TW202107851A - 訊號除頻器、訊號分佈系統與其相關方法 - Google Patents

訊號除頻器、訊號分佈系統與其相關方法 Download PDF

Info

Publication number
TW202107851A
TW202107851A TW109127333A TW109127333A TW202107851A TW 202107851 A TW202107851 A TW 202107851A TW 109127333 A TW109127333 A TW 109127333A TW 109127333 A TW109127333 A TW 109127333A TW 202107851 A TW202107851 A TW 202107851A
Authority
TW
Taiwan
Prior art keywords
signal
divider
input
frequency
oscillating signal
Prior art date
Application number
TW109127333A
Other languages
English (en)
Other versions
TWI726791B (zh
Inventor
王毓駒
朱大舜
吳岳明
Original Assignee
創未來科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創未來科技股份有限公司 filed Critical 創未來科技股份有限公司
Publication of TW202107851A publication Critical patent/TW202107851A/zh
Application granted granted Critical
Publication of TWI726791B publication Critical patent/TWI726791B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K21/00Details of pulse counters or frequency dividers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K23/00Pulse counters comprising counting chains; Frequency dividers comprising counting chains
    • H03K23/64Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two
    • H03K23/66Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two with a variable counting base, e.g. by presetting or by adding or suppressing pulses
    • H03K23/662Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two with a variable counting base, e.g. by presetting or by adding or suppressing pulses by adding or suppressing pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K23/00Pulse counters comprising counting chains; Frequency dividers comprising counting chains
    • H03K23/64Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two
    • H03K23/66Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two with a variable counting base, e.g. by presetting or by adding or suppressing pulses
    • H03K23/667Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two with a variable counting base, e.g. by presetting or by adding or suppressing pulses by switching the base during a counting cycle
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/24Automatic control of frequency or phase; Synchronisation using a reference signal directly applied to the generator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay
    • H04L7/0037Delay of clock signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/341Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal wherein the rate of change of the transmitted frequency is adjusted to give a beat of predetermined constant frequency, e.g. by adjusting the amplitude or frequency of the frequency-modulating signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Manipulation Of Pulses (AREA)
  • Burglar Alarm Systems (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

本發明提出一種訊號除頻器,該訊號除頻器包含:一除頻電路,用來依據一第一輸入震盪訊號以產生一輸出震盪訊號;以及一訊號產生電路,耦接於該除頻電路,用來產生一注入訊號至該除頻電路,其中該除頻電路係依據該注入訊號以及該第一輸入震盪訊號來產生具有一預定相位的該輸出震盪訊號。

Description

訊號除頻器、訊號分佈系統與其相關方法
本發明涉及訊號除頻器,尤指一種利用訊號除頻器來同步時脈訊號的訊號分佈系統與其相關方法。
相位陣列天線係以波束成型的方式來掃描空間中的目標物。為了確保相位陣列天線的偵測範圍和定位的準確性,該相位陣列天線必須具有非常低的時脈偏移,其中時脈偏移係複數個時脈訊號抵達該相位陣列天線的複數個射頻收發器的時間差。一般上,製程變異、供應電壓雜訊以及溫度都會造成一個相位陣列天線的時脈偏移惡化。因此,如何改善一個相位陣列天線的時脈偏移問題實為業界有待解決的問題。
有鑑於此,本發明提出了一訊號除頻器、利用該訊號除頻器來同步時脈訊號的一訊號分佈系統與其相關方法來解決時脈偏移的問題。
本說明書提供一種訊號除頻器的實施例,其包含:一除頻電路,用來依據一第一輸入震盪訊號以產生一輸出震盪訊號;以及一訊號產生電路,耦接於該除頻電路,用來產生一注入訊號至該除頻電路;其中該除頻電路係依據該注入訊號以及該第一輸入震盪訊號來產生具有一預定相位的該輸出震盪訊號。
本說明書另提供一種訊號分佈系統的實施例,其包含:一第一訊號除頻器,用來依據一第一輸入震盪訊號產生一第一輸出震盪訊號;一第二訊號除頻器,用來依據該第一輸入震盪訊號產生一第二輸出震盪訊號;一第一傳輸通道,耦接於該第一訊號除頻器以及該第二訊號除頻器,用來傳送該第一輸入震盪訊號至該第一訊號除頻器以及該第二訊號除頻器;以及一第二傳輸通道,耦接於該第一訊號除頻器以及該第二訊號除頻器,用來傳送該第二輸入震盪訊號至該第一訊號除頻器以及該第二訊號除頻器;其中該第一輸入震盪訊號具有一第一頻率,該第二輸入震盪訊號具有一第二頻率,以及該第二頻率係小於該第一頻率。
本說明書另提供一種用來除頻訊號的方法的實施例,其包含:提供一除頻電路以依據一第一輸入震盪訊號來產生一輸出震盪訊號;以及產生一注入訊號至該除頻電路以將該輸出震盪訊號的一電壓準位切換至一參考電壓準位產生具有一預定相位的該輸出震盪訊號。
上述實施例的優點之一是,即使該些輸出震盪訊號的相位抵達複數個射頻裝置是不同步的,該些射頻裝置也可有效地控制該些輸出震盪訊號的相位以使其同步。
本發明的其他優點將搭配以下的說明和圖式進行更詳細的解說。
以下將配合相關圖式來說明本發明的實施例。在圖式中,相同的標號表示相同或類似的元件或方法流程。
以下揭露內容提供用於實施所提供主題之不同特徵之許多不同實施例或實例。下文描述組件及配置之特定實例以簡化本揭露實施例。當然,此等僅為實例且並不希望為限制性的。舉例而言,在以下描述中,第一特徵在第二特徵之上或上之形成可包括第一特徵與第二特徵直接接觸地形成之實施例,並且亦可包括額外特徵可形成於第一特徵與第二特徵之間從而使得第一特徵與第二特徵可以不直接接觸之實施例。另外,本揭露實施例可以在各種實例中重複參考標號及/或字母。此重複是出於簡單及清楚之目的,且本身並不指示所論述之各種實施例及/或組態之間的關係。
下文詳細論述本揭露之實施例。但應瞭解,本揭露實施例提供之許多適用發明概念可實施在多種具體環境中。所論述之具體實施例僅僅是說明性的且並不限制本揭露實施例之範疇。
此外,本文為易於描述可使用空間上相對術語,例如「下面」、「下方」、「上方」、「上部」、「下部」、「左」、「右」及類似術語,來描述如圖中所圖示之一個元件或特徵與另一元件或特徵之關係。除圖中所描繪之取向之外,空間上相對之術語意圖涵蓋在使用或操作中之裝置之不同取向。設備可以其他方式定向(旋轉90度或處於其他取向),且本文中所使用之空間相對描述詞同樣可相應地進行解釋。將理解,當元件被稱作「連接」或「耦接」至另一元件時,該元件可直接連接至或耦接至另一元件,或可存在介入元件。
儘管闡述本揭露實施例之廣泛範圍之數值範圍及參數為近似值,但特定實例中所闡述之數值為儘可能精確報告的。但是,任何數值固有地含有某些由相應測試量測值中所發現之標準偏差必然造成之誤差。並且,如本文所使用,術語「約」大體上指在給定值或範圍之10%、5%、1%或0.5%內。或者,當由一般熟習此項技術者考慮時,術語「約」指在平均值之可接受標準誤差內。除了在操作/工作實例中以外,或除非另外明確指定,否則所有數值範圍、量、值及百分比(例如,用於本文中所揭露之材料數量、持續時間、溫度、操作條件、量之比率及其類似者之彼等數值範圍、量、值及百分比)應理解為在所有情況下由術語「約」修飾。相應地,除非相反地指示,否則本揭露實施例及所附申請專利範圍中所闡述之數值參數為可按需要改變之近似值。至少應根據所報告之有效數位之數目且藉由應用一般捨入技術來解釋每個數值參數。範圍可在本文中表示為自一個端點至另一端點或在兩個端點之間。除非另外指定,否則本文中所揭露之所有範圍包含端點。
圖1係依據本發明實施例所示的一訊號分佈系統100的功能方塊圖。為了簡化起見,訊號分佈系統100係一簡化的訊號分佈網路,該訊號分佈網路僅具有兩個射頻裝置102、104以及一訊號傳輸通道106,然而其並不是本發明的限制。在本發明的另一些實施例中,訊號分佈系統100也可以是多過兩個射頻裝置以及多過一個訊號傳輸通道的設計。舉例而言,訊號分佈系統100可以被應用在一相位陣列天線的雷達系統。依據本發明的實施例,射頻裝置102、104中的任一個可以是一發射器、一接收器或一收發器。訊號傳輸通道106係用來傳送複數個震盪訊號或時脈訊號至射頻裝置102、104。在一實施例中,訊號傳輸通道106係一訊號總線。在另一實施例中,訊號傳輸通道106可包含一個或多個射頻功率分配器、一個或多個射頻訊好分配器以及/或一個或多個主動扇出緩衝放大器,以對所傳送的高頻訊號進行頻率匹配以及/或訊號放大的操作。訊號傳輸通道106包含一第一傳輸通道1062以及一第二傳輸通道1064,其中第一傳輸通道1062以及第二傳輸通道1064從饋入端108分別到射頻裝置102、104係具有相同的長度。進一步而言,第一傳輸通道1062係用來傳送一第一輸入震盪訊號Si1至射頻裝置102、104,以及第二傳輸通道1064係用來傳送一第二輸入震盪訊號Si2至射頻裝置102、104。第一輸入震盪訊號Si1的頻率係不同於第二輸入震盪訊號Si2的頻率。為了對所傳送的第一輸入震盪訊號Si1與第二輸入震盪訊號Si2進行頻率匹配以及/或訊號放大的操作執行,該些射頻功率分配器、射頻訊好分配器以及/或主動扇出緩衝放大器會被分別設置在第一傳輸通道1062與第二傳輸通道1064的連接點110。因此,第一輸入震盪訊號Si1與第二輸入震盪訊號Si2在饋入端108的訊號頻率以及/或訊號功率可能會分別不同於射頻裝置102、104接收到的第一輸入震盪訊號Si1與第二輸入震盪訊號Si2的訊號頻率以及/或訊號功率。然而,為了簡化起見,在圖1中,第一輸入震盪訊號Si1與第二輸入震盪訊號Si2在饋入端108的訊號頻率以及/或訊號功率係分別相同於射頻裝置102、104接收到的第一輸入震盪訊號Si1與第二輸入震盪訊號Si2的訊號頻率以及/或訊號功率。
依據本發明的實施例,射頻裝置102、104係用來發送或/以及接收具有一預定頻率的射頻訊號。舉例而言,該預定頻率大致上為9GH或3GHz。第一輸入震盪訊號Si1以及第二輸入震盪訊號Si2的頻率係不同於該預定頻率。進一步而言,第一輸入震盪訊號Sil的頻率係該預定頻率的兩倍,而第一輸入震盪訊號Sil的頻率係第二輸入震盪訊號Si2的頻率的倍數。請注意,在一些實施例中,第一輸入震盪訊號Sil的頻率係第二輸入震盪訊號Si2的頻率的整數倍數。在另一些實施例中,第一輸入震盪訊號Sil的頻率係第二輸入震盪訊號Si2的頻率的分數倍數。因此,如圖1所示,射頻裝置102、104內另分別提供了一第一訊號除頻器1022以及一第二訊號除頻器1042來對第一輸入震盪訊號Sil進行除頻以使得射頻裝置102、104可分別發送具有該預定頻率的射頻訊號。在本實施例中,第一訊號除頻器1022係依據第一輸入震盪訊號Sil以及第二輸入震盪訊號Si2來產生四個具有不同的預定相位的輸出震盪訊號So1、So2、So3、So4(例如0度、90度、180度、270度)。同理,第二訊號除頻器1042係依據第一輸入震盪訊號Sil以及第二輸入震盪訊號Si2來產生另外四個具有不同的預定相位的輸出震盪訊號So1、So2、So3、So4(例如0度、90度、180度、270度)。當由第一訊號除頻器1022所產生的輸出震盪訊號So1、So2、So3、So4的該些預定相位與第二訊號除頻器1042所產生的輸出震盪訊號So1、So2、So3、So4的該些預定相位之間分別具有複數個預定的相位差時,射頻裝置102、104可用來產生一相位偏移射頻訊號以掃描位於不同方向的目標物。舉例而言,由第一訊號除頻器1022所產生的輸出震盪訊號So1與第二訊號除頻器1042所產生的輸出震盪訊號So1之間可調整位一第一固定的相位差,由第一訊號除頻器1022所產生的輸出震盪訊號So2與第二訊號除頻器1042所產生的輸出震盪訊號So2之間可調整位一第二固定的相位差,而該第一固定的相位差係相同於該第二固定的相位差。接著,由第一訊號除頻器1022(及該第二訊號除頻器1042)所產生的輸出震盪訊號So1、So2、So3、So4可提供給一混波器來對一輸出訊號進行升頻處理或對一接收訊號進行降頻處理。
然而,訊號傳輸通道106可能會造成輸入震盪訊號Sil以及Si2之間產生時脈偏移的現像,其會影響輸出震盪訊號So1(以及So2、So3、So4)的相位。爲了確保由第一訊號除頻器1022產生的輸出震盪訊號So1(以及So2、So3、So4)的相位大致上相同於(或同步於)由第二訊號除頻器1042產生的輸出震盪訊號So1(以及So2、So3、So4)的相位該輸出震盪訊號So1(以及So2,So3,以及So4),當訊號分佈系統100處於操作模式時,第一訊號除頻器1022以及第二訊號除頻器1042另分別產生一第一偵測訊號Sd1以及一第二偵測訊號Sd2至一運算裝置(未顯示)。依據本發明的實施例,該運算裝置係依據第一偵測訊號Sd1以及第二偵測訊號Sd2的電壓準位來判定由第一訊號除頻器1022產生的輸出震盪訊號So1的相位是否大致上同步於由第二訊號除頻器1042產生的輸出震盪訊號So1的相位。當第一偵測訊號Sd1的電壓準位不同於以及第二偵測訊號Sd2的電壓準位時,該運算裝置判定由第一訊號除頻器1022輸出的輸出震盪訊號So1與第二訊號除頻器1042輸出的輸出震盪訊號So1具有不同的相位。例如由第一訊號除頻器1022輸出的輸出震盪訊號So1與第二訊號除頻器1042輸出的輸出震盪訊號So1的相位差爲180度。當第一偵測訊號Sd1以及第二偵測訊號Sd2具有相同的電壓準位時(例如都是高電壓準位Vdd或都是低電壓準位Vgnd),該運算裝置就判定由第一訊號除頻器1022輸出的輸出震盪訊號So1與第二訊號除頻器1042輸出的輸出震盪訊號So1具有相同的相位。此外,該運算裝置判定由第一訊號除頻器1022輸出的輸出震盪訊號So1與第二訊號除頻器1042輸出的輸出震盪訊號So1具有不同的相位時,第一訊號除頻器1022以及第二訊號除頻器1042中之一會被調整以改變該對應的輸出震盪訊的相位,進而使得第一訊號除頻器1022輸出的輸出震盪訊號So1與第二訊號除頻器1042輸出的輸出震盪訊號So1具有相同的相位。以下段落將仔細描述上述的調整操作。
依據本發明的實施例,第一訊號除頻器1022的架構係相同於第二訊號除頻器1042的架構。為了簡化起見,圖2所示係依據本發明第一訊號除頻器1022的一實施例示意圖。訊號除頻器1022包含一除頻電路202、一訊號產生電路204以及一偵測電路206。依據本發明的實施例,除頻電路202係依據第一輸入震盪訊號Si1以及一注入訊號Sj來產生複數個輸出震盪訊號So1、So2、So3、So4。訊號除頻器1022係設置爲一電流模邏輯(Current Mode Logic)訊號除頻器或電流控制正交(Current Steering Quadrature)訊號除頻器。訊號產生電路204係耦接於該除頻電路202,並依據該第一輸入震盪訊號Si1以及該第二輸入震盪訊號Si2來產生該注入訊號Sj。偵測電路206係耦接於該除頻電路202以及訊號產生電路204,並依據第一輸入震盪訊號Sil的一第一相位以及第二輸入震盪訊號Si2的一第二相位來產生偵測訊號Sd1。依據本發明的實施例,經由利用該注入訊號Sj,該除頻電路202可輸出四個分別具有預定相位的輸出震盪訊號So1~So4。舉例而言,注入訊號Sj係具有一預定脈衝寬度的一脈衝訊號,以及當注入訊號Sj的脈衝訊號觸發除頻電路202時,輸出震盪訊號So1~So4的相位會分別被強制輸出爲0度、90度、180度、270度。進一步而言,以輸出震盪訊號So1為例,當注入訊號Sj的脈衝訊號觸發除頻電路202時,輸出震盪訊號So1的電壓準位會被拉到除頻電路202的參考電壓(例如供應電壓Vdd),以使得輸出震盪訊號So1的相位為0度。當輸出震盪訊號So1的相位為0度時,輸出震盪訊號So1~So4的相位就會分別是0度、90度、180度、270度。
圖3所示係依據本發明一訊號除頻器300的實施例示意圖。訊號除頻器300係第一訊號除頻器1022以及第二訊號除頻器1042更細部的電路圖。偵測電路206包含一可調延遲電路2062、一第一正反器2064以及一低通濾波器2066。可調延遲電路2062係耦接於訊號產生電路204以對輸入震盪訊號Si2延遲一延遲時間以產生延遲震盪訊號Si2d。可調延遲電路2062係設置爲一電流模邏輯或電流控制延遲線。正反器2064具有一資料輸入端D以接收輸入震盪訊號Si1,一時脈輸入端CLK耦接於可調延遲電路2062以接收延遲震盪訊號Si2d,以及一資料輸出端Q用來產生一第一重定震盪訊號Srt1。低通濾波器2066係耦接於資料輸出端Q以依據該第一重定震盪訊號Srt1來輸出偵測訊號Sd1。低通濾波器2066包含以電阻2066a以及一電容2066b。電阻2066a具有一第一端耦接於正反器2064的資料輸出端Q以及一第二端輸出偵測訊號Sd1。電容2066b具有一端耦接於電阻2066a的第二端,以及一第二端耦接於一參考電壓準位(例如接地電壓Vgnd)。
依據本發明的實施例,訊號除頻器300另包含一第二正反器302。正反器302可以設置為一D型正反器(D flip-flop)。正反器302具有一資料輸入端D耦接於可調延遲電路2062以接收延遲震盪訊號Si2d,一時脈輸入端CLK以接收第一輸入震盪訊號Sil,以及一資料輸出端Q耦接於訊號產生電路204用來產生一第二重定震盪訊號Srt2,其中訊號產生電路204係依據第二重定震盪訊號Srt2來產生注入訊號Sj。
當訊號除頻器300正在操作時,該除頻電路202係用來對輸入震盪訊號Sil除頻,以使得輸出震盪訊號So1(以及So2、So3、So4)的震盪頻率係輸入震盪訊號Sil震盪頻率的一半。以一傳統的訊號除頻器來說,該傳統的訊號除頻器所產生的輸出震盪訊號的相位係隨機的落在0度或180度,此一特性可能會使得一相位陣列雷達系統在進行相位偏移操作時出現問題。為了解決上述的問題,依據本發明的實施例,當注入訊號Sj被致能時,注入訊號Sj係用來將輸出震盪訊號So1的電壓準位拉到除頻電路202的複數個參考電壓中之一(例如供應電壓Vdd或接地電壓Vgnd),以使得輸出震盪訊號So1的電壓準位固定在或被改變至該預定電壓準位,並維持一小段週期(例如注入訊號Sj的脈衝寬度)。透過上述的操作,當注入訊號Sj被致能時,輸出震盪訊號So1的相位就會被鎖定在預定的相位(例如0度或180度)。
依據本發明的實施例,注入訊號Sj係由訊號產生電路20依據第一輸入震盪訊號Sil以及第二輸入震盪訊號Si24所產生。進一步而言,當第一輸入震盪訊號Sil以及第二輸入震盪訊號Si2抵達訊號除頻器300時,正反器2064以及低通濾波器2066係依據第一輸入震盪訊號Sil以及延遲震盪訊號Si2d來產生偵測訊號Sd1。若可調延遲電路2062的延遲時間為零,則依據第一輸入震盪訊號Sil以及第二輸入震盪訊號Si2來產生偵測訊號Sd1。正反器2064係利用延遲震盪訊號Si2d來重定(retime)第一輸入震盪訊號Sil以產生第一重定震盪訊號Srt1。低通濾波器2066係用來低通濾波第一重定震盪訊號Srt1以產生偵測訊號Sd1。接著,一運算裝置(未顯示),其係耦接於偵測電路206,被利用來偵測偵測訊號Sd1的電壓準位,以判定延遲震盪訊號Si2d是否鎖相在第一輸入震盪訊號Sil的該預定相位。當延遲震盪訊號Si2d沒有鎖相在或對齊在第一輸入震盪訊號Sil的該預定相位時,該運算裝置就會用來調整可調延遲電路2062的延遲時間,以延遲第二輸入震盪訊號Si2來產生延遲震盪訊號Si2d。可調延遲電路2062可以被一直調整到延遲震盪訊號Si2d的相位鎖相在第一輸入震盪訊號Sil的該預定相位為止。
舉例而言,當偵測訊號Sd1的電壓準位係高電壓準位(例如供應電壓Vdd)時,該運算裝置會判定延遲震盪訊號Si2d的上升緣是鎖定在第一輸入震盪訊號Sil的高電壓準位,如圖4所示,其係依據本發明輸入震盪訊號Sil、延遲震盪訊號Si2d以及偵測訊號Sd1之一實施例時序圖。在本實施例中,延遲震盪訊號Si2d的該上升緣(例如在時間點tt1以及t2)係一直鎖定在第一輸入震盪訊號Sil的高電壓準位。因此,偵測訊號Sd1的電壓準位會一直維持在高電壓準位。若延遲震盪訊號Si2d當下的相位沒有鎖相在第一輸入震盪訊號Sil的該預定相位,則該運算裝置會調整或延遲可調延遲電路2062的延遲時間約第一輸入震盪訊號Sil的半個週期,以使得延遲震盪訊號Si2d的相位鎖相在第一輸入震盪訊號Sil上的預想的相位,如圖5所示,其係依據本發明輸入震盪訊號Sil、延遲震盪訊號Si2d以及偵測訊號Sd1之一實施例時序圖。在本實施例中,延遲震盪訊號Si2d的上升緣(例如在時間點tt3以及t4)會一直鎖定在第一輸入震盪訊號Sil的低電壓準位。因此,偵測訊號Sd1的電壓準位就會被改變至或維持在低電壓準位。
此外,當偵測訊號Sd1的電壓準位係介於接地電壓Vgnd和應電壓Vdd之間的一電壓(例如供應電壓Vdd的一半)或在接地電壓Vgnd和應電壓Vdd之間震盪時,該運算裝置就判定延遲震盪訊號Si2d的上升緣係對齊第一輸入震盪訊號Sil的上升緣或下降緣。此時,該運算裝置就會延長或改變可調延遲電路2062的延遲時間約第一輸入震盪訊號Sil的週期的四分之一或四分之三,以使得延遲震盪訊號Si2d的上升緣鎖定在第一輸入震盪訊號Sil的電壓準位或低電壓準位處。為了簡化起見,其細部操作在此不另贅述。
依據本發明的實施例,該運算裝置係耦接於可調延遲電路2062與低通濾波器2066。該運算裝置可以設置在訊號除頻器300的內部或外部。當訊號分佈系統100開機時,該運算裝置另用來自動產生一最佳延遲時間給可調延遲電路2062。該運算裝置也可以視為一回送路徑,其用來自動校正可調延遲電路2062的延遲時間。該運算裝置可以用一微處理器或邏輯元件(FPGA)來實現。進一步而言,當訊號分佈系統100開機過程時,該運算裝置係用來掃描可調延遲電路2062的複數個延遲時間以分別產生複數個測試震盪訊號(即Si2d)。同時,該運算裝置會偵測對應到複數個測試延遲時間分別的複數個測試震盪訊號(即Si2d)。接著,該運算裝置會依據該複數個測試震盪訊號從該複數個測試延遲時間中選擇或判定出該最佳延遲時間給可調延遲電路2062。透過該最佳延遲時間,訊號除頻器(例如300)對於第一輸入震盪訊號Si1及第二輸入震盪訊號Si2之間的偏移會具有最大的容忍度。
圖6係依據本發明偵測訊號Sd1的電壓準位對應至可調延遲電路2062的複數個測試時間的變化之一實施例時序圖。在開機過程中,對於一訊號除頻器(例如300),該運算裝置會偵測和記錄對應到可調延遲電路2062的不同延遲時間分別的偵測訊號Sd1的電壓準位。 接著,該運算裝置會得出一曲線601。當偵測訊號Sd1的預定電壓準位是高電壓準位時,可調延遲電路2062的最佳延遲時間就會大致上落在曲線601中的高電壓準位區域的中間(例如時間To1或To3)。當偵測訊號Sd1的預定電壓準位是低電壓準位時,可調延遲電路2062的最佳延遲時間就會大致上落在曲線601中的低電壓準位區域的中間(例如時間To2或To4)。因此,在開機過程中重覆上述操作後,訊號分佈系統100內所有的訊號除頻器的最佳延遲時間就可以被算出來。
同時,訊號除頻器300正在操作時,正反器302係利用第一輸入震盪訊號Sil來重定延遲震盪訊號Si2d以產生第二重定震盪訊號Srt2,以使得第二重定震盪訊號Srt2係同步於第一輸入震盪訊號Sil。依據本發明的一些實施例,第二重定震盪訊號Srt2的震盪頻率或波形係大致上相同於延遲震盪訊號Si2d。為了簡化起見,第二重定震盪訊號Srt2的細部特性在此不另贅述。
當第二重定震盪訊號Srt2同步於第一輸入震盪訊號Sil時,訊號產生電路204會依據第二重定震盪訊號Srt2來產生該脈衝訊號(亦即注入訊號Sj)。當注入訊號Sj被致能時,該脈衝訊號係用來將輸出震盪訊號So1的電壓準位拉升到供應電壓Vdd(舉例而言),並持續一小段週期(例如該脈衝訊號的一脈衝寬度)。
依據本發明的一些實施例,該脈衝訊號的週期係大致上等於第二重定震盪訊號Srt2的週期。然而,此並不做為本發明的限制。該脈衝訊號的週期也可以比第二重定震盪訊號Srt2的週期來得長。例如,該脈衝訊號的週期是第二重定震盪訊號Srt2的週期一整數倍。
圖7係依據本發明輸入震盪訊號Sil、Si2、延遲震盪訊號Si2d、偵測訊號Sd1、注入訊號Sj、輸出震盪訊號So1、以及一參考輸出震盪訊號Sro之一實施例時序圖。圖7所示的參考輸出震盪訊號Sro係用來做為輸出震盪訊號So1的一參考相位。為了簡化起見,圖7僅繪出輸出震盪訊號So1的相位調整的時序,而其他輸出震盪訊號So2~So4的相位調整的時序在此忽略不計。在時間點t5,輸入震盪訊號Sil以及Si2抵達訊號除頻器300。此時,輸入震盪訊號Si2的上升緣係鎖定在輸入震盪訊號Si1的低電壓準位。在此假設使用者需要將輸入震盪訊號Si2的上升緣鎖定在輸入震盪訊號Si1的高電壓準位。換言之,可調延遲電路2062需要調整輸入震盪訊號Si2。接著,可調延遲電路2062會延遲輸入震盪訊號Si2以產生延遲震盪訊號Si2d。在時間點t6,偵測訊號Sd1的電壓準位就會從低電壓準位被改變為高電壓準位。因此,在時間點t6,該運算裝置就會判定延遲震盪訊號Si2d的上升緣係鎖定在輸入震盪訊號Si1的高電壓準位。
接著,在時間點t7,訊號產生電路204產生的一脈衝訊號(亦即Sj)。在本實施例中,該脈衝訊號的下降緣在時間點t7會使得輸出震盪訊號So1的電壓準位維持在高電壓準位。反之,當訊號產生電路204不存在時,輸出震盪訊號So1的電壓準位會被切換至低電壓準位。換言之,當訊號產生電路204不存在時,參考輸出震盪訊號Sro就係除頻電路202所輸出的輸出震盪訊號。因此,可以得知透過將該脈衝訊號注入除頻電路202的方式,輸出震盪訊號So1的相位會與參考輸出震盪訊號Sro的相位相差180度。
此外,當該脈衝訊號的下降緣鎖定在輸出震盪訊號So1的高電壓準位時,除頻電路202會將輸出震盪訊號So1的電壓準位維持在當下的電壓準位,如圖7的時間點t8所示。在時間點t8,該脈衝訊號的下降緣係鎖定在輸出震盪訊號So1的高電壓準位,因此輸出震盪訊號So1的相位不會被改變。因此,利用本發明的訊號產生電路204產生該脈衝訊號以注入除頻電路202,當該輸出震盪訊號So1偏離預定的相位時,該脈衝訊號可以更正或校正輸出震盪訊號So1的相位。而當該輸出震盪訊號So1落在預定的相位時,該脈衝訊號則不改變輸出震盪訊號So1的相位。
圖8所示係依據本發明一除頻電路800之實施例示意圖。除頻電路800可以是除頻電路202的一電路實施圖。除頻電路800包含一第一閂鎖器(Latch)802以及一第二閂鎖器804。第一閂鎖器802以及第二閂鎖器804可以是電流模邏輯閂鎖器,以及第一閂鎖器802以及第二閂鎖器804的連接方式是以訊號負回授的方式連接,以使得除頻電路800的輸出時脈的震盪頻率為其輸入時脈震盪頻率的一半。進一步而言,第一閂鎖器802包含一輸入級8022以及一輸出級8024,輸入級8022係由一輸入時脈訊號CK所控制,以及輸出級8024係由輸入時脈訊號CK的一反相訊號(亦即反相時脈訊號CKB)所控制。第二閂鎖器804包含一輸入級8042以及一輸出級8044,輸入級8042係由反相時脈訊號CKB所控制,以及輸出級8044係由輸入時脈訊號CK所控制。
此外,輸入級8022包含一第一輸入端(亦即DIV180)以及一第二輸入端(亦即DIV0),以及一第一輸出端(亦即DIV270)以及一第二輸出端(亦即DIV90)耦接於輸出級8024。輸入級8042包含一第一輸入端(亦即DIV270)以及一第二輸入端(亦即DIV90),以及一第一輸出端(亦即DIV0)以及一第二輸出端(亦即DIV180)耦接於輸出級8044。如圖8所示,第一閂鎖器802的該第一輸入端(亦即DIV180)以及該第二輸入端(亦即DIV0)分別耦接於第二閂鎖器804該第二輸出端(亦即DIV180)以及該第一輸出端(亦即DIV0),以及第一閂鎖器802的該第一輸出端(亦即DIV270)以及該第二輸出端(亦即DIV90)分別耦接於第二閂鎖器804的該第一輸入端(亦即DIV270)以及該第二輸入端(亦即DIV90)。依據本發明的實施例,一注入訊號INJ係被輸入至第二閂鎖器804的該第二輸出端(亦即DIV180)。然而,此並不是本發明的限制。在本發明的另一些實施例中,注入訊號INJ可以被注入至除頻電路800的任一個輸出端(亦即DIV270,DIV90或DIV0)。
依據本發明的實施例,輸入級8022包含複數個電晶體M1~M5以及複數個電阻R1~R2,以及輸出級8024包含複數個電晶體M6~M8。輸入級8042包含複數個電晶體M9~M13以及複數個電阻R3~R4,以及輸出級8044包含複數個電晶體M14~M16。電晶體M1~M3、M6~M11以及M14~M16係n型場效電晶體,以及電晶體M4~M5以及M12~M3係p-型場效電晶體。然而,此並不是本發明的限制。在本發明的另一些實施例中,電晶體M1~M3、M6~M11以及M14~M16亦可以是p-型場效電晶體,而電晶體M4~M5以及M12~M3則是n-型場效電晶體。
在本實施例中,電晶體M4的閘極以及源極係耦接於供應電壓Vdd,以及電晶體M4的汲極係耦接於電晶體M1的汲極。電晶體M5的閘極以及源極係耦接於供應電壓Vdd,以及電晶體M5的汲極係耦接於電晶體M2的汲極。電晶體M12的閘極以及源極係耦接於供應電壓Vdd,以及電晶體M1的汲極係耦接於電晶體M9的汲極。電晶體M13的閘極係耦接於注入訊號INJ,電晶體M13的源極係耦接於供應電壓Vdd,以及電晶體M13的汲極係耦接於電晶體M10的汲極。除頻電路70的細部元件之間的連接方式如圖8所示,為了簡化起見,在此不另贅述。
在本實施例中,電晶體M12係可以設置為一仿製(dummy)的電晶體,其係用來使得端點DIV0上的電性特性或負載大致上相同於端點DIV180上的電性特性。同理,電晶體M4以及M5可以設置為仿製的電晶體,其係用來使得端點DIV270以及DIV90上的電性特性或負載分別大致上相同於端點DIV0以及DIV180上的電性特性。
依據本發明的實施例,輸入時脈訊號CK連同反相時脈訊號CKB形成第一輸入震盪訊號Si1,其係圖3所示的一差動(差動)震盪訊號。注入訊號INJ係圖3所示的注入訊號Sj。當注入訊號INJ的脈衝訊號抵達電晶體M13的閘極時(例如在圖7所示的時間點t7),該脈衝訊號的下降緣會啟動電晶體M13,而該汲極端(亦即DIV180)的電壓準位會被提升到高電壓準位(例如供應電壓Vdd)。當該脈衝訊號的電壓準位從低電壓準位(例如the接地電壓Vgnd)改變爲高電壓準位(例如供應電壓Vdd)時,電晶體M13會被關閉,以及閂鎖器802連同閂鎖器804會繼續在端點DIV180產生具有新的相位的震盪訊號(例如So1)。
此外,輸入時脈訊號CK以及反相時脈訊號CKB係分別透過電容C1以及C2耦接於電晶體M3以及M16的閘極以及電晶體M8以及M11的閘極,其中電容C1以及C2係用來分別傳送輸入時脈訊號CK以及反相時脈訊號CKB的交流(AC)訊號至該第一閂鎖器802以及該第二閂鎖器804。電晶體M3以及M16的閘極係由一偏壓電壓VBN1透過一電阻R1來偏壓,而電晶體M8以及M11的閘極係由另一偏壓電壓VBN2透過一電阻R2來偏壓。
圖9係依據本發明在端點DIV180的震盪訊號(亦即902)、注入訊號INJ以及在端點DIV180的一參考震盪訊號(亦即904)之一實施例時序圖。參考震盪訊號904係代表電晶體M13不存在時端點DIV180上的震盪訊號。在時間點t9以及t11時,注入訊號INJ的脈衝訊號的下降緣會造成震盪訊號902的電壓高於中間電壓準位Vm。在時間點t10以及t12時,注入訊號INJ的脈衝訊號的上升緣會關閉電晶體M13,而震盪訊號902會以新的相位繼續震盪,該新的相位係與電晶體M13不存在時的參考震盪訊號904的相位相差180度。需注意到,在本實施例中,注入訊號INJ的脈衝訊號的脈衝寬度Tp實質上係等於震盪訊號902的週期。然而,此並不是本發明的限制所在。在另一實施例中,注入訊號INJ的脈衝訊號的脈衝寬度Tp也可以小於震盪訊號902的週期。因此,本發明的脈衝寬度Tp是包含所有不大於震盪訊號902的週期的寬度。因此,透過電晶體M13,注入訊號INJ的脈衝訊號就會調整輸出震盪訊號902的相位以使得其相位與參考震盪訊號904的相位相差180度。
圖10所示係依據本發明一訊號產生電路1000之實施例示意圖。訊號產生電路1000可以是訊號產生電路204的一實施例。訊號產生電路1000包含一斷流開關(Chopper switch)1002、一第一可調延遲線(delay line)1004、一第二可調延遲線1006、一多工器1008、一反及閘(NAND Gate)1010、一第一數位至類比轉換器(DAC)1012以及一第二數位至類比轉換器1014。在本實施例中,第一可調延遲線1004及第二可調延遲線1006係分別由第一數位至類比轉換器1012及第二數位至類比轉換器1014所輸出的類比訊號來控制。然而,其並不是本發明的限制。第一可調延遲線1004及第二可調延遲線1006也可以是直接由數位訊號控制的數位可調延遲線。斷流開關1002係依據一差動輸入時脈訊號CKIN、CKINB以及一控制訊號CC來輸出一差動輸出時脈訊號VOP、VON。差動輸入時脈訊號CKIN、CKINB可以是上述的第二重定震盪訊號Srt2。第一可調延遲線1004係耦接於斷流開關1002以依據一第一延遲控制訊號DC1延遲差動輸出時脈訊號VOP、VON來產生一第一延遲時脈訊號DCK1。第一可調延遲線1004可以是一粗調可調延遲線。該第二可調延遲線1006係耦接於第一可調延遲線1004以依據一第二延遲控制訊號DC2延遲該第一延遲控制訊號DC1來產生一第二延遲時脈訊號DCK2。第二可調延遲線1006可以是一細調可調延遲線。多工器1008係依據一注入致能訊號EN_INJ來輸出一接地電壓準位或該第二延遲時脈訊號DCK2。反及閘1010係耦接於多工器1008以依據多工器1008的輸出訊號以及第一延遲時脈訊號DCK1來輸出一注入訊號INJ(或圖3所示的Sj)。第一DAC1012係耦接於第一可調延遲線1004以依據一第一數位訊號D1來產生第一延遲控制訊號DC1。該第二數位至類比轉換器1014係耦接於第二可調延遲線1006以依據一第二數位訊號D2來產生第二延遲控制訊號DC2。在本實施例中,當注入致能訊號EN_INJ係高電壓準位時,多工器1008會輸出第二延遲時脈訊號DCK2到反及閘1010,而反及閘1010會輸出該脈衝訊號。當注入致能訊號EN_INJ係低電壓準位時,多工器1008會輸出接地電壓Vgnd到反及閘1010,而反及閘1010會輸出供應電壓Vdd。因此,注入訊號INJ的週期會與輸入時脈訊號CKIN的週期大致上一樣,而注入訊號INJ的工作週期(或注入訊號INJ的脈衝訊號的脈衝寬度Tp)則係由該第一可調延遲線1004以及第二可調延遲線1006的延遲時間來控制或調整。
依據本發明的實施例,訊號除頻器300運作可以簡化為圖11所示的操作步驟。圖11所示係依據本發明一種訊號除頻的方法1100之實施例流程圖。為了簡化起見,方法1100的細部描述係基於訊號除頻器300的操作步驟,然而其並不做為本發明的限制所在。依據本發明的實施例,方法1100包含步驟1102~1108。倘若大體上可達到相同的結果,本發明並不需要一定照圖11所示之流程中的步驟順序來進行,且圖11所示之步驟不一定要連續進行,亦即其他步驟亦可插入其中。
在步驟1102中,除頻電路202係依據注入訊號Sj以及輸入震盪訊號Si1來產生輸出震盪訊號So1。
在步驟1104中,訊號產生電路204係依據第二重定震盪訊號Srt2來產生注入訊號Sj。
在步驟1106中,正反器302係利用第一輸入震盪訊號Sil來重定延遲震盪訊號Si2d來產生第二重定震盪訊號Srt2以使的第二重定震盪訊號Srt2同步於輸入震盪訊號Sil。
在步驟1108中,偵測電路206係依據輸入震盪訊號Sil的該第一相位以及輸入震盪訊號Si2的該第二相位來產生偵測訊號Sd1,其中偵測訊號Sd1係用來判斷延遲震盪訊號Si2d是否鎖相在第一輸入震盪訊號Sil的預定相位上。當延遲震盪訊號Si2d沒有鎖定在第一輸入震盪訊號Sil的預定相位時,可以調整可調延遲電路2062的延遲時間一直到延遲震盪訊號Si2d的相位鎖定在第一輸入震盪訊號Sil的預定相位為止。
簡言之,依據本發明上述的實施例,當第一射頻裝置102以及第二射頻裝置104依據該些輸出震盪訊號來對訊號進行混波時,即使該些輸入震盪訊號的相位抵達第一射頻裝置102以及第二射頻裝置104是不同步的,第一射頻裝置102以及第二射頻裝置104也可有效地控制該些輸出震盪訊號的相位以使其同步。因此,傳統的射頻裝置所面臨到的時脈偏移問題就可以有效的為本發明所解決了。
以上僅為本發明的較佳實施例,凡依本發明請求項所做的等效變化與修改,皆應屬本發明的涵蓋範圍。
100:電源轉換電路
100:訊號分佈系統
102、104:射頻裝置
106:訊號傳輸通道
108:饋入端
110:連接點
300:訊號除頻器
202、800:除頻電路
204、1000:訊號產生電路
206:偵測電路
302:第二正反器
601:曲線
802:第一閂鎖器
804:第二閂鎖器
902:震盪訊號
904:參考震盪訊號
1002:斷流開關
1004:第一可調延遲線
1006:第二可調延遲線
1008:多工器
1010:反及閘
1012:第一數位至類比轉換器
1014:第二數位至類比轉換器
1022:第一訊號除頻器
1042:第二訊號除頻器
1062:第一傳輸通道
1064:第二傳輸通道
1100:方法
1102~1108:步驟
2062:可調延遲電路
2064:第一正反器
2066:低通濾波器
8022、8042:輸入級
8024、8044:輸出級
圖1係本發明實施例所示的一訊號分佈系統的功能方塊圖。
圖2係本發明一第一訊號除頻器的一實施例示意圖。
圖3係本發明一訊號除頻器的實施例示意圖。
圖4係本發明一輸入震盪訊號、一延遲震盪訊號以及一偵測訊號之一實施例時序圖。
圖5係本發明一輸入震盪訊號、一延遲震盪訊號以及一偵測訊號之一實施例時序圖。
圖6係本發明一偵測訊號的電壓準位對應至一可調延遲電路的複數個測試時間的變化之一實施例時序圖。
圖7係本發明輸入震盪訊號、一延遲震盪訊號、一偵測訊號、一注入訊號、一輸出震盪訊號、以及一參考輸出震盪訊號之一實施例時序圖。
圖8係本發明一除頻電路之實施例示意圖。
圖9係本發明在一端點的震盪訊號、一注入訊號以及在該端點的一參考震盪訊號之一實施例時序圖。
圖10係本發明一訊號產生電路之實施例示意圖。
圖11係本發明一種訊號除頻的方法之實施例流程圖。
1022:第一訊號除頻器
202:除頻電路
204:訊號產生電路
206:偵測電路

Claims (22)

  1. 一種訊號除頻器,包含: 一除頻電路,用來依據一第一輸入震盪訊號以產生一輸出震盪訊號;以及 一訊號產生電路,耦接於該除頻電路,用來產生一注入訊號至該除頻電路; 其中該除頻電路係依據該注入訊號以及該第一輸入震盪訊號來產生具有一預定相位的該輸出震盪訊號。
  2. 如請求項1所述的的訊號除頻器,其中該訊號產生電路係依據一第二輸入震盪訊號來產生該注入訊號,該第一輸入震盪訊號具有一第一頻率,該第二輸入震盪訊號具有一第二頻率,以及該第二頻率係小於該第一頻率。
  3. 如請求項2所述的的訊號除頻器,其中該第一頻率係該第二頻率的整數倍。
  4. 如請求項1所述的的訊號除頻器,其中該注入訊號係具有一脈衝寬度的一脈衝訊號,以及該脈衝寬度係不大於於該輸出震盪訊號的一週期。
  5. 如請求項1所述的的訊號除頻器,其中該注入訊號係用來將該輸出震盪訊號的一電壓準位切換至該除頻電路的一參考電壓準位。
  6. 如請求項2所述的的訊號除頻器,其另包含: 一偵測電路,耦接於該除頻電路以及該訊號產生電路,用來依據該第一輸入震盪訊號的一第一相位以及該第二輸入震盪訊號的一第二相位產生一偵測訊號。
  7. 如請求項6所述的的訊號除頻器,其中該第一輸入震盪訊號係於一第一電壓準位以及一第二電壓準位之間震盪,當該偵測訊號的一電壓準位係一第三電壓準位時,該偵測訊號係指示該第二輸入震盪訊號係鎖定在該第一輸入震盪訊號的該第一電壓準位,以及當該偵測訊號的該電壓準位係不同於該第三電壓準位的一第四電壓準位時,該偵測訊號係指示該第二輸入震盪訊號係鎖定在該第一輸入震盪訊號的該第二電壓準位。
  8. 如請求項6所述的的訊號除頻器,其中該偵測電路包含: 一可調延遲電路,耦接於該訊號產生電路,用來對該第二輸入震盪訊號延遲一延遲時間以產生一延遲震盪訊號; 一第一正反器,具有一資料輸入端以接收該第一輸入震盪訊號,一時脈輸入端耦接於該可調延遲電路以接收該延遲震盪訊號,以及一資料輸出端用來產生一第一重定震盪訊號;以及 一低通濾波器,耦接於該資料輸出端,以依據該第一重定震盪訊號輸出該偵測訊號。
  9. 如請求項8所述的的訊號除頻器,其中該可調延遲電路的該延遲時間係依據該偵測訊號來調整。
  10. 如請求項9所述的的訊號除頻器,其另包含: 一運算裝置,耦接於該可調延遲電路與該低通濾波器,用來自動產生一最佳延遲時間給該可調延遲電路。
  11. 如請求項10所述的的訊號除頻器,其中該運算裝置係依據複數個測試延遲時間來控制該可調延遲電路以分別產生複數個測試遲震盪訊號,並偵測複數個對應的偵測訊號,以及依據該複數個對應的偵測訊號來判定該可調延遲電路的該最佳延遲時間。
  12. 如請求項8所述的的訊號除頻器,其另包含: 一第二正反器,具有一資料輸入端耦接於該可調延遲電路以接收該延遲震盪訊號,一時脈輸入端用來接收該第一輸入震盪訊號,以及一資料輸出端耦接於該訊號產生電路用來產生一第二重定震盪訊號; 其中該訊號產生電路係依據該第二重定震盪訊號來產生該注入訊號。
  13. 一種訊號分佈系統,包含: 一第一訊號除頻器,用來依據一第一輸入震盪訊號產生一第一輸出震盪訊號; 一第二訊號除頻器,用來依據該第一輸入震盪訊號產生一第二輸出震盪訊號; 一第一傳輸通道,耦接於該第一訊號除頻器以及該第二訊號除頻器,用來傳送該第一輸入震盪訊號至該第一訊號除頻器以及該第二訊號除頻器;以及 一第二傳輸通道,耦接於該第一訊號除頻器以及該第二訊號除頻器,用來傳送該第二輸入震盪訊號至該第一訊號除頻器以及該第二訊號除頻器; 其中該第一輸入震盪訊號具有一第一頻率,該第二輸入震盪訊號具有一第二頻率,以及該第二頻率係小於該第一頻率。
  14. 如請求項13所述的訊號分佈系統,其中該第一頻率係該第二頻率的整數倍。
  15. 如請求項13所述的訊號分佈系統,其中該第一訊號除頻器包含: 一第一除頻電路,用來依據該第一輸入震盪訊號產生該第一輸出震盪訊號;以及 一第一訊號產生電路,耦接於該第一除頻電路,用來產生一第一注入訊號至該第一除頻電路; 其中該第一除頻電路係依據該第一注入訊號來產生具有一第一預定相位的該第一輸出震盪訊號。
  16. 如請求項15所述的訊號分佈系統,其中該第二訊號除頻器包含: 一第二除頻電路,用來依據該第一輸入震盪訊號產生該第二輸出震盪訊號;以及 一第二訊號產生電路,耦接於該第二除頻電路,用來產生一第二注入訊號至該第二除頻電路; 其中該第二除頻電路係依據該第二注入訊號來產生具有一第二預定相位的該第二輸出震盪訊號。
  17. 如請求項16所述的訊號分佈系統,其中該第一預定相位與該第二預定相位之間具有一預定的相位差。
  18. 一種用來除頻訊號的方法,包含: 提供一除頻電路以依據一第一輸入震盪訊號來產生一輸出震盪訊號;以及 產生一注入訊號至該除頻電路以將該輸出震盪訊號的一電壓準位切換至一參考電壓準位產生具有一預定相位的該輸出震盪訊號。
  19. 如請求項18所述的方法,另包含: 依據一第二輸入震盪訊號來產生該注入訊號; 其中該第一輸入震盪訊號具有一第一頻率,該第二輸入震盪訊號具有一第二頻率,以及該第二頻率係小於該第一頻率。
  20. 如請求項19所述的方法,其中該第一頻率係該第二頻率的整數倍。
  21. 如請求項19所述的方法,另包含: 依據該第一輸入震盪訊號的一第一相位以及該第二輸入震盪訊號的一第二相位來產生一偵測訊號; 其中該第一輸入震盪訊號係於一第一電壓準位以及一第二電壓準位之間震盪,當該偵測訊號的一電壓準位係一第三電壓準位時,該偵測訊號係指示該第二輸入震盪訊號係鎖定在該第一輸入震盪訊號的該第一電壓準位,以及當該偵測訊號的該電壓準位係不同於該第三電壓準位的一第四電壓準位時,該偵測訊號係指示該第二輸入震盪訊號係鎖定在該第一輸入震盪訊號的該第二電壓準位。
  22. 如請求項21所述的方法,其中產生該偵測訊號的步驟包含: 對該第二輸入震盪訊號延遲一延遲時間以產生一延遲震盪訊號; 依據該延遲震盪訊重定該第一輸入震盪訊號以產生一第一重定震盪訊號號;以及 對該第一重定震盪訊號進行低通濾波以產生該偵測訊號。
TW109127333A 2019-08-14 2020-08-12 訊號除頻器、訊號分佈系統與其相關方法 TWI726791B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962886545P 2019-08-14 2019-08-14
US62/886,545 2019-08-14

Publications (2)

Publication Number Publication Date
TW202107851A true TW202107851A (zh) 2021-02-16
TWI726791B TWI726791B (zh) 2021-05-01

Family

ID=72087973

Family Applications (3)

Application Number Title Priority Date Filing Date
TW109127333A TWI726791B (zh) 2019-08-14 2020-08-12 訊號除頻器、訊號分佈系統與其相關方法
TW110112207A TWI773229B (zh) 2019-08-14 2020-08-13 訊號接收裝置與訊號接收方法
TW109127625A TWI727877B (zh) 2019-08-14 2020-08-13 掃描遠端物體的雷達系統與相關方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW110112207A TWI773229B (zh) 2019-08-14 2020-08-13 訊號接收裝置與訊號接收方法
TW109127625A TWI727877B (zh) 2019-08-14 2020-08-13 掃描遠端物體的雷達系統與相關方法

Country Status (3)

Country Link
US (4) US11496141B2 (zh)
EP (2) EP3779506B1 (zh)
TW (3) TWI726791B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022047505A1 (en) * 2020-08-31 2022-03-03 Joby Aero, Inc. Radar odometry system and method
US20220390582A1 (en) * 2021-06-03 2022-12-08 Qualcomm Incorporated Object detection and ranging using one-dimensional radar arrays
US11559943B1 (en) 2021-08-12 2023-01-24 International Business Machines Corporation Narrow passage repair using 3D printing

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258529A (ja) * 1985-05-13 1986-11-15 Nec Corp 周波数シンセサイザ
JP2665834B2 (ja) * 1991-02-15 1997-10-22 本田技研工業株式会社 Fmレーダ
US20040196203A1 (en) * 2002-09-11 2004-10-07 Lockheed Martin Corporation Partly interleaved phased arrays with different antenna elements in central and outer region
JP2005348116A (ja) * 2004-06-03 2005-12-15 Sharp Corp 無線通信装置
JP2009015927A (ja) * 2007-07-02 2009-01-22 Sony Corp クロック生成回路、記録装置及びクロック生成方法
CN101459471B (zh) * 2007-12-14 2013-06-05 华为技术有限公司 一种光中继系统和方法
KR100937994B1 (ko) * 2007-12-26 2010-01-21 주식회사 하이닉스반도체 인젝션 락킹 클럭 생성 회로와 이를 이용한 클럭 동기화회로
TWI373917B (en) * 2008-05-09 2012-10-01 Mediatek Inc Frequency divider, frequency dividing method thereof, and phase locked loop utilizing the frequency divider
EP2150063A1 (en) * 2008-07-29 2010-02-03 THOMSON Licensing System for generation of a synchronization signal via stations connected via a packet switching network
US8248298B2 (en) 2008-10-31 2012-08-21 First Rf Corporation Orthogonal linear transmit receive array radar
CN102356547B (zh) * 2010-01-22 2014-04-09 松下电器产业株式会社 注入锁定分频器、以及锁相环电路
WO2012120795A1 (ja) * 2011-03-07 2012-09-13 パナソニック株式会社 Pll回路、キャリブレーション方法及び無線通信端末
US8754681B2 (en) * 2011-06-17 2014-06-17 Netlogic Microsystems, Inc. Multi-part clock management
KR101795438B1 (ko) * 2011-06-29 2017-11-09 삼성전자주식회사 주파수 분주기 및 이를 포함하는 위상 고정 루프
JP2013046268A (ja) * 2011-08-25 2013-03-04 Sanyo Electric Co Ltd クロック分周装置
US8953730B2 (en) * 2012-04-20 2015-02-10 Taiwan Semiconductor Manufacturing Company, Ltd. Auto frequency calibration for a phase locked loop and method of use
US9191014B2 (en) * 2013-11-08 2015-11-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus of synchronizing oscillators
CN104133216B (zh) * 2014-07-17 2016-06-08 北京无线电测量研究所 一种获取低空风廓线的雷达探测方法及装置
US9490826B1 (en) * 2015-08-19 2016-11-08 Qualcomm Incorporated Methods and apparatus for synchronizing frequency dividers using a pulse swallowing technique
CN106546983B (zh) * 2015-09-17 2021-11-12 松下电器产业株式会社 雷达装置
US10020594B2 (en) * 2015-10-21 2018-07-10 Gwangji Institute of Science and Technology Array antenna
US9739881B1 (en) 2016-03-24 2017-08-22 RFNAV, Inc. Low cost 3D radar imaging and 3D association method from low count linear arrays for all weather autonomous vehicle navigation
US10129876B2 (en) * 2016-05-04 2018-11-13 Intel IP Corporation Spatial reuse training for channel access schemes
US9705507B1 (en) * 2016-05-19 2017-07-11 Texas Instruments Incorporated Fixed frequency divider circuit
FR3054042B1 (fr) * 2016-07-12 2018-08-17 Rockwell Collins France Procede et dispositif de determination d'une zone geographique operationnelle observee par un capteur
WO2018051288A1 (en) 2016-09-16 2018-03-22 Uhnder, Inc. Virtual radar configuration for 2d array
US10250375B2 (en) * 2016-09-22 2019-04-02 Qualcomm Incorporated Clock synchronization
FR3058227B1 (fr) * 2016-10-27 2018-11-02 Thales Radar fmcw multifaisceaux, notamment pour automobile
WO2018106720A1 (en) 2016-12-05 2018-06-14 Echodyne Corp Antenna subsystem with analog beam-steering transmit array and digital beam-forming receive array
US10367256B2 (en) 2017-06-26 2019-07-30 Avl Technologies, Inc. Active electronically steered array for satellite communications
US10754020B2 (en) 2017-08-30 2020-08-25 Honeywell International Inc. Mechanically assisted phased array for extended scan limits
JP7197594B2 (ja) 2018-01-30 2022-12-27 オクリー コーポレイション 仮想開口レーダ追跡のためのシステムおよび方法
WO2020072041A1 (en) * 2018-10-02 2020-04-09 Oculii Corp. Systems and methods for stereo radar tracking

Also Published As

Publication number Publication date
EP4080243A1 (en) 2022-10-26
TW202107112A (zh) 2021-02-16
US20210048520A1 (en) 2021-02-18
EP3779506B1 (en) 2022-09-07
US11496141B2 (en) 2022-11-08
TWI726791B (zh) 2021-05-01
US20220360271A1 (en) 2022-11-10
TWI727877B (zh) 2021-05-11
US11368161B2 (en) 2022-06-21
TW202134684A (zh) 2021-09-16
EP3779506A1 (en) 2021-02-17
US11777509B2 (en) 2023-10-03
US11496142B2 (en) 2022-11-08
TWI773229B (zh) 2022-08-01
US20210050858A1 (en) 2021-02-18
US20220271763A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
TWI726791B (zh) 訊號除頻器、訊號分佈系統與其相關方法
US5808498A (en) At frequency phase shifting circuit for use in a quadrature clock generator
US9755574B2 (en) Injection-locked oscillator and method for controlling jitter and/or phase noise
US6366150B1 (en) Digital delay line
US10374588B2 (en) Quadrature clock generating mechanism of communication system transmitter
US10998896B2 (en) Clock doublers with duty cycle correction
US10153728B2 (en) Semiconductor device and method
US8004342B2 (en) Mixer with shorting switch
US7965118B2 (en) Method and apparatus for achieving 50% duty cycle on the output VCO of a phased locked loop
US20130120073A1 (en) Frequency divider and pll circuit
Angeli et al. A low-power and area-efficient digitally controlled shunt-capacitor delay element for high-resolution delay lines
KR100714586B1 (ko) 듀티보정기능을 갖는 전압 제어 발진기
US11418198B2 (en) Digital clock generation and variation control circuitry
CN113346900A (zh) 环形配置的电路、操作电路的方法以及锁相环
US6979990B2 (en) Reference voltage generator for frequency divider and method thereof
KR102523417B1 (ko) 주파수 분주기 및 이를 포함하는 트랜시버
SR et al. Dual loop clock duty cycle corrector for high speed serial interface
US10560053B2 (en) Digital fractional frequency divider
US11342923B1 (en) Circuit and method for random edge injection locking
KR101849923B1 (ko) 주파수 분주기
TWI517581B (zh) 正反器電路
US10454462B1 (en) 50% duty cycle quadrature-in and quadrature-out (QIQO) divide-by-3 circuit
CN115694474A (zh) 基于相位插值器的1.5分频器
Sharma Highly Linear Digitally Controlled Delay Element
Zhu et al. A fast-locking, low-jitter pulsewidth control loop for high-speed ADC