TW202129306A - 校準裝置、治療計劃裝置及校準方法 - Google Patents

校準裝置、治療計劃裝置及校準方法 Download PDF

Info

Publication number
TW202129306A
TW202129306A TW109144854A TW109144854A TW202129306A TW 202129306 A TW202129306 A TW 202129306A TW 109144854 A TW109144854 A TW 109144854A TW 109144854 A TW109144854 A TW 109144854A TW 202129306 A TW202129306 A TW 202129306A
Authority
TW
Taiwan
Prior art keywords
neutron
calibration
unit
neutron beam
value
Prior art date
Application number
TW109144854A
Other languages
English (en)
Other versions
TWI773031B (zh
Inventor
武川哲也
Original Assignee
日商住友重機械工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友重機械工業股份有限公司 filed Critical 日商住友重機械工業股份有限公司
Publication of TW202129306A publication Critical patent/TW202129306A/zh
Application granted granted Critical
Publication of TWI773031B publication Critical patent/TWI773031B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Radiation-Therapy Devices (AREA)
  • Paper (AREA)
  • Revetment (AREA)
  • General Factory Administration (AREA)

Abstract

[課題]本發明提供一種能夠提高中子束的量的估計精度之校準裝置、治療計劃裝置及校準方法。 [解決手段]校準裝置以依據中子束的量的檢測結果進行運算之測量值為基準,並使用基於中子束的能量分布之值來校準與中子束的量相關之估計值。

Description

校準裝置、治療計劃裝置及校準方法
本發明係有關一種校準裝置、治療計劃裝置及校準方法。 本申請案係主張基於2019年12月25日申請之日本專利申請第2019-234481號的優先權。該日本申請案的全部內容係藉由參閱而援用於本說明書中。
近年來,有使用中子束來進行治療之技術。例如,作為照射中子束來殺死癌細胞之中子捕獲療法,已知有使用了硼化合物之硼中子捕獲療法(BNCT:Boron Neutron Capture Therapy)。在硼中子捕獲療法中,向使癌細胞預先吸收之硼照射中子束,並藉由藉此產生之重帶電粒子的飛散來選擇性地破壞癌細胞。
為了測量如此用於治療之中子束的量,例如使用專利文獻1所示之中子束測量裝置。在專利文獻1所示之中子束測量裝置中,由檢測部檢測中子束,並依據該檢測結果來計算中子束的量。 [先前技術文獻]
[專利文獻1]日本特開2016-166777號公報
[發明所欲解決之問題]
其中,為了提高如上所述的中子束測量裝置的測量精度,有時依據在檢測器上覆蓋切斷熱中子束之濾波器進行測量之結果與不覆蓋濾波器進行測量之結果的差量來測量中子束。但是,在這樣的中子束測量裝置中,在測量結果中可能會包含不確定性,因此在使用測量結果來推算出中子捕獲療法中之中子束的量之情況下,需要高估不確定性。因此,要求提高中子束的量的估計精度。
因此,本發明的目的為提供一種能夠提高中子束的量的估計精度之校準裝置、治療計劃裝置及校準方法。 [解決問題之技術手段]
本發明的一個方面之校準裝置以依據中子束的量的檢測結果進行運算之測量值為基準,並使用基於中子束的能量分布之值來校準與中子束的量相關之估計值。
該校準裝置使用基於能量分布之值並以測量值為基準校準估計值。基於能量分布之值與真正的熱中子注量不同而不取決於不確定性大的平均截面積。進而,校準裝置能夠藉由使用基於能量分布之值來校準與考慮能量分布之中子束的量相關之估計值。因此,該校準裝置能夠藉由使用基於能量分布之值來減少校準中之不確定性的影響。藉由以上,該校準裝置能夠提高中子束的量的估計精度。
在一實施形態中,使用常規中子注量(conventional neutron fluence)、常規中子注量率(conventional neutron fluence rate)、預定的原子的反應數、反應率、克馬(kerma)劑量及克馬劑量率中的至少一種作為基於中子束的能量分布之值來校準估計值。此時,常規中子注量、常規中子注量率、預定的原子的反應數、反應率、克馬劑量及克馬劑量率與真正的熱中子注量不同而不取決於不確定性大的平均截面積。藉此,該校準裝置能夠有效地利用常規中子注量、常規中子注量率、預定的原子的反應數、反應率、克馬劑量及克馬劑量率中的至少一種,從而能夠提高中子束的量的估計精度。
本發明的另一個方面之治療計劃裝置依據由校準裝置校準之估計值來進行基於帶電粒子束之治療計劃。該治療計劃裝置能夠依據由校準裝置校準之估計值來創建治療計劃。因此,該治療計劃裝置能夠依據提高了估計精度之中子束的量來創建治療計劃。
本發明的另一個方面之校準方法具有如下步驟,亦即,以依據中子束的量的檢測結果進行運算之測量值為基準,並使用基於中子束的能量分布之值來校準與中子束的量相關之估計值。
根據該校準方法,能夠獲得與上述校準裝置相同的作用/效果。 [發明之效果]
根據本發明,能夠提供一種能夠輕易地獲取中子束的測量結果且能夠提高中子束的量的估計精度之校準裝置、治療計劃裝置及校準方法。
以下,參閱圖式對本發明的較佳實施形態進行詳細地說明。
本發明的實施形態之校準裝置校準與由中子捕獲療法裝置照射之中子束的量相關之估計值。首先,參閱圖1對產生成為後述中子束測量裝置的測量對象之中子束之中子捕獲療法裝置的概要進行說明。圖1所示之中子捕獲療法裝置1為進行使用了硼中子捕獲療法(BNCT:Boron Neutron Capture Therapy)之癌症治療之裝置。在中子捕獲療法裝置1中,例如向被給藥硼(10 B)之患者(被照射體)50的腫瘤照射中子束N。
中子捕獲療法裝置1具備加速器2。加速器2加速陰離子等帶電粒子並出射帶電粒子束R。加速器2例如由迴旋加速器構成。在本實施形態中,帶電粒子束R為從陰離子剝離電荷而生成之質子束。該加速器2例如生成射束半徑40mm、60kW(=30MeV×2mA)的帶電粒子束R。再者,加速器並不限於迴旋加速器,亦可以為同步加速器或同步迴旋加速器、直線加速器、靜電加速器等。
從加速器2出射之帶電粒子束R被發送至中子束生成部M。中子束生成部M由射束導管9和標靶10形成。從加速器2出射之帶電粒子束R穿過射束導管9朝向配置於射束導管9的端部之標靶10行進。沿該射束導管9設置有複數個四極電磁鐵4及掃描電磁鐵6。複數個四極電磁鐵4例如使用電磁鐵來進行帶電粒子束R的射束軸調整。
掃描電磁鐵6掃描帶電粒子束R並進行針對標靶10之帶電粒子束R的照射控制。該掃描電磁鐵6控制針對標靶10之帶電粒子束R的照射位置。
中子捕獲療法裝置1藉由將帶電粒子束R照射於標靶10而產生中子束N,並朝向患者50出射中子束N。中子捕獲療法裝置1具備標靶10、遮蔽體8、減速構件39及準直器20。
標靶10接受帶電粒子束R的照射而生成中子束N。標靶10為由藉由被帶電粒子束照射而產生中子束之材質形成之固體形狀的構件。具體而言,標靶10例如由鈹(Be)或鋰(Li)、鉭(Ta)、鎢(W)形成,例如呈直徑160mm的圓盤狀的固體形狀。再者,標靶10並不限於圓盤狀,亦可以為其他形狀。
減速構件39使由標靶10生成之中子束N減速(使中子束N的能量下降)。減速構件39可以具有由主要使中子束N中所包含之快中子減速之層39A及主要使中子束N中所包含之超熱中子減速之層39B形成之疊層結構。
遮蔽體8遮蔽所產生之中子束N及伴隨該中子束N的產生而產生之伽瑪(gamma)射線等以防止其向外部發射。遮蔽體8被設置成圍繞減速構件39。遮蔽體8的上部及下部從減速構件39延伸至帶電粒子束R的上游側。
準直器20對中子束N的輻射場進行整形,並且具有中子束N穿過之開口20a。準直器20例如為在中央具有開口20a之方塊狀的構件。
接著,參閱圖2對中子束測量裝置100的詳細結構進行說明。中子束測量裝置100為測量在中子捕獲療法裝置1中藉由向標靶10照射帶電粒子束R而產生之中子束N的量(測量值)之測量裝置。中子束測量裝置100例如測量從中子捕獲療法裝置1的準直器20照射之中子束N的量(測量值)。
中子束測量裝置100測量從中子捕獲療法裝置1照射之中子束N,並將測量結果輸出至校準裝置300或顯示部60。校準裝置300獲取與中子捕獲療法裝置1中之中子束N的通量相關之估計值,並將其與中子束測量裝置100的測量結果進行比較來校準估計值。校準裝置300與治療計劃裝置200連接,並將估計值發送至治療計劃裝置200。治療計劃裝置200為在使用中子捕獲療法裝置1進行治療時進行對患者如何照射中子束N的治療計劃之裝置。此時,在創建治療計劃時,治療計劃裝置200需要掌握中子捕獲療法裝置1的中子束N具有多少通量。因此,在由中子捕獲療法裝置1進行治療之前階段進行治療計劃裝置200的調整(標準化)。本實施形態的治療計劃裝置200依據由校準裝置300校準之估計值來設定中子捕獲療法裝置1中之中子束N的劑量,從而創建基於帶電粒子束R之治療計劃。亦即,藉由在由中子捕獲療法裝置1進行治療之前階段進行校準裝置300的估計值的校準(標準化)來進行治療計劃裝置200的標準化。例如,在校準裝置300中標準化之估計值可以直接用於治療計劃裝置200的治療計劃中。
在校準裝置300中之標準化中,藉由將由校準裝置300估計之通量(估計值的一例)與中子束測量裝置100的測量值進行比較來決定校準裝置300的估計值相對於測量值之標準化常數。校準裝置300的標準化常數例如用作治療計劃裝置200的標準化常數。例如,圖4的圖表表示水假體35(參閱圖2)的預定的深度中之中子束N的通量。如圖4(a)所示,在標準化之前,校準裝置300的估計值從中子束測量裝置100中的測量值偏離。因此,如圖4(b)所示,調整標準化常數,以使校準裝置300的估計值與中子束測量裝置100中的測量值對應。再者,圖4中,使用複數個部位中之測量值來進行標準化,但是亦可以僅使用一個部位中之測量值來進行標準化。又,可以使用不僅在深度方向上而且在不在同一直線上的三維空間內之不同之複數個位置上的水假體35的測量值來進行標準化。
如圖2所示,中子束測量裝置100具備檢測部30、控制部40及顯示部60。
檢測部30為檢測中子束之機器。檢測部30具備:閃爍器31;光纖32,在前端設置有閃爍器31;光檢測器33,檢測從光纖32傳遞之光;及測量器34,測量基於光檢測器33之檢測結果。檢測部30依據來自治療計劃裝置200的測量控制訊號進行測量。
閃爍器31為將所入射之中子束轉換成光之螢光體。閃爍器31按照所入射之中子束的劑量來使內部結晶成為激勵狀態並產生閃爍光。關於中子束的測量,使用水假體35來進行。亦即,來自中子捕獲療法裝置1的中子束N朝向水假體35照射。因此,閃爍器31配置於水假體35內的預定的位置上。閃爍器31在水假體35中的位置隨著測量的進行而被適當變更。光檢測器33檢測經由光纖32由閃爍器31發出之光。
測量器34在將來自光檢測器33的檢測結果轉換成預定的測量值的基礎上,將其發送至控制部40。測量器34依據光檢測器33的檢測結果對中子的個數進行計數並輸出至控制部40。再者,控制部40可以直接接收來自光檢測器33的檢測結果,並在內部進行由測量器34進行之處理。檢測部30例如構成為具備1/v檢測器。1/v檢測器為閃爍器31的部分由1/v吸收劑構成之檢測器。再者,對1/v檢測器的詳細內容將進行後述。
控制部40進行中子束測量裝置100全體的控制。控制部40具備處理器、記憶體、儲存器、通訊介面及使用者介面,並構成為通常的電腦。處理器為CPU(Central Processing Unit:中央處理單元)等運算器。記憶體為ROM(Read Only Memory:唯讀記憶體)或RAM(Random Access Memory:隨機存取記憶體)等記憶媒體。儲存器為HDD(Hard Disk Drive:硬碟驅動機)等記憶媒體。通訊介面為實現資料通訊之通訊機器。使用者介面為鍵盤或觸控面板或麥克風等輸入器。處理器統括記憶體、儲存器、通訊介面及使用者介面,並實現後述控制部40的機能。在控制部40中,例如將儲存於ROM之程式加載至RAM,並由CPU執行加載至RAM之程式,從而實現各種機能。控制部40可以由複數個電腦構成。
控制部40具備常規中子注量運算部41(運算部)、反應數運算部42(運算部)、克馬劑量運算部43(運算部)、輸入部44及測量值輸出部46。
常規中子注量運算部41依據由檢測部30檢測之檢測結果來運算中子束N的量。常規中子注量運算部41運算常規中子注量。常規中子注量運算部41使用從檢測部30獲取之中子計數、由輸入部44輸入之校準常數及由輸入部44輸入之修正係數來計算以下式(1)。校準常數為作為針對該中子束測量裝置100所固有的值而決定之值。關於校準常數,藉由預先將中子束測量裝置100帶到國家標準的校準場進行測量來決定。對校準常數的決定方法將進行後述。修正係數為針對檢測部30的能量特性所設定之係數,並且為依據檢測部30的類型等而預先設定之值。常規中子注量運算部41將運算結果輸出至反應數運算部42及測量值輸出部46。 常規中子注量=中子計數×校準常數×修正係數……(1)
反應數運算部42依據常規中子注量來運算預定的原子的反應數。反應數運算部42使用從常規中子注量運算部41輸入之常規中子注量及針對預定的原子所預先設定之截面積來計算以下式(2)。截面積為成為計算對象之原子的2200m/s中之截面積。再者,2200m/s表示中子的速度(能量)。反應數運算部42將運算結果輸出至克馬劑量運算部43及測量值輸出部46。 反應數=常規中子注量×截面積……(2)
克馬劑量運算部43依據反應數來運算克馬劑量。克馬劑量運算部43使用從反應數運算部42輸入之反應數來計算以下式(3)。E表示能量。作為能量,可以使用在原子和中子反應一次時所發射之帶電粒子的平均運動能量的總和(通常稱為Q值)。例如,若為6 Li,則Q值為4.89MeV。若為10 B,則Q值為2.31MeV。若為14 N,則Q值為0.62MeV。F為質量密度。例如,在計算硼的克馬劑量之情況下,將質量密度設為1ppm為較佳,在計算除了硼以外的克馬劑量之情況下,使用在ICRU46中定義之組織密度為較佳。M為原子質量之值,並且設定為在6 Li的情況下6、在10 B的情況下10、在14 N的情況下14之數值為較佳。MAMU 為原子質量單位之值,並且設定為1.660539040×10-27 kg之數值為較佳。克馬劑量運算部43將運算結果輸出至測量值輸出部46。 克馬劑量=(反應數×E×F)/(M×MAMU )……(3)
輸入部44向控制部40輸入各種資訊。輸入部44從治療計劃裝置200或經由滑鼠或鍵盤等介面從使用者輸入修正係數及校準常數。又,輸入部44輸入是否需要運算反應數的資訊及是否需要運算克馬劑量的資訊。測量值輸出部46將所獲取之測量值輸出至校準裝置300或使用者。測量值輸出部46將測量值作為資料直接輸出至校準裝置300。又,測量值輸出部46在顯示部60上視覺性地顯示測量值。顯示部60由顯示器等構成。顯示部60顯示常規中子注量、反應數及克馬劑量。基於顯示部60之測量值的顯示方式並無特別限定,可以直接顯示數值,亦可以轉換成圖表等來顯示。
接著,參閱圖5對本實施形態之中子束測量方法的順序進行說明。首先,在測量對象的中子場(其中,水假體35)上設置檢測部30的閃爍器31(步驟S10)。接著,檢測部30測量中子計數(步驟S20)。接著,常規中子注量運算部41依據在S10的一次測量中的檢測結果來運算常規中子注量(步驟S30)。
其中,反應數運算部42參閱輸入部44中的輸入資訊或設定狀態等來判定是否需要運算反應數(步驟S40)。在S40中,在判定為不需要運算反應數之情況下,測量值輸出部46輸出常規中子注量(步驟S50)。
例如,在輸入部44中要求反應數或克馬劑量之情況或設定為運算反應數之情況下,反應數運算部42進行反應數的運算(步驟S60)。接著,克馬劑量運算部43參閱輸入部44中的輸入資訊或設定狀態等來判定是否需要運算克馬劑量(步驟S70)。在S70中,在判定為不需要運算克馬劑量之情況下,測量值輸出部46輸出反應量(步驟S80)。其後,測量值輸出部46輸出常規中子注量(步驟S50)。
例如,在輸入部44中要求克馬劑量之情況或設定為運算克馬劑量之情況下,克馬劑量運算部43進行克馬劑量的運算(步驟S90)。測量值輸出部46輸出克馬劑量(步驟S100)。其後,測量值輸出部46輸出常規中子注量(步驟S50)。再者,在要求反應數和克馬劑量這雙方時,測量值輸出部46輸出反應數和克馬劑量這雙方。
接著,參閱圖6對決定校準常數之順序進行說明。該順序在製造中子束測量裝置100並進行第一次測量之前執行。又,若中子束測量裝置100的使用次數增加,則由於檢測部30的劣化等而校準常數可能會從對檢測部30而言最佳值偏離。因此,該順序亦可以在中子束測量裝置100的定期維護等的時序進行。
首先,檢測部30設置於國家標準的校準場(步驟S110)。在該校準場中,以充分的精度進行中子束的調整,並且常規中子注量成為已知的狀態。又,檢測部30配置於校準場的校準點上。
接著,檢測部30測量中子計數(步驟S120)。進而,進行校準常數的計算(步驟S130)。其中,使用“校準常數=(校準場中之常規中子注量(已知))/(中子計數×校準場中之修正係數)”之關係來進行計算。再者,修正係數修正基於檢測部30之擾動(應變、自遮蔽)、方向依賴性、來自1/v截面積的偏差(Discrepancy)等的效果。藉由以上順序決定校準常數之後,將其輸入至中子束測量裝置。
接著,對常規中子注量進行詳細地說明。
首先,作為常規中子注量的比較對象,對使用真正的熱中子注量來測量中子束之情況進行說明。在測量真正的熱中子注量之情況下,需要在閃爍器上覆蓋切斷熱中子束之濾波器進行第一次測量且不覆蓋濾波器進行第二次測量來運算兩者的差量。如此,由於需要進行兩次測量,因此測量花費時間和精力,測量的不確定性亦增加。
以下式(4)為定義真正的熱中子注量之式。式(4)的φ(E)表示能量微分中子注量(中子能譜)。其中,當將檢測部30的反應數(檢測部30在測量時間內檢測到中子(=與中子進行反應)之次數)設為R且將平均截面積設為σth 時,式(4)為如式(5)所示。亦即,真正的熱中子注量被設為作為檢測部30的指示值之反應數除以平均截面積而獲得之值。各項的定義如以下式(6)和式(7)。式(7)所示之平均截面積為將反應截面積用能量微分中子注量平均化而獲得之量。如此,真正的熱中子注量的評價需要平均截面積,但是該平均截面積為無法實際測量之值,因此需要使用進行模擬實驗之結果。其中,進行標準化常數的決定作為計算精度的驗證作業的一部分。在這樣的作業中,進行如下,亦即,依據不能保証精度的計算結果來計算平均截面積,藉由其平均截面積來修正實際測量值,藉由被修正之測量值來確認計算精度。其結果,需要高估平均截面積的不確定性。又,平均截面積取決於測量深度,因此需要在每次改變測量點時調整要使用之平均截面積。
Figure 02_image001
相對於此,在使用1/v檢測器來進行測量之情況下,常規中子注量率(常規中子注量除以帶電粒子束的照射時間(單位時間)而獲得之值)不取決於平均截面積,與中子計數成比例。因此,常規中子注量能夠在不受包含不確定性之平均截面積之要素的影響之情況下準確地表示中子的量。具體而言,以下式(8)為定義常規中子注量之式。E0 常規地取0.0253eV的值。進而,在使用1/v檢測器之情況下,常規中子注量簡化為以下式(9)。其中,R由式(6)表示。常規地,σ0 被設為檢測元件相對於速度為2200m/s的中子的反應截面積的值。從式(5)和式(9)明確可知,相對於式(5)取決於平均截面積,式(9)不取決於平均截面積。與式(5)不同,式(8)不出現平均截面積的項目。
Figure 02_image003
其中,對使用常規中子注量時的限制條件進行說明。首先,為了高精度地運算常規中子注量,檢測部30例如構成為具備1/v檢測器。在使用1/v檢測器之情況下,上述式(9)成立。1/v檢測器為在閃爍器31中使用1/v吸收劑之檢測器。其中,1/v吸收劑為在中子束的入射能量為10-4 MeV以下的入射能量低的區域中,截面積與1/v成比例地減少的關係成立之物質。再者,此處的截面積是指微觀的截面積。亦即,截面積為表示引起核反應之比例之尺度。當將物質暴露於單能的中子場時的反應率(每單位時間的反應次數)設為R且將物質的原子核的數量密度設為N時,截面積由式(10)定義。φ(E)為中子束。截面積變得越大表示吸收劑越容易與中子進行反應。“v”表示中子的速度。當將每1個中子的質量設為m時,v與中子能量E具有式(11)所示之關係。1/v檢測器成為利用了截面積與1/v成比例之原子核之檢測器。σ與1/v的比例關係成立且v與E1/2 的比例關係成立,因此σ與1/E1/2 的比例關係成立。因此,當在記錄中繪製橫軸的能量時,如圖7成為截面積與線形性的關係,並且斜率成為-1/2。
Figure 02_image005
作為這樣的1/v吸收劑,可以舉出10 B、6 Li、14 N、3 He等。具體而言,如表示10 B的特性之圖7的圖表及表示6 Li的特性之圖8的圖表所示,在10-4 MeV以下的入射能量低的區域中,該等吸收劑的截面積與1/v成比例地減少。再者,在高能量區域中,與1/v的比例關係產生偏離,因此在這樣的區域中,在運算常規中子注量時需要進行修正。另一方面,如表示197 Au的特性之圖9的圖表所示,即使在10-4 MeV以下的入射能量低的區域中,該吸收劑的截面積亦從1/v的比例關係偏離。因此,如197 Au的吸收劑不屬於1/v吸收劑。
再者,關於反應數和克馬劑量,運算了針對預定的原子之值,但是該等原子僅限於1/v吸收劑。這是因為,上述式(2)、式(3)對1/v吸收劑成立。其中,在BNCT的治療計劃裝置200中要求掌握反應數或克馬劑量之重要的原子為屬於10 B、14 N等的1/v吸收劑之原子,因此對治療計劃裝置200而言,該限制條件並不會很大的限制。再者,檢測部30中所使用之1/v吸收劑的原子與成為反應數的運算對象之原子無需必須一致。例如,即使在檢測部30中使用除了10 B以外的1/v吸收劑,反應數運算部42亦能夠運算10 B的反應數。
如上所述,1/v吸收劑在高能量區域需要進行修正,但是為了減少該修正量,在水假體35(參閱圖2)內進行測量為較佳。在空氣中進行測量的情況下,中子場需要充分地熱化。因此,本實施形態之中子束測量裝置100不適合超熱中子場的測量。但是,治療計劃裝置200的標準化在水假體35內進行,因此該限制條件並無特別問題。
檢測部30的檢測頭(閃爍器31的部分)小。因此,若水中之中子場的擾動效果(擾動效果=應變效果×自遮蔽效果)不夠小,則基於修正之不確定性變大。擾動效果為因在測量部位存在除了水以外的物質而引起之影響。具體而言,將應變效果及自遮蔽效果抑制在1%以下的足夠小的範圍內為較佳。
接著,參閱圖2及圖3對本實施形態之校準裝置300的詳細結構進行說明。圖3係實施形態之校準裝置的方塊圖。校準裝置300校準(標準化)與在中子捕獲療法裝置1中藉由向標靶10照射帶電粒子束R而產生之中子束N的量相關之估計值。校準裝置300具備獲取部310、估計部320、校準部330及發送部340。校準裝置300例如具備處理器、記憶體、儲存器、通訊介面及使用者介面,並構成為通常的電腦。校準裝置300例如與中子束測量裝置100的控制部40的結構相同。
獲取部310獲取依據中子束N的量的檢測結果進行運算之計測值。獲取部310例如獲取從中子束測量裝置100的控制部40中之測量值輸出部46輸出之值。獲取部310獲取基於能量分布之值。獲取部310例如獲取常規中子注量、常規中子注量率、反應數、反應率、克馬劑量及克馬劑量率中的至少1種。
估計部320獲得與藉由向標靶10照射帶電粒子束R而產生之中子束N的量相關之估計值。估計部320例如推算出藉由使用了蒙特卡洛方法之模擬實驗來創建出之估計值。估計部320推算出與在獲取部310中獲取之值相同種類的值。具體而言,在獲取部310中獲取了常規中子注量之情況下,估計部320推算出常規中子注量的估計值。在獲取部310中獲取了常規中子注量率之情況下,估計部320推算出常規中子注量率的估計值。在獲取部310中獲取了反應數之情況下,估計部320推算出反應數的估計值。在獲取部310中獲取了反應率之情況下,估計部320推算出反應率的估計值。在獲取部310中獲取了克馬劑量之情況下,估計部320推算出克馬劑量的估計值。在獲取部310中獲取了克馬劑量率之情況下,估計部320推算出克馬劑量率的估計值。再者,估計部320可以藉由獲取設置於外部之運算部的模擬實驗結果來獲得估計值。此時,估計部320例如可以從治療計劃裝置200獲得估計值。
校準部330使用基於常規中子注量及常規中子注量率中的至少一方之值並使用由獲取部310獲得之測量值來校準由估計部320獲得之估計值。其中,基於常規中子注量及常規中子注量率中的至少一方之值為基於常規中子注量及常規中子注量率中的至少一方之動作參數。亦即,校準部330在設成與基於常規中子注量及常規中子注量率中的至少一方之動作參數相同的單位系統之測量值及估計值中以測量值為基準來校準估計值。基於常規中子注量及常規中子注量率中的至少一方之值例如包含常規中子注量、常規中子注量率、反應數、反應率、克馬劑量及克馬劑量率中的至少1種。校準部330藉由將由獲取部310獲取之測量值與由估計部320估計之估計值進行比較來決定估計部320的估計值相對於測量值之標準化常數。校準部330依據標準化常數來校準(標準化)估計值。
校準部330例如藉由使用由獲取部310獲取之測量值對估計值運用最小平方法來決定標準化常數。藉此,校準部330能夠校準與考慮能量分布之中子束N的量相關之估計值。在由獲取部310獲取之測量值為常規中子注量及常規中子注量率中的至少一方的分布的峰值之情況下,校準部330例如可以將估計值與測量值之峰值之比作為標準化常數。在由獲取部310獲取之測量值為反應數、反應率、克馬劑量或克馬劑量率之情況下,校準部330例如在從中子束測量裝置100的控制部40、治療計劃裝置200或使用者獲得了核子的資訊的基礎上,獲得標準化常數來校準估計值。
發送部340將由校準部330校準之估計值發送至治療計劃裝置200。治療計劃裝置200依據所接收之估計值來創建基於帶電粒子束R之治療計劃。發送部340可以將標準化常數發送至治療計劃裝置200。
接著,參閱圖10對本實施形態之校準方法MT的順序進行說明。首先,獲取部310從測量值輸出部46獲取測量值(步驟S210:獲取測量值之步驟)。接著,估計部320獲取估計值(步驟S220:獲取估計值之步驟)。接著,校準部330依據由獲取部310獲取之測量值來校準由估計部320估計之估計值(步驟S230:校準步驟)。接著,發送部340將由校準部330校準之估計值發送至治療計劃裝置200(步驟S240)。
接著,對本實施形態之校準裝置300的作用/效果進行說明。
校準裝置300以依據中子束N的量的檢測結果進行運算之測量值為基準,並使用基於中子束N的能量分布之值來校準與中子束N的量相關之估計值。具體而言,校準裝置300為校準與藉由向標靶10照射帶電粒子束R而產生之中子束N的量相關之估計值之裝置,該校準裝置300具備:獲取部310,獲取依據中子束N的量的檢測結果進行運算之測量值;估計部320,獲取估計值;及校準部330,使用基於能量分布之值以測量值為基準來校準估計值。
該校準裝置300在校準部330中使用基於能量分布之值以由獲取部310獲得之測量值為基準來校準由估計部320獲得之估計值。基於能量分布之值與真正的熱中子注量不同而不取決於不確定性大的平均截面積。進而,校準部330能夠藉由使用基於能量分布之值來校準與考慮能量分布之中子束的量相關之估計值。因此,該校準裝置300能夠藉由使用基於能量分布之值來減少校準中之不確定性的影響。藉由以上,該校準裝置300能夠提高中子束N的量的估計精度。
校準裝置300的校準部330使用常規中子注量、常規中子注量率、預定的原子的反應數、反應率、克馬劑量及克馬劑量率中的至少一種作為基於中子束N的能量分布之值來校準估計值。此時,常規中子注量、常規中子注量率、預定的原子的反應數、反應率、克馬劑量及克馬劑量率與真正的熱中子注量不同而不取決於不確定性大的平均截面積。又,關於常規中子注量、常規中子注量率、預定的原子的反應數、反應率、克馬劑量及克馬劑量率,在不使用濾波器等之情況下,藉由一次測量便能夠運算,因此獲取部310能夠輕易地獲取測量值。進而,校準部330能夠藉由使用常規中子注量、常規中子注量率、預定的原子的反應數、反應率、克馬劑量及克馬劑量率中的至少一種來校準與考慮能量分布之中子束N的量相關之估計值。因此,在校準部330的校準中,能夠藉由使用常規中子注量、常規中子注量率、預定的原子的反應數、反應率、克馬劑量及克馬劑量率中的至少一種來減少校準中之不確定性的影響。藉由以上,該校準裝置300能夠有效地利用常規中子注量、常規中子注量率、預定的原子的反應數、反應率、克馬劑量及克馬劑量率中的至少一種。又,校準裝置300能夠輕易地獲取中子束N的測量結果,從而能夠提高中子束N的量的估計精度。
本發明的另一個方面之治療計劃裝置200依據由校準裝置300校準之估計值來進行基於帶電粒子束R之治療計劃。該治療計劃裝置200能夠依據由校準裝置300校準之估計值來創建治療計劃。亦即,校準裝置300使用基於能量分布之值來校準估計值,從而能夠進行考慮中子束的能量分布之治療計劃裝置的校準。因此,該治療計劃裝置200能夠依據提高了估計精度之中子束N的量來創建治療計劃。
校準方法MT具有如下步驟(步驟S230),亦即,以依據中子束的量的檢測結果進行運算之測量值為基準,並使用基於中子束的能量分布之值來校準與中子束的量相關之估計值。具體而言,校準方法MT為校準針對藉由向標靶10照射帶電粒子束R而產生之中子束N的量之中子束N的量的估計值之方法,該校準方法具有:獲取依據中子束N的量的檢測結果進行運算之測量值之步驟(步驟S210);獲取估計值之步驟(步驟S220);及以基於常規中子注量及常規中子注量率中的至少一方之值為基準,並使用測量值來校準估計值之步驟(步驟S230)。
根據該校準方法MT,能夠獲得與上述校準裝置300相同的作用/效果。
本發明並不限定於上述實施形態。
在上述實施形態中,運算部運算了常規中子注量,但是還可以運算常規中子注量率。常規中子注量率(常規中子通量(conventional  neutron flux))為常規中子注量除以單位時間而獲得之值。常規中子注量率為在一次照射中隨著時間的流逝而時時刻刻變化之值。例如,在將單位時間設為1秒之情況下,運算部能夠每1秒輸出一次常規中子注量率。亦即,中子束測量裝置能夠即時測量常規中子注量率。又,運算部可以從常規中子注量率運算反應率及克馬劑量率。藉由以上,中子束測量裝置可以即時測量常規中子注量率、反應率及克馬劑量率中的至少一種。此時,能夠按照時間即時掌握中子束的量。再者,在控制部中,關於使用常規中子注量、常規中子注量率、反應數、反應率、克馬劑量及克馬劑量率中的哪一種,可以依據單位系統、檢測器的種類等進行適當選擇。
又,在中子束測量裝置100或校準裝置300中,運算部可以藉由常規中子注量、反應數及克馬劑量中的至少一種除以帶電粒子束的照射時間來運算常規中子注量率、反應率及克馬劑量率中的至少一種的平均值。該平均值為整個一次照射時間的平均值,因此為一次照射中僅可獲得一個之值。如此,能夠掌握整個照射時間的中子束的量。
又,運算部可以直接運算常規中子注量率。例如,在從測量器34輸入中子計數率(Count rate、計數率)之情況下,能夠依據計數率、修正係數及校準常數來計算常規中子注量率。計數率為中子計數除以獲得其計數所需要之時間而獲得之值。只要從測量器34獲取計數率和時間並向治療計劃裝置200、使用者或校準裝置300提供常規中子注量率和時間,則治療計劃裝置200、使用者或校準裝置300能夠計算常規中子注量。如此,常規中子注量率無需必須經由常規中子注量進行運算。計數率亦可以考慮除了每1秒進行一次之即時測量以外的用途。只要獲取進行一次測量(例如100秒)時的平均計數率(例如每秒100000計數)和測量時間(100秒),並知道100秒中之常規中子注量率(的平均值),則能夠藉由將該值乘以100秒來運算常規中子注量。
再者,本發明能夠運用除了閃爍器以外的檢測器。例如,作為測量中子的個數之檢測器,可以運用使用了3 He的氣體之比例計數管及對10 B進行蒸鍍之比例計數管等。檢測方法並無特別限定,但是計數中子之類型為較佳。作為一實施形態,舉出了檢測部30構成為具備1/v檢測器之例,但是檢測部30可以不具備1/v檢測器。在藉由從加速器2出射之帶電粒子束R的照射而產生之中子束N以脈衝狀照射之情況下,檢測部30例如可以為ToF(Time of Flight:飛行時間)檢測器。此時,檢測部30藉由從1個脈衝狀的中子束N入射至ToF檢測器開始直至入射結束的時間來計算中子束N的能量,從而能夠計算針對能量之通量。又,檢測部30可以藉由使用複數台能量解析度高的閃爍器31並涵蓋(Coverage)能量的廣泛範圍來計算針對能量之通量。
例如,上述中子束測量裝置100具有反應數運算部42及克馬劑量運算部43,但是至少具有常規中子注量運算部41即可,可以省略反應數運算部42及克馬劑量運算部43。
中子束測量裝置100或治療計劃裝置200中的任一方均可以具有校準裝置300。在中子束測量裝置100具有校準裝置300之情況下,校準裝置300設置於控制部40內。獲取部310可以直接與運算部連接以獲取常規中子注量、反應數或克馬劑量。此時,控制部40可以省略測量值輸出部46。在治療計劃裝置200具有校準裝置300之情況下,可以省略發送部340。在校準裝置300中,由獲取部310獲取之測量值與由估計部320獲取之估計值的動作參數的單位系統亦可以不同。亦即,估計部320可以獲取與由獲取部310獲取之測量值不同之動作參數的單位系統所表示之估計值。此時,例如,校準部330可以運算並轉換測量值及估計值中的至少一方的動作參數以使測量值及估計值的動作參數的單位系統相同,在此基礎上進行估計值的校準。
1:中子捕獲療法裝置 10:標靶 30:檢測部 41:常規中子注量運算部(運算部) 42:反應數運算部(運算部) 43:克馬劑量運算部(運算部) 60:顯示部 100:中子束測量裝置 200:治療計劃裝置 300:校準裝置 310:獲取部 320:估計部 330:校準部 340:發送部 MT:校準方法
[圖1]係表示產生成為中子束測量裝置的測量對象之中子束之中子捕獲療法裝置之概略圖。 [圖2]係實施形態之中子束測量裝置、校準裝置及治療計劃裝置的方塊圖。 [圖3]係實施形態之校準裝置的方塊圖。 [圖4]係表示水假體(Water phantom)的預定的深度中之中子束的通量之圖表。 [圖5]係中子束測量方法的處理內容之流程圖。 [圖6]係表示決定校準常數之順序之步驟圖。 [圖7]係表示10 B的特性之圖表。 [圖8]係表示6 Li的特性之圖表。 [圖9]係表示197 Au的特性之圖表。 [圖10]係表示實施形態之校準方法的處理內容之流程圖。
1:中子捕獲療法裝置
30:檢測部
31:閃爍器
32:光纖
33:光檢測器
34:測量器
35:水假體
40:控制部
41:常規中子注量運算部
42:反應數運算部
43:克馬劑量運算部
44:輸入部
46:測量值輸出部
60:顯示部
100:中子束測量裝置
200:治療計劃裝置(用戶)
300:校準裝置
N:中子束

Claims (4)

  1. 一種校準裝置,其係以依據中子束的量的檢測結果進行運算之測量值為基準,並使用基於前述中子束的能量分布之值來校準與前述中子束的量相關之估計值。
  2. 如請求項1所述之校準裝置,其中,使用常規中子注量、常規中子注量率、預定的原子的反應數、反應率、克馬劑量及克馬劑量率中的至少一種作為基於前述中子束的能量分布之值來校準前述估計值。
  3. 一種治療計劃裝置,其係依據由請求項1或請求項2所述之前述校準裝置校準之前述估計值來進行基於帶電粒子束之治療計劃。
  4. 一種校準方法,其係具有如下步驟:以依據中子束的量的檢測結果進行運算之測量值為基準,並使用基於前述中子束的能量分布之值來校準與前述中子束的量相關之估計值。
TW109144854A 2019-12-25 2020-12-18 校準裝置、治療計劃裝置及校準方法 TWI773031B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-234481 2019-12-25
JP2019234481A JP7430057B2 (ja) 2019-12-25 2019-12-25 校正装置、治療計画装置及び校正方法

Publications (2)

Publication Number Publication Date
TW202129306A true TW202129306A (zh) 2021-08-01
TWI773031B TWI773031B (zh) 2022-08-01

Family

ID=76459054

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109144854A TWI773031B (zh) 2019-12-25 2020-12-18 校準裝置、治療計劃裝置及校準方法

Country Status (3)

Country Link
JP (1) JP7430057B2 (zh)
CN (1) CN113031051A (zh)
TW (1) TWI773031B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640856A (zh) * 2021-08-03 2021-11-12 散裂中子源科学中心 一种用于bnct仿真水模内部的热中子通量三维分布测量系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551232B1 (en) * 1999-08-19 2003-04-22 New England Medical Center Dosimetry for californium-252(252Cf) neutron-emitting brachytherapy sources and encapsulation, storage, and clinical delivery thereof
JP4214176B2 (ja) 2004-03-12 2009-01-28 独立行政法人 日本原子力研究開発機構 中性子測定システム
JP5996470B2 (ja) * 2013-03-29 2016-09-21 住友重機械工業株式会社 中性子捕捉療法装置
JP6042269B2 (ja) * 2013-05-22 2016-12-14 住友重機械工業株式会社 中性子捕捉療法装置、及び中性子線の測定方法
JP2016077812A (ja) * 2014-10-22 2016-05-16 住友重機械工業株式会社 中性子捕捉療法装置
RU2586043C1 (ru) * 2014-11-12 2016-06-10 Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" Способ профилактики и лечения осложнений при лучевой терапии рака кожи
JP6538423B2 (ja) * 2015-05-25 2019-07-03 株式会社東芝 ホウ素中性子捕捉療法用治療装置及びその制御方法
JP2019068870A (ja) * 2016-02-26 2019-05-09 住友重機械工業株式会社 中性子捕捉療法装置、及び中性子捕捉療法用ターゲット
JP6565120B2 (ja) * 2016-09-23 2019-08-28 住友重機械工業株式会社 中性子捕捉療法システム、及び中性子捕捉療法用治療計画システム
WO2018168713A1 (ja) * 2017-03-13 2018-09-20 住友重機械工業株式会社 中性子捕捉療法システム及び制御装置
WO2019029483A1 (zh) * 2017-08-08 2019-02-14 南京中硼联康医疗科技有限公司 中子捕获治疗系统及用于粒子线产生装置的靶材
JP6875265B2 (ja) * 2017-12-11 2021-05-19 住友重機械工業株式会社 中性子線検出装置

Also Published As

Publication number Publication date
TWI773031B (zh) 2022-08-01
CN113031051A (zh) 2021-06-25
JP7430057B2 (ja) 2024-02-09
JP2021101875A (ja) 2021-07-15

Similar Documents

Publication Publication Date Title
EP2313156B1 (en) Device and method for particle therapy verification
EP2977083B1 (en) An apparatus for particle therapy verification
US9364688B2 (en) Method and apparatus for monitoring the range of a particle beam
JP6565113B2 (ja) 中性子捕捉療法装置
US9802061B2 (en) Apparatus for particle therapy verification comprising a collimator with multiple openings
JP6699004B2 (ja) 中性子捕捉療法システム及び中性子捕捉療法システムの制御方法
FI112285B (fi) Menetelmä ja laitteisto ajasta riippuvan säteilykentän intensiteettijakauman määrittämiseksi
WO2022002231A1 (zh) 中子剂量检测装置及中子捕获治疗设备
TWI666464B (zh) 中子束檢測系統及中子束檢測系統的設定方法
TWI773031B (zh) 校準裝置、治療計劃裝置及校準方法
US8909495B2 (en) Particle radiation monitoring apparatus, recording medium to retain particle radiation monitoring program, and particle radiation monitoring method
TWI768620B (zh) 中子束測量裝置及中子束測量方法
US20230314632A1 (en) Measuring device, measuring method, measuring system, and radiation therapy system
JP7021989B2 (ja) 中性子捕捉療法システム、及び中性子線検出装置
Roberts et al. Determination of the effective centres of the NPL long counters.
JP7083994B2 (ja) 中性子線測定装置、及び中性子線測定方法
Cassell Investigation of novel approaches to radiation protection for high energy pulsed neutron fields
KR20080055688A (ko) 즉발감마선 검출시스템 및 이를 이용한 즉발감마선 검출을위한 선별준위 결정방법
JP2022078886A (ja) 粒子線監視システム、粒子線監視方法および粒子線治療システム
JP2020159728A (ja) 中性子線検出装置
Mardor et al. The beam halo monitor of SARAF
Valencia Lozano Cuantificación de la dosis en superficie en radioterapia: Simulación Monte Carlo y medidas con cámara de extrapolación