TW202105778A - 熱電轉換材料層及其之製造方法 - Google Patents

熱電轉換材料層及其之製造方法 Download PDF

Info

Publication number
TW202105778A
TW202105778A TW109110455A TW109110455A TW202105778A TW 202105778 A TW202105778 A TW 202105778A TW 109110455 A TW109110455 A TW 109110455A TW 109110455 A TW109110455 A TW 109110455A TW 202105778 A TW202105778 A TW 202105778A
Authority
TW
Taiwan
Prior art keywords
material layer
conversion material
thermoelectric conversion
thermoelectric
thermoelectric semiconductor
Prior art date
Application number
TW109110455A
Other languages
English (en)
Other versions
TWI841718B (zh
Inventor
関佑太
戶髙昌也
加藤邦久
Original Assignee
日商琳得科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商琳得科股份有限公司 filed Critical 日商琳得科股份有限公司
Publication of TW202105778A publication Critical patent/TW202105778A/zh
Application granted granted Critical
Publication of TWI841718B publication Critical patent/TWI841718B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

本發明提供一種包含熱電半導體組成物之塗布膜之熱電轉換材料層中的熱電轉換材料之電導率經提升,熱電性能高之熱電轉換材料層及其之製造方法,該熱電轉換材料層係包含熱電半導體組成物之塗布膜之熱電轉換材料層,其中前述熱電轉換材料層具有空隙部,且將包含前述熱電轉換材料層中央部之縱剖面之面積中之前述熱電半導體組成物所佔面積之比例設為填充率時,前述填充率為0.800以上未滿1.000。

Description

熱電轉換材料層及其之製造方法
本發明關於熱電轉換材料層及其之製造方法。
自以往以來,作為能量的有效利用手段之一,有藉由席貝克(Seebeck)效應或帕耳帖(Peltier)效應等熱電效應之熱電轉換模組,將熱能與電能直接相互轉換之裝置。 作為前述熱電轉換模組,已知使用所謂π型的熱電轉換元件。π型係將互相分離的一對電極設於基板上,例如於一個電極之上設置P型熱電元件,於另一個電極之上同樣地互相分離地設置N型熱電元件,使兩個熱電材料之上面連接至對向的基板之電極而構成。又,已知使用所謂平面型的熱電轉換元件。平面型係將P型熱電元件與N型熱電元件在基板的面內方向交替地設置,例如通過電極串聯連接兩熱電元件間的接合部之下部而構成。 於如此之中,要求提升熱電轉換模組的彎曲性,提升薄型化及熱電性能等。為了滿足此等之要求,例如作為熱電轉換模組所用之基板,從耐熱性及彎曲性之觀點來看,使用聚醯亞胺等之樹脂基板。又,作為N型的熱電半導體材料、P型的熱電半導體材料,從熱電性能之觀點來看,使用鉍碲化物系材料,例如從彎曲性、薄型化之觀點來看,在包含樹脂及熱電半導體材料的熱電半導體組成物中,使用網版印刷法等,以塗布膜之態樣形成(專利文獻1等)。先前技術文獻 專利文獻
專利文獻1:國際公開2016/104615號公報
發明所欲解決的課題
然而,熱電轉換模組所用之熱電半導體材料,由於由包含樹脂及熱電半導體材料等之熱電半導體組成物,以塗布膜之態樣,作為熱電轉換材料層形成,因此在所得之熱電轉換材料層,無法充分得到高的電導率,熱電性能不充分。
本發明係鑒於上述,課題在於提供一種包含熱電半導體組成物之塗布膜之熱電轉換材料層中的熱電轉換材料之電導率經提升,熱電性能高之熱電轉換材料層及其之製造方法。解決課題的手段
本發明者們為了解決上述課題而專心致力地研究,結果發現在熱電半導體組成物之塗布膜內含有許多的空隙,藉由減少該等之體積,而熱電轉換材料之填充率高的熱電轉換材料層係賦予高的電導率,終於完成本發明。 即,本發明提供以下之(1)~(10)。 (1)一種熱電轉換材料層,其係包含熱電半導體組成物之塗布膜之熱電轉換材料層,其中前述熱電轉換材料層具有空隙,且將包含前述熱電轉換材料層中央部之縱剖面之面積中之前述熱電半導體組成物所佔面積之比例設為填充率時,前述填充率為0.800以上未滿1.000。 (2)如上述(1)記載之熱電轉換材料層,其中前述熱電半導體組成物包含熱電半導體材料,且該熱電半導體材料為鉍-碲系熱電半導體材料、碲化物系熱電半導體材料、銻-碲系熱電半導體材料,或鉍硒化物系熱電半導體材料。 (3)如(1)或(2)記載之熱電轉換材料層,其中前述熱電半導體組成物更包含耐熱性樹脂。 (4)如上述(1)~(3)中任一項記載之熱電轉換材料層,其中前述耐熱性樹脂為聚醯亞胺樹脂、聚醯胺樹脂、聚醯胺醯亞胺樹脂或環氧樹脂。 (5)如上述(1)~(4)中任一項記載之熱電轉換材料層,其中前述熱電半導體組成物更包含離子液體及/或無機離子性化合物。 (6)如上述(1)~(5)中任一項記載之熱電轉換材料層,其中前述熱電轉換材料層之厚度為1~1000μm。 (7)如上述(1)~(6)中任一項記載之熱電轉換材料層,其中前述填充率為0.850~0.999。 (8)一種熱電轉換材料層之製造方法,其係製造包含熱電半導體組成物之塗布膜之熱電轉換材料層之方法,其中包括: (A)形成熱電轉換材料層的步驟, (B)乾燥在前述(A)步驟取得之前述熱電轉換材料層的步驟, (C)加壓在前述(B)步驟取得之乾燥後之前述熱電轉換材料層的步驟,及 (D)退火處理在前述(C)步驟取得之經加壓之熱電轉換材料層的步驟。 (9)如上述(8)記載之熱電轉換材料層之製造方法,其中前述退火處理之溫度係在250~600℃下進行。 (10)如上述(8)或(9)記載之熱電轉換材料層之製造方法,其中前述加壓係在1.0~60MPa下進行。發明的效果
依照本發明,可提供一種包含熱電半導體組成物之塗布膜之熱電轉換材料層中的熱電轉換材料之電導率經提升,熱電性能高之熱電轉換材料層及其之製造方法。
實施發明的形態 [熱電轉換材料層]
本發明之熱電轉換材料層係包含熱電半導體組成物之塗布膜之熱電轉換材料層,其特徵為前述熱電轉換材料層具有空隙,具將包含前述熱電轉換材料層中央部之縱剖面之面積中之前述熱電半導體組成物所佔面積之比例設為填充率時,前述填充率為0.800以上未滿1.000。
〈熱電轉換材料層之縱剖面〉 使用圖式,說明本說明書中的「包含熱電轉換材料層中央部之縱剖面」之定義。 圖1係用於說明本發明之熱電轉換材料層的縱剖面之定義的圖,(a)係熱電轉換材料層2之平面圖,熱電轉換材料層2係在寬度方向具有長度X,在深度方向中具有長度Y,(b)係形成在基板1a上之包含空隙部3的熱電轉換材料層2之縱剖面,縱剖面包含前述(a)的中央部C,由在寬度方向中以A-A’間切斷時所得之長度X、厚度D所構成(圖中成為長方形)。
關於本發明之熱電轉換材料層的縱剖面,使用圖式來說明。 圖2係用於說明本發明之實施例或比較例之熱電轉換材料層的縱剖面之剖面示意圖,(a)係比較例1所得之在氧化鋁基板1b上形成的熱電轉換材料層2s之縱剖面,熱電轉換材料層2s具有由在寬度方向中的長度X、在厚度方向的取得Dmin及Dmax之值的曲線所成之縱剖面,縱剖面之上部具備凹部與凸部,於縱剖面內存在空隙部3b。又,(b)係實施例1所得之在氧化鋁基板1b上形成的熱電轉換材料層2t之縱剖面,熱電轉換材料層2t之縱剖面係由在寬度方向的長度X、在厚度方向的厚度D[圖2的(a)中的Dmin與Dmax之值為微差之情況]所構成,縱剖面之上部係成為略直線狀,於縱剖面內存在空隙數及體積經抑制之空隙部4b。再者,Dmin意指縱剖面之厚度方向之厚度的最小值,Dmax意指縱剖面之厚度方向之厚度的最大值。
於本發明之熱電轉換材料層中,以包含熱電轉換材料層中央部之縱剖面之面積中之前述熱電半導體組成物所佔面積之比例所定義的前述熱電轉換材料層中之前述熱電半導體組成物之填充率係0.800以上未滿1.000,熱電轉換材料層中之空隙少。 若熱電轉換材料層中之前述熱電半導體組成物之填充率未滿0.800,則熱電轉換材料層中之空隙變多,難以得到優異的電導率,得不到高的熱電性能。填充率較佳為0.810~0.999,更佳為0.850~0.999,尤佳為0.900~0.999,特佳為0.950~0.999,若填充率在此範圍,則得到優異的電導率,成為具有高的熱電性能之熱電轉換材料層。
本發明之熱電轉換材料層(以下亦稱為「包含熱電轉換材料層之薄膜」)係包含熱電半導體組成物之塗布膜。熱電半導體組成物係熱電半導體材料,且從熱電轉換材料層的形狀安定性之觀點來看,較佳為包含耐熱性樹脂,從熱電性能之觀點來看,較佳為由包含熱電半導體材料、耐熱性樹脂以及離子液體及/或無機離子性化合物之熱電半導體組成物所構成。 前述熱電半導體材料係從熱電性能之觀點來看,較佳作為熱電半導體粒子使用(以下,將熱電半導體材料亦稱為「熱電半導體粒子」)。
前述熱電轉換材料層之厚度係沒有特別的限制,但從可撓性、熱電性能與皮膜強度之點來看,較佳為1nm~1000μm,更佳為3~600μm,尤佳為5~400μm。
(熱電半導體材料) 本發明中使用的熱電半導體材料,只要是藉由賦予溫度差而能產生熱電動勢之材料,則沒有特別的限制,例如可使用P型鉍碲化物、N型鉍碲化物等之鉍-碲系熱電半導體材料;GeTe、PbTe等之碲化物系熱電半導體材料;銻-碲系熱電半導體材料;ZnSb、Zn3 Sb2 、Zn4 Sb3 等之鋅-銻系熱電半導體材料;SiGe等之矽-鍺系熱電半導體材料;Bi2 Se3 等之鉍硒化物系熱電半導體材料;β-FeSi2 、CrSi2 、MnSi1.73 、Mg2 Si等之矽化物系熱電半導體材料;氧化物系熱電半導體材料;FeVAl、FeVAlSi、FeVTiAl等之豪斯勒材料、TiS2 等之硫化物系熱電半導體材料等。 於此等之中,較佳為鉍-碲系熱電半導體材料、碲化物系熱電半導體材料、銻-碲系熱電半導體材料或鉍硒化物系熱電半導體材料。
再者,從熱電性能之觀點來看,更佳為P型鉍碲化物或N型鉍碲化物等之鉍-碲系熱電半導體材料。 前述P型鉍碲化物係載體為電洞,席貝克係數為正值,例如較宜使用以BiX Te3 Sb2-X 表示者。此時,X較佳為0<X≦0.8,更佳為0.4≦X≦0.6。若X大於0且為0.8以下,則席貝克係數與電導率變大,維持作為P型熱電元件的特性而較宜。 又,前述N型鉍碲化物係載體為電子,席貝克係數為負值,例如較宜使用以Bi2 Te3-Y SeY 表示者。此時,Y較佳為0≦Y≦3(Y=0時:Bi2 Te3 ),更佳為0<Y≦2.7。若Y為0以上3以下,則席貝克係數與電導率變大,維持作為N型熱電元件的特性而較宜。
熱電半導體組成物中使用的熱電半導體粒子,係藉由微粉碎裝置等,將前述的熱電半導體材料粉碎到指定的尺寸為止者。
熱電半導體粒子在前述熱電半導體組成物中的摻合量較佳為30~99質量%,更佳為50~96質量%,尤佳為70~95質量%。熱電半導體粒子之摻合量只要為上述範圍內,則席貝克係數(帕耳帖係數之絕對值)大,且抑制電導率之降低,由於僅熱傳導率降低而顯示高的熱電性能,同時得到具有充分皮膜強度、彎曲性之膜而較宜。
熱電半導體粒子之平均粒徑較佳為10nm~200μm,更佳為10nm~30μm,尤佳為50nm~10μm,特佳為1~6μm。若為上述範圍內,則均勻的分散變容易,可提高電導率。 將前述熱電半導體材料粉碎而得到熱電半導體粒子之方法係沒有特別的限定,只要藉由噴射磨機、球磨機、珠磨機、膠體磨機、輥磨機等之眾所周知的微粉碎裝置等,粉碎到指定的尺寸為止即可。 再者,熱電半導體粒子之平均粒徑係藉由雷射繞射式粒度分析裝置(Malvern公司製Mastersizer 3000)測定而得之粒徑分布的中央值。
又,熱電半導體粒子較佳為事先經熱處理者(此處所言的「熱處理」係與後述的本發明之熱電轉換材料層之製造方法中的退火處理步驟所進行「退火處理」不同)。藉由進行熱處理,熱電半導體粒子係結晶性升高,再者熱電半導體粒子的表面氧化膜係被去除,因此熱電轉換材料的席貝克係數或帕耳帖係數增大,可更提高熱電性能指數。熱處理係沒有特別的限定,但以在調製熱電半導體組成物之前,不對於熱電半導體粒子造成不良影響之方式,較佳為在氣體流量經控制的氮、氬等之惰性氣體環境下,同樣地在氫等之還原氣體環境下或真空條件下進行,更佳為在惰性氣體及還原氣體的混合氣體環境下進行。具體的溫度條件係依賴於所用的熱電半導體粒子,但通常為粒子的熔點以下之溫度,且較佳為在100~1500℃下進行數分鐘~數十小時。
(耐熱性樹脂) 於本發明所用的熱電半導體組成物中,從將熱電半導體材料在高溫度下進行退火處理之觀點來看,較宜使用耐熱性樹脂。作為熱電半導體材料(熱電半導體粒子)間之黏結劑作用,可提高熱電轉換模組的彎曲性,同時容易藉由塗布等而形成薄膜。該耐熱性樹脂係沒有特別的限制,但於將包含熱電半導體組成物的薄膜,藉由退火處理等而使熱電半導體粒子進行結晶成長時,較佳為不損害作為樹脂的機械強度及熱傳導率等之諸物性而維持的耐熱性樹脂。 從耐熱性更高,且不對於薄膜中的熱電半導體粒子之結晶成長造成不良影響之點來看,前述耐熱性樹脂較佳為聚醯胺樹脂、聚醯胺醯亞胺樹脂、聚醯亞胺樹脂、環氧樹脂,從彎曲性優異之點來看,更佳為聚醯胺樹脂、聚醯胺醯亞胺樹脂、聚醯亞胺樹脂。再者,本發明中所謂的聚醯亞胺樹脂,係將聚醯亞胺及其前驅物總稱。
前述耐熱性樹脂係分解溫度較佳為300℃以上。若分解溫度為上述範圍,則如後述,即使將包含熱電半導體組成物之薄膜予以退火處理時,也不喪失作為黏結劑的功能,可維持彎曲性。
又,前述耐熱性樹脂係熱重量測定(TG)的300℃之質量減少率較佳為10%以下,更佳為5%以下,尤佳為1%以下。若質量減少率為上述範圍,則如後述,即使將包含熱電半導體組成物之薄膜予以退火處理時,也不喪失作為黏結劑的功能,可維持熱電轉換材料層之彎曲性。
前述耐熱性樹脂在前述熱電半導體組成物中之摻合量為0.1~40質量%,較佳為0.5~20質量%,更佳為1~20質量%,尤佳為2~15質量%。若前述耐熱性樹脂之摻合量為上述範圍內,則具有作為熱電半導體材料的黏結劑之功能,容易形成薄膜,而且得到兼顧高的熱電性能與皮膜強度之膜。
(離子液體) 本發明所用之離子液體係組合陽離子與陰離子而成之熔融鹽,指於-50~400℃之溫度範圍的任一溫度範圍中,可以液體存在之鹽。換言之,離子液體係熔點在-50℃以上未滿400℃之範圍的離子性化合物。離子液體之熔點較佳為-25℃以上200℃以下,更佳為0℃以上150℃以下。離子液體係蒸氣壓極低而為不揮發性,具有優異的熱安定性及電化學安定性,具有黏度低且離子傳導度高等之特徵,因此作為導電輔助劑,可有效果地抑制熱電半導體粒子間的電導率之減低。又,離子液體係顯示以非質子性的離子構造為基礎之高極性,由於與耐熱性樹脂的相溶性優異,可使熱電轉換材料層的電導率成為均勻。
離子液體係可使用眾所周知或市售者。例如,可舉出由以下者所構成:吡啶鎓、嘧啶鎓、吡唑鎓、吡唑鎓、哌啶鎓、咪唑鎓等之含氮的環狀陽離子化合物及彼等之衍生物;四烷基銨的胺系陽離子及彼等之衍生物;鏻、三烷基鋶、四烷基鏻等之膦系陽離子及彼等之衍生物;鋰陽離子及其衍生物等之陽離子成分,與Cl- 、AlCl4 - 、Al2 Cl7 - 、ClO4 - 等之氯化物離子、Br- 等之溴化物離子、I- 等之碘化物離子、BF4 - 、PF6 - 等之氟化物離子、F(HF)n - 等之鹵化物陰離子、NO3 - 、CH3 COO- 、CF3 COO- 、CH3 SO3 - 、CF3 SO3 - 、(FSO2 )2 N- 、(CF3 SO2 )2 N- 、(CF3 SO2 )3 C- 、AsF6 - 、SbF6 - 、NbF6 - 、TaF6 - 、F(HF)n- 、(CN)2 N- 、C4 F9 SO3 - 、(C2 F5 SO2 )2 N- 、C3 F7 COO- 、(CF3 SO2 )(CF3 CO)N- 等之陰離子成分。
於上述離子液體之中,從高溫安定性、熱電半導體粒子及與樹脂的相溶性、抑制熱電半導體粒子間隙的電導率之降低等之觀點來看,離子液體的陽離子成分較佳為包含由吡啶鎓陽離子及其衍生物、咪唑鎓陽離子及其衍生物所選出的至少1種。離子液體的陰離子成分較佳為包含鹵化物陰離子,更佳為包含由Cl- 、Br- 及I- 所選出的至少1種。
作為陽離子成分為包含吡啶鎓陽離子及其衍生物的離子液體之具體例,可舉出4-甲基-丁基吡啶鎓氯化物、3-甲基-丁基吡啶鎓氯化物、4-甲基-己基吡啶鎓氯化物、3-甲基-己基吡啶鎓氯化物、4-甲基-辛基吡啶鎓氯化物、3-甲基-辛基吡啶鎓氯化物、3,4-二甲基-丁基吡啶鎓氯化物、3,5-二甲基-丁基吡啶鎓氯化物、4-甲基-丁基吡啶鎓四氟硼酸鹽、4-甲基-丁基吡啶鎓六氟磷酸鹽、1-丁基吡啶鎓溴化物、1-丁基-4-甲基吡啶鎓溴化物、1-丁基-4-甲基吡啶鎓六氟磷酸鹽、1-丁基-4-甲基吡啶鎓碘化物等。其中,較佳為1-丁基吡啶鎓溴化物、1-丁基-4-甲基吡啶鎓溴化物、1-丁基-4-甲基吡啶鎓六氟磷酸鹽、1-丁基-4-甲基吡啶鎓碘化物。
又,作為陽離子成分為包含咪唑鎓陽離子及其衍生物的離子液體之具體例,可舉出[1-丁基-3-(2-羥基乙基)咪唑鎓溴化物]、[1-丁基-3-(2-羥基乙基)咪唑鎓四氟硼酸鹽]、1-乙基-3-甲基咪唑鎓氯化物、1-乙基-3-甲基咪唑鎓溴化物、1-丁基-3-甲基咪唑鎓氯化物、1-己基-3-甲基咪唑鎓氯化物、1辛基-3-甲基咪唑鎓氯化物、1-癸基-3-甲基咪唑鎓氯化物、1-癸基-3-甲基咪唑鎓溴化物、1-十二基-3-甲基咪唑鎓氯化物、1-十四基-3-甲基咪唑鎓氯化物、1-乙基-3-甲基咪唑鎓四氟硼酸鹽、1-丁基-3-甲基咪唑鎓四氟硼酸鹽、1-己基-3-甲基咪唑鎓四氟硼酸鹽、1-乙基-3-甲基咪唑鎓六氟磷酸鹽、1-丁基-3-甲基咪唑鎓六氟磷酸鹽、1-甲基-3-丁基咪唑鎓甲基硫酸鹽、1,3-二丁基咪唑鎓甲基硫酸鹽等。其中,較佳為[1-丁基-3-(2-羥基乙基)咪唑鎓溴化物]、[1-丁基-3-(2-羥基乙基)咪唑鎓四氟硼酸鹽]。
上述離子液體係電導率較佳為10-7 S/cm以上,更佳為10-6 S/cm以上。若電導率為上述範圍,則作為導電輔助劑,可有效果地抑制熱電半導體粒子間的電導率之減低。
又,上述離子液體係分解溫度較佳為300℃以上。若分解溫度為上述範圍,則如後述,即使將包含熱電半導體組成物之薄膜予以退火處理時,也可維持作為導電輔助劑之效果。
再者,上述離子液體係熱重量測定(TG)的300℃之質量減少率較佳為10%以下,更佳為5%以下,尤佳為1%以下。若質量減少率為上述範圍,則如後述,即使將包含熱電半導體組成物之薄膜予以退火處理時,也可維持作為導電輔助劑之效果。
前述離子液體在前述熱電半導體組成物中之摻合量較佳為0.01~50質量%,更佳為0.5~30質量%,尤佳為1.0~20質量%。若前述離子液體之摻合量為上述之範圍內,則有效果地抑制電導率之降低,得到具有高的熱電性能之膜。
(無機離子性化合物) 本發明所用之無機離子性化合物係至少由陽離子與陰離子所構成之化合物。無機離子性化合物係在室溫下為固體,在400~900℃之溫度範圍的任一溫度中具有熔點,具有離子傳導度高等之特徵,因此作為導電輔助劑,可抑制熱電半導體粒子間的電導率之減低。
作為陽離子,使用金屬陽離子。 作為金屬陽離子,例如可舉出鹼金屬陽離子、鹼土類金屬陽離子、典型金屬陽離子及過渡金屬陽離子,更佳為鹼金屬陽離子或鹼土類金屬陽離子。 作為鹼金屬陽離子,例如可舉出Li+ 、Na+ 、K+ 、Rb+ 、Cs+ 及Fr+ 等。 作為鹼土類金屬陽離子,例如可舉Mg2+ 、Ca2+ 、Sr2+ 及Ba2+ 等。
作為陰離子,例如可舉出F- 、Cl- 、Br- 、I- 、OH- 、CN- 、NO3 - 、NO2 - 、ClO- 、ClO2 - 、ClO3 - 、ClO4 - 、CrO4 2- 、HSO4 - 、SCN- 、BF4 - 、PF6 - 等。
無機離子性化合物係可使用眾所周知或市售者。例如,可舉出由以下者所構成:鉀陽離子、鈉陽離子或鋰陽離子等之陽離子成分,與Cl- 、AlCl4 - 、Al2 Cl7 - 、ClO4 - 等之氯化物離子、Br- 等之溴化物離子、I- 等之碘化物離子、BF4 - 、PF6 - 等之氟化物離子、F(HF)n - 等之鹵化物陰離子、NO3 - 、OH- 、CN- 等之陰離子成分。
於上述無機離子性化合物之中,從高溫安定性、熱電半導體粒子及與樹脂的相溶性、抑制熱電半導體粒子間隙的電導率之降低等之觀點來看,無機離子性化合物的陽離子成分較佳為包含由鉀、鈉及鋰所選出的至少1種。又,無機離子性化合物的陰離子成分較佳為包含鹵化物陰離子,更佳為包含由Cl- 、Br- 及I- 所選出的至少1種。
作為陽離子成分為包含鉀陽離子的無機離子性化合物之具體例,可舉出KBr、KI、KCl、KF、KOH、K2 CO3 等。其中,較佳為KBr、KI。 作為陽離子成分為包含鈉陽離子的無機離子性化合物之具體例,可舉出NaBr、NaI、NaOH、NaF、Na2 CO3 等。其中,較佳為NaBr、NaI。 作為陽離子成分為包含鋰陽離子的無機離子性化合物之具體例,可舉出LiF、LiOH、LiNO3 等。其中,較佳LiF、LiOH。
上述無機離子性化合物係電導率較佳為10-7 S/cm以上,更佳為10-6 S/cm以上。若電導率為上述範圍,則作為導電輔助劑,可有效果地抑制熱電半導體粒子間的電導率之減低。
又,上述無機離子性化合物係分解溫度較佳為400℃以上。若分解溫度為上述範圍,則如後述,即使將包含熱電半導體組成物之薄膜予以退火處理時,也可維持作為導電輔助劑之效果。
再者,上述無機離子性化合物係熱重量測定(TG)的400℃之質量減少率較佳為10%以下,更佳為5%以下,尤佳為1%以下。若質量減少率為上述範圍,則如後述,即使將包含熱電半導體組成物之薄膜予以退火處理時,也可維持作為導電輔助劑之效果。
前述無機離子性化合物在前述熱電半導體組成物中之摻合量較佳0.01~50質量%,更佳為0.5~30質量%,尤佳為1.0~10質量%。若前述無機離子性化合物之摻合量為上述範圍內,則有效果地抑制電導率之降低,結果得到熱電性能升高之膜。 再者,併用無機離子性化合物與離子液體時,於前述熱電半導體組成物中,無機離子性化合物及離子液體之含量的總量較佳為0.01~50質量%,更佳為0.5~30質量%,尤佳為1.0~10質量%。
(其他添加劑) 於本發明所用之熱電半導體組成物中,在上述以外之成分以外,視需要亦可更包含分散劑、造膜助劑、光安定劑、抗氧化劑、增黏劑、可塑劑、著色劑、樹脂安定劑、填充劑、顏料、導電性填料、導電性高分子、硬化劑等之其他添加劑。此等之添加劑係可單獨1種或組合2種以上使用。
本發明之熱電轉換材料層係提高電導率者,藉由採用作為熱電轉換模組的熱電轉換材料層,可得到熱電性能高之熱電轉換模組。
[熱電轉換材料層之製造方法] 本發明之熱電轉換材料層之製造方法係製造包含熱電半導體組成物之塗布膜之熱電轉換材料層之方法,其特徵為:包含(A)形成熱電轉換材料層之步驟,(B)乾燥在前述(A)步驟取得之前述熱電轉換材料層之步驟,(C)加壓在前述(B)步驟取得之乾燥後之前述熱電轉換材料層之步驟,及(D)退火處理在前述(C)步驟取得之經加壓之熱電轉換材料層之步驟。 於本發明之熱電轉換材料層之製造方法中,在形成熱電轉換材料層之後,在指定之溫度下乾燥,接著以指定的壓力加壓熱電轉換材料層之上面,使熱電轉換材料層中的空隙之體積減少,然後藉由退火處理,得到電導率升高之熱電轉換材料層。
圖3係依步驟順序顯示本發明之熱電轉換材料層之製造方法的一例之說明圖,(a)係顯示在基板1a上形成有熱電轉換材料層2s之態樣之剖面圖,在基板1a上形成熱電轉換材料層2s作為塗布膜(包含空隙部3a),在指定之溫度下乾燥; (b)係顯示在熱電轉換材料層2s之上面使壓機加壓部5對向後之態樣之剖面圖,將在(a)所得之乾燥後的熱電轉換材料層2s冷卻到常溫後,使熱電轉換材料層2s與壓機加壓部5呈對向; (c)係顯示藉由壓機加壓部5加壓熱電轉換材料層2s的上面後,從熱電轉換材料層2s釋放壓機加壓部5後的態樣之剖面圖。 然後,藉由進行退火處理,可得到本發明之熱電轉換材料層2t(包含空隙數及體積已減少的空隙部4a)。
熱電轉換材料層係在作為較佳的態樣,可在基板上製作成平坦膜狀,然後單片化成目的之晶片尺寸。又,作為較佳的其他態樣,可在基板上,以前述熱電轉換材料的晶片之大小形成塗布膜。再者,從熱電轉換材料層的形狀控制性之觀點來看,作為更佳的態樣,可使用包含具有熱電轉換材料的晶片形狀之分開的開口部之格子狀圖型框構件來製作。 晶片尺寸例如短邊0.1~20mm、長邊0.2~25mm左右。
使用前述包含具有熱電轉換材料的晶片形狀之分開的開口部之格子狀圖型框構件時之熱電轉換材料層之製造方法,例如係如以下。 (p)於基板上,靜置包含具有熱電轉換材料的晶片形狀之分開的開口部之格子狀圖型框構件; (q)於圖型框構件之開口部,形成熱電轉換材料層之塗布膜,在指定之溫度下乾燥; (r)將在(q)所得之乾燥後的熱電轉換材料層冷卻到常溫後,使熱電轉換材料層與壓機加壓部(相當於圖3中的壓機加壓部5)呈對向; (t)以壓機加壓部來加壓熱電轉換材料層之上面,而減少熱電轉換材料層的空隙數及體積,從熱電轉換材料層釋放壓機加壓部,更釋放圖型框構件; (u)然後,對於已反映在基板上所得的圖型框構件之開口部的形狀之熱電轉換材料層,藉由進行退火處理,而得到本發明之晶片狀的熱電轉換材料層。 前述開口部係沒有特別的限制,只要在釋放圖型框構件後,具有反映熱電轉換材料的晶片之形狀的形狀者即可,較佳為長方形狀、正方形狀或圓形狀,更佳為長方形狀、正方形狀。 又,作為前述圖型框構件,從形成的容易度之觀點來看,可使用不銹鋼、銅等。
(A)熱電轉換材料層形成步驟 熱電轉換材料層形成步驟係在基板上形成熱電轉換材料層之步驟,例如於圖3(a)中,在基板1a上塗布熱電半導體組成物,形成熱電轉換材料層2s之步驟。
(基板) 作為基板,並沒有特別的限制,可舉出玻璃、矽、陶瓷、金屬或塑膠等。從在高溫度下進行退火處理之觀點來看,較佳為玻璃、矽、陶瓷、金屬,從熱處理後的尺寸安定性之觀點來看,更佳為使用玻璃、矽、陶瓷。 從製程及尺寸安定性之觀點來看,前述基板之厚度係可使用100~10000μm者。
(熱電半導體組成物) 本發明中使用的熱電半導體組成物係可使用與前述者同樣。關於熱電半導體材料、耐熱性樹脂、離子液體、無機離子性化合物等,較佳的材料、摻合量等亦同樣。
(熱電半導體組成物之調製方法) 本發明所用的熱電半導體組成物之調製方法係沒有特別的限制,只要藉由超音波均質機、螺旋混合機、行星式混合機、分散器、複合混合機等眾所周知之方法,添加前述熱電半導體粒子、前述耐熱性樹脂、前述離子液體及無機離子性化合物之一者或兩者,視需要的前述其他添加劑,更且溶劑,使其混合分散,調製該熱電半導體組成物即可。 作為前述溶劑,例如可舉出甲苯、醋酸乙酯、甲基乙基酮、醇、四氫呋喃、甲基吡咯啶酮、乙基賽珞蘇等之溶劑等。此等之溶劑係可單獨使用1種,也可混合2種以上使用。作為熱電半導體組成物之固體成分濃度,只要該組成物適合塗布的黏度即可,並沒有特別的限制。
前述包含熱電半導體組成物之薄膜,例如可藉由在前述基板上塗布前述熱電半導體組成物,進行乾燥而形成。
作為將熱電半導體組成物塗布於基板上之方法,可舉出網版印刷法、柔版印刷法、凹版印刷法、旋塗法、浸塗法、模塗法、噴塗法、棒塗法、刮刀法、塗布器法等眾所周知之方法,並沒有特別的限制。將塗膜形成圖型狀時,使用具有所欲圖型的網版,較佳為使用能簡便地形成圖型之網版印刷、模板印刷、狹縫模具塗布等。
(B)熱電轉換材料層乾燥步驟 熱電轉換材料層乾燥步驟係將在(A)之步驟所得之熱電轉換材料層予以乾燥之步驟,例如於圖3(a)中,乾燥基板1a上的熱電轉換材料層2s之步驟。 作為乾燥方法,可採用熱風乾燥法、熱輥乾燥法、紅外線照射法等、習知的乾燥方法。加熱溫度通常為80~170℃,較佳為100~150℃,更佳為110~145℃,尤佳為120~140℃。 加熱時間係隨著加熱方法而不同,但通常為30秒~5小時,較佳為1分鐘~3小時,更佳為5分鐘~2小時,尤佳為10分鐘~50分鐘。 若加熱溫度及加熱時間為該範圍,則容易造成加壓後及退火處理後的熱電轉換材料層之電導率的提升。 又,於熱電半導體組成物之調製中使用溶劑時,加熱溫度可為所使用的溶劑能乾燥之溫度範圍,也可為其以下之溫度範圍。
(C)熱電轉換材料層加壓步驟 熱電轉換材料層加壓步驟係加壓在前述(B)步驟所得之乾燥後的熱電轉換材料層之步驟,例如於圖3(b)中,以壓機加壓部5加壓熱電轉換材料層2s的上面之步驟。
加壓係在一態樣中,較佳為在將(B)之步驟所得之乾燥後的熱電轉換材料層冷卻到常溫後,於大氣壓環境下進行。又,於另一態樣中,加壓較佳為不將(B)之步驟所得之乾燥後的熱電轉換材料層冷卻到常溫,維持乾燥溫度而進行,投入作為下一步驟的後述之退火處理步驟中。 作為加壓方法,例如可舉出使用油壓式壓機、真空加壓機、重物等物理的加壓手段之方法。加壓量係隨著熱電轉換材料層的黏度、空隙之量等而不同,但通常為0.1~80MPa,較佳為1.0~60MPa,更佳為5~50MPa,尤佳為10~42MPa。再者,加壓係可一下子提高到指定的加壓量而進行,但從熱電轉換材料層的形狀安定性之維持及更多地減少熱電轉換材料層內的空隙而使熱電轉換材料的填充率升高之觀點來看,可適宜調整,但通常以0.1~50MPa/分鐘,較佳以0.5~30MPa/分鐘,更佳以1.0~10MPa/分鐘,增加加壓量而到指定的加壓量為止。 加壓時間係隨著加壓方法而不同,但通常為5秒~5小時,較佳為30秒~3小時,更佳為5分鐘~2小時,尤佳為10分鐘~1小時。 若加壓量及加壓時間為該範圍,則填充率增大,退火處理後的熱電轉換材料層之電導率容易升高。
(D)退火處理步驟 退火處理步驟係將在前述(C)步驟所得之經加壓之熱電轉換材料層予以退火處理之步驟,例如於圖3(c)中,在退火處理之溫度,退火加壓後的熱電轉換材料層2s之步驟(退火處理後,得到熱電轉換材料層2t)。 熱電轉換材料層係作為薄膜形成,於乾燥後,進行退火處理,而使熱電性能安定化,同時可使薄膜中的熱電半導體粒子進行結晶成長,可更提高熱電性能。
退火處理係在加壓熱電轉換材料層之狀態或未加壓之狀態下進行。加壓時的加壓量通常為0.1~80MPa,較佳為1.0~60MPa,更佳為5~50MPa,尤佳為10~42MPa。 又,雖然沒有特別的限定,但通常在氣體流量經控制之氮、氬等惰性氣體環境下、還原氣體環境下或真空條件下進行,雖然依賴於熱電半導體組成物中使用的熱電半導體材料、耐熱性樹脂、離子液體、無機離子性化合物等,但在退火處理之溫度通常為100~600℃,進行數分鐘~數十小時,較佳在250~450℃,進行數分鐘~數十小時。
前述熱電轉換材料層之厚度只要不因加壓而損害形狀安定性及熱電性能,則沒有特別的限制,可如前述。
藉由本發明之熱電轉換材料層之製造方法,可以簡便的方法製造電導率經提升的熱電轉換材料層。實施例
接著,藉由實施例更詳細地說明本發明,惟本發明完全不受此等之例所限定。
實施例、比較例所製作的熱電轉換材料層中之熱電半導體組成物的填充率之評價及電導率之評價,係用以下之方法進行。 (a)填充率之評價 對於實施例及比較例所製作之熱電轉換材料層,藉由研磨裝置(REFINETEC公司製,型名:Refine-Polisher HV),進行包含熱電轉換材料層中央部之縱剖面露出,使用FE-SEM/EDX(FE-SEM:日立高科技公司製,型名:S-4700),進行縱剖面之觀察,接著使用Image J(影像處理軟體,Ver. 1.44P),算出以熱電轉換材料層的縱剖面之面積中之熱電半導體組成物所佔面積之比例所定義之填充率。 於填充率之測定中,使用倍率500倍的SEM影像(縱剖面),測定範圍係以熱電轉換材料層與氧化鋁基板的邊界為基準,在寬度方向中被1280pixel、在厚度方向中被220pixel所包圍的範圍,作為影像切出。對於所切出的影像,從「亮度(Brightness)/對比(Contrast)」使對比成為最大值,進行二值化處理,將二值化處理中的暗部視為空隙部,將明部視為熱電半導體組成物,以「閾值(Threshold)」算出熱電半導體組成物之填充率。填充率係對於3片SEM的影像算,當作彼等之平均值。 再者,切出的影像係在縱剖面之區域部內選擇,例如於圖2之(a)中,以沒有收進熱電轉換材料層的周圍之空隙部(空氣層部)的方式,選擇在縱剖面的寬度方向中不超出X、在厚度方向中不超出Dmin之區域。 (b)電導率之評價 對於實施例及比較例所製作之熱電轉換材料層,使用低電阻測定裝置(日置公司製,型名:RM3545),於25℃60%RH之環境下,以四端子法測定表面電阻值,算出電導率。
(實施例1) <熱電轉換材料層之製作> (1)熱電半導體組成物之製作 (熱電半導體粒子之製作) 使用行星式球磨機(FRITSCH日本公司製Premium line P-7),將鉍-碲系熱電半導體材料之P型鉍碲化物Bi0.4 Te3 Sb1.6 (高純度化學研究所製,粒徑:180μm)在氮氣環境下粉碎,製作平均粒徑2.0μm的熱電半導體粒子。關於粉碎所得之熱電半導體粒子,藉由雷射繞射式粒度分析裝置(Malvern公司製Mastersizer 3000)進行粒度分布測定。 (熱電半導體組成物之塗布液之調製) 調製塗布液,其包含將上述所得之P型鉍碲化物Bi0.4 Te3 Sb1.6 粒子82.5質量%、作為耐熱性樹脂的聚醯亞胺前驅物之聚醯胺酸(宇部興產公司製,U-清漆A,溶劑:N-甲基吡咯啶酮,固體成分濃度:18質量%)3.2質量%(固體成分)及作為離子液體的1-丁基吡啶鎓溴化物14.3質量%予以混合分散而成之熱電半導體組成物。 (2)熱電轉換材料層之形成及加壓處理 於氧化鋁基板(京瓷公司製、商品名:氧化鋁基板A0476T,100mm×100mm,厚度:1mm)上,使用塗布器印刷上述(1)所調製的塗布液而成為平坦膜,於溫度140℃、40分鐘氬氣環境下進行乾燥,形成厚度為37μm之薄膜(退火處理前的熱電轉換材料層)。 接著,將乾燥後的熱電轉換材料層冷卻到室溫為止,將印刷有熱電轉換材料層的氧化鋁基板切出5mm×15mm尺寸。然後,使用油壓式加壓機(TESTER產業公司製,型名:SA-30桌上型試驗用壓機),於室溫、大氣環境下,對於熱電轉換材料層之上面全體,均勻地以40.0MPa進行加壓處理1分鐘。 再者,對於加壓處理所得之熱電轉換材料層,於氫與氬的混合氣體(氫:氬=3體積%:97體積%)環境下,以加溫速度5K/min進行升溫,在430℃保持30分鐘,退火處理前述熱電轉換材料層,使熱電半導體材料的粒子進行結晶成長,製作熱電轉換材料層。對於所得之熱電轉換材料層,進行填充率之評價及電導率之評價。表1中顯示結果。
(實施例2) 除了於實施例1中,對於熱電轉換材料層之上面全體,均勻地以30.0MPa進行加壓處理以外,與實施例1同樣地製作熱電轉換材料層。對於所得之熱電轉換材料層,進行填充率之評價及電導率之評價。表1中顯示結果。
(比較例1) 除了於實施例1中,不進行加壓處理以外,與實施例1同樣地製作熱電轉換材料層,對於所得之熱電轉換材料層,進行填充率之評價及電導率之評價。表1中顯示結果。
Figure 02_image001
於包含熱電半導體組成物之塗布膜之熱電轉換材料層中的熱電轉換材料之填充率滿足本發明的規定之實施例1~2中,與填充率在本發明之規定範圍外之比較例1相比,可知電導率係增大50~118%。因此,藉由將本發明之熱電轉換材料層及其之製造方法應用於熱電轉換模組,可謀求該熱電轉換模組的熱電性能之提升。產業上的利用可能性
依照本發明之包含熱電半導體組成物之塗布膜之熱電轉換材料層及其之製造方法,由於熱電轉換材料層之電導率係增大,因此藉由將本發明之熱電轉換材料層組入熱電轉換模組中,可期待熱電性能之提升。同時,相較於習知型的使用熱電半導體材料之燒結體的熱電轉換模組,所得之熱電轉換模組係具有彎曲性,同時具有能實現薄型化(小型、輕量)之可能性。 茲認為使用上述熱電轉換材料層之熱電轉換模組,係可適用將來自工廠或廢棄物燃燒爐、水泥燃燒爐等之各種燃燒爐的排熱、汽車的燃燒氣體排熱及電子機器的排熱,進行電轉換之發電用途。作為冷卻用途,於電子機器之領域中,例如可適用於半導體元件之CCD(電荷耦合裝置,Charge Coupled Device)、MEMS(微電子機械系統,Micro Electro Mechanical Systems)、受光元件等之各種感測器之溫度控制等。
1a:基板 1b:氧化鋁基板 2,2s,2t:熱電轉換材料層 3:空隙部 3a,4a:空隙部 3b:空隙部(比較例1) 4b:空隙部(實施例1) 5:壓機加壓部 X:長度(寬度方向) Y:長度(深度方向) D:厚度(厚度方向) Dmax:厚度方向之厚度的最大值(縱剖面) Dmin:厚度方向之厚度的最小值(縱剖面) C:熱電轉換材料層的中央部
[圖1]係用於說明本發明之熱電轉換材料層的縱剖面之定義的圖。 [圖2]係用於說明本發明之實施例或比較例所得之熱電轉換元件層的縱剖面之剖面示意圖。 [圖3]係依步驟順序顯示本發明之熱電轉換材料層之製造方法的一例之說明圖。
1a:基板
2s,2t:熱電轉換材料層
3a,4a:空隙部
5:壓機加壓部

Claims (10)

  1. 一種熱電轉換材料層,其係包含熱電半導體組成物之塗布膜之熱電轉換材料層, 其中前述熱電轉換材料層具有空隙,且將包含前述熱電轉換材料層中央部之縱剖面之面積中之前述熱電半導體組成物所佔面積之比例設為填充率時,前述填充率為0.800以上未滿1.000。
  2. 如請求項1之熱電轉換材料層,其中前述熱電半導體組成物包含熱電半導體材料,且該熱電半導體材料為鉍-碲系熱電半導體材料、碲化物系熱電半導體材料、銻-碲系熱電半導體材料,或鉍硒化物系熱電半導體材料。
  3. 如請求項1或2之熱電轉換材料層,其中前述熱電半導體組成物更包含耐熱性樹脂。
  4. 如請求項1~3中任一項之熱電轉換材料層,其中前述耐熱性樹脂為聚醯亞胺樹脂、聚醯胺樹脂、聚醯胺醯亞胺樹脂,或環氧樹脂。
  5. 如請求項1~4中任一項之熱電轉換材料層,其中前述熱電半導體組成物更包含離子液體及/或無機離子性化合物。
  6. 如請求項1~5中任一項之熱電轉換材料層,其中前述熱電轉換材料層之厚度為1~1000μm。
  7. 如請求項1~6中任一項之熱電轉換材料層,其中前述填充率為0.850~0.999。
  8. 一種熱電轉換材料層之製造方法,其係製造包含熱電半導體組成物之塗布膜之熱電轉換材料層之方法,其中包括: (A)形成熱電轉換材料層的步驟、 (B)乾燥在前述(A)步驟取得之前述熱電轉換材料層的步驟、 (C)加壓在前述(B)步驟取得之乾燥後之前述熱電轉換材料層的步驟,及 (D)退火處理在前述(C)步驟取得之經加壓之熱電轉換材料層的步驟。
  9. 如請求項8之熱電轉換材料層之製造方法,其中前述退火處理之溫度係在250~600℃下進行。
  10. 如請求項8或9之熱電轉換材料層之製造方法,其中前述加壓係在1.0~60MPa下進行。
TW109110455A 2019-03-29 2020-03-27 熱電轉換材料層及其之製造方法 TWI841718B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-069127 2019-03-29
JP2019069127 2019-03-29

Publications (2)

Publication Number Publication Date
TW202105778A true TW202105778A (zh) 2021-02-01
TWI841718B TWI841718B (zh) 2024-05-11

Family

ID=

Also Published As

Publication number Publication date
WO2020203612A1 (ja) 2020-10-08
JPWO2020203612A1 (zh) 2020-10-08
CN113632252A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2016104615A1 (ja) ペルチェ冷却素子及びその製造方法
JP7245652B2 (ja) フレキシブル熱電変換素子及びその製造方法
JP7406756B2 (ja) 熱電変換モジュール及びその製造方法
TWI817941B (zh) 熱電轉換模組
JP2017041540A (ja) ペルチェ冷却素子及びその製造方法
WO2020045377A1 (ja) 熱電変換素子の製造方法
WO2020203612A1 (ja) 熱電変換材料層及びその製造方法
TW201941462A (zh) 熱電變換模組
US11974504B2 (en) Thermoelectric conversion body, thermoelectric conversion module, and method for manufacturing thermoelectric conversion body
TWI816899B (zh) 熱電變換材料之晶片
JP7348192B2 (ja) 半導体素子
TWI841718B (zh) 熱電轉換材料層及其之製造方法
WO2022071043A1 (ja) 熱電変換材料層
JP2021057481A (ja) 熱電変換素子の製造方法
WO2020203611A1 (ja) 熱電変換材料のチップへのハンダ受理層形成方法
WO2020196709A1 (ja) 熱電変換材料のチップの製造方法
WO2021193358A1 (ja) 熱電変換モジュール
JP2020035818A (ja) 熱電変換素子及びその製造方法