TW202124946A - 缺陷檢測系統及缺陷檢測方法 - Google Patents
缺陷檢測系統及缺陷檢測方法 Download PDFInfo
- Publication number
- TW202124946A TW202124946A TW109141069A TW109141069A TW202124946A TW 202124946 A TW202124946 A TW 202124946A TW 109141069 A TW109141069 A TW 109141069A TW 109141069 A TW109141069 A TW 109141069A TW 202124946 A TW202124946 A TW 202124946A
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- defect
- aforementioned
- suspected
- quality
- Prior art date
Links
- 230000007547 defect Effects 0.000 title claims abstract description 354
- 238000000034 method Methods 0.000 title claims description 44
- 238000007689 inspection Methods 0.000 claims abstract description 51
- 238000001514 detection method Methods 0.000 claims description 127
- 230000002950 deficient Effects 0.000 claims description 43
- 230000006872 improvement Effects 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 25
- 230000005856 abnormality Effects 0.000 claims description 11
- 238000013528 artificial neural network Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 description 179
- 239000004065 semiconductor Substances 0.000 description 45
- 235000012431 wafers Nutrition 0.000 description 41
- 238000003860 storage Methods 0.000 description 23
- 230000006870 function Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 239000013078 crystal Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000010894 electron beam technology Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 238000012552 review Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 101100476210 Caenorhabditis elegans rnt-1 gene Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
- G06T3/4076—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution using the original low-resolution images to iteratively correct the high-resolution images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/60—Image enhancement or restoration using machine learning, e.g. neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/0008—Industrial image inspection checking presence/absence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/761—Proximity, similarity or dissimilarity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/776—Validation; Performance evaluation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/98—Detection or correction of errors, e.g. by rescanning the pattern or by human intervention; Evaluation of the quality of the acquired patterns
- G06V10/993—Evaluation of the quality of the acquired pattern
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/611—Specific applications or type of materials patterned objects; electronic devices
- G01N2223/6116—Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/645—Specific applications or type of materials quality control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/646—Specific applications or type of materials flaws, defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/646—Specific applications or type of materials flaws, defects
- G01N2223/6462—Specific applications or type of materials flaws, defects microdefects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30168—Image quality inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/06—Recognition of objects for industrial automation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Evolutionary Computation (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
缺陷檢測系統,係具備:缺陷檢測裝置,其具備對樣本進行攝影的檢測器;和上位控制裝置。上位控制裝置,係在圖像集獲取S501中獲取以包含缺陷的方式所攝影的檢測圖像、以及以不包含缺陷部位的方式所攝影的多個參照圖像,針對獲取的多個參照圖像之中之規定之參照圖像,以包含疑似缺陷部位的方式進行編集並生成疑似缺陷圖像,在使用疑似缺陷圖像的處理參數自動調整S503中決定,從疑似缺陷圖像能夠檢測出疑似缺陷部位的初始參數。此外,上位控制裝置,係使用初始參數從檢測圖像獲取缺陷候補部位,並使用在畫質改善處理參數調整S502中獲取的參數,從與缺陷候補部位相對應的部位的圖像來推斷高畫質的圖像,使用推斷出的高畫質的圖像進行缺陷區分,確定檢測圖像中的實際缺陷部位,並在使用檢測圖像的處理參數自動調整S504中決定能夠檢測出與已確定的實際缺陷部位接近的部位的參數。
Description
本發明關於缺陷檢測系統及缺陷檢測方法,例如關於對半導體晶圓中的缺陷進行檢測的缺陷檢測系統及缺陷檢測方法。
在半導體晶圓的製造中,重要的是迅速開始製造過程並早期轉向高良品率的量産體制以確保獲利。為了此一目的,在生產線上導入各種檢測裝置、觀察裝置及測量裝置等。
例如在檢測裝置中進行半導體晶圓的缺陷檢測,並從檢測裝置輸出缺陷座標,該缺陷座標用於表示樣本即半導體晶圓中的缺陷的位置(部位)的座標資訊。檢測裝置所輸出的缺陷座標被供給至觀察缺陷的觀察裝置亦即缺陷觀察裝置。在缺陷觀察裝置中依據缺陷座標以高分辨率對半導體晶圓中的缺陷位置進行攝影並輸出攝影圖像。作為缺陷觀察裝置廣泛利用了使用掃描型電子顯微鏡(以下亦稱為SEM(Scanning Electron Microscope))的觀察裝置(以下亦稱為Review SEM)。
藉由Review SEM進行的觀察作業被期待著在半導體晶圓的量産線上能夠自動化。該情況下,Review SEM搭載有:自動收集樣本內的缺陷位置處的圖像的缺陷圖像自動收集處理(以下稱為ADR(Automatic Defect Review)),及自動分類所收集的缺陷圖像的缺陷圖像自動分類處理(以下稱為ADC(Automatic Defect Classification))。藉此,可以自動獲得已分類的缺陷圖像。
檢測裝置輸出的缺陷座標包含誤差,因此在ADR中,以從檢測裝置供給的缺陷座標為中心,進行寬視野攝影,並從該攝影獲得的圖像缺陷進行再度檢測。ADR以高倍率攝影經由該再度檢測獲得的缺陷部位,並輸出高分辨率的圖像作為觀察用圖像。作為從SEM所攝影的圖像(檢測圖像)來檢測出缺陷的方法,已知有對形成有和缺陷部位相同的電路圖案之區域進行攝影,並以該攝影獲得的圖像作為參照圖像,對攝影了缺陷部位的檢測圖像與參照圖像進行比較,由此,而進行檢測的方法。
此外,作為在ADR中自動調整與檢測相關的處理參數的方法,專利文獻1中記載有探索能夠檢測出由用戶事先提示的缺陷部位的處理參數的方法。此外,專利文獻2中記載的探索方法,係使用攝影了缺陷部位的檢測圖像與多個參照圖像,來探索能夠高精度地區分缺陷與虛假(Nuisance)的處理參數的方法。
[先前技術文獻]
[專利文獻]
[專利文獻1] 特開2011-145275號公報
[專利文獻2] 特開2014-145694號公報
[發明所欲解決的課題]
半導體製造過程中為了提升元件之性能或降低製造成本,而繼續進行提高集積密度的嘗試,並進展著使形成在半導體晶圓上的電路圖案之尺寸微細化。伴隨著此,對元件的動作成為致命缺陷的尺寸亦有微小化的趨勢。因此,在Review SEM中亦要求進行再度檢測以便勿漏掉微小的缺陷,並攝影觀察用圖像。此外,半導體的製造工程有各種各樣,缺陷或電路圖案的外觀亦各有不同。因此,在檢測微小的缺陷時配合觀察對象的半導體晶圓的特徴,來調整與檢測相關的處理參數是重要的。但是,與檢測相關的處理參數的調整通常需要嘗試錯誤,成為增加用戶之作業負擔的因素。此外,處理參數調整的結果亦依賴於用戶之熟練度,因此熟練度低的用戶進行調整的情況下,存在導致缺陷檢測率降低的問題。
專利文獻1記載有探索能夠檢測出缺陷部位的處理參數的方法,但是用戶需要事先提示缺陷部位。相對於此,專利文獻2記載有藉由比較多個參照圖像與檢測圖像,而能夠高精確度地檢測出檢測圖像中包含的缺陷部位的方法。但是,在檢測圖像或/及參照圖像的SNR (Signal to Noise Ratio)低的情況下,不一定能夠高精度地抽出缺陷部位。
亦即,欲全自動調整與缺陷之檢測相關的處理參數時,重要的是不受SNR的影響而能夠高精度地自動抽出檢測圖像中的缺陷部位。但是,專利文獻1及2之任一都未論及此一問題。
本發明的目的在於提供缺陷檢測系統及缺陷檢測方法,其能夠全自動調整與缺陷之檢測相關的處理參數。
本發明的前述以及其他目的及新穎的特徴可以由本說明書之記述及添付圖面加以理解。
[解決課題的手段]
本案揭示的發明之中,簡單說明代表性者之概要如下。
缺陷檢測系統,係具備:缺陷檢測裝置,其具備對樣本進行攝影的檢測器;和上位控制裝置。此處,上位控制裝置,係獲取藉由缺陷檢測裝置以包含缺陷的方式所攝影的檢測圖像、以及藉由缺陷檢測裝置以不包含缺陷部位的方式所攝影的多個參照圖像,針對獲取的多個參照圖像之中之規定之參照圖像,以包含疑似缺陷部位的方式進行編集並生成疑似缺陷圖像,從疑似缺陷圖像來決定能夠檢測出疑似缺陷部位的初始參數。此外,上位控制裝置,係使用初始參數從檢測圖像獲取缺陷候補部位,並在檢測圖像及參照圖像中,從與缺陷候補部位相對應的部位的圖像來推斷高畫質的圖像,使用推斷出的檢測圖像及參照圖像中的高畫質的圖像進行缺陷區分,確定檢測圖像中的實際缺陷部位,並決定能夠檢測出與已確定的實際缺陷部位接近的部位的參數。
[發明效果]
簡單說明本案揭示的發明之中代表性者所能獲得的效果如下。
亦即,依據本發明的代表性實施之形態,可以提供缺陷檢測系統及缺陷檢測方法,其能夠全自動調整與缺陷之檢測相關的處理參數。
以下,參照圖面詳細說明實施實施本發明之最佳之形態。又,對實施發明之最佳形態進行說明之各圖中,具有相同功能的構件被附加相同的符號,並省略其重複說明。
以下,作為缺陷檢測系統,係說明以半導體晶圓為樣本,對半導體晶圓之缺陷進行檢測的系統(半導體晶圓缺陷檢測系統)之例。此外,以半導體晶圓缺陷檢測系統中的缺陷觀察裝置(半導體晶圓缺陷觀察裝置)為例說明實施形態。缺陷檢測系統具備依據來自檢測裝置之缺陷座標對樣本進行攝影的攝影裝置,在以下之說明中,說明以SEM作為攝影裝置使用的情況。但是,缺陷檢測系統具備的攝影裝置不限定於SEM,亦可以是SEM以外之攝影裝置,例如可以是使用離子等之荷電粒子的攝影裝置。
(實施形態)
圖1係表示實施形態的缺陷檢測系統之構成的方塊圖。圖1中,1表示缺陷檢測系統。缺陷檢測系統1具備:缺陷檢測裝置2,和與缺陷檢測裝置2連結,並對缺陷檢測裝置2進行控制等的上位控制裝置3。本實施形態中說明缺陷檢測裝置2為缺陷觀察裝置之情況
缺陷檢測裝置2具備各種機器,圖1中僅描述說明上必要的機器。亦即,缺陷檢測裝置2具備對半導體晶圓的圖像進行攝影的SEM101。上位控制裝置3具備:對缺陷檢測裝置2之整體進行控制的控制器102;記憶媒體裝置(記憶器)103,其具備用來記憶包含程式的資訊之磁碟或半導體記憶體等;及依據從記憶器103讀出的程式進行運算的運算器104。此外,上位控制裝置3還具備:外部記憶媒體輸出入器(輸出入IF)105,其在與設置於其外部的記憶媒體裝置4之間進行資訊之輸出入;在與用戶之間進行資訊之輸出入的用戶介面控制器(用戶IF)106;及網路介面器(網路IF)107,其經由網路進行缺陷圖像分類裝置等與缺陷檢測系統1之間之通信之控制。
用戶係使用與用戶IF106連接的輸出入終端113對缺陷檢測系統1進行資訊之輸入,並且確認從缺陷檢測系統1輸出的資訊。輸出入終端113例如由鍵盤、滑鼠及顯示器等構成。此外,圖1中,5係表示與網路IF107連接的缺陷圖像分類裝置。經由缺陷圖像分類裝置5分類出的結果例如被供給至其他的上位控制裝置(未圖示)。
運算器104例如由CPU(Central Processing Unit)構成,依據來自記憶器103之程式動作。此外,控制器102例如由硬體或CPU構成。控制器102由CPU構成的情況下,控制器102亦依據來自記憶器103之程式動作。記憶器103中例如經由輸出入IF105或/及網路IF107並從記憶媒體裝置4或/及網路被供給程式並予以儲存。亦即,使運算器104及控制器102之CPU動作的程式係由作為媒體的記憶媒體裝置4提供,或經由網路傳送。
圖1中,上位控制裝置3示出1個之情況,但是上位控制裝置3可以有多個。
構成缺陷檢測裝置2的SEM101,係具備:搭載有樣本即半導體晶圓108的可動載台109;對半導體晶圓108照射電子束的電子源110;檢測從半導體晶圓108產生的電子(二次電子或反射電子)的檢測器111;使電子束聚焦在半導體晶圓108上的電子透鏡(未圖示);使電子束在半導體晶圓108上進行掃描的偏轉器112等。
上述控制器102、記憶器103、運算器104、輸出入IF105、用戶IF106及網路IF107連接於匯流排114,檢測器111檢測的資訊被供給至匯流排114,並經由運算器104等進行處理。具備連接於匯流排114的控制器102、記憶器103、運算器104、輸出入IF105、用戶IF106及網路IF107的上位控制裝置3可以視為電腦。該情況下,可動載台109、偏轉器112、檢測器111等係由電腦進行控制,針對樣本的缺陷觀察處理,可以視為藉由電腦執行程式並處理來自缺陷檢測裝置2之資訊而實現。
圖2係表示藉由實施形態的控制器、記憶器及運算器來實現的構成的圖。依據從圖1所示的記憶部103讀出的程式使控制器102及運算器104動作,控制器102及運算器104係由圖2所示的機器構成(實現)。此外,控制器102及運算器104依據程式而動作,藉此,在記憶器103形成圖2所示的3個記憶部。
接著,分別說明由控制器102及運算器104來實現的機器及形成於記憶器103的記憶部。
控制器102依據程式而構成載台控制器201、電子束掃描控制器202及檢測器控制器203。
*載台控制器201係進行可動載台109(圖1)之移動或停止之控制的控制部。
*電子束掃描控制器202係使電子束照射在規定之視野内的方式對偏光器112(圖1)進行控制的控制部。
*檢測器控制器203係與電子束之掃描同步地進行檢測器111(圖1)之信號之取樣,並調整取樣的信號之增益或補償等,而生成數位圖像的控制部。
於記憶器103形成有圖像記憶部204、處理參數記憶部205及觀察座標記憶部206。
*圖像記憶部204係記憶檢測器控制器203所生成的數位圖像與附屬資訊,並且記憶運算器104所生成的圖像的記憶部。
*處理參數記憶部205係記憶在SEM101中進行攝影時之條件(攝影條件)或缺陷檢測時使用的處理參數等的記憶部。
*觀察座標記憶部206係記憶所輸入的觀察對象的缺陷座標等的記憶部。
運算器104依據程式來構成比較檢測器207、疑似缺陷圖像生成器208、畫質改善器209、缺陷區分器210及處理參數調整器211。
*比較檢測器207係對檢測圖像內的缺陷部位進行檢測的檢測功能部。
*疑似缺陷圖像生成器208係對攝影的攝影圖像的一部分區域進行編集,並生成擬似的缺陷圖像的疑似缺陷圖像生成功能部。
*畫質改善器209係改善攝影圖像的畫質的畫質改善功能因如後述說明。基於SEM等之攝影裝置之分辨率或SNR會有攝影圖像的畫質降低之問題,因此藉由畫質改善功能部進行畫質之改善。
*缺陷區分器210係對缺陷部位與例如製造誤差引起的虛假(Nuisance)進行區分的區分功能部。
*處理參數調整器211係對缺陷檢測系統1中執行的與缺陷檢測處理相關的處理參數自動地進行調整的處理參數調整功能部。作為該處理參數例如有判斷為缺陷時的臨界值等。
圖3係示意表示實施形態的SEM中的檢測器之配置之圖。此處示出在SEM101内搭載有5個檢測器301~305的情況。當然,檢測器之個數不限定於此,可以多於或少於5個。
圖3(A)係從斜向觀察SEM101的投影圖,圖3(B)係從z軸方向觀察的平面圖,圖3(C)係從y軸方向觀察的斷面圖。
如圖3(A)所示,檢測器301及302配置在沿著y軸的位置A及B,檢測器303及304配置在沿著x軸的位置C及D。雖無特別制限,這些檢測器301~304在z軸上配置在相同的平面内。和檢測器301~304配置的z軸之平面比較,檢測器305係沿著z軸配置在遠離半導體晶圓108的位置E。又,圖3(B)及(C)中省略檢測器305。
檢測器301~304係表示以可以選擇性檢測具有確定之放出角度(仰角及方位角)之電子的方式而配置的多個檢測器。亦即,檢測器301可以檢測從半導體晶圓108沿著y軸之進行方向(箭頭之方向)放出的電子,檢測器302可以檢測從半導體晶圓108沿著y軸之後退方向(相對箭頭之反轉方向)放出的電子。同樣地,檢測器304可以檢測沿著x軸之進行方向放出的電子,檢測器303可以檢測沿著x軸之後退方向放出的電子。藉此,可以獲取就好像從對向方向對各別之檢測器照射了光的具有對比的圖像。檢測器305係作為檢測主要從半導體晶圓108放出的電子的檢測器之功能。這樣地,藉由將檢測器沿著不同的軸線配置,可以獲取具有對比的圖像,但是不限定於這樣的配置,將檢測器配置於與圖3不同的位置亦可。
圖4係示意表示,藉由檢測裝置進行了檢測的半導體晶圓中的缺陷座標之例之圖。藉由另一檢測裝置(以下稱為事前檢測裝置)檢測出的缺陷座標被供給至缺陷檢測系統1。圖4示出藉由該事前檢測裝置檢測出的缺陷座標。
圖4中WW表示半導體晶圓,DI表示晶粒(半導體晶片)。此外,×表示事前檢測裝置檢測出的缺陷座標,以在缺陷檢測系統1中觀察的情況下,×表示成為觀察對象的觀察座標。
本實施形態的缺陷檢測系統,係具備根據來自事前檢測裝置之缺陷座標,自動收集缺陷部位之高精細的圖像的功能。該情況下,事前檢測裝置所供給的缺陷座標包含有誤差。因此,缺陷檢測系統1中,係以事前檢測裝置所供給的缺陷座標作為中心,在廣視野內進行圖像(檢測圖像)之攝影,對缺陷部位進行再度檢測,以高倍率對再度檢測的缺陷部位進行攝影,而獲取觀察圖像。
如圖4所示,在半導體晶圓WW形成有多個晶粒DI。因此,針對具有缺陷部位的晶粒例如藉由攝影與其相鄰的其他的晶粒DI的圖像,即可獲取不包含缺陷部位的良品晶粒DI的圖像。如後述說明,在缺陷檢測系統1的缺陷檢測處理中,係以該良品晶粒DI的圖像作為參照圖像,與檢測圖像之間進行濃淡之比較,並檢測出不同濃淡的部位作為缺陷部位。用來確定作為缺陷部位而被判斷的濃淡之差的臨界值,係缺陷檢測處理中的處理參數之一例。
<缺陷檢測處理之處理參數調整>
接著,說明缺陷檢測系統1中實施的缺陷檢測處理之處理參數自動調整方法。首先,使用圖面說明處理參數自動調整方法之整體,接著,詳細說明處理參數自動調整方法中實施的各步驟。又,後述說明的各步驟,係藉由構成圖2所示的運算器104的比較檢測器207、疑似缺陷圖像生成器208、畫質改善器209、缺陷區分器210及處理參數調整器211來實施。此外,實施步驟時亦使用圖2所示的記憶器103及控制器102。例如,實施步驟時,步驟中生成的資訊被記憶於記憶器103,步驟中要求的資訊係從記憶器103讀出。
圖5係表示實施形態的處理參數自動調整方法之處理的整體流程圖。
在步驟S500_S中開始參數自動調整。接著,在步驟S501中對半導體晶圓進行攝影,獲取使用於調整處理參數的圖像的集(圖像集)。如前述這樣地,為了調整處理參數而使用檢測圖像與參照圖像,因此在步驟S501中獲取,這些圖像作為圖像集。
接續步驟S501而執行步驟S502。於步驟S502中實施,與圖2所示的畫質改善器209中進行的畫質改善處理相關的參數之自動調整。
接著,在步驟S503中,使用圖2中所示的疑似缺陷圖像生成器208生成疑似缺陷圖像,使用疑似缺陷圖像進行處理參數的調整。如後述說明,在步驟S503中,疑似缺陷圖像生成器208所生成的疑似缺陷的部位被記憶,並進行能夠檢測出該疑似缺陷部位的處理參數之探索,調整成為能夠藉由處理參數檢測出疑似缺陷部位。步驟S503中實施的使用疑似缺陷的處理參數自動調整中,包含於攝影的圖像中的雜訊,例如考慮到短路雜訊或電路圖案的邊緣粗糙度、表面粗糙度等,且以能夠檢測出疑似缺陷部位的方式進行處理參數的調整。
但是,利用在步驟S503中調整過的處理參數未必一定能夠檢測出實際的缺陷部位。於此,在在該實施形態中,以使用疑似缺陷調整過的處理參數作為初始處理參數,在步驟S504(使用檢測圖像的處理參數自動調整)中,根據初始處理參數使用檢測圖像進行處理參數的調整,而獲取最終的處理參數。亦即,以在步驟S503中調整過的處理參數作為初始值,在步驟S504中使用該初始值進一步進行處理參數的調整,而獲取最終處理參數。
之後,在步驟S500_E中結束處理參數自動調整之處理。步驟S504中獲取的最終處理參數被使用作為對其他半導體晶圓的缺陷觀察處理。
<<圖像集獲取步驟S501>>
圖6係表示實施形態的圖像集獲取步驟中實施的處理之流程圖。在本實施形態的處理參數自動調整方法中使用包含缺陷部位的檢測圖像與不包含缺陷部位的2個參照圖像。
在步驟S501_S中開始圖像集獲取步驟S501。接著,對包含缺陷部位的晶粒DI(圖4)與不包含缺陷部位的2個晶粒DI,針對取樣的調整用觀察座標點i進行圖像之攝影。此處,包含缺陷部位的晶粒的圖像成為檢測圖像,不包含缺陷部位的晶粒的圖像成為參照圖像。
在步驟S601中,針對不包含缺陷部位的2個晶粒之中之一方之晶粒進行調整用觀察座標i中的圖像之攝影。該步驟S601中攝影的圖像成為調整用觀察座標i中的第1參照圖像Ri1。此外,在步驟S602中,針對不包含缺陷部位的2個晶粒之中之另一方之晶粒進行調整用觀察座標i中的圖像之攝影並作為第2參照圖像Ri2。此外,在步驟S603中,針對包含缺陷部位的晶粒進行調整用觀察座標i中的圖像的攝影。步驟S603中攝影的圖像成為調整用觀察座標i中的檢測圖像Ti。
接著,在步驟S604中,進行檢測圖像Ti與例如第1參照圖像Ri1之比較的比較檢測,從檢測圖像檢測出缺陷部位。在步驟S605中,對步驟S604中檢測出的缺陷部位之高倍率的圖像(高倍率圖像)Hi進行攝影。
步驟S600_RS與S600_RE係表示,使調整用觀察座標i從1變化至N之同時,重複執行介於步驟S600_RS與步驟S600_RE之間的前述步驟S601~S605。亦即,使調整用觀察座標i從1變化至N之同時,重複執行步驟S600~S605。
當調整用觀察座標i=N的步驟結束時,執行步驟S501_E,結束圖像集獲取在步驟。
在圖像集獲取之步驟S501中未進行處理參數的調整,因此使用事先設定的預設之處理參數。例如,在步驟S604中,作為用來確定進行比較檢測時的臨界值的處理參數,可以使用預設之處理參數。因為是預設之處理參數,因此有可能無法獲得高的缺陷檢測率。但是,此處獲取的高倍率圖像Hi係使用在之後之步驟S502中實施的畫質改善處理之參數調整者,未必一定包含缺陷亦可。
又,作為攝影第1參照圖像與第2參照圖像之對象的晶粒,只要是半導體晶圓中,不包含缺陷部位,且配置在相互不同的位置的晶粒即可。
<<畫質改善處理參數調整在步驟S502>>
圖7係說明實施形態的畫質改善處理參數調整步驟之圖。
在本實施形態的畫質改善處理中,藉由機械學習低畫質的圖像與高畫質的圖像之間的對應關係,從畫質低的圖像來推斷畫質高的圖像。此處,在圖像集獲取步驟S501中攝影的檢測圖像之中,例如對在步驟S605中獲得的高倍率圖像Hi實施圖像處理而生成擴大了攝影視野的圖像。該擴大了攝影視野的圖像被使用作為低畫質的圖像(低畫質圖像)。另一方面,在步驟S605中攝影的高倍率圖像被使用作為高畫質的圖像(高畫質圖像)。低畫質圖像與高畫質圖像各自包含被視為同一缺陷部位的區域,但是低畫質圖像以擴大攝影視野的方式被實施圖像處理,因此例如和高畫質圖像比較成為模糊的圖像。
作為實現機械學習之方法可以使用已知之深層學習。具體而言,可以使用卷積神經網路。使用圖7說明具體之一例。圖7示出使用具有3層結構的神經網路的例。
圖7中,Y表示作為輸入的低畫質圖像,F(Y)為高畫質圖像的推斷結果。此外,該圖中,F1(Y)及F2(Y)表示輸入與推斷結果之間之中間數據。中間數據F1(Y)、F2(Y)及推斷結果F(Y)可以藉由式(1)~(3)算出。此處,*表示卷積運算,W1表示n1個c0×f1×f1大小的濾波器(filter),c0表示輸入圖像的通道(channel)數,f1表示空間濾波器之大小。
輸入圖像Y經由c0×f1×f1大小的濾波器實施n1次卷積處理而得到n1維的特徴圖(feature map)。B1是n1維的向量且是與n1個濾波器相對應的偏置分量。同樣地,W2是n1×f2×f2大小的濾波器,B2是n2維的向量,W3是n2×f3×f3大小的濾波器,B3是c3維的向量。
F1(Y)=max(0,W1*Y+B1) ・・・・・・・・・式(1)
F2(Y)=max(0,W2*F1(Y)+B2) ・・・・・式(2)
F(Y)=W3*F2(Y)+B3 ・・・・・・・・・・・・・式(3)
前述c0和c3係由低畫質圖像和高畫質圖像的通道數決定的值。此外,f1、f2、n1、n2是用戶在學習序列之前決定的超參數,例如可以設定為f1=9、f2=5、n1=128、n2=64。
在畫質改善處理參數調整之步驟S502中,要調整的參數是W1、W2、W3、B1、B2及B3。以擴大了攝影視野的前述低畫質圖像作為輸入,以前述高畫質圖像作為推斷結果,對參數(W1、W2、W3、B1、B2及B3)進行調整,取得推斷結果與前述高畫質圖像能夠匹配的參數作為調整的結果。以下,亦將在畫質改善處理參數調整中進行調整的參數稱為畫質改善處理參數。
在該畫質改善處理參數調整中,可以使用在神經網路之學習中常用的誤差反向傳播。此外,算出推斷誤差時,可以使用所有獲取的學習用圖像對(前述低畫質圖像和前述高畫質圖像),但亦可以採用小批量方式。亦即,可以從學習用圖像對之中隨機抽取幾個圖像,並重複執行畫質改善處理參數之更新。此外,從一個學習用圖像對隨機切出補丁圖像作為神經網路之輸入圖像Y亦可。由此,可以有效地進行學習。又,亦可以使用其他構成作為以上所示的卷積神經網路之構成。例如,可以變更層數,使用4層以上之網路等亦可,亦可以是具有跳躍連接(Skip connection)的構成。
<<使用疑似缺陷圖像的處理參數自動調整步驟S503>>
圖8係表示實施形態的使用疑似缺陷圖像的處理參數自動調整步驟中實施的處理之流程圖。
在步驟S503_S中,開始使用疑似缺陷圖像的參數自動調整之步驟。
在步驟S801中針對調整用觀察座標點i設定疑似缺陷的賦予區域Pi。賦予區域Pi之中心位置及其大小(寬度和高度)可以在攝影圖像的平面内隨機設定。例如,在調整用觀察座標點i指定的攝影圖像的區域中設定疑似缺陷的賦予區域Pi。
接著,在步驟S802中,針對在圖像集獲取之步驟S501中獲取的第1參照圖像Ri1中的賦予區域Pi進行圖像的編集。藉由該圖像編集而對賦予區域Pi賦予疑似缺陷(擬似的缺陷陰影),並將被賦予了疑似缺陷的圖像作為疑似缺陷圖像Fi進行記憶。
使調整用觀察座標i從1至N變化之同時,重複執行介於步驟S800_RS與步驟S800_RE之間的前述步驟S801及S802。藉此,例如將N個疑似缺陷圖像Fi進行記憶。
圖9係示意表示實施形態的疑似缺陷圖像的例之圖。圖9中,901a及901b係未賦予疑似缺陷的第1參照圖像Ri1之例。此處,901a係表示藉由圖3所示的檢測器305檢測出的圖像,901b係表示藉由檢測器301檢測出的圖像。902a~905a及902b~905b係表示在參照圖像901a及901b中賦予了疑似缺陷時的疑似缺陷圖像。
疑似缺陷圖像902a及902b示出在賦予區域Pi即區域PD之濃淡添加一定偏移而編集了疑似缺陷的情況。此外,將以包含電路圖案的邊緣的方式來設定賦予區域Pi(PD)並添加變形之處理的示例表示為疑似缺陷圖像903a及903b。
此外,對檢測器之特性(包含配置)進行模擬而生成缺陷陰影亦可。例如,疑似缺陷圖像904a及904b係模擬了低段差缺陷者。亦即,僅對疑似缺陷圖像904b設定賦予區域PI(PD)並賦予疑似缺陷。這樣的缺陷可以利用以能夠突顯凹凸的方式而配置的檢測器301之特性檢測出。亦即,如圖3中之說明,檢測器301可以對與從x軸方向放出的電子呈對向的圖像進行攝影。因此,在經由檢測器305攝影的圖像中難以檢測出的低段差,亦可以藉由檢測器301突顯為缺陷陰影而檢測出。賦予這樣的疑似缺陷亦可。以上係模擬了微小或低對比的缺陷者,但是如疑似缺陷圖像905a及905b所示生成覆蓋整個視野的巨大缺陷亦可。疑似缺陷的種類不限定於這些,可以對各種缺陷實施模型化並生成。
回至圖8繼續說明使用疑似缺陷圖像的處理參數自動調整。記憶於記憶器103的疑似缺陷圖像Fi、第2參照圖像Ri2、和應探索的處理參數θj之集合(set)提供給步驟S803。在步驟S803中,使用處理參數θj進行疑似缺陷圖像Fi與第2參照圖像Ri2之比較的比較檢測,並抽出缺陷區域Oij。
接著,在步驟S804中,針對由步驟S803抽出的缺陷區域Oij與疑似缺陷圖像Fi中的疑似缺陷區域Pi之一致度進行比較,判斷缺陷的檢測是否成功。該情況下,例如當抽出的缺陷區域Oij與疑似缺陷區域Pi間的重疊成為規定之值以上時判斷為缺陷的檢測成功者。
應探索的處理參數θj例如為1~H,這些成為1個處理參數集。在步驟S800_jRS中,例如當處理參數θj設定為1時,在調整用觀察座標點i從1變化至N之間,重複執行介於步驟S800_iRS與步驟S800_iRE之間的前述步驟S803及S804。
當執行N次步驟S803及S804之後,在步驟S800_iRE之後執行步驟S805。在步驟S805中算出步驟S803中使用的處理參數θi(i=1)之缺陷檢測成功率。
接著,藉由步驟S800_jRE回至步驟S800_jRS,從處理參數集選出次一處理參數θj(例如J=2)。使用該選出的處理參數θj(j=2)和前述處理參數θj(j=1)時同樣地重複執行步驟S803及804。
當全部處理參數集θj之處理參數被選擇後,在步驟S800_jRE之後執行步驟S806。在步驟S806中,從與步驟S805中算出的處理參數θj(j=1~H)分別對應的缺陷檢測成功率之中選擇缺陷檢測成功率為最大之處理參數θj,並作為初始處理參數θ1st予以輸出。之後,在步驟S503_E中結束使用疑似缺陷圖像的參數自動調整之步驟。
<<使用檢測圖像的處理參數自動調整步驟S504>>
圖10係表示實施形態的使用檢測圖像的處理參數自動調整步驟中實施的處理之流程圖。
在步驟S504_S中開始使用檢測圖像的處理參數自動調整步驟。
記憶於記憶器103的檢測圖像Ti、第2參照圖像Ri2及作為初始處理參數θ1st被供給至步驟S1001。
在步驟S1001中執行,使用初始處理參數θ1st針對與取樣的調整用觀察座標i對應的檢測圖像Ti與第2參照圖像Ri2進行比較的比較檢測,抽出M點之缺陷候補。具體而言,在步驟S1001中,執行以初始處理參數θ1st作為臨界值,對檢測圖像Ti與第2參照圖像Ri2進行比較,抽出異常度高的上位M處之部位。初始處理參數θ1st,係藉由使用疑似缺陷進行調整,而調整成為能夠檢測出疑似缺陷的處理參數θj,因此未必能夠檢測出實際的檢測圖像Ti包含的實際缺陷部位。但是,藉由抽出M點這樣的多個點作為缺陷候補,可以期待實際缺陷部位包含於M點之中。換言之,藉由求出初始處理參數θ1st,可以減少用來抽出實際缺陷部位的對象數,可以減少與檢測相關的處理量。
接著,執行步驟S1002。在步驟S1002中,先前抽出的M點之缺陷候補被區分缺陷或錯誤地檢測到製造偏差的Nuisance,從檢測圖像Ti之中高精度地抽出實際缺陷部位Qi。接著,使用圖面詳細說明該步驟S1002。
<<<藉由缺陷區分抽出實際缺陷部位的步驟S1002>>>
圖11係表示實施形態的藉由缺陷區分抽出實際缺陷部位的步驟中之處理的流程圖。此外,圖12係說明實施形態的實際缺陷部位之抽出之示意圖。
圖12中,1201表示攝影的檢測圖像Ti之示意平面圖。檢測圖像Ti中示出在圖10之步驟S1001中抽出M=3點之缺陷候補的情況。亦即,檢測圖像1201中示出以虛線包圍的區域1202~1204作為缺陷候補部位而被抽出的區域。為了吸收進行圖像之攝影的缺陷檢測裝置2中產生的誤差,檢測圖像Ti被擴大其視野並增大像素尺寸而進行攝影。此外,為了提升ADR之生產量,半導體晶圓108(圖1)之掃描次數少,幀添加的次數變少,檢測圖像Ti中的SNR低。因此,難以直接高精度地從檢查圖像Ti中識別出缺陷。
在該實施形態中,切出缺陷候補部位1202~ 1204的圖像,針對切出的缺陷候補部位1202~1204實施畫質改善處理,推斷高倍率圖像,並使用推斷出的高倍率圖像進行實際缺陷部位之區分。該情況下,在畫質改善處理中,係使用前述畫質改善處理參數調整步驟S502中調整過的畫質改善處理參數,從缺陷候補部位推斷對應的高倍率圖像。由此,可以使用高SNR的圖像進行缺陷之區分,可以進行高精度之區分。
又,圖12中,1205a~1207a表示切出缺陷候補部位1202~1204並放大了的低SNR的缺陷候補部位的圖像。另一方面,1205b~1207b表示切出缺陷候補部位1202~1204,實施畫質改善處理而推斷出的高SNR的缺陷候補部位的圖像。
接著,使用圖11說明前述步驟S1002中進行的具體處理。在步驟S1002_S中開始藉由缺陷區分抽出實際缺陷部位的步驟。
在步驟S1101中,藉由畫質改善處理從缺陷候補部位(區域)推斷高倍率圖像。此時,以缺陷候補區域之中心成為推斷出的高倍率圖像的中心的方式進行推斷。畫質改善處理已經在步驟S502描述,因此省略其詳細,但是在步驟S1101中使用的畫質改善處理參數,係使用在步驟S502中調整過的畫質改善處理參數。亦即,使用事先經過學習的神經網路之畫質改善處理參數,以缺陷候補部位作為輸入,可以自動推斷相對應的高倍率圖像。藉此,可以獲取更正確推斷的高倍率圖像,可以更高精度地進行缺陷的區分。
該實施形態中,在次一步驟S1102中,對第2參照圖像Ri2亦同樣地實施畫質改善處理。對參照圖像Ri2實施的畫質改善處理之條件係和步驟S1101相同,差異點為取代缺陷候補部位而輸入參照圖像Ri2,並輸出與參照圖像Ri2相對應的高倍率圖像。
接續步驟S1102而執行步驟S1103。在步驟S1103中,再度針對對應於缺陷候補部位的高倍率圖像與對應於參照圖像的高倍率圖像進行比較,並依據再度比較檢測的結果,再度算出異常度。
步驟S1100_RS與S1100_RE表示重複執行M(=3)次介於該2個步驟的前述步驟S1101~S1103。藉此,取得與M點分別對應的異常度。
在步驟S1104中,從與M點對應的M個異常度中選擇異常度為最大者,並將與選擇的異常度對應的缺陷候補部位區分為實際缺陷部位Qi進行輸出。
之後,在步驟S1002_E中結束藉由缺陷區分抽出實際缺陷部位的步驟。
在該實施形態中示出藉由針對缺陷候補部位與參照圖像的雙方實施畫質改善處理,而生成各自對應的高倍率圖像的例,但是針對缺陷候補部位或參照圖像生成對應的高倍率圖像亦可。但是,藉由生成雙方之高倍率圖像,可以對高SNR的高倍率圖像間進行進行比較,因此可以算出更正確的異常度。
回至圖10繼續說明使用檢測圖像的處理參數自動調整步驟中實施的處理。
圖10中,在步驟1000_RS與S1000_RE表示使調整用觀察座標點i從1變化至N,並且重複執行介於該步驟間的前述步驟S1001與S1002。藉此而抽出與調整用觀察座標點i(i=1~N)分別相對應的實際缺陷部位Qi。
實際缺陷部位Qi被抽出之後,藉由步驟S1003~S1006、S1000_jRS、S1000_iRS、S1000_jRE及S1000_jRE執行從處理參數θJ之集合探索缺陷檢測系統1(圖1)中使用的處理參數θj的處理。該處理係和圖8說明的使用疑似缺陷圖像的處理參數調整類似。亦即,圖10所示的步驟S1003~S1006、S1000_jRS、S1000_iRS、S1000_jRE及S1000_jRE係和圖8所示的步驟S803~S806、S800_jRS、S800_iRS、S800_jRE及S800_jRE類似。主要的差異點為使用檢測圖像Ti來取代疑似缺陷圖像Fi。
針對圖10所示的步驟S1003~S1006、S1000_jRS、S1000_iRS、S1000_jRE及S1000_jRE中執行的處理簡單說明如下。
使用事先設定的應探索的處理參數θj(j=1~H)之集合,針對每個檢測圖像Ti(i=1~N),藉由與第2參照圖像Ri2(i=1~N)之比較而檢測出缺陷區域Oij。接著,針對檢測出的區域Oi與實際缺陷部位Qi之一致度進行比較,判斷實際缺陷的檢測是否成功。在針對全部之檢測圖像Ti(i=1~N)重複進行上述時,算出處理參數θj之缺陷檢測成功率。接著,從應探索的處理參數θj(j=1~H)之集合之中選擇缺陷檢測成功率為最大之處理參數θj作為最終處理參數進行輸出。
輸出最終處理參數之後,在步驟S504_E中結束使用檢測圖像的處理參數自動調整步驟。
輸出的最終處理參數被記憶於記憶器103,在檢測其他半導體晶圓時共用。亦即,缺陷檢測系統中,例如對100片半導體晶圓進行檢測的情況下,使用1片半導體晶圓求出最終處理參數之後,依據該最終處理參數對其餘之99片半導體晶圓實施檢測。換言之,在多片半導體晶圓中以共用之最終處理參數作為臨界值來進行參照圖像與檢測圖像之比較檢測。
在該實施形態中,處理參數無需經由用戶的操作而自動地調整為最終處理參數。經由調整獲得的最終處理參數,在比較檢測中成為可以檢測出實際缺陷部位或與實際缺陷部位接近的部位的處理參數,因此藉由缺陷檢測系統1例如對100片半導體晶圓可以分別檢測出實際缺陷部位或與其接近的部位,可以自動攝影實際缺陷部位或與其接近的部位的圖像。
前述各步驟可以藉由圖2所示的運算器104內的構成來實現。以下描述步驟中之處理與運算器104內的構成之對應關係之一例。
疑似缺陷圖像生成器208係以編輯參照圖像並生成包含了疑似缺陷部位的疑似缺陷圖像的方式而發揮功能。初始參數調整器211係以從疑似缺陷圖像來決定能夠檢測出疑似缺陷部位的初始參數的方式而發揮功能,並且以決定能夠檢測出與已確定的實際缺陷部位接近的部位的處理參數的方式而發揮功能。此外,比較檢測器207係使用處理參數針對包含缺陷部位而攝影的檢測圖像進行獲取缺陷候補部位的比較而發揮功能。畫質改善器209係在檢測圖像及參照圖像中從與缺陷候補部位相對應的圖像來推斷高畫質圖像(高倍率圖像)而發揮功能功能。缺陷區分器210係使用高畫質圖像進行缺陷區分,並確定檢測圖像中的實際缺陷部位而發揮功能。
此外,各步驟中攝影的圖像被記憶於記憶器103的圖像記憶部204,在步驟之處理中有要求時將記憶於圖像記憶部204的圖像予以輸出。關於各種參數亦同樣地在處理參數記憶部205與運算器104之間進行讀寫。此外,經由事前檢測器檢測出的缺陷座標這樣的觀察座標,係在觀察座標記憶部206與運算器104之間進行讀寫。
<用戶的操作>
用戶使用圖1所示的輸出入終端113來操作實施形態的缺陷檢測系統1。實施形態中用戶利用GUI (Graphical User Interface)來操作缺陷檢測系統1。
圖13係與實施形態的使用疑似缺陷圖像的參數自動調整相關的GUI之畫面。畫面中,在介面區域1301列表顯示疑似缺陷圖像的一覽表(ID),並且顯示各疑似缺陷圖像中的疑似缺陷是否可以檢測出(Detection(檢測))。此外,在介面區域1302顯示所選擇的疑似缺陷圖像(ID=F000003)。圖13之情況下,介面區域1302中被虛線包圍的區域PD係表示疑似缺陷部位。
在介面區域1303顯示有調整後之處理參數。此外,藉由變更該介面區域1303之滑塊可以手動調整處理參數。圖13之例中有#1~#6的處理參數,1個處理參數係比較檢測時使用的臨界值。
介面區域1304係表示呼叫GUI以便對所生成的疑似缺陷圖像的參數進行調整的按鈕。此外,介面區域1305係以手動方式呼叫使用所生成的疑似缺陷圖像的處理參數自動調整處理(前述步驟S803~S804之處理及步驟S805、S806之處理)的按鈕。介面區域1306係對使用介面區域1303中手動方式調整的參數的情況下之缺陷檢測成功率進行評估的按鈕。
圖14係表示與實施形態的使用檢測圖像的處理參數自動調整相關的GUI之畫面。在介面區域1401列表顯示檢測圖像的一覽表(ID),並且顯示檢測圖像中的實際缺陷的檢測是否成功(Run1,Run2)。在介面區域1402顯示所選擇的檢測圖像(ID=000003)及檢測出的實際缺陷的區域。圖14之例中,被虛線包圍的區域PD係表示實際缺陷的區域。
在介面區域1403顯示調整後之處理參數,並且藉由變更滑塊可以手動調整參數(#1~#6)。此處,1個處理參數也是比較檢測時使用的臨界值。
此外,介面區域1404係表示以手動方式呼叫對實際缺陷的區域進行自動抽出的處理(步驟S1001~S1002之處理)的按鈕,介面區域1405係表示追加實際缺陷的區域的按鈕,介面區域1406係表示刪除實際缺陷的區域的按鈕。
介面區域1407係表示以手動方式呼叫使用實際缺陷的參數自動調整處理的按鈕,介面區域1408係表示對使用介面區域1403中以手動方式調整的參數的情況下之缺陷檢測成功率進行評估的按鈕。
圖15係對與實施形態的疑似缺陷圖像的生成相關的參數進行調整的GUI之畫面。藉由點擊圖13中描述的介面區域1304之的按鈕來呼叫圖15所示GUI之畫面。圖15之GUI畫面具備用於指定生成時使用的參照圖像的ID的介面區域(生成對象ID指定)及用於指定生成的缺陷的種類的介面區域(生成疑似缺陷選項)。
如以上說明,依據實施形態,用戶無需提示缺陷部位,只要有觀察對象的半導體晶圓,即可全自動調整缺陷檢測處理之處理參數。藉此,可以減低與處理參數調整相關的用戶之作業負擔,可以提升裝置之易用性。此外,處理參數的調整結果不必依賴於用戶之熟練度,因此可以獲得穩定且高的缺陷檢測率。此外,不受SNR的影響且可以高精度地檢測出缺陷。
如圖5所示,實施形態中示出實施使用了疑似缺陷圖像的處理參數自動調整之步驟S503與使用了檢測圖像的處理參數自動調整之步驟S504之雙方的例,但不限定於此。亦即,可以僅實施步驟S503及S504之中任一方。例如,不實施步驟S504的情況下,以步驟S503中求出的調整後之處理參數作為最終處理參數使用即可。此外,不實施步驟S503的情況下,例如將用戶設定的參數視為由步驟S503調整過的處理參數即可。這樣的話,可以減少步驟數,可以縮短時間。但是,藉由實施雙方之步驟,可以更高精度地檢測出缺陷,因此較好是實施步驟S503及S504之雙方。
圖2所示運算器104中設置的比較檢測器207、疑似缺陷圖像生成器208、品質改善器209、缺陷區分器210及處理參數調整器211,可以藉由圖1所示的運算器104執行對應的程式來實現。該程式例如可以儲存於磁性記憶體或半導體記憶體等之記憶媒體4(圖1),並作為記憶媒體4被提供,亦可以藉由程式分配伺服器經由網路等分配至其他電腦。當然,比較檢測器207、疑似缺陷圖像生成器208、畫質改善器209、缺陷區分器210及處理參數調整器211之全部或者一部分不是以程式來實現而由硬體來實現亦可。藉由以程式來實現則可以使用泛用之機器。又,程式分配伺服器可以是電腦,該電腦具有:儲存有執行上述說明的處理的程式的記憶媒體;與前述網路連接的網路IF;及經由網路IF將儲存於記憶媒體的程式傳送至其他電腦的CPU。
本發明不限定於上述實施形態,可以包含各種變形例。此外,上述實施形態係為了容易理解本發明而詳細說明者,未必一定限定於具備說明的全部之構成者。又,圖面記載的各構件,為了容易理解本發明之說明而予以簡化・理想化,但是安裝上有可能成為更複雜的構成。此外,上位控制裝置可以是電腦。這樣的電腦不必要始終與缺陷檢測裝置通信。例如使圖像經由USB記憶體或其他電腦而由該電腦接受亦可。此外,在將已決定的參數輸入缺陷檢測裝置的情況下可以由該電腦直接在缺陷檢測裝置進行設定,或者藉由顯示在電腦之用戶介面而由缺陷檢測裝置之利用者來設定該參數亦可。又,用戶介面之顯示處理可以在攜帶型電腦等其他電腦進行顯示其他之處理。
1:缺陷檢測系統
2:缺陷檢測裝置
3:上位控制裝置
101:SEM
102:控制器
103:記憶器
104:運算器
108:半導體晶圓
111,301~305:檢測器
207:比較檢測器
208:疑似缺陷圖像生成器
209:畫質改善器
210:缺陷區分器
211:處理參數調整器
Fi:疑似缺陷圖像
Hi:高倍率圖像
Ri1,Ri2:參照圖像
S500:處理參數自動調整之步驟
S501:圖像集獲取之步驟
S502:畫質改善處理參數調整之步驟
S503:疑似缺陷圖像的參數自動調整之步驟
S504:檢測圖像的處理參數自動調整之步驟
Ti:檢測圖像
[圖1]表示實施形態的缺陷檢測系統之構成的方塊圖。
[圖2]表示實施形態的藉由控制器、記憶器及運算器實現的構成的圖。
[圖3](A)~(C)係示意表示實施形態的SEM中的檢測器之配置之圖。
[圖4]示意表示藉由檢測裝置檢測的半導體晶圓中的缺陷座標之例之圖。
[圖5]表示實施形態的處理參數調整方法之處理的整體流程圖。
[圖6]實施形態的圖像集獲取步驟中實施的處理之流程圖。
[圖7]說明實施形態的畫質改善處理參數調整步驟之圖。
[圖8]實施形態的使用疑似缺陷圖像的處理參數自動調整步驟中實施的處理之流程圖。
[圖9]示意表示實施形態的疑似缺陷圖像的例之圖。
[圖10]實施形態的使用檢測圖像的處理參數自動調整步驟中實施的處理之流程圖。
[圖11]表示實施形態的藉由缺陷區分抽出實際缺陷部位的步驟中之處理的流程圖。
[圖12]說明實施形態的實際缺陷部位之抽出之示意圖。
[圖13]實施形態的使用疑似缺陷圖像的處理參數調整中相關的GUI之畫面。
[圖14]實施形態的使用檢測圖像的處理參數調整中相關的GUI之畫面。
[圖15]實施形態的疑似缺陷圖像的生成中用於調整處理參數之GUI之畫面。
1:缺陷檢測系統
2:缺陷檢測裝置
3:上位控制裝置
4:記憶媒體裝置
5:缺陷圖像分類裝置
101:SEM
102:控制器
103:記憶器
104:運算器
105:外部記憶媒體輸出入器(輸出入IF)
106:用戶介面控制器(用戶IF)
107:網路介面器(網路IF)
108:半導體晶圓
109:可動載台
110:電子源
111:檢測器
112:偏轉器
113:輸出入終端
114:匯流排
Claims (9)
- 一種缺陷檢測系統,係具備:缺陷檢測裝置,其具備對樣本進行攝影的檢測器;和上位控制裝置; 前述上位控制裝置, 係獲取藉由前述缺陷檢測裝置以包含缺陷的方式所攝影的檢測圖像、以及藉由前述缺陷檢測裝置以不包含缺陷部位的方式所攝影的多個參照圖像, 針對前述獲取的多個參照圖像之中之規定之參照圖像,以包含疑似缺陷部位的方式進行編集並生成疑似缺陷圖像, 從前述疑似缺陷圖像來決定能夠檢測出前述疑似缺陷部位的初始參數, 使用前述初始參數從前述檢測圖像獲取缺陷候補部位, 並在前述檢測圖像及前述參照圖像中,從與前述缺陷候補部位相對應的部位的圖像來推斷高畫質的圖像, 使用前述推斷出的前述檢測圖像及前述參照圖像中的高畫質的圖像進行缺陷區分,並確定前述檢測圖像中的實際缺陷部位, 決定能夠檢測出與前述已確定的實際缺陷部位接近的部位的參數。
- 如請求項1之缺陷檢測系統,其中 在決定前述初始參數時,前述上位控制裝置, 係針對生成前述疑似缺陷圖像時賦予的疑似缺陷部位,與依據參數來比較檢測前述疑似缺陷圖像與前述參照圖像而被檢測出的缺陷部位進行比較, 當前述疑似缺陷部位與前述檢測出的缺陷部位重疊規定之值以上時,判斷為缺陷的檢測成功, 一邊變更前述參數,一邊將缺陷的檢測之成功率最高的參數決定為前述初始參數。
- 如請求項1之缺陷檢測系統,其中 前述上位控制裝置,係使用事先學習了從低畫質圖像來推斷高畫質圖像的神經網路,進行高畫質之推斷。
- 如請求項1之缺陷檢測系統,其中 在前述缺陷區分時,前述上位控制裝置, 係針對推斷出的前述檢測圖像中的高畫質圖像與推斷出的前述參照圖像中的高畫質圖像進行比較,並算出異常度, 將算出的異常度為最高的部位確定為前述實際缺陷部位。
- 一種缺陷檢測方法,係具備以下工程: 圖像獲取工程,獲取以包含缺陷的方式攝影的檢測圖像,及以不包含缺陷部位的方式攝影的多個參照圖像; 疑似缺陷圖像生成工程,針對前述圖像獲取工程中獲取的規定之參照圖像以包含疑似缺陷部位的方式進行編集,並生成疑似缺陷圖像; 初始參數調整工程,從前述疑似缺陷圖像來決定能夠檢測出前述疑似缺陷部位的初始參數; 缺陷候補檢測工程,使用前述初始參數從前述檢測圖像獲得缺陷候補部位; 畫質改善工程,在前述檢測圖像及前述參照圖像中,從與前述缺陷候補部位相對應的部位的圖像來推斷高畫質的圖像; 缺陷區分工程,使用經由前述畫質改善工程推斷出的前述檢測圖像及前述參照圖像中的高畫質的圖像進行缺陷區分,並確定前述檢測圖像中的實際缺陷部位;及 參數調整工程,決定能夠檢測出與前述已確定的實際缺陷部位接近的部位的參數。
- 如請求項5之缺陷檢測方法,其中 前述初始參數調整工程,係具備: 比較工程,係針對前述疑似缺陷圖像生成工程中賦予了疑似缺陷的部位,與依據參數比較檢測前述疑似缺陷圖像與前述參照圖像而被檢測出的缺陷部位進行比較;及 判斷工程,在前述比較工程中若兩者之區域重疊規定之值以上時判斷為缺陷的檢測成功; 一邊變更前述比較工程中的比較檢測使用的參數,一邊在前述判斷工程中進行判斷,從前述比較工程中使用的參數探索缺陷檢測成功率最高的參數,並將缺陷檢測成功率最高的參數決定為前述初始參數。
- 如請求項5之缺陷檢測方法,其中 在前述畫質改善工程中,係使用事先學習了從低畫質圖像來推斷高畫質圖像的神經網路,進行高畫質之推斷。
- 如請求項5之缺陷檢測方法,其中 前述缺陷區分工程,係具備: 運算工程,針對前述畫質改善工程中推斷出的前述檢測圖像中的高畫質圖像,與前述畫質改工程中推斷出的前述參照圖像中的高畫質圖像進行比較,並算出異常度; 在前述檢測圖像中,將異常度最高的部位確定為前述實際缺陷部位。
- 一種程式,係使電腦執行如請求項5至8之中任一項之缺陷檢測方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
WOPCT/JP2019/050505 | 2019-12-24 | ||
PCT/JP2019/050505 WO2021130839A1 (ja) | 2019-12-24 | 2019-12-24 | 欠陥検査システムおよび欠陥検査方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202124946A true TW202124946A (zh) | 2021-07-01 |
TWI763140B TWI763140B (zh) | 2022-05-01 |
Family
ID=76575764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109141069A TWI763140B (zh) | 2019-12-24 | 2020-11-24 | 缺陷檢測系統及缺陷檢測方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230052350A1 (zh) |
JP (1) | JP7404399B2 (zh) |
KR (1) | KR20220100621A (zh) |
TW (1) | TWI763140B (zh) |
WO (1) | WO2021130839A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115375609A (zh) * | 2021-05-21 | 2022-11-22 | 泰连服务有限公司 | 自动零件检查系统 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3612247B2 (ja) | 1999-09-14 | 2005-01-19 | 株式会社東芝 | 半導体検査装置及び半導体検査方法 |
DE10011200A1 (de) * | 2000-03-08 | 2001-09-13 | Leica Microsystems | Verfahren zur Bewertung von Strukturfehlern auf einer Waferoberfläche |
WO2008120182A2 (en) * | 2007-03-29 | 2008-10-09 | Camtek Ltd. | Method and system for verifying suspected defects of a printed circuit board |
JP5452392B2 (ja) | 2009-12-16 | 2014-03-26 | 株式会社日立ハイテクノロジーズ | 欠陥観察方法及び欠陥観察装置 |
JP5948262B2 (ja) | 2013-01-30 | 2016-07-06 | 株式会社日立ハイテクノロジーズ | 欠陥観察方法および欠陥観察装置 |
JP6307367B2 (ja) * | 2014-06-26 | 2018-04-04 | 株式会社ニューフレアテクノロジー | マスク検査装置、マスク評価方法及びマスク評価システム |
EP2963672A1 (en) * | 2014-06-30 | 2016-01-06 | FEI Company | Computational scanning microscopy with improved resolution |
KR102057429B1 (ko) * | 2014-12-10 | 2019-12-18 | 가부시키가이샤 히다치 하이테크놀로지즈 | 결함 관찰 장치 및 결함 관찰 방법 |
US11056314B2 (en) * | 2015-10-22 | 2021-07-06 | Northwestern University | Method for acquiring intentionally limited data and the machine learning approach to reconstruct it |
JP6668278B2 (ja) | 2017-02-20 | 2020-03-18 | 株式会社日立ハイテク | 試料観察装置および試料観察方法 |
WO2020022024A1 (ja) * | 2018-07-25 | 2020-01-30 | 富士フイルム株式会社 | 機械学習モデルの生成装置、方法、プログラム、検査装置及び検査方法、並びに印刷装置 |
-
2019
- 2019-12-24 JP JP2021566415A patent/JP7404399B2/ja active Active
- 2019-12-24 KR KR1020227019471A patent/KR20220100621A/ko unknown
- 2019-12-24 US US17/781,473 patent/US20230052350A1/en active Pending
- 2019-12-24 WO PCT/JP2019/050505 patent/WO2021130839A1/ja active Application Filing
-
2020
- 2020-11-24 TW TW109141069A patent/TWI763140B/zh active
Also Published As
Publication number | Publication date |
---|---|
JP7404399B2 (ja) | 2023-12-25 |
TWI763140B (zh) | 2022-05-01 |
KR20220100621A (ko) | 2022-07-15 |
WO2021130839A1 (ja) | 2021-07-01 |
JPWO2021130839A1 (zh) | 2021-07-01 |
US20230052350A1 (en) | 2023-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI751376B (zh) | 識別在一晶圓上偵測到之缺陷中之損害及所關注缺陷 | |
US10559074B2 (en) | Sample observation device and sample observation method | |
TWI475597B (zh) | Pattern evaluation method and pattern evaluation device | |
TWI588924B (zh) | 用於晶圓檢測之方法、裝置及電腦可讀取媒體 | |
KR102083706B1 (ko) | 반도체 검사 레시피 생성, 결함 리뷰 및 계측을 위한 적응적 샘플링 | |
US9710905B2 (en) | Mask inspection apparatus and mask inspection method | |
TWI683103B (zh) | 於樣品上判定所關注圖案之一或多個特性 | |
KR102369848B1 (ko) | 관심 패턴 이미지 집단에 대한 이상치 검출 | |
JP5069904B2 (ja) | 指定位置特定方法及び指定位置測定装置 | |
US10698325B2 (en) | Performance monitoring of design-based alignment | |
US10964016B2 (en) | Combining simulation and optical microscopy to determine inspection mode | |
KR20180113572A (ko) | 결함 분류 장치 및 결함 분류 방법 | |
US9702827B1 (en) | Optical mode analysis with design-based care areas | |
JP2006093251A (ja) | 寸法計測方法及びその装置 | |
TWI823419B (zh) | 試料觀察裝置及方法 | |
US11803960B2 (en) | Optical image contrast metric for optical target search | |
TWI763140B (zh) | 缺陷檢測系統及缺陷檢測方法 | |
CN109314067B (zh) | 在逻辑及热点检验中使用z层上下文来改善灵敏度及抑制干扰的系统及方法 | |
KR20210138144A (ko) | 검사를 위한 결함 후보 생성 |