電層上沉積保護膜的額外步驟,以將壓電層與外部環境隔離,但又不影響其性能。
此外,再次考慮PZT製的壓電層之示例,這種易於沉積的材料若要實現良好的品質水準,需要在大約700°C的溫度下進行再結晶步驟。對某些應用而言,若底材包含壓電層必須沉積在其上之可變形層,該底材可能與這樣的溫度不相容:舉例而言,若底材包括玻璃或塑膠載體,或甚至包括諸如電晶體等組件時。
本發明涉及一種習知技術解決方案之替代方案,其旨在解決全部或部分的上述缺點。本發明特別涉及一種複合結構,其包括壓電層及具有彈性的單晶半導體層,能夠在至少一個孔穴上方變形。本發明還涉及一種用於製作所述複合結構之方法。
本發明涉及一種複合結構,其包括: 包含至少一孔穴之一受體底材,該至少一孔穴被界定在該受體底材中且完全沒有固體材料或填滿一犧牲固體材料, 設置在該受體底材上之一單晶半導體層,該單晶半導體層在該複合結構的整個範圍內具有一自由表面及0.1微米至100微米之間的厚度, 一壓電層,其牢牢固定於該單晶半導體層且設置在該單晶半導體層與該受體底材之間。
在依照本發明的複合結構中,當該至少一孔穴完全沒有固體材料或在該犧牲固體材料已去除後,該單晶半導體層的至少一部分用於在該至少一孔穴上方形成一可移動薄膜,且該壓電層用於引起或偵測該可移動薄膜之變形。
依照本發明的其他有利及非限制性的特徵,其可以單獨實施或以任何技術上可行的組合實施: 該壓電層包括從鈮酸鋰(LiNbO 3)、鉭酸鋰(LiTaO 3)、鈮酸鉀鈉(K xNa 1-xNbO 3或KNN)、鈦酸鋇(BaTiO 3)、石英、鋯鈦酸鉛(PZT)、鈮酸鉛鎂和鈦酸鉛的化合物(PMN-PT)、氧化鋅(ZnO)、氮化鋁(AlN)及鋁鈧氮化物(AlScN)當中選定之一材料; 該壓電層具有小於10微米,且優選小於5微米的厚度; 該單晶半導體層為矽製或碳化矽製; 該壓電層被設置成完全面向該受體底材之該至少一孔穴; 該壓電層被設置成面向該受體底材之該至少一孔穴,且在該至少一孔穴以外的部分牢牢固定於該受體底材。
本發明還涉及一種基於一孔穴上方的一可移動薄膜之元件,該元件由上述複合結構形成且包括與該壓電層接觸的至少兩個電極,其中:該孔穴完全沒有固體材料,且該單晶半導體層的至少一部分形成該孔穴上方之可移動薄膜。
本發明最後涉及一種用於製作複合結構之方法,該方法包括以下步驟: a)   提供包含一單晶半導體層之一供體底材,該單晶半導體層被界定在該供體底材之正面與該供體底材中一埋置弱化平面之間,該單晶半導體層具有0.1微米至100微米之間的厚度, b)   提供包含至少一孔穴之一受體底材,該至少一孔穴被界定在該受體底材中且在該受體底材之一正面開口,該至少一孔穴完全沒有固體材料或填滿一犧牲固體材料, c)    形成一壓電層,使其設置在該供體底材之正面上及/或在該受體底材之正面上, d)   將該供體底材及該受體底材經由其各自的正面而接合, e)    使該單晶半導體層沿著該埋置弱化平面從該供體底材的剩餘部斷裂,以形成包含該單晶半導體層、該壓電層及該受體底材之複合結構。
依照本發明的其他有利及非限制性的特徵,其可以單獨實施或以任何技術上可行的組合實施: 該埋置弱化平面係經由將輕質元素植入該供體底材而形成,且沿著該埋置弱化平面的斷裂,係透過一熱處理及/或施加一機械應力而獲得; 該埋置弱化平面係由鍵合能量低於0.7 J/m 2之一界面形成; 該製作方法包括在步驟c)之前及/或之後形成金屬電極之步驟,以使該些電極與該壓電層接觸; 步驟c)包括,當該壓電層形成在該供體底材之正面上時,局部蝕刻該壓電層,以在所述接合步驟d)結束時,使該壓電層保持完全面向該受體底材之該至少一孔穴。
依照本發明之複合結構100包括一受體底材3,該受體底材3包含完全沒有固體材料或填滿一犧牲固體材料之至少一孔穴31(圖1a及1b)。受體底材3有利地採用晶圓之形式,其直徑大於100毫米,例如為150毫米、200毫米或300毫米。其厚度通常介於200微米至900微米之間。當受體底材的功能基本上是機械性時,優選由低成本材料(矽、玻璃、塑膠)組成,或者,當更複雜的整合元件要形成在複合結構100上時,受體底材則由功能化底材(例如,包含電晶體等組件)形成。
複合結構100還包括設置在壓電層2上的單晶半導體層1。單晶半導體層1具有允許其以非常受控的方式在孔穴上方變形之機械特性。例如與多晶材料相比,單晶半導體層1的單晶特性保證了其特性之穩定性及再現性,因爲多晶材料的機械特性高度取決於沉積條件(晶粒的大小及形狀、晶界的性質、應力等)。在單晶材料的情況下,單晶半導體層1的機械性質可通過了解一些基本參數,例如彈性模數(楊氏模數)或甚至帕松比(Poisson’s ratio)而直接地控制、模擬及預期。在下文中,該單晶半導體層1可等效地稱為單晶層1或彈性層1。
優選地,非限制性地,單晶半導體層為矽製或碳化矽製。它有利地具有0.1微米至100微米之間的厚度。
複合結構100還包括壓電層2,其牢牢固定於單晶半導體層1且設置在單晶半導體層與受體底材3之間。
根據圖1a所示的第一變化例,壓電層2經由其一側與單晶半導體層1接觸(直接接觸或經由另一層而間接接觸)且經由其另一側與受體底材3(直接或間接)接觸。若受體底材3爲半導體或導電性質,則可在受體底材3與壓電層2之間提供一中間絕緣層43(圖1b)。若受體底材3爲絕緣性質,則該中間絕緣層43不需因電氣原因而提供,但中間絕緣層43可能有助於提高層之間的接合度及/或壓電層2的結構品質。
根據圖1c所示的第二變化例,壓電層2經由其一側局部地與單晶半導體層1接觸(直接接觸或經由另一層而間接接觸),壓電層另一側則面向受體底材3的(至少一個)孔穴31。
在上述任一變化例中,可在彈性層1與壓電層2之間提供一中間絕緣層41(圖1b)。
中間絕緣層41、43通常由氧化矽(SiO 2)或氮化矽(SiN)構成。
壓電層2可包括從鈮酸鋰(LiNbO 3)、鉭酸鋰(LiTaO 3)、鈮酸鉀鈉(K xNa 1-xNbO 3或KNN)、鈦酸鋇(BaTiO 3)、石英、鋯鈦酸鉛(PZT)、視所追求特性而決定不同比例(例如70/30或90/10)之鈮酸鎂鉛和鈦酸鉛(PMN-PT)化合物、氧化鋅(ZnO)、氮化鋁(AlN)、氮化鋁鈧(AlScN) 當中選定之一材料。壓電層2的厚度通常可在0.5微米至10微米之間不等,優選在1微米與5微米之間不等。
在複合結構100中,壓電層2由彈性層1保護。在某些情況下,因此可省去用於保護壓電層2免受外部環境影響及/或用於禁錮壓電層2的額外保護層(基於鉛的壓電材料必須埋置才能與某些應用相容)。
作爲替代方案,可提供保護層,但其能夠相對於標準習知層加以簡化。根據另一選項,可能期望保留標準保護層,且由於本發明已提供保護,該保護層的效用將增加。
複合結構1提供可移動薄膜50,其包括單晶半導體層1的至少一部分,且懸垂在製作於受體底材3中的孔穴31上方。如前文所述,提供壓電層2是為了引起或偵測孔穴31上方之可移動薄膜50之變形。
因此,基於孔穴31上方之可移動薄膜50之元件150可從前述複合結構100(圖2)形成。元件150包括與壓電層2接觸的至少兩個電極21、22;它們旨在發送及/或收集與可移動薄膜50變形相關的電信號。電極21、22尤其可由鉑、鋁、鈦或甚至鉬形成。在圖2的示例中,電極21、22被設置在壓電層2面向彈性層1之一側。或者,它們可被設置在另一側(面向受體底材3),或分別設置在壓電層2之兩側。當它們被設置在壓電層2的同一側時,電極21、22有利地採用指叉梳狀(interdigitated combs)之形式。在所有情況下,為了使電極21、22與單晶半導體層1及/或受體底材3絕緣,可在中間位置提供一個(或更多)中間絕緣層41、43。
在元件150中,該至少一孔穴31完全沒有固體材料,以允許可移動薄膜50之變形。在一種廣受歡迎的應用中,孔穴31因此可以是開啓或關閉的,其關閉可能達到不透水的密封。在關閉的情況下,受控的大氣環境可被侷限在所述孔穴31中。受控的大氣環境可對應於相對高的真空(例如,在10 -2毫巴與常壓之間),及/或對應於特定的氣體混合物(例如,中性大氣、氮氣或氬氣,或者環境空氣)。
在孔穴開啓的情況下,孔穴可以多種方式打開。它可通過受體底材3從背面打開。也可經由製作在受體底材3中的橫向通道打開。它也可經由製作成穿透可移動薄膜50的一個或多個通孔打開。嵌入式撓性橫樑(embedded flexible beam)是通常與開放孔穴型複合結構相關的一個設計示例。
彈性層1的至少一部分形成孔穴31上方之可移動薄膜50。此外,功能元件51可製作在彈性層1上面或當中,以與壓電層2的電極及/或薄膜整體相互作用。視需要地,功能元件51可包括電晶體、二極體或其他微電子組件。
由於壓電層2埋置在彈性層1之下,因此可建議形成導電通孔52,使其延伸穿過彈性層1且穿過中間絕緣層41(如果存在的話),這樣可允許電極21、22從複合結構100的正面實現電性連接。作爲替代方案,藉由完全或部分穿過受體底材3及中間絕緣層43(如果存在的話)的導電通孔,可從複合結構的背面實現電性連接。
本發明還涉及一種用於製作上述複合結構100之方法。該方法首先包括提供具有正面10a及背面10b的供體底材10。供體底材10有利地爲晶圓形式,其直徑大於100毫米,例如為150毫米、200毫米或300毫米。其厚度通常爲200微米至900微米之間。
供體底材10包括單晶半導體層1,其邊界在供體底材的正面10a與形成在供體底材10中的埋置弱化平面11之間(圖3a)。
根據第一實施例,依Smart Cut TM方法之原理,其特別適用於移轉薄單晶層,埋置弱化平面11經由將輕質元素植入供體底材10而形成(圖4a)。供體底材10可以是空白單晶底材,具有針對單晶半導體層1的彈性。供體底材也可能是單晶矽晶圓。或者,供體底材可在其正面10a設有供體層12,以在其中劃定出彈性層1(圖4b)。供體層12可設置在能夠為供體底材10提供強度的任何載體13上,當然載體必須與本發明之方法的其餘步驟相容。例如,一矽製供體層12以磊晶方式製作在較低品質單晶矽製之載體晶圓13上。
該第一實施例特別適用於厚度小於2微米的單晶層。
根據第二實施例,埋置弱化平面11由鍵合能量通常低於0.7J/m 2之界面形成,以允許該方法後續在該界面處進行斷裂。在這種情況下,供體底材10是可分離底材,其兩個示例繪於圖5a和5b。供體底材由接合至載體13的表面層12(經由可分離的鍵合界面11)形成。這種界面11,舉例而言,可在分子黏附的直接鍵合前,透過粗化表面層12的表面及/或載體13的表面而獲得。接合的表面具有粗糙度,通常在0.5nm與1nm RMS之間(經由AFM測量,以20微米 x 20微米掃描),的事實,降低了界面11的鍵合能並為其提供了可分離的特性。
在圖5a的第一示例中,可分離之供體底材10的表面層12是單晶半導體層1。
在圖5b的第二示例中,表面層12一方面包括形成結晶層1的層12a,另一方面包括有利地為氧化矽製的第一鍵合層12b。該第一鍵合層12b的待接合表面經過粗化處理,以防止未來的結晶層1必須經歷該處理。視需要地,第二鍵合層13b可設置在載體13的基部13a上。該第二鍵合層有利地具有與第一鍵合層12b相同的性質,且可在表面層12從第二鍵合層斷裂之後便於再利用基部13a。在所述兩個示例中,用於形成全部或部分單晶層1之表面層12可從一單晶起始底材獲得,經由可分離界面11接合至載體13,然後以機械、化學機械及/或化學方式薄化至數微米至數十微米之間的厚度。對於較小厚度的表面層12,可實施諸如Smart Cut TM法,以經由可分離界面11將表面層12從起始底材移轉至載體13。
根據第三實施例,埋置弱化平面11可由多孔層形成(例如多孔矽製的多孔層)或者由後續能夠沿著該層斷裂的任何其他弱化層、薄膜或界面形成。
在前述任一實施例中,單晶半導體層1的特性係經過選定,以賦予該層具備目標應用所需的彈性。結晶層1的厚度可在0.1微米至100微米之間。其材料可選自,舉例而言,矽、碳化矽等等。
該製作方法接着包括提供具有正面3a及背面3b的受體底材3(圖3b)。受體底材3有利地爲晶圓形式,其直徑大於100毫米,例如為150毫米、200毫米或300毫米。其厚度通常在200微米與900微米之間。當受體底材的功能基本上是機械性時,優選由低成本材料(矽、玻璃、塑膠)組成,或者,當要形成整合元件時,受體底材則由功能化底材(例如,包含電晶體等組件)形成。
在所有情況下,受體底材3包括至少一孔穴31,其在受體底材的正面3a上開口。下文將提到一個孔穴31,但受體底材3可有利地包括多個孔穴31分佈在整個正面3a上。孔穴31在正面3a的(x,y)平面中可具有數十微米至數百微米之間的尺寸,且沿著垂直於正面3a的z軸可具有大約數十分之一微米至數十微米的高度(或深度)。
孔穴31可以是空的,即完全沒有固體材料,或填滿一犧牲固體材料,該犧牲固體材料後續在製作複合結構100之方法中或在複合結構100上製作組件期間將被去除。
應注意的是,在此階段,具有填滿的孔穴31以便於製作方法的後續步驟可能更有利。設置在孔穴31中的犧牲材料可以是氧化矽、氮化矽、非晶矽或多晶矽等。犧牲材料的選擇取決於受體底材3的性質。具體而言,該材料會在形成複合結構100之後去除:因此它必須能夠以相對於受體底材3以及彈性層1及壓電層2(二者設置在孔穴上方)的良好選擇性而被化學蝕刻。
所述製作方法接着包括形成壓電層2的步驟c)。該壓電層2直接或經由中間絕緣層41、43,形成在供體底材10的半導體單晶層1及/或受體底材3上。
在圖3c的示例中,壓電層2設置在受體底材3上。或者,壓電層可設置在供體底材10上。在後者的情況下,步驟c)可包括局部蝕刻壓電層2,以便在壓電層2的(x,y)平面中產生圖案(「圖案化」)。這使得界定壓電層2的一個或多個平板(slab)成爲可能,這些平板用於在接下來的步驟d)結束時,被定位成面向受體底材3的一個或多個孔穴。這樣,圖案化的壓電層2就不與受體底材3接觸,即使它被設置在彈性層1與受體底材3之間。如此,在製作過程結束時,可獲得如圖1c所示的複合結構100。
壓電層2可經由沉積形成,使用沉積技術例如物理氣相沉積(PVD)、脈衝雷射沉積(PLD)、溶膠-凝膠法或磊晶法;特別指出壓電層2可為沉積材料製成,例如PZT、AlN、KNN、BaTiO 3、PMN-PT、ZnO、AlScN等。作爲替代方案,壓電層2可經由將一層從來源底材移轉至目標底材(供體底材10及/或受體基材3)而形成。來源底材可尤其爲LiNbO 3、LiTaO 3製成。壓電層2可以是單晶或多晶,視所使用的技術及所選擇的材料而定。
根據壓電層2的性質,其形成可能需要相對較高的溫度。若受體底材3是基於功能化底材(包括組件的底材),則壓電層2有利地製作在供體底材10上。若受體底材3與形成壓電層2的溫度相容,則壓電層可製作在供體底材10及受體底材3當中一者或二者上。
供體底材10當然是從上述實施方式當中選擇的,以便當壓電層2形成在供體底材10上時,與形成壓電層2所需的溫度相容。這種選擇也考慮到在供體底材10及受體底材3接合之前,期望在壓電層2及/或彈性層1上實施的任何技術操作。
舉例來說,已知PZT可使用溶膠-凝膠法在室溫下沉積,常規厚度為數微米。為了獲得優質PZT製成的壓電層2,接着需要在大約700℃的溫度下進行結晶退火。若壓電層2形成在供體底材10上,則可優先選擇依照上述第二實施例而獲得,且與高於或等於700℃的溫度相容的可分離底材。此處相容意味著可分離底材即使在施加上述溫度後仍保持其可分離特性。
根據另一示例,多晶AlN層可使用常規的陰極濺射(cathode-sputtering)技術在250℃與500℃之間的溫度下沉積。不需要結晶退火。上述三個實施例的供體底材10與這種沉積法相容,多數受體底材3亦然,即使在功能化時也是如此。
依照本發明的製作方法有利地包括在沉積壓電層2之前及/或之後,形成與壓電層2接觸的金屬電極21、22之步驟。金屬電極21、22可形成在壓電層2的單側上且有利地採用指叉梳狀形式,或者可以諸如兩個金屬薄膜之形式形成在壓電層2的兩側上。用於形成金屬電極21、22的材料可爲鉑、鋁、鈦,或甚至是鉬。
金屬電極21、22不得與結晶層1直接接觸;因此需要提供中間絕緣層41(圖3c)。應注意的是,當受體底材3具有半導電或導電性質時,金屬電極21、22也不得與受體底材3直接接觸;此時可在壓電層2與受體底材3之間提供一中間絕緣層43。
形成壓電層2之後,本發明之製作方法包括經由供體底材10與受體底材3各自的正面10a、3a接合二底材之步驟(圖3d)。可設想各種接合技術。尤其可經由分子黏附直接接合,或熱壓接合,或甚至將絕緣或金屬性質表面接合之聚合物鍵合。因此在兩個底材10、3之間界定出一接合界面6,這兩個底材在該方法的此階段形成一接合結構。
根據圖3c及3d所示的第一選項,在接合之前,壓電層2包括兩個指叉電極21、22且絕緣層41在其自由側上。絕緣層41使電極21、22與供體底材10電性絕緣並促進接合形成。
根據第二選項,壓電層2包括由分別在其兩側上設置金屬薄膜而形成之第一電極21及第二電極22 (如圖6所示)。因此,能夠利用位於壓電層2一側的第二電極22實施金屬鍵合。供體底材10可包括與第二電極22接觸的金屬鍵合層61。中間絕緣層41可提供在鍵合層61與單晶層1之間。
第一及第二選項是以壓電層2沉積在受體底材3上來說明;應注意的是,若壓電層沉積在供體底材10上,這些選項亦可類推適用。
依照本發明的製作方法最後包括使單晶層1沿著埋置弱化平面11從供體底材10的剩餘部10’斷裂之步驟(圖3e)。由此獲得複合結構100,其包括單晶半導體層1設置在壓電層2上,壓電層2本身設置在受體底材3上。
斷裂步驟可以各種方式進行,視供體底材10所選實施例而定。
根據第一實施例,沿著埋置弱化平面的斷裂係透過熱處理及/或施加機械應力而實現,該熱處理及/或機械應力,會導致承受植入元素所產生氣體壓力之微裂縫區域分裂。
根據第二實施例,沿著埋置弱化平面11的分裂,優選地經由向可分離界面施加機械應力而實現。
根據第三實施例,亦優選施加機械應力。
可經由在接合底材的邊緣之間插入削角工具,例如鐵氟龍刀刃,來施加機械應力:牽引力被傳遞至埋置弱化平面11,在其中引發分裂或剝離波。當然,牽引力也作用在接合結構的接合界面6上。因此,充分強化該接合界面6是很重要的,以確保斷裂在埋置弱化平面11中發生,而不是在接合界面6發生。
接着可進行複合結構100正面100a(其對應於斷裂後的單晶層1之自由表面)之最後加工步驟,以在材料的粗糙度、缺陷或性質方面恢復良好的品質水準。這種最後加工可包括經由化學機械拋光、清洗及/或化學蝕刻之平滑化。
從所獲得的複合結構100,可製作以孔穴31上方之可移動薄膜50爲基礎之元件150。為此,可製作穿透單晶層1、壓電層2及可能的電極21、22以及中間絕緣層41、43、61的孔隙,以允許填滿孔穴31的材料可被選擇性地蝕刻(若孔穴31在此方法的這個階段實際上被填滿)。
用於連接至壓電層2的電極或與薄膜50相互作用的功能元件51,可製作在彈性層1上面或當中 (圖3f)。這些功能元件51可包括電晶體、二極體或其他微電子組件。複合結構100的優點在於它促成具有空白平坦自由表面100a的單晶層1,該單晶層1既堅固且有利於潛在的表面組件製作。
如果需要,延伸穿過彈性層1的導電通孔52可允許電極21、22電性連接至功能元件51。
實施示例: 根據第一示例,供體底材10為可分離底材,且埋置弱化平面11對應於已被粗糙化或具有低溫安定性的鍵合界面。供體底材10是厚SOI類型,具有20微米的單晶矽製之表面層12a在埋置的氧化矽層12b、13b上,可分離界面11位於這些層的中心(圖5b)。氧化矽層12b、13b本身設置在矽製的載體底材13a上。
在供體底材10的正面10a上形成氧化矽製的成核層,以促進令人滿意的織構化生長(textured growth),從而確保後續沉積的層(金屬電極21、22及壓電層2)具有良好的品質。用於形成第一電極21、22的金屬薄膜(鉑製)沉積在該成核層上。為了改善該金屬薄膜對氧化矽的附著力,預先在鉑下方沉積中間黏附促進層(鈦製)。然後進行PZT製的壓電層2之常規溶膠-凝膠沉積,以形成厚度為數微米,例如在1與5微米之間的層。然後在大約650°C與750°C之間的溫度下,對設有壓電層2的供體底材10進行結晶退火。鉑製的第二電極21、22以金屬薄膜的形式沉積在PZT層2的自由表面上。
受體底材3是空白矽底材,蝕刻在其中的孔穴31可為,舉例而言,正方形,具有50微米的長寬及5微米的深度。孔穴31完全沒有固體材料。0.5微米的氧化矽層可沉積在受體底材3上,包括孔穴31的底部及側壁。
供體底材10與受體底材3經由孔穴31以外部分之金屬鍵合而接合,此係透過供體底材10正面10a的電極薄膜與預先沉積在受體底材3正面3a的金屬層二者之間的熱壓而達成。熱壓條件尤其取決於要接合的金屬之選擇。當沈積在受體底材3正面3a的金屬層選定爲金時,將採用,舉例而言,300°C至500°C之間的溫度。
將鐵氟龍刀刃插入兩個接合底材的邊緣之間,會向可分離界面11施加機械應力;由於可分離界面是接合結構的最弱區域,因此斷裂會沿著可分離界面11發生,一方面形成複合結構100,另一方面獲得供體底材10的剩餘部10'。
這樣就獲得了懸垂在每個孔穴31上的可移動薄膜50。可移動薄膜50包括單晶矽製的20微米之彈性層1及數微米厚含電極21、22的壓電層2。
然後可進行用於使複合結構100的複數個元件電性隔離並形成功能元件的額外步驟。
在第二示例中,起始供體底材10及受體底材3與第一示例中的相似。受體底材3在其正面3a上包括氧化矽層。在此例中,孔穴31填滿氧化矽,這是一種犧牲材料,其在複合結構100製作後將被蝕刻。
然後進行PZT製的壓電層2的常規溶膠-凝膠沉積,以在受體底材3上形成數微米的層。在700°C下對設有壓電層2的受體底材3進行結晶退火。然後在PZT層2的自由表面上製作鉑製的指叉狀電極21、22。
使氧化矽製的絕緣層41沉積在電極21、22及壓電層2上,然後進行平坦化(例如藉由化學機械拋光),以促進與供體底材10的附著。
供體底材10及受體底材3各自的正面經由分子黏附之直接氧化物/矽鍵合來接合。用於強化接合界面6的熱處理在600℃與700℃之間的溫度下進行。
將鐵氟龍刀刃插入兩個接合底材的邊緣之間向可分離界面11施加機械應力;由於可分離界面是接合結構的最弱區域,因此斷裂會沿著可分離界面11發生,一方面形成複合結構100,另一方面獲得供體底材10的剩餘部10'。
填滿孔穴31的犧牲材料可在此階段蝕刻,或後續在單晶層1上製作組件或其他功能元件51之後被蝕刻。這樣就獲得了懸垂在每個孔穴31上的可移動薄膜50。可移動薄膜50包括20微米的單晶矽彈性層1及數微米厚含指叉狀電極的壓電層2。
根據第三示例,供體底材10爲單晶矽製的底材,且埋置弱化平面11對應於以210 keV的能量及大約7x10 16/cm 2的劑量植入氫離子的區域。約1.5微米的單晶層1因此被界定在供體底材10的正面10a與植入區11之間。
接着經由陰極濺射對多晶AlN製壓電層2進行常規沉積,以在供體底材10的正面形成厚度0.5微米至1微米之間的層,供體底材預先提供有絕緣層。然後分別在AlN層2的兩側製作鉬製電極21、22。
受體底材3是空白矽底材,蝕刻在其中的孔穴31可為,舉例而言,正方形,具有25微米的長寬及0.3微米的深度。孔穴31填滿氧化矽,這是一種犧牲材料,其在複合結構100製作後將被蝕刻。
使氧化矽製的絕緣層沉積在電極21、22及壓電層2上,然後進行平坦化(例如藉由化學機械拋光),以促進與受體底材3的附著。
供體底材10及受體底材3各自的正面經由分子黏附之直接氧化物/矽鍵合來接合。用於強化接合界面6的熱處理在600℃與700℃之間的溫度下進行。
沿著埋置弱化平面11的斷裂是透過在大約500°C的溫度下對接合結構進行熱處理而獲得,斷裂是由於微裂縫(microcracks)在植入區的壓力下生長,直到分裂波傳播穿過所述區域而導致。該斷裂一方面形成複合結構100,另一方面獲得供體底材10的剩餘部10'。
對複合結構100施加化學機械拋光及標準清洗的最後加工步驟,以使單晶矽層1的自由表面具有良好的品質及低粗糙度。
填滿孔穴31的犧牲材料可在這個階段被蝕刻,或後續在單晶層1上生產組件或其他功能元件51之後被蝕刻。
這樣就獲得了懸垂在每個孔穴31上的可移動薄膜50。可移動薄膜50包括1.2微米的單晶矽彈性層1及小於1微米厚含電極的AlN壓電層2。
當然,本發明不限於此處所述實施例及示例,在不脫離申請專利範圍所界定的情況下可對本發明進行各種變化。
1:單晶半導體層 2:壓電層 3:受體底材 10:供體底材 10’:剩餘部 3a,10a,100a:正面 3b,10b:背面 6:接合界面 11:埋置弱化平面 12:供體層 12a:層 12b:第一鍵合層 13:載體 13a:基部 13b:第二鍵合層 21,22:電極 31:孔穴 41,43:中間絕緣層 50:可移動薄膜 51:功能元件 52:導電通孔 61:鍵合層 100:複合結構 150:元件
本發明的其他特徵及優點,將在以下參照附圖所提供的詳細描述中更爲彰顯,其中:圖1a、1b及1c繪示依照本發明之複合結構;圖2繪示基於孔穴上方可移動薄膜之元件,該元件係從依照本發明之複合結構而形成;圖3a至3f及圖6繪示依照本發明用於製作複合結構之方法之步驟;圖4a及4b繪示依照本發明之製作方法之第一實施變化例之供體底材;圖5a及5b繪示依照本發明之製作方法之第二實施變化例之供體底材。
在圖式中,相同的元件符號可用於相同類型的元件。圖式爲示意性呈現,故為了可讀性,並未按比例繪製。尤其是沿著z軸的層厚度,並未與沿著x軸及y軸之橫向尺寸成比例;並且各層之間的相對厚度在圖式中不一定如實呈現。
1:單晶半導體層
2:壓電層
3:受體底材
31:孔穴
50:可移動薄膜
100:複合結構

Claims (12)

  1. 一種複合結構(100),其包括: 包含至少一孔穴(31)之一受體底材(3),該至少一孔穴被界定在該受體底材中且完全沒有固體材料或填滿一犧牲固體材料, 設置在該受體底材(3)上方之一單晶半導體層(1),該單晶半導體層在該複合結構的整個範圍內具有一自由表面及0.1微米至100微米之間的厚度, 一壓電層(2),其牢牢固定於該單晶半導體層(1)且設置在該單晶半導體層(1)及該受體底材(3)之間, 該單晶半導體層(1)的至少一部分旨在當該至少一孔穴(31)完全沒有固體材料或在該犧牲固體材料已去除後,用於在該至少一孔穴(31)上方形成一可移動薄膜(50),且 該壓電層(2)旨在用於引起或偵測該可移動薄膜(50)之變形。
  2. 如請求項1之複合結構(100),其中該壓電層(2)包括從鈮酸鋰(LiNbO3)、鉭酸鋰(LiTaO3)、鈮酸鉀鈉(K xNa 1-xNbO 3或KNN)、鈦酸鋇(BaTiO3)、石英、鋯鈦酸鉛(PZT)、鈮酸鎂鉛和鈦酸鉛的化合物(PMN-PT)、氧化鋅(ZnO)、氮化鋁(AlN)及鋁鈧氮化物(AlScN)當中選定之一材料。
  3. 如請求項1或2之複合結構(100),其中該壓電層(2)具有小於10微米,且優選小於5微米的厚度。
  4. 如請求項1至3任一項之複合結構(100),其中該單晶半導體層(1)爲矽製或碳化矽製。
  5. 如請求項1至4任一項之複合結構(100),其中該壓電層(2)被設置成完全面向(solely facing)該受體底材(3)之該至少一孔穴(31)。
  6. 如請求項1至4任一項之複合結構(100),其中該壓電層(2)被設置成面向該受體底材(3)之該至少一孔穴(31),且在該至少一孔穴(31)以外的部分牢牢固定於該受體底材(3)。
  7. 一種基於一孔穴(31)上方一可移動薄膜(50)之元件(150),該元件係從請求項1至6任一項之複合結構(100)形成且包括與該壓電層(2)接觸的至少兩個電極(21, 22),其中: 該孔穴(31)完全沒有固體材料,及 該單晶半導體層(1)的至少一部分形成該孔穴(31)上方之可移動薄膜(50)。
  8. 一種用於製作請求項1至6任一項之複合結構(100)之方法,該方法包括以下步驟: a)   提供包含一單晶半導體層(1)之一供體底材(10),該單晶半導體層(1)被界定在該供體底材(10)之正面(10a)與該供體底材(10)中一埋置弱化平面(11)之間,該單晶半導體層(1)具有0.1微米至100微米之間的厚度, b)   提供包含至少一孔穴(31)之一受體底材(3),該至少一孔穴被界定在該受體底材中且在該受體底材(3)之一正面(3a)開口,該至少一孔穴(31)完全沒有固體材料或填滿一犧牲固體材料, c)    形成一壓電層(2)使其設置在該供體底材(10)之正面(10a)上及/或在該受體底材(3)之正面(3a)上, d)   使該供體底材(10)及該受體底材(3)經由其各自的正面而接合, e)    使該單晶半導體層(1)沿着該埋置弱化平面(11)從該供體底材的剩餘部(10’)斷裂,以形成包含該單晶半導體層(1)、該壓電層(2)及該受體底材(3)之該複合結構(100)。
  9. 如請求項8之方法,其中該埋置弱化平面(11)係經由將輕質元素植入該供體底材(10)而形成,且沿着該埋置弱化平面(11)的斷裂係透過一熱處理及/或施加一機械應力而獲得。
  10. 如請求項8之方法,其中該埋置弱化平面(11)係由鍵合能量低於0.7J/m 2之一界面形成。
  11. 如請求項8至10任一項之方法,其包括在步驟c)之前及/或之後形成金屬之電極(21, 22)之一步驟,以使該些電極與該壓電層(2)接觸。
  12. 如請求項8至11任一項之方法,其中步驟c)包括,當該壓電層(2)係形成在該供體底材(10)之正面(10a)上時,局部蝕刻該壓電層(2),以在所述接合步驟d)結束時,使該壓電層(2)保持完全面向該受體底材(3)之該至少一孔穴(31)。
TW110137091A 2020-10-16 2021-10-05 包括可變形層及壓電層之mems用複合結構及其製作方法 TW202220240A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2010659A FR3115399B1 (fr) 2020-10-16 2020-10-16 Structure composite pour applications mems, comprenant une couche deformable et une couche piezoelectrique, et procede de fabrication associe
FRFR2010659 2020-10-16

Publications (1)

Publication Number Publication Date
TW202220240A true TW202220240A (zh) 2022-05-16

Family

ID=73793470

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110137091A TW202220240A (zh) 2020-10-16 2021-10-05 包括可變形層及壓電層之mems用複合結構及其製作方法

Country Status (8)

Country Link
US (1) US20230371386A1 (zh)
EP (1) EP4229686A1 (zh)
JP (1) JP2023546787A (zh)
KR (1) KR20230086718A (zh)
CN (1) CN116391459A (zh)
FR (1) FR3115399B1 (zh)
TW (1) TW202220240A (zh)
WO (1) WO2022079366A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008025691B4 (de) * 2007-05-31 2011-08-25 National Institute Of Advanced Industrial Science And Technology Piezoelektrischer Dünnfilm, piezoelektrisches Material und Herstellungsverfahren für piezoelektrischen Dünnfilm
WO2010114602A1 (en) * 2009-03-31 2010-10-07 Sand9, Inc. Integration of piezoelectric materials with substrates
FR3091032B1 (fr) * 2018-12-20 2020-12-11 Soitec Silicon On Insulator Procédé de transfert d’une couche superficielle sur des cavités

Also Published As

Publication number Publication date
US20230371386A1 (en) 2023-11-16
FR3115399A1 (fr) 2022-04-22
KR20230086718A (ko) 2023-06-15
EP4229686A1 (fr) 2023-08-23
CN116391459A (zh) 2023-07-04
FR3115399B1 (fr) 2022-12-23
JP2023546787A (ja) 2023-11-08
WO2022079366A1 (fr) 2022-04-21

Similar Documents

Publication Publication Date Title
US7906439B2 (en) Method of fabricating a MEMS/NEMS electromechanical component
US11495728B2 (en) Piezoelectric device and method of manufacturing piezoelectric device
JP7517840B2 (ja) 転写圧電又は強誘電体層から微小電気機械システムを製造するプロセス
US7993949B2 (en) Heterogeneous substrate including a sacrificial layer, and a method of fabricating it
JP6400693B2 (ja) 犠牲材料で充填されたキャビティを含む半導体構造を作製する方法
EP2624451B1 (en) Method for manufacturing piezoelectric device
JP2006528422A (ja) 積重ね構造およびそれの作成方法
JP2011136412A (ja) 最適駆動式圧電メンブレンの製造方法
US8076169B2 (en) Method of fabricating an electromechanical device including at least one active element
US8764998B2 (en) Method for manufacturing composite substrate
US8021983B2 (en) Method of forming pattern of inorganic material film comprising thermally induced cracking
JP7307029B2 (ja) 圧電デバイス及び圧電デバイスの製造方法
TW202220240A (zh) 包括可變形層及壓電層之mems用複合結構及其製作方法
CN113226978A (zh) 制造包括悬在腔之上的膜的器件的方法
CN116323471A (zh) 用于转移膜的方法
CN113228319A (zh) 将表面层转移到腔的方法
US11511990B2 (en) Method for manufacturing a microelectronic device comprising a membrane suspended above a cavity
TWI857218B (zh) 用於製作堆疊結構之方法
US20230120346A1 (en) Method for producing a stacked structure
WO2016114172A1 (ja) 圧電デバイスの製造方法
TW202203480A (zh) 壓電微機械超聲波換能器及其製作方法
TW202438436A (zh) 用於製作包含複數個埋置空腔之結構之方法