TW202137596A - Structure and method of improving photoelectric conversion efficiency of perovskite solar cell by mixed agins2 and co - Google Patents

Structure and method of improving photoelectric conversion efficiency of perovskite solar cell by mixed agins2 and co Download PDF

Info

Publication number
TW202137596A
TW202137596A TW109109677A TW109109677A TW202137596A TW 202137596 A TW202137596 A TW 202137596A TW 109109677 A TW109109677 A TW 109109677A TW 109109677 A TW109109677 A TW 109109677A TW 202137596 A TW202137596 A TW 202137596A
Authority
TW
Taiwan
Prior art keywords
layer
transport layer
mol
hole transport
perovskite
Prior art date
Application number
TW109109677A
Other languages
Chinese (zh)
Other versions
TWI764117B (en
Inventor
歐珍方
吳宗祐
洪守澎
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW109109677A priority Critical patent/TWI764117B/en
Publication of TW202137596A publication Critical patent/TW202137596A/en
Application granted granted Critical
Publication of TWI764117B publication Critical patent/TWI764117B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention provides a structure and a method for improving the photoelectric conversion efficiency of a perovskite solar cell by mixing AgInS2 and Co, mainly by infiltrating the active layer with a silver indium sulfur quantum dot (AgInS2 at a ratio of 0.15 mg / mL)., Can increase the internal coverage of perovskite solar cells, reduce light absorption loss, and optimize the surface grain gap between each layer of the perovskite solar cells can be tight; and in the hole transport layer (1% mol% Co: NiOx) By doping cobalt with 1% mol% (mol%) in nickel oxide (1% mol% Co: NiOx), the carrier mobility of each layer of material can be greatly improved, and the electron hole can be reduced. Combine the probability, and then achieve the structure to improve the photoelectric conversion efficiency of perovskite solar cells.

Description

混摻AgInS2及Co提升鈣鈦礦太陽能電池光電轉換效率之結構及其方法 Structure and method for mixing AgInS2 and Co to improve photoelectric conversion efficiency of perovskite solar cell

本發明係有關一種混摻AgInS2及Co提升鈣鈦礦太陽能電池光電轉換效率之結構及其方法,尤其是一種增加鈣鈦礦太陽能電池之內部覆蓋率,減少光吸收損失,並優化該鈣鈦礦太陽能電池每層間的表面粒晶較緊密,以及提昇各層材料之載子遷移率,進而令本發明達到提升鈣鈦礦太陽能電池的光電轉換效率之結構者。 The invention relates to a structure and method for mixing AgInS2 and Co to improve the photoelectric conversion efficiency of a perovskite solar cell, and in particular to a method for increasing the internal coverage of the perovskite solar cell, reducing light absorption loss, and optimizing the perovskite The surface grains between each layer of the solar cell are relatively compact, and the carrier mobility of the materials of each layer is improved, thereby enabling the present invention to achieve a structure that improves the photoelectric conversion efficiency of the perovskite solar cell.

按,近幾年,鈣鈦礦太陽能電池的出現,有著高效率及低成本的優點,成為目前最具競爭力的太陽能材料之一,其元件光電轉換效率之好壞取決於鈣鈦礦主動層的表面晶粒形態、每層間的表面粗糙度及各層材料之載子遷移率等條件,以使傳統鈣鈦礦太陽能電池有許多進步的空間。 According to, in recent years, the emergence of perovskite solar cells has the advantages of high efficiency and low cost, and has become one of the most competitive solar materials at present. The photoelectric conversion efficiency of its components depends on the perovskite active layer. The surface grain morphology, the surface roughness between each layer and the carrier mobility of the materials of each layer, etc., so that the traditional perovskite solar cell has a lot of room for improvement.

是以,針對上述鈣鈦礦太陽能電池所存在之問題點,如何開發一種更具理想實用性之創新結構,實使用消費者所殷切企盼,亦係相關業者須努力研發突破之目標及方向。有鑑於此,創作人本於多年從事相關產品之製造開發與設計經驗,針對上述之目標,詳加設計與審慎評估後,終得一確具實用性之本發明。 Therefore, how to develop a more ideal and practical innovative structure in response to the problems of the above-mentioned perovskite solar cells is what consumers are eagerly awaiting, and it is also the goal and direction for the relevant industry to strive for breakthroughs in research and development. In view of this, the creator has been engaged in the manufacturing, development and design of related products for many years. Aiming at the above goals, after detailed design and careful evaluation, he finally has a practical invention.

即,本發明之主要目的,係在提供一種混摻AgInS2及Co提升鈣鈦礦太陽能電池光電轉換效率之結構及其方法;其所欲解決之問題點,係針對習知鈣鈦礦主動層的表面晶粒形態、每層間的表面粗糙度及各層材料之載子遷移率等條件有許多進步的空間等問題點加以改良突破; That is, the main purpose of the present invention is to provide a structure and method for mixing AgInS2 and Co to improve the photoelectric conversion efficiency of perovskite solar cells; the problem to be solved is for the conventional perovskite active layer There is a lot of room for improvement and breakthroughs in the surface grain morphology, the surface roughness between each layer and the carrier mobility of the materials of each layer.

而其解決問題之技術特點,主要係藉由包括一陽極層(ITO Glass),該陽極層係為一ITO玻璃材質製成;一電洞傳輸層(1%mol%Co:NiOx),係覆設於該陽極層之上端面,其中該電洞傳輸層係包含有一鈷(Co),該鈷(Co)以1%莫爾百分比(mol%)之比例摻雜於氧化鎳(1%mol%Co:NiOx)混合而成;一主動層(Perovskite:AgInS2),係覆設於該電洞傳輸層之上端面,該主動層係包含有複數鈣鈦礦(Perovskite)與複數銀銦硫量子點(AgInS2)混合而成;其中該銀銦硫量子點(AgInS2)是以0.15mg/mL之比例混滲於該主動層中;一電子傳輸層(PC61BM),係覆設於該主動層之上端面;一陰極層(Ag),該陰極層係覆設於該電子傳輸層之上端面,該陰極層係包含一銀質層(Ag)所構成; The technical features to solve the problem are mainly by including an anode layer (ITO Glass), the anode layer is made of an ITO glass material; a hole transport layer (1% mol% Co: NiOx), a coating It is set on the upper end surface of the anode layer, wherein the hole transport layer contains a cobalt (Co), and the cobalt (Co) is doped in nickel oxide (1% mol%) at a ratio of 1% mol% Co: NiOx) is mixed; an active layer (Perovskite: AgInS 2 ), which is laid on the upper end surface of the hole transport layer, the active layer contains a plurality of perovskite (Perovskite) and a plurality of silver indium sulfur quantum Dots (AgInS 2 ) are mixed; wherein the silver indium sulfur quantum dots (AgInS 2 ) are mixed in the active layer at a ratio of 0.15 mg/mL; an electron transport layer (PC61BM) is laid on the active layer The upper end surface of the layer; a cathode layer (Ag), the cathode layer is arranged on the upper end surface of the electron transport layer, and the cathode layer includes a silver layer (Ag);

藉此創新獨特設計,使本發明藉由銀銦硫量子點(AgInS2以0.15mg/mL之比例混滲於該主動層中,可增加鈣鈦礦太陽能電池之內部覆蓋率,減少光吸收損失,並優化該鈣鈦礦太陽能電池每層間的表面晶粒間隙能較緊密;以及在電洞傳輸層(1%mol%Co:NiOx)藉由鈷以1%莫爾百分比(mol%)之比例摻雜於氧化鎳(1%mol%Co:NiOx)中,可大幅提昇各層材料之載子遷移率,降低電子電洞之再結合機率,進而達到提升鈣鈦礦太陽能電池的光電轉換效率之結構者。 With this innovative and unique design, the present invention uses silver indium sulphur quantum dots (AgInS 2 at a ratio of 0.15 mg/mL) to be mixed in the active layer, which can increase the internal coverage of the perovskite solar cell and reduce the light absorption loss. , And optimize the surface grain gap between each layer of the perovskite solar cell to be tighter; and in the hole transport layer (1% mol% Co: NiOx), cobalt is used in the ratio of 1% mohr percentage (mol%) Doping in nickel oxide (1%mol%Co: NiOx) can greatly increase the carrier mobility of each layer of material, reduce the recombination rate of electron holes, and achieve a structure that improves the photoelectric conversion efficiency of perovskite solar cells By.

10:陽極層 10: Anode layer

21:氧化鎳 21: Nickel oxide

22:鈷 22: Cobalt

30:主動層 30: active layer

31:鈣鈦礦(Perovskite) 31: Perovskite

32:銀銦硫量子點(AgInS2) 32: Silver indium sulfur quantum dots (AgInS2)

40:電子傳輸層 40: electron transport layer

50:陰極層 50: Cathode layer

51:銀質層 51: Silver layer

第1圖:係本發明之剖視圖。 Figure 1: is a cross-sectional view of the present invention.

第2圖:係本實施例之外部量子效率圖。 Figure 2: The external quantum efficiency diagram of this embodiment.

第3圖:係本實施例之J-V曲線圖。 Figure 3: The J-V curve of this embodiment.

本發明提供一種混摻AgInS2及Co提升鈣鈦礦太陽能電池光電轉換效率之結構,包括: The invention provides a structure for mixing AgInS2 and Co to improve the photoelectric conversion efficiency of a perovskite solar cell, including:

一陽極層(ITO Glass)(10),該陽極層(10)係為一ITO玻璃材質製成; An anode layer (ITO Glass) (10), the anode layer (10) is made of an ITO glass material;

一電洞傳輸層(1%mol%Co:NiOx)(20),係覆設於該陽極層(10)之上端面,其中該電洞傳輸層(20)包含有一鈷(Co)(22),該鈷(Co)以1%莫爾百分比(mol%)之比例摻雜於一氧化鎳(1%mol%Co:NiOx)(21)混合而成; A hole transport layer (1% mol% Co: NiOx) (20) is arranged on the upper end surface of the anode layer (10), wherein the hole transport layer (20) contains a cobalt (Co) (22) , The cobalt (Co) is mixed with nickel monoxide (1% mol% Co: NiOx) (21) at a ratio of 1% mol% (mol%);

一主動層(Perovskite:AgInS2)(30),係覆設於該電洞傳輸層(20)之上端面,該主動層(30)係包含有複數鈣鈦礦(Perovskite)(31)與複數銀銦硫量子點(AgInS2)(32)混合而成;其中該銀銦硫量子點(AgInS2)(32)是以0.15mg/mL之比例混滲於該主動層(30)中; An active layer (Perovskite: AgInS 2 ) (30) is arranged on the upper end surface of the hole transport layer (20). The active layer (30) includes plural perovskite (Perovskite) (31) and plural Silver indium sulfur quantum dots (AgInS 2 ) (32) are mixed; wherein the silver indium sulfur quantum dots (AgInS 2 ) (32) is mixed in the active layer (30) at a ratio of 0.15 mg/mL;

一電子傳輸層(PC61BM)(40),係覆設於該主動層(30)之上端面; An electron transport layer (PC61BM) (40) is arranged on the upper end surface of the active layer (30);

一陰極層(Ag)(50),該陰極層(50)係覆設於該電子傳輸層(40)之上端面,該陰極層(50)係包含一銀質層(Ag)(51)所構成者。 A cathode layer (Ag) (50), the cathode layer (50) is arranged on the upper end surface of the electron transport layer (40), the cathode layer (50) is composed of a silver layer (Ag) (51) Constructor.

本發明還提供一種混摻AgInS2及Co提升鈣鈦礦太陽能電池 光電轉換效率之方法,包括: The invention also provides a perovskite solar cell doped with AgInS2 and Co Methods of photoelectric conversion efficiency include:

一陽極層(ITO Glass)(10),該陽極層(10)係為一ITO玻璃材質製成,經蝕刻後清洗備用,並放入紫外線光表面處理10分鐘; An anode layer (ITO Glass) (10), the anode layer (10) is made of an ITO glass material, is etched, cleaned for later use, and placed in ultraviolet light for surface treatment for 10 minutes;

一電洞傳輸層(1%mol%Co:NiOx)(20),係覆設於該陽極層(10)之上端面,該電洞傳輸層(20)係包含有一鈷(Co)(22),該鈷(Co)(22)以1%莫爾百分比(mol%)之比例摻雜於氧化鎳(1%mol%Co:NiOx)(21)混合而成混合液;所述之電洞傳輸層(20)覆設於該陽極層(10)之上端面覆設方式係藉由將上述混合液以5000rpm、30秒的轉速旋轉塗佈於陽極層(10)表面,塗佈完成後放置於加熱板上熱退火140℃、10分鐘,使電洞傳輸層(20)在陽極層(10)表面呈固化狀薄膜; A hole transport layer (1% mol% Co: NiOx) (20) is arranged on the upper end surface of the anode layer (10), and the hole transport layer (20) contains a cobalt (Co) (22) , The cobalt (Co) (22) is doped with nickel oxide (1% mol% Co: NiOx) (21) at a ratio of 1% mol% (mol%) to form a mixed solution; the hole transmission The layer (20) is covered on the anode layer (10). The end surface covering method is by rotating the above-mentioned mixed solution on the surface of the anode layer (10) at 5000 rpm and 30 seconds. After the coating is completed, it is placed on the surface Thermal annealing on the heating plate at 140°C for 10 minutes to make the hole transport layer (20) appear as a solidified film on the surface of the anode layer (10);

一主動層(Perovskite:AgInS2)(30),係覆設於該電洞傳輸層(20)之上端面,該主動層(30)係包含有複數鈣鈦礦(Perovskite)(31)與複數銀銦硫量子點(AgInS2)(32)混合而成;其中該銀銦硫量子點(AgInS2)(32)是以0.15mg/mL之比例混滲於該主動層(30)中;所述之主動層(Perovskite:AgInS2)(30)覆設於該電洞傳輸層(20)之上端面方式係藉由將上述混合液以二段轉速:(1000rpm、30秒;5000rpm、20秒)的轉速旋轉塗佈不同濃度比例之該複數鈣鈦礦(Perovskite)(31)與銀銦硫量子點(AgInS2)(32)為1:0.15混合液於該電洞傳輸層(20)表面,塗佈完成後放置在加熱板上熱退火120℃、15分鐘,使該主動層(30)在該電洞傳輸層(20)表面呈固化狀薄膜; An active layer (Perovskite: AgInS 2 ) (30) is arranged on the upper end surface of the hole transport layer (20). The active layer (30) includes plural perovskite (Perovskite) (31) and plural Silver indium sulfur quantum dots (AgInS 2 ) (32) are mixed; wherein the silver indium sulfur quantum dots (AgInS 2 ) (32) is mixed in the active layer (30) at a ratio of 0.15 mg/mL; The active layer (Perovskite: AgInS 2 ) (30) covered on the upper end surface of the hole transport layer (20) is by rotating the above-mentioned mixture at two speeds: (1000 rpm, 30 seconds; 5000 rpm, 20 seconds) ) Spin-coated a mixture of Perovskite (31) and silver indium sulphur quantum dots (AgInS 2 ) (32) with different concentration ratios at a speed of 1:0.15 on the surface of the hole transport layer (20) After the coating is completed, place it on a hot plate for thermal annealing at 120°C for 15 minutes, so that the active layer (30) is a cured film on the surface of the hole transport layer (20);

一電子傳輸層(PC61BM)(40),係覆設於該主動層(30)之上端面;其覆設方式係藉由將該電子傳輸層(40)混合液以1250rpm、45秒 的轉速旋轉塗佈於該主動層(30)表面,塗佈完成後無須熱退火,只須放置待其自然乾約40~60分鐘,使電子傳輸層(40)在主動層(30)表面呈固化狀薄膜; An electron transport layer (PC61BM) (40) is laid on the upper end surface of the active layer (30); the method of covering is by using the electron transport layer (40) mixture at 1250rpm for 45 seconds It is spin-coated on the surface of the active layer (30) at a high speed. After the coating is completed, there is no need for thermal annealing. Just leave it to dry naturally for about 40-60 minutes, so that the electron transport layer (40) appears on the surface of the active layer (30). Cured film

一陰極層(Ag)(50),該陰極層(50)係覆設於該電子傳輸層(40)之上端面,該陰極層(50)係包含一銀質層(Ag)(51)構成,所述之覆設方式係將該銀質層(Ag)(51)熱蒸鍍於電子傳輸層(40)表面,即完成元件製作者。 A cathode layer (Ag) (50), the cathode layer (50) is arranged on the upper end surface of the electron transport layer (40), the cathode layer (50) is composed of a silver layer (Ag) (51) The above-mentioned covering method is to thermally evaporate the silver layer (Ag) (51) on the surface of the electron transport layer (40) to complete the device maker.

請參閱第2圖所示,其係本發明實施例之實驗數據所產生之外部量子效率圖,其中主動層(30)之吸收波長約在400~800nm,在600nm附近有較強的吸收譜帶,故銀銦硫量子點(AgInS2)(32)以0.15mg/mL之比例混滲於該主動層(30)中能產生最大吸光度提升了70%,其原因是添加了銀銦硫量子點(AgInS2)(32)及鈷(22)能改善主動層(30)的表面形態並增加其覆蓋率,減少光吸收損失,使鈣鈦礦薄膜能有效的吸收光以提高吸收度及吸光範圍,並提高吸光度; Please refer to Figure 2, which is an external quantum efficiency graph generated by experimental data of an embodiment of the present invention. The absorption wavelength of the active layer (30) is about 400~800nm, and there is a strong absorption band around 600nm. Therefore, silver indium sulfur quantum dots (AgInS 2 ) (32) mixed in the active layer (30) at a ratio of 0.15 mg/mL can produce a maximum absorbance increase of 70%. The reason is that silver indium sulfur quantum dots are added. (AgInS 2 ) (32) and cobalt (22) can improve the surface morphology of the active layer (30) and increase its coverage, reduce light absorption loss, so that the perovskite film can effectively absorb light to increase the absorption and absorption range , And increase the absorbance;

請參閱第3圖所示,其係本發明實施例之實驗數據所產生之J-V曲線圖,可發現其最佳轉換效率為添加銀銦硫量子點(AgInS2)(32)具有最高光電轉換效率為12.2%,與未添加相比約提升50%,因此開路電壓有明顯的提高,也使整體提高了較大的光電轉換效率。 Please refer to Figure 3, which is the JV curve generated by the experimental data of the embodiment of the present invention. It can be found that the best conversion efficiency is that the addition of silver indium sulfur quantum dots (AgInS 2 ) (32) has the highest photoelectric conversion efficiency It is 12.2%, which is about 50% increase compared with no addition, so the open circuit voltage is significantly improved, and the overall photoelectric conversion efficiency is improved.

藉此,本發明藉由銀銦硫量子點(AgInS2)(32)以0.15mg/mL之比例混滲於該主動層(30)中,以及在電洞傳輸層(1%mol%Co:NiOx)藉由鈷以1%莫爾百分比(mol%)之比例摻雜於氧化鎳(1%mol%Co:NiOx),因此增加鈣鈦礦太陽能電池之內部覆蓋率,減少光吸收損失,並優化該鈣鈦礦 太陽能電池每層間的表面晶粒間隙能較緊密,以及提昇各層材料之載子遷移率,進而令本發明達到提升鈣鈦礦太陽能電池的光電轉換效率之結構者。 In this way, the present invention uses silver indium sulfur quantum dots (AgInS 2 ) (32) mixed in the active layer (30) at a ratio of 0.15 mg/mL, and in the hole transport layer (1% mol% Co: NiOx) Cobalt is doped with nickel oxide (1% mol% Co: NiOx) at a ratio of 1% mol% (mol%), thereby increasing the internal coverage of perovskite solar cells, reducing light absorption loss, and The optimization of the surface grain gap between each layer of the perovskite solar cell is tighter, and the carrier mobility of the materials of each layer is improved, so that the present invention can achieve a structure that improves the photoelectric conversion efficiency of the perovskite solar cell.

歸納上述的說明,藉由本發明上述結構的設計,可有效克服習式發明所面臨的缺失,進一步具有上述眾多的優點及實用價值,因此本發明為一創意極佳之發明創作,且在相同的技術領域中未見相同或近似的產品創作或公開使用,故本發明已符合發明專利有關『新穎性』與『進步性』的要件,乃依法提出申請。 Summarizing the above description, the design of the above-mentioned structure of the present invention can effectively overcome the shortcomings faced by the conventional invention, and further has the above-mentioned numerous advantages and practical values. Therefore, the present invention is a creative and extremely creative invention, and it is in the same way. There is no identical or similar product creation or public use in the technical field, so the present invention has met the requirements of "novelty" and "progressiveness" of invention patents, and an application is filed in accordance with the law.

10:陽極層 10: Anode layer

21:氧化鎳 21: Nickel oxide

22:鈷 22: Cobalt

30:主動層 30: active layer

31:鈣鈦礦(Perovskite) 31: Perovskite

32:銀銦硫量子點(AgInS2) 32: Silver indium sulfur quantum dots (AgInS 2 )

40:電子傳輸層 40: electron transport layer

50:陰極層 50: Cathode layer

51:銀質層 51: Silver layer

Claims (2)

一種混摻AgInS2及Co提升鈣鈦礦太陽能電池光電轉換效率之結構,包括: A structure for mixing AgInS2 and Co to improve the photoelectric conversion efficiency of perovskite solar cells includes: 一陽極層(ITO Glass),該陽極層係為一ITO玻璃材質製成; An anode layer (ITO Glass), the anode layer is made of an ITO glass material; 一電洞傳輸層(1%mol%Co:NiOx),係覆設於該陽極層之上端面,其中該電洞傳輸層係包含有一鈷(Co),該鈷(Co)以1%莫爾百分比(mol%)之比例摻雜於氧化鎳(1%mol%Co:NiOx)混合而成; A hole transport layer (1% mol% Co: NiOx) is arranged on the upper end surface of the anode layer, wherein the hole transport layer contains a cobalt (Co), the cobalt (Co) is 1% Mohr The percentage (mol%) is mixed with nickel oxide (1% mol% Co: NiOx); 一主動層(Perovskite:AgInS2),係覆設於該電洞傳輸層之上端面,該主動層係包含有複數鈣鈦礦(Perovskite)與複數銀銦硫量子點(AgInS2)混合而成;其中該銀銦硫量子點(AgInS2)是以0.15mg/mL之比例混滲於該主動層中; An active layer (Perovskite: AgInS 2 ) is laid on the upper end surface of the hole transport layer. The active layer contains a mixture of Perovskite and AgInS 2 ; Wherein the silver indium sulfur quantum dots (AgInS 2 ) is mixed in the active layer at a ratio of 0.15 mg/mL; 一電子傳輸層(PC61BM),係覆設於該主動層之上端面; An electron transport layer (PC61BM) is laid on the upper end surface of the active layer; 一陰極層(Ag),該陰極層係覆設於該電子傳輸層之上端面,該陰極層係包含一銀質層(Ag)所構成者。 A cathode layer (Ag), the cathode layer is arranged on the upper end surface of the electron transport layer, and the cathode layer includes a silver layer (Ag). 一種混摻AgInS2及Co提升鈣鈦礦太陽能電池光電轉換效率之方法,包括: A method for mixing AgInS2 and Co to improve the photoelectric conversion efficiency of perovskite solar cells includes: 一陽極層(ITO Glass),該陽極層係為一ITO玻璃材質製成,經蝕刻後清洗備用,並放入紫外線光表面處理10分鐘; An anode layer (ITO Glass), the anode layer is made of an ITO glass material, after etching, cleaned for use, and put in ultraviolet light for surface treatment for 10 minutes; 一電洞傳輸層(1%mol%Co:NiOx),係覆設於該陽極層之上端面,該電洞傳輸層係包含有包含有一鈷(Co),該鈷(Co)以1%莫爾百分比(mol%)之比例摻雜於氧化鎳(1%mol%Co:NiOx)混合而成混合液;所述之電洞傳輸層覆設於該陽極層之上端面覆設方式係藉由將上述混合液以5000rpm、30秒的轉速旋轉塗佈於該陽極層表面,塗佈完成後放置於加熱板上熱退火140℃、10分鐘,使該電洞傳輸層在該陽極層表面呈固化狀薄膜; A hole transport layer (1% mol% Co: NiOx) is arranged on the upper end surface of the anode layer. The hole transport layer contains cobalt (Co), and the cobalt (Co) is moly Doped with nickel oxide (1% mol% Co: NiOx) in the proportion of mol% (mol%) to form a mixed solution; the hole transport layer is covered on the anode layer by The above-mentioned mixed solution was spin-coated on the surface of the anode layer at 5000 rpm and 30 seconds. After coating, it was placed on a hot plate and thermally annealed at 140°C for 10 minutes to make the hole transport layer solidify on the surface of the anode layer.状膜; 一主動層(Perovskite:AgInS2),係覆設於該電洞傳輸層之上端面,該主動層係包含有複數鈣鈦礦(Perovskite)與複數銀銦硫量子點(AgInS2)混合而成;其中該銀銦硫量子點(AgInS2)是以0.15mg/mL之比例混滲於該主動層中;所述之主動層(Perovskite:AgInS2)覆設於該電洞傳輸層之上端面方式,係藉由將上述混合液以二段轉速:(1000rpm、30秒;5000rpm、20秒)的轉速旋轉塗佈不同濃度比例之該複數鈣鈦礦(Perovskite)與銀銦硫量子 點(AgInS2)為1:0.15混合液於該電洞傳輸層表面,塗佈完成後放置在加熱板上熱退火120℃、15分鐘,使該主動層在該電洞傳輸層表面呈固化狀薄膜; An active layer (Perovskite: AgInS 2 ) is laid on the upper end surface of the hole transport layer. The active layer contains a mixture of Perovskite and AgInS 2 ; Wherein the silver indium sulfur quantum dots (AgInS 2 ) is mixed in the active layer at a ratio of 0.15 mg/mL; the active layer (Perovskite: AgInS 2 ) is placed on the upper end surface of the hole transport layer The method is by rotating the above-mentioned mixed solution at two rotation speeds: (1000rpm, 30 seconds; 5000rpm, 20 seconds). 2 ) The 1:0.15 mixture is placed on the surface of the hole transport layer, and after the coating is completed, it is placed on a hot plate and thermally annealed at 120°C for 15 minutes to make the active layer appear as a cured film on the surface of the hole transport layer; 一電子傳輸層(PC61BM),係覆設於該主動層之上端面;其覆設方式係藉由將該電子傳輸層混合液以1250rpm、45秒的轉速旋轉塗佈於該主動層表面,塗佈完成後無須熱退火,只須放置待其自然乾約40~60分鐘,使該電子傳輸層在該主動層表面呈固化狀薄膜; An electron transport layer (PC61BM) is laid on the upper end surface of the active layer; the method of covering is by rotating the electron transport layer mixture on the surface of the active layer at 1250 rpm for 45 seconds. After the cloth is finished, there is no need for thermal annealing, just leave it to dry naturally for about 40-60 minutes, so that the electron transport layer becomes a cured film on the surface of the active layer; 一陰極層(Ag),該陰極層係覆設於該電子傳輸層之上端面,該陰極層係包含一銀質層(Ag)構成,所述之覆設方式係將該銀質層(Ag)熱蒸鍍於該電子傳輸層表面,即完成元件製作者。 A cathode layer (Ag), the cathode layer is laid on the upper end surface of the electron transport layer, the cathode layer is composed of a silver layer (Ag), and the covering method is to cover the silver layer (Ag) ) Thermal vapor deposition on the surface of the electron transport layer completes the device maker.
TW109109677A 2020-03-23 2020-03-23 STRUCTURE AND METHOD OF IMPROVING PHOTOELECTRIC CONVERSION EFFICIENCY OF PEROVSKITE SOLAR CELL BY MIXED AgInS2 AND Co TWI764117B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109109677A TWI764117B (en) 2020-03-23 2020-03-23 STRUCTURE AND METHOD OF IMPROVING PHOTOELECTRIC CONVERSION EFFICIENCY OF PEROVSKITE SOLAR CELL BY MIXED AgInS2 AND Co

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109109677A TWI764117B (en) 2020-03-23 2020-03-23 STRUCTURE AND METHOD OF IMPROVING PHOTOELECTRIC CONVERSION EFFICIENCY OF PEROVSKITE SOLAR CELL BY MIXED AgInS2 AND Co

Publications (2)

Publication Number Publication Date
TW202137596A true TW202137596A (en) 2021-10-01
TWI764117B TWI764117B (en) 2022-05-11

Family

ID=79601355

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109109677A TWI764117B (en) 2020-03-23 2020-03-23 STRUCTURE AND METHOD OF IMPROVING PHOTOELECTRIC CONVERSION EFFICIENCY OF PEROVSKITE SOLAR CELL BY MIXED AgInS2 AND Co

Country Status (1)

Country Link
TW (1) TWI764117B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047417B (en) * 2015-06-29 2018-08-14 中南大学 A kind of quantum dot perovskite is total to sensitization solar battery and preparation method thereof
US10038156B2 (en) * 2015-08-31 2018-07-31 The University Of Akron Photodetector utilizing quantum dots and perovskite hybrids as light harvesters
WO2017061174A1 (en) * 2015-10-09 2017-04-13 ソニー株式会社 Photoelectric conversion element and imaging element
CN107955597A (en) * 2016-10-19 2018-04-24 苏州星烁纳米科技有限公司 Quantum dot film and its application
CN112088442A (en) * 2018-04-10 2020-12-15 花王株式会社 Light absorbing layer, photoelectric conversion element, and solar cell
WO2019228620A1 (en) * 2018-05-30 2019-12-05 Toyota Motor Europe Inks comprising nanoparticles for high-performance inkjet-printed optoelectronics

Also Published As

Publication number Publication date
TWI764117B (en) 2022-05-11

Similar Documents

Publication Publication Date Title
CN103746078B (en) Perovskite solar cell and preparation method thereof
WO2021047673A1 (en) Cadmium telluride solar cell and preparation method thereof
CN105280826A (en) Novel polymer solar cell with dual-electron transmission layer
CN109755394A (en) A method of perovskite solar battery is prepared using air knife coating
CN109609122B (en) Preparation method of flexible photovoltaic device for inducing tensile bending of perovskite crystal
CN108878570A (en) Hole selection type MoOx/SiOx(Mo)/n-Si hetero-junctions, solar cell device and preparation method thereof
CN113258005A (en) Organic solar cell formed by composite electrode and preparation method
TW202137596A (en) Structure and method of improving photoelectric conversion efficiency of perovskite solar cell by mixed agins2 and co
CN105448524B (en) Ag doping organic metal perovskite material, solar cell and preparation method thereof
CN106025078A (en) Novel planar heterojunction perovskite photovoltaic cell and preparation method thereof
CN108365105A (en) A kind of perovskite solar cell and preparation method thereof
CN108321221A (en) Graphene solar cell with micro-cavity structure and preparation method thereof
TWM606340U (en) Structure with doped Ag-In-S quantum dot and cobalt to enhance photoelectric conversion efficiency of perovskite solar cell
CN110473967B (en) Flexible structure polymer solar cell constructed based on zinc oxide electron transport layer and preparation method thereof
CN209150157U (en) Perovskite solar battery
CN207097869U (en) A kind of organic solar batteries
TW201327862A (en) Conductive substrate and fabricating method thereof, and solar cell
CN109326718A (en) A kind of double-buffering layer perovskite method for manufacturing solar battery
TWI616058B (en) Structure and method of enhancing photoelectric conversion efficiency of pvp solar cell by mixed pvp
TWI652834B (en) Structure and method for improving photoelectric conversion efficiency of perovskite solar cell by mixing DIO and TBABF4
CN111916562A (en) Thin-layer silver induced film forming method and color semitransparent organic solar cell device thereof
TWI624075B (en) Structure and method of flexible polymer solar cell capable of improving photoelectric conversion efficiency
CN108389970B (en) Perovskite solar cell with energy band gradient based on mixed evaporation process and preparation method thereof
CN112713205A (en) High-radiation-resistance triple-junction gallium arsenide solar cell and preparation method thereof
CN105006523A (en) Iridium complex doped triplet solar cell