TW202145629A - 燃料電池模組及燃料電池系統 - Google Patents

燃料電池模組及燃料電池系統 Download PDF

Info

Publication number
TW202145629A
TW202145629A TW110116172A TW110116172A TW202145629A TW 202145629 A TW202145629 A TW 202145629A TW 110116172 A TW110116172 A TW 110116172A TW 110116172 A TW110116172 A TW 110116172A TW 202145629 A TW202145629 A TW 202145629A
Authority
TW
Taiwan
Prior art keywords
fuel cell
distribution plate
fuel
passage
gas
Prior art date
Application number
TW110116172A
Other languages
English (en)
Other versions
TWI748920B (zh
Inventor
佐久間憲之
笹子佳孝
横山夏樹
杉本有俊
堤貴志
荒卷徹
Original Assignee
日商日立全球先端科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立全球先端科技股份有限公司 filed Critical 日商日立全球先端科技股份有限公司
Application granted granted Critical
Publication of TWI748920B publication Critical patent/TWI748920B/zh
Publication of TW202145629A publication Critical patent/TW202145629A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1286Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池模組(22,39),具備複數個燃料電池胞(1,29,40),與至少1個配流板(13,33,44)。各燃料電池胞(1,29,40),至少1個發電元件(7)。發電元件(7),具備:電解質層(5),與夾著電解質層(5)的第1電極(4)及第2電極(6)。配流板(13,33,44),劃定被供給至第1電極(4)及第2電極(6)的燃料氣體或氧化劑氣體之中至少一方的通路。配流板(13,33,44),具有第1面及第2面,具有從第1面貫通到第2面的配流板第1貫通孔(16)或供給側流道(45)。配流板第1貫通孔(16)或供給側流道(45),使通路分歧至第1面及第2面。

Description

燃料電池模組及燃料電池系統
本發明係關於燃料電池模組及燃料電池系統。
專利文獻1,記載著於燃料電池,使用具有溝的隔板。例如於[0057]段,記載著「使用100枚這樣的胞板,如圖11所示那樣,藉由間隔著板厚0.5mm,溝深分別夾著0.2mm的隔板而層積,以製作燃料電池堆疊的話,高度成為100.5mm。」。
專利文獻2,記載著使燃料電池上下反轉而堆疊。例如於[0025]段,記載著「關於微機電系統(MEMS)型燃料電池的層積之其他實施例顯示於圖8。在此實施例,基板/主構造體211’具有燃料電池電極/電解質堆疊213、單一或複數開口、溝或空孔220,與同樣的基板/主構造體211在界面219被結合,或機械性密封。這些以形成圖8所示的對稱構造的方式上下反轉設置,以單一的燃料導入部215對燃料電池堆疊的有效面積的2倍的區域供給燃料。」。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2004-206998號公報 [專利文獻2]日本特表2005-532661號公報
[發明所欲解決之課題]
然而,從前技術的課題在於要提高氣體的供給效率而且確保機械強度是困難的。
在專利文獻1,隔板的溝為直線的,所以氣流成為層流,會有流入開口部內的氣體變少,或者消耗的氣體的排除很少的課題。因此,有必要增多氣體流量,但氣體流量增多的話,會有對開口部的薄膜電解質造成影響而破損的課題。此外,使氣體多量流通也無法效率佳地消耗,對發電沒有貢獻的殘留氣體會多量排出,成為成本增加的重要原因。
在專利文獻2,於基板表面配置複數個燃料電池層積體的場合,有必要設複數個由基板表面通往背面的貫通孔,背面的加工面積變大。因此,基板自身的機械強度降低。此外,在基板的背面側平坦性受損。亦即,結合燃料電池胞的背面彼此的場合,會發生結合不充分的地方,而有結合的燃料電池胞剝離,或者氣體洩漏的課題。
本發明是為了解決這樣的課題而完成之發明,目的在於提供可提高氣體的供給效率同時確保機械強度之燃料電池模組以及燃料電池系統。 [供解決課題之手段]
相關於本發明之燃料電池模組之一例, 具備:複數燃料電池胞,與至少1個配流板; 各前述燃料電池胞,具備至少1個發電元件; 前述發電元件,具備:電解質層,與夾著前述電解質層的2個電極層; 前述配流板,劃定被供給至前述電極層的燃料氣體或氧化劑氣體之中至少一方的通路; 前述配流板,具有第1面及第2面; 前述配流板,具有從第1面貫通到第2面的貫通孔; 前述貫通孔,使前述通路分歧至前述第1面及第2面。
此外,相關於本發明之燃料電池系統之一例,具備: 前述燃料電池模組,及 供控制前述燃料電池模組的溫度之用的筐體。 [發明之效果]
根據相關於本發明的燃料電池模組及燃料電池系統,可以提高氣體的供給效率而且確保機械強度。
前述以外的課題、構成及效果,可藉由供實施以下發明之型態的說明而闡明。
以下,參照圖式說明本發明之實施型態。實施例,僅是供說明本發明之例示,為了說明的明確化,適當地進行了省略及簡化。本發明亦能以其他種種型態來實施。只要沒有特別限定,各構成要素可為單數亦可為複數。
於圖式所示的各構成要素的位置、大小、形狀、範圍等,為了更容易理解發明,亦有不表示實際的位置、大小、形狀、範圍等的場合。因此,本發明,不一定限定於圖式所揭示的位置、大小、形狀、範圍等。
具有同一或同等機能的構成要素有複數個的場合,亦有對同一符號賦予不同的下標而說明的情形。此外,沒有必要區別這些複數個構成要素的場合,亦有省略下標而說明的情形。
本發明係關於燃料電池模組及燃料電池系統。近年來,作為可以進行高能量變換,而且不會排出二氧化碳或氮氧化物等汙染物質的清潔能源,燃料電池受到矚目。燃料電池之中,固體電解質型燃料電池(Solid Oxide Fuel Cell,以下簡稱為SOFC),發電效率高,能夠以處理容易的氫、甲烷、一氧化碳等氣體為燃料。如此,SOFC與其他方式比較優點很多,作為節能性及環境性優良的熱電共生系統受到期待。
SOFC為以燃料極與空氣極夾住固體電解質的構造。電解質為隔壁,對燃料極側供給氫等燃料氣體,對空氣極供給空氣等氧化劑氣體。特別是矽型SOFC,有高效率發電、低溫工作、重量輕等很多優點,所以很有發展希望。
以下,作為氧化劑氣體之代表使用空氣,但亦可把空氣以外的氣體作為氧化劑氣體使用。
此外,在以下各圖,為了容易理解,亦有對非剖面的部分附加陰影表示的場合。 <實施型態1> 圖1係相關於本發明的實施型態1的燃料電池胞1之平面圖。圖2係沿著圖1的A-A線之剖面圖。為了說明的方便,把圖2的紙面上下方向作為燃料電池胞1的上下方向,但此方向,與燃料電池胞實際設置或者使用時的方向無關。
燃料電池胞1,具備單晶矽(Si)構成的半導體基板2,與被形成於半導體基板2上的第1絕緣膜3。第1絕緣膜3上面的一部分,由第1電極4覆蓋。第1電極4的上面,由電解質層5覆蓋,但第1電極4的一部分露出。於第1電極4與電解質膜5的上側被形成第2電極6。
燃料電池胞1具有複數個第1開口部8與1個第2開口部9。這些開口部,是貫通半導體基板2及第1絕緣膜3而設置的。第1開口部8,由上方看被第1電極4及第2電極6遮住而看不見。在圖1的平面圖以虛線表示。
第1開口部8,例如平面俯視為矩形狀,1邊長度約為0.2mm~5mm。第1開口部8在半導體基板2內被配置複數個。第2開口部9,例如平面俯視為矩形,1邊長度約為0.5μm~1mm。又,作為變形例,第2開口部9亦可被形成複數個小面積的開口部。此外,第1開口部8及第2開口部9的形狀,不限於圖示者,例如亦可為圓形或多角形。
如圖2所示,於半導體基板2上形成第1絕緣膜3。藉由半導體基板2及第1絕緣膜3的內側區域被除去一部分,形成第1開口部8及第2開口部9。第1開口部8被形成複數個。
燃料電池胞1,至少具備1個發電元件7。以覆蓋複數個第1開口部8的方式,形成發電元件7的膜構造。膜構造,是由下起依序被形成第1電極4(電極層)、電解質膜5、第2電極6(電極層)的層積體。如此,發電元件7,具備:電解質層5,與夾著電解質層5的2個電極層。這2個電極層,為接觸氣體的電極層,也被成為氣體電極層。
又,此發電元件7藉由覆蓋複數第1開口部8,隔開該第1開口部8上下的空間。藉此,以上下的氣體不混合的方式遮蔽。
對此,第2開口部9,為通過氣體之用的貫通孔。亦即,氣體可以由第2開口部9的上面側往下面側流通,或者反方向流通。
半導體基板2,例如為<100>的結晶方位所構成的矽基板,具有400μm以上的厚度。第1開口部8及第2開口部9,於下面側藉由光蝕刻法進行圖案化,其次藉由乾蝕刻或濕蝕刻除去一部份而形成。乾蝕刻,可藉由氟系氣體進行。濕蝕刻,可藉由KOH(氫氧化鉀)溶液或TMAH(四甲基醯胺)溶液來進行。
亦即,在第1開口部8的下面側,露出第1電極4。此外,發電元件7的第1電極4及第2電極6,一方成為陽極電極,另一方成為陰極電極,分別與外部連接。藉此,燃料電池胞1發電,把電力供給至外部。
圖3係相關於本發明的實施型態1的緩衝材10的平面圖。圖4係沿著圖3的A-A線之剖面圖。緩衝材10的外形尺寸,與燃料電池胞1同等,或者稍微大些。
緩衝材10,具有複數個第1貫通孔11,與1個第2貫通孔12。由上方觀察時,第1貫通孔11的開口面積,比第2貫通孔12的開口面積還大。燃料電池胞1及緩衝材10,上下重疊配置。1個第1貫通孔11與複數個第1開口部8連通。第1貫通孔11,連第1開口部8的一部分也不阻塞到的方式配置。第2貫通孔12,設於與燃料電池胞1的第2開口部9幾乎相同的區域。
第1貫通孔11及第2貫通孔12,劃定被供給至第1電極4或第2電極6的燃料氣體或空氣的通路。
緩衝材10,以具有500℃以上的耐熱性為適宜。此外,緩衝材10,在由上下方向被施加壓力的場合,沿著壓緊的形狀變形為適宜。如此一來,緩和被施加於燃料電池胞1的壓力。
又,緩衝材10的厚度例如為1mm以下。此外,在本實施型態,以避開緩衝材10的中央部分的方式設複數個第1貫通孔11,所以緩衝材10的中央部分殘留下柱(厚的區域),可以維持機械強度。
圖5係相關於本發明的實施型態1的配流板13的平面圖。圖6係沿著圖5的A-A線之剖面圖。圖7係沿著圖5的B-B線之剖面圖。於圖5,在高度(上下方向的位置)不同的面賦予不同的陰影。
於配流板13的內部,被形成上側流道14、下側流道15、及配流板第1貫通孔16。配流板13具有上面(第1面)及下面(第2面),配流板第1貫通孔16,由上面到下面貫通配流板13。
此外,配流板第1貫通孔16,連接而連通一部分的上側流道14,與一部分的下側流道15。在此,配流板第1貫通孔16,可以是由上側流道14、下側流道15、與連接上側流道14及下側流道15的流道所構成的流道。
配流板13的外形尺寸,與燃料電池胞1幾乎同等。此外,上側流道14、下側流道15、及配流板第1貫通孔16,以氣體擴散於水平方向的方式配置。
在圖6所示的剖面,於一部分區域被形成上側流道14及下側流道15雙方,這些作為配流板第1貫通孔16被連接。另一方面,在圖7所示的剖面,交互被配置僅被形成上側流道14的區域,與僅被形成下側流道15的區域。此外,在圖7所示的剖面,存在著上側流道14及下側流道15均未被配置的柱(厚的區域)。
藉由這樣的配流板13的構成,到達配流板13的氣體,在配流板13內部3次元地流通於平面方向及上下方向。此時,以氣體分散或者收聚的方式,構成上側流道14、下側流道15及配流板第1貫通孔16(稍後用圖10等來詳細說明)。
如此,於配流板13氣體的通路被構成為配流板第1貫通孔16,所以配流板13自身成為貫通孔的周壁,通路的強度高。
配流板13,例如為<100>的結晶方位所構成的矽基板,具有約400μm的厚度。又,上側流道14與下側流道15,及配流板第1貫通孔16,藉由光蝕刻法進行圖案化,其次藉由乾蝕刻或濕蝕刻除去一部份而形成。乾蝕刻,可藉由氟系氣體進行。濕蝕刻,可藉由KOH(氫氧化鉀)溶液或TMAH(四甲基醯胺)溶液來進行。
矽基板的熱傳導優異,對於燃料電池模組的溫度維持是適宜的。又,配流板13,亦可使用陶瓷。亦即,如圖5所示,配流板13由矽或陶瓷構成。
配流板13使用矽的場合,配流板13的熱膨脹率與半導體基板2的熱膨脹率相同,所以可以避免伴隨著溫度變化的燃料電池模組的應變。此外,陶瓷的熱膨脹率接近於矽的熱膨脹率,所以配流板13使用陶瓷的場合也可以得到同樣的效果。
圖8係相關於本發明的實施型態1的支撐基板17的平面圖。圖9係沿著圖8的A-A線之剖面圖。支撐基板17,被形成成為燃料氣體或空氣的流道的溝18。在本實施例,溝18為空氣的流道。於支撐基板17的內部,設有與緩衝材10相接的柱19(厚的區域)。
於支撐基板17,設有空氣流道20及燃料氣體流道21。空氣流道20,例如開口於側面,與溝18連通。燃料氣體流道21,與溝18為遮蔽著,開口於支撐基板17的側面及上面。支撐基板17的外形尺寸,例如可以比燃料電池胞1、緩衝材10、配流板13之任一還大。
支撐基板17,關連於圖10如稍後所述,與緩衝材10重疊使用,支撐緩衝材10。此時,使緩衝材10由圖3所示的狀態左右反轉的話(亦即繞著圖3的軸X旋轉180度的話),以支撐基板17的溝18與緩衝材10的第1貫通孔11重疊而連通,支撐基板17的燃料氣體流道21與緩衝材10的第2貫通孔12重疊而連通的方式配置。
圖10係相關於本發明的實施型態1的燃料電池模組22的剖面圖。如圖10所示,燃料電池模組22,具備複數個燃料電池胞1(1a,1b),與至少1個配流板(在圖10之例為1個配流板13)。此外,燃料電池模組22,具備分別被配置在燃料電池胞1a,1b與配流板13之間的緩衝材10(10a,10b,10c,10d)。此外,燃料電池模組22,具備分別由上下方向外側支撐緩衝材10a,10d的支撐基板17(17a,17b)。又,緩衝材及支撐基板不是必須的,亦可省略這些的一部分或是全部。
燃料電池模組22,例如,由下起依序重疊以下各構件而構成。 ‐支撐基板17(17b) ‐左右反轉(亦即繞圖3之軸X旋轉180度)之緩衝材10(10d) ‐左右反轉(亦即繞圖1之軸X旋轉180度)之燃料電池胞1(1b) ‐左右反轉(亦即繞圖3之軸X旋轉180度)之緩衝材10(10c) ‐配流板13 ‐緩衝材10(10b) ‐燃料電池胞1(1a) ‐緩衝材10(10a) ‐左右反轉(亦即繞圖8之軸X旋轉180度)之支撐基板17(17a)
如此,於燃料電池模組22,燃料電池胞1被堆疊2枚。
又,於支撐基板17a,17b,藉由未圖示的加壓機構施加壓力23。藉此,被配置於各層間的緩衝材10變形,防止燃料氣體及空氣洩漏。支撐基板17a,17b的空氣流道20及燃料氣體流道21,與外部的氣體配管連結,成為可使燃料氣體及空氣被送氣及排氣。
各緩衝材10,與配流板13及燃料電池胞1之至少一方相接。藉由這樣的構成,緩和對配流板13及燃料電池胞1的壓力23的影響。又,緩衝材10,也可以是與配流板13及燃料電池胞1都不相接的構成(例如緩衝材10、配流板13及燃料電池胞1之間配置其他的層亦可)。
其次,說明燃料氣體及空氣的流動。各氣體的流動,可由圖10之箭頭,與圖1~圖9所示的各構件的構造來得知,僅供參考補充說明如下。
首先,燃料氣體,由上側的支撐基板17a的燃料氣體流道21進入,依序通過緩衝材10a的第2貫通孔12、燃料電池胞1a的第2開口部9、緩衝材10b的第2貫通孔12,到達配流板13的上側流道14。
如此,燃料電池胞1,劃定被供給至第1電極4的燃料氣體流通的通路,此外,配流板13,劃定被供給至第1電極4的燃料氣體流通的通路。燃料電池胞1的通路,與配流板13的通路,連通而構成共通通路。又,作為變形例,此共通通路亦可為空氣流通的通路,亦可被構成為燃料氣體與空氣雙方的共通通路。
到達配流板13的燃料氣體,由上側流道14透過配流板第1貫通孔16上下分歧。分歧至上側的燃料氣體,透過配流板13上側的緩衝材10b的第1貫通孔11,與上側的燃料電池胞1a的複數第1開口部8,供給至第1電極4。藉此,發電元件7發電。
分歧至配流板13的下側的燃料氣體,透過配流板13下側的緩衝材10c的第1貫通孔11,與下側的燃料電池胞1b的複數第1開口部8,供給至第1電極4。藉此,發電元件7發電。
如此,配流板13,劃定被供給至第1電極4的燃料氣體的通路。又,作為變形例,配流板13亦可劃定空氣的通路,亦可劃定燃料氣體與空氣雙方的通路。
配流板第1貫通孔16,使燃料氣體的通路往上下(亦即上面及下面)分歧。藉此,燃料氣體往上下分散,所以有效率地到達複數燃料電池胞1的第1開口部8內,發電效率提高。
分歧的燃料氣體,透過緩衝材10b,10c合流於配流板13的中央部。合流的燃料氣體,再度藉由配流板13的配流板第1貫通孔16,往上下分歧,供給至其他發電元件7的第1電極4。藉此,其他的發電元件7發電。
其後,燃料氣體再度通過配流板第1貫通孔16而合流。合流的燃料氣體,依序通過緩衝材10c的第2貫通孔12、燃料電池胞1b的第2開口部9、緩衝材10d的第2貫通孔12,由下側的支撐基板17b排氣。
如此,1個配流板13,劃定關連於複數發電元件7的通路。藉此,簡化供形成通路之構造,可以有效率地利用空間。
關於空氣的流動,由上側的支撐基板17a的空氣流道20進入的空氣,通過支撐基板17a的溝18。溝18,是透過緩衝材10a的第1貫通孔11,朝向發電元件7開口的開口部,所以空氣被供給至發電元件7的第2電極6。如此進行,空氣有效率地被供給至發電元件7。又,作為變形例,上方所見之溝18的開口面積,也可以比上方所見的第1貫通孔11的開口面積還大。
其後,空氣,通過支撐基板17a的溝18,由圖10未出現的其他空氣流道20往外部排出。溝18內的空氣,在柱19分歧,有效率地被供給至複數發電元件7。
對於下側的支撐基板17b也同樣。又,在本實施型態,上下的支撐基板17a,17b的形狀為相同,但這些形狀亦可不同。例如,溝18的形狀亦可不同。
如此,燃料電池模組22具備配流板13,所以使氣體分歧而可提高供給效率,同時確保機械強度。
又,被形成於配流板13的各通路不是直線的,所以不會如專利文獻1那樣使氣體的流動變成層流。因此,與專利文獻1的構成相比,氣體的利用效率變高。
進而,於燃料電池胞1,設於半導體基板2的第2開口部9的數目很少(在圖1之例為單一個)。因此,與專利文獻2的圖8那樣的構成相比,可以維持基板自身的高的機械強度。
圖11顯示相關於實施型態1的燃料電池系統的概略圖。燃料電池系統,主要的構成具備:送出燃料氣體與空氣的送風機24、具有燃料氣體的流量調整機構的改質器25、調整空氣的壓力之壓力調整器26、供控制燃料電池模組22的溫度之用的筐體27、使排出的燃料氣體燃燒的燃燒器28。
筐體27,例如以使燃料電池模組22的溫度保持一定溫度的方式進行控制。此一定溫度,例如在300℃~600℃的範圍內。藉此,燃料電池模組22,高效率且安定地動作。
例如,作為燃料氣體可以使用甲烷。甲烷藉由送風機24送氣,在改質器25內調整流量與壓力。藉此,產生含氫的600℃程度的燃料氣體。燃料氣體被送至燃料電池模組22。
此外,空氣也藉由送風機24送氣,藉由壓力調整器26調整壓力與流量,被送至燃料電池模組22。又,利用改質器25的熱,空氣的溫度也為600℃程度。
燃料氣體及空氣的流量,在最大輸出時,例如有必要增大到數公升/分鐘。
改質後的燃料氣體與被加熱的空氣,通過配管被保持在約500℃的筐體27內,送至燃料電池模組22,為發電所消耗。由燃料電池模組22排出的燃料氣體及空氣,在燃燒器28合流在高溫下燃燒後,被排出。
又,亦可利用燃燒器28的排熱,進行進入燃料電池模組22前的氣體配管的加熱。
雖未圖示,但亦可針對燃料氣體及空氣,進行壓力及流量的反饋控制。例如,可以在各氣體配管,設壓力計及流量計,比較改質器25之壓力及流量,壓力調整器26之壓力及流量,同時進行反饋控制,調整各氣體配管內的壓力及流量。
在實施型態1,作為燃料氣體舉出甲烷,但只要是可以改質的氣體即可,沒有特別限定。例如,作為碳化氫燃料,可以使用天然氣、LP氣體(液化石油氣)、煤改質氣體、低級烴氣體(乙烷、乙烯、丙烷、丁烷),生質乙醇等。又,於改質器25的前段設氣化器,藉由氣化器由碳化氫燃料之原料氣體(或者液體)使水分氣化亦可。
燃料電池模組22,舉出使燃料電池胞1上下重疊之例,但在水平方向上排列亦可。在該場合,可以使氣體由下往上流通。
此外,如圖2所示那樣,燃料電池胞1具備感測器亦可。感測器,可以替代發電元件7之中的一個而配置。感測器,檢測燃料電池胞1的故障、溫度、濕度及壓力之中至少1項。根據這樣的構成,可以使燃料電池胞1及燃料電池模組22更安定地動作。
<實施型態2> 實施型態2,相關於使燃料電池胞及配流板的堆疊數比實施型態1更多,可以達成更大輸出的發電之燃料電池模組。
圖12係相關於本發明的實施型態2的燃料電池胞29之平面圖。燃料電池胞29的第1絕緣膜3、發電元件7、複數第1開口部8、及第2開口部9的構成,與實施型態1的燃料電池胞1相同。
與實施型態1不同之處,在於在燃料電池胞29被配置第3開口部30。第3開口部30,與第2開口部9同樣,上下貫通半導體基板2。第3開口部30,例如為矩形,1邊長度約為0.5μm~1mm。又,第3開口部30,亦可為小口徑的開口部,亦可被形成複數個。
圖13係相關於本發明的實施型態2的緩衝材31的平面圖。緩衝材31的第1貫通孔11及第2貫通孔12,與實施型態1的緩衝材10相同。
與實施型態1不同之處,在於在緩衝材31設有第3貫通孔32。使緩衝材31與燃料電池胞29重疊的場合,緩衝材31的第3貫通孔32與燃料電池胞29的第3開口部30重疊而連通。
緩衝材31的外形尺寸,與燃料電池胞29同等亦可,亦可為稍微大些的尺寸。此外,與實施型態1同樣,以避開緩衝材31的中央部分的方式設複數個第1貫通孔11,所以緩衝材31的中央部分殘留下柱(厚的區域),可以維持機械強度。
圖14係相關於本發明的實施型態2的配流板33的平面圖及剖面圖。剖面圖,是沿著平面圖的C-C線之剖面圖。與實施型態1同樣,於配流板33,設有上側流道14、下側流道15、及配流板第1貫通孔16。
與實施型態1不同之處,在於設有配流板第2貫通孔34、氣體排出流道35、迴轉用氣體流道36。使配流板33,與緩衝材31在適切的方向及位置重疊的場合,配流板33的配流板第2貫通孔34與緩衝材31的第3貫通孔32重疊而連通。
氣體排出流道35,具有上下貫通配流板33的貫通孔,連通至上側流道14及下側流道15。使緩衝材31重疊於配流板33的下側的場合,緩衝材31的第2貫通孔12與配流板33的氣體排出流道35連通,可以排出氣體。
氣體的流道,於圖14之平面圖被分割為紙面上下方向。例如,於圖14之平面圖,氣體由紙面左側進入,氣體流動於紙面上側,透過迴轉用氣體流道36到達紙面下側。接著,氣體流通於紙面下側而往氣體排出流道35流通。配流板33的外形尺寸,與燃料電池胞29幾乎同等。
圖15係相關於本發明的實施型態2的支撐基板37的平面圖。於支撐基板37,溝18、柱19、燃料氣體流道21,與實施型態1的支撐基板17相同。
與實施型態1不同之處,在於空氣流道20的配置不同。此外,於溝18的側面設有流道溝38。使支撐基板37與緩衝材31重疊的場合,支撐基板17的流道溝38與緩衝材31的第2貫通孔12連通。
支撐基板37的外形尺寸,比燃料電池胞29、緩衝材31、及配流板33還大。又,在圖15之例,空氣流道20僅設於1處,但亦可設於複數處。
圖16係相關於本發明的實施型態2的燃料電池模組39的剖面圖。燃料電池模組39,例如,藉由在支撐基板37(37b)之上,堆疊1個以上的構成單位而構成。
被配置於此下側的支撐基板37b,形成為使圖15的支撐基板37左右反轉(鏡面反轉)的形狀。此外,構成單位,是由下起依序重疊以下各構件而形成。 ‐左右反轉(亦即繞圖13之軸X旋轉180度)之緩衝材31 ‐左右反轉(亦即繞圖12之軸X旋轉180度)之燃料電池胞29 ‐左右反轉(亦即繞圖13之軸X旋轉180度)之緩衝材31 ‐配流板33 ‐緩衝材31 ‐燃料電池胞29 ‐緩衝材31 ‐左右反轉(亦即繞圖14之軸X旋轉180度)之配流板33
在圖16之例,為2個構成單位的反覆,但構成單位的數目為1個以上,可以任意變更。又,在最上段的構成單位,替代最上部的配流板33而配置支撐基板37(37a)。
又,於支撐基板37a,37b,藉由未圖示的加壓機構施加壓力23。藉此,被配置於各層間的緩衝材31變形,防止燃料氣體及空氣洩漏。支撐基板37a,37b的空氣流道20及燃料氣體流道21,與外部的氣體配管連結,成為可使燃料氣體及空氣被送氣及排氣。
其次,說明燃料氣體與空氣的流動。於圖16,實線箭頭表示燃料氣體的流動,虛線箭頭表示空氣的流動。各氣體的流動,可由圖16之箭頭,與圖12~圖15所示的各構件的構造來得知,僅供參考補充說明如下。
首先,燃料氣體,由上側的支撐基板37a的燃料氣體流道21進入,依序通過最上段的緩衝材31的第2貫通孔12、最上段的燃料電池胞29的第2開口部9、第2段的緩衝材31的第2貫通孔12,到達配流板33的上側流道14。
燃料氣體,由上側流道14透過配流板第1貫通孔16上下分歧,與實施型態1同樣,到達最上段及第2段的燃料電池胞29的第1開口部8內。如此進行,於最上段及第2段的燃料電池胞29,燃料氣體被供給至第1發電元件7。
其後,燃料氣體,與實施型態1同樣進行在配流板33的中央部合流,再度分歧。如此進行,燃料氣體被供給至最上段及第2段的燃料電池胞29的第2發電元件7。
其後,燃料氣體,透過配流板33的迴轉用氣體流道36進行合流。其後,燃料氣體被供給至最上段及第2段的燃料電池胞29的第3發電元件7,進而被供給至最上段及第2段的燃料電池胞29的第4發電元件7。
其後,燃料氣體,依序通過氣體排出流道35、緩衝材31的第2貫通孔12、第2段的燃料電池胞29的第2開口部9、緩衝材31的第2貫通孔12,往下通過。如此進行,燃料氣體由上側的構成單位排氣。
其後,燃料氣體流通於下側的構成單位內。如此進行,燃料氣體被供給至第3段及第4段的燃料電池胞29。其後,燃料氣體由下側的支撐基板37b的燃料氣體流道21排氣。
空氣,如圖16所示,由上側的支撐基板37a的空氣流道20進入,到達最上段的燃料電池胞29的發電元件7的第2電極6。其後,空氣於各段,通過緩衝材31的第3貫通孔32、燃料電池胞29的第3開口部30、配流板33的配流板第2貫通孔34等,被供給至第2段的燃料電池胞29的發電元件7的第2電極6。
其後,空氣同樣地於各段,通過緩衝材31的第3貫通孔32、燃料電池胞29的第3開口部30、配流板33的配流板第2貫通孔34等,由下側的支撐基板37b的空氣流道20排出。
如此,在實施型態2,於燃料電池模組39的內部,被構成複數個氣體的通路,特別是燃料氣體的通路,與空氣的通路是個別地構成的。此外,作為各氣體的通路,燃料電池胞29的通路,與配流板13的通路,連通而構成共通通路。此共通通路之中的一個是燃料氣體的通路,其他的共通通路為空氣的通路。藉此,成為燃料氣體與空氣被分離而流通。如此進行,避免燃料氣體與空氣的混合。
又,燃料電池系統,可以與實施型態1構成為同樣(圖11)。於燃料電池系統,藉由使燃料電池模組39保持一定溫度(例如300℃~600℃),可以達成高效率且安定的發電。
實施型態2的燃料電池模組39,可以把燃料電池胞29堆疊數十層,進行大輸出的發電。
又,燃料電池胞29及配流板33可以使用矽基板製作,所以可使包含緩衝材31的燃料電池模組39全體的厚度薄化。因此,可以縮小收容燃料電池模組39的筐體的容積,可提供小型且排熱效率良好的燃料電池系統。
此外,與實施型態1的變形例(圖2)同樣,藉著在燃料電池胞設感測器,例如在任一燃料電池胞的輸出降低的場合可以檢測到此情形,可以容易地進行交換。又,作為感測器例如把氣體感測器設於燃料電池胞亦可。如此進行的話,即使緩衝材或配流板發生不良情形發生氣體洩漏,也可以檢測到而容易交換,所以維修性優異。 <實施型態3> 圖17係相關於本發明的實施型態3的燃料電池胞40之平面圖。燃料電池胞40的第1絕緣膜3、發電元件7(第1電極、電解質層、第2電極)、及複數第1開口部8的構成,與實施型態1的燃料電池胞1相同。
與實施型態1不同之處,在於在燃料電池胞40,分別被配置複數第2開口部9及第3開口部30。
圖18係相關於本發明的實施型態3的緩衝材41的平面圖。與實施型態1的緩衝材10同樣的第1貫通孔11設有3個。此外,設有作為突出部設置流道溝42a的第4貫通孔42。進而,形成比第1貫通孔11及第4貫通孔42更小的第5貫通孔43。又,第5貫通孔43,亦可被形成複數個(在圖18之例被形成2個)。
圖19係相關於本發明的實施型態3的配流板44的平面圖及剖面圖。於配流板44,被形成供給側流道45及排出側流道46。供給側流道45及排出側流道46,在配流板44的內部相互分離,透過配流板44的外部及配流板第2貫通孔47連通。
此外,於配流板44,上下貫通配流板44的配流板第3貫通孔48設有複數個(在圖19之例為2個)。配流板第3貫通孔48,與供給側流道45及排出側流道46分離。
重疊燃料電池胞40與緩衝材41的場合,燃料電池胞40的第2開口部9之中的1個,與緩衝材41的流道溝42a重疊而連通,供給燃料氣體。又,燃料電池胞40的第3開口部30,分別與緩衝材41的第5貫通孔43重疊連通,供給空氣。
進而,緩衝材41與配流板44重疊。到達緩衝材41的第4貫通孔42的燃料氣體,往配流板44的供給側流道45流通,透過配流板第2貫通孔47被供給至4個發電元件7。又,如圖17所示,4個發電元件7分別區分配置,但如圖18及圖19所示,到達第4貫通孔42的氣體藉由配流板44分歧,分配至所有的發電元件7。
消耗的燃料氣體,於配流板44的排出側流道46合流。於配流板44的下側,緩衝材41左右反轉(亦即繞圖18的軸X旋轉180度)而重疊,由此緩衝材41的流道溝42a排出燃料氣體。
於緩衝材41,4個貫通孔(3個第1貫通孔11及1個第4貫通孔42)被區分設置,但藉由配流板44的供給側流道45使燃料氣體分歧,而對這4個貫通孔分別供給未被消耗的燃料氣體。
亦即,即使被配置於其上下的燃料電池胞的第1開口部8,也被供給未被消耗的燃料氣體,所以發電效率提高。又,藉由以燃料氣體與空氣不混合的方式以前述步驟把各層堆疊,可以與實施型態2同樣地構成燃料電池模組。
相關於實施型態3的燃料電池模組,如前所述於配流板44藉著分離供給側流道45與排出側流道46,提高燃料氣體的消耗效率。藉此提高每1層燃料電池胞的發電輸出。因此,例如可以削減燃料電池胞的層數,可以使燃料電池模組小型化。此外,可以高效率地利用燃料氣體。
<本發明之變形例> 本發明不限定於前述之實施型態及變形例,也包含其他種種變形例。例如,前述實施型態係為了使本發明易於了解而進行了詳細的說明,但並不限定於具備先前說明的全部構成。此外,把某個實施型態的構成的一部分置換至其他實施型態的構成亦為可能,此外,在某個實施型態的構成加上其他實施型態的構成亦為可能。此外,針對各實施型態的構成的一部分,進行其他構成的追加、削除、置換是可能的。
1(1a,1b),29,40:燃料電池胞 2:半導體基板 3:第1絕緣膜 4:第1電極(電極層) 5:電解質層 6:第2電極(電極層) 7:發電元件 8:第1開口部 9:第2開口部 10(10a,10b,10c,10d),31,41:緩衝材 11:第1貫通孔 12:第2貫通孔 13,33,44:配流板 14:上側流道 15:下側流道 16:配流板第1貫通孔 17(17a,17b),37(37a,37b):支撐基板 18:溝 19:柱 20:空氣流道 21:燃料氣體流道 22,39:燃料電池模組 23:壓力 24:送風機 25:改質器 26:壓力調整器 27:筐體 28:燃燒器 30:第3開口部 32:第3貫通孔 34:配流板第2貫通孔 35:氣體排出流道 36:迴轉用氣體流道 38,42a:流道溝 42:第4貫通孔 43:第5貫通孔 45:供給側流道 46:排出側流道 47:配流板第2貫通孔 48:配流板第3貫通孔
[圖1]係相關於實施型態1的燃料電池胞的平面圖。 [圖2]係沿著圖1的A-A線之剖面圖。 [圖3]係相關於實施型態1的緩衝材的平面圖。 [圖4]係沿著圖3的A-A線之剖面圖。 [圖5]係相關於實施型態1的配流板的平面圖。 [圖6]係沿著圖5的A-A線之剖面圖。 [圖7]係沿著圖5的B-B線之剖面圖。 [圖8]係相關於實施型態1的支撐基板的平面圖。 [圖9]係沿著圖8的A-A線之剖面圖。 [圖10]係相關於實施型態1的燃料電池模組的剖面圖。 [圖11]係相關於實施型態1的燃料電池系統的概略圖。 [圖12]係相關於實施型態2的燃料電池胞的平面圖。 [圖13]係相關於實施型態2的緩衝材的平面圖。 [圖14]係相關於實施型態2的配流板的平面圖及剖面圖。 [圖15]係相關於實施型態2的支撐基板的平面圖。 [圖16]係相關於實施型態2的燃料電池模組的剖面圖。 [圖17]係相關於實施型態3的燃料電池胞的平面圖。 [圖18]係相關於實施型態3的緩衝材的平面圖。 [圖19]係相關於實施型態3的配流板的平面圖及剖面圖。
1a,1b:燃料電池胞
10a,10b,10c,10d:緩衝材
13:配流板
17a,17b:支撐基板
20:空氣流道
21:燃料氣體流道
22:燃料電池模組
23:壓力

Claims (10)

  1. 一種燃料電池模組,具備:複數燃料電池胞,與至少1個配流板; 各前述燃料電池胞,具備至少1個發電元件; 前述發電元件,具備:電解質層,與夾著前述電解質層的2個電極層; 前述配流板,劃定被供給至前述電極層的燃料氣體或氧化劑氣體之中至少一方的通路; 前述配流板,具有第1面及第2面; 前述配流板,具有從第1面貫通到第2面的貫通孔; 前述貫通孔,使前述通路分歧至前述第1面及第2面。
  2. 如請求項1之燃料電池模組,其中 前述燃料電池模組,進而具備被配置在前述燃料電池胞與前述配流板之間的緩衝材; 前述緩衝材,具有劃定前述通路的貫通孔。
  3. 如請求項2之燃料電池模組,其中 前述燃料電池模組,進而具備支撐前述緩衝材的支撐基板; 前述支撐基板,具有朝向前述發電元件開口的開口部。
  4. 如請求項1之燃料電池模組,其中 前述配流板,由矽或陶瓷構成。
  5. 如請求項1之燃料電池模組,其中 1個前述配流板,劃定關連複數之前述發電元件的通路。
  6. 如請求項2之燃料電池模組,其中 前述緩衝材,與前述配流板或前述燃料電池胞之至少一方相接。
  7. 如請求項1之燃料電池模組,其中 前述燃料電池胞,具備檢測前述燃料電池胞的故障、溫度、濕度及壓力之中至少1項的感測器。
  8. 如請求項1之燃料電池模組,其中 前述燃料電池胞,劃定被供給至前述電極層的燃料氣體或氧化劑氣體之中至少一方流通的通路; 前述燃料電池胞的前述通路,與前述配流板的前述通路,連通構成共通通路。
  9. 如請求項8之燃料電池模組,其中 前述共通通路被構成複數條, 1條前述共通通路,為前述燃料氣體的通路, 其他的前述共通通路,為前述氧化劑氣體的通路, 藉此,前述燃料氣體與前述氧化劑氣體被分離流通。
  10. 一種燃料電池系統,具備: 請求項1之燃料電池模組,及 供控制前述燃料電池模組的溫度之用的筐體。
TW110116172A 2020-05-28 2021-05-05 燃料電池模組及燃料電池系統 TWI748920B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2020/021115 2020-05-28
PCT/JP2020/021115 WO2021240722A1 (ja) 2020-05-28 2020-05-28 燃料電池モジュールおよび燃料電池システム

Publications (2)

Publication Number Publication Date
TWI748920B TWI748920B (zh) 2021-12-01
TW202145629A true TW202145629A (zh) 2021-12-01

Family

ID=78723108

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110116172A TWI748920B (zh) 2020-05-28 2021-05-05 燃料電池模組及燃料電池系統

Country Status (2)

Country Link
TW (1) TWI748920B (zh)
WO (1) WO2021240722A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761059B2 (ja) * 1989-06-28 1998-06-04 三菱重工業株式会社 固体高分子電解質型燃料電池
JP4196374B2 (ja) * 2001-03-29 2008-12-17 パナソニック株式会社 高分子電解質型薄膜燃料電池およびその運転方法
FR2894075A1 (fr) * 2005-11-30 2007-06-01 St Microelectronics Sa Support de pile a combustible integree
KR102087475B1 (ko) * 2016-09-30 2020-03-10 주식회사 엘지화학 고체 산화물 연료전지
JP6645466B2 (ja) * 2017-03-24 2020-02-14 株式会社豊田中央研究所 固体酸化物形燃料電池
CN112106243B (zh) * 2018-03-30 2024-06-21 大阪瓦斯株式会社 电化学元件的金属支撑体、电化学元件、电化学模块、电化学装置、能源系统、固体氧化物型燃料电池和固体氧化物型电解单元

Also Published As

Publication number Publication date
TWI748920B (zh) 2021-12-01
WO2021240722A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
US6991868B2 (en) Fuel cell assembly
US8968956B2 (en) Fuel cell repeat unit and fuel cell stack
US7993785B2 (en) MEMS-based fuel cells with integrated catalytic fuel processor and method thereof
US9123946B2 (en) Fuel cell stack
US10777824B2 (en) Method and arrangement for distributing reactants into an electrolyzer cell
JP4396467B2 (ja) 反応装置
JP6263638B2 (ja) セルシステムに関する組立方法及び配置
US20090130533A1 (en) Fuel cell
US10056624B2 (en) Sealing arrangement of solid oxide cell stacks
TW202145629A (zh) 燃料電池模組及燃料電池系統
JP2011044361A (ja) 燃料電池モジュール
US9768480B2 (en) Stack for an electrical energy accumulator
JP2008117736A (ja) 平板型燃料電池
JP6407069B2 (ja) 燃料電池スタック
TWI779539B (zh) 燃料電池胞及燃料電池模組
WO2024122041A1 (ja) 燃料電池モジュール及びその製造方法
JP7244470B2 (ja) 燃料電池発電モジュール
CN219419115U (zh) 固体氧化物电池堆叠的模块构造
JP4994076B2 (ja) 燃料電池システム
JP5413585B2 (ja) 反応装置
WO2015097337A1 (en) Flow method and arrangement for fuel cell or electrolyzer cell stack
JP6489886B2 (ja) 燃料電池モジュール
KR20230082367A (ko) 시스템 부피 및 밀봉제 사용의 최소화가 가능한 sofc 스택용 분리판
JP2013077485A (ja) 燃料電池装置