TW202109770A - Non-volatile memory with gate all around tine film transistor and method of manufacturing the same - Google Patents

Non-volatile memory with gate all around tine film transistor and method of manufacturing the same Download PDF

Info

Publication number
TW202109770A
TW202109770A TW108131208A TW108131208A TW202109770A TW 202109770 A TW202109770 A TW 202109770A TW 108131208 A TW108131208 A TW 108131208A TW 108131208 A TW108131208 A TW 108131208A TW 202109770 A TW202109770 A TW 202109770A
Authority
TW
Taiwan
Prior art keywords
layer
hole
opening
volatile memory
substrate
Prior art date
Application number
TW108131208A
Other languages
Chinese (zh)
Other versions
TWI718649B (en
Inventor
楊儒興
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW108131208A priority Critical patent/TWI718649B/en
Application granted granted Critical
Publication of TWI718649B publication Critical patent/TWI718649B/en
Publication of TW202109770A publication Critical patent/TW202109770A/en

Links

Images

Abstract

A non-volatile memory having a gate all around thin film transistor includes a multi-layer structure, an elongated plug structure, a first conductive plug, and a second conductive plug. The multi-layer structure includes a plurality of gate electrode layers stacked on a substrate separately from each other. The elongated plug structure penetrates through the multi-layer structure, and a cross-section of the elongated plug structure has an elongated contour. The elongated plug structure includes an insulating pillar, a channel layer, and a gate dielectric layer. The channel layer surrounds the insulating pillar. The gate dielectric layer surrounds the channel layer. The gate electrode layers surround the gate dielectric layer. The first conductive plug is disposed between the channel layer and the substrate and between the insulating pillar and the substrate. The second conductive plug is disposed on the insulating pillar and is covered by the channel layer.

Description

具有環繞式閘極薄膜電晶體之非揮性記憶體及其製造方法Non-volatile memory with surrounding gate thin film transistor and manufacturing method thereof

本揭露是有關於一種記憶體及其製造方法,且特別是有關於一種具有環繞式閘極薄膜電晶體之非揮發性記憶體及其製造方法。The present disclosure relates to a memory and its manufacturing method, and more particularly to a non-volatile memory with a wrap-around gate thin film transistor and its manufacturing method.

非揮發性記憶體元件(如,快閃記憶體)由於具有使存入的資料在斷電後也不會消失的優點,因此成為個人電腦和其他電子設備所廣泛採用的一種記憶體元件。Non-volatile memory devices (such as flash memory) have the advantage that the stored data will not disappear even after the power is off, so they have become a kind of memory device widely used in personal computers and other electronic devices.

目前業界較常使用的快閃記憶體陣列包括反或閘(NOR)快閃記憶體與反及閘(NAND)快閃記憶體。由於NAND快閃記憶體的結構是使各記憶胞串接在一起,其積集度與面積利用率較有效率。因此,NAND快閃記憶體已經廣泛地應用在多種電子產品中,特別是大量資料儲存領域。At present, the flash memory arrays commonly used in the industry include NOR flash memory and NAND flash memory. Since the structure of the NAND flash memory is to make each memory cell connected in series, its integration and area utilization are more efficient. Therefore, NAND flash memory has been widely used in a variety of electronic products, especially in the field of mass data storage.

此外,為了進一步地提升記憶體元件的儲存密度以及積集度,發展出一種三維NAND快閃記憶體。然而,在目前三維NAND快閃記憶體,面臨電場效應不足、記憶裕度(memory window)小以及起始電壓(Vt)的分布較廣等問題。In addition, in order to further improve the storage density and integration of memory devices, a three-dimensional NAND flash memory has been developed. However, in the current three-dimensional NAND flash memory, it faces problems such as insufficient electric field effect, small memory window, and wide distribution of starting voltage (Vt).

本揭露實施例提供一種三維非揮發性記憶體及其製造方法,可以提升電場增強效應、記憶裕度(memory window)以及窄化起始電壓(Vt)的分布。The disclosed embodiments provide a three-dimensional non-volatile memory and a manufacturing method thereof, which can improve the electric field enhancement effect, the memory window (memory window), and narrow the distribution of the starting voltage (Vt).

本揭露實施例提出一種具有環繞式閘極薄膜電晶體之非揮性記憶體,包括多層結構、長形插塞結構、第一導體插塞與第二導體插塞。多層結構包括多個閘極層,彼此分隔堆疊於基底上。多層結構中具有孔洞。孔洞貫穿多層結構。孔洞的截面具有長形輪廓。長形輪廓具有長邊與短邊。長邊的長度與短邊的長度不同。長形插塞結構配置於孔洞中。長形插塞結構包括絕緣柱、通道層與閘介電層。絕緣柱設置於基底上。通道層設置於基底上,且環繞絕緣柱。閘介電層環繞通道層。閘極層環繞閘介電層。第一導體插塞設置於通道層與基底之間以及與絕緣柱與基底之間。第二導體插塞設置於絕緣柱上,且被通道層包覆。The disclosed embodiment provides a non-volatile memory with a wrap-around gate thin film transistor, which includes a multilayer structure, an elongated plug structure, a first conductor plug and a second conductor plug. The multi-layer structure includes a plurality of gate layers separated from each other and stacked on the substrate. There are holes in the multilayer structure. Holes penetrate through the multilayer structure. The cross section of the hole has an elongated profile. The long profile has a long side and a short side. The length of the long side is different from the length of the short side. The elongated plug structure is arranged in the hole. The elongated plug structure includes an insulating pillar, a channel layer and a gate dielectric layer. The insulating column is arranged on the base. The channel layer is arranged on the substrate and surrounds the insulating column. The gate dielectric layer surrounds the channel layer. The gate layer surrounds the gate dielectric layer. The first conductor plug is arranged between the channel layer and the substrate and between the insulating pillar and the substrate. The second conductor plug is arranged on the insulating column and is covered by the channel layer.

本揭露實施例提出一種具有環繞式閘極薄膜電晶體之非揮性記憶體的製造方法,包括以下步驟。在基底上形成堆疊結構。在所述堆疊結構上形成罩幕層,所述罩幕層具有截面為橢圓形之第一開口。以所述罩幕層為罩幕,對所述堆疊結構進行多個循環蝕刻製程,以形成截面具有長形輪廓的第二開口,其中所述長形輪廓具有長度不同的長邊與短邊,且進行每一循環蝕刻製程包括進行蝕刻製程以及進行清除製程。進行蝕刻製程包括對所述堆疊結構進行第一階段蝕刻製程,以在所述堆疊結構中形成第一孔,並在所述第一孔的側壁與底面形成聚合物。形成在所述第一孔的短邊處的所述側壁的所述聚合物的厚度大於形成在所述第一孔的長邊處的所述側壁的所述聚合物的厚度。進行蝕刻製程還包括對所述第一孔進行第二階段蝕刻製程,以形成第二孔。所述第二孔的短邊的長度大於所述第一孔的短邊的長度。進行清除製程,去除在所述第二孔的底面上的所述聚合物。The embodiment of the disclosure provides a method for manufacturing a non-volatile memory with a wrap-around gate thin film transistor, which includes the following steps. A stacked structure is formed on the substrate. A mask layer is formed on the stacked structure, and the mask layer has a first opening with an elliptical cross section. Using the mask layer as a mask, a plurality of cyclic etching processes are performed on the stacked structure to form a second opening with a long profile in cross section, wherein the long profile has long sides and short sides with different lengths, And performing each cycle of the etching process includes performing an etching process and performing a cleaning process. The etching process includes performing a first-stage etching process on the stacked structure to form a first hole in the stacked structure, and forming a polymer on the sidewall and bottom surface of the first hole. The thickness of the polymer of the side wall formed at the short side of the first hole is greater than the thickness of the polymer of the side wall formed at the long side of the first hole. Performing the etching process further includes performing a second-stage etching process on the first hole to form a second hole. The length of the short side of the second hole is greater than the length of the short side of the first hole. A cleaning process is performed to remove the polymer on the bottom surface of the second hole.

本揭露的實施例藉由循環蝕刻製程的控制,可以在堆疊結構中形成截面具有長形輪廓的開口。藉此,可將閘介電層(電荷儲存層)以及閘極層建構為具有長形輪廓,以提升電晶體的電場增強效應,因此,可以增加程式化與抹除之裕度(window),並且使得起始電壓(Vt)的分布變窄。In the embodiment of the present disclosure, by controlling the cyclic etching process, an opening with a long cross-section profile can be formed in the stacked structure. In this way, the gate dielectric layer (charge storage layer) and the gate layer can be constructed to have a long profile to enhance the electric field enhancement effect of the transistor. Therefore, the window for programming and erasing can be increased. And it narrows the distribution of the starting voltage (Vt).

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present disclosure more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖1A至圖1G為本揭露一些實施例的三維非揮發性記憶體的製造流程剖面圖。圖2為本揭露一些實施例的形成開口的步驟流程圖。圖3A至圖3G為形成三維非揮發性記憶體的製造流程的上視圖。1A to 1G are cross-sectional views of the manufacturing process of the three-dimensional non-volatile memory according to some embodiments of the disclosure. FIG. 2 is a flowchart of the steps of forming an opening according to some embodiments of the disclosure. 3A to 3G are top views of a manufacturing process for forming a three-dimensional non-volatile memory.

請參照圖1A,於基底100上形成堆疊結構101。基底100例如是矽基底。在一些實施例中,可依據設計需求於基底100中形成摻雜區(如,N+摻雜區或N型井區)99。堆疊結構101包括交替地堆疊的多個絕緣材料層102與多個犧牲層104。絕緣材料層102的材料包括介電材料,例如是氧化矽。犧牲層104的材料與絕緣材料層102不同,且與絕緣材料層102具有足夠的蝕刻選擇比。在一些實施例中,犧牲層104的材料例如是氮化矽。絕緣材料層102與犧牲層104例如是藉由進行多次化學氣相沈積製程所形成。堆疊結構101中絕緣材料層102以及犧牲層104的層數可以分別大於16,例如是56、64、96。然而,本揭露並不以此為限,堆疊結構101中絕緣材料層102以及犧牲層104的層數可取決於記憶體元件的設計及密度。1A, a stacked structure 101 is formed on the substrate 100. The substrate 100 is, for example, a silicon substrate. In some embodiments, a doped region (eg, N+ doped region or N-type well region) 99 may be formed in the substrate 100 according to design requirements. The stacked structure 101 includes a plurality of insulating material layers 102 and a plurality of sacrificial layers 104 stacked alternately. The material of the insulating material layer 102 includes a dielectric material, such as silicon oxide. The material of the sacrificial layer 104 is different from that of the insulating material layer 102 and has a sufficient etching selection ratio with the insulating material layer 102. In some embodiments, the material of the sacrificial layer 104 is silicon nitride, for example. The insulating material layer 102 and the sacrificial layer 104 are formed by performing multiple chemical vapor deposition processes, for example. The number of layers of the insulating material layer 102 and the sacrificial layer 104 in the stacked structure 101 may be greater than 16, for example, 56, 64, and 96 respectively. However, the present disclosure is not limited to this, and the number of layers of the insulating material layer 102 and the sacrificial layer 104 in the stacked structure 101 may depend on the design and density of the memory device.

接著,請參照圖1B與圖2,進行步驟8,在堆疊結構101上形成罩幕層150。罩幕層150具有開口152。開口152具有橢圓形之輪廓(如圖3A所示)。之後,以罩幕層150為罩幕,對堆疊結構101進行多個循環蝕刻製程10,以在堆疊結構101形成開口(或稱孔洞)106。在本實施例中,開口106並未貫穿整個堆疊結構101。開口106的底面裸露出堆疊結構101的絕緣材料層102。在其他實施例中,開口106貫穿整個堆疊結構101,且開口106的底面裸露出基底100。此外,在圖1B中,開口106具有垂直側壁,且開口106的底角α為直角。然而,在其他實施例中,開口106可以是具有傾斜側壁,且開口106的底角α為銳角,例如是85度至89度。換言之,開口106的寬度從堆疊結構101的頂面向堆疊結構101的底面漸縮。Next, referring to FIG. 1B and FIG. 2, proceed to step 8 to form a mask layer 150 on the stacked structure 101. The mask layer 150 has an opening 152. The opening 152 has an elliptical outline (as shown in FIG. 3A). After that, using the mask layer 150 as a mask, a plurality of cyclic etching processes 10 are performed on the stacked structure 101 to form an opening (or hole) 106 in the stacked structure 101. In this embodiment, the opening 106 does not penetrate the entire stack structure 101. The bottom surface of the opening 106 exposes the insulating material layer 102 of the stacked structure 101. In other embodiments, the opening 106 penetrates the entire stack structure 101, and the bottom surface of the opening 106 exposes the substrate 100. In addition, in FIG. 1B, the opening 106 has vertical side walls, and the bottom angle α of the opening 106 is a right angle. However, in other embodiments, the opening 106 may have inclined side walls, and the bottom angle α of the opening 106 is an acute angle, for example, 85 degrees to 89 degrees. In other words, the width of the opening 106 is tapered from the top surface of the stack structure 101 to the bottom surface of the stack structure 101.

請參照圖1B與圖2,在本實施例中,每個循環蝕刻製程10包括蝕刻製程12與清除製程18。蝕刻製程12包括第一階段蝕刻製程14以及第二階段蝕刻製程16。第一階段蝕刻製程14以及第二階段蝕刻製程16皆以罩幕層150為罩幕,對堆疊結構101進行蝕刻。圖3A繪示出為罩幕層150的開口152的輪廓。圖3B至圖3E繪示出形成開口106的循環蝕刻製程中,在各階段的孔的輪廓。1B and FIG. 2, in this embodiment, each cyclic etching process 10 includes an etching process 12 and a cleaning process 18. The etching process 12 includes a first-stage etching process 14 and a second-stage etching process 16. Both the first-stage etching process 14 and the second-stage etching process 16 use the mask layer 150 as a mask to etch the stacked structure 101. FIG. 3A depicts the outline of the opening 152 of the mask layer 150. 3B to 3E illustrate the contours of the holes at various stages in the cyclic etching process for forming the opening 106.

請參照圖1B、圖2、圖3A與圖3B,以罩幕層150為罩幕,對堆疊結構101進行第一階段蝕刻製程14,以在堆疊結構101中蝕刻出具有橢圓形的第一孔(或稱第一孔洞)54。在進行第一階段蝕刻製程14的過程中,也同時在第一孔54的側壁與底面形成聚合物60。在進行第一階段蝕刻製程14後,形成在第一孔54的短邊處SA的側壁SW1的聚合物60的厚度t1大於形成在第一孔54的長邊處LA的側壁SW2的聚合物60的厚度t2。在一些實施例中,聚合物60的厚度,自第一孔54的短邊處SA的側壁SW1之處的厚度t1梯度遞減至第一孔54的長邊處LA的側壁SW2之處的厚度t2。第一階段蝕刻製程14可以採用非等向性蝕刻製程,例如是反應性離子蝕刻製程。第一階段蝕刻製程14使用的蝕刻氣體包括第一烴、氧氣以及氬氣。第一烴可以是未取代、部分被氟取代或全氟取代的碳數為1至4的烷、烯或炔,例如是CH4 、CF4 、C4 F8 、C4 F6 或其組合。進行第一階段蝕刻製程14的時間例如是80秒至160秒。1B, FIG. 2, FIG. 3A and FIG. 3B, using the mask layer 150 as a mask, the stacked structure 101 is subjected to a first-stage etching process 14 to etch a first hole having an oval shape in the stacked structure 101 (Or called the first hole) 54. During the first stage of the etching process 14, the polymer 60 is also formed on the sidewall and bottom surface of the first hole 54 at the same time. After the first-stage etching process 14 is performed, the thickness t1 of the polymer 60 formed on the sidewall SW1 of SA at the short side of the first hole 54 is greater than the polymer 60 formed on the sidewall SW2 of the LA at the long side of the first hole 54 The thickness t2. In some embodiments, the thickness of the polymer 60 gradually decreases from the thickness t1 at the sidewall SW1 of SA at the short side of the first hole 54 to the thickness t2 at the sidewall SW2 of LA at the long side of the first hole 54 . The first-stage etching process 14 may adopt an anisotropic etching process, for example, a reactive ion etching process. The etching gas used in the first-stage etching process 14 includes the first hydrocarbon, oxygen, and argon. The first hydrocarbon may be an alkane, alkene or alkyne with a carbon number of 1 to 4 that is unsubstituted, partially substituted by fluorine or perfluorinated, for example, CH 4 , CF 4 , C 4 F 8 , C 4 F 6 or a combination thereof . The time for performing the first-stage etching process 14 is, for example, 80 seconds to 160 seconds.

請參照圖1B、圖2、圖3B與圖3C,進行第二階段蝕刻製程16,以對第一孔54擴口,形成截面具有長形輪廓之第二孔(或稱第二孔洞)56。由於形成在側壁SW2的聚合物60的厚度t2小於形成在側壁SW1的聚合物60的厚度t1,因此,在進行第二階段蝕刻製程16期間,當側壁SW2的聚合物60被移除殆盡且裸露出堆疊結構101時,側壁SW1的聚合物60雖有損耗,但側壁SW1仍被聚合物60覆蓋。故,在側壁SW2的堆疊結構101會比在側壁SW1的堆疊結構101先裸露出來且較早被蝕刻,而在側壁SW1的堆疊結構101則被聚合物60保護而未被蝕刻,或僅有少量被蝕刻。因此,進行第二階段蝕刻製程16結束後,第二孔56的短邊的長度LSA2會大於第一孔54的短邊的長度LSA1,而第二孔56的長邊的長度LLA2會等於或略大於第一孔54的長邊的長度LLA1。換言之,第二孔56的短邊的長度LSA2與第一孔54的短邊的長度LSA1之間的差值ΔLSA,大於第二孔56的長邊的長度LLA2與所述第一孔54的長邊的長度LLA1之間的差值ΔLLA。1B, FIG. 2, FIG. 3B, and FIG. 3C, the second-stage etching process 16 is performed to expand the first hole 54 to form a second hole (or second hole) 56 with a long cross-section profile. Since the thickness t2 of the polymer 60 formed on the sidewall SW2 is smaller than the thickness t1 of the polymer 60 formed on the sidewall SW1, during the second-stage etching process 16, when the polymer 60 of the sidewall SW2 is removed and completely When the stacked structure 101 is exposed, although the polymer 60 of the sidewall SW1 is lost, the sidewall SW1 is still covered by the polymer 60. Therefore, the stacked structure 101 on the sidewall SW2 is exposed and etched earlier than the stacked structure 101 on the sidewall SW1, while the stacked structure 101 on the sidewall SW1 is protected by the polymer 60 without being etched, or only a small amount Be etched. Therefore, after the second stage of the etching process 16 is completed, the length LSA2 of the short side of the second hole 56 will be greater than the length LSA1 of the short side of the first hole 54, and the length LLA2 of the long side of the second hole 56 will be equal to or slightly less. It is greater than the length LLA1 of the long side of the first hole 54. In other words, the difference ΔLSA between the length LSA2 of the short side of the second hole 56 and the length LSA1 of the short side of the first hole 54 is greater than the length LLA2 of the long side of the second hole 56 and the length of the first hole 54 The difference between the lengths of the sides LLA1 is ΔLLA.

第二階段蝕刻製程16可以採用非等向性蝕刻製程,例如是反應性離子蝕刻製程。第二階段蝕刻製程16使用的蝕刻氣體包括第二烴以及NF3 。第二烴可以是部分被氟取代的碳數1至碳數4的烷、烯或炔,例如是CH3 F、C4 F6 、CH2 F2 或其組合。在一些實施例中,第一階段蝕刻製程14所使用的第一烴的碳數大於第二階段蝕刻製程16所使用的第二烴的碳數。換言之,第一階段蝕刻製程14所使用的第一烴比第二階段蝕刻製程16所使用的第二烴更容易產生聚合物。進行第二階段蝕刻製程16的時間是進行第一階段蝕刻製程14的時間的2倍至4倍。進行第二階段蝕刻製程16的時間例如是240秒至320秒。第二階段蝕刻製程16與第一階段蝕刻製程14的總時間例如是320秒至400秒。The second-stage etching process 16 may adopt an anisotropic etching process, such as a reactive ion etching process. The etching gas used in the second-stage etching process 16 includes the second hydrocarbon and NF 3 . The second hydrocarbon may be an alkane, alkene, or alkyne with a carbon number of 1 to 4 that is partially substituted by fluorine, for example, CH 3 F, C 4 F 6 , CH 2 F 2 or a combination thereof. In some embodiments, the carbon number of the first hydrocarbon used in the first-stage etching process 14 is greater than the carbon number of the second hydrocarbon used in the second-stage etching process 16. In other words, the first hydrocarbon used in the first-stage etching process 14 is more likely to produce polymers than the second hydrocarbon used in the second-stage etching process 16. The time for performing the second-stage etching process 16 is 2 to 4 times the time for performing the first-stage etching process 14. The time for performing the second-stage etching process 16 is, for example, 240 seconds to 320 seconds. The total time of the second-stage etching process 16 and the first-stage etching process 14 is, for example, 320 seconds to 400 seconds.

請參照圖1B、圖2與圖3D,進行清除製程18,以去除沉積在第二孔56的底面上的聚合物60,使第二孔56下方未被蝕刻的堆疊結構101裸露出來。清除製程18使用的蝕刻氣體包括第三烴以及O2 。第三烴可以是被氟取代的碳數為1至4的烷,例如是CF4 、CH2 F2 、C4 F6 或其組合。進行清除製程18的時間少於第一階段蝕刻製程14的時間,且少於第二階段蝕刻製程16的時間。進行清除製程18的時間例如是10秒至15秒。1B, 2 and 3D, the cleaning process 18 is performed to remove the polymer 60 deposited on the bottom surface of the second hole 56 so that the unetched stacked structure 101 under the second hole 56 is exposed. The etching gas used in the cleaning process 18 includes a third hydrocarbon and O 2 . The third hydrocarbon may be an alkane having a carbon number of 1 to 4 substituted by fluorine, for example, CF 4 , CH 2 F 2 , C 4 F 6 or a combination thereof. The time to perform the cleaning process 18 is less than the time of the first-stage etching process 14 and less than the time of the second-stage etching process 16. The time for performing the cleaning process 18 is, for example, 10 seconds to 15 seconds.

請參照圖1B、圖2與圖3E,重複進行多次上述循環製程10,以加深第二孔56的深度。在一些實例中,例如是進行6~25個循環,或是6~50個循環。Please refer to FIG. 1B, FIG. 2 and FIG. 3E to repeat the above-mentioned cycle process 10 several times to deepen the depth of the second hole 56. In some examples, for example, 6 to 25 cycles, or 6 to 50 cycles are performed.

之後,請參照圖2,進行步驟20,移除罩幕層150以及殘留下來的聚合物60,以使堆疊結構101的最頂層的絕緣材料層102的頂面、開口106側壁的堆疊結構101以及開口106底部的絕緣材料層102裸露出來,以形成圖1B所示的開口106。圖3E是圖1B中I-I’切線的上視圖。移除罩幕層150的方法可以採用乾式蝕刻製程,例如是氧電漿。移除聚合物60的方法可以採用濕式蝕刻法,例如是採用Caros® 蝕刻液(H2 SO4 :H2 O2 =2:1,體積比)以及SC1® 清洗液(氫氧化氨/過氧化氫/去離子水)。Afterwards, referring to FIG. 2, proceed to step 20 to remove the mask layer 150 and the remaining polymer 60, so that the top surface of the insulating material layer 102 of the topmost layer of the stacked structure 101, the stacked structure 101 on the sidewall of the opening 106, and The insulating material layer 102 at the bottom of the opening 106 is exposed to form the opening 106 shown in FIG. 1B. Fig. 3E is a top view of the line II' in Fig. 1B. The method for removing the mask layer 150 can be a dry etching process, such as oxygen plasma. The method for removing the polymer 60 can be a wet etching method, for example, Caros ® etching solution (H 2 SO 4 : H 2 O 2 = 2: 1, volume ratio) and SC1 ® cleaning solution (ammonia hydroxide/over Hydrogen oxide/deionized water).

請參照圖3A與圖3E,在第一個循環蝕刻製程10的第一階段蝕刻製程14形成的第一孔54的輪廓,與罩幕層150的開口152的輪廓大致接近。隨著循環蝕刻製程的次數增加,形成在堆疊結構101中的孔(開口)的深度逐漸增加,且孔(開口)的底部的輪廓與罩幕層150的開口152的輪廓的差異逐漸變大。在一些實施例中,開口106的頂端處至底端處的截面的輪廓呈長形,如圖3E所示。在又一實施例中,開口106的頂端處的截面的輪廓呈橢圓形或類橢圓形,隨著開口106深度的增加,開口106的截面的輪廓的長邊的長度與短邊的長度的比值逐漸變小,且在開口106的底端處的截面的輪廓呈長形,如圖3E所示。3A and 3E, the outline of the first hole 54 formed by the etching process 14 in the first stage of the first cyclic etching process 10 is approximately close to the outline of the opening 152 of the mask layer 150. As the number of cyclic etching processes increases, the depth of the hole (opening) formed in the stacked structure 101 gradually increases, and the difference between the contour of the bottom of the hole (opening) and the contour of the opening 152 of the mask layer 150 gradually becomes larger. In some embodiments, the profile of the cross section from the top end to the bottom end of the opening 106 is elongated, as shown in FIG. 3E. In another embodiment, the profile of the cross section at the top of the opening 106 is elliptical or elliptical. As the depth of the opening 106 increases, the ratio of the length of the long side to the length of the short side of the profile of the opening 106 It gradually becomes smaller, and the profile of the cross section at the bottom end of the opening 106 is elongated, as shown in FIG. 3E.

參照圖3E,開口106的截面具有長形輪廓。長型輪廓具有長邊LA3與短邊SA3。長邊的長度LLA3大於短邊的長度LSA3。在此,短邊的長度LSA3是表示兩個長邊LA3的切線AL、A’L之間最大的距離。長邊的長度LLA3是表示兩個短邊SA3的切線BL、B’L之間最大的距離。切線AL與切線A’L平行,切線BL與切線B’L平行,且切線AL、A’L與切線BL、B’L垂直。3E, the cross-section of the opening 106 has an elongated profile. The long profile has a long side LA3 and a short side SA3. The length of the long side LLA3 is greater than the length of the short side LSA3. Here, the length LSA3 of the short side represents the maximum distance between the tangent lines AL and A'L of the two long sides LA3. The length LLA3 of the long side represents the maximum distance between the tangent lines BL and B'L of the two short sides SA3. The tangent line AL is parallel to the tangent line A'L, the tangent line BL is parallel to the tangent line B'L, and the tangent lines AL, A'L are perpendicular to the tangent lines BL, B'L.

請參照圖4,開口106底端的橫截面具有長形輪廓。長形輪廓滿足式1: >式1> A0 > A1 ≦ A2 其中: A1:表示長形輪廓所圍開口106的面積; A2:表示參考矩形DR的面積,所述參考矩形具有開口106的所述長邊LA3與所述短邊SA3;以及 A0:表示參考矩形的最大內切橢圓DO的面積。Please refer to FIG. 4, the cross section of the bottom end of the opening 106 has an elongated profile. The long profile satisfies formula 1: >Formula 1> A0> A1 ≦ A2 among them: A1: Indicates the area of the opening 106 surrounded by the elongated profile; A2: Represents the area of the reference rectangle DR, the reference rectangle having the long side LA3 and the short side SA3 of the opening 106; and A0: Represents the area of the largest inscribed ellipse DO of the reference rectangle.

在一些實施例中,開口106的底面積與其參考矩形DR的面積的比值範圍在0.8至1之間。開口106的底面積的範圍介於3000nm2 至20000nm2 之間。開口106的短邊的長度LSA3以及長邊的長度LLA3範圍在20nm至300nm之間。開口106的短邊的長度LSA3的範圍例如是在20nm至100nm之間。開口106的長邊的長度LLA3的範圍例如是在150nm至200nm之間。開口106的短邊的長度LSA3與長邊的長度LLA3的比例範圍可以在0.1至1之間。開口106的短邊的長度LSA3與長邊的長度LLA3的比例範圍例如在0.13至0.5之間。開口106的高寬比大於40,例如是40至96。In some embodiments, the ratio of the bottom area of the opening 106 to the area of the reference rectangle DR ranges from 0.8 to 1. Range of the opening 106 of the bottom area of between 3000nm 2 to 20000nm 2. The length LSA3 of the short side and the length LLA3 of the long side of the opening 106 range from 20 nm to 300 nm. The range of the length LSA3 of the short side of the opening 106 is, for example, between 20 nm and 100 nm. The length LLA3 of the long side of the opening 106 ranges, for example, between 150 nm and 200 nm. The ratio of the length LSA3 of the short side of the opening 106 to the length LLA3 of the long side may range from 0.1 to 1. The ratio of the length LSA3 of the short side of the opening 106 to the length LLA3 of the long side is in the range of 0.13 to 0.5, for example. The aspect ratio of the opening 106 is greater than 40, for example, 40 to 96.

請參照圖5A至圖5H,開口106的頂角C可以是圓角、導角或是直角。開口106的各個頂角C的形狀可以是彼此相同或是彼此相異。開口106的邊可以直的(如圖5A至圖5D所示)或是有微幅的彎曲或呈波浪狀(如圖5E至圖5H所示)。開口106相對應的兩個邊的長度可以相等(如圖5A所示)或是略有差異(如圖5B至圖5H所示)。Referring to FIGS. 5A to 5H, the top angle C of the opening 106 may be rounded, chamfered, or right. The shapes of the top corners C of the opening 106 may be the same or different from each other. The sides of the opening 106 may be straight (as shown in FIGS. 5A to 5D), slightly curved or wavy (as shown in FIGS. 5E to 5H). The length of the two sides corresponding to the opening 106 may be equal (as shown in FIG. 5A) or slightly different (as shown in FIG. 5B to FIG. 5H).

請同時參照圖1B、圖1C與圖3F,於開口106的側壁上形成電荷儲存結構112。電荷儲存結構112可以是共形層,順應著開口106的形狀,覆蓋開口106側壁上的絕緣材料層102與犧牲層104,而裸露出開口106的底面的絕緣材料層102。換言之,電荷儲存結構112與開口106具有大致相同的形狀與輪廓。電荷儲存結構112可以是氧化物、氮化物或其組合。在一些實施例中,電荷儲存結構112包括氧化物-氮化物-氧化物(ONO)複合層。在一例示實施例中,電荷儲存結構112包括氧化矽層、氮化矽層以及氧化矽層。在一些實施例中,電荷儲存結構112包括氧化物-氮化物-氧化物-氮化物-氧化物(ONONO)複合層。在一例示實施例中,電荷儲存結構112包括氧化矽層、氮化矽層、氧化矽層、氮化矽層以及氧化矽層。Referring to FIGS. 1B, 1C, and 3F at the same time, a charge storage structure 112 is formed on the sidewall of the opening 106. The charge storage structure 112 may be a conformal layer, conforming to the shape of the opening 106, covering the insulating material layer 102 and the sacrificial layer 104 on the sidewall of the opening 106, and exposing the insulating material layer 102 on the bottom surface of the opening 106. In other words, the charge storage structure 112 and the opening 106 have substantially the same shape and contour. The charge storage structure 112 may be an oxide, a nitride, or a combination thereof. In some embodiments, the charge storage structure 112 includes an oxide-nitride-oxide (ONO) composite layer. In an exemplary embodiment, the charge storage structure 112 includes a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. In some embodiments, the charge storage structure 112 includes an oxide-nitride-oxide-nitride-oxide (ONONO) composite layer. In an exemplary embodiment, the charge storage structure 112 includes a silicon oxide layer, a silicon nitride layer, a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer.

接著,請參照圖1C,移除開口106底面所裸露的絕緣材料層102直至裸露出基底100,以形成接觸窗開口107。之後,在接觸窗開口107之中形成導體插塞108。導體插塞108的形成方法包括磊晶成長法(epitaxial growth)。導體插塞108可以是矽、砷化鎵或是矽鍺。Next, referring to FIG. 1C, the insulating material layer 102 exposed on the bottom surface of the opening 106 is removed until the substrate 100 is exposed to form a contact opening 107. After that, a conductor plug 108 is formed in the contact window opening 107. The formation method of the conductor plug 108 includes an epitaxial growth method. The conductor plug 108 may be silicon, gallium arsenide, or silicon germanium.

之後,請參照圖1C與圖3F,於電荷儲存結構112上形成通道層114。具體地說,通道層114覆蓋開口106的側壁上的電荷儲存結構112,並與導體插塞108接觸。在一些實施例中,通道層114可做為位元線。通道層114的材料例如是半導體材料,如多晶矽或摻雜多晶矽等。可藉由原位摻雜來進行摻雜,或是藉由離子植入製程來進行摻雜。在一些實施例中,在通道層114形成之後,還進行回火製程。回火製程後,通道層114的底部114b結晶為單晶矽,而與導體插塞108合併在一起。導體插塞108可以做為源極接觸窗,與基底100中的摻雜區99電性連接。通道層114可以是共形層,因此其與開口106具有大致相同的輪廓。After that, referring to FIGS. 1C and 3F, a channel layer 114 is formed on the charge storage structure 112. Specifically, the channel layer 114 covers the charge storage structure 112 on the sidewall of the opening 106 and is in contact with the conductor plug 108. In some embodiments, the channel layer 114 can be used as a bit line. The material of the channel layer 114 is, for example, a semiconductor material, such as polysilicon or doped polysilicon. The doping can be done by in-situ doping or by an ion implantation process. In some embodiments, after the formation of the channel layer 114, a tempering process is also performed. After the tempering process, the bottom 114b of the channel layer 114 crystallizes into monocrystalline silicon, which merges with the conductor plug 108. The conductive plug 108 can be used as a source contact window and is electrically connected to the doped region 99 in the substrate 100. The channel layer 114 may be a conformal layer, so it has approximately the same profile as the opening 106.

請參照圖1C與圖3F,於開口106中形成介電層115。介電層115的形成方法例如是利用化學氣相沈積法或旋塗法形成填滿開口106的介電材料層(未繪示),再對介電材料層進行回蝕刻製程,以使所形成的介電層115的上表面低於堆疊結構101的頂表面。介電層115大致垂直於基底100的表面,其又可稱為絕緣柱115。1C and 3F, a dielectric layer 115 is formed in the opening 106. The method for forming the dielectric layer 115 is, for example, using a chemical vapor deposition method or a spin coating method to form a dielectric material layer (not shown) that fills the opening 106, and then perform an etch-back process on the dielectric material layer to make the formed The upper surface of the dielectric layer 115 is lower than the top surface of the stacked structure 101. The dielectric layer 115 is substantially perpendicular to the surface of the substrate 100, and it may also be referred to as an insulating pillar 115.

接著,於介電層115上形成導體插塞116。導體插塞116與通道層114接觸。在一些實施例中,導體插塞116的材料例如是多晶矽或摻雜多晶矽。導體插塞116的形成方法例如是先形成填滿開口106的導體材料層(未繪示),再對導體材料層進行化學機械研磨製程及/或回蝕刻製程,以移除開口106外的導體材料層。Next, a conductive plug 116 is formed on the dielectric layer 115. The conductor plug 116 is in contact with the channel layer 114. In some embodiments, the material of the conductive plug 116 is, for example, polysilicon or doped polysilicon. The conductive plug 116 is formed, for example, by first forming a conductive material layer (not shown) that fills the opening 106, and then performing a chemical mechanical polishing process and/or an etch-back process on the conductive material layer to remove the conductor outside the opening 106 Material layer.

然後,於堆疊結構101上形成絕緣層117。絕緣層117覆蓋電荷儲存結構112、通道層114、導體插塞116以及堆疊結構101。在一些實施例中,絕緣層117的材料例如是氧化矽或其他絕緣材料。Then, an insulating layer 117 is formed on the stacked structure 101. The insulating layer 117 covers the charge storage structure 112, the channel layer 114, the conductor plug 116 and the stacked structure 101. In some embodiments, the material of the insulating layer 117 is, for example, silicon oxide or other insulating materials.

請參照圖1D,對絕緣層117以及堆疊結構101進行圖案化製程,以形成穿過絕緣層117、絕緣材料層102與犧牲層104的開口(亦稱作溝渠)118。在一些實施例中,在進行所述圖案化製程期間,也會同時移除部分基底100,使得開口118裸露出基底100中的摻雜區99。此外,在對絕緣材料層102進行圖案化製程之後,絕緣材料層102的剩餘部分形成絕緣層102a。1D, a patterning process is performed on the insulating layer 117 and the stacked structure 101 to form an opening (also called a trench) 118 passing through the insulating layer 117, the insulating material layer 102, and the sacrificial layer 104. In some embodiments, during the patterning process, part of the substrate 100 is also removed at the same time, so that the opening 118 exposes the doped region 99 in the substrate 100. In addition, after the patterning process is performed on the insulating material layer 102, the remaining part of the insulating material layer 102 forms the insulating layer 102a.

接著,移除開口118所暴露的犧牲層104,以形成暴露出部分電荷儲存結構112與絕緣層102a的側向開口120、122、124、126、128、130。移除開口118所暴露的犧牲層104的方法例如是乾式蝕刻法或溼式蝕刻法。乾式蝕刻法中使用的蝕刻劑例如是NF3 、H2 、HBr、O2 、N2 、He或其組合。溼式蝕刻法使用的蝕刻劑例如是磷酸(H3 PO4 )溶液。Then, the sacrificial layer 104 exposed by the opening 118 is removed to form the side openings 120, 122, 124, 126, 128, 130 that expose part of the charge storage structure 112 and the insulating layer 102a. The method of removing the sacrificial layer 104 exposed by the opening 118 is, for example, a dry etching method or a wet etching method. The etchant used in the dry etching method is, for example, NF 3 , H 2 , HBr, O 2 , N 2 , He or a combination thereof. The etchant used in the wet etching method is, for example, a phosphoric acid (H 3 PO 4 ) solution.

請參照圖1E,進行表面處理製程,以使側向開口130所裸露出來的導體插塞108表面形成絕緣層109。表面處理製程例如是熱氧化製程。絕緣層109例如是氧化矽層。之後,於開口118的表面上以及側向開口120、122、124、126、128、130中填入閘極層132。閘極層132可以包括依序形成的緩衝材料層、阻障材料層以及閘極導體材料層。緩衝材料層形成於阻障材料層與電荷儲存結構之間以及絕緣層102a的表面上。緩衝材料層的材料例如是介電常數大於7的高介電常數的材料,如氧化鋁(Al2 O3 )、HfO2 、La2 O5 、過渡金屬氧化物、鑭系元素氧化物或其組合等。緩衝材料層的形成方法例如是化學氣相沈積法或原子層沈積法(ALD)。緩衝材料層可用以提升抹除以及編程特性。阻障材料層的材料例如是鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。阻障材料層位於緩衝材料層與閘極導體材料層之間。阻障材料層的形成方法例如是化學氣相沈積法。閘極導體材料層的材料例如是多晶矽、非晶矽、鎢(W)、鈷(Co)、鋁(Al)、矽化鎢(WSix )或矽化鈷(CoSix )。閘極導體材料層的形成方法例如是化學氣相沈積法。1E, a surface treatment process is performed to form an insulating layer 109 on the surface of the conductive plug 108 exposed by the side opening 130. The surface treatment process is, for example, a thermal oxidation process. The insulating layer 109 is, for example, a silicon oxide layer. Afterwards, a gate layer 132 is filled on the surface of the opening 118 and in the lateral openings 120, 122, 124, 126, 128, and 130. The gate layer 132 may include a buffer material layer, a barrier material layer, and a gate conductor material layer that are sequentially formed. The buffer material layer is formed between the barrier material layer and the charge storage structure and on the surface of the insulating layer 102a. The material of the buffer material layer is, for example, a material with a high dielectric constant with a dielectric constant greater than 7, such as aluminum oxide (Al 2 O 3 ), HfO 2 , La 2 O 5 , transition metal oxide, lanthanide oxide or its Combination etc. The formation method of the buffer material layer is, for example, a chemical vapor deposition method or an atomic layer deposition method (ALD). The buffer material layer can be used to improve erasing and programming characteristics. The material of the barrier material layer is, for example, titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), or a combination thereof. The barrier material layer is located between the buffer material layer and the gate conductor material layer. The formation method of the barrier material layer is, for example, a chemical vapor deposition method. The material of the gate conductor material layer is, for example, polysilicon, amorphous silicon, tungsten (W), cobalt (Co), aluminum (Al), tungsten silicide (WSi x ), or cobalt silicide (CoSi x ). The formation method of the gate conductor material layer is, for example, a chemical vapor deposition method.

請參照圖1E、圖1F與圖3G,進行蝕刻製程,以移除部分的閘極層132,留下位於側向開口120、122、124、126、128、130中的閘極層134、136、138、140、142、144。蝕刻製程可以是單一蝕刻製程或多個蝕刻製程。蝕刻製程可以是濕式蝕刻製程或乾式蝕刻製程。閘極層134、136、138、140、142、144與多個絕緣層102a形成交替地堆疊的多層結構111。在一些實施例中,閘極層134可做為串選擇線(string select line,SSL)。閘極層136、138、140、142可做為字元線(word line,WL)。閘極層144可做為接地選擇線(ground select line,GSL)。1E, 1F and 3G, an etching process is performed to remove part of the gate layer 132, leaving the gate layers 134, 136 in the lateral openings 120, 122, 124, 126, 128, 130 , 138, 140, 142, 144. The etching process may be a single etching process or multiple etching processes. The etching process may be a wet etching process or a dry etching process. The gate layers 134, 136, 138, 140, 142, 144 and the plurality of insulating layers 102a form an alternately stacked multilayer structure 111. In some embodiments, the gate layer 134 can be used as a string select line (SSL). The gate layers 136, 138, 140, and 142 can be used as word lines (WL). The gate layer 144 can be used as a ground select line (GSL).

請參照圖1G,在開口118中形成絕緣層146。在一些實施例中,絕緣層146的材料例如是氧化矽。絕緣層146的形成方法例如是化學氣相沈積法或原子層沈積法(ALD)沈積絕緣材料層。接著,進行非等向性蝕刻製程,以移除位於開口118的底部的絕緣材料層。1G, an insulating layer 146 is formed in the opening 118. In some embodiments, the material of the insulating layer 146 is silicon oxide, for example. The method for forming the insulating layer 146 is, for example, a chemical vapor deposition method or an atomic layer deposition (ALD) method to deposit an insulating material layer. Next, an anisotropic etching process is performed to remove the insulating material layer located at the bottom of the opening 118.

接著,於開口118中填入導體層148。導體層148可以包括阻障層以及金屬層。阻障層的材料例如是鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。形成阻障層的方法例如是化學氣相沈積法。金屬層的材料例如是鎢(W)、多晶矽、鈷、矽化鎢(WSix )或矽化鈷(CoSix )。形成金屬層的方法例如是化學氣相沈積法。在一些實施例中,導體層148可做為共用源極線(common source line)。至此,完成本揭露的三維非揮發性記憶體的製作。Next, a conductive layer 148 is filled in the opening 118. The conductor layer 148 may include a barrier layer and a metal layer. The material of the barrier layer is, for example, titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), or a combination thereof. The method of forming the barrier layer is, for example, a chemical vapor deposition method. The material of the metal layer is, for example, tungsten (W), polysilicon, cobalt, tungsten silicide (WSi x ), or cobalt silicide (CoSi x ). The method of forming the metal layer is, for example, a chemical vapor deposition method. In some embodiments, the conductor layer 148 can be used as a common source line. So far, the production of the three-dimensional non-volatile memory disclosed in the present disclosure is completed.

請參照圖1G,具有環繞式閘極薄膜電晶體之非揮性記憶體,包括多層結構111、長形插塞結構121、導體插塞108與導體插塞116。多層結構111包括多個閘極層134、136、138、140、142、144,彼此藉由絕緣層120a分隔而堆疊於基底100上。多層結構111中具有孔洞106。孔洞106貫穿多層結構111。孔洞106的截面具有長形輪廓(如圖3E所示)。長形輪廓具有長度不同的長邊LLA3與短邊LSA3。長形插塞結構121配置於孔洞106中。長形插塞結構121的截面具有長形輪廓(如圖3G所示)。長形插塞結構121包括絕緣柱115、通道層114與閘介電層112。絕緣柱115設置於基底100上。通道層114設置於基底100上,且環繞絕緣柱115。閘介電層112環繞於通道層114周圍。閘極層132、134、136、138、140、142、144環繞於閘介電層112周圍。導體插塞108設置於通道層114與基底100之間以及與絕緣柱115與基底100之間。導體插塞116設置於絕緣柱115上,且被通道層114包覆。1G, a non-volatile memory with a wrap-around gate thin film transistor includes a multilayer structure 111, an elongated plug structure 121, a conductor plug 108 and a conductor plug 116. The multilayer structure 111 includes a plurality of gate layers 134, 136, 138, 140, 142, and 144, which are separated from each other by an insulating layer 120a and stacked on the substrate 100. The multilayer structure 111 has holes 106 therein. The hole 106 penetrates through the multilayer structure 111. The cross section of the hole 106 has an elongated profile (as shown in FIG. 3E). The long profile has a long side LLA3 and a short side LSA3 with different lengths. The elongated plug structure 121 is disposed in the hole 106. The cross-section of the elongated plug structure 121 has an elongated profile (as shown in FIG. 3G). The elongated plug structure 121 includes an insulating pillar 115, a channel layer 114 and a gate dielectric layer 112. The insulating pillar 115 is disposed on the substrate 100. The channel layer 114 is disposed on the substrate 100 and surrounds the insulating pillar 115. The gate dielectric layer 112 surrounds the channel layer 114. The gate layers 132, 134, 136, 138, 140, 142, and 144 surround the gate dielectric layer 112. The conductive plug 108 is disposed between the channel layer 114 and the substrate 100 and between the insulating pillar 115 and the substrate 100. The conductor plug 116 is disposed on the insulating pillar 115 and is covered by the channel layer 114.

上述長形輪廓滿足式1: >式1> A0 > A1 ≦ A2 其中, A1表示長形輪廓所圍的面積; A2表示參考矩形的面積,所述參考矩形具有所述長邊LA3與所述短邊SA3;以及 A0表示在參考矩形的最大內切橢圓的面積。The above-mentioned long profile satisfies formula 1: >Formula 1> A0> A1 ≦ A2 among them, A1 represents the area enclosed by the long profile; A2 represents the area of a reference rectangle having the long side LA3 and the short side SA3; and A0 represents the area of the largest inscribed ellipse in the reference rectangle.

在一些實施例中,A1/A2的比例範圍介於0.8至1之間。在又一些實施例中,A1/A2的比例範圍介於0.9至1之間。此外,閘介電層(電荷儲存層)112的外輪廓的轉角C可以是圓角、倒角或是直角。In some embodiments, the ratio of A1/A2 ranges from 0.8 to 1. In still other embodiments, the ratio of A1/A2 ranges from 0.9 to 1. In addition, the corner C of the outer contour of the gate dielectric layer (charge storage layer) 112 may be a rounded corner, a chamfered corner, or a right angle.

本實施例的三維非揮發性記憶體的製造方法雖然是以上述方法為例進行說明,然而本揭露的三維非揮發性記憶體的形成方法並不以此為限。Although the method for manufacturing the three-dimensional non-volatile memory of this embodiment is described by taking the above-mentioned method as an example, the method for forming the three-dimensional non-volatile memory of the present disclosure is not limited to this.

請參照圖6,本揭露實施例之三維非揮發性記憶體具有長形環繞式閘極(Gate All Around)薄膜電晶體結構。長形閘極全環結構包括介電層(亦可稱為絕緣柱)115、通道層114、電荷儲存層(亦可稱為閘介電層)112、閘極層142。絕緣柱115沿著Z軸方向設置在基底上。Z軸方向與基底表面的法線平行。絕緣柱115的截面可以是呈長形。通道層114環繞包覆絕緣柱115的側壁。閘介電層(電荷儲存層)112位於閘極層142與通道層114之間。閘極層142環繞在絕緣柱115的周圍。通道層114、閘介電層(電荷儲存層)112與閘極層142的截面各自分別呈長形環。Please refer to FIG. 6, the three-dimensional non-volatile memory of the embodiment of the present disclosure has an elongated gate all around (Gate All Around) thin film transistor structure. The long gate full ring structure includes a dielectric layer (also referred to as an insulating pillar) 115, a channel layer 114, a charge storage layer (also referred to as a gate dielectric layer) 112, and a gate layer 142. The insulating pillar 115 is disposed on the substrate along the Z-axis direction. The Z axis direction is parallel to the normal of the substrate surface. The insulating pillar 115 may have an elongated cross-section. The channel layer 114 surrounds the sidewall of the covering insulating pillar 115. The gate dielectric layer (charge storage layer) 112 is located between the gate layer 142 and the channel layer 114. The gate layer 142 surrounds the insulating pillar 115. The cross-sections of the channel layer 114, the gate dielectric layer (charge storage layer) 112, and the gate layer 142 each form an elongated ring.

本揭露上述實施例是以3D NAND快閃記憶體來說明,然而,本揭露實施例之具有矩形形狀的高高寬比的孔(或稱孔洞)的循環蝕刻製程可用於ROM / NOR快閃記憶體/ Ultra-ROM的製程。The above-mentioned embodiment of the present disclosure is described with 3D NAND flash memory. However, the cyclic etching process of the hole (or hole) with a rectangular shape of high aspect ratio in the present embodiment of the present disclosure can be used for ROM / NOR flash memory. Body/Ultra-ROM manufacturing process.

綜上所述,在上述實施例中,以具有橢圓形開口圖案的罩幕層為罩幕,藉由循環蝕刻製程的控制,可以在堆疊結構中形成截面具有長形輪廓的開口。藉此,可將電荷儲存層建構為具有截面長形輪廓。具有長形的轉角的電荷儲存層處可以提升電晶體的電場增強效應,因此,可以增加程式化與抹除之裕度(window),並且使得起始電壓(Vt)的分布變窄。To sum up, in the above embodiment, the mask layer with the oval opening pattern is used as the mask, and by the control of the cyclic etching process, an opening with a long profile in cross section can be formed in the stacked structure. In this way, the charge storage layer can be constructed to have a long cross-sectional profile. The charge storage layer with a long corner can enhance the electric field enhancement effect of the transistor, therefore, it can increase the programming and erasing margin (window), and narrow the distribution of the initial voltage (Vt).

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

10、12、14、16、18:步驟 54:第一孔 56:第二孔 60:聚合物 99:摻雜區 100:基底 101:堆疊結構 102:絕緣材料層 102a、117:絕緣層 111:多層結構 104:犧牲層 106、152:開口 118:開口/溝渠 107:接觸窗開口 108、116:導體插塞 109:絕緣層 114:通道層 114b:底部 115:介電層/絕緣柱 121:長形插塞結構 146:絕緣層 148:導體層 150:罩幕層 α:底角 C:頂角、轉角 SW1、SW2:側壁 112:電荷儲存結構/閘介電層 120、122、124、126、128、130:側向開口 132、134、136、138、140、142、144:閘極層 t1、t2:厚度 DO:虛擬最大內切橢圓 DR:輪廓外之虛擬最小外切矩形 DR:參考矩形 LA:長邊處 SA:短邊處 LLA1、LLA2、LLA3:長邊的長度 LSA1、LSA2、LSA3:短邊的長度10, 12, 14, 16, 18: steps 54: The first hole 56: second hole 60: polymer 99: doped area 100: base 101: Stacked structure 102: Insulating material layer 102a, 117: insulating layer 111: Multi-layer structure 104: Sacrifice Layer 106, 152: opening 118: opening/ditch 107: Contact window opening 108, 116: Conductor plug 109: Insulation layer 114: Channel layer 114b: bottom 115: Dielectric layer/Insulating column 121: Long plug structure 146: Insulation layer 148: Conductor layer 150: mask layer α: bottom angle C: vertex, corner SW1, SW2: side wall 112: charge storage structure/gate dielectric layer 120, 122, 124, 126, 128, 130: side opening 132, 134, 136, 138, 140, 142, 144: gate layer t1, t2: thickness DO: Virtual maximum inscribed ellipse DR: Virtual minimum circumscribed rectangle outside the contour DR: Reference rectangle LA: Long side SA: Short side LLA1, LLA2, LLA3: the length of the long side LSA1, LSA2, LSA3: the length of the short side

圖1A至圖1G為本揭露一些實施例的三維非揮發性記憶體的製造流程剖面圖。 圖2為本揭露一些實施例的形成開口的步驟流程圖。 圖3A至圖3G為形成三維非揮發性記憶體的製造流程的上視圖。圖3E、圖3F以及圖3G分別是圖1B、圖1C以及圖1F的I-I’切線的上視圖。 圖4是本揭露實施例之長形開口、參考開口之內切橢圓開口與參考開口之示意圖。 圖5A至圖5H是本揭露實施例之各種具有長形輪廓之開口的示意圖。 圖6是本揭露實施例之長形環繞式閘極結構的立體圖。1A to 1G are cross-sectional views of the manufacturing process of the three-dimensional non-volatile memory according to some embodiments of the disclosure. FIG. 2 is a flowchart of the steps of forming an opening according to some embodiments of the disclosure. 3A to 3G are top views of a manufacturing process for forming a three-dimensional non-volatile memory. Fig. 3E, Fig. 3F and Fig. 3G are respectively the top view of Fig. 1B, Fig. 1C and Fig. 1F cut along the line I-I'. 4 is a schematic diagram of the elongated opening, the inscribed elliptical opening of the reference opening, and the reference opening of the embodiment of the present disclosure. 5A to 5H are schematic diagrams of various openings with elongated contours according to an embodiment of the present disclosure. FIG. 6 is a perspective view of the elongated surrounding gate structure according to the embodiment of the disclosure.

112:電荷儲存層/閘介電層 112: charge storage layer/gate dielectric layer

114:通道層 114: Channel layer

115:介電層/絕緣柱 115: Dielectric layer/Insulating column

142:閘極層 142: Gate layer

121:長形插塞 121: Long plug

Claims (10)

一種具有環繞式閘極薄膜電晶體之非揮性記憶體,包括: 多層結構,包括多個閘極層,彼此分隔堆疊於基底上,其中所述多層結構中具有孔洞,所述孔洞貫穿所述多層結構,所述孔洞的截面具有長形輪廓,所述長形輪廓具有長度不同的長邊與短邊; 長形插塞結構,配置於所述孔洞中,其中所述長形插塞結構的截面具有所述長形輪廓,所述長形插塞結構包括: 絕緣柱,設置於所述基底上; 通道層,設置於所述基底上,環繞所述絕緣柱;以及 閘介電層,環繞所述通道層,其中所述閘極層環繞所述閘介電層; 第一導體插塞,設置於所述通道層與所述基底之間以及與所述絕緣柱與所述基底之間;以及 第二導體插塞,設置於所述絕緣柱上,且被所述通道層包覆。A non-volatile memory with a wrap-around gate thin film transistor, including: A multi-layer structure comprising a plurality of gate layers stacked on a substrate separated from each other, wherein the multi-layer structure has a hole in the multi-layer structure, the hole penetrates the multi-layer structure, and the cross section of the hole has an elongated profile, and the elongated profile Have long and short sides with different lengths; The elongated plug structure is configured in the hole, wherein a cross section of the elongated plug structure has the elongated profile, and the elongated plug structure includes: The insulating column is arranged on the substrate; The channel layer is disposed on the substrate and surrounds the insulating pillar; and A gate dielectric layer surrounding the channel layer, wherein the gate layer surrounds the gate dielectric layer; The first conductor plug is disposed between the channel layer and the substrate and between the insulating pillar and the substrate; and The second conductor plug is arranged on the insulating column and is covered by the channel layer. 如申請專利範圍第1項所述之具有環繞式閘極薄膜電晶體之非揮性記憶體,其中所述長形輪廓滿足式1: >式1> A0 > A1 ≦ A2 其中, A1表示所述長形輪廓所圍的面積; A2表示參考矩形的面積,所述參考矩形具有所述長邊與所述短邊;以及 A0表示在所述參考矩形的最大內切橢圓的面積。The non-volatile memory with wrap-around gate thin film transistor as described in item 1 of the scope of patent application, wherein the elongated profile satisfies formula 1: >Formula 1> A0> A1 ≦ A2 among them, A1 represents the area enclosed by the elongated profile; A2 represents the area of a reference rectangle, the reference rectangle having the long side and the short side; and A0 represents the area of the largest inscribed ellipse in the reference rectangle. 如申請專利範圍第2項所述之具有環繞式閘極薄膜電晶體之非揮性記憶體,其中A1/A2的比例範圍介於0.9至1之間。In the non-volatile memory with wrap-around gate thin film transistors as described in the second item of the scope of patent application, the ratio of A1/A2 ranges from 0.9 to 1. 一種具有環繞式閘極薄膜電晶體之非揮性記憶體的製造方法,包括: 在基底上形成堆疊結構; 在所述堆疊結構上形成罩幕層,所述罩幕層具有截面為橢圓形之第一開口; 以所述罩幕層為蝕刻罩幕,對所述堆疊結構進行多個循環蝕刻製程,以形成截面具有長形輪廓的第二開口,其中所述長形輪廓具有長度不同的長邊與短邊,且進行每一循環蝕刻製程包括: 進行蝕刻製程,包括: 對所述堆疊結構進行第一階段蝕刻製程,以在所述堆疊結構中形成第一孔,並在所述第一孔的側壁與底面形成聚合物,其中形成在所述第一孔的短邊處的所述側壁的所述聚合物的厚度大於形成在所述第一孔的長邊處的所述側壁的所述聚合物的厚度;以及 對所述第一孔進行第二階段蝕刻製程,以形成第二孔,其中所述第二孔的短邊的長度大於所述第一孔的短邊的長度;以及 進行清除製程,去除在所述第二孔的底面上的所述聚合物。A method for manufacturing a non-volatile memory with a wrap-around gate thin film transistor, including: Form a stacked structure on the substrate; Forming a mask layer on the stacked structure, the mask layer having a first opening with an elliptical cross section; Using the mask layer as an etching mask, a plurality of cyclic etching processes are performed on the stacked structure to form a second opening with a long profile in cross section, wherein the long profile has long sides and short sides with different lengths , And each cycle of etching process includes: Carry out the etching process, including: Perform a first-stage etching process on the stacked structure to form a first hole in the stacked structure, and form a polymer on the sidewall and bottom surface of the first hole, wherein the short side of the first hole is formed The thickness of the polymer of the side wall at is greater than the thickness of the polymer of the side wall formed at the long side of the first hole; and Performing a second-stage etching process on the first hole to form a second hole, wherein the length of the short side of the second hole is greater than the length of the short side of the first hole; and A cleaning process is performed to remove the polymer on the bottom surface of the second hole. 如申請專利範圍第4項所述之具有環繞式閘極薄膜電晶體之非揮性記憶體的製造方法,其中在進行所述第一階段蝕刻製程期間形成的所述聚合物的厚度,自所述第一孔的所述短邊處的所述側壁之處至所述第一孔的所述長邊處的所述側壁之處梯度遞減。The method for manufacturing a non-volatile memory with wrap-around gate thin film transistors as described in item 4 of the scope of patent application, wherein the thickness of the polymer formed during the first stage of the etching process is determined by The gradient of the side wall at the short side of the first hole to the side wall at the long side of the first hole decreases gradually. 如申請專利範圍第4項所述之具有環繞式閘極薄膜電晶體之非揮性記憶體的製造方法,其中所述具有長形輪廓的第一開口滿足式1: >式1> A0 > A1 ≦ A2 其中 A1表示所述具有長形輪廓所圍的面積; A2表示參考矩形的面積,所述參考矩形具有所述長邊與所述短邊;以及 A0表示在所述參考矩形的最大內切橢圓的面積。As described in item 4 of the scope of patent application, the method for manufacturing a non-volatile memory with a wrap-around gate thin film transistor, wherein the first opening with an elongated profile satisfies formula 1: >Formula 1> A0> A1 ≦ A2 among them A1 represents the area surrounded by the elongated profile; A2 represents the area of a reference rectangle, the reference rectangle having the long side and the short side; and A0 represents the area of the largest inscribed ellipse in the reference rectangle. 如申請專利範圍第6項所述之具有環繞式閘極薄膜電晶體之非揮性記憶體的製造方法,其中A1/A2的比例範圍介於0.9至1之間。The manufacturing method of non-volatile memory with wrap-around gate thin film transistors as described in item 6 of the scope of patent application, wherein the ratio of A1/A2 is in the range of 0.9 to 1. 如申請專利範圍第4項所述之具有環繞式閘極薄膜電晶體之非揮性記憶體的製造方法,更包括: 在所述第一開口的側壁形成電荷儲存層; 於所述第一開口形成通道層,其中所述電荷儲存層環繞所述通道層;以及 於所述第一開口中形成絕緣柱,其中部分所述通道層環繞所述絕緣柱。The manufacturing method of non-volatile memory with wrap-around gate thin film transistor as described in item 4 of the scope of patent application further includes: Forming a charge storage layer on the sidewall of the first opening; Forming a channel layer in the first opening, wherein the charge storage layer surrounds the channel layer; and An insulating pillar is formed in the first opening, wherein part of the channel layer surrounds the insulating pillar. 如申請專利範圍第8項所述之具有環繞式閘極薄膜電晶體之非揮性記憶體的製造方法,更包括: 在所述第一開口的側壁形成所述電荷儲存層之後,且在形成所述通道層之前,移除所述第一開口下方的部分的所述堆疊結構,以形成裸露出所述基底的第一接觸窗開口; 於所述第一接觸窗開口中形成第一導體插塞;以及 於所述絕緣柱上形成第二導體插塞,其中另一部分所述通道層環繞所述第二導體插塞。The manufacturing method of non-volatile memory with wrap-around gate thin film transistor as described in item 8 of the scope of patent application further includes: After the charge storage layer is formed on the sidewall of the first opening, and before the channel layer is formed, the stacked structure under the first opening is removed to form a second substrate that exposes the substrate. A contact window opening; Forming a first conductor plug in the opening of the first contact window; and A second conductor plug is formed on the insulating pillar, wherein another part of the channel layer surrounds the second conductor plug. 如申請專利範圍第9項所述之具有環繞式閘極薄膜電晶體之非揮性記憶體的製造方法,更包括: 於所述堆疊結構中形成溝渠,以裸露出所述多個絕緣材料層與所述多個犧牲層; 移除所述多個犧牲層,以形成多個側向開口;以及 於所述多個側向開口中形成多個閘極層。The manufacturing method of non-volatile memory with wrap-around gate thin film transistors as described in item 9 of the scope of patent application further includes: Forming trenches in the stacked structure to expose the plurality of insulating material layers and the plurality of sacrificial layers; Removing the plurality of sacrificial layers to form a plurality of lateral openings; and A plurality of gate layers are formed in the plurality of lateral openings.
TW108131208A 2019-08-30 2019-08-30 Non-volatile memory with gate all around tine film transistor and method of manufacturing the same TWI718649B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108131208A TWI718649B (en) 2019-08-30 2019-08-30 Non-volatile memory with gate all around tine film transistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108131208A TWI718649B (en) 2019-08-30 2019-08-30 Non-volatile memory with gate all around tine film transistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI718649B TWI718649B (en) 2021-02-11
TW202109770A true TW202109770A (en) 2021-03-01

Family

ID=75745811

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108131208A TWI718649B (en) 2019-08-30 2019-08-30 Non-volatile memory with gate all around tine film transistor and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI718649B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI794974B (en) * 2021-09-15 2023-03-01 旺宏電子股份有限公司 3d and flash memory device and method of fabricating the same
US11626517B2 (en) 2021-04-13 2023-04-11 Macronix International Co., Ltd. Semiconductor structure including vertical channel portion and manufacturing method for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI611579B (en) * 2017-06-20 2018-01-11 國立成功大學 Gate-all-around field effect transistor having ultra-thin-body and method of fabricating the same
US10916560B2 (en) * 2019-01-14 2021-02-09 Macronix International Co., Ltd. Crenellated charge storage structures for 3D NAND

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11626517B2 (en) 2021-04-13 2023-04-11 Macronix International Co., Ltd. Semiconductor structure including vertical channel portion and manufacturing method for the same
TWI811667B (en) * 2021-04-13 2023-08-11 旺宏電子股份有限公司 Semiconductor structure
TWI794974B (en) * 2021-09-15 2023-03-01 旺宏電子股份有限公司 3d and flash memory device and method of fabricating the same

Also Published As

Publication number Publication date
TWI718649B (en) 2021-02-11

Similar Documents

Publication Publication Date Title
KR102342709B1 (en) Three-dimensional memory device and its manufacturing methods using alternative drain select gate electrodes
US10381376B1 (en) Three-dimensional flat NAND memory device including concave word lines and method of making the same
US20220115395A1 (en) Trench structures for three-dimensional memory devices
US9666590B2 (en) High stack 3D memory and method of making
US10153295B2 (en) Nonvolatile memory devices and methods of forming same
US9870945B2 (en) Crystalline layer stack for forming conductive layers in a three-dimensional memory structure
US9305935B2 (en) Multi-level contact to a 3D memory array and method of making
US10128261B2 (en) Cobalt-containing conductive layers for control gate electrodes in a memory structure
US9754956B2 (en) Uniform thickness blocking dielectric portions in a three-dimensional memory structure
TW202114181A (en) 3d flash memory and array layout thereof
US11004863B2 (en) Non-volatile memory with gate all around thin film transistor and method of manufacturing the same
US9653473B2 (en) Semiconductor device and method of manufacturing the same
TW200409298A (en) Method for fabricating a vertical nitride read-only memory (NROM) cell
CN108155192B (en) Semiconductor device and method of forming the same
TWI718649B (en) Non-volatile memory with gate all around tine film transistor and method of manufacturing the same
TWI647822B (en) Three-dimensional non-volatile memory and manufacturing method thereof
TW202218055A (en) Flash memory
KR100830591B1 (en) Methods of forming a semiconductor device including openings
TWI717063B (en) Three-dimensional and type flash memory and manufacturing method thereof
TWI464884B (en) Semiconductor device and method for manufacturing thereof
TWI694598B (en) Memory device and method of fabricating the same
TW201644005A (en) Semiconductor device and method of forming the same
TWI753670B (en) Semiconductor device
US20220246518A1 (en) Semiconductor device
CN110071113B (en) Three-dimensional nonvolatile memory and manufacturing method thereof