TW202107051A - 具釩氧化物的敏感材料的微測輻射熱計之製造方法 - Google Patents

具釩氧化物的敏感材料的微測輻射熱計之製造方法 Download PDF

Info

Publication number
TW202107051A
TW202107051A TW109125576A TW109125576A TW202107051A TW 202107051 A TW202107051 A TW 202107051A TW 109125576 A TW109125576 A TW 109125576A TW 109125576 A TW109125576 A TW 109125576A TW 202107051 A TW202107051 A TW 202107051A
Authority
TW
Taiwan
Prior art keywords
sensitive material
temperature
compound
resistivity
equal
Prior art date
Application number
TW109125576A
Other languages
English (en)
Inventor
丹尼斯 裴雷克
賈科莫 巴達諾
艾利克 卡多佐
馬克 吉勞蒙特
Original Assignee
法國原子能源和替代能源委員會
法商林瑞股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法國原子能源和替代能源委員會, 法商林瑞股份有限公司 filed Critical 法國原子能源和替代能源委員會
Publication of TW202107051A publication Critical patent/TW202107051A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • H10N15/15Thermoelectric active materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本發明係關於包含基於包含一額外化學元素的釩氧化物的一敏感材料的一微測輻射熱計的製造方法,其中該化學元素係選自砷、鍺、矽以及磷。該方法包含:從具有在室溫下大於其原始值的10%的一電阻率ρa|r 的一修飾化合物已經過暴露至一溫度Tr持續一時段Δtr開始,測定該額外化學元素的一有效量,在一薄層中製造該敏感材料,其中該敏感材料係由具有大於或等於該有效量的額外化學元素的該修飾化合物所組成,在該溫度Tr下暴露該敏感材料持續該時段Δtr。

Description

具釩氧化物的敏感材料的微測輻射熱計之製造方法
本發明之領域係關於用於偵測電磁輻射的裝置,電磁輻射例如為紅外線或兆赫波電磁輻射,裝置包含至少一個包括基於釩氧化物的敏感材料的電阻式熱偵測器。本發明尤其適用於紅外線成像及熱成像領域。
一種電磁輻射偵測裝置可以包含電阻式熱偵測器陣列,也稱為微測輻射熱計(microbolometers),每個微測輻射熱計包含能夠吸收待偵測的電磁輻射的吸收部分。
為了熱絕緣微測輻射熱計的敏感材料,吸收部分通常是藉由錨定支柱(anchoring pillars)懸置在基板上方的膜的形式,並藉由支撐絕熱臂(thermal insulation arms)而為熱絕緣。這些錨定支柱和絕熱臂還具有電力功能,透過將懸置的膜與一般設置在基板中的讀出電路(readout circuit)電性連接。
吸收膜包含敏感材料,其電阻率ρ以材料的溫度的函數而變化。敏感材料的特徵在於在室溫(ambient temperature)下的電阻率值ρa 和其係數α(或電阻溫度係數(temperature coefficient of resistance,TCR),該係數定義為α=1/ρ×dρ/dT。敏感材料可以是通常從非晶矽(amorphous silicon)和釩氧化物VOx 中選擇的半導體材料。
敏感材料的選擇主要取決於其與通常在微電子學中,且尤其是在矽技術中使用的常規沉積和蝕刻步驟的兼容性。然而,似乎在微測輻射熱計製造流程之後,基於釩氧化物的敏感材料的電特性可能會劣化。
本發明的目的是至少部分地彌補現有技術的缺點,更特別地係提出一種製造至少一個微測輻射熱計的方法,包含在製造過程中保留基於氧化釩的敏感材料的電性,更準確地說,在製造過程之後,敏感材料的1/f雜訊劣化的風險被限制甚至消除。
為此,本發明之目的為製造包含一敏感材料的至少一個微測輻射熱計的方法,該方法允許限制關聯於該敏感材料的雜訊衰減。所述敏感材料由:基於釩氧化物(VOx )的一第一化合物;以及加至該第一化合物的至少一個額外化學元素所形成,其中該化學元素係選自砷(As)、鍺(Ge)、矽(Si)以及磷(P),而氮(N)除外。該方法包含以下步驟:在一薄層中製造該敏感材料;在執行製造該敏感材料的步驟後,在大於一室溫的一溫度Tr下暴露該敏感材料持續一時段Δtr,該溫度Tr及該時段Δtr使得該第一化合物經過在該溫度Tr下暴露該時段Δtr的步驟後,該第一化合物在該環境溫度下具有小於或等於其原始數值的10%的一電阻率,其中該第一化合物係為非晶質且在該環境溫度下具有在1歐姆-公分至30歐姆-公分之間的一原始電阻率。
該方法更包含以下步驟:測定加至該第一化合物(VOx )的該額外化學元素(As、Ge、Si、P)的非零的一有效量,因此形成一修飾化合物,而經過在該溫度Tr下暴露該時段Δtr的步驟後的該修飾化合物在該環境溫度下具有大於其原始數值ρa 的10%的一電阻率ρa|r ;在所述的在該薄層中製造該敏感材料的步驟中,該敏感材料係以該修飾化合物組成,該修飾化合物具有的該額外化學元素(As、Ge、Si、P)的量係大於或等於先前測定的該有效量,而在該敏感材料為非晶質的情況下,該修飾化合物在該環境溫度下具有在0.1歐姆-公分至30歐姆-公分之間的一原始電阻率,以及具有均相的一化學組成;以致於,在將該敏感材料在該溫度Tr下暴露該敏感材料該時段Δtr的步驟之後,該的敏感材料具有其衰減已被限制的一雜訊。
本製造方法的某些較佳但非限制的觀點係如下。
該額外化學元素較佳從砷、鍺及矽之中挑選,且較佳為砷。
暴露該敏感材料的步驟包含沉積覆蓋該敏感材料的一保護層。
暴露該敏感材料的步驟包含沉積對待偵測的電磁輻射透明的一封裝層,且該封裝層旨在限界該微測輻射熱計所位於的一空腔。
該溫度Tr較佳大於或等於攝氏330度,或甚至等於攝氏350±5度。
該時段Δtr較佳大於或等於90分鐘。
該敏感材料較佳係在小於該溫度Tr的溫度下被製造。
本發明亦關於包含一敏感材料的一種微測輻射熱計,該敏感材料由:基於釩氧化物(VOx )的一第一化合物;以及至少一個額外化學元素所形成,其中該額外化學元素係選自砷、鍺、矽以及磷,而氮除外。該敏感材料係非晶質;在該環境溫度下具有在1歐姆-公分至30歐姆-公分之間的一原始電阻率;具有均相的化學組成;以及包含一數量的該額外化學元素,該數量定義為該額外化學元素的原子數對釩的原子數的比值,在該額外化學元素為砷的情況下該數量至少等於0.012,在該額外化學元素為鍺的情況下該數量至少等於0.04,在該額外化學元素為矽的情況下該數量至少等於0.04以及在該額外化學元素為磷的情況下該數量至少等於0.12。
氧的數量定義為氧的原子數對釩的原子數的比值,氧的數量介於1.42±0.05及1.94±0.05之間。
該敏感材料被氮化矽的一保護層覆蓋。
本發明亦關於一種用於偵測電磁輻射的裝置,包含如任何前述特徵的微測輻射熱計的一陣列,該微測輻射熱計被設置在至少一個密閉空腔內,該密閉空腔係由對待偵測的電磁輻射透明的一封裝結構所限界,該封裝結構包含由非晶矽製成的至少一個層。
偵測裝置更包含位於該密閉空腔的一吸氣劑材料。
在圖式和實施方式的部分中,相同的參考示例代表相同或相似的要素。此外,各要素未按比例顯示,以提高圖中的清楚度。更甚者,各種實施例和其變化不是相互排斥的,且可以相互組合。除非另有說明,文字「實質上」、「大約」、「大概」是指在10%以內,較佳在5%以內,且當關於溫度,則係指在攝氏10度(℃)以內,較佳在5℃以內。此外,除非另有說明,「包含一」的表述應理解為「包含至少一個」。
與化合物的化學組成有關的表示法係由其實驗化學式表示,傳統上以一個(1)釩原子表示。因此,對於化合物VOx Asy (在此純屬舉例提及),氧的數量值x是每一個釩原子的氧原子數的數值,而砷的數量值y是每一個釩原子的砷原子數的數值。化學元素的數量值給定在10%以內。另外,對於化合物VOx Asy 中各化學元素的原子百分比,釩為1/(1+x+y),氧為x/(1+x+y)以及砷為y/(1+x+y)。
本發明尤其關於製造至少一個電阻式熱偵測器的方法,也稱為微測輻射熱計(microbolometer),其包含基於釩氧化物VOx 的敏感材料。該微測輻射熱計可設計為偵測紅外線或兆赫波輻射。該敏感材料包含至少一種選自砷As、鍺Ge、矽Si和磷P(氮N除外)中的非為零的足夠數量的額外化學元素,使得敏感材料的熱穩定性得到改善。在以下描述的部分中,「基礎化合物」指的是不含額外化學元素的VOx 基的化合物,而「修飾化合物(modified compound)」指的是已加入額外化學元素的基礎化合物。
此製造方法實施至少一個步驟,其中敏感材料暴露於大於室溫且小於或等於溫度Tr的溫度下,其持續時段小於或等於Δtr,其中例如暴露於330°C或350°C或甚至390°C,持續時段為10分鐘、30分鐘,或甚至90分鐘以上。因此,熱暴露溫度Tr高於室溫。
該熱暴露步驟可對應於保護層在約330°C下的沉積,該保護層例如由氮化矽SiN或氧化矽SiO製成,覆蓋該敏感材料以保護其免受可能存在的化學元素的任何後續污染。該熱暴露步驟也可以對應於生產非晶矽的封裝層,該封裝層旨在限界微測輻射熱計所位於的密封空腔。在大約330℃下,該熱暴露步驟還可能涉及活化(activate)位於密封空腔中的吸氣劑(getter)材料,該吸氣劑材料旨在與可能存在於空腔中的殘餘氣體發生反應,以使其保持在足夠的真空度。
此些示例係以繪示的方式給出。在溫度Tr下熱暴露持續時段Δtr的步驟一般可在製造微測輻射熱計的技術步驟的架構內實現,其中該技術步驟是在敏感材料被生產出來之後進行的,或者甚至可在微測輻射熱計或多個微測輻射熱計被生產出來之後製造偵測裝置的技術步驟的架構內實現,特別是為了在偵測晶片中集成附加功能。
圖1A係為用於偵測電磁輻射的裝置1的微測輻射熱計10的示意圖,圖1B係為用於偵測電磁輻射的裝置1的微測輻射熱計10的沿著A-A’平面的局部剖面圖,該微測輻射熱計10包含基於釩氧化物VOx 的敏感材料15。
微測輻射熱計10包含包括基於釩氧化物VOx 的敏感材料15的吸收膜11,該吸收膜11藉由錨定支柱12和絕熱臂13懸置在基板2上方,以及位於基板2中的電子控制和讀出電路(未繪示)。微測輻射熱計10在此被設計成吸收長波長紅外線(long wavelength infrared,LWIR)波段內所包括的紅外線輻射,其中LWIR的範圍約為8μm至14μm。
這裡以及在說明書的其餘部分中,定義一直接的三維正交參考坐標系(X,Y,Z),其中平面XY實質上平行於基板2的平面,Z軸的方向實質上與基板2的平面正交。此外,文字「下」和「上」被理解為涉及在+Z方向上遠離基板2移動時增加的位置。
微測輻射熱計10包含在本例中基於矽的基板2,其包含允許控制和讀取微測輻射熱計的電路(未繪示)。此電路包含導電電線的部分(例如由金屬製成)藉由介電材料彼此分離,該介電材料係例如矽基礦物材料,如氧化矽SiO、氮化矽SiN或其矽基礦物材料合金。為此,此電路可以包含主動電子元件,例如二極體、電晶體、電容器、電阻器等,一方面透過電互連(interconnections)連接到微測輻射熱計10,另一方面連接到互連墊(pad)(未繪示),後者旨在將偵測裝置1電性連接至一外部電子裝置。
基板2的上表面可以以保護層(未繪示)覆蓋,特別是當吸收膜產生在礦物犧牲層(sacrificial layer)上,其中該礦物犧牲層接著透過受酸性介質的化學攻擊而消除。基板2的上表面可以覆蓋佈置在吸收膜11下面的反射層14或被反射層14所覆蓋。當基板2的上表面覆蓋反射層14時,基板2的上表面是由一種對待偵測的電磁輻射而言至少部分透明的材料製成。該保護層具有蝕刻阻擋(etch stop)功能,並且當金屬間介電層是由礦物材料製成時,設計成保護基板和金屬間介電層免受化學攻擊,例如隨後實施的氫氟酸(hydrofluoric acid)HF酸介質的化學攻擊,以便蝕刻用於生產吸收膜的礦物犧牲層。該保護層因此形成密封且化學惰性層。該保護層具有電絕緣性,以避免金屬線部分之間的任何短路。因此,該保護層可以由氧化鋁Al2 O3 製成,或甚至可以由氮化鋁或氟化物製成。該保護層的厚度可以在幾十奈米到幾百奈米之間,例如在10奈米到500奈米之間,較佳在10奈米到30奈米之間。
微測輻射熱計10包含包括基於釩氧化物VOx 的敏感材料15的吸收膜11,該吸收膜11藉由錨定支柱12和絕熱臂13懸置在基板2上方。錨定支柱12是導電的,並局部穿過保護層以與電路產生電接觸。吸收膜11與基板2間隔開,特別是與反射層14以非零的距離間隔開。該距離較佳調整以形成四分之一波空腔(quarter-wave cavity),該四分之一波空腔優化了待由懸置的吸收膜11偵測的電磁輻射的吸收偵測。
如圖1B所示,吸收膜11可包含由電絕緣材料製成的下支撐層20,在該下支撐層20上置有彼此不同的兩個電極21.1、21.2,這些電極例如由表現出對紅外輻射的有良好吸收力的TiN製成。敏感材料15的一薄層係放置在支撐層20上,並與兩個電極21.1、21.2中的每一個接觸。在這種情況下,敏感材料15上覆蓋有保護層22,該保護層22例如由氮化矽SiN或氧化矽SiO製成,這使得敏感材料15可以避免受到任何後續污染。此示例純粹係以繪示的方式給出,且電極和敏感材料可能有其它的佈置。
此外,微測輻射熱計10可以位於由封裝結構(未繪示)限界的密封空腔中,特別如Dumont等人發表的題為Current progress on pixel level packaging for uncooled IRFPA, SPIE Proceedings Vol.8353 (2012)中描述的。封裝結構可以由各種薄層堆疊而形成,例如由化學氣相沉積(chemical vapor deposition,CVD)或離子化物理氣相沉積(ionized physical vapor deposition,iPVD)所沉積的非晶矽製成的封裝層,上面覆蓋有例如由例如EBPVD、IBS或類似的方法沉積的鍺和硫化鋅的各種子層製成的密封(sealing)和抗反射層。如此的封裝結構特別在專利號EP3067675的專利中進行了描述。
敏感材料15以釩氧化物VOx 為基礎,也就是說,敏感材料15是由釩氧化物VOx 製成的所謂的基礎化合物形成,其中在該化合物中加入了從砷、鍺、矽和磷中選擇的額外化學元素(但氮除外)。敏感材料15因此不含氮:敏感材料15中氮的含量因此為零或幾乎為零,也就是說按原子百分比計算小於或等於0.1%。額外的化學元素是有意添加到基礎化合物中的化學元素,也就是指釩氧化物。敏感材料15是非晶質的,也就是說它實質上不含有結晶相。此外,敏感材料15具有在0.1歐姆-公分和30歐姆-公分之間的電阻率,這對應於例如在1.42±0.05和1.94±0.05之間的氧的量x,其中氧的量定義為氧原子數和釩原子數之比值。更準確地說,基礎化合物的電阻率在1歐姆-公分和30歐姆-公分之間。對應添加了額外化學元素的基礎化合物的修飾化合物具有在0.1歐姆-公分和30歐姆-公分之間的電阻率。在基礎化合物和修飾化合物中,氧的量x是相同的。此外,該敏感材料15具有均相的化學成分,也就是說其化學成分在界定為直徑為3nm的基本體積中,在很大的程度上(至少在其體積的90%、95%甚至99%)是不變的。
基礎化合物是非晶質的且係基於VOx ,x在1.42±0.05和1.94±0.05之間,較佳在1.56±0.05及1.94±0.05之間。基礎化合物並不顯示出化學計量(stoichiometric)的形式。因此基礎化合物與例如VO2 、V2 O5 、V3 O5 等化學計量化合物(stoichiometric compounds)相區別。如上所述,本例中實驗化學式為V2 O5 的化合物每兩個釩原子具有五個氧原子(x=5/2),而化合物V3 O5 每三個釩原子具有五個氧原子(x=5/3)。這裡要指出的是,此化學計量化合物V3 O5 是不能在通常用於生產具釩氧化物VOx 的基礎化合物的微測輻射熱計的條件下得到的化合物(溫度通常小於位於基板2中的讀出電路的最大熱積存(thermal budget),即小於400℃)。因此,根據本發明的VOx 敏感材料可以具有等於1.67的量x,而不以任何方式對應於化學計量形式的V3 O5 。此外,關於化學計量化合物V2 O3 ,在溫度Tr下退火後,如此的基礎化合物(也就是說是非晶質的,並且具有大約1歐姆-公分和30歐姆-公分之間的電阻率)能夠形成單一的V2 O3 化學計量結晶相(stoichiometric crystalline)的機率幾乎為零。因此,即使對於氧量約為1.5± 0.05的非晶質基礎化合物,在Tr退火後也可能形成在氧量方面不同的幾個化學計量結晶相,包含V2 O3 晶相。無論在何種情況下,如果非晶基化合物的氧量在1.56±0.05和1.94±0.05之間,則在Tr退火後不可能形成單一的V2 O3 化學計量結晶相。此外將注意到,如果基礎化合物或敏感材料的氧量x在1.56±0.05和1.94±0.05之間,則原始電阻率約在2歐姆-公分和30歐姆-公分之間。
敏感材料15並接著對應於修飾化合物,也就是說,它對應於透過添加至少一種選自砷As、鍺Ge、矽Si和磷P中的額外化學元素而被修飾的基礎化合物,如下文進一步描述,它較佳選自砷、鍺和矽中,並且較佳為砷。
額外化學元素的量(特別是砷As、鍺Ge、矽Si或磷P原子數對釩原子數)的選擇係為使已暴露在溫度Tr下持續一時段Δtr的敏感材料具有改進的熱穩定性,且更準確地說,在室溫下的電阻率ρa|r 大於其原始值ρa 的10%,較佳大於或等於其原始值的50%。「至少等於」可以理解為大於或等於。電阻率的原始值ρa 是敏感材料在暴露於溫度Tr持續時段Δtr之前的原始值。
溫度Tr和持續時段Δtr的值使得基於VOx 的第一化合物(因此沒有額外化學元素)在室溫下具有小於或等於其原始值的10%的電阻率。這些是敏感材料15在後續製造微測輻射熱計的步驟中可能受到的熱暴露的溫度和時段的值。
額外化學元素(As、Ge、Si和/或P)的量大於或等於所謂的有效值,稱為有效量。有效量是額外化學元素(As、Ge、Si和/或P)的最小且非為零的量,額外化學元素(As、Ge、Si和/或P)的量使在經歷了暴露於溫度Tr持續時段Δtr的步驟後的敏感材料,在室溫下具有大於所述敏感材料在室溫下的原始值ρa 的10%的電阻率ρa|r ,且較佳大於或等於原始值ρa 的50%。室溫可以等於30℃。溫度Tr大於室溫,且較佳大於或等於330℃,更較佳大於或等於350℃。溫度Tr可以小於或等於400℃。時段Δtr較佳大於或等於幾分鐘或幾十分鐘,或甚至幾小時。
換句話說,當其中的額外化學元素(As、Ge、Si和/或P)的量大於或等於有效量的敏感材料未暴露於溫度Tr持續時段Δtr時,其在室溫下的電阻率具有原始值ρa 。在熱暴露於溫度Tr持續時段Δtr之後,敏感材料接著在室溫下具有電阻率ρa|r 大於原始值ρa 的10%,較佳大於或等於原始值ρa 的50%。
有效量主要取決於所考慮的基礎化合物,以及所選擇的溫度Tr和熱暴露的時段Δtr的值。本領域通常知識者能夠判定添加到基礎化合物中的有效量(也就是說額外化學元素(As、Ge、Si和/或P)的最小量)以使敏感材料在室溫下具有大於原始值ρa 的10%的電阻ρa|r 。如有必要,可選擇使ρa|r 的值大於10%的有效量,例如至少等於50%,甚至至少等於原始值ρa 的90%。
敏感材料在室溫下的電阻率可以使用常規的四點測量(four-point measurement)技術來測定,而敏感材料的原子組成以及因此額外化學元素的量,可以特別地使用合適的標準,透過核反應分析(Nuclear Reaction Analysis,NRA)、透過盧瑟福背散射光譜法(Rutherford Backscattering Spectroscopy,RBS)、透過二次離子質譜法(Secondary Ion Mass Spectrometry,SIMS)、透過X射線光電子能譜法(X-ray Photoelectron Spectroscopy,XPS)來確定。
在暴露於300°C或400°C的溫度下,特別是在惰性環境下(氮氣下),已知由釩氧化物VOx 組成的敏感材料在室溫下的電阻率可能會下降,如Venkatasubramanian等人發表的"Correlation of temperature response and structure of annealed VOx thin films for IR detector applications",J. Vac. A 27(4), 2009, 956-961. 。因此,由釩氧化物並因此沒有如砷、鍺、矽和磷的額外化學元素組成的敏感材料,在惰性環境下暴露於200℃的溫度後,在室溫下具有與其原始值ρa 相同數量級的電阻率ρa|r 。然而,當敏感材料在惰性環境下暴露於300℃或400℃的溫度下10分鐘或30分鐘後,電阻率ρa|r 會下降一個數量級,甚至幾個數量級。
然而,發明者已經發現,在以釩氧化物為基礎的敏感材料中加入足夠量的選自砷、鍺、矽和磷中的額外化學元素,此額外化學元素的加入驚奇地使得可以改善敏感材料在高溫下熱暴露期間的熱穩定性,例如在330°C甚至更高的溫度下持續幾十分鐘,並且更精確地限制或甚至消除敏感材料在熱暴露步驟之後可能的1/f雜訊衰減。
以釩氧化物為基礎並添加足夠量的額外化學元素(As、Ge、Si和/或P)的敏感材料,接著在室溫下具有大於原始值ρa 的10%的電阻率ρa|r 。添加到由VOx 製成的第一化合物中的有效量係大於或等於所測定的有效量。在微測輻射熱計製造過程之後,如此的敏感材料就不會表現出其電性能的顯著衰減,特別是不會表現出其在室溫下的電阻率或其1/f雜訊的顯著衰減,其中該過程包含至少一個將敏感材料暴露於至多Tr持續至多Δtr的步驟,例如沉積薄層的步驟,將微測輻射熱計封裝在密封空腔中的步驟,甚至是活化吸氣劑材料的步驟。
更確切地說,當基於VOx 的化合物是非晶質的並且在室溫具有為1歐姆-公分和30歐姆-公分之間的原始電阻率ρa 時,將其暴露在溫度Tr下持續Δtr使其電阻率ρa|r 至少小於其原始值ρa 的50%,也會導致1/f雜訊的衰減,而TCR係數不會受到其它影響。1/f雜訊,也稱為閃爍雜訊或低頻雜訊,係特別源於自由載子的流動性和/或密度的波動。
此外,在生產如此的微測輻射熱計的VOx 基化合物的通常條件下(溫度小於400°C),在溫度Tr下退火後,電阻率在1歐姆-公分至30歐姆-公分之間的基於釩氧化物VOx 的非晶質化合物係不太可能形成單一的化學計量結晶相。在如此的電阻率範圍內,基礎化合物的氧x量約為1.42到1.94。大約在此理解為,絕對不確定度(absolute uncertainty)為±0.05。如上所述,基礎化合物的電阻率可以在2歐姆-公分和30歐姆-公分之間,則它的氧x的量在1.56和1.94之間,±0.05。
發明人已經發現,這種作為持續給定的時段Δtr下以溫度Tr熱暴露的函數的基礎化合物的1/f雜訊的變化與電阻率的變化相關,但與TCR係數的變化不相關。
圖2A因此繪示了由VO1.8 製成的基礎化合物(不含砷、鍺、矽或磷)的電阻率ρa|r 作為溫度Tr且持續時段Δtr等於90分鐘的函數的變化的例子。電阻率ρa|r 因此保持不變且等於約10歐姆-公分直到溫度Tr約為280℃。隨即電阻率ρa|r 表現出強烈的下降,特別是在300℃和325℃之間。
此外,在熱暴露於Tr一時段Δtr之後,當電阻率被降低時,電阻溫度係數(TCR)不會發生任何明顯的降低。
圖2B因此繪示出了由VOx 製成的基礎化合物(其電阻率在5歐姆-公分和15歐姆-公分之間)在310°C退火持續90分鐘的時段Δtr後的TCR係數的各種測量值(任意單位)作為電阻率ρa|r 的函數(實心菱形)。同樣類型的VOx 基化合物在溫度Tr下未退火的TCR係數值也被表示出來(空心圓)。這種VOx基化合物的TCR係數似乎實質上保持不變,無論基礎化合物是否在310℃的高溫Tr下進行過熱暴露,都是如此狀況。圖2B中所示的關於退火的VOx 基化合物的電阻率值(實心菱形)對應於退火後衰減的電阻率。原始的電阻率值較高且未示於圖中。此外,關於未退火的VOx 基化合物的電阻率值(空心圓)對應於相應化合物的原始電阻率。退火後的衰減值比較低,但未示於圖中。
另一方面,當這是由於在溫度Tr下持續時段Δtr的熱暴露,與此類型的VOx 基化合物相關的1/f雜訊似乎表現出與電阻率ρa|r 的降低相伴的增加。
因此,圖2C示出了代表圖2B的VOx 基化合物的1/f雜訊的參數N1/f 的各種測量值作為在310°C退火持續90分鐘的時段Δtr後的電阻率ρa|r 的函數(實心菱形)。對於這些VOx 基化合物不在溫度Tr下退火的情況下的該1/f雜訊參數值也被表示出來(空心圓圈)。儘管無論這些沒有在Tr退火的VOx 基化合物的電阻率值的情況下1/f雜訊實質上保持恆定(空心圓圈),在310°C的溫度下對VOx 基化合物退火持續90分鐘似乎導致1/f雜訊(實心菱形)的顯著增加。
代表1/f雜訊的參數N1/f 在此係從敏感材料中流動的參考電流的光譜分析中估計出來。為此,敏感材料會被直流電壓(DC)源偏置,以便將參考電流施加到敏感材料上。亦使用一雜訊很低的電壓源,以免對敏感材料的雜訊測量產生偏差。參考電流因此被敏感材料的唯一雜訊電流所破壞。這個電流隨後被一跨阻抗放大器(transimpedance amplifier)放大,其中所述的跨阻抗放大器提供為輸入電流的圖像的電壓輸出訊號。電壓訊號經過取樣、數位化和數位處理(傅立葉轉換)以獲得其頻譜。1/f雜訊的振幅可以透過讀取頻譜的特定點,例如在1赫茲處,或用最小平方法(least squares calculation)計算頻譜中1/f雜訊表現最明顯的低頻部分來獲得。
因此可以看出,將在室溫下具有1歐姆-公分和30歐姆-公分之間的原始電阻率ρa 的非晶質VOx 基化合物(也就是非化學計量形式)在溫度Tr下暴露一時段Δtr,使其電阻率ρa|r 相對於其原始值ρa 下降,也會引起1/f雜訊的衰減,而TCR係數不會受到影響。
這種VOx 基化合物的1/f雜訊的增加可能是化合物開始結晶的結果,在結晶中出現不同的結晶相,這些結晶相在氧的量方面彼此不同,這些結晶相隨後呈化學計量形式。因此,舉例來說,最初非晶質VOx 基(x為1.8)化合物的至少部分結晶導致各種化學計量結晶相的出現,包含VO2 以及V2 O5 (即x=2.5)。1/f雜訊的增加因此可能與幾種不同的化學計量結晶相的出現有關,這些結晶相在氧的含量方面彼此不同,因此在敏感材料的化學成分的均相性質的損失有所不同,以及在其局部電特性方面亦有所不同。
在這方面,圖3A和3B示出了初始非晶質VOx 基化合物(因此未添加As、Ge、Si或P)於溫度Tr下持續了90分鐘的時段Δtr的各種熱暴露的拉曼光譜的例子,其中x等於約1.85。圖3A的拉曼光譜以大約100~300(cm-1 )的拉曼偏移範圍為中心,圖3B的拉曼光譜以大約700~950(cm-1 )的拉曼偏移範圍為中心。曲線A0 對應於未退火的VO1.85 化合物的拉曼光譜,而曲線As 對應於VO1.85 化合物的支撐的拉曼光譜。曲線A1 、A2 、A3 和A4 分別對應於在300℃、310℃、320℃和330℃的溫度Tr下暴露90分鐘的VO1.85 化合物的拉曼光譜。其可見到當溫度Tr增加時,149(cm-1 )處的峰出現並在強度上增加,其中該峰與化學計量結晶相V2 O5 (x=2.5)有關。同樣地,在197(cm-1 )和224(cm-1 )處出現了與化學計量結晶相VO2 有關的峰,並隨著溫度Tr的升高而強度增加。與此相關的是,在860(cm-1 )處與基礎化合物的非晶質特性有關的峰隨著溫度Tr的升高而減少。
因此,看來,由VOx 製成的、不含任何砷、鍺、矽或磷的初始非晶基化合物(其原始電阻率在1歐姆-公分和30歐姆-公分之間)的高溫暴露導致敏感材料的至少部分的結晶化,從而導致其電阻率的下降和1/f雜訊的增加。換句話說,在室溫下的電阻率係代表化合物的非晶質或非定形特性(non-amorphous)的參數,以及代表1/f雜訊的參數。因此,藉由在基礎化合物(或「第一化合物」)中加入足量的砷、鍺、矽或磷作為額外化學元素以獲得修飾化合物,就有可能限制修飾化合物的結晶化,甚至後推其結晶化的閾值,從而限制甚至消除1/f雜訊的衰減。
如上所述,製造過程接著包含向基礎化合物中加入選自砷、鍺、矽和磷中的額外化學元素的步驟,從而得到修飾化合物。原始電阻率在0.1歐姆-公分和30歐姆-公分之間,這對應於於氧的非化學計量x。基礎化合物中氧的量x沒有因加入額外化學元素而改變。因此,當額外化學元素是砷,則要加入到基礎化合物中的砷量被判斷為會使得此被修飾的化合物在暴露於事先判定的溫度Tr持續一時段Δtr時,具有大於或等於其原始值的10%的電阻率ρa|r 。因此,修飾化合物的部分結晶化受到限制,產生了在氧量x彼此不同的化學計量結晶相,且1/f雜訊衰減也受到限制。因此,當敏感材料隨後暴露在溫度Tr下持續Δtr時,敏感材料的熱穩定性的特性得到改善。
那麼,如此的敏感材料在製造電磁輻射偵測裝置的微測輻射熱計陣列的集體製造方法中特別有利。具體而言,在熱暴露的步驟中,溫度場可能在薄膜沉積反應器或退火爐內表現出空間非均質性(inhomogeneities),這可能導致微測輻射熱計的電特性的分散。因此,藉由使用具有足夠量的砷、鍺、矽和/或磷的敏感材料,微測輻射熱計在熱暴露於溫度Tr期間表現出更好的熱穩定性,從而減少了微測輻射熱計的電特性的分散。
此外,敏感材料還可包含屬元素週期表第4週期的過渡金屬,即鈧Sc、鈦Ti、鉻Cr、錳Mn、鐵Fe、鈷Co、鎳Ni、銅Cu和/或鋅Zn。敏感材料還可以包含其他化學元素,例如釔Y、鈮Nb、鉬Mo、鉭Ta、鎢W等。
圖4A示出了對於不同量的砷As加入到VOx 第一化合物中且暴露的持續時段Δtr為90分鐘時,敏感材料在室溫下的電阻率ρa|r 作為熱暴露溫度Tr的函數的變化實例。這些例子展現了當敏感材料含有有效量的砷時,其熱穩定性增加。
在這些例子中,VOx Asy 修飾化合物的樣品係使用離子束濺射(ion beam sputtering,IBS)沉積技術來沉積VOx 第一化合物所製造,例如藉由在氧化劑環境下,在例如約10-4 托(Torr)的分氧壓力下濺射釩靶,然後將砷植入VOx 第一化合物中。因此就得到VOx Asy 修飾化合物。可以使用其他技術生產VOx Asy 修飾化合物。將敏感材料暴露在270℃、310℃、330℃、350℃、370℃和390℃的溫度下90分鐘後,在室溫(在此是30℃)下,測量敏感材料的電阻率ρa|r 。加入各種量y的砷,即0.004、0.012、0.04和0.12。在這些例子中,氧的量x等於1.9±0.14,第一化合物VO1.9 表現出約20歐姆-公分的原始電阻率。
可見的是,對於量y為0.004的砷,從等於約330°C的第一閾值溫度Tth,1 起,電阻率ρa|r 相對於其原始電阻率ρa 下降了10倍。換句話說,在y=0.004的情況下,電阻率ρa|r 小於或等於原始值ρa 的10%。
另一方面,可見的是,對於量y為0.012、0.04和0.12的砷,在該溫度Tth,1 等於330°C時,電阻率ρa|r 大於各自原始電阻率ρa 的10%。因此,從y=0.012的砷開始(即有效量),敏感材料表現出更好的熱穩定性。更確切地說:就量等於0.012和0.04的砷而言,從相當於約360℃的第二閾值溫度Tth,2 開始,相對於各自的原始電阻率ρa ,電阻率似乎下降了10倍。因此,由此可見,在VOx 基化合物中加入量至少等於0.012的砷,使敏感材料的熱穩定性至少增加約30℃。關於等於0.12的砷的量y,似乎在至少高達390℃的情況下,電阻率相對於其原始電阻率ρa 不會下降10倍。因此,加入量至少等於0.12的砷,使敏感材料的熱穩定性至少增加約60℃。
最後,應當注意到,在VOx 基化合物中加入最多0.12的砷量,導致VOx Asy 0.12 修飾化合物的原始電阻率相對於VO1.9 基礎化合物的20歐姆-公分的原始電阻率最多下降約60倍。因此,原始電阻率從VO1.9 的20歐姆-公分到VO1.9 As0.12 的0.49歐姆-公分。此外,對於介於室溫和390℃之間的溫度Tr,VO1.9 As0.12 修飾化合物的電阻率ρa|r 維持大於或等於0.18歐姆-公分。
因此很明顯的,量y大於或等於0.012(較佳大於或等於0.12)的砷在電阻率方面給敏感材料帶來更大的熱穩定性,因此在1/f雜訊方面亦是。當y等於0.012和0.04時,此熱穩定性提高了30℃,而在y=0.12的情況下至少提高了60℃。此外,額外化學元素為砷是有利的,因為它導致敏感材料的電阻率相對於VO1.9 基化合物的電阻率的下降受到限制。
最後,可見修飾化合物VOx As0.12 表現出作為溫度Tr(至少高達390°C)的函數的電阻率ρa|r 的相對變化特別小。如此就有可能限制由沉積反應器或退火爐內溫度場中的任何空間非均質性所引起的微測輻射熱計的電特性的分散。
圖4B示出了對於不同量的鍺Ge添加到VOx 第一化合物中且暴露的持續時段Δtr為90分鐘時,敏感材料在室溫下的電阻率ρa|r 作為熱暴露溫度Tr的函數的變化實例。這些例子展示出當敏感材料包含有效量的鍺時,其熱穩定性增加。
在這些例子中,VOx Gey 敏感材料的樣品以類似於上述的方式獲得,即透過將鍺植入事先透過IBS濺射獲得的VOx 材料中。這裡氧的量x等於1.9±0.14,其對應於第一化合物VO1.9 的原始電阻率等於20歐姆-公分。
可見的是,對於量y為0.004和0.012的鍺,從等於約330°C的第一閾值溫度Tth,1 起,電阻率ρa|r 相對於其原始電阻率ρa 下降了10倍。
另一方面,可見的是,對於量y為0.04和0.12的鍺,在該溫度Tth,1 等於330°C時,電阻率ρa|r 大於其原始電阻率ρa 的10%。因此,從鍺的y=0.04開始(即有效量),敏感材料表現出更好的熱穩定性。更確切地說:就鍺的量y=0.04而言,相對於相應的原始電阻率ρa ,電阻率從約等於350℃的第二閾值溫度Tth,2 開始下降了10倍。因此由此可見,在VOx 基化合物中加入至少等於0.04的鍺量,可使敏感材料的熱穩定性至少增加約20℃。關於鍺的量y=0.12,在至少高達390℃的情況下,相對於其原始電阻率ρa ,電阻率不會下降10倍。因此,加入至少等於0.12的鍺量,使敏感材料的熱穩定性至少增加約60℃。
因此,顯而易見的是,鍺的量y大於或等於0.04,且較佳大於或等於0.12,在電阻率方面給敏感材料帶來更大的熱穩定性,並因此在1/f雜訊方面亦是。在此,在y=0.04時,熱穩定性提高了20℃,且在y=0.12時,熱穩定性至少提高了60℃。
最後,可見的是,修飾化合物VOx Ge0.12 表現出作為溫度Tr(至少高達390°C)的函數的電阻率ρa|r 的相對變化特別小。如此就有可能限制由沉積反應器或退火爐內溫度場中的任何空間非均質性所導致的微測輻射熱計的電性能分散。
圖4C示出了對於不同量的矽Si加入到VOx 第一化合物中且暴露的持續時段Δtr為90分鐘時,敏感材料在室溫下的電阻率ρa|r 作為熱暴露溫度Tr的函數的變化示例。這些例子示出當敏感材料包含有效量的矽時,其熱穩定性增加。
在這些例子中,VOx Siy 敏感材料的樣品以類似於上述的方式獲得,即透過將矽植入事先透過IBS濺射獲得的VOx 材料中。這裡氧的量x等於1.9±0.14,這相當於第一化合物VO1.9 的原始電阻率等於20歐姆-公分。
可見的是,對於矽的量y為0.004和0.012,從等於約315°C的第一閾值溫度Tth,1 開始,電阻率ρa|r 相對於其原始電阻率ρa 下降了10倍。
另一方面,可見的是,對於矽的量y為0.04和0.12,在該溫度Tth,1 等於315°C時,電阻率ρa|r 大於其原始電阻率ρa 的10%。因此,從y=0.04的矽開始(即當時的有效量)敏感材料表現出較好的熱穩定性。更確切地說:就矽的量y=0.04而言,從相當於約350℃的第二閾值溫度Tth,2 開始,電阻率相對於相應的原始電阻率ρa 下降了10倍。因此由此可見,在VOx 基化合物中加入至少等於0.04的矽量,可使敏感材料的熱穩定性至少增加約35℃。關於矽的量y=0.12,在至少高達390℃的情況下,相對於其原始電阻率ρa ,電阻率不會下降10倍。因此,加入至少等於0.12的矽量,使敏感材料的熱穩定性至少增加約75℃。
因此,顯而易見的是,矽的量y大於或等於0.04(較佳大於或等於0.12)在電阻率方面給敏感材料帶來更大的熱穩定性,因此在1/f雜訊方面亦是。在此,當y=0.04,熱穩定性提高了35℃,當y=0.12時,熱穩定性至少提高了75℃。
最後,可見的是修飾化合物VOx Si0.12 表現出作為溫度Tr(至少高達390°C)的函數的電阻率ρa|r 的相對變化特別小。如此就有可能限制由沉積反應器或退火爐內溫度場中的任何空間非均質性所導致的微測輻射熱計的電性能分散。
圖4D示出了對於不同量的磷P加入到VOx 第一化合物中且暴露的持續時段Δtr為90分鐘時,敏感材料在室溫下的電阻率ρa|r 作為熱暴露溫度Tr的函數的變化示例。這些例子示出當敏感材料包含有效量的磷時,其熱穩定性增加。
在這些例子中,VOx Py 敏感材料的樣品以類似於上述的方式獲得,即透過將磷植入事先透過IBS濺射獲得的VOx 材料中。這裡氧的量x等於1.9±0.14,這相當於第一化合物VO1.9 的原始電阻率等於20歐姆-公分。
可見的是,對於磷的量y為0.004、0.012和0.04,從等於約320°C的第一閾值溫度Tth,1 開始,電阻率ρa|r 相對於其原始電阻率ρa 下降了10倍。
另一方面,可見的是,對於磷的量y為0.12而言,在等於320°C時的此溫度Tth,1 下,其電阻率ρa|r 大於其原始電阻率ρa 的10%。因此,從磷的量y=0.12(即有效量)開始,敏感材料表現出較好的熱穩定性。
更準確地說,對磷的量y=0.12而言,從相當於約360°C的第二閾值溫度Tth,2 開始,電阻率相對於相應的原始電阻率ρa 下降了10倍。由此可見,在VOx 基化合物中加入至少等於0.12的磷的量,在電阻率方面給敏感材料帶來至少約40℃的額外熱穩定性,因此在1/f雜訊方面亦然。
因此,額外化學元素是從砷、鍺、矽和磷中選擇的。然而,較佳從砷、鍺和矽中選擇,鑒於這三種化學元素可使敏感材料的熱穩定性提高到至少390°C,而磷則不然。考慮到這四種化學元素與硼一起構成了形成玻璃狀網路的化學元素的一部分則更為驚人,也就是說,這四種化學元素構成了其氧化物(在沒有任何其它添加物的情況下)可以自身形成穩定的非晶質材料的化學元素的一部份。形成網路的氧化物有代表矽的SiO2 ,代表磷的P2 O5 ,代表鍺的GeO2 ,代表砷的As2 O3 。然而,驚人的是,在這個網路形成體家族中,砷、鍺和矽比磷能獲得更好的熱穩定性。順道一題,矽和磷可能會被認為是彼此同樣有效的化學元素,因為它們和硼一樣,是比砷和鍺更小的離子。然而可見且驚人的是,磷的效果竟然不如矽。因此,額外化學元素較佳從砷、鍺和矽中選擇。
以上描述了特定的實施例。各種修改和變型對本領域通常知識者來說是顯而易見的。
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。
1:偵測裝置 10:微測輻射熱計 11:吸收膜 12:錨定支柱 13:絕熱臂 14:反射層 15:敏感材料 2:基板 20:支撐層 21.1、21.2:電極 22:保護層 A-A’:平面 ρa|r:電阻率 Tr:溫度 TCR:電阻溫度係數 N1/f:參數 A0~A4、AS:曲線 VO2、VO2.5:釩氧化物 yAs:砷量 yGe 鍺量ySi:矽量 yP:磷量 Tth,1:第一閾值溫度 Tth,2第二閾值溫度
圖1A係為根據一實施例的包含基於釩氧化物的一敏感材料的微測輻射熱計的示意圖。 圖1B係為根據一實施例的包含基於釩氧化物的一敏感材料的微測輻射熱計的沿著A-A’平面的局部剖面圖。 圖2A係繪示了在室溫下自釩氧化物製造的基礎化合物(稱為第一化合物)的電阻率作為熱暴露溫度(thermal exposure temperature)Tr的函數的變化,其中不包含選自砷、鍺、矽及磷的額外化學元素。 圖2B係繪示了在沒有熱暴露及經過在攝氏310度下熱暴露90分鐘的情況下,TCR係數值作為基礎化合物(VOx ) 的電阻率的函數的示例。 圖2C係繪示了在沒有熱暴露及經過熱暴露在攝氏310度下90分鐘的情況下,代表1/f雜訊的參數值作為基礎化合物(VOx )的電阻率的函數的示例。 圖3A及圖3B繪示了在沒有熱暴露及經過熱暴露在攝氏310度下90分鐘的情況下,基礎化合物(VOx )對不同溫度的拉曼光譜。 圖4A至圖4D繪示了對於不同量的額外化學元素而言,基於釩氧化物的敏感材料暴露持續一時段Δtr時,在室溫下的電阻率ρa|r 作為熱暴露溫度Tr的函數的變化實例。其中額外化學元素為砷(圖4A)鍺(圖4B)矽(圖4C)以及磷(圖4D)。
ρa|r:電阻率
Tr:溫度
yAs:砷量
Tth,1:第一閾值溫度
Tth,2:第二閾值溫度

Claims (13)

  1. 製造包含一敏感材料(15)的至少一個微測輻射熱計(10)的方法,該方法允許限制關聯於該敏感材料(15)的雜訊衰減, 所述敏感材料(15)由:基於釩氧化物(VOx )的一第一化合物;以及加至該第一化合物的至少一個額外化學元素所形成,其中該化學元素係選自砷(As)、鍺(Ge)、矽(Si)以及磷(P),而氮(N)除外, 該方法包含以下步驟: 在一薄層中製造該敏感材料(15); 在執行製造該敏感材料(15)的步驟後,在大於一室溫的一溫度(Tr)下暴露該敏感材料(15)持續一時段(Δtr), 該溫度(Tr)及該時段(Δtr)使得該第一化合物經過在該溫度(Tr)下暴露該時段(Δtr)的步驟後,該第一化合物在該室溫下具有小於或等於其原始數值的10%的一電阻率,其中該第一化合物係為非晶質且在該室溫下具有在1歐姆-公分至30歐姆-公分之間的一原始電阻率; 該方法更包含以下步驟: 測定加至該第一化合物(VOx )的該額外化學元素(As、Ge、Si、P)的非零的一有效量,因此形成一修飾化合物,而經過在該溫度(Tr)下暴露該時段(Δtr)的步驟後的該修飾化合物在該環境溫度下具有大於其原始數值(ρa )的10%的一電阻率(ρa|r ); 在所述的在該薄層中製造該敏感材料(15)的步驟中,該敏感材料(15)係以該修飾化合物組成,該修飾化合物具有的該額外化學元素(As、Ge、Si、P)的量係大於或等於先前測定的該有效量,該敏感材料(15)為非晶質,在該環境溫度下具有在0.1歐姆-公分至30歐姆-公分之間的一原始電阻率(ρa),以及具有均相的一化學組成; 在該溫度(Tr)下暴露該敏感材料(15)該時段(Δtr)的步驟之後,該敏感材料(15)具有其衰減已被限制的一雜訊。
  2. 如請求項1所述的製造方法,其中該額外化學元素係從砷、鍺及矽之中挑選。
  3. 如請求項1所述的製造方法,其中該額外化學元素為砷。
  4. 如請求項1所述的製造方法,其中暴露該敏感材料(15)的步驟包含沉積覆蓋該敏感材料的一保護層(22)。
  5. 如請求項1所述的製造方法,其中暴露該敏感材料(15)的步驟包含沉積對待偵測的電磁輻射透明的一封裝層,且該封裝層旨在限界該微測輻射熱計所位於的一空腔。
  6. 如請求項1所述的製造方法,其中該溫度(Tr)大於或等於攝氏330度,或甚至等於攝氏350±5度。
  7. 如請求項1所述的製造方法,其中該時段(Δtr)大於或等於90分鐘。
  8. 如請求項1所述的製造方法,其中該敏感材料(15)係在小於該溫度(Tr)的溫度下被製造。
  9. 一種微測輻射熱計(10),包含一敏感材料(15),該敏感材料(15)由:基於釩氧化物(VOx )的一第一化合物;以及至少一個額外化學元素所形成,其中該額外化學元素係選自砷、鍺、矽以及磷,而氮除外,其特徵在於該敏感材料(15): 係非晶質, 在一室溫下具有在0.1歐姆-公分至30歐姆-公分之間的一電阻率, 具有均相的一化學組成,以及 包含一數量的該額外化學元素,該數量定義為該額外化學元素的原子數對釩的原子數的比值,在該額外化學元素為砷的情況下該數量至少等於0.012,在該額外化學元素為鍺與矽的情況下該數量至少等於0.04,以及在該額外化學元素為磷的情況下該數量至少等於0.12。
  10. 如請求項9所述的微測輻射熱計(10),其中氧的數量定義為氧的原子數對釩的原子數的比值,氧的數量介於1.42±0.05及1.94±0.05之間。
  11. 如請求項9所述的微測輻射熱計(10),其中該敏感材料(15)被氮化矽的一保護層(22)覆蓋。
  12. 一種用於偵測電磁輻射的裝置(1),包含如請求項8的微測輻射熱計(10)的一陣列,該微測輻射熱計(10)被設置在至少一個密閉空腔內,該密閉空腔係由對待偵測的電磁輻射透明的一封裝結構所限界,該封裝結構包含由非晶矽製成的至少一個層。
  13. 如請求項12所述的偵測裝置(1),更包含位於該密閉空腔的一吸氣劑材料。
TW109125576A 2019-07-30 2020-07-29 具釩氧化物的敏感材料的微測輻射熱計之製造方法 TW202107051A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1908688A FR3099573B1 (fr) 2019-07-30 2019-07-30 Procédé de fabrication d’un microbolomètre comportant un matériau sensible à base d’oxyde de vanadium
FR1908688 2019-07-30

Publications (1)

Publication Number Publication Date
TW202107051A true TW202107051A (zh) 2021-02-16

Family

ID=69104553

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109125576A TW202107051A (zh) 2019-07-30 2020-07-29 具釩氧化物的敏感材料的微測輻射熱計之製造方法

Country Status (8)

Country Link
US (1) US20220252456A1 (zh)
EP (1) EP4004507A1 (zh)
KR (1) KR20220075310A (zh)
CN (1) CN114502932A (zh)
CA (1) CA3146045A1 (zh)
FR (1) FR3099573B1 (zh)
TW (1) TW202107051A (zh)
WO (1) WO2021018856A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809689B (zh) * 2022-01-27 2023-07-21 鴻海精密工業股份有限公司 微測輻射熱計和其製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100596196B1 (ko) * 2004-01-29 2006-07-03 한국과학기술연구원 볼로메타용 산화물 박막 및 이를 이용한 적외선 감지소자
US8329002B1 (en) * 2009-03-10 2012-12-11 4Wave, Inc. Thin films and methods and machines for forming the thin films
JP5444376B2 (ja) * 2010-02-03 2014-03-19 株式会社日立製作所 赤外線センサ
JP5964543B2 (ja) * 2010-06-15 2016-08-03 日本電気株式会社 ボロメータ型テラヘルツ波検出器
CN101881667B (zh) * 2010-06-24 2015-09-09 电子科技大学 一种非制冷微测辐射热计及其制备方法
US8765514B1 (en) * 2010-11-12 2014-07-01 L-3 Communications Corp. Transitioned film growth for conductive semiconductor materials
KR102263974B1 (ko) * 2013-03-15 2021-06-10 아이씨유 메디칼 인코퍼레이티드 의료용 커넥터
KR101439263B1 (ko) * 2013-11-22 2014-09-11 한국광기술원 마이크로 볼로미터용 적외선 감지 박막 제조방법
FR3016211B1 (fr) * 2014-01-08 2018-03-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Materiau sensible pour la detection bolometrique
FR3023974B1 (fr) * 2014-07-18 2016-07-22 Ulis Procede de fabrication d'un dispositif comprenant un boitier hermetique sous vide et un getter
FR3033045B1 (fr) 2015-02-20 2020-02-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de detection de rayonnement electromagnetique a structure d'encapsulation hermetique a event de liberation
US20160273968A1 (en) * 2015-03-16 2016-09-22 Vlad Joseph Novotny Sealed Infrared Imagers and Sensors
FR3077878B1 (fr) * 2018-02-15 2022-02-04 Commissariat Energie Atomique Procede de fabrication d'un microbolometre a materiau sensible a base d'oxyde de vanadium
FR3077879B1 (fr) * 2018-02-15 2021-08-27 Commissariat Energie Atomique Procede de fabrication d'un microbolometre a materiau sensible a base d'oxyde de vanadium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809689B (zh) * 2022-01-27 2023-07-21 鴻海精密工業股份有限公司 微測輻射熱計和其製造方法

Also Published As

Publication number Publication date
KR20220075310A (ko) 2022-06-08
EP4004507A1 (fr) 2022-06-01
FR3099573B1 (fr) 2021-07-23
FR3099573A1 (fr) 2021-02-05
US20220252456A1 (en) 2022-08-11
CA3146045A1 (fr) 2021-02-04
WO2021018856A1 (fr) 2021-02-04
CN114502932A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US11181424B2 (en) Process for manufacturing a microbolometer containing vanadium oxide-based sensitive material
US11629999B2 (en) Process for manufacturing a microbolometer containing vanadium oxide-based sensitive material
US9377364B2 (en) Sensitive material for bolometric detection
US20160032443A1 (en) Vanadium oxide thermo-sensitive film material with high temperature coefficient of resistance and a preparing method thereof
EP1142016A1 (en) A polysilicon resistor and a method of producing it
TW202107051A (zh) 具釩氧化物的敏感材料的微測輻射熱計之製造方法
CN115777057A (zh) 红外成像微测辐射热计及相关形成方法
US11359971B2 (en) Detector of electromagnetic radiation and in particular infrared radiation, and process for producing said detector
Jalal et al. Noise reduction of amorphous Si x Ge y O 1–x–y thin films for uncooled microbolometers by Si 3 N 4 passivation and annealing in vacuum
US8173280B2 (en) Nickel oxide film for bolometer and method for manufacturing thereof, and infrared detector using the same
US6197601B1 (en) Method of correcting temperature of semiconductor substrate
US7527999B2 (en) Cd1−xZnxS high performance TCR material for uncooled microbolometers used in infrared sensors and method of making same