TW202201887A - 諧振功率轉換器 - Google Patents

諧振功率轉換器 Download PDF

Info

Publication number
TW202201887A
TW202201887A TW110119224A TW110119224A TW202201887A TW 202201887 A TW202201887 A TW 202201887A TW 110119224 A TW110119224 A TW 110119224A TW 110119224 A TW110119224 A TW 110119224A TW 202201887 A TW202201887 A TW 202201887A
Authority
TW
Taiwan
Prior art keywords
bridge
inductor
switch
power converter
capacitor
Prior art date
Application number
TW110119224A
Other languages
English (en)
Inventor
塞德里克 柯隆那
Original Assignee
法商3D波拉斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商3D波拉斯公司 filed Critical 法商3D波拉斯公司
Publication of TW202201887A publication Critical patent/TW202201887A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

本發明涉及一種具有並聯諧振電路的功率轉換器(100),包括反相器(101)、諧振電路(LC)、包括初級電路(2)及次級電路(3)的變壓器(T1 )、用於反相器(101)的控制裝置(4),該反相器(101)與該諧振電路(LC)連接,該諧振電路(LC)透過該變壓器(T1 )連接到輸出負載(Rout ),該功率轉換器的特徵在於,該反相器(101)包括第一半橋(D1)及與該第一半橋(D1)並聯的第二半橋(D2)、該第一半橋(D1)及該諧振電路(LC)之間的第一電感器(Lc1 )、該第二半橋(D2)及該諧振電路(LC)之間的第二電感器(Lc2 ),且該第一及第二電感器(Lc1 、Lc2 )具有相同的電感且以相反的方向互相耦合。

Description

諧振功率轉換器
本發明的領域是諧振功率轉換器。
直流電壓的轉換用於許多技術領域,從設備需要轉換電源電壓,例如將攜帶式電腦電池提供的電壓轉換到處理器,到在更關鍵的環境中移動的應用,例如太空產業。本發明特別適用於太空產業領域,但也可用於在被供電的負載或輸入電壓方面須要靈活性的其他領域,特別是汽車領域。
一般來說,功率轉換器的輸出的功能是提供目標操作所需的電壓及電流。
諧振轉換器是針對給定的輸入電壓及輸出電流範圍而設計。在傳統的諧振結構中,確保了在諧振頻率或接近諧振頻率下操作。在這些條件下且為了獲得足夠高階的選擇性,結構中的電流呈正弦或準正弦形式。
輸入電壓或負載經常透過改變諧振轉換器電源的操作頻率而變化。現在,改變操作頻率會影響有效功率及無效功率之間的比率,並且不允許在諧振轉換器的整個操作範圍內優化輸出。
改變諧振轉換器電源的操作頻率也使得難以改變諧振功率轉換器周圍的磁性元件及濾波器的尺寸。
此外,對於非常廣泛的操作範圍,難以確保在所有使用情況下的有效操作。
圖1顯示先前技術中已知的結構。傳統上,諧振功率轉換器1包括: -     由兩個開關Qi1、Qi2提供的反相器10; -     包括電感器Lr及電容器Cr的串聯諧振電路LC; -     變壓器T1,包括具有N1匝繞組的初級電路2及具有N2匝繞組的次級整流器電路3,其允許執行DC隔離功能; -     以及用於反相器10的控制裝置4。
反相器10在此允許直流(DC)輸入電壓Vin被截波且因此產生方波訊號。如果該方波訊號處於正確的頻率,即處於諧振頻率或接近Lr、Cr對的諧振頻率的頻率,則對於足夠高階的選擇性,電流可以被認為是純正弦的。然後電流流經變壓器T1,允許DC隔離,並透過次級整流器電路3傳輸到輸出負載Rout。
添加與變壓器T1並聯的電感器Lm,如圖1所示,允許分離兩個諧振。透過改變頻率在這兩個諧振之間操作,可以改變輸出負載Rout並適應輸入及輸出電壓的變化。
這些負載之間的差異越大,所需增益之間的差異就越大,且越需要改變頻率以掃描所需的輸出電壓範圍Vout。這有四個缺點。第一個缺點在於磁性元件,即電感器及變壓器,它們被設計用於精確的操作頻率且在操作頻率離開其操作區域的情況下會帶來損失。
第二個缺點在於動態範圍。掃描大頻率範圍涉及降低系統的動態範圍。
電池中無效功率的增加會導致電流增加(轉換器及電源之間的能量交換),從而導致損耗增加。
最後,改變操作頻率會導致輸出電流不連續,增加傳輸到次級的電流值,從而增加損耗。
本發明旨在透過提出一種創新的串並聯諧振功率轉換器結構來克服上述所有或部分問題,該結構能夠將其使用延伸到更寬的操作範圍同時保證良好的性能。因此,本發明提供了一種能夠針對所有負載操作並且具有高動態範圍的諧振功率轉換器。
為此,本發明涉及一種具有並聯諧振電路的功率轉換器,包括: -     反相器; -     諧振電路; -     包括初級電路及次級電路的變壓器; -     用於該反相器的控制裝置,該反相器與該諧振電路連接,該諧振電路透過該變壓器連接到輸出負載; 其特徵在於,該反相器包括: -     第一半橋及與該第一半橋並聯的第二半橋; -     在該第一半橋及該諧振電路之間的第一電感器; -     在該第二半橋及該諧振電路之間的第二電感器; 並且其中該第一及第二電感器具有相同的電感且以相反的方向互相耦合。
根據本發明的一個實施例,該第二半橋與該第一半橋係為反相(相位相反),以在低負載下操作。
根據本發明的一個實施例,流經該第一電感器及該第二電感器的電流Ic 為:
Figure 02_image001
, 其中Vin 為該第一半橋及該第二半橋的端子的輸入電壓,Lc 是該第一及第二電感器的電感值,fdec 為該諧振電路的截波頻率,以在低負載下操作。
根據本發明的一個實施例,該第一半橋包括第一開關及第二開關,該第二半橋包括第三開關及第四開關,其中該第一半橋及該第二半橋被配置為承載電流並產生電壓,該第一半橋及該第二半橋的控制裝置用於將電流相對於電壓延遲,以獲得軟性切換。
根據本發明的一個實施例,空滯時間(dead time)tm 定義為對具有電容C1的第一電容器、具有電容C2的第二電容器、具有電容C3的第三電容器、具有電容C4的第四電容器進行放電以及用於對該第一開關、該第二開關、該第三開關及該第四開關進行重置的時間:
Figure 02_image003
, 其中COSS 是該第一、第二、第三及第四開關的輸出電容。
根據本發明的一個實施例,該諧振電路是LC電路。
根據本發明的一個實施例,該諧振電路是LLC電路。
根據本發明的一個實施例,該第二半橋與該第一半橋係為同相,以在滿載下操作。
為了清楚起見,相同的元件將在不同的圖中具有相同的參考符號。
在本說明書中,用語「並聯」是指不屬於同一支路的元件按照它們具有相同極性的末端分組並且同時操作。用語「串聯」是指元件屬於同一電流支路並連續操作。用語「反並聯」是指元件彼此並聯導向但承載相反方向的電流。
上面呈現的圖1傳統上地顯示從先前技術已知的功率轉換器結構1。
圖2示意性地顯示根據本發明的功率轉換器結構100。與先前技術一樣,功率轉換器100包括: -     能夠對輸入電壓Vin 進行截波從而產生方波訊號的反相器101; -     串聯諧振電路LC,包括電感器Lr 及電容器Cr ,該串聯諧振電路LC與反相器101連接; -     變壓器T1 ,包括具有N1匝繞組的初級電路2及具有N2、N3匝繞組的次級整流器電路3,其允許執行DC隔離功能; -     以及用於反相器101的控制裝置4。
與先前技術不同,反相器101由四個開關Q1 、Q2 、Q3 、Q4 所提供。開關Q1 、Q2 形成第一半橋D1,以及開關Q3 、Q4 形成第二半橋D2。第一半橋D1與第二半橋D2並聯。第一電感器Lc1 與第一半橋D1串聯並使第一半橋D1與諧振電路LC連接。第二電感器Lc2 與第二半橋D2串聯並使第二半橋D2與諧振電路LC連接。以非限制性的方式,開關Q1 、Q2 、Q3 、Q4 可為電晶體,如圖2所示。
為了有效地管理傳輸到輸出負載Rout 的電流,第一電感器Lc1 及第二電感器Lc2 具有相同的電感值Lc 且以相反方向互相耦合。也就是說,第一電感器Lc1 與第二電感器Lc2 並聯,且第二電感器Lc2 承載與流經第一電感器Lc1 的電流相反方向的電流。因此可以理解,第一電感器Lc1 及第二電感器Lc2 是在同一個磁性電路中實現的,也就是說第一電感器Lc1 及第二電感器Lc2 承載著由流經第一電感器Lc1 及第二電感器Lc2 的有正負號的電流總和產生的相同通量。
因此,在滿載操作期間,第一半橋D1與第二半橋D2係為同相且第一電感器Lc1 及第二電感器Lc2 對於功率轉換器結構100是不可見的。這是因為第一電感器Lc1 及第二電感器Lc2 中的電流相反,導致第一電感器Lc1 及第二電感器Lc2 中產生的通量為零,因此第一電感器Lc1 及第二電感器Lc2 對功率轉換器100是不可見的。
反之,在低負載操作期間,第一半橋D1與第二半橋D2以反相操作且電流相反並相等。提供給負載的電流為零,其為電流的總和。相反的電流在第一電感器Lc1 及第二電感器Lc2 中產生最大通量並限制流經第一半橋D1及第二半橋D2之間的電流。該電流的振幅受電感值的限制,電感值的選擇是為了確保軟性切換,其效果如下所示。
控制裝置4負責上述兩種操作的管理並允許在所述的兩種類型操作之間進行中間操作。控制裝置4被配置為調整第一半橋D1及第二半橋D2之間的相位差,以便基於負載及輸入電壓來調整輸出電壓。例如,控制裝置4可以基於用於兩種類型操作之間的電流的線性管理模型來處理中間操作。為此,控制裝置4檢測反相器101的輸出端的電流或輸出電壓Vout ,並基於檢測到的電流控制反相器101的第一半橋D1及第二半橋D2。
這樣,功率轉換器100的輸出負載Rout 不再使用頻率的變化並因此透過從其諧振頻率去除功率轉換器100的操作頻率來管理,而是透過流經反相器101的第一半橋D1與第二半橋D2的電流之間觀察到的相移的變化來管理。然後,如上所述,功率轉換器100在所有可能的情況下,在確保有效操作的諧振頻率或接近諧振頻率的頻率下操作。
圖1中呈現的先前技術的另一個缺點是損失的管理。這是因為當增加電源的操作頻率且取消接近諧振頻率的操作時,部分流經諧振電路的電流不會傳輸到負載並產生無效功率。現在,離諧振頻率的操作越遠,開關中的損耗,尤其是磁性元件中的損耗越多。
與硬性切換相反,當開關中的電流或電壓為零或這兩個分量相反時,開關中的功率為零。由於沒有耗散功率,這種情況的優點是,開關中每次切換操作僅產生少量損耗。儲存在開關的雜散電容中的能量隨後流動,允許後者無損耗地開啟,這稱為軟性切換。相反地,當開關中的電流及電壓不為零時,會在開關中消耗功率。這稱為硬性切換。
當切換操作期間電壓為零時,本領域技術人員指的是零電壓切換(ZVS),同樣地,零電流切換是指電流為零時(ZCS)。通常,這種效應稱為軟性切換。
圖2所示的根據本發明的功率轉換器結構100相對於軟性切換具有優勢。原因是用於反相器101的控制裝置4被配置為將電流相對於電壓延遲,以獲得軟性切換。
通過對上述內容的延伸,由於根據本發明的功率轉換器結構100,可在電源的整個負載範圍內以軟性切換操作。這是一個優點,首先限制開關Q1 、Q2 、Q3 、Q4 中的損耗,從而帶來輸出的改善,其次限制由電源引起的電磁及電性干擾。以此方式,本發明允許減小安裝在功率轉換器100中的濾波器的尺寸。
此外,每個開關Q1 、Q2 、Q3 、Q4 可有與開關反並聯的二極體(Di1用於Q1 、Di2用於Q2 、Di3用於Q3 、Di4用於Q4 ),且可有與開關並聯的電容(C1用於Q1 、C2用於Q2 、C3用於Q3 、C4用於Q4 )。這些電容C1、C2、C3、C4可以是開關的雜散電容,也可以是如圖2所示添加的電容器的電容。這允許功率轉換器100以軟性切換(ZVS)甚至在空載下操作。
此外,功率轉換器100可配置兩個電晶體D5、D6,其位於次級整流電路3及輸出負載Rout 之間與次級整流電路3並聯。
圖3顯示了功率轉換器結構100的其他優點。圖3示意性地顯示了在空載操作的情況下根據本發明的功率轉換器100的結構的反相器101,其中第一電感器Lc1 及第二電感器Lc2 中的電流相反。更準確地說,圖3顯示了第一半橋D1與第二半橋D2並聯,其中第一半橋D1由與第一電感器Lc1 串聯的開關Q1 、Q2 組成,第二半橋D2由與第二電感器Lc2 串聯的開關Q3 、Q4 組成。
這樣一來,可測量第一電感器Lc1 及第二電感器Lc2 之間的電流Ic 。電流Ic 透過以下等式與第一電感器Lc1 的值、第二電感器Lc2 的值和輸入電壓Vin 直接相關:
Figure 02_image001
, 其中Lc 是第一電感器Lc1 及第二電感器Lc2 的電感值,Vin 是輸入電壓的值,fdec 是功率轉換器100的使用頻率或截波頻率。
當圖3所示的互相耦合的第一及第二電感器Lc1 、Lc2 中的電流為反相,該公式適用於空載操作。
此外,由於電流Ic 取決於第一電感器Lc1 的值及第二電感器Lc2 的電感值,因此它可以在電流範圍Icpkpk 內。基於功率轉換器100的操作,電流範圍Icpkpk 在電流Ic 的正規化值附近延伸。
根據本發明的功率轉換器100的結構的另一個優點是空滯時間tm 的管理,這是實現軟性切換所需的時間。更準確地說,空滯時間tm 被定義為允許對電容C1、C2、C3、C4進行放電以及對開關Q1 、Q2 、Q3 、Q4 進行重置的最短時間。原因是根據本發明的功率轉換器100允許空滯時間tm 獨立於輸入電壓Vin ,這簡化了開關Q1 、Q2 、Q3 、Q4 的控制。因此,可根據開關Q1 、Q2 、Q3 、Q4 的輸出電容COSS 為所有操作定義空滯時間tm 為:
Figure 02_image003
, 其中空滯時間tm 可解釋為由於在低負載或空載下操作而可固定的最長時間。在重負載下操作時,可將其降低。
圖4示意性地顯示功率轉換器結構100的變化體。如圖2所示,功率轉換器100包括: -     反相器101,由四個開關Q1 、Q2 、Q3 、Q4 所提供,開關Q1 、Q2 形成第一半橋D1,開關Q3 、Q4 形成第二半橋D2,能夠對輸入電壓Vin 進行截波從而產生方波訊號; -     連接到反相器101的串聯諧振電路; -     變壓器T1 ,包括具有N1匝繞組的初級電路2及具有N2、N3匝繞組的次級整流器電路3,其允許執行DC隔離功能; -     以及用於反相器101的控制裝置4。
功率轉換器100的這種結構變化體增加了與變壓器T1 並聯的電感器Lm ,其允許分離兩個諧振。使用與變壓器T1 並聯的電感器Lm 允許減小變壓器T1 中產生的磁性電感。然後,串聯諧振電路變成具有兩個電感器Lr 、Lm 以及電容器Cr 的LLC 電路。
互相耦合的第一及第二電感器Lc1 、Lc2 允許限制第一半橋D1及第二半橋D2在反相時彼此交換的電流,並允許增加第一半橋D1及第二半橋D2在同相位時的電流而不影響電源轉換器。
有利地,電源在接近諧振頻率下操作。
串聯諧振電路的電容器Cr 可分為第一次級電容Cr1 及第二次級電容Cr2 ,如圖5所示,每個電容為電容器Cr 的初始電容的一半。第一次級電容Cr1 設置於第一半橋D1與第一電感器Lc1 之間,同樣地,第二次級電容Cr2 設置於第二半橋D2與第二電感器Lc2 之間。這種配置使系統在控制上對非對稱不敏感。
1:諧振功率轉換器 2:初級電路 3:次級整流器電路 4:控制裝置 10:反相器 Vin:輸入電壓 Qi1:開關 Qi2:開關 LC:串聯諧振電路 Lr:電感器 Lm:電感器 Cr:電容器 T1:變壓器 Rout:輸出負載 Vout:輸出電壓 Lc :電流 fdec :截波頻率 tm :空滯時間 C1:電容 C2:電容 C3:電容 C4:電容 COSS :輸出電容 101:反相器 Lr :電感器 Cr :電容器 Q1 :開關 Q2 :開關 Q3 :開關 Q4 :開關 D1:第一半橋 D2:第一半橋 Lc1 :第一電感器 Lc2 :第二電感器 Lc :電感 Vout :輸出電壓 Rout :輸出負載 100:功率轉換器結構 Vin :輸入電壓 T1 :變壓器 Di1:二極體 Di2:二極體 Di3:二極體 Di4:二極體 D5:電晶體 D6:電晶體 Icpkpk :電流範圍
透過閱讀以示例方式給出的實施例的詳細描述,本發明將得到更好的理解且其他優點將變得顯而易見,所述描述由圖式說明,其中: [圖1]示意性地顯示先前技術中已知的結構; [圖2]示意性地顯示根據本發明的功率轉換器結構; [圖3]示意性地顯示根據本發明的功率轉換器結構的反相器; [圖4]示意性地顯示功率轉換器結構的一種變化體; [圖5]示意性地顯示功率轉換器結構的另一種變化體。
2:初級電路
3:次級整流器電路
4:控制裝置
100:功率轉換器結構
101:反相器
C1:電容
C2:電容
C3:電容
C4:電容
Cr :電容器
D1:第一半橋
D2:第一半橋
D5:電晶體
D6:電晶體
Di1:二極體
Di2:二極體
Di3:二極體
Di4:二極體
LC:串聯諧振電路
Lc1 :第一電感器
Lc2 :第二電感器
Lr :電感器
Q1 :開關
Q2 :開關
Q3 :開關
Q4 :開關
Rout :輸出負載
T1 :變壓器
Vin :輸入電壓
Vout :輸出電壓

Claims (7)

  1. 一種具有並聯諧振電路的功率轉換器(100),包括: 反相器(101); 諧振電路(LC); 包括初級電路(2)及次級電路(3)的變壓器(T1); 用於該反相器(101)的控制裝置(4),該反相器(101)與該諧振電路(LC)連接,該諧振電路(LC)透過該變壓器(T1)連接到輸出負載(Rout); 其特徵在於,該功率轉換器(100)包括與該變壓器(T1)並聯的電感器(Lm), 且該反相器(101)包括: 第一半橋(D1)及與該第一半橋(D1)並聯的第二半橋(D2); 在該第一半橋(D1)及該諧振電路(LC)之間的第一電感器(Lc1 ); 在該第二半橋(D2)及該諧振電路(LC)之間的第二電感器(Lc2 ); 並且該第一電感器及該第二電感器(Lc1 、Lc2 )具有相同的電感且以相反的方向互相耦合。
  2. 如請求項1所述的功率轉換器(100),其中該第二半橋(D2)與該第一半橋(D1)係為反相,以在低負載下操作,且其中流經該第一電感器及該第二電感器(Lc1 、Lc2 )的電流Ic 為:
    Figure 03_image001
    , 其中Vin為該第一半橋(D1)及該第二半橋(D2)的端子的輸入電壓,Lc 為該第一電感器及該第二電感器(Lc1 、Lc2 )的電感值,以及fdec 為該諧振電路(LC)的截波頻率,以在低負載下操作。
  3. 如請求項2所述的功率轉換器(100),其中該第一半橋(D1)包括第一開關(Q1 )及第二開關(Q2 ),該第二半橋(D2)包括第三開關(Q3 )及第四開關(Q4 ),該第一半橋(D1)及該第二半橋(D2)被配置為承載電流並產生電壓,且用於該第一半橋(D1)及該第二半橋(D2)的該控制裝置(4)被配置為將該電流相對於該電壓延遲,以獲得軟性切換(ZVS)。
  4. 如請求項3所述的功率轉換器(100),其中該第一開關(Q1 )包括具有電容(C1)的第一電容器,該第二開關(Q2 )包括具有電容(C2)的第二電容器,該第三開關(Q3 )包括具有電容(C3)的第三電容器,該第四開關(Q4 )包括具有電容(C4)的第四電容器,其中空滯時間(tm )定義為對具有電容(C1)的該第一電容器、具有電容(C2)的該第二電容器、具有電容(C3)的該第三電容器、具有電容(C4)的該第四電容器進行放電以及對該第一開關(Q1 )、該第二開關(Q2 )、該第三開關(Q3 )及該第四開關(Q4 )進行重置的時間,該空滯時間tm 為:
    Figure 03_image003
    , 其中COSS 是該第一開關、該第二開關、該第三開關及該第四開關(Q1 、Q2 、Q3 、Q4 )的輸出電容值。
  5. 如請求項4所述的功率轉換器(100),其中該諧振電路為LC電路。
  6. 如請求項4所述的功率轉換器(100),其中該諧振電路為LLC電路。
  7. 如請求項1所述的功率轉換器(100),其中該第二半橋(D2)與該第一半橋(D1)係為同相,以在滿載下操作。
TW110119224A 2020-06-15 2021-05-27 諧振功率轉換器 TW202201887A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006217A FR3111491A1 (fr) 2020-06-15 2020-06-15 Convertisseur de puissance résonant
FR2006217 2020-06-15

Publications (1)

Publication Number Publication Date
TW202201887A true TW202201887A (zh) 2022-01-01

Family

ID=72885661

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110119224A TW202201887A (zh) 2020-06-15 2021-05-27 諧振功率轉換器

Country Status (9)

Country Link
US (1) US11594972B2 (zh)
EP (1) EP3926809A1 (zh)
JP (1) JP2021197904A (zh)
KR (1) KR20210155359A (zh)
CN (1) CN113809922A (zh)
BR (1) BR102021010726A2 (zh)
CA (1) CA3122390A1 (zh)
FR (1) FR3111491A1 (zh)
TW (1) TW202201887A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822432B (zh) * 2022-04-13 2023-11-11 立錡科技股份有限公司 功率轉換器及其控制方法
TWI826090B (zh) * 2022-04-19 2023-12-11 立錡科技股份有限公司 功率轉換器及其控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3796537B1 (en) * 2019-09-20 2022-04-20 Hitachi Energy Switzerland AG Dual active bridge converter cell with split energy transfer inductor for optimized current balancing in the medium frequency transformer (mft)
US11742764B2 (en) * 2021-02-04 2023-08-29 Maxim Integrated Products, Inc. Resonant power converters including coupled inductors
CN115664246B (zh) * 2022-12-12 2023-04-07 惠州市乐亿通科技有限公司 多相逆变电路及调制方法
CN117997084A (zh) * 2024-04-07 2024-05-07 广东高斯宝电气技术有限公司 一种用于提高llc拓扑效率的sr死区控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246599B1 (en) * 2000-08-25 2001-06-12 Delta Electronics, Inc. Constant frequency resonant inverters with a pair of resonant inductors
US6392902B1 (en) * 2000-08-31 2002-05-21 Delta Electronics, Inc. Soft-switched full-bridge converter
US10199947B2 (en) * 2017-04-05 2019-02-05 Futurewei Technologies, Inc. Isolated partial power processing power converters
CN107241020A (zh) * 2017-07-03 2017-10-10 杭州中恒电气股份有限公司 谐振直流/直流变换器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822432B (zh) * 2022-04-13 2023-11-11 立錡科技股份有限公司 功率轉換器及其控制方法
TWI826090B (zh) * 2022-04-19 2023-12-11 立錡科技股份有限公司 功率轉換器及其控制方法

Also Published As

Publication number Publication date
EP3926809A1 (fr) 2021-12-22
BR102021010726A2 (pt) 2021-12-21
FR3111491A1 (fr) 2021-12-17
CN113809922A (zh) 2021-12-17
CA3122390A1 (en) 2021-12-15
US11594972B2 (en) 2023-02-28
JP2021197904A (ja) 2021-12-27
KR20210155359A (ko) 2021-12-22
US20210391801A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
TW202201887A (zh) 諧振功率轉換器
US4257087A (en) DC-to-DC switching converter with zero input and output current ripple and integrated magnetics circuits
Li et al. A WBG based three phase 12.5 kW 500 kHz CLLC resonant converter with integrated PCB winding transformer
JP5434370B2 (ja) 共振型スイッチング電源装置
EP3905496B1 (en) Multi-level inverter and method for providing multi-level output voltage by utilizing the multi-level inverter
Erickson et al. Resonant conversion
US11894777B2 (en) Power conversion circuit and power conversion apparatus with same
WO2018159437A1 (ja) Dc-dcコンバータ
EP3734825B1 (en) Power supply multi-tapped autotransformer
CN107820669B (zh) 双桥dc/dc功率变换器
Rothmund et al. 10kV SiC-based bidirectional soft-switching single-phase AC/DC converter concept for medium-voltage Solid-State Transformers
JP2007068392A (ja) 複数の結合インダクタを有する多相バックコンバータ
TW202030963A (zh) 直流/直流變換系統
US20100123450A1 (en) Interleaved llc power converters and method of manufacture thereof
Etta et al. High-Performance Multi-MHz Capacitive Wireless Power Transfer System with an Auxiliary ZVS Circuit
KR20200024491A (ko) 센터탭과 연결된 클램프 회로를 이용한 새로운 위상천이 풀-브릿지 컨버터
JP6667826B2 (ja) 交流電源装置
CN111525803B (zh) 变换装置
JP2018014852A (ja) 絶縁型dc/dcコンバータ
US11973440B2 (en) Isolated DC/DC converter with secondary-side full bridge diode rectifier and asymmetrical auxiliary capacitor
US10075055B2 (en) Zero-voltage-switching scheme for phase shift converters
Kar et al. Design, analysis and experimental validation of a variable frequency silicon carbide-based resonant-converter for welding applications
Ran et al. An improved single‐phase Y‐source inverter with continuous input current and reduced effects of leakage inductances
Zhou et al. Modulation of a semi dual‐active‐bridge resonant converter with soft‐switching and zero backflow power
Lin Implementation of a ZVS three-level converter with series-connected transformers