TW202205886A - 針對指定時間的用戶設備定位估計 - Google Patents
針對指定時間的用戶設備定位估計 Download PDFInfo
- Publication number
- TW202205886A TW202205886A TW110119534A TW110119534A TW202205886A TW 202205886 A TW202205886 A TW 202205886A TW 110119534 A TW110119534 A TW 110119534A TW 110119534 A TW110119534 A TW 110119534A TW 202205886 A TW202205886 A TW 202205886A
- Authority
- TW
- Taiwan
- Prior art keywords
- positioning
- estimate
- wireless node
- specified time
- extrapolation
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/006—Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/0009—Transmission of position information to remote stations
- G01S5/0045—Transmission from base station to mobile station
- G01S5/0054—Transmission from base station to mobile station of actual mobile position, i.e. position calculation on base station
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0284—Relative positioning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0294—Trajectory determination or predictive filtering, e.g. target tracking or Kalman filtering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
在一實施例中,無線節點(例如,UE或BS)從網絡組件(例如,BS或核心網絡組件)接收對與指定時間相關聯的UE的定位估計的請求。該無線節點在多個時間執行定位測量,並且基於這些定位測量來確定(例如,經由內插或外插)與指定時間相關聯的定位估計。該無線節點向網絡組件傳送包括所確定的定位估計的報告。
Description
本公開的各方面一般涉及無線通訊,尤其涉及一種針對指定時間的用戶設備定位估計的操作無線節點的方法、無線節點、網路元件及非暫態電腦可讀媒介。
無線通訊系統已經經過了數代的發展,包括第一代(1G)類比無線電話服務、第二代(2G)數位無線電話服務(包括過渡的2.5G網路)、第三代(3G)具有網際網路能力的高速資料無線服務和第四代(4G)服務(例如,LTE或WiMax)。目前在用的有許多不同類型的無線通訊系統,包括蜂窩以及個人通訊服務(Personal Communications Service,PCS)系統。已知蜂窩系統的示例包括蜂窩類比高級行動電話系統(Advanced Mobile Phone System,AMPS),以及基於分碼多工存取(Code Division Multiple Access,CDMA)、分頻多工存取(Frequency Division Multiple Access,FDMA)、分時多工存取(Time Division Multiple Access,TDMA)、全球移動存取系統(Global System for Mobile access,GSM)TDMA變型等的數位蜂窩系統。
第五代(5G)無線標準(被稱為新無線電(New Radio,NR))實現了更高的資料傳輸速度、更大數目的連接和更好的涵蓋、以及其他改進。根據下一代移動網路聯盟,5G標準被設計成向成千上萬個用戶中的每一者提供百萬位元每秒的資料率,以及向辦公樓層裡的數十位員工提供每秒十億位元的資料率。應當支援成百上千個同時連接,以支援大型無線感測器部署。因此,相比於當前的4G標準,5G移動通訊的頻譜效率應當顯著地提高。此外,相比於當前標準,信令效率應當提高並且等待時間應當大幅地減少。
本專利申請要求於2020年7月27日提交的發明名稱為“USER EQUIPMENT POSITIONING ESTIMATE FOR SPECIFIED TIME(針對指定時間的用戶設備定位估計)”的美國臨時申請No. 63/057,264的權益,該臨時申請已被轉讓給本申請受讓人並由此通過援引全部明確納入於此。
以下給出了與本揭露的一個或多個方面相關的簡化概述。由此,以下概述既不應被認為是與所有構想的方面相關的詳盡縱覽,以下概述也不應被認為標識與所有構想的方面相關的關鍵性或決定性要素或描繪與任何特定方面相關聯的範圍。相應地,以下概述的唯一目的是在以下給出的詳細描述之前以簡化形式呈現與關於本揭露的機制的一個或多個方面相關的某些概念。
一個方面涉及一種操作無線節點的方法,包括:接收針對與指定時間相關聯的使用者設備(User Equipment,UE)的定位估計的請求,在多個時間執行定位測量,基於這些定位測量來確定與指定時間相關聯的定位估計,以及傳送包括所確定的定位估計的報告。
另一方面涉及一種操作網路元件的方法,包括:向無線節點傳送針對與指定時間相關聯的使用者設備(UE)的定位估計的請求,以及基於由該無線節點在多個時間執行的定位測量,從該無線節點接收包括針對指定時間的定位估計的報告。
另一方面涉及一種無線節點,包括:用於接收針對與指定時間相關聯的使用者設備(UE)的定位估計的請求的裝置,用於在多個時間執行定位測量的裝置,用於基於這些定位測量來確定與指定時間相關聯的定位估計的裝置,以及用於傳送包括所確定的定位估計的報告的裝置。
另一方面涉及一種網路元件,包括:用於向無線節點傳送針對與指定時間相關聯的使用者設備(UE)的定位估計的請求的裝置,以及用於基於該無線節點在多個時間執行的定位測量從該無線節點接收包括針對指定時間的定位估計的報告的裝置。
另一方面涉及一種無線節點,包括:記憶體,至少一個收發機,以及至少一個處理器通訊地耦接至該記憶體和該至少一個收發機,該至少一個處理器被配置成:接收針對與指定時間相關聯的使用者設備(UE)的定位估計的請求,在多個時間執行定位測量,基於這些定位測量來確定與指定時間相關聯的定位估計,以及傳送包括所確定的定位估計的報告。
另一方面涉及一種網路元件,包括:記憶體,至少一個收發機,以及至少一個處理器,通訊地耦接至該記憶體和該至少一個收發機,該至少一個處理器被配置成:向無線節點傳送針對與指定時間相關聯的使用者設備(UE)的定位估計的請求,以及基於該無線節點在多個時間執行的定位測量從該無線節點接收包括針對指定時間的定位估計的報告。
另一方面涉及一種非暫態電腦可讀媒介,包含儲存在其上的指令,這些指令用於使無線節點中的至少一個處理器:接收針對與指定時間相關聯的使用者設備(UE)的定位估計的請求,在多個時間執行定位測量,基於這些定位測量來確定與指定時間相關聯的定位估計,以及傳送包括所確定的定位估計的報告。
另一方面涉及一種非暫態電腦可讀媒介,包含儲存在其上的指令,這些指令用於使網路元件中的至少一個處理器:向無線節點傳送針對與指定時間相關聯的使用者設備(UE)的定位估計的請求,以及基於該無線節點在多個時間執行的多個定位測量從該無線節點接收包括針對指定時間的定位估計的報告。
基於附圖和詳細描述,與本揭露的各方面相關聯的其他目標和優點對本領域技術人員而言將是顯而易見的。
本揭露的各方面在以下針對出於說明目的提供的各種示例的描述和相關附圖中提供。可以設計替換方面而不脫離本揭露的範圍。另外,本揭露中眾所周知的元素將不被詳細描述或將被省去以免模糊本揭露的相關細節。
措辭“示例性”和/或“示例”在本文中用於意指“用作示例、實例、或說明”。本文中描述為“示例性”和/或“示例”的任何方面不必被解釋為優於或勝過其他方面。同樣地,術語“本揭露的各方面”不要求本揭露的所有方面都包括所討論的特徵、優點或操作模式。
本領域技術人員將領會,以下描述的資訊和訊號可使用各種不同技術和技藝中的任何一種來表示。例如,貫穿以下描述可能被述及的資料、指令、命令、資訊、訊號、位元、符號(Symbol)以及碼片可部分地取決於具體應用、部分地取決於所期望的設計、部分地取決於對應技術等而由電壓、電流、電磁波、磁場或磁粒子、光場或光粒子、或其任何組合表示。
此外,許多方面以由例如計算設備的元件執行的動作序列的形式來描述。將認識到,本文中描述的各種動作能由專用電路(例如,特殊應用積體電路(Application Specific Integrated Circuit,ASIC))、由正被一個或多個處理器執行的程式指令、或由這兩者的組合來執行。另外,本文中描述的動作序列可被認為是完全體現在任何形式的非暫態電腦可讀儲存媒介內,該非暫態電腦可讀儲存媒介中儲存有一經執行就將使得或指令設備的相關聯處理器執行本文中所描述的功能性的相應電腦指令集。由此,本揭露的各個方面可以數種不同形式體現,所有這些形式都已被構想為落在所要求保護的主題內容的範圍內。另外,對於本文中描述的每一方面,任何此類方面的對應形式可在本文中被描述為例如“被配置成執行所描述的動作的邏輯”。
如本文中所使用的,術語“用戶設備”(User Equipment,UE)和“基站(Base Station,BS)”並非旨在專用於或以其他方式被限定於任何特定的無線電存取技術(Radio Access Technology,RAT),除非另有說明。一般而言,UE可以是被用戶用來在無線通訊網路上進行通訊的任何無線通訊設備(例如,行動電話、路由器、平板電腦、膝上型電腦、消費者追蹤設備、消費者資產追蹤設備、可穿戴設備(例如,智慧手錶、眼鏡、增強實境(Augmented Reality,AR)/虛擬實境(Virtual Reality,VR)頭戴式設備等)、交通工具(例如,汽車、摩托車、自行車等)、物聯網(Internet of Things,IoT)設備等)。UE可以是移動的或者可以(例如,在某些時間)是駐定的,並且可以與無線電存取網路(Radio Access Network,RAN)進行通訊。如本文中所使用的,術語“UE”可以互換地被稱為“存取終端(access terminal)”或“AT”、“客戶端設備”、“無線設備”、“訂戶設備”、“訂戶終端”、“訂戶站”、“用戶終端(User Terminal)”或UT、“移動終端”、“移動站”、或其變型。一般而言,UE可以經由RAN與核心網進行通訊,並且通過核心網,UE可以與外部網路(例如網際網路)以及與其他UE連接。當然,連接到核心網和/或網際網路的其他機制對於UE而言也是可能的,例如通過有線存取網、無線區域網(Wireless Local Area Network,WLAN)網路(例如,基於IEEE 802.11等)等。
基站可取決於其被部署在其中的網路而在與用戶設備處於通訊時根據若干種RAT之一進行操作,並且可替換地被稱為存取點(Access Point,AP)、網路節點、B節點(NodeB)、演進型B節點(evolved NodeB,eNB)、新無線電(NR)B節點(亦稱為gNB或gNodeB)等。另外,在一些系統中,基站可提供純邊緣節點信令功能,而在其他系統中,基站可提供附加的控制和/或網路管理功能。在一些系統中,基站可對應於消費者終端設備(Customer Premise Equipment,CPE)或路側單元(road-side unit,RSU)。在一些設計中,基站可對應於可提供有限的特定基礎設施功能性的高功率UE(例如,交通工具用戶設備(vehicle UE)或VUE)。UE可以藉以向基站發送訊號的通訊鏈路被稱為上行鏈路(Uplink,UL)通道(例如,反向流量流量通道(reverse traffic channel)、反向控制通道、存取通道等)。基站可以藉以向UE發送訊號的通訊鏈路被稱為下行鏈路(Downlink,DL)或前向鏈路通道(例如,尋呼通道、控制通道、廣播通道、前向流量通道等)。如本文中所使用的,術語流量通道(Traffic Channel,TCH)可以指UL/反向或DL/前向流量通道。
術語“基站”可以指單個實體傳送接收點(Transmission-Reception Point,TRP)或者可以指可能或可能不並置一地的多個實體TRP。例如,在術語“基站”指單個實體TRP的情況下,該實體TRP可以是與基站的蜂窩小區相對應的基站天線。在術語“基站”指多個並置一地的實體TRP的情況下,該實體TRP可以是基站的天線陣列(例如,如在多輸入多輸出(Multiple-Input Multiple-Output,MIMO)系統中或在基站採用波束成形的情況下)。在術語“基站”指多個非並置一地的實體TRP的情況下,該實體TRP可以是分散式天線系統(Distributed Antenna System,DAS)(經由傳輸媒介來連接到共用源的在空間上分離的天線的網路)或遠端無線電頭端(Remote Radio Head,RRH)(連接到服務基站的遠端基站)。替換地,非並置一地的實體TRP可以是從UE接收測量報告的服務基站和該UE正在測量其參考RF訊號的鄰居基站。由於TRP是基站從其傳送和接收無線訊號的點,如本文中所使用的,因此對來自基站的傳輸或在基站處的接收的引用應被理解為引用該基站的特定TRP。
“RF訊號”包括通過傳送方與接收方之間的空間來傳輸資訊的給定頻率的電磁波。如本文所使用的,傳送方可以向接收方傳送單個“RF訊號”或多個“RF訊號”。然而,歸因於通過多徑通道的RF訊號的傳播特性,接收方可接收到與每個所傳送RF訊號相對應的多個“RF訊號”。傳送方與接收方之間的不同路徑上所傳送的相同RF訊號可被稱為“多路徑”RF訊號。
根據各個方面,圖1說明示例性無線通訊系統100。無線通訊系統100(也可被稱為無線廣域網路(Wireless Wide Area Network,WWAN))可包括各個基站102和各個UE 104。基站102可包括宏蜂窩小區基站(高功率蜂窩基站)和/或小型蜂窩小區基站(低功率蜂窩基站)。在一方面,宏蜂窩小區基站可包括eNB(其中無線通訊系統100對應於LTE網路)、或者gNB(其中無線通訊系統100對應於NR網路)、或兩者的組合,並且小型蜂窩小區基站可包括毫微微蜂窩小區、微微蜂窩小區、微蜂窩小區等。
基站102可共同地形成RAN並且通過回程鏈路122來與核心網170(例如,演進型封包核心(Evolved Packet Core,EPC)或下一代核心(Next Generation Core,NGC))對接,以及通過核心網170對接到一個或多個位置伺服器172。除其他功能之外,基站102還可以執行與傳遞用戶資料、無線電通道加密和解密、完整性保護、標頭壓縮、移動性控制功能(例如,切換、雙連通性)、蜂窩小區間干擾協調、連接建立和釋放、負載平衡、非存取階層(Non-Access Stratum,NAS)訊息的分發、NAS節點選擇、同步、RAN共用、多媒體廣播多播服務(Multimedia Broadcast Multicast Service,MBMS)、訂戶和設備追蹤、RAN資訊管理(RAN Information Management,RIM)、尋呼、定位、以及警報訊息的遞送中的一者或多者相關的功能。基站102可在回程鏈路134上直接或間接地(例如,通過EPC/NGC)彼此通訊,回程鏈路134可以是有線的或無線的。
基站102可與UE 104進行無線通訊。每個基站102可為相應的地理涵蓋區域110提供通訊涵蓋。在一方面,一個或多個蜂窩小區可由每個涵蓋區域110中的基站102所支援。“蜂窩小區”是被用於與基站(例如,在某個頻率資源上,其被稱為載波頻率、分量載波、載波、頻帶等)進行通訊的邏輯通訊實體,並且可以與識別符(例如,實體蜂窩小區識別符((Physical Cell Identifier,PCI)、虛擬蜂窩小區識別符((Virtual Cell Identifier,VCI))相關聯以區分經由相同或不同載波頻率操作的蜂窩小區。在一些情形中,可根據可為不同類型的UE提供存取的不同協定類型(例如,機器類型通訊(Machine-Type Communication,MTC)、窄頻帶物聯網(Narrowband Internet of Things,NB-IoT)、增強型移動寬頻(Enhanced Mobile Broadband,eMBB)或其他)來配置不同蜂窩小區。由於蜂窩小區由特定的基站所支援,因此術語“蜂窩小區”可以取決於上下文而指代邏輯通訊實體和支援該邏輯通訊實體的基站中的任一者或兩者。在一些情形中,在載波頻率可被檢測到並且被用於地理涵蓋區域110的某個部分內的通訊的意義上,術語“蜂窩小區”還可以指基站的地理涵蓋區域(例如,扇區)。
雖然相鄰宏蜂窩小區基站102的各地理涵蓋區域110可部分地交疊(例如,在切換區域中),但是一些地理涵蓋區域110可能基本上被較大的地理涵蓋區域110交疊。例如,小型蜂窩小區基站102'可具有基本上與一個或多個宏蜂窩小區基站102的涵蓋區域110交疊的涵蓋區域110'。包括小型蜂窩小區和宏蜂窩小區基站兩者的網路可被稱為異構網路。異構網路還可包括家用eNB(HeNB),該HeNB可向被稱為封閉訂戶群(CSG)的受限群提供服務。
基站102與UE 104之間的通訊鏈路120可包括從UE 104到基站102的UL(亦稱為反向鏈路)傳輸和/或從基站102到UE 104的下行鏈路(DL)(亦稱為前向鏈路)傳輸。通訊鏈路120可以使用MIMO天線技術,包括空間多工、波束成形和/或發射分集。通訊鏈路120可通過一個或多個載波頻率。載波的分配可以關於DL和UL是非對稱的(例如,與UL相比可將更多或更少載波分配給DL)。
無線通訊系統100可進一步包括在無執照頻譜(例如,5 GHz)中經由通訊鏈路154與WLAN站(Station,STA)152處於通訊的無線區域網(WLAN)存取點(Access Point,AP)150。當在無執照頻譜中進行通訊時,WLAN STA 152和/或WLAN AP 150可在進行通訊之前執行淨空通道評估(clear channel assessment,CCA)或先聽後講(Listen Before Talk,LBT)程序以確定通道是否可用。
小型蜂窩小區基站102'可在有執照和/或無執照頻譜中操作。當在無執照頻譜中操作時,小型蜂窩小區基站102'可採用LTE或NR技術並且使用與由WLAN AP 150使用的頻譜相同的5 GHz無執照頻譜。在無執照頻譜中採用LTE/5G的小型蜂窩小區基站102'可推升對存取網的涵蓋和/或增加存取網的容量。無執照頻譜中的NR可被稱為NR-U。無執照頻譜中的LTE可被稱為LTE-U、有執照輔助式存取(Licensed Assisted Access,LAA)或MulteFire。
無線通訊系統100可進一步包括毫米波(millimeter Wave,mmW)基站180,該mmW基站180可在mmW頻率和/或近mmW頻率中操作以與UE 182處於通訊。極高頻(Extremely High Frequency,EHF)是電磁頻譜中的射頻(Radio-Frequency,RF)頻帶的一部分。EHF具有30 GHz到300 GHz的範圍以及1毫米到10毫米之間的波長。該頻帶中的無線電波可被稱為毫米波。近mmW可向下擴展至具有100毫米波長的3 GHz頻率。超高頻(Super High Frequency,SHF)頻帶在3 GHz到30 GHz之間擴展,其還被稱為釐米波。使用mmW/近mmW射頻頻帶的通訊具有高路徑損耗和相對短的射程。mmW基站180和UE 182可利用mmW通訊鏈路184上的波束成形(發射和/或接收)來補償極高路徑損耗和短射程。此外,將領會,在替換配置中,一個或多個基站102還可使用mmW或近mmW以及波束成形來進行傳送。相應地,將領會,前述說明僅僅是示例,並且不應當被解讀成限定本文中所公開的各個方面。
發射波束成形是一種用於將RF訊號聚焦在特定方向上的技術。常規地,當網路節點(例如,基站)廣播RF訊號時,該網路節點在所有方向上(全向地)廣播該訊號。利用發射波束成形,網路節點確定給定目標設備(例如,UE)(相對於傳送方網路節點)位於哪裡,並在該特定方向上投射較強下行鏈路RF訊號,從而為接收方設備提供較快(就資料率而言)且較強的RF訊號。為了在發射時改變RF訊號的方向性,網路節點可以在正在廣播該RF訊號的一個或多個發射機中的每個發射機處控制該RF訊號的相位和相對振幅。例如,網路節點可使用產生RF波的波束的天線陣列(被稱為“相控陣”或“天線陣列”),RF波的波束能夠被“引導”指向不同的方向,而無需實際地移動這些天線。具體而言,來自發射機的RF電流以正確的相位關係被饋送到個體天線,以使得來自分開的天線的無線電波在期望方向上相加在一起以增大輻射,而在非期望方向上抵消以抑制輻射。
發射波束可以是准並置的,這意味著它們在接收方(例如,UE)看來具有相同的參數,而不論網路節點的發射天線本身是否在實體上是並置的。在NR中,存在四種類型的准並置(Quasi-Collocation,QCL)關係。具體而言,給定類型的QCL關係意味著:關於第二波束上的第二參考RF訊號的某些參數可以從關於源波束上的源參考RF訊號的資訊推導出。因此,如果源參考RF訊號是QCL類型A,則接收方可以使用源參考RF訊號來估計在相同通道上傳送的第二參考RF訊號的都卜勒(Doppler)頻移、多普勒擴展、平均延遲、以及延遲擴展。如果源參考RF訊號是QCL類型B,則接收方可以使用源參考RF訊號來估計在相同通道上傳送的第二參考RF訊號的多普勒頻移和多普勒擴展。如果源參考RF訊號是QCL類型C,則接收方可以使用源參考RF訊號來估計在相同通道上傳送的第二參考RF訊號的多普勒頻移和平均延遲。如果源參考RF訊號是QCL類型D,則接收方可以使用源參考RF訊號來估計在相同通道上傳送的第二參考RF訊號的空間接收參數。
在接收波束成形中,接收方使用接收波束來放大在給定通道上檢測到的RF訊號。例如,接收機可在特定方向上增大天線陣列的增益設置和/或調整天線陣列的相位設置,以放大從該方向接收到的RF訊號(例如,增大其增益水準)。因而,當接收方被指稱為在某個方向上進行波束成形時,這意味著該方向上的波束增益相對於沿其他方向的波束增益而言是較高的,或者該方向上的波束增益相比於對該接收方可用的所有其他接收波束在該方向上的波束增益而言是最高的。這導致從該方向接收的RF訊號有較強的收到訊號強度(例如,參考訊號收到功率(Reference Signal Received Power,RSRP)、參考訊號收到品質(Reference Signal Received Quality,RSRQ)、訊號與干擾加雜訊比(Signal-to-Interference-plus-Noise Ratio,SINR)等等)。
接收波束可以是空間相關的。空間關係意味著用於第二參考訊號的發射波束的參數可以從關於第一參考訊號的接收波束的資訊推導出。例如,UE可以使用特定的接收波束來從基站接收參考下行鏈路參考訊號(例如,同步訊號塊(Synchronization Signal Block,SSB))。UE隨後可以基於接收波束的參數來形成發射波束以用於向該基站發送上行鏈路參考訊號(例如,探測參考訊號(Sounding Reference Signal,SRS))。
需注意的是,取決於形成“下行鏈路”波束的實體,該波束可以是發射波束或接收波束。例如,如果基站正形成下行鏈路波束以向UE傳送參考訊號,則該下行鏈路波束是發射波束。然而,如果UE正形成下行鏈路波束,則該下行鏈路波束是用於接收下行鏈路參考訊號的接收波束。類似地,取決於形成“上行鏈路”波束的實體,該波束可以是發射波束或接收波束。例如,如果基站正形成上行鏈路波束,則該上行鏈路波束是上行鏈路接收波束,而如果UE正形成上行鏈路波束,則該上行鏈路波束是上行鏈路發射波束。
在5G中,無線節點(例如,基站102/180、UE 104/182)在其中操作的頻譜被劃分成多個頻率範圍:FR1(從450到6000 MHz)、FR2(從24250到52600 MHz)、FR3(高於52600 MHz)、以及FR4(在FR1與FR2之間)。在多載波系統(例如5G)中,載波頻率之一被稱為“主載波”或“錨載波”或“主服務蜂窩小區”或“PCell”,並且其餘載波頻率被稱為“輔載波”或“副服務蜂窩小區”或“SCell”。在載波聚集中,錨載波是在由UE 104/182利用的主頻率(例如,FR1)上並且在UE 104/182在其中執行初始無線電資源控制(Radio Resource Control,RRC)連接建立程序或發起RRC連接重建程序的蜂窩小區上操作的載波。主載波攜帶所有共用控制通道以及因UE而異的控制通道,並且可以是有執照頻率中的載波(然而,並不總是這種情形)。輔載波是在第二頻率(例如,FR2)上操作的載波,一旦在UE 104與錨載波之間建立了RRC連接就可以配置該載波,並且該載波可被用於提供附加無線電資源。在一些情形中,輔載波可以是無執照頻率中的載波。輔載波可僅包含必要的信令資訊和訊號,例如,因UE而異的信令資訊和訊號可能不存在於輔載波中,因為主上行鏈路和下行鏈路載波兩者通常都是因UE而異的。這意味著蜂窩小區中的不同UE 104/182可具有不同下行鏈路主載波。這對於上行鏈路主載波而言同樣成立。網路能夠在任何時間改變任何UE 104/182的主載波。例如,這樣做是為了平衡不同載波上的負載。由於“服務蜂窩小區”(無論是PCell還是SCell)對應於某個基站正用於進行通訊的載波頻率/分量載波,因此術語“蜂窩小區”、“服務蜂窩小區”、“分量載波”、“載波頻率”等等可以被可互換地使用。
例如,仍然參照圖1,由宏蜂窩小區基站102利用的頻率之一可以是錨載波(或“PCell”),並且由該宏蜂窩小區基站102和/或mmW基站180利用的其他頻率可以是輔載波(“SCell”)。對多個載波的同時傳送和/或接收使得UE 104/182能夠顯著增大其資料傳輸和/或接收速率。例如,多載波系統中的兩個20 MHz聚集載波與由單個20 MHz載波獲得的資料率相比較而言理論上將導致資料率的兩倍增加(即,40 MHz)。
無線通訊系統100可進一步包括一個或多個UE(例如如UE 190),其經由一個或多個設備到設備((Device-to-Device,D2D)同儕式(Peer-to-Peer,P2P)鏈路來間接地連接到一個或多個通訊網路。在圖1的示例中,UE 190具有與連接到一個基站102的一個UE 104的D2D P2P鏈路192(例如,UE 190可由此間接地獲得蜂窩連通性),以及與連接到WLAN AP 150的WLAN STA 152的D2D P2P鏈路194(UE 190可由此間接地獲得基於WLAN的網際網路連通性)。在一示例中,D2D P2P鏈路192和194可以使用任何公知的D2D RAT(例如LTE直連(LTE-D)、WiFi直連(WiFi-D)、藍牙®等)來支援。
無線通訊系統100可進一步包括UE 164,其可在通訊鏈路120上與宏蜂窩小區基站102進行通訊和/或在mmW通訊鏈路184上與mmW基站180進行通訊。例如,宏蜂窩小區基站102可支援PCell和一個或多個SCell以用於UE 164,並且mmW基站180可支援一個或多個SCell以用於UE 164。
根據各個方面,圖2A說明示例無線網路結構200。例如,NGC 210(也被稱為“5GC”)可在功能上被視為控制平面功能214(例如,UE註冊、認證、網路存取、閘道選擇等)和用戶平面功能212(例如,UE閘道功能、對資料網的存取、IP路由等),它們協同地操作以形成核心網。用戶平面介面(User plane interface,NG-U)213和控制平面介面(Control plane interface,NG-C)215將gNB 222連接到NGC 210,尤其連接到控制平面功能214和用戶平面功能212。在一附加配置中,eNB 224也可經由至控制平面功能214的NG-C 215和至用戶平面功能212的NG-U 213來連接到NGC 210。此外,eNB 224可經由回程連接223來直接與gNB 222進行通訊。在一些配置中,新RAN 220可以僅具有一個或多個gNB 222,而其他配置包括一個或多個eNB 224以及一個或多個gNB 222。gNB 222或eNB 224可與UE 204(例如,圖1中所描繪的任何UE)進行通訊。另一可任選方面可包括可與NGC 210處於通訊以為UE 204提供位置輔助的位置伺服器230。位置伺服器230可以被實現為多個分開的伺服器(例如,實體上分開的伺服器、單個伺服器上的不同軟體模組、跨多個實體伺服器擴展的不同軟體模組等等),或者替換地可各自對應於單個伺服器。位置伺服器230可被配置成支援用於UE 204的一個或多個位置服務,UE 204能夠經由核心網、NGC 210和/或經由網際網路(未繪示)來連接到位置伺服器230。此外,位置伺服器230可被整合到核心網的元件中,或者替換地可在核心網外部。
根據各個方面,圖2B說明另一示例無線網路結構250。例如,NGC 260(也被稱為“5GC”)可在功能上被視為由存取和移動性管理功能(Access and Mobility Management Function,AMF)/用戶平面功能(User Plane Function,UPF)264提供的控制平面功能、以及由會話管理功能(Session Management Function,SMF)262提供的用戶平面功能,它們協同地操作以形成核心網(即,NGC 260)。用戶平面介面263和控制平面介面265將eNB 224連接到NGC 260,尤其分別連接到SMF 262和AMF/UPF 264。在一附加配置中,gNB 222也可經由至AMF/UPF 264的控制平面介面265以及至SMF 262的用戶平面介面263來連接到NGC 260。此外,eNB 224可經由回程連接223來直接與gNB 222進行通訊,無論是否具有與NGC 260的gNB直接連通性。在一些配置中,新RAN 220可以僅具有一個或多個gNB 222,而其他配置包括一個或多個eNB 224以及一個或多個gNB 222。gNB 222或eNB 224可與UE 204(例如,圖1中所描繪的任何UE)進行通訊。新RAN 220的基站通過N2介面與AMF/UPF 264的AMF側通訊,並且通過N3介面與AMF/UPF 264的UPF側通訊。
AMF的功能包括註冊管理、連接管理、可達性管理、移動性管理、合法攔截、在UE 204與SMF 262之間的會話管理(Session Management,SM)訊息傳遞、用於路由SM訊息的透明代理服務、存取認證和存取授權、在UE 204與短訊息服務功能(Short Message Service Function,SMSF)(未繪於圖示)之間的短訊息服務(Short Message Service,SMS)訊息傳遞、以及安全錨功能性(Security Anchor Functionality,SEAF)。AMF還與認證伺服器功能(Authentication Server Function,AUSF)(未繪於圖示)和UE 204交互,並且接收作為UE 204認證流程的結果而建立的中間金鑰。在基於UMTS(通用移動電信系統)訂戶身份模組(subscriber identity module,USIM)來認證的情形中,AMF從AUSF中檢索安全性材料。AMF的功能還包括安全性上下文管理(Security Context Management,SCM)。SCM從SEAF接收金鑰,該金鑰被SCM用來推導因存取網而異的金鑰。AMF的功能性還包括用於監管服務的位置服務管理、在UE 204與位置管理功能(Location Management Function,LMF)270之間以及新RAN 220與LMF 270之間的位置服務訊息的傳遞、用於與演進封包系統(Evolved Packet System,EPS)互通的EPS承載識別符分配、以及UE 204移動性事件通知。此外,AMF還支援非3GPP存取網的功能性。
UPF的功能包括:充當RAT內/RAT間移動性的錨點(在適用時),充當至資料網路(未繪於圖示)的互連的外部協定資料單元(Protocol Data Unit,PDU)會話點,提供封包路由和轉發、封包檢視、用戶平面策略規則實施(例如,選通、重定向、流量引導)、合法攔截(用戶平面收集)、流量使用報告、用戶平面的服務品質(Quality of Service,QoS)處置(例如,UL/DL速率實施、DL中的反射性QoS標記)、UL流量驗證(服務資料流(Service Data Flow,SDF)到QoS流的映射)、UL和DL中的傳輸級封包標記、DL封包緩衝和DL資料通知觸發,以及向源RAN節點發送和轉發一個或多個“結束標記”。
SMF 262的功能包括會話管理、UE網際協議(Internet Protocol,IP)位址分配和管理、用戶平面功能的選擇和控制、在UPF處用於向正確目的地路由流量的流量引導的配置、對策略實施和QoS的部分的控制、以及下行鏈路數據通知。SMF 262通過其與AMF/UPF 264的AMF側通訊的介面被稱為N11介面。
另一可任選方面可包括可與NGC 260處於通訊以為UE 204提供位置輔助的LMF 270。LMF 270可以被實現為多個分開的伺服器(例如,實體上分開的伺服器、單個伺服器上的不同軟體模組、跨多個實體伺服器擴展的不同軟體模組等等),或者替換地可各自對應於單個伺服器。LMF 270可被配置成支援用於UE 204的一個或多個位置服務,UE 204能夠經由核心網、NGC 260和/或經由網際網路(未繪示)來連接到LMF 270。
圖3A、圖3B和圖3C說明可被納入UE 302(其可對應於本文所描述的任何UE)、基站304(其可對應於本文所描述的任何基站)、以及網路實體306(其可對應於或體現本文所描述的任何網路功能,包括位置伺服器230和LMF 270)中的若干樣本元件(由對應的框來表示)以支援如本文所教導的檔案傳輸操作。將領會,這些元件在不同實現中可以在不同類型的裝置中(例如,在ASIC中、在晶片上系統(System on Chip,SoC)中等)實現。所說明的元件也可被納入到通訊系統中的其他裝置中。例如,系統中的其他裝置可包括與所描述的那些元件類似的元件以提供類似的功能性。此外,給定裝置可包含這些元件中的一個或多個元件。例如,一裝置可包括使得該裝置能夠在多個載波上操作和/或經由不同技術進行通訊的多個收發機元件。
UE 302和基站304各自分別包括被配置成經由一個或多個無線通訊網路(未繪於圖示)(例如NR網路、長期演進網路、GSM網路等)進行通訊的無線廣域網路(WWAN)收發機310和350。WWAN收發機310和350可分別連接到一個或多個天線316和356,以用於經由至少一個指定RAT(例如,NR、LTE、GSM等)在感興趣的無線通訊媒介(例如,特定頻譜中的某個時間/頻率資源集)上與其他網路節點(例如其他用戶設備、存取點、基站(例如,eNB、gNB)等)進行通訊。WWAN收發機310和350可根據指定RAT以各種方式分別被配置成用於傳送和編碼訊號318和358(例如,訊息、指示、資訊等),以及反之分別被配置成用於接收和解碼訊號318和358(例如,訊息、指示、資訊、導頻等)。具體而言,收發機310和350分別包括一個或多個發射機314和354以分別用於傳送和編碼訊號318和358,並分別包括一個或多個接收機312和352以分別用於接收和解碼訊號318和358。
至少在一些情形中,UE 302和基站304還分別包括無線區域網(WLAN)收發機320和360。WLAN收發機320和360可分別連接到一個或多個天線326和366,以用於經由至少一個指定RAT(例如,WiFi、LTE-D、藍牙®等)在感興趣的無線通訊媒介上與其他網路節點(例如其他用戶設備、存取點、基站等)進行通訊。WLAN收發機320和360可根據指定RAT以各種方式分別被配置成用於傳送和編碼訊號328和368(例如,訊息、指示、資訊等),以及反之分別被配置成用於接收和解碼訊號328和368(例如,訊息、指示、資訊、導頻等)。具體而言,收發機320和360分別包括一個或多個發射機324和364以分別用於傳送和編碼訊號328和368,並分別包括一個或多個接收機322和362以分別用於接收和解碼訊號328和368。
包括發射機和接收機的收發機電路系統在一些實現中可包括集成設備(例如,實施為單個通訊設備的發射機電路和接收機電路),在一些實現中可包括分開的發射機設備和分開的接收機設備,或者在其他實現中可按其他方式來實施。在一方面,發射機可包括或耦接到例如天線陣列之類的多個天線(例如,天線316、336和376),該多個天線准許該相應裝置執行發射“波束成形”,如本文中所描述的。類似地,接收機可包括或耦接到例如天線陣列之類的多個天線(例如,天線316、336和376),該多個天線准許該相應裝置執行接收波束成形,如本文中所描述的。在一方面,發射機和接收機可共用相同的多個天線(例如,天線316、336和376),以使得該相應裝置在給定時間只能進行接收或傳送,而不是同時進行兩者。裝置302和/或304的無線通訊設備(例如,收發機310和320中的一者或兩者和/或收發機350和360中的一者或兩者)還可包括用於執行各種測量的網路監聽模組(network listen module,NLM)等。
至少在一些情形中,裝置302和304還包括衛星定位系統(SPS)接收機330和370。SPS接收機330和370可分別連接到一個或多個天線336和376以用於分別接收SPS訊號338和378(例如全球定位系統(global positioning system,GPS)訊號、全球導航衛星系統(global navigation satellite system,GLONASS)訊號、伽利略訊號、北斗訊號、印度區域性導航衛星系統(Indian Regional Navigation Satellite System,NAVIC)、准天頂衛星系統(Quasi-Zenith Satellite System,QZSS)等)。SPS接收機330和370可分別包括用於接收和處理SPS訊號338和378的任何合適的硬體和/或軟體。SPS接收機330和370在適當時從其他系統請求資訊和操作,並執行必要的計算以使用由任何合適的SPS演算法獲得的測量來確定裝置302和304的定位。
基站304和網路實體306各自分別包括至少一個網路介面380和390以用於與其他網路實體進行通訊。例如,網路介面380和390(例如,一個或多個網路存取埠)可被配置成:經由基於有線的回程連接或無線回程連接來與一個或多個網路實體通訊。在一些方面,網路介面380和390可被實現為被配置成支援基於有線的訊號通訊或無線訊號通訊的收發機。這一通訊可涉及例如發送和接收:訊息、參數、或其他類型的資訊。
裝置302、304和306還包括可結合如本文中公開的操作來使用的其他元件。用戶設備302包括處理器電路系統,其實現用於提供例如與如本揭露的假性基站(False Base Station,FBS)檢測有關的功能性、以及用於提供其他處理功能性的處理系統332。基站304包括用於提供例如與如本揭露的FBS檢測有關的功能性、以及用於提供其他處理功能性的處理系統384。網路實體306包括用於提供例如與如本文中所公開的FBS檢測有關的功能性、以及用於提供其他處理功能性的處理系統394。在一方面,處理系統332、384和394可包括例如一個或多個通用處理器、多核處理器、ASIC、數位訊號處理器(Digital Signal Processor,DSP)、現場可程式閘陣列(Field Programmable Gate Array,FPGA)、或者其他可程式邏輯器件或處理電路系統。
裝置302、304和306包括分別實現用於維護資訊(例如,指示所保留資源、閾值、參數等等的資訊)的記憶體元件340、386和396(例如,每一者包括記憶體設備)的記憶體電路系統。在一些情形中,裝置302、304和306可分別包括定位模組342、388和399。定位參考訊號342和388分別可以是作為處理系統332、384和394的一部分或與其耦接的硬體電路,這些硬體電路在被執行時使得裝置302、304和306執行本文所描述的功能性。替換地,定位模組342、388和398分別可以是儲存在記憶體元件340、386和396中的記憶體模組(如圖3A到圖3C中所示),這些記憶體模組在由處理系統332、384和394執行時使得裝置302、304和306執行本文所描述的功能性。
UE 302可包括耦接到處理系統332的一個或多個感測器344,以提供移動和/或取向資訊,該移動和/或取向資訊獨立於從由WWAN收發機310、WLAN收發機320和/或GPS接收機330接收到的訊號推導出的運動資料。作為示例,(諸)感測器344可包括加速度計(例如,微機電系統(Micro-Electrical Mechanical System,MEMS)設備)、陀螺儀、地磁感測器(例如,羅盤)、高度計(例如,氣壓高度計)和/或任何其他類型的移動檢測感測器。此外,(諸)感測器344可包括多個不同類型的設備並將它們的輸出進行組合以提供運動資訊。例如,(諸)感測器344可使用多軸加速度計和取向感測器的組合來提供計算2D和/或3D座標系中的定位的能力。
此外,UE 302包括用於向用戶提供指示(例如,可聽和/或視覺指示)和/或用於(例如,在用戶致動感測設備(例如按鍵板、觸控式螢幕、話筒等)之際)接收用戶輸入的用戶介面346。儘管未繪於圖示,但裝置304和306也可包括用戶介面。
更詳細地參照處理系統384,在下行鏈路中,來自網路實體306的IP封包可被提供給處理系統384。處理系統384可以實現用於RRC層、封包資料彙聚協定(Packet Data Convergence Protocol,PDCP)層、無線電鏈路控制(Radio Link Control,RLC)層和媒體存取控制(Medium Access Control,MAC)層的功能性。處理系統384可以提供與廣播系統資訊(例如,主資訊區塊(Master Information Block,MIB)、系統資訊區塊(System Information Block,SIB))、RRC連接控制(例如,RRC連接尋呼、RRC連接建立、RRC連接修改、以及RRC連接釋放)、RAT間移動性、以及UE測量報告的測量配置相關聯的RRC層功能性;與標頭壓縮/解壓縮、安全性(加密、解密、完整性保護、完整性驗證)、以及切換支援功能相關聯的PDCP層功能性;與上層封包資料單元(Packet Data Unit,PDU)的傳遞、通過ARQ的錯誤糾正、RLC服務資料單元(Service Data Unit,SDU)的級聯、分段和重組、RLC資料PDU的重新分段、以及RLC資料PDU的重新排序相關聯的RLC層功能性;以及與邏輯通道與傳輸通道之間的映射、排程資訊報告、錯誤糾正、優先順序處置、以及邏輯通道優先順序排序相關聯的MAC層功能性。
發射機354和接收機352可實現與各種訊號處理功能相關聯的層1功能性。包括實體(Physical,PHY)層的層1可包括傳輸通道上的檢錯、傳輸通道的前向錯誤糾正(Forward Error Correction,FEC)編碼/解碼、交織、速率匹配、映射到實體通道上、實體通道的調變/解調變、以及MIMO天線處理。發射機354基於各種調變方案(例如,二進位相移鍵控(Binary Phase-Shift Keying,BPSK)、正交相移鍵控(Quadrature Phase-Shift Keying,QPSK)、M相移鍵控(M-Phase-Shift Keying,M-PSK)、M正交振幅調變(M-quadrature amplitude modulation,M-QAM))來處置至訊號星座的映射。經編碼和調變的符號隨後可被拆分成並行流。每個流隨後可被映射到正交分頻多工(Orthogonal Frequency Division Multiplexing,OFDM)副載波,在時域和/或頻域中與參考訊號(例如,導頻)多工,並且隨後使用快速傅立葉逆變換(Inverse Fast Fourier Transform,IFFT)組合到一起以產生攜帶時域OFDM符號流的實體通道。該OFDM流被空間預編碼以產生多個空間流。來自通道估計器的通道估計可被用來確定編碼和調變方案以及用於空間處理。該通道估計可從由UE 302傳送的參考訊號和/或通道狀況回饋推導出。每個空間流隨後可被提供給一個或多個不同的天線356。發射機354可用相應空間流來調變RF載波以供傳輸。
在UE 302,接收機312通過其相應的(諸)天線316來接收訊號。接收機312恢復調變到RF載波上的資訊並將該資訊提供給處理系統332。發射機314和接收機312實現與各種訊號處理功能相關聯的層1功能性。接收機312可對該資訊執行空間處理以恢復出以UE 302為目的地的任何空間流。如果有多個空間流以UE 302為目的地,則它們可由接收機312組合成單個OFDM符號流。接收機312隨後使用快速傅立葉變換(Fast Fourier Transform,FFT)將該OFDM符號流從時域轉換到頻域。該頻域訊號對該OFDM訊號的每個副載波包括單獨的OFDM符號流。通過確定最有可能由基站304傳送的訊號星座點來恢復和解調每個副載波上的符號、以及參考訊號。這些軟判決可基於由通道估計器計算出的通道估計。這些軟判決隨後被解碼和解交織以恢復出原始由基站304在實體通道上傳送的資料和控制訊號。這些資料和控制訊號隨後被提供給實現層3和層2功能性的處理系統332。
在UL中,處理系統332提供傳輸通道與邏輯通道之間的解多工、封包重組、解密、標頭解壓縮以及控制訊號處理以恢復出來自核心網的IP封包。處理系統332還負責檢錯。
類似於結合由基站304進行的DL傳輸所描述的功能性,處理系統332提供與系統資訊(例如,MIB、SIB)捕獲、RRC連接、以及測量報告相關聯的RRC層功能性;與標頭壓縮/解壓縮和安全性(加密、解密、完整性保護、完整性驗證)相關聯的PDCP層功能性;與上層PDU的傳遞、通過ARQ的錯誤糾正、RLC SDU的級聯、分段和重組、RLC資料PDU的重新分段、以及RLC資料PDU的重新排序相關聯的RLC層功能性;以及與邏輯通道與傳輸通道之間的映射、將MAC SDU多工到傳輸塊(Transmission Block,TB)上、從TB解多工MAC SDU、排程資訊報告、通過HARQ的錯誤糾正、優先順序處置、以及邏輯通道優先順序排序相關聯的MAC層功能性。
由通道估計器從由基站304傳送的參考訊號或回饋中推導出的通道估計可由發射機314用來選擇恰適的編碼和調變方案、以及促成空間處理。由發射機314生成的空間流可被提供給(諸)不同天線316。發射機314可用相應空間流來調變RF載波以供傳輸。
在基站304處以與結合UE 302處的接收機功能所描述的方式相類似的方式來處理UL傳輸。接收機352通過其相應的(諸)天線356來接收訊號。接收機352恢復調變到RF載波上的資訊並將該資訊提供給處理系統384。
在UL中,處理系統384提供傳輸通道與邏輯通道之間的解多工、封包重組、解密、標頭解壓縮、控制訊號處理以恢復出來自UE 302的IP封包。來自處理系統384的IP封包可被提供給核心網。處理系統384還負責檢錯。
為方便起見,裝置302、304和/或306在圖3A到圖3C中被示為包括可根據本文中描述的各種示例來配置的各種元件。然而將領會,所說明的框在不同設計中可具有不同功能性。
裝置302、304和306的各種元件可分別通過資料匯流排334、382和392彼此通訊。圖3A到圖3C的各元件可按各種方式來實現。在一些實現中,圖3A到圖3C的元件可以實現在一個或多個電路中,例如舉例而言一個或多個處理器和/或一個或多個ASIC(其可包括一個或多個處理器)。此處,每個電路可使用和/或納入用於儲存由該電路用來提供這一功能性的資訊或可執行代碼的至少一個記憶體元件。例如,由框310至346表示的功能性中的一些或全部功能性可由UE 302的處理器和(諸)記憶體元件來實現(例如,通過執行恰適的代碼和/或通過恰適地配置處理器元件)。類似地,由框350至388表示的功能性中的一些或全部功能性可由基站304的處理器和(諸)記憶體元件來實現(例如,通過執行恰適的代碼和/或通過恰適地配置處理器元件)。此外,由框390至396表示的功能性中的一些或全部功能性可由網路實體306的處理器和(諸)記憶體元件來實現(例如,通過執行恰適的代碼和/或通過恰適地配置處理器元件)。為了簡單起見,各種操作、動作和/或功能在本文被描述為“由UE”、“由基站”、“由定位實體”等來執行。”然而,如將領會的,此類操作、動作和/或功能實際上可由UE、基站、定位實體等的特定元件或元件組合來執行,這些元件例如處理系統332、384、394、收發機310、320、350和360、記憶體組件340、386和396、定位模組342、388和389等。
圖4A是說明根據本揭露的各方面的DL訊框結構的示例的示圖400。圖4B是說明根據本揭露的各方面的DL訊框結構內的通道示例的示圖430。其他無線通訊技術可具有不同的訊框結構和/或不同的通道。
LTE以及在一些情形中NR在下行鏈路上利用OFDM並且在上行鏈路上利用單載波分頻多工(Single-Carrier Frequency Division Multiplexing,SC-FDM)。然而,不同於LTE,NR還具有在上行鏈路上使用OFDM的選項。OFDM和SC-FDM將系統頻寬劃分成多個(K個)正交副載波,這些副載波也常被稱為頻調、頻槽等。每個副載波可用資料來調變。一般而言,調變符號對於OFDM是在頻域中發送的,而對於SC-FDM是在時域中發送的。毗鄰副載波之間的間隔可以是固定的,且副載波的總數(K)可取決於系統頻寬。例如,副載波的間隔可以是15 kHz,而最小資源配置(資源塊)可以是12個副載波(或即180 kHz)。因此,對於1.25、2.5、5、10或20百萬赫茲(MHz)的系統頻寬,標稱FFT大小可以分別等於128、256、512、1024或2048。系統頻寬還可被劃分成子帶。例如,子帶可涵蓋1.08 MHz(即,6個資源塊),並且對於1.25、2.5、5、10或20 MHz的系統頻寬,可分別有1、2、4、8或16個子帶。
LTE支援單個參數設計(副載波間隔、符號長度等)。相比之下,NR可支援多個參數設計,例如,為15 kHz、30 kHz、60 kHz、120 kHz和204 kHz或更大的副載波間隔可以是可用的。以下提供的表1列出了用於不同NR參數設計的一些各種參數。
表1
副載波間隔(kHz) | 符號/時隙 | 時隙/子訊框 | 時隙/訊框 | 時隙(ms) | 符號歷時(µs) | 具有4K FFT大小的最大標稱系統頻寬(MHz) |
15 | 14 | 1 | 10 | 1 | 66.7 | 50 |
30 | 14 | 2 | 20 | 0.5 | 33.3 | 100 |
60 | 14 | 4 | 40 | 0.25 | 16.7 | 100 |
120 | 14 | 8 | 80 | 0.125 | 8.33 | 400 |
240 | 14 | 16 | 160 | 0.0625 | 4.17 | 800 |
在圖4A和圖4B的示例中,使用15 kHz的參數設計。因此,在時域中,訊框(例如,10毫秒)被劃分成10個相等大小的子訊框,每個子訊框1毫秒,並且每個子訊框包括一個時隙。在圖4A和4B中,水準地(例如,在X軸上)表示時間,其中時間從左至右增加,而垂直地(例如,在Y軸上)表示頻率,其中頻率從下至上增加(或減小)。
資源網格可被用於表示時隙,每個時隙包括頻域中的一個或多個時間併發的資源塊(Resource Block,RB)(亦稱為實體RB(PRB))。資源網格進一步被劃分成多個資源元素(Resource Element,RE)。RE在時域中可對應於一個符號長度並且在頻域中可對應於一個副載波。在圖4A和圖4B的參數設計中,對於正常循環前綴,RB可包含頻域中的12個連貫副載波和時域中的7個連貫符號(對於DL,為OFDM符號;對於UL,為SC-FDMA符號),達總共84個RE。對於擴展循環前綴,RB可包含頻域中的12個連貫副載波以及時域中的6個連貫符號,達總共72個RE。由每個RE攜帶的位元數取決於調變方案。
如圖4A中說明的,一些RE攜帶用於UE處的通道估計的DL參考(導頻)訊號(Downlink Reference Signal,DL-RS)。DL-RS可包括解調參考訊號(Demodulation Reference Signal,DMRS)和通道狀態資訊參考訊號(Channel State Information Reference Signal,CSI-RS),其示例性位置在圖4A中被標記為“R”。
圖4B說明訊框的DL子訊框內的各種通道的示例。實體下行鏈路控制通道(Physical Downlink Control Channel,PDCCH)在一個或多個控制通道元素(Control Channel Element,CCE)內攜帶DL控制資訊(Downlink control information,DCI),每個CCE包括9個RE群(Resource Element Group,REG),每個REG包括OFDM符號中的4個連貫RE。DCI攜帶關於UL資源配置(持久和非持久)的資訊以及關於傳送到用戶設備的DL資料的描述。可在PDCCH中配置多個(例如,至多達8個)DCI,並且這些DCI可具有多種格式之一。例如,存在不同的DCI格式以用於UL排程、用於非MIMO DL排程、用於MIMO DL排程、以及用於UL功率控制。
主同步訊號(Primary Synchronization Signal,PSS)被UE用來確定子訊框/符號定時和實體層身份。副同步訊號(Secondary Synchronization Signal,SSS)被UE用來確定實體層蜂窩小區身份群號和無線電訊框定時。基於實體層身份和實體層蜂窩小區身份群號,UE可以確定PCI。基於該PCI,UE可以確定前述DL-RS的位置。攜帶MIB的實體廣播通道(Physical Broadcast Channel,PBCH)可以在邏輯上與PSS和SSS編群在一起以形成SSB(亦被稱為SS/PBCH)。MIB提供DL系統頻寬中的RB的數目、以及系統訊框號(System Frame Number,SFN)。實體下行鏈路共用通道(Physical Downlink Shared Channel,PDSCH)攜帶用戶資料、不通過PBCH傳送的廣播系統資訊(例如系統資訊區塊(SIB))、以及尋呼訊息。
在一些情形中,在圖4A中說明的DL RS可以是定位參考訊號(Positioning Reference Signal,PRS)。圖5說明由無線節點(例如基站102)支援的蜂窩小區的示例性PRS配置500。圖5示出了PRS定位時機如何由系統訊框號(SFN)、因蜂窩小區而異的子訊框偏移(ΔPRS
)552和PRS週期性(TPRS
)520來確定。通常,因蜂窩小區而異的PRS子訊框配置由在觀察到的抵達時間差(Observed Time Difference of Arrival,OTDOA)輔助資料中包括的“PRS配置索引”IPRS
來定義。PRS週期性(TPRS
)520和因蜂窩小區而異的子訊框偏移(ΔPRS
)是基於PRS配置索引IPRS
來定義的,如下表2所說明。
表2
PRS配置索引IPRS | PRS週期性TPRS (子訊框) | PRS子訊框偏移ΔPRS (子訊框) |
0 – 159 | 160 | |
160 – 479 | 320 | |
480 – 1119 | 640 | |
1120 – 2399 | 1280 | |
2400 – 2404 | 5 | |
2405 – 2414 | 10 | |
2415 – 2434 | 20 | |
2435 – 2474 | 40 | |
2475 – 2554 | 80 | |
2555–4095 | 保留 |
PRS配置是參考傳送PRS的蜂窩小區的SFN來定義的。針對NPRS
個下行鏈路子訊框中包括第一PRS定位時機的第一子訊框,PRS實例可以滿足:,
其中nf
是SFN,其中0 ≤ nf
≤ 1023,ns
是由nf
定義的無線電訊框內的時隙數,其中0 ≤ ns
≤ 19,TPRS
是PRS週期性520,並且ΔPRS
是因蜂窩小區而異的子訊框偏移552。
如圖5所示,因蜂窩小區而異的子訊框偏移ΔPRS
552可以按從系統訊框號0(時隙“編號0”,標記為時隙550)開始到第一(後續)PRS定位時機的開始傳送的子訊框數的形式來定義。在圖5的示例中,在每個連貫PRS定位時機518a、518b和518c中的連貫定位子訊框數(NPRS
)等於4。即,表示PRS定位時機518a、518b和518c的每個陰影塊表示四個子訊框。
在一些方面,當UE在針對特定蜂窩小區的OTDOA輔助資料中接收到PRS配置索引IPRS
時,UE可以使用表2來確定PRS週期性TPRS
520和PRS子訊框偏移ΔPRS
。UE可以隨後確定PRS在蜂窩小區中被排程時的無線電訊框、子訊框和時隙(例如,使用方程式(1))。OTDOA輔助資料可以由例如位置伺服器(例如,位置伺服器230、LMF 270)來確定,並且包括針對參考蜂窩小區以及由各個基站支援的數個鄰居蜂窩小區的輔助資料。
通常,來自網路中使用相同頻率的所有蜂窩小區的PRS時機在時間上對準,並且相對於網路中使用不同頻率的其他蜂窩小區可具有固定的已知時間偏移(例如,因蜂窩小區而異的子訊框偏移552)。在SFN同步網路中,所有無線節點(例如,基站102)都可以在訊框邊界和系統訊框號兩者上對準。因此,在SFN同步網路中,各個無線節點所支援的所有蜂窩小區都可以針對PRS傳輸的任何特定頻率使用相同的PRS配置索引。另一方面,在SFN非同步網路中,各個無線節點可以在訊框邊界上對準,但不在系統訊框號上對準。因此,在SFN非同步網路中,針對每個蜂窩小區的PRS配置索引可以由網路單獨配置,以使得PRS時機在時間上對準。
如果UE可以獲得至少一個蜂窩小區(例如,參考蜂窩小區或服務蜂窩小區)的蜂窩小區定時(例如,SFN),則UE可以確定用於OTDOA定位的參考蜂窩小區和鄰居蜂窩小區的PRS時機的定時。隨後可以由UE例如基於關於來自不同蜂窩小區的PRS時機交疊的假定來推導出其他蜂窩小區的定時。
被用於傳送PRS的資源元素集合被稱為“PRS資源”。該資源元素集合能在頻域中跨越多個PRB並且能在時域中跨越時隙430內的N個(例如,一個或多個)連貫符號460。在給定的OFDM符號460中,PRS資源佔用連貫的PRB。PRS資源由至少以下參數描述:PRS資源識別符(Identifier,ID)、序列ID、梳齒大小N、頻域中的資源元素偏移、起始時隙和起始符號、每PRS資源的符號數目(即,PRS資源的歷時)和QCL資訊(例如,與其他DL參考訊號QCL)。在一些設計中,支援一個天線埠。梳齒大小指示攜帶PRS的每個符號中的副載波的數目。例如,梳齒-4的梳齒大小意味著給定符號的每四個副載波攜帶PRS。
“PRS資源集”是被用於PRS的傳輸的一組PRS資源,其中每個PRS資源具有一PRS資源ID。此外,PRS資源集中的PRS資源與相同的傳送接收點(TRP)相關聯。PRS資源集中的PRS資源ID與從單個TRP傳送的單個波束相關聯(其中TRP可傳送一個或多個波束)。即,PRS資源集中的每個PRS資源可以在不同的波束上傳送,並且如此,“PRS資源”還可被稱為“波束”。需注意的是,這不具有對UE是否已知TRP和PRS在其上傳送的波束的任何暗示。“PRS時機”是其中預期傳送PRS的週期性地重複的時間窗(例如,一個或多個連貫時隙的群)的一個實例。PRS時機也可被稱為“PRS定位時機”、“定位時機”或簡稱為“時機”。
需注意的是,術語“定位參考訊號”和“PRS”有時可指被用於在LTE或NR系統中進行定位的特定參考訊號。然而,如本文中所使用的,除非另外指示,否則術語“定位參考訊號”和“PRS”指能被用於定位的任何類型的參考訊號,例如但不限於:LTE或NR中的PRS訊號、5G中的導航參考訊號(NRS)、傳送方參考訊號(TRS)、因蜂窩小區而異的參考訊號(CRS)、通道狀態資訊參考訊號(CSI-RS)、主同步訊號(PSS)、副同步訊號(SSS)、SSB等。
SRS是UE傳送以幫助基站獲得每個用戶的通道狀態資訊(CSI)的僅上行鏈路訊號。通道狀態資訊描述了RF訊號如何從UE傳播到基站,並且表示散射、衰落和功率衰減與距離的組合效應。系統將SRS用於資源排程、鏈路適配、大規模MIMO、波束管理等。
針對SRS的先前定義的若干增強已被提議用於定位的SRS(SRS-P),例如SRS資源內的新交錯模式、SRS的新梳齒類型、SRS的新序列、每分量載波較大數目的SRS資源集、以及每分量載波較大數目的SRS資源。此外,參數“SpatialRelationInfo(空間關係資訊)”和“PathLossReference(路徑損耗參考)”要基於來自相鄰TRP的DL RS來配置。又進一步,一個SRS資源可在活躍頻寬部分(Bandwidth Part,BWP)之外被傳送,並且一個SRS資源可跨越多個分量載波。最後,UE可通過來自多個SRS資源的相同發射波束進行傳送以用於UL-AoA。所有這些都是當前SRS框架之外的特徵,該當前SRS框架通過RRC較高層信令來配置(並且潛在地通過MAC控制元素(CE)或下行鏈路控制資訊(DCI)來觸發或啟動)。
如以上所提及,NR中的SRS是由UE傳送的用於探測上行鏈路無線電通道目的的因UE而異地配置的參考訊號。類似於CSI-RS,此類探測提供了各種級別的無線電通道特性知識。在一種極端情況下,SRS可在gNB處簡單地用於獲得訊號強度測量,例如,以用於UL波束管理目的。在另一極端情況下,SRS可在gNB處被用來獲得作為頻率、時間和空間的函數的詳細幅度和相位估計。在NR中,具有SRS的通道探測與LTE相比支援更多樣化的用例集(例如,用於基於互易的gNB發射波束成形(下行鏈路MIMO)的下行鏈路CSI捕獲;用於上行鏈路MIMO的鏈路適配和基於碼本/非碼本的預編碼的上行鏈路CSI捕獲、上行鏈路波束管理等)。
SRS可以使用各種選項來配置。SRS資源的時間/頻率映射由以下特性來定義。
․時間歷時SRS資源的時間歷時可以是時隙內的1、2或4個連貫OFDM符號,這與只允許每時隙單個OFDM符號的LTE形成對比。
․起始符號位置l0
-SRS資源的起始符號可以位於時隙的最晚6個OFDM符號內的任何位置,前提是該資源不跨越時隙結束邊界。
․重複因子R-對於配置有跳頻的SRS資源,重複允許在發生下一跳之前在R個連貫OFDM符號中探測相同的副載波集(如本文所使用的,“跳”具體地指跳頻)。例如,R的值為1、2、4,其中。
․傳輸梳齒間隔KTC
和梳齒偏移kTC
-SRS資源可以佔用頻域梳齒結構的資源元素(Resource Element,RE),其中該梳齒間隔是如LTE中的2或4個資源元素。此結構允許相同或不同用戶在不同梳齒上的不同SRS資源的頻域多工,其中不同梳齒彼此偏移整數個RE。梳齒偏移是關於PRB邊界定義的,並且可以取0,1,…,KTC
-1個RE範圍內的值。因此,對於梳齒間隔KTC
=2,存在2個不同的梳齒可用於多工(若需要),而對於梳齒間隔KTC
=4,存在4個不同的可用梳齒。
․用於週期性/半持久SRS情形的週期性和時隙偏移。
․頻寬部分內的探測頻寬。
對於低等待時間定位,gNB可經由DCI來觸發UL SRS-P(例如,所傳送的SRS-P可包括重複或波束掃掠以使得若干gNB能夠接收該SRS-P)。替換地,gNB可以向UE發送關於非週期性PRS傳輸的資訊(例如,該配置可以包括來自多個gNB的關於PRS的資訊,以使得UE能夠執行用於定位(基於UE的)或用於報告(UE輔助式)的定時計算)。儘管本揭露的各個實施例涉及基於DL PRS的定位程序,但此類實施例中的一些或全部還可以應用於基於UL SRS-P的定位程序。
需注意的是,術語“探測參考訊號”、“SRS”和“SRS-P”有時可指被用於在LTE或NR系統中進行定位的特定參考訊號。然而,如本文中所使用的,除非另外指示,否則術語“探測參考訊號”、“SRS”和“SRS-P”指能被用於定位的任何類型的參考訊號,例如但不限於:LTE或NR中的SRS訊號、5G中的導航參考訊號(NRS)、傳送方參考訊號(TRS)、用於定位的隨機存取通道(RACH)訊號(例如,RACH前置碼,例如4步RACH程序中的Msg-1或2步RACH程序中的Msg-A)等。
3GPP版本16導入的各種NR定位方面涉及提高定位方案的位置準確性,這些方案涉及與一個或多個UL或DL PRS相關聯的(諸)測量(例如,更高頻寬(BW)、FR2波束掃掠、基於角度的測量(例如抵達角(Angle of Arrival,AoA)和出發角(Angle of Departure,AoD)測量)、多蜂窩小區往返時間(Round-Trip Time,RTT)測量等)。如果等待時間減少是優先事項,則通常使用基於UE的定位技術(例如,在沒有UL位置測量報告的情況下的僅DL技術)。然而,如果等待時間較為無關緊要,則可以使用UE輔助式定位技術,由此經UE測量的資料被報告給網路實體(例如,位置伺服器230、LMF 270等)。通過在RAN中實現LMF,可以在一定程度上減少與UE輔助式定位技術相關聯的等待時間。
層3(L3)信令(例如,RRC或位置定位協議(LPP))通常被用於傳送包括與UE輔助式定位技術相關聯的基於位置的資料的報告。與層1(L1或PHY層)信令或層2(L2或MAC層)信令相比,L3信令與相對較高的等待時間(例如,100毫秒以上)相關聯。在一些情形中,可期望UE與RAN之間用於基於位置的報告的較低等待時間(例如,小於100毫秒,小於10毫秒等)。在此類情形中,L3信令可能無法達到這些較低的等待時間水準。定位測量的L3信令可包括以下任何組合:
․一個或多個TOA、TDOA、RSRP或Rx-Tx測量,
․一個或多個AoA/AoD(例如,當前僅針對gNB->LMF報告DL AoA和UL AoD商定的)測量,
․一個或多個多徑報告測量,例如,每路徑ToA、RSRP、AoA/AoD(例如,當前僅在LTE中允許的每路徑ToA)
․一個或多個運動狀態(例如,步行、駕駛等)和軌跡(例如,當前針對UE),和/或
․一個或多個報告品質指示。
近期,已經構想L1和L2信令與基於PRS的報告相關聯地使用。例如,L1和L2信令當前在一些系統中被用於傳送CSI報告(例如,信道品質指示(Channel Quality Indication,CQI)、預編碼矩陣指示符(Precoding Matrix Indicator,PMI)、層指示符(Layer Indicator,Li)、L1-RSRP等的報告)。CSI報告可包括按預定義次序(例如,由相關標準定義)的欄位集。單個UL傳輸(例如,在PUSCH或PUCCH上)可包括多個報告,在本文中被稱為“子報告”,其根據(例如,由相關標準定義的)預定義優先順序來佈置。在一些設計中,預定義順序可基於相關聯的子報告週期性(例如,PUSCH/PUCCH上的非週期性/半持久性/週期性(A/SP/P))、測量類型(例如,L1-RSRP或非L1-RSRP)、服務蜂窩小區索引(例如,在載波聚集(Carrier Aggreagtion,CA)情形中)、以及報告配置ID(即,reportconfigID)。對於2部分CSI報告,所有報告的部分1被編群在一起,並且部分2被分開編群,並且每個群被分開編碼(例如,部分1有效載荷大小基於配置參數是固定的,而部分2大小是可變的並且取決於配置參數以及還取決於相關聯的部分1內容)。在編碼和速率匹配之後要輸出的經編碼位元/符號的數目是基於輸入位元的數目和β因子按相關標準來計算的。在RS的實例被測量與對應報告之間定義了連結(例如,時間偏移)。在一些設計中,可以實現使用L1和L2信令的基於PRS的測量資料的類CSI報告。
圖6說明根據本揭露的各個方面的示例性無線通訊系統600。在圖6的示例中,UE 604(其可以對應於以上關於圖1描述的任何UE(例如,UE 104、UE 182、UE 190等))正嘗試計算對其定位的估計,或者輔助另一實體(例如,基站或核心網元件、另一UE、位置伺服器、第三方伺服器應用等)計算對其定位的估計。UE 604可使用RF訊號以及用於調變射頻訊號和交換資訊封包的標準化協定來與多個基站602a…602d(統稱為基站602)進行無線通訊,基站602a…602d可以對應於圖1中的基站102或180和/或WLAN AP 150的任何組合。通過從所交換的RF訊號中提取不同類型的資訊並利用無線通訊系統600的佈局(即,基站位置、幾何形狀等),UE 604可確定其定位,或者輔助確定其在預定義的參考座標系中的定位。在一方面,UE 604可使用二維座標系來指定其定位;然而,本文中所公開的各方面不限於此,並且還可適用於在期望額外維度的情況下使用三維座標系來確定定位。附加地,雖然圖6說明一個UE 604和四個基站602a…602d,但是如將領會到的,可存在更多UE 604以及更多或更少的基站602。
為了支援定位估計,基站602a…602d可被配置成向在它們涵蓋區域中的各UE 604廣播參考RF訊號(例如,定位參考訊號(PRS)、因蜂窩小區而異的參考訊號(CRS)、通道狀態資訊參考訊號(CSI-RS)、同步訊號,等等),以使得UE 604能夠測量成對的網路節點之間的參考RF訊號定時差(例如,OTDOA或RSTD)和/或以標識最佳地激發UE 604與傳送方基站602之間的LOS或最短無線電路徑的波束。對標識(諸)LOS/最短路徑波束感興趣不僅僅因為這些波束隨後可被用於一對基站602之間的OTDOA測量,還因為標識這些波束可以基於波束方向來直接提供一些定位資訊。此外,這些波束隨後可被用於需要精准ToA的其他定位估計方法,例如基於往返時間估計的方法。
如本文所使用的,“網路節點”可以是基站602a…602d、基站602a…602d的蜂窩小區、遠端無線電頭端、基站602a…602d的天線,其中基站602a…602d的天線位置不同於基站602a…602d自身的位置或能夠傳送參考訊號的任何其他網路實體的位置。此外,如本文所使用的,“節點”可以指網路節點或UE。
位置伺服器(例如,位置伺服器230)可以向UE 604發送輔助資料,該輔助資料包括:基站602a…602d的一個或多個鄰居蜂窩小區的標識,以及關於由每個鄰居蜂窩小區傳送的參考RF訊號的配置資訊。替換地,輔助資料可直接源自各基站602a…602d自身(例如,在週期性地廣播的開銷訊息中,等等)。替換地,UE 604可以在不使用輔助資料的情況下自己檢測基站602a…602d的鄰居蜂窩小區。UE 604(例如,部分地基於輔助資料(若已提供))可以測量以及(可任選地)報告來自個體網路節點的OTDOA和/或從各網路節點對接收到的參考RF訊號之間的RSTD。使用這些測量以及所測量網路節點(即,傳送了UE 604測得的參考RF訊號的基站602a…602d或(諸)天線)的已知位置,UE 604或位置伺服器可以確定UE 604與所測量網路節點之間的距離,並且由此計算UE 604的位置。
術語“定位估計”在本文中用來指對UE 604的定位的估計,其可以是地理式的(例如,可包括緯度、經度、以及可能的高度)或者是市政式的(例如,可包括街道地址、建築物名稱、或建築物或街道地址內或附近的精確點或區域(例如建築物的特定入口、建築物中的特定房間或套房)、或地標(例如市鎮廣場))。定位估計也可被稱為“位置”、“定位”、“鎖定”、“定位鎖定”、“位置鎖定”、“位置估計”、“鎖定估計”或某個其他術語。獲得位置估計的方式一般地可被稱為“定位”、“定址”、或“定位鎖定”。用於獲得定位估計的特定解決方案可被稱為“定位解決方案”。作為定位解決方案的一部分的用於獲得定位估計的特定方法可被稱為“定位方法”、或稱為“位置測定方法”。
術語“基站”可以指單個實體傳輸點或者指可能或可能不並置一地的多個實體傳輸點。例如,在術語“基站”指單個實體傳輸點的情況下,該實體傳輸點可以是與基站(例如,基站602a…602d)的蜂窩小區相對應的基站天線。在術語“基站”指多個並置一地實體傳輸點的情況下,這些實體傳輸點可以是基站的天線陣列(例如,如在MIMO系統中或在基站採用波束成形的情況下)。在術語“基站”指多個非並置一地的實體傳輸點的情況下,這些實體傳輸點可以是分散式天線系統(DAS)(經由傳輸媒介來連接到共用源的、在空間上分離的天線的網路)或遠端無線電頭端(RRH)(連接到服務基站的遠端基站)。替換地,這些非並置一地實體傳輸點可以是從UE(例如,UE 604)接收測量報告的服務基站和該UE正在測量其參考RF信號的鄰居基站。因此,圖6說明其中基站602a和602b形成DAS/RRH 620的一方面。例如,基站602a可以是UE 604的服務基站,並且基站602b可以是UE 604的鄰居基站。如此,基站602b可以是基站602a的RRH。基站602a和402b可以在有線或無線鏈路622上彼此通訊。
為了使用從各網路節點對接收到的RF訊號之間的OTDOA和/或RSTD來精確地確定UE 604的定位,UE 604需要測量在UE 604與網路節點(例如,基站602a…602d、天線)之間的視線(Line of Sight,LOS)路徑(或在LOS路徑不可用的情況下最短的非視線(Non Line of Sight,NLOS)路徑上接收到的參考RF訊號。然而,RF訊號不僅僅沿傳送方與接收方之間的LOS/最短路徑行進,而且還在數個其他路徑上行進,因為RF訊號從傳送方擴展開並且在這些RF訊號去往接收方的路上被其他物體(例如山丘、建築物、水等)反射。因此,圖6說明基站602與UE 604之間的數條LOS路徑610和數條NLOS路徑612。具體地,圖6說明基站602a在LOS路徑610a和NLOS路徑612a上進行傳送,基站602b在LOS路徑610b和兩條NLOS路徑612b上進行傳送,基站602c在LOS路徑610c和NLOS路徑612c上進行傳送,並且基站602d在兩條NLOS路徑612d上進行傳送。如圖6中所說明的,每條NLOS路徑612從某一物體630(例如,建築物)反射。如將領會的,由基站602傳送的每條LOS路徑610和NLOS路徑612可以由基站602的不同天線傳送(例如,如在MIMO系統中),或者可以由基站602的相同天線傳送(從而說明RF訊號的傳播)。此外,如本文所使用的,術語“LOS路徑”指傳送方與接收方之間的最短路徑,並且可能不是實際LOS路徑而是最短NLOS路徑。
在一方面,一個或多個基站602可被配置成使用波束成形來傳送RF訊號。在該情形中,一些可用波束可沿LOS路徑610聚焦所傳送的RF訊號(例如,這些波束沿LOS路徑產生最高天線增益),而其他可用波束可沿NLOS路徑612聚焦所傳送的RF訊號。具有沿特定路徑的高增益並因此沿該路徑聚焦RF訊號的波束仍然可使某一RF訊號沿其他路徑傳播;該RF訊號的強度自然取決於沿那些其他路徑的波束增益。“RF訊號”包括通過傳送方與接收方之間的空間來傳輸資訊的電磁波。如本文所使用的,傳送方可以向接收方傳送單個“RF訊號”或多個“RF訊號”。然而,如以下進一步描述的,由於通過多徑通道的各RF訊號的傳播特性,接收方可接收到與每個所傳送RF訊號相對應的多個“RF訊號”。
在基站602使用波束成形來傳送RF訊號的情況下,用於基站602與UE 604之間的資料通訊的感興趣波束將是攜帶以最高訊號強度(如由例如收到訊號收到功率(RSRP)或在存在定向干擾訊號的情況下由SINR所指示的)到達UE 604的RF訊號的波束,而用於定位估計的感興趣波束將是攜帶激發最短路徑或LOS路徑(例如,LOS路徑610)的RF訊號的波束。在一些頻帶中且對於通常所使用的天線系統而言,這些波束將是相同波束。然而,在其他頻帶(例如mmW)中,在通常可使用大量天線振子來創建窄發射波束的情況下,它們可能不是相同波束。如以下參考圖7所描述的,在一些情形中,LOS路徑610上的RF訊號的訊號強度可能(例如,由於障礙物)比NLOS路徑612上的RF訊號的訊號強度弱,RF訊號在NLOS路徑612上由於傳播延遲而較晚到達。
圖7說明根據本揭露的各個方面的示例性無線通訊系統700。在圖7的示例中,UE 704(其可以對應於圖6中的UE 604)正在嘗試計算對其定位的估計,或者輔助另一實體(例如,基站或核心網元件、另一UE、位置伺服器、第三方應用等)計算對其定位的估計。UE 704可使用RF訊號和用於RF訊號的調變以及資訊封包的交換的標準化協議來與基站702(其可對應於圖6中的多個基站602a…602d的其中一者)進行無線通訊。
如圖7中所說明的,基站702正利用波束成形來傳送RF訊號的多個波束711…715。每個波束711…715可以由基站702的天線陣列來形成和傳送。儘管圖7說明基站702傳送五個波束711…715,但是如將領會,可存在多於或少於五個波束,波束形狀(例如峰值增益、寬度和旁瓣增益)在所傳送的波束之間可以有所不同,並且這些波束中的一些可由不同的基站來傳送。
出於將關聯於一個波束的RF訊號與關聯於另一波束的RF訊號區分開的目的,波束索引可被指派給該多個波束711…715中的每一者。此外,與該多個波束711…715中的特定波束相關聯的RF訊號可以攜帶波束索引指示符。波束索引也可以從RF訊號的傳輸時間(例如訊框、時隙和/或OFDM符號數)導出。波束索引指示符可以是例如用於唯一性地區分至多達八個波束的三位元欄位。如果接收到具有不同波束索引的兩個不同的RF訊號,則這將指示RF訊號是使用不同的波束來傳送的。如果兩個不同的RF訊號共享共用波束索引,則這將指示不同的RF訊號是使用相同的波束來傳送的。描述兩個RF訊號是使用相同波束來傳送的另一種方式是:用於第一RF訊號的傳輸的(諸)天線埠在空間上與用於第二RF訊號的傳輸的(諸)天線埠准並置一處。
在圖7的示例中,UE 704接收在波束713上傳送的RF訊號的NLOS資料流723和在波束714上傳送的RF訊號的LOS資料流724。儘管圖7將NLOS資料流723和LOS資料流724說明為單條線(分別為虛線和實線),但是如將領會,NLOS資料流723和LOS資料流724可例如由於RF訊號通過多徑通道的傳播特性而各自包括至其到達UE 704的時間為止的多條射線(即,“群集”)。例如,當電磁波被一物件的多個表面反射並且這些反射從大致相同的角度抵達接收方(例如,UE 704)時,形成RF訊號的群集,每個反射比其他反射多或少行進幾個波長(例如,釐米)。接收到的RF訊號的“群集”一般對應於單個傳送的RF訊號。
在圖7的示例中,NLOS資料流723最初不指向UE 704,儘管如將領會,它原可以最初指向UE 704,如在圖6中的NLOS路徑612上的RF訊號一樣。然而,它被反射器740(例如,建築物)反射並且無阻礙地到達UE 704,並且因此仍然可以是相對強的RF訊號。作為對比,LOS資料流724指向UE 704但穿過障礙物730(例如,植被、建築物、山丘、破壞性環境(例如雲或煙)等),這可顯著地降級RF訊號。如將領會的,儘管LOS資料流724比NLOS資料流723弱,但是LOS資料流724將在NLOS資料流723之前抵達UE 704,因為它遵循從基站702到UE 704的較短路徑。
如以上提及的,用於基站(例如,基站702)與UE(例如,UE 704)之間的資料通訊的感興趣波束是攜帶以最高訊號強度(例如,最高RSRP或SINR)抵達UE的RF訊號的波束,而用於定位估計的感興趣波束是攜帶激發LOS路徑且在所有其他波束(例如,波束714)之中具有沿LOS路徑的最高增益的RF訊號的波束。即,即使波束713(NLOS波束)原本將微弱地激發LOS路徑(由於RF訊號的傳播特性,即使沒有沿著LOS路徑聚焦),波束713的LOS路徑的弱訊號(若有)也可能無法可靠地檢測到(與來自波束714的LOS路徑相比),因此導致執行定位測量時的較大誤差。
儘管用於資料通訊的感興趣波束和用於定位估計的感興趣波束對於一些頻帶而言可以是相同的波束,但是對於其他頻帶(例如mmW),它們可以不是相同的波束。如此,參考圖7,在UE 704參與與基站702的資料通訊會話(例如,在基站702是UE 704的服務基站的情況下)且並非簡單地嘗試測量由基站702傳送的參考RF訊號的情況下,針對資料通訊會話的感興趣波束可以是波束713,因為它正攜帶無阻礙的NLOS資料流723。然而,用於定位估計的感興趣波束將是波束714,因為它攜帶最強的LOS資料流724,儘管被阻礙。
圖8A是示出根據本揭露的各方面的在接收方(例如,UE 704)處隨時間的RF通道回應的圖800A。在圖8A所說明的通道下,接收方在時間T1處接收在通道抽頭上的兩個RF訊號的第一群集,在時間T2處接收在通道抽頭上的五個RF訊號的第二群集,在時間T3處接收在通道抽頭上的五個RF訊號的第三群集,並且在時間T4處接收在通道抽頭上的四個RF訊號的第四群集。在圖8A的示例中,因為第一RF訊號群集在時間T1處首先抵達,所以假定它是LOS資料流(即,在LOS或最短路徑上抵達的資料流),並且可對應於LOS資料流724。在時間T3處的第三群集由最強RF訊號組成,並且可以對應於NLOS資料流723。從傳送方的一側看,收到RF訊號的每個群集可包括以不同角度傳送的RF訊號的一部分,並且因此可以說每個群集具有來自傳送方的不同的出發角(AoD)。圖8B是說明這種按照AoD的群集分離的示圖800B。在AoD範圍802a中傳送的RF訊號可以對應於圖8A中的一個群集(例如,“群集1”),並且在AoD範圍802b中傳送的RF訊號可以對應於圖8A中的一不同群集(例如,“群集3”)。需注意的是,儘管在圖8B中所描繪的兩個群集的AoD範圍在空間上是隔離的,但是一些群集的AoD範圍也可部分交疊,儘管這些群集在時間上分離。例如,這可在來自傳送方的相同AoD處的兩個獨立建築物朝向接收方反射訊號時發生。需注意的是,儘管圖8A說明兩個至五個通道抽頭(或“峰值”)的群集,但是如將領會,這些群集可具有比所說明的通道抽頭數目更多或更少的通道抽頭。
在一些系統中,例如工業物聯網(I-IoT)部署,感測器可被密集地佈置為控制系統的一部分(例如,工廠環境)。控制系統可能期望獲取其所有感測器在特定時間點(例如,特定時隙)的位置的快照。在NR中,基於對用於定位的參考訊號(例如,PRS、SRS-P等)的測量來獲得定位估計。遺憾的是,傳送用於定位的參考訊號(例如,PRS、SRS-P等)的時間實例可能不與控制系統期望定位的時間實例對準,如圖9所示。
圖9說明根據本揭露的一方面的定位配置900。在定位配置900中,在時隙2和13中的每個時隙處排程用於定位的參考訊號(例如,SRS-P、PRS等)。然而,在該示例中,期望的定位估計時間(或時間實例)對應於時隙7。
在一些設計中,UE和/或gNBs可以向LMF報告對用於定位的多個參考訊號(例如,PRS、SRS-P等)的測量(例如,可任選地,具有對相關聯的時間戳記的指定)(例如,圖9所示的時隙2和13處的SRS-P或PRS的測量),並且LMF可嘗試在期望的時間實例(例如,圖9中的時隙7)處將這些測量處理成對UE的定位估計。然而,此類報告的頻譜效率很低。另外,如果對一大群感測器併發地執行此類定位程序,則LMF可能變得超載,這可能增加與定位程序相關聯的等待時間。
本揭露的一個或多個實施例被定向到無線節點(例如,UE、gNB等),該無線節點確定並且報告在指定時間對UE的定位估計。具體地,UE的定位估計基於在無線節點處在多個時間測量的定位測量(例如,UE處的多個PRS實例或gNB處的SRS-P實例)。例如,無線節點可以經由內插或外插來導出在指定時間處的定位估計。此類辦法可以提供各種技術優勢,例如減少的開銷以及減少的等待時間(例如,無線節點可被用作分散式處理群,該分散式處理群促成對大群感測器的位置快照,否則這些大群感測器將使用於定位估計處理的集中式LMF辦法超載)。
圖10說明根據本揭露的各方面的無線通訊的示例性流程1000。在一方面,流程1000可由無線節點(例如圖3A的UE 302或圖3B的BS 304)來執行。
在步驟1010,無線節點(例如,接收機312、接收機322、接收機352、接收機362、處理系統384、網路介面380等)接收針對與指定時間相關聯的用戶設備的定位估計的請求。在一些設計中,步驟1010中的請求可源自網路元件(例如,服務BS、LMF、網路實體306等)。在其他設計中,在步驟1010中的請求可源自承運方網路之外的第三方伺服器(例如,OEM伺服器、應用伺服器等)。在一些設計中,無線節點對應於期望對其定位估計的UE。在其他設計中,無線節點可對應於BS(例如,參與定位程序的服務BS或非服務BS)。在一些設計中,步驟1010處的請求可被傳送(例如,經由單播、多播或廣播)到UE群(例如,IIoT工廠部署中的感測器群)或傳送到gNB群。在由同一BS中的LMF向BS發佈請求的示例中,可以在BS的一個邏輯元件處從該BS的另一邏輯元件接收步驟1010處的請求。
在步驟1020,無線節點(例如,接收機312、接收機322、接收機352、接收機362、處理系統332或384、定位模組342或388等)在多個時間執行定位測量(例如,TOA、TDOA、RSRP等)。在一些設計中,多個時間中的每一個時間可對應於PRS或SRS-P時機,而在其他設計中,可使用其他定位技術(例如,GNSS、基於感測器的定位等)。在一些設計中,多個時間(或時間實例)中的每一個時間可對應於時域資源,例如時隙、子訊框、符號群等。在一些設計中,該多個時間可各自相對於與該請求相關聯的指定時間正交(或非交疊)。換而言之,在步驟1020處執行的定位測量與請求其定位估計的指定時間不完全對準(或非交疊)。在一個示例中,指定的時間可以與PRS或SRS-P被配置但未被觸發的時間對準。在無線節點對應於UE的特定示例中,UE可被配置有PRS配置,其中DCI可以可任選地被用於觸發特定PRS時機的PRS。在此情況下,指定時間可以與PRS時機對準,但該PRS時機未被觸發,導致UE不得不基於經由DCI實際觸發的其他鄰近的PRS時機來導出所請求的定位估計。
在步驟1030,無線節點(例如,處理系統332或384、定位模組342或388等)基於多個定位測量來確定與指定時間相關聯的定位估計。如下文將更詳細地討論的,在步驟1030處的一些設計中,可以首先處理定位測量(例如,經由內插或外插),之後計算單個定位估計作為所確定的定位估計。在步驟1030處的其他設計中,多個定位測量可被用於計算與多個時間中的每一個時間相關聯的多個候選定位估計,之後(例如,經由內插或外插)處理該多個候選定位估計以導出所確定的定位估計。
在步驟1040,無線節點(例如,發射機314、發射機324、發射機354、發射機364、處理系統384、網路介面380等)傳送包括所確定的定位估計的報告。在無線節點對應於UE的示例中,步驟1040處的傳輸可以是去往BS的無線傳輸,BS隨後將該報告轉發給LMF。在無線節點對應於BS的示例中,步驟1040處的傳輸可以是去往LMF的回程傳輸。替換地,在無線節點對應於具有整合LMF的BS的示例中,步驟1040處的傳輸可以是從BS的一個邏輯元件到該BS的另一邏輯元件的邏輯傳輸(例如,內部資料傳遞)。在另一示例中,在步驟1040處的報告可被轉發到承運方網路之外的第三方伺服器(例如,OEM伺服器、應用伺服器等)。
圖11說明根據本揭露的各方面的無線通訊的示例性流程1100。在一方面,流程1100可由網路元件來執行,例如圖3B的BS 304或圖3C的網路實體306(例如,LMF)。
在步驟1110,網路元件(例如,發射機354、發射機364、網路介面390等)向無線節點(例如,UE、BS等)傳送針對與指定時間相關聯的用戶設備的定位估計的請求。在網路元件對應於BS 304的示例中,步驟1110處的傳輸可以包括去往UE的無線傳輸。在網路元件對應於網路實體306(例如,LMF)的示例中,步驟1110處的傳輸可包括從網路實體306到BS 304的回程傳輸(例如,BS 304隨後自己處理該請求、或者經由無線傳輸將該請求中繼到UE)。在一些設計中,無線節點對應於期望對其定位估計的UE。在其他設計中,無線節點可對應於BS(例如,參與定位程序的服務BS或非服務BS)。在一些設計中,步驟1110處的請求可被傳送(例如,經由單播、多播或廣播)到UE群(例如,IIoT工廠部署中的感測器群)或傳送到gNB群。在由同一BS中的LMF向BS發佈請求的示例中,可以從BS的一個邏輯元件向該BS的另一邏輯元件傳送步驟1110處的請求。在一些設計中,步驟1110處的請求可源自網路元件(例如,服務BS、LMF、網路實體306等)。在其他設計中,在步驟1110處的請求可源自承運方網路之外的第三方伺服器(例如,OEM伺服器、應用伺服器等)。
在步驟1120,網路元件(例如,發射機354、發射機364、網路介面390等)從無線節點接收報告,基於無線節點在多個時間執行的定位測量(例如,TOA、TDOA、RSRP等),該報告包括針對指定時間的定位估計。在一些設計中,該多個時間中的每一個時間可對應於PRS或SRS-P時機,而在其他設計中,可使用其他定位技術(例如,GNSS、基於感測器的定位等)。在一些設計中,該多個時間(或時間實例)中的每一個時間可對應於時域資源,例如時隙、子訊框、符號群等。在一些設計中,該多個時間各自可相對於與該請求相關聯的指定時間正交(或非交疊)。換而言之,這些定位測量與請求其定位估計的指定時間不完全對準。在網路元件對應於網路實體306(例如,LMF)並且無線節點對應於BS 304的示例中,可以經由從BS 304到網路實體306的回程傳輸來接收步驟1120中的報告(例如,網路實體306隨後自己處理該請求、或者經由無線傳輸將該請求中繼到UE)。在網路元件對應於網路實體306(例如,LMF)並且無線節點對應於UE 302的示例中,該報告首先由BS 304經由無線傳輸來接收,並且隨後經由回程傳輸在步驟1120處從BS 304中繼到網路實體306。在一些設計中,可在步驟1120處接收與不同的UE的定位估計相關聯的多個報告(例如,與IIoT工廠部署中的感測器群相關聯的UE)。在一示例中,指定的時間可以與PRS或SRS-P被配置但未被觸發的時間對準。在無線節點對應於UE的特定示例中,UE可被配置有PRS配置,藉此DCI可以可任選地被用於觸發特定PRS時機的PRS。在該情形中,指定時間可以與PRS時機對準,但該PRS時機未被觸發,導致UE不得不基於經由DCI實際觸發的其他鄰近的PRS時刻來導出所請求的定位估計。在另一示例中,在步驟1120處的報告可被轉發到承運方網路之外的第三方伺服器(例如,OEM伺服器、應用伺服器等)。
參照圖10到圖11,在一些設計中,定位估計的確定可包括與定位測量相關聯的定位測量資料的內插或外插,如下文將關於圖12A到圖12C所討論的。在一些設計中,被外插或內插的定位測量資料包括定位測量(例如,原始測量資料或被內插或外插的定位特徵)。在其他設計中,可首先基於定位測量來計算多個候選定位估計,之後對該多個候選定位估計進行外插或內插以產生所確定的定位估計。
圖12A說明根據本揭露的一方面的分別基於圖10到圖11的流程1000和1100的示例實現的定位配置1200A。類似於圖9,在定位配置1200A中,在時隙2和13每一者處排程(和觸發)用於定位的參考訊號(例如,SRS-P、PRS等)。在該示例中,期望的定位估計時間(或時間實例)對應於時隙7(例如,指定時間在該多個時間之中的最早時間和最晚時間之間)。在時隙7,假定用於定位的參考訊號(例如,SRS-P、PRS等)未被排程(或配置)或者,如果被配置,則未被觸發(例如,經由DCI)。在該示例中,無線節點本身(例如,UE 302或BS 304)經由內插(例如,關於這些定位測量來應用或應用於基於這些定位測量所衍生的多個候選定位估計,如以上所提及的)來確定在時隙7處對UE的定位估計,而不是簡單地向LMF報告針對時隙2和13的測量資料並讓LMF得出如何將所報告的測量資料處理成在時隙7處對UE的定位估計。
圖12B說明根據本揭露的另一方面的分別基於圖10到圖11的流程1000和1100的示例實現的定位配置1200B。在定位配置1200B中,在時隙2和13中的每一者處排程用於定位的參考訊號(例如,SRS-P、PRS等)。在該示例中,期望的定位估計時間(或時間實例)對應於時隙17(例如,指定時間在該多個時間之中的最晚時間之後)。在時隙17,假定用於定位的參考訊號(例如,SRS-P、PRS等)未被排程(或配置)或者,如果被配置,則未被觸發(例如,經由DCI)。在該示例中,無線節點本身(例如,UE 302或BS 304)經由外插(例如,關於這些定位測量來應用或應用於基於這些定位測量所導出的多個候選定位估計,如以上所提及的)來確定在時隙17處UE的定位估計,而不是簡單地向LMF報告針對時隙2和13的測量資料並讓LMF得出如何將所報告的測量資料處理成在時隙17處對UE的定位估計。更具體地,圖12B的外插基於較早的定位資料來外插UE的未來定位資料。在一些設計中,如圖12B所示的未來外插對於等待時間敏感的應用(例如,其中系統不能等待後續定位訊號以便可以執行內插)可能特別有利。
圖12C說明根據本揭露的另一方面的分別基於圖10到圖11的流程1000和1100的示例實現的定位配置1200C。在定位配置1200C中,在時隙2和13中的每個時隙處排程用於定位的參考訊號(例如,SRS-P、PRS等)。在該示例中,期望的定位估計時間(或時間實例)對應於時隙0(例如,指定時間在該多個時間之中的最早時間之前)。在時隙0,假定用於定位的參考訊號(例如,SRS-P、PRS等)未被排程(或配置)、或者(如果被配置)則未被觸發(例如,經由DCI)。在該示例中,無線節點本身(例如,UE 302或BS 304)經由外插(例如,關於這些定位測量來應用或應用於基於這些定位測量所衍生的多個候選定位估計,如以上所提及的)來確定在時隙17處UE的定位估計,而不是簡單地向LMF報告針對時隙2和13的測量資料並讓LMF得出如何將所報告的測量資料處理成在時隙0處對UE的定位估計。更具體地,圖12C的外插基於較遲的定位資料來外插UE的歷時定位資料。
參照12A到圖12C,在一些設計中,無線節點(例如,UE 302、BS 304等)可具有執行內插或外插至多達用於定位的參考訊號(例如,SRS-P、PRS等)的時隙和期望的定位估計時間(或時間實例)之間有某個時間微分的能力。例如,可以按X個時隙、X毫秒等的形式來定義內插或外插能力。然而,用於定位的參考訊號(例如,SRS-P、PRS等)的時隙與期望的定位估計時間(或時間實例)之間的較高時間微分一般與較低的準確性相關聯(例如,特別是對於快速移動的UE而言)。在一些設計中,定位會話可與比無線節點的內插或外插能力更窄的準確性要求相關聯。例如,可以由LMF(例如,經由提供給UE的輔助資料)、由與定位會話相關聯的應用等來配置準確性要求。
參照圖12A到圖12C,在一些設計中,可以配置標示為T_內插、T_外插或兩者的閾值。這些閾值可縮窄允許內插、外插或兩者的範圍。換而言之,如果不滿足T_內插或T_外插,則可以跳過對所請求的定位估計時間(或時間實例)的內插和/或外插(例如,不內插/外插、不報告等),這可以導致無線節點處的功率節省和降低的處理開銷。在一些設計中,可僅配置T_內插和T_外插之一。在其他設計中,可配置T_內插和T_外插兩者。在一些設計中,T_內插和T_外插可以不同。在其他設計中,T_內插和T_外插可以相同。在一些設計中,可配置標示為T_插值的單個閾值,其可適用於外插和內插兩者。在一些設計中,如圖12B所示,第一T_外插閾值可被配置成用於如圖12B中的未來外插,並且第二T_外插閾值可被配置用於如圖12C中的歷史外插。在其他設計中,單個T_外插閾值可被配置成用於如圖12B中的未來外插和如圖12C中的歷史外插兩者。如以上所提及的,各種內插和/或外插閾值可由LMF、特定應用等來配置。在一些設計中,各種內插和/或外插閾值可以是靜態的。在其他設計中,各種內插和/或外插閾值可基於一個或多個因UE而異的準則(例如UE速度)而呈動態。例如,T_內插、T_外插和/或T_插值可以針對快速移動的UE(例如,在速度閾值以上移動的UE)而從預設值減小、或者針對慢速移動或靜態UE(例如,在速度閾值以下移動的UE)而從預設值增大、等等。
參照12A到圖12C,在一些設計中,與第N個時隙相關聯的代表時間可用TN
表示。在圖12A的情形中,假定T_內插被配置。在該情形中,如果T7
-T1
< T_內插並且T13
-T7
< T_內插,則無線節點可以經由內插來確定在時隙7處UE的定位估計;否則,如果T7
-T1
≥ T_內插和/或T13
-T7
≥ T_內插,則可以跳過用於在時隙7處UE的定位估計的內插。在圖12B的情形中,假定T_外插被配置。在該情形中,如果T17
-T2
< T_外插並且T17
-T13
< T_外插,則無線節點可以經由外插來確定在時隙17處UE的定位估計;否則,如果T17
-T2
≥ T_外插和/或T17
-T13
≥ T_外插,則可以跳過用於在時隙17處UE的定位估計的外插。在圖12C的情形中,假定T_外插被配置。在該情形中,如果T2
-T0
< T_外插並且T13
-T0
< T_外插,則無線節點可以經由外插來確定在時隙0處UE的定位估計;否則,如果T2
-T0
≥ T_外插和/或T13
-T0
≥ T_外插,則可以跳過用於在時隙0處UE的定位估計的外插。
參照圖12A到圖12C,在一些設計中,各種內插和/或外插閾值可被用於估計不與實際SRS-P或DL-PRS對準的每個相應期望的定位估計時間(或時間實例)。遵從如以上所提及的相應的內插和/或外插閾值,對於一些定位會話,這可能導致一些此類請求被跳過而其他此類請求被執行。
參照圖10到圖11,在使用內插或外插來導出所確定的定位估計的一些設計中,內插或外插可包括對定位測量資料的線性或多項式內插或外插。
參照圖10到圖11,在一些設計中,網路元件可以向無線節點傳送一個或多個經網路配置的參數,並且在步驟1030中的確定可以基於該一個或多個經網路配置的參數。例如,該一個或多個經網路配置的參數可以指定無線節點關於“原始”測量資料或關於多個候選定位估計應用內插還是外插。在另一示例中,該一個或多個經網路配置的參數可指定一個或多個內插或外插參數(例如,該內插或外插是線性的還是多項式的等)。在另一示例中,該一個或多個經網路配置的參數可指定要被用於內插或外插的一組PRS或SRS-P資源(例如,週期性PRS或SRS-P資源、週期性和非週期性PRS或SRS-P資源的混合等)。
參照圖10到圖11,在一些設計中,無線節點(例如,UE 302)可利用感測器來精化或改進所確定的定位估計。在特定示例中,UE 302可在諸感測器344之間配備有一個或多個慣性測量單元(Inertial Measurement Unit,IMU),並且慣性測量單元的測量資料可被用於精化所確定的定位估計。
參照圖10到圖11,在一些設計中,在步驟1030,無線節點可傳送針對無線節點能力的指示,以執行確定。例如,該指示可指示無線節點執行內插或外插的能力(例如,內插可在某一精度水平下執行至多達X 毫秒、外插可以在某一精度水平下執行至多達Y毫秒等等)。在另一示例中,該指示可指示與不同精度水平相關聯的不同能力(例如,內插在第一精度水平下可執行至多達X1毫秒或者在第二精度水平下可執行至多達X2毫秒、外插可在第一精度水平下執行至多達Y1毫秒或者在第二精度水平下執行至多達Y2毫秒等等)。在一些設計中,該指示可包括對無線節點能力的動態指示,其可被包括在步驟1040或1110處的報告中。例如,例如UE移動性、通道品質等各種參數可動態地影響無線節點能力。在一些設計中,無線節點能力可以基於參考訊號之間的時間微分以時間(例如,按毫秒或時隙)的形式來定義(例如,在圖12A到圖12C中,這將適用於時隙2和13之間的時隙)、或者基於從參考訊號到目標內插或外插時間的更小或更大時間微分以時間(例如,按毫秒或時隙)的形式來定義(例如,在圖12A中,這將適用於時隙2和7之間或時隙7和13之間的間隙;在圖12B中,這將適用於時隙2和17之間或時隙13和17之間的間隙;在圖12C中,這將適用於時隙0和2之間或時隙0和13之間的間隙)、或以上所提及的各種時間值中任何時間值的總和(例如,在圖12A中,可以對時隙2和7之間以及時隙7和13之間的各個間隙求和;在圖12B中,可以對時隙2和17之間以及時隙13和17之間的各自間隙求和;在圖12C中,可以對時隙0和2以及0和13之間的各自間隙求和)等等。
本領域技術人員將領會,資訊和訊號可使用各種不同技術和技藝中的任何一種來表示。例如,貫穿上面說明始終可能被述及的資料、指令、命令、資訊、訊號、位元、符號和碼片可由電壓、電流、電磁波、磁場或磁粒子、光場或光粒子、或其任何組合來表示。
此外,本領域技術人員將領會,結合本文中所公開的方面描述的各種說明性邏輯塊、模組、電路和演算法步驟可被實現為電子硬體、電腦軟體、或兩者的組合。為清楚地說明硬體與軟體的這一可互換性,各種說明性元件、塊、模組、電路、以及步驟在上面是以其功能性的形式作一般化描述的。此類功能性是被實現為硬體還是軟體取決於具體應用和施加於整體系統的設計約束。技術人員可針對每種特定應用以不同方式來實現所描述的功能性,但此類實現決策不應被解讀為致使脫離本揭露的範圍。
結合本文中公開的各方面所描述的各種說明性邏輯塊、模組、以及電路可以用設計成執行本文所描述的功能的通用處理器、DSP、ASIC、FPGA或其他可程式邏輯器件、分立的閘或電晶體邏輯、分立的硬體元件、或其任何組合來實現或執行。通用處理器可以是微處理器,但在替換方案中,該處理器可以是任何常規的處理器、控制器、微控制器、或狀態機。處理器還可以被實現為計算設備的組合,例如,DSP與微處理器的組合、多個微處理器、與DSP核心協同的一個或多個微處理器、或任何其他此類配置。
結合本揭露的各方面描述的方法、序列和/或演算法可直接在硬體中、在由處理器執行的軟體模組中、或在這兩者的組合中體現。軟體模組可駐留在隨機存取記憶體(Random Access Memory,RAM)、快閃記憶體、唯讀記憶體(Read-only Memory,ROM)、可擦除可程式ROM(Erasable Programmable Read-only Memory,EPROM)、電可擦除可程式ROM(Electrically Erasable Programmable Read-only Memory,EEPROM)、暫存器、硬碟、可移動盤、CD-ROM或者本領域中所知的任何其他形式的儲存媒介中。示例性儲存媒介耦接到處理器以使得該處理器能從/向該儲存媒介讀寫資訊。在替換方案中,儲存媒介可被整合到處理器。處理器和儲存媒介可駐留在ASIC中。ASIC可駐留在用戶終端(例如,UE)中。在替換方案中,處理器和儲存媒介可作為分立元件駐留在用戶終端中。
在一個或多個示例性方面,所描述的功能可在硬體、軟體、韌體或其任何組合中實現。如果在軟體中實現,則各功能可以作為一條或多條指令或代碼儲存在電腦可讀媒介上或藉其進行傳送。電腦可讀媒介包括電腦儲存媒介和通訊媒介兩者,包括促成電腦程式從一地向另一地轉移的任何媒介。儲存媒介可以是能被電腦存取的任何可用媒介。作為示例而非限定,此類電腦可讀媒介可包括RAM、ROM、EEPROM、CD-ROM或其他光碟儲存、磁片儲存或其他磁儲存裝置、或能用於攜帶或儲存指令或資料結構形式的期望程式碼且能被電腦存取的任何其他媒介。任何連接也被正當地稱為電腦可讀媒介。例如,如果軟體是使用同軸電纜、光纖電纜、雙絞線、數位訂戶線(DSL)、或例如紅外、無線電、以及微波之類的無線技術從網站、伺服器、或其他遠端源傳送的,則該同軸電纜、光纖電纜、雙絞線、DSL、或例如紅外、無線電、以及微波之類的無線技術就被包括在媒介的定義之中。如本文中所使用的盤(disk)和碟(disc)包括壓縮碟(CD)、鐳射碟、光碟、數位多用碟(DVD)、軟碟和藍光碟,其中盤(disk)往往以磁的方式再現資料,而碟(disc)用鐳射以光學方式再現資料。以上的組合應當也被包括在電腦可讀媒介的範圍內。
儘管前面的公開示出了本揭露的說明性方面,但是應當需注意的是,在其中可作出各種變更和修改而不會脫離如所附申請專利範圍定義的本揭露的範圍。根據本文所描述的本揭露的各方面的方法請求項中的功能、步驟和/或動作不必按任何特定次序來執行。此外,儘管本揭露的要素可能是以單數來描述或主張權利的,但是複數也是已料想了的,除非明顯地聲明了限定於單數。
100:通訊系統
1000、1100:流程
1010、1020、1030、1040、1110、1120:步驟
102、120、602a…602d、702:基站
102’:細胞基站
104、152、164、182、190、604、704:用戶設備
105:存取點
180:mmW基站
110、110’:涵蓋區域
1200A、1200B、1200C:定位配置
120、122、134、154、184、192、622:鏈路
170:核心網
172、230: 位置伺服器
210、260:下一代核心
212 用戶平面
214 控制平面
220:新RAN
222:新無線電B節點
224:演進型B節點
262:會話管理功能
264:存取和移動性管理功能
270:位置管理功能
302、304、306:網路元件
310、350:WWAN收發機
312、322:接收機
314、324:發射機
320、360:WLAN收發機
330、370:衛星定位系統接收機
332、384、394:處理系統
334、382、392:資料匯流排
340、386、396:記憶體
342、388、389:定位模組
344:感測器
346:用戶介面
380、390:網路介面
400:下鏈路訊框結構
430:通道
500:PRS配置
518a…518c:PRS定位時機
520:PRS週期
550:時隙
552:子訊框偏移
600、700:通訊系統
610a…610d:視線路徑
612a…612d:非視線路徑
620:分散式天線系統/遠端無線電頭端
630:物體
711、712、713、714、715:波束
723、724:資料流
730:障礙物
740:反射器
800A:通道回應
800B:群集分離
802a、802b:範圍
呈現附圖以幫助描述本揭露的各個方面,並且提供這些附圖僅僅是為了說明這些方面而非對其進行限制。
圖1說明根據各個方面的示例性無線通訊系統。
圖2A和2B說明根據各個方面的示例無線網路結構。
圖3A至3C是可在無線通訊節點中採用並被配置成支援如本文教導的通訊的元件的若干範例方面的簡化方塊圖。
圖4A和4B是說明根據本揭露的各方面的訊框結構和這些訊框結構內的通道的示例的示意圖。
圖5說明由無線節點支援的蜂窩小區的示例性PRS配置。
圖6說明根據本揭露的各個方面的示例性無線通訊系統。
圖7說明根據本揭露的各個方面的示例性無線通訊系統。
圖8A是示出根據本揭露的各方面的在接收機處隨時間的RF通道響應的示意圖。
圖8B是說明這種按照AoD的群集分離的示意圖。
圖9說明根據本揭露的一方面的定位配置。
圖10說明根據本揭露的各方面的無線通訊的示例性流程圖。
圖11說明根據本揭露的各方面的無線通訊的示例性流程圖。
圖12A說明根據本揭露的一方面的分別基於圖10到圖11的流程的示例實現的定位配置。
圖12B說明根據本揭露的另一方面的分別基於圖10到圖11的流程的示例實現的定位配置。
圖12C說明根據本揭露的另一方面的分別基於圖10到圖11的流程的示例實現的定位配置。
1000:流程
1010、1020、1030、1040:步驟
302、304:無線節點
Claims (43)
- 一種操作無線節點的方法,包括: 接收針對與指定時間相關聯的用戶設備的定位估計的請求; 在多個時間執行定位測量; 基於該定位測量,確定與該指定時間相關聯的該定位估計;以及 傳送包括所確定的定位估計的報告。
- 如請求項1所述的方法,其中該確定包括對與該定位測量相關聯的定位測量資料的內插或外插。
- 如請求項2所述的方法, 其中該定位測量資料包括該定位測量,或者 其中該定位測量資料包括多個候選定位估計。
- 如請求項2所述的方法, 其中該指定時間在該多個時間之中的最早時間和最晚時間之間,以及 其中該確定包括對該定位測量資料的內插。
- 如請求項2所述的方法, 其中該指定時間在該多個時間中的最晚時間之後,以及 其中該確定包括對該定位測量資料的外插。
- 如請求項2所述的方法, 其中該指定時間在該多個時間中的最早時間之前,以及 其中該確定包括對該定位測量資料的外插。
- 如請求項2所述的方法,其中該確定包括對該定位測量資料的線性或多項式內插或外插。
- 如請求項2所述的方法,該定位估計是響應於該指定時間與該多個時間中的每一個時間之間的時間微分小於內插或外插閾值而確定的。
- 如請求項2所述的方法,進一步包括: 接收針對與第二指定時間相關聯的該用戶設備的第二定位估計的第二請求; 在第二多個時間執行第二定位測量; 回應於該指定時間和該第二多個時間中的任一個時間之間的時間微分大於或等於內插或外插閾值,跳過針對與該指定時間相關聯的該用戶設備的第二定位測量的確定。
- 如請求項1所述的方法,進一步包括: 從網路元件接收一個或多個經網路配置的參數, 其中該確定是基於該一個或多個經網路配置的參數來執行的。
- 如請求項1所述的方法,進一步包括: 傳送針對無線節點執行該確定的能力的指示。
- 如請求項11所述的方法,其中該指示作為對該無線節點能力的動態指示被包括在該報告中。
- 如請求項1所述的方法,其中該無線節點對應於該用戶設備或基站。
- 一種操作網路元件的方法,包括: 向無線節點傳送針對與指定時間相關聯的用戶設備的定位估計的請求;以及 基於該無線節點在多個時間執行的定位測量,從該無線節點接收包括針對該指定時間的該定位估計的報告。
- 如請求項14所述的方法,其中該定位估計是基於對與該定位測量相關聯的定位測量資料的內插或外插來確定的。
- 如請求項15所述的方法, 其中該定位測量資料包括該定位測量,或者 其中該定位測量資料包括多個候選定位估計。
- 如請求項15所述的方法, 其中該指定時間在該多個時間之中的最早時間和最晚時間之間,以及 其中該定位估計是基於對該定位測量資料的內插來確定的。
- 如請求項15所述的方法, 其中該指定時間在該多個時間中的最晚時間之後,以及 其中該定位估計是基於對該定位測量資料的外插來確定的。
- 如請求項15所述的方法, 其中該指定時間在該多個時間中的最早時間之前,以及 其中該定位估計是基於對該定位測量資料的外插來確定的。
- 如請求項15所述的方法,其中該定位估計是基於對該定位測量資料的線性或多項式內插或外插來確定的。
- 如請求項14所述的方法,進一步包括: 向該無線節點傳送一個或多個經網路配置的參數, 其中該定位估計是基於該一個或多個經網路配置的參數來確定的。
- 如請求項14所述的方法,進一步包括: 接收針對無線節點能力的指示,以確定該定位估計。
- 如請求項22所述的方法,其中該指示作為對該無線節點能力的動態指示被包括在所述報告中。
- 如請求項14所述的方法,其中該無線節點對應於用戶設備或基站。
- 如請求項14所述的方法,其中該網路元件對應於基站、位置管理功能、核心網路元件或其組合。
- 一種無線節點,包括: 用於接收針對與指定時間相關聯的用戶設備的定位估計的請求的裝置; 用於在多個時間執行定位測量的裝置; 用於基於該定位測量,確定與該指定時間相關聯的該定位估計的裝置;以及 用於傳送包括所確定的定位估計的報告的裝置。
- 如請求項26所述的無線節點,其中該定位估計是經由對與該定位測量相關聯的定位測量資料的內插或外插來確定的。
- 如請求項26所述的無線節點,其中該無線節點對應於該用戶設備或基站。
- 一種網路元件,包括: 用於向無線節點傳送針對與指定時間相關聯的用戶設備的定位估計的請求的裝置;以及 用於基於該無線節點在多個時間執行的多個定位測量,從該無線節點接收包括針對該指定時間的該定位估計的報告的裝置。
- 如請求項29所述的網路元件,其中該定位估計是基於對與該定位測量相關聯的定位測量資料的內插或外插來確定的。
- 如請求項29所述的網路元件,其中該無線節點對應於該用戶設備或基站。
- 一種無線節點,包括: 記憶體; 至少一個收發機;以及 至少一個處理器,通訊地耦接到該記憶體和該至少一個收發機,該至少一個處理器被配置成: 接收針對與指定時間相關聯的用戶設備的定位估計的請求; 在多個時間執行定位測量; 基於該定位測量,確定與該指定時間相關聯的該定位估計;以及 傳送包括所確定的定位估計的報告。
- 如請求項32所述的無線節點,其中該定位估計是經由對與該定位測量相關聯的定位測量資料的內插或外插來確定的。
- 如請求項32所述的無線節點,其中該無線節點對應於該用戶設備或基站。
- 一種網路元件,包括: 記憶體; 至少一個收發機;以及 至少一個處理器,通訊地耦接到該記憶體和該至少一個收發機,該至少一個處理器被配置成: 向無線節點傳送針對與指定時間相關聯的用戶設備的定位估計的請求;以及 基於該無線節點在多個時間執行的多個定位測量,從該無線節點接收包括針對該指定時間的該定位估計的報告。
- 如請求項35所述的網路元件,其中該定位估計是基於對與該定位測量相關聯的定位測量資料的內插或外插來確定的。
- 如請求項35所述的網路元件,其中該無線節點對應於該用戶設備或基站。
- 一種非暫態電腦可讀媒介,包含儲存在其上的指令,該指令用於使無線節點中的至少一個處理器: 接收針對與指定時間相關聯的用戶設備的定位估計的請求; 在多個時間執行定位測量; 基於該定位測量來確定與該指定時間相關聯的該定位估計;以及 傳送包括所確定的定位估計的報告。
- 如請求項38所述的非暫態電腦可讀媒介,其中該定位估計是經由對與該定位測量相關聯的定位測量資料的內插或外插來確定的。
- 如請求項38所述的非暫態電腦可讀媒介,其中該無線節點對應於該用戶設備或基站。
- 一種非暫態電腦可讀媒介,包含儲存在其上的指令,該指令用於使網路元件中的至少一個處理器: 向無線節點傳送針對與指定時間相關聯的用戶設備的定位估計的請求;以及 基於該無線節點在多個時間執行的多個定位測量,從該無線節點接收包括針對該指定時間的該定位估計的報告。
- 如請求項41所述的非暫態電腦可讀媒介,其中該定位估計是基於對與該定位測量相關聯的定位測量資料的內插或外插來確定的。
- 如請求項41所述的非暫態電腦可讀媒介,其中該無線節點對應於該用戶設備或基站。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063057264P | 2020-07-27 | 2020-07-27 | |
US63/057,264 | 2020-07-27 | ||
US17/122,407 US11924804B2 (en) | 2020-07-27 | 2020-12-15 | User equipment positioning estimate for specified time |
US17/122,407 | 2020-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202205886A true TW202205886A (zh) | 2022-02-01 |
Family
ID=79689592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110119534A TW202205886A (zh) | 2020-07-27 | 2021-05-28 | 針對指定時間的用戶設備定位估計 |
Country Status (8)
Country | Link |
---|---|
US (2) | US11924804B2 (zh) |
EP (1) | EP4189421A1 (zh) |
JP (1) | JP2023537672A (zh) |
KR (1) | KR20230041685A (zh) |
CN (1) | CN116134911A (zh) |
BR (1) | BR112023000446A2 (zh) |
TW (1) | TW202205886A (zh) |
WO (1) | WO2022026048A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022147800A1 (zh) | 2021-01-08 | 2022-07-14 | 华为技术有限公司 | 一种定位信息的传输方法和装置 |
US20230345204A1 (en) * | 2022-04-26 | 2023-10-26 | Qualcomm Incorporated | Scheduled positioning of target devices using mobile anchor devices |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8798639B2 (en) | 2007-01-17 | 2014-08-05 | Qualcomm Incorporated | Method and apparatus for using historic network information for determining approximate position |
KR101573374B1 (ko) | 2008-11-06 | 2015-12-01 | 삼성전자주식회사 | Supl을 이용한 단말기의 위치 결정 방법 및 시스템 |
US8798644B2 (en) | 2009-12-31 | 2014-08-05 | Qualcomm Incorporated | Systems and methods for determining the location of mobile devices independent of location fixing hardware |
EP2684388B1 (en) | 2011-03-07 | 2016-05-11 | Telefonaktiebolaget LM Ericsson (publ) | Methods and arrangements for handling positioning in a radio communication system |
WO2016129744A1 (ko) * | 2015-02-13 | 2016-08-18 | 엘지전자 주식회사 | 밀리미터 웨이브를 지원하는 무선 접속 시스템에서 단말의 위치 정보를 이용한 스캐닝 방법 및 이를 지원하는 장치 |
CN104821956B (zh) * | 2015-03-31 | 2019-01-18 | 百度在线网络技术(北京)有限公司 | 基于电子设备或应用的定位方法和装置 |
US11490354B2 (en) | 2019-01-11 | 2022-11-01 | Qualcomm Incorporated | Round-trip-time (RTT)-based positioning with listening nodes |
-
2020
- 2020-12-15 US US17/122,407 patent/US11924804B2/en active Active
-
2021
- 2021-05-27 WO PCT/US2021/034557 patent/WO2022026048A1/en active Application Filing
- 2021-05-27 JP JP2023503221A patent/JP2023537672A/ja active Pending
- 2021-05-27 EP EP21733875.5A patent/EP4189421A1/en active Pending
- 2021-05-27 KR KR1020237001297A patent/KR20230041685A/ko active Search and Examination
- 2021-05-27 CN CN202180060720.5A patent/CN116134911A/zh active Pending
- 2021-05-27 BR BR112023000446A patent/BR112023000446A2/pt unknown
- 2021-05-28 TW TW110119534A patent/TW202205886A/zh unknown
-
2024
- 2024-03-04 US US18/595,081 patent/US20240214982A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP4189421A1 (en) | 2023-06-07 |
US20240214982A1 (en) | 2024-06-27 |
WO2022026048A1 (en) | 2022-02-03 |
CN116134911A (zh) | 2023-05-16 |
US11924804B2 (en) | 2024-03-05 |
US20220030543A1 (en) | 2022-01-27 |
JP2023537672A (ja) | 2023-09-05 |
KR20230041685A (ko) | 2023-03-24 |
BR112023000446A2 (pt) | 2023-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20230062558A (ko) | 사이드링크 포지셔닝 | |
WO2022036585A1 (en) | Frequency hopping scheme with partial inter-hop bandwidth overlap | |
KR20220044499A (ko) | 수신 또는 송신 빔 잠금 정보의 보고 | |
TW202147889A (zh) | 減少定位狀態資訊中報告測量和傳送接收點識別符的負擔 | |
TW202232973A (zh) | 具有用於用戶設備與無線網路節點之間的鏈路的視線條件的位置輔助資料 | |
TW202234923A (zh) | 可重構智能表面輔助定位 | |
US20220039050A1 (en) | User equipment power consumption modeling | |
US20240214982A1 (en) | User equipment positioning estimate for specified time | |
KR20230062824A (ko) | 사용자 장비와 상이한 기지국 사이의 라운드-트립 시간 측정 절차와 연관된 기지국 측정 | |
KR20230087464A (ko) | 송신 수신 포인트와 연관된 다수의 포지셔닝 레퍼런스 신호 측정 어케이전들의 측정 정보를 갖는 측정 리포트 | |
CN117678245A (zh) | 侧链路辅助式定位估计规程 | |
CN116195220A (zh) | 用于定位的多个参考信号的通信的带宽部分配置 | |
TW202218386A (zh) | 在測量期間的頻率間的用於定位的探測參考信號 | |
TW202147870A (zh) | 減少定位狀態資訊(psi)報告中的時間戳的開銷 | |
CN117044132A (zh) | 用于定位的测量时段制定的方法和装置 | |
KR20240004348A (ko) | 타이밍 에러 그룹 (teg) 보고를 위한 시그널링 상세 | |
KR20230152000A (ko) | 재구성가능한 지능형 표면 보조형 포지셔닝을 위한사이드링크 기준 신호 | |
KR20230165222A (ko) | 포지셔닝 측정들의 배치 리포팅을 위한 시그널링 세부사항들 | |
TW202203666A (zh) | 傳達與用於定位的參考訊號相關聯的峰值幅度資料 | |
CN116746237A (zh) | 用于定位测量时机的参考信号的方差指示 | |
KR20230084498A (ko) | 채널 상태 정보 요청 필드에 기초한 포지셔닝 관련 액션의 트리거 | |
CN116848901A (zh) | 用于定位配置的变化参考信号 | |
CN116940858A (zh) | 可重配置智能表面的探通参考信号反射的测量 | |
KR20230043826A (ko) | 비주기적 또는 반주기적 포지셔닝 레퍼런스 신호 절차의 트리거링 | |
KR20230054829A (ko) | 추적 기준 신호들과 연관된 공간 측정들 |