TWI717063B - Three-dimensional and type flash memory and manufacturing method thereof - Google Patents

Three-dimensional and type flash memory and manufacturing method thereof Download PDF

Info

Publication number
TWI717063B
TWI717063B TW108137580A TW108137580A TWI717063B TW I717063 B TWI717063 B TW I717063B TW 108137580 A TW108137580 A TW 108137580A TW 108137580 A TW108137580 A TW 108137580A TW I717063 B TWI717063 B TW I717063B
Authority
TW
Taiwan
Prior art keywords
layer
insulating
opening
flash memory
pillar
Prior art date
Application number
TW108137580A
Other languages
Chinese (zh)
Other versions
TW202117934A (en
Inventor
胡志瑋
葉騰豪
江昱維
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW108137580A priority Critical patent/TWI717063B/en
Application granted granted Critical
Publication of TWI717063B publication Critical patent/TWI717063B/en
Publication of TW202117934A publication Critical patent/TW202117934A/en

Links

Images

Abstract

A three-dimensional AND type flash memory and a manufacturing method thereof includes steps below is provided. A stacked structure includes a first insulating layer and a first sacrificial layer is formed. A first pillar structure through the stacked structure includes a second insulating layer and a second sacrificial layer surrounded by thereof is formed. A second pillar structure through the stacked structure includes a channel layer and an insulating pillar surrounded by thereof is formed. The second sacrificial layer is located on both sides of the channel layer. The first sacrificial layer is removed. A lateral opening exposing a portion of the second insulating layer and the channel layer is formed. A gate insulating layer surrounding the exposed second insulating layer and channel layer is formed in the lateral opening. A gate layer is filled in the lateral opening. A conductive layer is used to replace the second sacrificial layer.

Description

三維及式快閃記憶體及其製造方法Three-dimensional and type flash memory and manufacturing method thereof

本發明是有關於一種三維快閃記憶體及其製造方法,且特別是有關於一種三維及式快閃記憶體及其製造方法。 The present invention relates to a three-dimensional flash memory and a manufacturing method thereof, and in particular to a three-dimensional flash memory and a manufacturing method thereof.

非揮發性記憶體(例如快閃記憶體)由於具有使存入的資料在斷電後也不會消失的優點,因此成為個人電腦和其他電子設備所廣泛採用的一種記憶體。 Non-volatile memory (such as flash memory) has the advantage that the stored data will not disappear even after power is off, so it has become a type of memory widely used in personal computers and other electronic devices.

目前業界較常使用的快閃記憶體包括反或式(NOR)快閃記憶體以及反及式(NAND)快閃記憶體,但對於及式(AND)快閃記憶體的著墨則較少。由於及式快閃記憶體亦可應用在多維度的快閃記憶胞陣列中,其具有與反及式快閃記憶體一樣多的積集度與面積利用率。因此,及式快閃記憶體的發展已為目前的趨勢。 At present, the flash memory commonly used in the industry includes NOR flash memory and NAND flash memory, but less attention is paid to AND flash memory. Since the AND flash memory can also be used in a multi-dimensional flash memory cell array, it has as much integration and area utilization as the reverse flash memory. Therefore, the development of plus-type flash memory has become the current trend.

本發明提供一種三維及式快閃記憶體的製造方法,其具有製程簡單、高製程良率等功效。 The invention provides a method for manufacturing a three-dimensional sum-type flash memory, which has the effects of simple manufacturing process, high manufacturing process yield and the like.

本發明的三維及式快閃記憶體的製造方法包括以下步驟。 首先,形成堆疊結構於基底上。堆疊結構包括交替堆疊的第一絕緣層與第一犧牲層。接著,形成貫穿堆疊結構且具有類矩形輪廓的第一柱結構。第一柱結構包括第二絕緣層與第二犧牲層,且第二絕緣層環繞第二犧牲層。之後,形成貫穿堆疊結構且具有橢圓形輪廓的第二柱結構。第二柱結構包括通道層與絕緣柱,且通道層環繞絕緣柱。第二犧牲層位於通道層的兩側並與通道層接觸,且第二犧牲層面對第二柱結構的長軸截面。再來,移除第一犧牲層以形成側向開口。側向開口暴露出部分的第二絕緣層以及部分的通道層。然後,形成閘介電層於側向開口中。閘介電層環繞經暴露出的第二絕緣層以及通道層。而後,填入閘極層於側向開口中。最後,利用導體層置換第二犧牲層。 The manufacturing method of the three-dimensional and type flash memory of the present invention includes the following steps. First, a stacked structure is formed on the substrate. The stacked structure includes first insulating layers and first sacrificial layers stacked alternately. Then, a first pillar structure penetrating the stack structure and having a rectangular-like outline is formed. The first pillar structure includes a second insulating layer and a second sacrificial layer, and the second insulating layer surrounds the second sacrificial layer. Afterwards, a second pillar structure penetrating the stack structure and having an elliptical profile is formed. The second pillar structure includes a channel layer and an insulating pillar, and the channel layer surrounds the insulating pillar. The second sacrificial layer is located on both sides of the channel layer and is in contact with the channel layer, and the second sacrificial layer faces the long axis section of the second column structure. Then, the first sacrificial layer is removed to form a lateral opening. The lateral opening exposes part of the second insulating layer and part of the channel layer. Then, a gate dielectric layer is formed in the lateral opening. The gate dielectric layer surrounds the exposed second insulating layer and the channel layer. Then, fill the gate layer in the lateral opening. Finally, the second sacrificial layer is replaced with a conductive layer.

本發明提供一種三維及式快閃記憶體,其具有快速的操作速度。 The invention provides a three-dimensional and type flash memory, which has a fast operating speed.

本發明的三維及式快閃記憶體包括堆疊結構以及柱結構。堆疊結構位於基底上且包括交替設置的第一絕緣層以及閘極層。第一絕緣層與閘極層之間設置有閘介電層。柱結構貫穿堆疊結構且包括絕緣柱、通道層、導體層以及第二絕緣層。絕緣柱具有橢圓形輪廓。通道層環繞絕緣柱。導體層位於通道層的兩側且與通道層接觸,且導體層面對絕緣柱的長軸截面。第二絕緣層環繞未與通道層接觸的導體層的側壁。其中,閘介電層環繞經第一絕緣層暴露的柱結構的側壁。 The three-dimensional and type flash memory of the present invention includes a stacked structure and a pillar structure. The stacked structure is located on the substrate and includes first insulating layers and gate layers alternately arranged. A gate dielectric layer is arranged between the first insulating layer and the gate layer. The pillar structure penetrates the stack structure and includes an insulating pillar, a channel layer, a conductor layer, and a second insulating layer. The insulating column has an elliptical profile. The channel layer surrounds the insulating pillar. The conductor layer is located on both sides of the channel layer and is in contact with the channel layer, and the conductor layer faces the long axis section of the insulating column. The second insulating layer surrounds the sidewall of the conductor layer that is not in contact with the channel layer. Wherein, the gate dielectric layer surrounds the sidewalls of the pillar structure exposed by the first insulating layer.

基於上述,本發明藉由依序形成第一柱結構以及第二柱結構可定義出後續欲形成導體層的位置,使得所述導體層可藉由簡單的製程形成而具有高製程良率。另外,在本發明的三維及式快閃記憶體中,每個柱結構具有獨立的導體層,因此,可通過選擇某一層的閘極層以及某一層導體層而任意地選擇記憶胞(閘極層與柱結構的交叉點),使得本發明的三維及式快閃記憶體具有快速的操作速度。 Based on the above, the present invention can define the position where the conductor layer is to be formed later by sequentially forming the first pillar structure and the second pillar structure, so that the conductor layer can be formed by a simple process with high process yield. In addition, in the three-dimensional and type flash memory of the present invention, each pillar structure has an independent conductor layer. Therefore, the memory cell (gate electrode) can be arbitrarily selected by selecting a certain layer of gate layer and a certain layer of conductor layer. The intersection of the layer and column structure), so that the three-dimensional and type flash memory of the present invention has a fast operating speed.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

10、20:三維及式快閃記憶體 10.20: Three-dimensional and flash memory

100:基底 100: base

101、101a、101b:堆疊結構 101, 101a, 101b: stacked structure

102:第一絕緣層 102: first insulating layer

104:第一犧牲層 104: The first sacrifice layer

106:第一開口 106: first opening

108、108a、108b:第二絕緣層 108, 108a, 108b: second insulating layer

110、110a、110b:第二犧牲層 110, 110a, 110b: second sacrificial layer

112:第二開口 112: second opening

114:通道層 114: Channel layer

116:絕緣柱 116: Insulating column

118:溝渠 118: Ditch

120:側向開口 120: side opening

122:閘介電層 122: gate dielectric layer

124:閘極層 124: Gate layer

126、126a、126b:導體層 126, 126a, 126b: conductor layer

128:第三絕緣層 128: third insulating layer

130:第一接觸件 130: first contact

132:第二接觸件 132: second contact

134:源極線連接線 134: Source line connection line

136:位元線連接線 136: bit line connection line

D1:第一方向 D1: First direction

D2:第二方向 D2: second direction

P:柱結構 P: Column structure

P1:第一柱結構 P1: The first column structure

P1’:剩餘的第一柱結構 P1’: The remaining first column structure

P2:第二柱結構 P2: Second column structure

R1:晶胞區 R1: unit cell area

R2:周邊區 R2: Surrounding area

圖1A至圖1L是本發明的一實施例的三維及式快閃記憶體的製造方法的示意圖。 1A to 1L are schematic diagrams of a method for manufacturing a three-dimensional sum flash memory according to an embodiment of the invention.

圖2是圖1I的側視示意圖。 Fig. 2 is a schematic side view of Fig. 1I.

圖3是本發明的另一實施例的三維及式快閃記憶體的示意圖。 3 is a schematic diagram of a three-dimensional sum flash memory according to another embodiment of the invention.

圖1A至圖1L是本發明的一實施例的三維及式快閃記憶體的製造方法的示意圖。圖2是圖1I的側視示意圖。 1A to 1L are schematic diagrams of a method for manufacturing a three-dimensional sum flash memory according to an embodiment of the invention. Fig. 2 is a schematic side view of Fig. 1I.

請參照圖1A,形成堆疊結構101於基底100上。基底100可例如是半導體基底,舉例來說,基底100可為矽基底。在一些實 施例中,可依據設計需求於基底100中形成摻雜區(舉例來說,N+摻雜區或N型井區)。在另一些實施例中,可更於基底100上形成埋氧化層(未示出)。在本實施例中,基底100可因後續進行的製程而定義出晶胞區以及周邊區。 1A, a stacked structure 101 is formed on the substrate 100. The substrate 100 may be a semiconductor substrate, for example, the substrate 100 may be a silicon substrate. In some real In an embodiment, a doped region (for example, an N+ doped region or an N-type well region) can be formed in the substrate 100 according to design requirements. In other embodiments, a buried oxide layer (not shown) may be further formed on the substrate 100. In this embodiment, the substrate 100 can define a unit cell region and a peripheral region due to subsequent processes.

堆疊結構101包括交替地堆疊的多個第一絕緣層102與多個第一犧牲層104。第一絕緣層102的材料例如是介電材料,舉例來說,第一絕緣層102的材料可為氧化矽。第一犧牲層104的材料則與第一絕緣層102的材料不同,且與第一絕緣層102具有足夠的蝕刻選擇比。在一些實施例中,第一犧牲層104的材料可為氮化矽。第一絕緣層102與第一犧牲層104例如是藉由進行多次化學氣相沈積製程所形成。在此需說明的是,在堆疊結構101中的第一絕緣層102以及第一犧牲層104的層數並非以圖1A所示的實施例為限,詳細地說,第一絕緣層102以及第一犧牲層104的層數可以分別至少大於16,舉例來說,第一絕緣層102以及第一犧牲層104的層數可例如是56、64、96;然而,本發明並不以此為限,在堆疊結構101中的第一絕緣層102以及第一犧牲層104的層數可取決於所欲的三維及式快閃記憶體的設計及密度。 The stacked structure 101 includes a plurality of first insulating layers 102 and a plurality of first sacrificial layers 104 alternately stacked. The material of the first insulating layer 102 is, for example, a dielectric material. For example, the material of the first insulating layer 102 may be silicon oxide. The material of the first sacrificial layer 104 is different from the material of the first insulating layer 102 and has a sufficient etching selection ratio with the first insulating layer 102. In some embodiments, the material of the first sacrificial layer 104 may be silicon nitride. The first insulating layer 102 and the first sacrificial layer 104 are formed, for example, by performing multiple chemical vapor deposition processes. It should be noted here that the number of layers of the first insulating layer 102 and the first sacrificial layer 104 in the stacked structure 101 is not limited to the embodiment shown in FIG. 1A. In detail, the first insulating layer 102 and the first The number of layers of a sacrificial layer 104 can be at least greater than 16, for example, the number of layers of the first insulating layer 102 and the first sacrificial layer 104 can be, for example, 56, 64, 96; however, the present invention is not limited thereto. The number of layers of the first insulating layer 102 and the first sacrificial layer 104 in the stacked structure 101 may depend on the design and density of the desired three-dimensional flash memory.

接著,請參照圖1B,形成貫穿堆疊結構101的第一開口106。第一開口106例如具有類矩形輪廓,即,第一開口106的頂端處至底端處的輪廓呈類矩形。在此需說明的是,類矩形可意指矩形的至少一邊角為圓角而非方角,但本發明並不以此為限,即,第 一開口106亦可具有矩形輪廓。第一開口106的側面例如裸露出部分的第一絕緣層102以及第一犧牲層104,且第一開口106的底面例如裸露出部分的基底100。形成貫穿堆疊結構101的第一開口106可例如為進行以下步驟。首先,在堆疊結構101上形成罩幕層(未示出)。罩幕層例如具有類矩形輪廓的開口。之後,利用罩幕層對堆疊結構101進行蝕刻製程,以在堆疊結構101中形成第一開口106。在本實施例中,第一開口106可具有大致垂直的側壁,基於此,第一開口106亦稱為第一垂直通道(vertical channel;VC)開口。 Next, referring to FIG. 1B, a first opening 106 penetrating through the stack structure 101 is formed. The first opening 106 has, for example, a rectangular-like contour, that is, the contour from the top end to the bottom end of the first opening 106 is rectangular-like. It should be noted here that a rectangle-like can mean that at least one side of the rectangle is rounded instead of square, but the present invention is not limited to this, that is, the first An opening 106 may also have a rectangular outline. The side surface of the first opening 106 exposes, for example, a portion of the first insulating layer 102 and the first sacrificial layer 104, and the bottom surface of the first opening 106 exposes, for example, a portion of the substrate 100. Forming the first opening 106 through the stack structure 101 may be, for example, performing the following steps. First, a mask layer (not shown) is formed on the stacked structure 101. The mask layer has, for example, openings with a rectangular-like outline. After that, an etching process is performed on the stacked structure 101 by using the mask layer to form the first opening 106 in the stacked structure 101. In this embodiment, the first opening 106 may have substantially vertical side walls. Based on this, the first opening 106 is also referred to as a first vertical channel (VC) opening.

之後,請參照圖1C,形成第二絕緣層108於第一開口106的側壁上。第二絕緣層108可例如是共形層,詳細地說,第二絕緣層108可順應著第一開口106的形狀而覆蓋第一開口106的側壁上的第一絕緣層102與第一犧牲層104,且裸露出第一開口106的底面的部分的基底100。換句話說,第二絕緣層108與第一開口106具有類似的形狀與輪廓。第二絕緣層108可例如具有與第一絕緣層102類似的材料,舉例來說,第二絕緣層108的材料可為氧化矽。 After that, referring to FIG. 1C, a second insulating layer 108 is formed on the sidewall of the first opening 106. The second insulating layer 108 may be, for example, a conformal layer. In detail, the second insulating layer 108 may conform to the shape of the first opening 106 to cover the first insulating layer 102 and the first sacrificial layer on the sidewall of the first opening 106 104, and expose the substrate 100 at the bottom surface of the first opening 106. In other words, the second insulating layer 108 and the first opening 106 have similar shapes and contours. The second insulating layer 108 may have a material similar to the first insulating layer 102, for example, the material of the second insulating layer 108 may be silicon oxide.

請繼續參照圖1C,填入第二犧牲層110於第一開口106中。在第二絕緣層108與第一開口106共形的情況下,第二犧牲層110亦例如具有類矩形輪廓。在本實施例中,第二犧牲層110填滿第一開口106。第二犧牲層110可例如具有與第一犧牲層104類 似的材料,舉例來說,第二犧牲層110的材料可為氮化矽。在本實施例中,第二絕緣層108與第二犧牲層110構成第一柱結構P1,第二絕緣層108環繞第二犧牲層110的側壁。 Please continue to refer to FIG. 1C to fill the second sacrificial layer 110 in the first opening 106. When the second insulating layer 108 is conformal to the first opening 106, the second sacrificial layer 110 also has a rectangular-like profile, for example. In this embodiment, the second sacrificial layer 110 fills the first opening 106. The second sacrificial layer 110 may, for example, have the same type as the first sacrificial layer 104 Similar materials, for example, the material of the second sacrificial layer 110 may be silicon nitride. In this embodiment, the second insulating layer 108 and the second sacrificial layer 110 constitute the first pillar structure P1, and the second insulating layer 108 surrounds the sidewall of the second sacrificial layer 110.

接著,請參照圖1D,形成貫穿堆疊結構101的第二開口112。第二開口112例如具有橢圓形輪廓,即,第二開口112的頂端處至底端處的輪廓呈橢圓形。在本實施例中,第二開口112與第一開口106部分地重疊,且第二開口112的長軸的延伸方向與第一開口106的長度的延伸方向正交。詳細地說,形成的第二開口112除了會移除部分的第一絕緣層102與第一犧牲層104之外,還會移除部分的第一柱結構P1。詳細地說,在本實施例中,部分的第二絕緣層108與第二犧牲層110經移除後而各自形成兩個第二絕緣層108a、108b與兩個第二犧牲層110a、110b,其即為剩餘的第一柱結構P1’。基於此,第二開口112的側面例如裸露出部分的第一絕緣層102、第一犧牲層104、第二絕緣層108a、108b以及兩個第二犧牲層110a、110b。此外,第二開口112的底面例如裸露出部分的基底100。形成貫穿堆疊結構101的第二開口112可例如為進行以下步驟。首先,在堆疊結構101上形成罩幕層(未示出)。罩幕層例如具有橢圓形輪廓的開口。之後,利用罩幕層對堆疊結構101進行蝕刻製程,以在堆疊結構101中形成第二開口112。在本實施例中,第二開口112可具有大致垂直的側壁,基於此,第二開口112亦稱為第二垂直通道(vertical channel;VC)開口。 Next, referring to FIG. 1D, a second opening 112 penetrating through the stack structure 101 is formed. The second opening 112 has, for example, an elliptical contour, that is, the contour from the top end to the bottom end of the second opening 112 is elliptical. In this embodiment, the second opening 112 partially overlaps the first opening 106, and the extending direction of the long axis of the second opening 112 is orthogonal to the extending direction of the length of the first opening 106. In detail, in addition to removing part of the first insulating layer 102 and the first sacrificial layer 104, the formed second opening 112 will also remove part of the first pillar structure P1. In detail, in this embodiment, part of the second insulating layer 108 and the second sacrificial layer 110 are removed to form two second insulating layers 108a, 108b and two second sacrificial layers 110a, 110b, respectively. This is the remaining first pillar structure P1'. Based on this, the side surface of the second opening 112 exposes, for example, part of the first insulating layer 102, the first sacrificial layer 104, the second insulating layers 108a, 108b, and the two second sacrificial layers 110a, 110b. In addition, the bottom surface of the second opening 112 exposes a portion of the substrate 100, for example. Forming the second opening 112 penetrating the stack structure 101 may be, for example, performing the following steps. First, a mask layer (not shown) is formed on the stacked structure 101. The mask layer has, for example, an opening with an oval contour. After that, an etching process is performed on the stacked structure 101 by using the mask layer to form the second opening 112 in the stacked structure 101. In this embodiment, the second opening 112 may have substantially vertical sidewalls. Based on this, the second opening 112 is also referred to as a second vertical channel (VC) opening.

之後,請參照圖1E,形成通道層114於第二開口112的側壁上。通道層114可例如是共形層,詳細地說,通道層114可順應著第二開口112的形狀而覆蓋第二開口112的側壁上的第一絕緣層102、第一犧牲層104、第二絕緣層108a、108b以及兩個第二犧牲層110a、110b,且裸露出第二開口112的底面的部分的基底100。換句話說,通道層114與第二開口112具有類似的形狀與輪廓。通道層114的材料可例如是半導體材料,舉例來說,通道層114的材料可為多晶矽或摻雜多晶矽。上述的摻雜多晶矽可藉由進行原位摻雜或是離子植入製程來進行摻雜。通道層114可例如做為位元線使用。 After that, referring to FIG. 1E, a channel layer 114 is formed on the sidewall of the second opening 112. The channel layer 114 can be, for example, a conformal layer. In detail, the channel layer 114 can conform to the shape of the second opening 112 to cover the first insulating layer 102, the first sacrificial layer 104, and the second insulating layer 102 on the sidewall of the second opening 112. The insulating layers 108a, 108b and the two second sacrificial layers 110a, 110b expose a portion of the substrate 100 on the bottom surface of the second opening 112. In other words, the channel layer 114 and the second opening 112 have similar shapes and contours. The material of the channel layer 114 may be a semiconductor material, for example, the material of the channel layer 114 may be polysilicon or doped polysilicon. The above-mentioned doped polysilicon can be doped by in-situ doping or ion implantation process. The channel layer 114 can be used as a bit line, for example.

請繼續參照圖1E,填入絕緣柱116於第二開口112中。在通道層114與第二開口112共形的情況下,絕緣柱116亦例如具有橢圓形輪廓。在本實施例中,絕緣柱116填滿第二開口112。絕緣柱116可例如具有與第一絕緣層102以及第二絕緣層108類似的材料,舉例來說,絕緣柱116的材料可為氧化矽。在本實施例中,通道層114與絕緣柱116構成第二柱結構P2,通道層114環繞絕緣柱116的側壁。 Please continue to refer to FIG. 1E to fill the insulating pillar 116 in the second opening 112. When the channel layer 114 is conformal to the second opening 112, the insulating pillar 116 also has an elliptical profile, for example. In this embodiment, the insulating pillar 116 fills the second opening 112. The insulating pillar 116 may have a material similar to the first insulating layer 102 and the second insulating layer 108, for example, the material of the insulating pillar 116 may be silicon oxide. In this embodiment, the channel layer 114 and the insulating pillar 116 constitute the second pillar structure P2, and the channel layer 114 surrounds the sidewall of the insulating pillar 116.

接著,請參照圖1F,在形成第二柱結構P2之後,圖案化堆疊結構101以形成階梯結構。在此預先說明的是,在形成第二柱結構P2之後,可定義出晶胞區R1以及周邊區R2。詳細地說,形成有剩餘的第一柱結構P1’以及第二柱結構P2為晶胞區R1,而 其餘區域為周邊區R2,且階梯結構形成於周邊區R2中。階梯結構的形成是對未形成有第一柱結構P1與第二柱結構P2的堆疊結構101的部分進行連續的圖案化製程。從另一個角度來看,第一絕緣層102與第一犧牲層104凸出於晶胞區R1的距離隨著其逐漸遠離基底100而減少。之後,對此階梯結構進行平坦化製程(圖1F未示出)。換句話說,對此階梯結構填充絕緣層(圖1F未示出),以形成具有平坦化的表面。 Next, referring to FIG. 1F, after the second pillar structure P2 is formed, the stacked structure 101 is patterned to form a stepped structure. It is pre-explained here that after the second column structure P2 is formed, the unit cell region R1 and the peripheral region R2 can be defined. In detail, the remaining first pillar structure P1' and the second pillar structure P2 formed are the unit cell region R1, and The remaining area is the peripheral area R2, and the step structure is formed in the peripheral area R2. The formation of the step structure is to perform a continuous patterning process on the part of the stack structure 101 where the first pillar structure P1 and the second pillar structure P2 are not formed. From another perspective, the distance between the first insulating layer 102 and the first sacrificial layer 104 protruding from the cell region R1 decreases as they gradually move away from the substrate 100. Afterwards, a planarization process is performed on the stepped structure (not shown in FIG. 1F). In other words, the step structure is filled with an insulating layer (not shown in FIG. 1F) to form a planarized surface.

之後,請參照圖1G,形成貫穿堆疊結構101的溝渠118。在本實施例中,溝渠118沿著階梯結構的形成方向而形成,以將堆疊結構101分割為一對堆疊結構101a、101b。溝渠118例如暴露出一對堆疊結構101a、101b的彼此面對的側壁上的第一絕緣層102以及第一犧牲層104。形成貫穿堆疊結構101的溝渠118可例如為進行以下步驟。首先,在堆疊結構101上形成罩幕層(未示出)。之後,利用罩幕層對堆疊結構101進行蝕刻製程,以在堆疊結構101中形成溝渠118。在一些實施例中,在形成溝渠後亦同時移除部分的基底100。 After that, referring to FIG. 1G, a trench 118 penetrating the stacked structure 101 is formed. In this embodiment, the trench 118 is formed along the formation direction of the stepped structure to divide the stacked structure 101 into a pair of stacked structures 101a and 101b. The trench 118 exposes, for example, the first insulating layer 102 and the first sacrificial layer 104 on the sidewalls of the pair of stacked structures 101a and 101b facing each other. The formation of the trench 118 penetrating the stack structure 101 may be, for example, performing the following steps. First, a mask layer (not shown) is formed on the stacked structure 101. After that, an etching process is performed on the stacked structure 101 by using the mask layer to form a trench 118 in the stacked structure 101. In some embodiments, part of the substrate 100 is also removed after the trench is formed.

接著,請參照圖1H,移除側向開口120所暴露的第一犧牲層104以形成側向開口120。側向開口120例如暴露出部分的第二絕緣層108a、108b以及通道層114,其在圖2A中更清楚地示出。移除側向開口120所暴露的第一犧牲層104的方法例如是進行乾式蝕刻法或溼式蝕刻法,其中在乾式蝕刻法中使用的蝕刻劑 例如是NF3、H2、HBr、O2、N2、He或其組合,且在溼式蝕刻法中使用的蝕刻劑例如是磷酸(H3PO4)溶液。在本實施例中,利用溼式蝕刻法以移除側向開口120所暴露的第一犧牲層104。 Next, referring to FIG. 1H, the first sacrificial layer 104 exposed by the lateral opening 120 is removed to form the lateral opening 120. The lateral opening 120 exposes, for example, a portion of the second insulating layer 108a, 108b and the channel layer 114, which is more clearly shown in FIG. 2A. The method for removing the first sacrificial layer 104 exposed by the lateral opening 120 is, for example, a dry etching method or a wet etching method, wherein the etchant used in the dry etching method is, for example, NF 3 , H 2 , HBr, O 2 , N 2 , He or a combination thereof, and the etchant used in the wet etching method is, for example, a phosphoric acid (H 3 PO 4 ) solution. In this embodiment, a wet etching method is used to remove the first sacrificial layer 104 exposed by the lateral opening 120.

之後,請同時參照圖1I以及圖2,形成閘介電層122於側向開口120中。閘介電層122可例如是共形層,詳細地說,閘介電層122可順應著側向開口120的形狀而覆蓋經側向開口120暴露的第二絕緣層108a、108b以及通道層114,如圖2所示。另外,閘介電層122需具有良好的階梯覆蓋以獲得良好的膜厚均勻性。閘介電層122的材料可例如是氧化物、氮化物或其組合。在一些實施例中,閘介電層122包括氧化物-氮化物-氧化物(ONO)複合層。舉例來說,閘介電層122可包括由氧化矽層、氮化矽層以及氧化矽層組成的複合層。在另一些實施例中,閘介電層122可包括氧化物-氮化物-氧化物-氮化物-氧化物(ONONO)複合層。舉例來說,閘介電層122可包括由氧化矽層、氮化矽層、氧化矽層、氮化矽層以及氧化矽層組成的複合層。此外,在一些實施例中,閘介電層122可更形成於一對堆疊結構101a、101b中的第一絕緣層102的彼此面對的側壁上。 After that, referring to FIG. 1I and FIG. 2 at the same time, a gate dielectric layer 122 is formed in the lateral opening 120. The gate dielectric layer 122 may be, for example, a conformal layer. In detail, the gate dielectric layer 122 may conform to the shape of the lateral opening 120 to cover the second insulating layers 108a, 108b and the channel layer 114 exposed by the lateral opening 120 ,as shown in picture 2. In addition, the gate dielectric layer 122 needs to have good step coverage to obtain good film thickness uniformity. The material of the gate dielectric layer 122 may be, for example, oxide, nitride, or a combination thereof. In some embodiments, the gate dielectric layer 122 includes an oxide-nitride-oxide (ONO) composite layer. For example, the gate dielectric layer 122 may include a composite layer composed of a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. In other embodiments, the gate dielectric layer 122 may include an oxide-nitride-oxide-nitride-oxide (ONONO) composite layer. For example, the gate dielectric layer 122 may include a composite layer composed of a silicon oxide layer, a silicon nitride layer, a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer. In addition, in some embodiments, the gate dielectric layer 122 may be further formed on the sidewalls of the first insulating layer 102 facing each other in the pair of stacked structures 101a and 101b.

之後,請參照圖1J,填入閘極層124於側向開口120中。閘極層124的材料可例如是多晶矽、非晶矽、鎢(W)、鈷(Co)、鋁(Al)、矽化鎢(WSix)或矽化鈷(CoSix)。形成閘極層124的方法可例如是進行化學氣相沈積法。在本實施例中,閘極層124可 做為字元線使用。在一些實施例中,在填入閘極層124於側向開口120中之前,可依序形成緩衝層(未示出)以及阻障層(未示出)於側向開口120中。緩衝層的材料可例如是介電常數大於7的高介電常數的材料,舉例來說,緩衝層的材料可為氧化鋁(Al2O3)、氧化鉿(HfO2)、氧化鑭(La2O5)、過渡金屬氧化物、鑭系元素氧化物或其組合。形成緩衝層的方法可例如是進行化學氣相沈積法或原子層沈積法。阻障層的材料例如是鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。形成阻障層的方法可例如是進行化學氣相沈積法。 After that, referring to FIG. 1J, the gate layer 124 is filled in the lateral opening 120. The material of the gate layer 124 can be, for example, polysilicon, amorphous silicon, tungsten (W), cobalt (Co), aluminum (Al), tungsten silicide (WSi x ), or cobalt silicide (CoSi x ). The method of forming the gate layer 124 may be, for example, a chemical vapor deposition method. In this embodiment, the gate layer 124 can be used as a word line. In some embodiments, before filling the gate layer 124 in the lateral opening 120, a buffer layer (not shown) and a barrier layer (not shown) may be sequentially formed in the lateral opening 120. The material of the buffer layer can be, for example, a material with a high dielectric constant with a dielectric constant greater than 7, for example, the material of the buffer layer can be aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), lanthanum oxide (La 2 O 5 ), transition metal oxides, lanthanide oxides, or combinations thereof. The method of forming the buffer layer may be, for example, a chemical vapor deposition method or an atomic layer deposition method. The material of the barrier layer is, for example, titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN) or a combination thereof. The method of forming the barrier layer may be, for example, a chemical vapor deposition method.

之後,請參照圖1K,利用導體層126置換第二犧牲層110a、110b,其例如進行以下步驟。首先,進行乾式蝕刻法或溼式蝕刻法移除第二犧牲層110a、110b以形成第三開口(未示出)。接著,填入導體層126於第三開口中。導體層126的材料可例如是多晶矽、摻雜多晶矽或其他可導電的金屬材料。在本實施例中,導體層126可做為源極層或汲極層來使用。舉例來說,置換第二犧牲層110a的導體層126做為源極層,且置換第二犧牲層110b的導體層126做為汲極層,但本發明並不限於此。置換第二犧牲層110a的導體層126與置換第二犧牲層110b的導體層126的截面積可相同或不同,本發明並無特別限制。本實施例的源極層/汲極層的形成方法是利用導體層126取代先形成的第二犧牲層110a、110b,其為一種自我對準製程,因此,其具有製程簡單以及高製程良率等 效果。此外,形成後的源極層/汲極層由於外圍各自設置有與其共形的第二絕緣層108a、108b而具有與閘極層124實質上相同的距離,使得本發明實施例的三維及式快閃記憶體10可穩定地操作。 After that, referring to FIG. 1K, the conductor layer 126 is used to replace the second sacrificial layers 110a and 110b. For example, the following steps are performed. First, dry etching or wet etching is performed to remove the second sacrificial layers 110a and 110b to form a third opening (not shown). Then, the conductive layer 126 is filled in the third opening. The material of the conductive layer 126 can be, for example, polysilicon, doped polysilicon, or other conductive metal materials. In this embodiment, the conductive layer 126 can be used as a source layer or a drain layer. For example, the conductive layer 126 of the second sacrificial layer 110a is replaced as a source layer, and the conductive layer 126 of the second sacrificial layer 110b is replaced as a drain layer, but the invention is not limited to this. The cross-sectional area of the conductor layer 126 replacing the second sacrificial layer 110a and the conductor layer 126 replacing the second sacrificial layer 110b may be the same or different, and the present invention is not particularly limited. The method for forming the source/drain layer of this embodiment is to use the conductor layer 126 to replace the previously formed second sacrificial layers 110a, 110b, which is a self-aligned process, therefore, it has a simple process and a high process yield. Wait effect. In addition, the formed source layer/drain layer has substantially the same distance from the gate layer 124 because the outer periphery is respectively provided with the second insulating layers 108a, 108b conformal to the gate layer 124, so that the three-dimensional sum of the embodiment of the present invention The flash memory 10 can operate stably.

另外,在利用導體層126置換第二犧牲層110a、110b之前,可先填入第三絕緣層128於溝渠118中。第三絕緣層128例如覆蓋一對堆疊結構101a、101b的彼此面對的側壁上的閘介電層122以及閘極層124。 In addition, before replacing the second sacrificial layers 110 a and 110 b with the conductive layer 126, a third insulating layer 128 may be filled in the trench 118 first. The third insulating layer 128 covers, for example, the gate dielectric layer 122 and the gate layer 124 on the sidewalls of the pair of stacked structures 101a and 101b facing each other.

最後,請參照圖1L,形成與位於晶胞區R1的導體層126電性連接的第一接觸件130以及與位於周邊區R2的閘極層124(其為階梯結構)電性連接的第二接觸件132。每一導體層126上例如皆對應地設置有第一接觸件130,且每一階梯的閘極層124皆對應地設置有第二接觸件132。接著,形成源極線連接線134以及位元線連接線136,源極線連接線134例如藉由第一接觸件130將一對堆疊結構101a、101b中作為源極層的導體層126彼此電性連接,且位元線連接線136例如亦藉由第一接觸件130將一對堆疊結構101a、101b中作為汲極層的導體層126彼此電性連接。源極線連接線134以及位元線連接線136的材料可例如是金屬材料。 Finally, referring to FIG. 1L, a first contact 130 electrically connected to the conductor layer 126 located in the unit cell region R1 and a second contact member 130 electrically connected to the gate layer 124 (which is a stepped structure) located in the peripheral region R2 are formed. Contact 132. For example, each conductor layer 126 is provided with a first contact 130 correspondingly, and each stepped gate layer 124 is provided with a second contact 132 correspondingly. Next, a source line connection line 134 and a bit line connection line 136 are formed. The source line connection line 134 connects the conductor layers 126 as the source layers in the pair of stacked structures 101a and 101b to each other through the first contact 130, for example. The bit line connection line 136 also electrically connects the conductive layer 126 as the drain layer in the pair of stacked structures 101a and 101b through the first contact 130, for example. The material of the source line connection line 134 and the bit line connection line 136 may be, for example, a metal material.

至此,完成本發明的三維及式快閃記憶體10的製作。 So far, the production of the three-dimensional and type flash memory 10 of the present invention is completed.

本實施例的三維及式快閃記憶體10的製造方法雖然是以上述方法為例進行說明,然而本發明的三維及式快閃記憶體10的形成方法並不以此為限。 Although the method for manufacturing the three-dimensional sum flash memory 10 of this embodiment is described by taking the above-mentioned method as an example, the method for forming the three-dimensional sum flash memory 10 of the present invention is not limited to this.

請繼續參照圖1L,圖1L繪示了本發明的一實施例的三維及式快閃記憶體的示意圖。本發明實施例的三維及式快閃記憶體10包括基底100、堆疊結構101以及柱結構P,其中柱結構P貫穿堆疊結構101。基底100例如具有晶胞區R1以及周邊區R2,其中柱結構P位於晶胞區中,且在周邊區R2形成有階梯結構。堆疊結構101位於基底100上且例如包括一對堆疊結構101a、101b。在一對堆疊結構101a、101b之間可例如設置有第三絕緣層128。在一實施例中,堆疊結構101包括交替設置的第一絕緣層102以及閘極層124。第一絕緣層102以及閘極層124凸出於晶胞區R1的部分可例如在周邊區R2形成階梯結構。在本實施例中,第一絕緣層102與閘極層124之間設置有閘介電層122。此處需說明的是,閘介電層122並非僅設置於第一絕緣層102與閘極層124之間。詳細地說,閘介電層122可更設置於一對堆疊結構101a、101b中的第一絕緣層102的彼此面對的側壁上。此外,閘介電層122可更設置於第一絕緣層102暴露的柱結構P的側壁上,即,閘介電層122環繞經第一絕緣層102暴露的柱結構P的側壁。 Please continue to refer to FIG. 1L. FIG. 1L illustrates a schematic diagram of a three-dimensional plus flash memory according to an embodiment of the present invention. The three-dimensional plus flash memory 10 of the embodiment of the present invention includes a substrate 100, a stack structure 101, and a pillar structure P, wherein the pillar structure P penetrates the stack structure 101. The substrate 100 has, for example, a unit cell region R1 and a peripheral region R2, wherein the column structure P is located in the unit cell region, and a step structure is formed in the peripheral region R2. The stacked structure 101 is located on the substrate 100 and includes, for example, a pair of stacked structures 101a, 101b. A third insulating layer 128 may be provided between the pair of stacked structures 101a, 101b, for example. In an embodiment, the stacked structure 101 includes first insulating layers 102 and gate layers 124 alternately arranged. The portions of the first insulating layer 102 and the gate layer 124 protruding from the cell region R1 may form a stepped structure in the peripheral region R2, for example. In this embodiment, a gate dielectric layer 122 is provided between the first insulating layer 102 and the gate layer 124. It should be noted here that the gate dielectric layer 122 is not only disposed between the first insulating layer 102 and the gate layer 124. In detail, the gate dielectric layer 122 may be further disposed on the sidewalls of the first insulating layer 102 facing each other in the pair of stacked structures 101a and 101b. In addition, the gate dielectric layer 122 may be further disposed on the sidewall of the pillar structure P exposed by the first insulating layer 102, that is, the gate dielectric layer 122 surrounds the sidewall of the pillar structure P exposed by the first insulating layer 102.

在一實施例中,柱結構P包括絕緣柱116、通道層114、導體層126以及第二絕緣層108a、108b。絕緣柱116例如具有橢圓形輪廓,即,絕緣柱116的頂端處至底端處的輪廓呈橢圓形。通道層114環繞絕緣柱116且與絕緣柱116共形。導體層126位於通道層114的兩側且與通道層114接觸。換句話說,導體層126可 包括各自位於通道層114的相對側的兩個導體層126a、126b,並可各自做為源極以及汲極。在本實施例中,導體層126面對絕緣柱116的長軸截面。第二絕緣層108a、108b例如各自環繞未與通道層114接觸的導體層126的側壁。 In an embodiment, the pillar structure P includes an insulating pillar 116, a channel layer 114, a conductor layer 126, and second insulating layers 108a, 108b. The insulating column 116 has, for example, an elliptical contour, that is, the contour from the top end to the bottom end of the insulating column 116 is elliptical. The channel layer 114 surrounds the insulating pillar 116 and conforms to the insulating pillar 116. The conductor layer 126 is located on both sides of the channel layer 114 and is in contact with the channel layer 114. In other words, the conductor layer 126 can It includes two conductor layers 126a, 126b each located on the opposite side of the channel layer 114, and each can serve as a source and a drain. In this embodiment, the conductor layer 126 faces the long axis section of the insulating pillar 116. The second insulating layers 108a and 108b respectively surround the sidewalls of the conductor layer 126 that are not in contact with the channel layer 114, for example.

本發明實施例的三維及式快閃記憶體10可更包括第一接觸件130、第二接觸件132、源極線連接線134以及位元線連接線136。第一接觸件130例如位於晶胞區R1上且與導體層126電性連接,且第二接觸件132例如位於周邊區R2上且與閘極層124電性連接。源極線連接線134例如藉由第一接觸件130將一對堆疊結構101a、101b中作為源極層的導體層126彼此電性連接,且位元線連接線136例如亦藉由第一接觸件130將一對堆疊結構101a、101b中作為汲極層的導體層126彼此電性連接。 The three-dimensional and type flash memory 10 of the embodiment of the present invention may further include a first contact 130, a second contact 132, a source line connection line 134, and a bit line connection line 136. The first contact 130 is, for example, located on the cell region R1 and is electrically connected to the conductor layer 126, and the second contact 132 is, for example, located on the peripheral region R2 and is electrically connected to the gate layer 124. The source line connection line 134 electrically connects the conductor layer 126 as the source layer in the pair of stacked structures 101a, 101b, for example, through the first contact 130, and the bit line connection line 136, for example, also through the first contact The element 130 electrically connects the conductor layers 126 as drain layers in the pair of stacked structures 101a and 101b to each other.

在本實施例中,柱結構P為多個且彼此分隔。柱結構P例如沿著第一方向D1依序排列,且在第二方向D2上交錯排列,其中第二方向D2與第一方向D1正交。由於多個柱結構P彼此分隔,每個柱結構P具有獨立的源極以及汲極(導體層126),因此,可通過選擇某一層的閘極層124以及某一層導體層126而任意地選擇記憶胞(閘極層124與柱結構P的交叉點),使得本實施例的三維及式快閃記憶體10具有快速的操作速度。 In this embodiment, the column structures P are multiple and separated from each other. The pillar structures P are, for example, arranged in sequence along the first direction D1 and staggered in the second direction D2, where the second direction D2 is orthogonal to the first direction D1. Since the plurality of pillar structures P are separated from each other, each pillar structure P has an independent source and drain (conductor layer 126). Therefore, it can be arbitrarily selected by selecting a certain layer of gate layer 124 and a certain layer of conductor layer 126 The memory cell (the crossing point of the gate layer 124 and the pillar structure P) enables the three-dimensional and flash memory 10 of this embodiment to have a fast operating speed.

圖3是本發明的另一實施例的三維及式快閃記憶體的示意圖。在此必須說明的是,圖3的實施例沿用圖1L的實施例的元 件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例描述與效果,下述實施例不再重複贅述,而圖3的實施例中至少一部份未省略的描述可參閱後續內容。 3 is a schematic diagram of a three-dimensional sum flash memory according to another embodiment of the invention. It must be noted here that the embodiment of FIG. 3 follows the elements of the embodiment of FIG. 1L Part numbers and part of the content, where the same or similar numbers are used to represent the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted parts, please refer to the description and effects of the foregoing embodiments. The following embodiments will not be repeated, and at least part of the descriptions not omitted in the embodiment of FIG. 3 can be referred to the subsequent content.

本實施例的三維及式快閃記憶體20與前述實施例的三維及式快閃記憶體10的差異在於:多個柱結構P並未在第一方向D1上排列,且每個柱結構P中包括多個絕緣柱116、多個通道層114、多個導體層126以及多個第二絕緣層108a、108b。詳細地說,由於一個柱結構P中具有多個絕緣柱116以及多個通道層114,大多數的導體層126在第一方向D1上會與相鄰的兩個通道層114接觸,而使得其具有類似糖葫蘆形狀的輪廓。另外,多個柱結構P在第二方向D2上彼此分隔,且每個柱結構P具有多個可共用的源極以及汲極(導體層126),因此,可通過選擇某一層的閘極層124以及某兩個導體層126而任意地選擇記憶胞(閘極層124與柱結構P的交叉點),使得本實施例的三維及式快閃記憶體20具有快速的操作速度。此外,由於每個柱結構P具有的源極以及汲極(導體層126)可被相鄰的記憶胞所共用,因此可進一步縮小三維及式快閃記憶體20的尺寸。 The difference between the three-dimensional sum flash memory 20 of this embodiment and the three-dimensional sum flash memory 10 of the previous embodiment is that the plurality of pillar structures P are not arranged in the first direction D1, and each pillar structure P It includes a plurality of insulating pillars 116, a plurality of channel layers 114, a plurality of conductor layers 126, and a plurality of second insulating layers 108a, 108b. In detail, since one pillar structure P has a plurality of insulating pillars 116 and a plurality of channel layers 114, most of the conductive layers 126 will contact the two adjacent channel layers 114 in the first direction D1, so that they It has an outline similar to the shape of a candied fruit. In addition, the plurality of pillar structures P are separated from each other in the second direction D2, and each pillar structure P has a plurality of shared source and drain electrodes (conductor layer 126). Therefore, it is possible to select a certain layer of gate layer 124 and certain two conductor layers 126 and arbitrarily select the memory cell (the intersection of the gate layer 124 and the pillar structure P), so that the three-dimensional sum flash memory 20 of this embodiment has a fast operating speed. In addition, since the source and drain (conductor layer 126) of each pillar structure P can be shared by adjacent memory cells, the size of the three-dimensional flash memory 20 can be further reduced.

綜上所述,在上述實施例中,藉由依序形成第一柱結構以及第二柱結構可定義出後續欲形成源極層/汲極層的位置,使得所述源極層/汲極層可藉由簡單的製程形成而具有高製程良率,且形 成後的源極層/汲極層因共形的第二絕緣層而具有與閘極層實質上相同的距離,使得本發明的三維及式快閃記憶體可穩定地操作。另外,在本發明的三維及式快閃記憶體中,每個柱結構具有獨立的導體層,因此,可通過選擇某一層的閘極層以及某一層導體層而任意地選擇記憶胞(閘極層與柱結構的交叉點),使得本發明的三維及式快閃記憶體具有快速的操作速度。 In summary, in the above embodiment, by sequentially forming the first pillar structure and the second pillar structure, the position where the source layer/drain layer is to be formed subsequently can be defined, so that the source layer/drain layer It can be formed by a simple process with high process yield, and the shape The formed source/drain layer has substantially the same distance as the gate layer due to the conformal second insulating layer, so that the three-dimensional sum flash memory of the present invention can operate stably. In addition, in the three-dimensional and type flash memory of the present invention, each pillar structure has an independent conductor layer. Therefore, the memory cell (gate electrode) can be arbitrarily selected by selecting a certain layer of gate layer and a certain layer of conductor layer. The intersection of the layer and column structure), so that the three-dimensional and type flash memory of the present invention has a fast operating speed.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

10:三維及式快閃記憶體 10: Three-dimensional and type flash memory

100:基底 100: base

101、101a、101b:堆疊結構 101, 101a, 101b: stacked structure

108a、108b:第二絕緣層 108a, 108b: second insulating layer

114:通道層 114: Channel layer

116:絕緣柱 116: Insulating column

122:閘介電層 122: gate dielectric layer

124:閘極層 124: Gate layer

126、126a、126b:導體層 126, 126a, 126b: conductor layer

128:第三絕緣層 128: third insulating layer

130:第一接觸件 130: first contact

132:第二接觸件 132: second contact

134:源極線連接線 134: Source line connection line

136:位元線連接線 136: bit line connection line

D1:第一方向 D1: First direction

D2:第二方向 D2: second direction

P:柱結構 P: Column structure

R1:晶胞區 R1: unit cell area

R2:周邊區 R2: Surrounding area

Claims (10)

一種三維及式快閃記憶體的製造方法,包括: 形成堆疊結構於基底上,其中所述堆疊結構包括交替堆疊的第一絕緣層與第一犧牲層; 形成貫穿所述堆疊結構且具有類矩形輪廓的第一柱結構,其中所述第一柱結構包括第二絕緣層與第二犧牲層,且所述第二絕緣層環繞所述第二犧牲層; 形成貫穿所述堆疊結構且具有橢圓形輪廓的第二柱結構,其中所述第二柱結構包括通道層與絕緣柱,所述通道層環繞所述絕緣柱,且所述第二犧牲層位於所述通道層的兩側並與所述通道層接觸,其中所述第二犧牲層面對所述第二柱結構的長軸截面; 移除所述第一犧牲層以形成側向開口,其中所述側向開口暴露出部分的所述第二絕緣層以及部分的所述通道層; 形成閘介電層於所述側向開口中,其中所述閘介電層環繞經暴露出的所述第二絕緣層以及所述通道層; 填入閘極層於所述側向開口中;以及 利用導體層置換所述第二犧牲層。 A method for manufacturing a three-dimensional and type flash memory includes: Forming a stacked structure on the substrate, wherein the stacked structure includes a first insulating layer and a first sacrificial layer alternately stacked; Forming a first pillar structure penetrating the stack structure and having a rectangular-like outline, wherein the first pillar structure includes a second insulating layer and a second sacrificial layer, and the second insulating layer surrounds the second sacrificial layer; A second pillar structure having an elliptical profile penetrating through the stack structure is formed, wherein the second pillar structure includes a channel layer and an insulating pillar, the channel layer surrounds the insulating pillar, and the second sacrificial layer is located at the Both sides of the channel layer are in contact with the channel layer, wherein the second sacrificial layer faces the long axis cross section of the second column structure; Removing the first sacrificial layer to form a side opening, wherein the side opening exposes part of the second insulating layer and part of the channel layer; Forming a gate dielectric layer in the lateral opening, wherein the gate dielectric layer surrounds the exposed second insulating layer and the channel layer; Filling the gate layer in the lateral opening; and The second sacrificial layer is replaced with a conductor layer. 如申請專利範圍第1項所述的三維及式快閃記憶體的製造方法,其中形成所述第一柱結構的步驟包括: 形成貫穿所述堆疊結構的第一開口,其中所述第一開口具有類矩形輪廓; 形成所述第二絕緣層於所述第一開口的側壁上;以及 填入所述第二犧牲層於所述第一開口中。 According to the method for manufacturing a three-dimensional sum flash memory described in the scope of the patent application, the step of forming the first pillar structure includes: Forming a first opening penetrating the stack structure, wherein the first opening has a rectangular-like outline; Forming the second insulating layer on the sidewall of the first opening; and Filling the second sacrificial layer in the first opening. 如申請專利範圍第1項所述的三維及式快閃記憶體的製造方法,其中形成所述第二柱結構的步驟包括: 形成貫穿所述堆疊結構的第二開口,其中所述第二開口具有橢圓形輪廓,且部分地所述第二絕緣層與所述第二犧牲層經移除; 形成所述通道層於所述第二開口的側壁上;以及 填入所述絕緣柱於所述第二開口中。 According to the method for manufacturing a three-dimensional sum flash memory described in the scope of patent application 1, the step of forming the second pillar structure includes: Forming a second opening penetrating the stacked structure, wherein the second opening has an elliptical outline, and part of the second insulating layer and the second sacrificial layer are removed; Forming the channel layer on the sidewall of the second opening; and Fill the insulating column in the second opening. 如申請專利範圍第1項所述的三維及式快閃記憶體的製造方法,其中移除所述第一犧牲層以形成所述側向開口的步驟包括: 形成貫穿所述堆疊結構的溝渠,其中所述溝渠暴露出所述第一犧牲層;以及 側向蝕刻所述第一犧牲層。 According to the method for manufacturing a three-dimensional sum flash memory described in claim 1, wherein the step of removing the first sacrificial layer to form the lateral opening includes: Forming a trench penetrating the stacked structure, wherein the trench exposes the first sacrificial layer; and The first sacrificial layer is etched sideways. 如申請專利範圍第4項所述的三維及式快閃記憶體的製造方法,其中在填入所述閘極層於所述側向開口中之後,填入第三絕緣層於所述溝渠中。The method for manufacturing a three-dimensional sum flash memory as described in claim 4, wherein after filling the gate layer in the lateral opening, a third insulating layer is filled in the trench . 一種三維及式快閃記憶體,包括: 堆疊結構,位於基底上且包括交替設置的第一絕緣層以及閘極層,其中所述第一絕緣層與所述閘極層之間設置有閘介電層;以及 柱結構,貫穿所述堆疊結構,包括: 絕緣柱,具有橢圓形輪廓; 通道層,環繞所述絕緣柱; 導體層,位於所述通道層的兩側且與所述通道層接觸,其中所述導體層面對所述絕緣柱的長軸截面;以及 第二絕緣層,環繞未與所述通道層接觸的所述導體層的側壁, 其中所述閘介電層環繞經第一絕緣層暴露的所述柱結構的側壁。 A three-dimensional and type flash memory, including: The stacked structure is located on the substrate and includes a first insulating layer and a gate layer alternately arranged, wherein a gate dielectric layer is arranged between the first insulating layer and the gate layer; and The column structure, which penetrates the stack structure, includes: Insulating column with an oval profile; A channel layer surrounding the insulating column; A conductor layer located on both sides of the channel layer and in contact with the channel layer, wherein the conductor layer faces the long axis section of the insulating column; and The second insulating layer surrounds the sidewall of the conductor layer that is not in contact with the channel layer, The gate dielectric layer surrounds the sidewalls of the pillar structure exposed by the first insulating layer. 如申請專利範圍第6項所述的三維及式快閃記憶體,其包括一對所述堆疊結構,所述一對堆疊結構之間設置有第三絕緣層。The three-dimensional sum flash memory described in item 6 of the scope of patent application includes a pair of the stacked structures, and a third insulating layer is arranged between the pair of stacked structures. 如申請專利範圍第7項所述的三維及式快閃記憶體,其中所述一對堆疊結構中的所述第一絕緣層的彼此面對的側壁上設置有所述閘介電層。In the three-dimensional sum flash memory described in claim 7, wherein the gate dielectric layer is provided on the sidewalls of the first insulating layer in the pair of stacked structures that face each other. 如申請專利範圍第6項所述的三維及式快閃記憶體,其中所述柱結構為多個,所述多個柱結構在第一方向上依序排列,且在與所述第一方向正交的第二方向上交錯排列。The three-dimensional sum flash memory described in claim 6, wherein there are a plurality of the pillar structures, and the plurality of pillar structures are sequentially arranged in a first direction and aligned with the first direction. Staggered in the second orthogonal direction. 如申請專利範圍第6項所述的三維及式快閃記憶體,其中所述柱結構為多個,所述多個柱結構中的一者包括多個所述絕緣柱、多個所述通道層、多個所述導體層以及多個所述第二絕緣層。The three-dimensional sum flash memory according to claim 6, wherein the pillar structure is multiple, and one of the multiple pillar structures includes a plurality of the insulating pillars and a plurality of the channels Layer, a plurality of the conductor layers, and a plurality of the second insulating layers.
TW108137580A 2019-10-18 2019-10-18 Three-dimensional and type flash memory and manufacturing method thereof TWI717063B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108137580A TWI717063B (en) 2019-10-18 2019-10-18 Three-dimensional and type flash memory and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108137580A TWI717063B (en) 2019-10-18 2019-10-18 Three-dimensional and type flash memory and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI717063B true TWI717063B (en) 2021-01-21
TW202117934A TW202117934A (en) 2021-05-01

Family

ID=75237543

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108137580A TWI717063B (en) 2019-10-18 2019-10-18 Three-dimensional and type flash memory and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI717063B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI794974B (en) * 2021-09-15 2023-03-01 旺宏電子股份有限公司 3d and flash memory device and method of fabricating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201220320A (en) * 2010-07-15 2012-05-16 Micron Technology Inc Memory arrays having substantially vertical, adjacent semiconductor structures and their formation
US20170338243A1 (en) * 2016-05-19 2017-11-23 University-Industry Foundation (Uif), Yonsei University 3-dimensional non-volatile memory device and method of fabricating the same
TW201804602A (en) * 2016-07-26 2018-02-01 台灣積體電路製造股份有限公司 Method for fabricating a non-volatile memory device
TWI667774B (en) * 2019-01-02 2019-08-01 大陸商長江存儲科技有限責任公司 3 dimension storage device with through stair contact and method of forming same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201220320A (en) * 2010-07-15 2012-05-16 Micron Technology Inc Memory arrays having substantially vertical, adjacent semiconductor structures and their formation
US20170338243A1 (en) * 2016-05-19 2017-11-23 University-Industry Foundation (Uif), Yonsei University 3-dimensional non-volatile memory device and method of fabricating the same
TW201804602A (en) * 2016-07-26 2018-02-01 台灣積體電路製造股份有限公司 Method for fabricating a non-volatile memory device
TWI667774B (en) * 2019-01-02 2019-08-01 大陸商長江存儲科技有限責任公司 3 dimension storage device with through stair contact and method of forming same

Also Published As

Publication number Publication date
TW202117934A (en) 2021-05-01

Similar Documents

Publication Publication Date Title
KR102342709B1 (en) Three-dimensional memory device and its manufacturing methods using alternative drain select gate electrodes
US10854622B2 (en) Vertical memory devices and methods of manufacturing the same
CN109564922B (en) Three-dimensional memory device and method of manufacturing the same
US10290650B1 (en) Self-aligned tubular electrode portions inside memory openings for drain select gate electrodes in a three-dimensional memory device
US9716062B2 (en) Multilevel interconnect structure and methods of manufacturing the same
KR102424720B1 (en) Vertical memory devices and methods of manufacturing the same
US9666590B2 (en) High stack 3D memory and method of making
US9230853B2 (en) Semiconductor devices having bit line contact plugs and methods of manufacturing the same
TW202114181A (en) 3d flash memory and array layout thereof
KR102612259B1 (en) Three-dimensional NOR array comprising vertical word lines and individual channels and methods for manufacturing the same
KR102504258B1 (en) Semiconductor devices and Methods of fabricating the same
US10847524B2 (en) Three-dimensional memory device having double-width staircase regions and methods of manufacturing the same
US20230413544A1 (en) Three-dimensional memory device and method of manufacture
KR20160116882A (en) Semiconductor devices and methods of manufacturing thereof
KR20210116824A (en) Semiconductor memory device and Method of fabricating the same
US11004863B2 (en) Non-volatile memory with gate all around thin film transistor and method of manufacturing the same
CN109314119B (en) Memory circuit and method for forming vertical memory cell string and conductive path
CN112768451A (en) Semiconductor device and method for manufacturing the same
US7335940B2 (en) Flash memory and manufacturing method thereof
US10910402B1 (en) Three-dimensional and flash memory and manufacturing method thereof
JP2022027716A (en) Semiconductor device and manufacturing method of the same
TWI717063B (en) Three-dimensional and type flash memory and manufacturing method thereof
TWI718649B (en) Non-volatile memory with gate all around tine film transistor and method of manufacturing the same
KR20180018239A (en) Semiconductor Memory Device
JP2009267107A (en) Non-volatile semiconductor storage device, and method of manufacturing the same