TW202101073A - 具有加熱器之積體光電裝置 - Google Patents
具有加熱器之積體光電裝置 Download PDFInfo
- Publication number
- TW202101073A TW202101073A TW108130466A TW108130466A TW202101073A TW 202101073 A TW202101073 A TW 202101073A TW 108130466 A TW108130466 A TW 108130466A TW 108130466 A TW108130466 A TW 108130466A TW 202101073 A TW202101073 A TW 202101073A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- diode
- node
- electrical
- diode structure
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/017—Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
- G02F1/01708—Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells in an optical wavequide structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/025—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/0009—Materials therefor
- G02F1/009—Thermal properties
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0147—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on thermo-optic effects
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/017—Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/124—Active materials comprising only Group III-V materials, e.g. GaAs
- H10F77/1248—Active materials comprising only Group III-V materials, e.g. GaAs having three or more elements, e.g. GaAlAs, InGaAs or InGaAsP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/93—Interconnections
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/0155—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption
- G02F1/0157—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption using electro-absorption effects, e.g. Franz-Keldysh [FK] effect or quantum confined stark effect [QCSE]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/60—Temperature independent
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Led Devices (AREA)
- Semiconductor Lasers (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
本發明揭示積體光電裝置之結構及製造及操作方法,其促進直接加熱二極體或波導結構以調節裝置之一溫度,同時允許電接點放置成靠近裝置以減小電阻。特定言之,實施例包含異質電致吸收調變器,其包含放置於形成於一絕緣體上覆半導體(SOI)基板之裝置層中之一波導上方之一化合物半導體二極體結構。
Description
本發明大體上係關於具有用於主動溫度穩定之加熱器之積體光電裝置。特定言之,一些實施例係針對實施於矽光子平台中之異質電致吸收裝置。
通常使用電致吸收調變器(EAM)來達成電信應用中之強度調變,EAM提供小尺寸及低功率且可高速操作。EAM一般基於夫蘭茲-凱耳什(Franz-Keldysh)效應(即,一半導體之吸收光譜經由一外加電場引起之帶隙能量之一變化的一變化)來操作。積體EAM通常結構化為垂直二極體台面,其具有用於一極性之頂部上之一電接點及用於另一極性之台面之一或兩側上之電接點;使電接點位於兩側上減小裝置之串聯電阻,其對高速調變器而言很重要。在諸多實施方案中,二極體台面之純質型層包含一量子井結構以利用高消光比之量子侷限斯塔克(Stark)效應。
頻帶邊緣效應(諸如夫蘭茲-凱耳什效應及量子侷限斯塔克效應)具有一強溫度及波長相依性。因此,一般期望使用此等效應來使裝置(諸如EAM)之操作溫度保持於比周圍溫度窄之一範圍內。在各種光子電路設計中,使用放置於二極體台面附近之一局部加熱器來達成此溫度穩定。然而,在一些光子製造平台中,無法使一加熱器及一電接點兩者沿二極體台面之相同側運行以難以同時實現串聯電阻最小化及局部調節裝置之操作溫度。因此,一裝置設計者可能必須在一快速裝置與一熱調節裝置之間作出選擇。
本發明揭示用於溫度調節光電裝置(包含EAM)之裝置結構,其藉由直接電阻加熱裝置之部分來避免與裝置並排放置之一單獨加熱器相關聯之難題。本發明亦描述製造及操作所揭示之裝置結構之方法。除避免裝置速度與溫度穩定性之間的權衡之外,所揭示之結構亦可簡化製造且提高溫度調節之熱效率。
根據各種(非限制性)實施例之一光電裝置可包含一半導體基板上之一異質光學波導結構及形成於該基板之一裝置層中之一波導及形成於該波導上方之一分層化合物半導體二極體結構。該異質波導結構可(例如)包含一矽波導上方之一III-V族二極體,但其他材料組合係可行的。該二極體結構可包含一摻雜底條且形成於該摻雜底條之頂部上之一分層台面(包括一純質型層及一摻雜頂層),其中導電通路(或其他類型之電連接件)接觸該頂層及該底層以跨該二極體施加充當一調變信號之一直流(DC)偏壓電壓及/或一射頻(RF)電壓。為加熱該二極體結構,一DC加熱器偏壓電壓可施加於接觸該摻雜底層且位於該二極體之對置側上之兩個導電通路以引起一電流跨該摻雜底層流動且電阻加熱該摻雜底層,接著,所產生之熱自該摻雜底層擴散至鄰近純質型層中。假定接觸該底層之該兩個通路之一組態對稱,在此情況中,跨該二極體結構之有效電壓係該兩個通路之平均電位與接觸該台面之該摻雜頂層之通路之電位之間的電位差。替代地,可藉由將一加熱器偏壓電壓施加於接觸該異質波導之對置各自側上之該基板之該裝置層的兩個導電通路之間來加熱該二極體結構以引起一電流流動通過該波導且電阻加熱該波導,該波導繼而加熱其上方之該二極體之該底層及該純質型層。有益地,在此替代組態中,單獨及獨立操作之電子電路可分別用於加熱及調變。
將自附圖之以下詳細描述更容易理解上述結構及各種益處。
就內文及與所揭示之標的之各種實施例之比較而言,圖1A及圖1B繪示一實例性光電裝置100之橫截面側視圖及俯視圖,裝置100具有與裝置100之一異質波導並排放置之一加熱器。裝置100形成於一絕緣體上覆半導體(SOI)基板102上,SOI基板102包含一處置層104、電絕緣(介電)層106及頂部半導體裝置層108。在標準SOI基板中,處置層104及裝置層108兩者通常由矽製成,且絕緣層106係一埋入式氧化物(BOX)層。然而,其他材料組合係可行的。裝置層108不是矽,而是可為(例如)一鑽石或鍺層。裝置100包含一異質波導結構,其由產生於裝置層108中之一波導110 (例如一脊狀波導)與安置於波導上方之一半導體-化合物p-i-n二極體結構112 (例如藉由一薄介電(例如氧化物)層114來與波導110及裝置層108分離)共同形成。如圖1B中可見,二極體結構112可沿波導110之軸線延伸(在波導110中之光傳播方向上,該方向係進入圖1A之平面之方向),且其在該方向上之長度可顯著大於其寬度。在操作中,光在重疊區域之一端附近自波導110耦合至二極體結構112中,且在另一端附近自二極體結構112耦合回波導110中。
二極體結構112可由一或多種III-V族材料(諸如(例如)磷化銦(InP)或砷化鎵(GaAs))、II-VI族材料(諸如(例如)硒化鎘(CdSe)或氧化鋅(ZnO))或由兩種或兩種以上元素製成之其他半導體材料製成。二極體結構112係垂直分層的,其包含夾置於兩個摻雜底層118與頂層120之間的一純質型(或簡言之,「純質」)半導體層116。底層118通常為n摻雜且頂層120為p摻雜,但底層118及頂層120作為p-i-n二極體結構112之n型及p型層之角色亦可調換。純質層116可由不同於底層118及頂層120之一半導體化合物製成;例如,二極體結構112可包含摻雜InP層之間的一純質InAlGaAs層。此外,純質層116可為一塊狀半導體層,或替代地,可由量子井、量子點或量子線構成。如圖中所展示,底層118可在底層118下方形成平行於波導110延伸之一材料條(參閱圖1B),而純質層116及摻雜頂層120可在底層(下文亦稱為「底條」) 118之頂部上形成一窄很多台面(平頂台狀結構)。儘管圖中展示為寬度相等,但純質層116及摻雜頂層120可代以為寬度不同,其中純質層116略寬或略窄。
裝置100進一步包含提供電連接至底層118及頂層120以跨二極體結構112施加一電壓之導電通路。通路大體上實施為形成於圍封二極體結構112之一頂部包覆層中之垂直通道,其填充有一適合金屬(例如金(Au)、鉑(Pt)、鈦(Ti)、鋁(Al)或鋅(Zn))或其他導電材料。頂層120可由一對應通路122 (「S1」)直接接觸。另一方面,在圖1A所展示之實施方案中,底條118由各自通路124 (「S2」)經由安置於底條118之頂部上以包圍二極體台面之一薄金屬層126來間接接觸。此附加金屬層126 (其可非常靠近台面)促成一低電阻二極體結構112,同時提供放置通路124之靈活性。可使用圖1B中所展示之各自金屬互連件123、125來將一電壓施加於通路122與通路124之間。圖1B之俯視圖亦展示至接地(標記為「G」)之互連件。
裝置100由放置成鄰近於二極體台面(例如二極體台面之頂層120)之一電阻加熱器130 (例如由一金屬或金屬合金(諸如(例如)鎢、鉑、氮化鈦、鎳鉻等等)製成)熱調節。用於將一加熱器偏壓電壓施加於加熱器130之電連接件由導電(例如金屬)通路132、134及各自相關聯互連件133、135 (後者展示於圖1B中)(通路及互連件共同標記為「H1」及「H2」)提供。如圖1B中所更清楚展示,加熱器130可平行於波導110與二極體台面並排運行,且相關聯通路132、134可沿該方向隔開。可視需要(例如基於周圍溫度及/或二極體結構本身之溫度之量測)調整加熱器偏壓電壓以將二極體台面加熱至一所要操作範圍內之一溫度;適合於此溫度調節之感測器及電路已為一般技術者所熟知且可由一般技術者在無需多度實驗之情況下直接實施。為最小化熱擴散且藉此提高此溫度調節之效率,異質波導結構可由在波導110及二極體台面之兩側上蝕刻至裝置層108中(例如一直穿至絕緣層106)之通道136 (或「溝槽」)及/或由異質波導結構下方之處置層104中之一回蝕區域138熱隔離。
裝置100可由標準半導體製造技術製造。在微影圖案化及蝕刻基板102、接合化合物半導體材料之一堆疊及微影圖案化及蝕刻化合物半導體以產生二極體結構之後,通常藉由一剝離程序來產生金屬層126。即,由一光阻層覆蓋異質結構,該光阻層經負圖案化以僅暴露其中將形成金屬層126之底部二極體層118上之區域;接著,將一金屬層沈積於整個結構上,且剝離圖案化光阻層及其上方之金屬。此步驟增加製程之成本及複雜性,且因此不包含於一些半導體製造平台中。然而,若無金屬層126,則在其中放置加熱器130之二極體台面之相同側上(例如在圖1A中,在右側上)接觸二極體之底條118的通路124之電阻會顯著提高。換言之,為最小化裝置100之串聯電阻,期望將通路124放置成儘可能靠近二極體台面,然而,其干擾亦應放置成靠近台面之加熱器130之放置。
現將參考圖2A至圖5來描述促進主動溫度調變且無需一單獨加熱器130之光電裝置(在其他方面類似於圖1A及圖1B之裝置100)之各種實施例。此等裝置結構與圖1A及圖1B之裝置結構之不同之處在於省略加熱器130及額外金屬層126及導電通路之數目、放置及/或電連接件。然而,上述裝置100之基板102及二極體結構112之幾何形狀及材料選擇同樣適用於圖2A至圖5之裝置,因此,在以下描述中沿用各種裝置組件之相關聯元件符號。
圖2A及圖2B分別係根據各種實施例之一實例性3接點光電裝置200之示意性橫截面側視圖及俯視圖,3接點光電裝置200經組態以藉由通過其之一電流來直接加熱裝置之二極體結構。裝置200包含:一波導110 (例如一矽波導),其形成於一SOI基板102中;及一化合物半導體二極體結構112 (一III-V族結構),其安置波導110上方且藉由一薄絕緣層114來與波導110分離,二極體結構112包含一底部二極體條118及形成於底部二極體條118之頂部上之一分層二極體台面,該分層台面包括一純質層116及一頂部二極體層120。在操作中,光在裝置上方自波導110耦合至二極體結構112中,其中至少部分(且通常主要)在純質層116中引導光模。波導110及/或二極體台面之寬度及/或高度可漸縮以提高耦合效率。例如,在其中將光自波導110耦合至二極體結構112中之裝置200之一輸入區域中,在光傳播方向上,波導110可逐漸縮小(即,寬度/高度減小)且二極體台面可逐漸擴大(即,寬度/高度增大)。相反地,在其中將(例如調變)光自二極體結構112耦合回波導110中之裝置200之一輸出區域中,二極體台面可逐漸縮小,而波導110逐漸擴大。在兩個區域中,波導110及二極體台面之漸變可重疊(在一俯視圖中)。
為達成光強度之調變,可經由跨二極體結構112所施加之一電場來變動純質層116之吸收特性。為此,頂部二極體層120由一導電(例如金屬)通路122 (「S1」)接觸,且底部二極體層118由導電(例如金屬)通路202、204 (「S2A」及「S2B」)接觸,一通路放置於二極體台面之一側上且另一通路放置於二極體台面之另一側上。可藉由使底部二極體條118在二極體台面之對置各自側上與兩個通路202、204接觸且將其等放置成靠近二極體台面來減小裝置200之電阻。此外,由沿二極體結構112之長度之至少一實質部分(對應於進入圖2A之平面之方向)運行(如圖2B中所展示)之通路122、202、204達成相同目的,其增加通路122、202、204與二極體結構112之各自層118、120之間的接觸面積。
通路122、202、204允許一電壓施加於二極體結構112之頂層與底層之間。在所描繪之實施例中,接觸二極體結構之底條118的通路202、204亦用於跨底部二極體條118橫向(即,在與基板102共面且垂直於光傳播方向之一方向上)施加一電壓以引起通過該層118之一電流206加熱層118且藉由熱擴散來加熱鄰近純質層116。因此,通路202、204透過各自相關聯(例如金屬)互連件203、205 (如圖2B中所展示)來連接至兩個不同電節點。接觸頂層120之通路122透過一各自互連件123來連接至一第三電節點。
圖3係用於操作圖2A及圖2B之光電裝置200之一實例性電子電路300之一電路圖,其繪示分別藉由通路122、202、204來與裝置200之二極體結構112 (由一虛線框指示)連接之三個電節點302、304、306。在電路圖中,二極體結構112模型化為一理想二極體308及模型化底部二極體條118之電阻之兩個電阻器310、312。界定於電阻器310、312之間的一電節點314連接至二極體308之負端子以反映:在圖2A至圖3之實施例中,電阻底條118係二極體結構112之n型層。兩個DC電壓源316、318將各自DC電壓VDC1
及VDC2
施加於節點304、306,節點304、306連接至接觸底部二極體條118之通路202、204。藉此,跨底部二極體條118產生構成加熱器偏壓電壓之一差動電壓VDC1
-VDC2
以引起一電流流動通過電阻器310、312且電阻加熱底部二極體條118。若底層118及其相關聯通路202、204關於二極體台面結構對稱,則兩個電阻器310、312具有相等電阻,且節點314處之電位係VDC1
及VDC2
之算術平均值。(否則,若無任何對稱性,則節點314處之電位係VDC1
及VDC2
之某一非相等加權平均值)。跨二極體308所施加之有效偏壓電壓係連接至n端子之節點314與連接(透過通路122)至p端子之節點302之間的DC電位差。如圖中所展示,使用一反向偏壓來操作二極體308,即,n型底層118連接至DC電壓源316、318之正端子,而p型頂層120在節點302處連接至DC電接地。除DC偏壓電壓之外,一RF電壓VRF
可作為一調變信號施加於二極體308。如圖中所展示,RF信號可在p端子處由連接至節點302之一交流電(AC)源320提供;然而,RF信號原則上亦可施加於n端子。
現轉至圖4A至圖5,繪示根據各種替代實施例之一實例性4接點光電裝置400,其經組態以直接加熱一異質波導結構內之二極體下方之波導。如圖4A及圖4B中所展示,裝置400包含實質上類似於上述3接點裝置200之波導結構的一異質波導結構,其具有:一波導110,其形成一SOI基板102中;及二極體結構112,其安置於矽波導110上方且藉由一薄絕緣層114來與波導110分離,二極體結構112包含一底部二極體條118及具有純質二極體層116及頂部二極體層120之一分層二極體台面。此外,裝置400包含接觸頂部二極體層120之一導電通路122 (「S1」)及接觸底部二極體層118之一或多個導電通路402、404 (「S2」)。不同於連接至不同電節點304、306之3接點裝置200之通路202、204,4接點裝置中接觸底部二極體層118之通路402、404可一起電短路,即,連接至相同電節點。裝置400中亦可僅存在通路402、404之一者,但兩個通路402、404放置於二極體台面之對置側上係有益的,因為其提供較低電阻,如上文所討論。使用分別接觸二極體結構112之頂層120及底層118之通路122及402、404 (及通路122、402、404之相關聯互連件(圖中未展示)),可跨二極體結構112施加一反向偏壓電壓及一RF信號電壓以調變至少部分(且通常主要)位於純質層116中之一光模。
為了熱調節,裝置400包含在二極體結構112之對置各自側上接觸基板102之裝置層108的額外通路406、408。此等額外通路406、408連接至不同電節點以允許一電壓施加於節點之間以產生通過二極體結構下方之裝置層108且特定言之,通過波導110之一電流。如圖4B中所展示,通路406、408可沿波導110之軸線隔開。(無法在相同橫截面圖中看見隔開通路406、408兩者。在此方面,圖4A係裝置400之一側視圖,但橫截面中展示諸如波導110之其他特徵)。例如,通路406、408可放置於由通路122、402、404之橫向端410、412界定之二極體結構之主動區域之端附近,使得一加熱器電流在實質上整個主動區域下方流動(參閱圖4B)。在一些實施例中,蝕除鄰近於且部分包圍通路406、408之區域414 (由一虛線輪廓指示)中之裝置層108以較佳引導位於主動區域下方且通過波導110之電流且藉此提高加熱效率。電阻產生於波導110中之熱透過底部二極體層118而擴散至二極體台面(層116、120)中以藉此亦加熱二極體台面。
圖5繪示根據各種實施例之用於操作圖4A及圖4B之光電裝置400之一實例性電子電路組態500。為描繪裝置400之電連接件,二極體結構112及波導110分別由二極體502及一分離電阻器504表示,其反映波導110與二極體結構112之間的電絕緣層114。如圖中可見,電路組態500包含分別用於將偏壓及RF信號電壓施加於二極體502及跨電阻器504施加一加熱器偏壓電壓之兩個單獨電子電路506、508。在二極體操作電路506中,為反向加偏壓於二極體502,一正電壓VDC1
可由一電壓源510施加於一電節點512處,電節點512經由導電通路404、402來連接至底部二極體條118,在所描繪之實施例中,底部二極體條118提供二極體502之n端子。替代地,可藉由在一電節點514處施加一負電壓-VDC1
來達成反向偏壓,電節點514透過通路122來連接至頂部二極體層120,頂部二極體層120提供p端子。RF信號電壓VRF
可由一AC源516提供於連接至頂部二極體層120之節點514處(如圖中所展示)或連接至底部二極體層118之節點512處。在加熱器電路508中,一電壓源518將一DC加熱器偏壓電壓Vheat
施加於節點520、522之間,節點520、522分別透過通路406、408來連接至基板之裝置層108。有益地,涉及單獨電路506、508之一電組態(如由其中電阻加熱波導110而非二極體底條118之一裝置結構所促進)可簡化電路設計且更靈活調節裝置溫度,同時最佳化二極體結構112中之電致吸收。
上述裝置結構可依各種方式修改,同時保留顯著結構特徵。例如,垂直分層結構未必為一p-i-n二極體結構,而是可(例如)包含夾置於相同類型之兩個摻雜半導體層之間的一純質層(形成一n-i-n或p-i-p結構)或甚至更一般而言,可包含由一絕緣層分離之兩個導電層。此外,總體裝置結構未必為異質的。由一化合物半導體製成之一台面型二極體可(例如)形成於一化合物半導體(例如InP)基板而非一絕緣體上覆矽基板上,由電連接件及電路實現二極體結構之電阻加熱,如圖2A至圖3中所展示。另外,在一些實施例中,可省略二極體結構下方之一波導,且光可經由形成於基板之頂部上之一化合物半導體波導來引導至二極體結構或藉由其他構件來耦合至二極體中。
在描述電阻加熱光電裝置之各種結構實施例之後,現將參考圖6中所展示之流程圖來描述操作此等裝置之一方法。方法600涉及:將一光模(例如經由一波導110接收)耦合至裝置之二極體結構112之純質層中(動作602),且藉由施加於頂部二極體層120及底部二極體層118 (例如p型及n型)之電接點(例如通路122及202、204或402、404)之一電壓跨二極體結構112施加一電場來調變光模(動作604)。電壓可包含產生跨二極體結構112之一反向偏壓之一DC分量及充當調變信號之一AC分量(例如一RF電壓)。為穩定裝置之操作,判定諸如二極體結構112 (或特定言之,其中定位光模之純質層116)之溫度之一操作條件(動作606)。二極體結構之溫度可自(例如)周圍溫度之一量測推斷或可(例如)使用非常接近二極體結構之併入至裝置中之一或多個熱感測器來直接量測。量測溫度(或其他判定條件)可用於控制跨二極體之底層(例如圖2A至圖3中所展示)或跨基板裝置層108 (例如圖4A至圖5中所展示)所施加之一加熱器偏壓電壓(動作608)。裝置可包含適合控制電路(其可形成積體光子電路(PIC)之部分或提供於(例如)電連接至PIC之一單獨電子控制晶片上)。
儘管本發明聚焦於光調變器,但所描述之裝置結構不受限於此特定應用。更廣義而言,所揭示之結構可經整合且提供依靠光發射、吸收或調變之一半導體頻帶邊緣效應之任何光發射或光接收裝置中之益處。為採用本文所描述之一光電裝置作為一RF接收器,例如,可將一調變光學信號耦合至二極體結構中,且可透過與頂部及底部二極體層之電連接來量測(而非施加)一RF電壓。
本文所描述之光電裝置之一益處係其能夠在標準製造廠中使用標準平面半導體處理流程來製造。圖7係繪示製造異質光電裝置(諸如上文參考圖2A至圖5所描述之裝置200、400)之一實例性方法700的一流程圖。方法700涉及光微影圖案化及蝕刻一基板(例如一SOI基板)以在基板102之裝置層中形成光學裝置結構(諸如波導110)及視情況熱隔離通道136 (動作702)。接著,可將一電絕緣包覆層沈積於裝置層上(動作704)。將形成二極體結構之化合物半導體層之一堆疊可經單獨產生且切成若干區塊,且接著將一分層化合物半導體區塊接合至基板(更具體而言,基板之頂部介電層)(動作706)。在一或多個步驟中,光微影圖案化及蝕刻化合物半導體以形成二極體層(動作708)。接著,根據各種實施例,將一厚介電材料層沈積於整個結構上(覆蓋二極體結構)且平坦化該厚介電材料層(動作710)。接著,在一系列步驟中形成提供裝置之各種電連接件之通路。通路一般可全部由相同金屬或其他導電材料製成。替代地,不同金屬/材料可用於不同通路組(例如加熱器通路與二極體通路)。
藉由圖案化及蝕刻垂直通道至厚介電質中且使用一金屬或其他導電材料填充通道(動作712)來產生接觸底部二極體層及(若適用)基板之裝置層之通路。若底部二極體層較薄(在諸多實施例中係如此),則接觸底部二極體層之通路及接觸基板裝置層之通路之長度非常接近以允許分別使用底部二極體層及裝置層作為停止層,同時蝕刻各自通道。否則,可在與形成接觸基板之裝置層之通路分開之一步驟中形成接觸頂部二極體層之通路。一旦已形成接觸裝置層及底部二極體層之通路,則拋光沈積金屬(動作714),且圖案化及蝕刻藉此暴露之厚介電層以形成接觸頂部二極體層之通路之一通道,其同樣由金屬或一些其他導電材料填充(動作716)。替代地,在一些實施例中,純質層及頂部二極體層之厚度及因此接觸頂部及底部二極體層之通路之間的長度差亦可足夠小以促進在相同圖案化/蝕刻或填充步驟中一起產生所有通路。
上述製造步驟可構成一PIC之一程序流程之部分,該PIC亦包含諸如(例如)一或多個雷射、光偵測器、干涉計、光學放大器、光學開關、多工器等等之其他光學組件(除一電致吸收調變器或類似光電裝置200、400之外)。通常在一單一晶圓上同時產生多個PIC,接著可將晶圓分割成各對應於一單一PIC之個別晶片(或晶粒)。PIC晶粒可覆晶接合至提供PIC之電及/或光學連接件之一總成級基板;總成級基板亦可充當收發器PIC及用於相同封裝中之任何額外光子及/或電子模組之一共同基板。
在描述具有加熱器之光電裝置之不同態樣及特徵之後,提供以下編號實例作為繪示性實施例:
1. 一種積體光電裝置,其包括:一半導體基板;一二極體結構,其形成於該基板上方,該二極體結構包括一底部二極體條及形成於該底部二極體條之頂部上之一分層二極體台面,該分層二極體台面包括一純質型層及一頂部二極體層;一第一電連接件(例如導電通路),其接觸該二極體台面之該頂部二極體層,該第一電連接件連接至一電子電路之一第一電節點;及第二電連接件及第三電連接件(例如導電通路),其等在該二極體台面之對置各自側上接觸該底部二極體條,該第二電連接件連接至該電子電路之一第二電節點且該第三電連接件連接至該電子電路之一第三電節點。
2. 如實例1之裝置,其中該電子電路操作性地將一加熱器偏壓電壓施加於該第二節點與該第三節點之間及跨該二極體結構施加一反向偏壓電壓,該反向偏壓電壓對應於該第一節點與該第二節點之間的一電壓及該第一節點與該第三節點之間的一電壓之一非零平均值。
3. 如實例1或實例2之裝置,其中該電子電路操作性地進一步施加一RF信號電壓於該第一節點。
4. 如實例1至3中任一項之裝置,其中該基板係一絕緣體上覆半導體(SOI)基板,該裝置進一步包括形成於該二極體結構下方之該SOI基板之一裝置層中之一波導。
5. 如實例4之裝置,其中該二極體結構由一化合物半導體材料製成,該波導及該二極體台面共同形成一異質光學波導結構。
6. 如實例5之裝置,其中該波導由矽製成且該二極體結構由一III-V族材料製成。
7. 如實例4至6中任一項之裝置,其進一步包括在該二極體台面之兩側上形成於該裝置層中之一或多個熱隔離通道或形成於該二極體結構下方之該SOI基板之一處置層中之一熱隔離蝕刻區域之至少一者。
8. 如實例1至7中任一項之裝置,其中該裝置係一電致吸收調變器。
9. 一種積體光電裝置,其包括:一絕緣體上覆半導體(SOI)基板;一異質光學波導結構,其包括形成於該SOI基板之一裝置層中之一波導及形成於該波導上方之一分層化合物半導體結構,該化合物半導體結構包括一摻雜底條及形成於該摻雜底條之頂部上之一分層台面,該分層台面包括一純質型層及一摻雜頂層;一第一電連接件(例如導電通路),其接觸該分層台面之該摻雜頂層,該第一電連接件連接至一第一電節點;一或多個第二電連接件(例如導電通路),其等接觸該摻雜底條,該一或多個第二電連接件連接至一第二電節點;及第三電連接件及第四電連接件(例如導電通路),其等在該波導之對置各自側上接觸該SOI基板之該裝置層,該第三電連接件及該第四電連接件分別連接至第三電節點及第四電節點。
10. 如實例9之裝置,其中該分層化合物半導體結構係一二極體結構。
11. 如實例9或實例10之裝置,其中該第一電節點及該第二電節點係操作性地跨該二極體結構將一反向偏壓電壓施加於該第一節點與該第二節點之間的一第一電子電路之部分,且其中該第三電節點及該第四電節點係操作性地將一加熱器偏壓電壓施加於該第三節點與該第四節點之間的一第二電子電路之部分。
12. 如實例9至11中任一項之裝置,其進一步包括在該波導及該台面之兩側上形成於該裝置層中之一或多個熱隔離通道或形成於該異質光學波導結構下方之該SOI基板之一處置層中之一熱隔離蝕刻區域之至少一者。
13. 如實例9至12中任一項之裝置,其中該波導由矽製成且該二極體結構由一III-V族材料製成。
14. 如實例9至13中任一項之裝置,其中該第三電連接件及該第四電連接件沿該波導之一軸線隔開。
15. 如實例9至14中任一項之裝置,其中該裝置係一電致吸收調變器。
16. 一種方法,其包括:將一光模耦合至形成於一基板上方之一垂直分層二極體結構之一純質型層中,該純質型層夾置於該二極體結構之摻雜頂層與底層之間;跨該二極體結構將一反向偏壓電壓施加於該頂層與該底層之間;跨該二極體結構將一射頻信號施加於該頂層與該底層之間以調變該光模之一強度;及將一加熱器偏壓電壓施加於電連接件(例如導電通路)之間,該等電連接件放置於該二極體結構之對置各自側上與該底層或該基板之一裝置層電接觸以藉此分別電阻加熱該二極體結構之該底層或形成於該二極體結構下方之該裝置層中之一波導。
17. 如實例16之方法,其進一步包括控制該加熱器偏壓電壓以使該二極體結構之一溫度保持於一指定操作範圍內。
18. 如實例17之方法,其中至少部分基於一周圍溫度或該二極體結構之一感測溫度之至少一者來控制該加熱器偏壓電壓。
19. 如實例16至18中任一項之方法,其中放置於該二極體結構之對置各自側上之該等電連接件接觸該二極體結構之該摻雜底層,且其中該反向偏壓電壓施加於接觸該二極體結構之該摻雜頂層之一電連接件與接觸該二極體結構之該摻雜底層之該電連接件之間。
20. 如實例16至18中任一項之方法,其中放置於該二極體結構之對置各自側上之該等電連接件接觸該基板之該裝置層且連接至一第一電子電路之電節點,且其中該反向偏壓電壓施加於接觸該二極體結構之該摻雜頂層之一電連接件與接觸該二極體結構之該摻雜底層之電連接件之間,接觸該等摻雜頂層及底層之該等電連接件連接至與該第一電子電路分離之一第二電子電路之電節點。
儘管已參考特定實例性實施例來描述本發明,但顯而易見,可在不背離本發明之較廣精神及範疇之情況下對此等實施例進行各種修改及改變。因此,本說明書及圖式應被視為意在繪示而非限制。
100:光電裝置
102:絕緣體上覆半導體(SOI)基板
104:處置層
106:絕緣層
108:裝置層
110:波導
112:二極體結構
114:薄絕緣層/薄介電層
116:純質層
118:底部二極體條/底部二極體層
120:頂部二極體層
122:通路(S1)
123:金屬互連件
124:通路(S2)
125:金屬互連件
126:金屬層
130:加熱器
132:通路
133:互連件
134:通路
135:互連件
136:通道
138:回蝕區域
200:3接點光電裝置
202:通路(S2A)
203:互連件
204:通路(S2B)
205:互連件
206:電流
300:電子電路
302:電節點
304:電節點
306:電節點
308:二極體
310:電阻器
312:電阻器
314:電節點
316:直流(DC)電壓源
318:DC電壓源
320:交流電(AC)源
400:4接點光電裝置
402:導電通路(S2)
404:導電通路(S2)
406:通路
408:通路
410:橫向端
412:橫向端
414:區域
500:電子電路組態
502:二極體
504:電阻器
506:電路
508:電路
510:電壓源
512:電節點
514:電節點
516:AC源
518:電壓源
520:節點
522:節點
600:方法
602:動作
604:動作
606:動作
608:動作
700:方法
702:動作
704:動作
706:動作
708:動作
710:動作
712:動作
714:動作
716:動作
G:接地
H1:通路及互連件
H2:通路及互連件
VDC1:DC電壓
VDC2:DC電壓
Vheat:DC加熱器偏壓電壓
圖1A及圖1B分別係具有與裝置之一異質波導並排放置之一加熱器之一實例性光電裝置之示意性橫截面側視圖及俯視圖。
圖2A及圖2B分別係根據各種實施例之一實例性3接點光電裝置之一示意性橫截面側視圖及一俯視圖,該3接點光電裝置經組態以藉由通過其之一電流來直接加熱裝置之二極體結構。
圖3係根據各種實施例之用於操作圖2A及圖2B之光電裝置之一實例性電路之一電路圖。
圖4A及圖4B分別係根據各種實施例之一實例性4接點光電裝置之一示意性側視圖及一俯視圖,該4接點光電裝置經組態以藉由通過一波導之一電流來直接加熱裝置之一異質波導結構之二極體下方之波導。
圖5係根據各種實施例之用於操作圖4A及圖4B之光電裝置之一實例性電子電路組態之電路圖。
圖6係繪示根據各種實施例之操作一電致吸收調變器之一方法的一流程圖。
圖7係繪示根據各種實施例之製造一電致吸收調變器之一方法的一流程圖。
100:光電裝置
102:絕緣體上覆半導體(SOI)基板
104:處置層
106:絕緣層
108:裝置層
110:波導
112:二極體結構
114:薄絕緣層/薄介電層
116:純質層
118:底部二極體條/底部二極體層
120:頂部二極體層
122:通路(S1)
124:通路(S2)
126:金屬層
130:加熱器
132:通路
134:通路
136:通道
138:回蝕區域
H1:通路及互連件
H2:通路及互連件
Claims (20)
- 一種積體光電裝置,其包括: 一半導體基板; 一二極體結構,其形成於該基板上方,該二極體結構包括一底部二極體條及形成於該底部二極體條之頂部上之一分層二極體台面,該分層二極體台面包括一純質型層及一頂部二極體層; 一第一電連接件,其接觸該二極體台面之該頂部二極體層,該第一電連接件連接至一電子電路之一第一電節點;及 第二電連接件及第三電連接件,其等在該二極體台面之對置各自側上接觸該底部二極體條,該第二電連接件連接至該電子電路之一第二電節點且該第三電連接件連接至該電子電路之一第三電節點。
- 如請求項1之裝置,其中該電子電路操作性地將一加熱器偏壓電壓施加於該第二節點與該第三節點之間及跨該二極體結構施加一反向偏壓電壓,該反向偏壓電壓對應於該第一節點與該第二節點之間的一電壓及該第一節點與該第三節點之間的一電壓之一非零平均值。
- 如請求項1之裝置,其中該電子電路操作性地進一步施加一RF信號電壓於該第一節點處。
- 如請求項1之裝置,其中該基板係一絕緣體上覆半導體(SOI)基板,該裝置進一步包括形成於該二極體結構下方之該SOI基板之一裝置層中之一波導。
- 如請求項4之裝置,其中該二極體結構由一化合物半導體材料製成,該波導及該二極體台面共同形成一異質光學波導結構。
- 如請求項5之裝置,其中該波導由矽製成且該二極體結構由一III-V族材料製成。
- 如請求項4之裝置,其進一步包括在該二極體台面之兩側上形成於該裝置層中之一或多個熱隔離通道或形成於該二極體結構下方之該SOI基板之一處置層中之一熱隔離蝕刻區域之至少一者。
- 如請求項1之裝置,其中該裝置係一電致吸收調變器。
- 一種積體光電裝置,其包括: 一絕緣體上覆半導體(SOI)基板; 一異質光學波導結構,其包括形成於該SOI基板之一裝置層中之一波導及形成於該波導上方之一分層化合物半導體結構,該化合物半導體結構包括一摻雜底條及形成於該摻雜底條之頂部上之一分層台面,該分層台面包括一純質型層及一摻雜頂層; 一第一電連接件,其接觸該分層台面之該摻雜頂層,該第一電連接件連接至一第一電節點; 一或多個第二電連接件,其等接觸該摻雜底條,該一或多個第二電連接件連接至一第二電節點;及 第三電連接件及第四電連接件,其等在該波導之對置各自側上接觸該SOI基板之該裝置層,該第三電連接件及該第四電連接件分別連接至第三電節點及第四電節點。
- 如請求項9之裝置,其中該分層化合物半導體結構係一二極體結構。
- 如請求項10之裝置,其中該第一電節點及該第二電節點係操作性地跨該二極體結構將一反向偏壓電壓施加於該第一節點與該第二節點之間的一第一電子電路之部分,且其中該第三電節點及該第四電節點係操作性地將一加熱器偏壓電壓施加於該第三節點與該第四節點之間的一第二電子電路之部分。
- 如請求項9之裝置,其進一步包括在該波導及該台面之兩側上形成於該裝置層中之一或多個熱隔離通道或形成於該異質光學波導結構下方之該SOI基板之一處置層中之一熱隔離蝕刻區域之至少一者。
- 如請求項9之裝置,其中該波導由矽製成且該二極體結構由一III-V族材料製成。
- 如請求項9之裝置,其中該第三電連接件及該第四電連接件沿該波導之一軸線隔開。
- 如請求項9之裝置,其中該裝置係一電致吸收調變器。
- 一種方法,其包括: 將一光模耦合至形成於一基板上方之一垂直分層二極體結構之一純質型層中,該純質型層夾置於該二極體結構之摻雜頂層與底層之間; 跨該二極體結構將一反向偏壓電壓施加於該頂層與該底層之間; 跨該二極體結構將一射頻信號施加於該頂層與該底層之間以調變該光模之一強度;及 將一加熱器偏壓電壓施加於電連接件之間,該等電連接件放置於該二極體結構之對置各自側上與該底層或該基板之一裝置層電接觸以藉此分別電阻加熱該二極體結構之該底層或形成於該二極體結構下方之該裝置層中之一波導。
- 如請求項16之方法,其進一步包括控制該加熱器偏壓電壓以使該二極體結構之一溫度保持於一指定操作範圍內。
- 如請求項17之方法,其中至少部分基於一周圍溫度或該二極體結構之一感測溫度之至少一者來控制該加熱器偏壓電壓。
- 如請求項16之方法,其中放置於該二極體結構之對置各自側上之該等電連接件接觸該二極體結構之該摻雜底層,且其中該反向偏壓電壓施加於接觸該二極體結構之該摻雜頂層之一電連接件與接觸該二極體結構之該摻雜底層之該電連接件之間。
- 如請求項16之方法,其中放置於該二極體結構之對置各自側上之該等電連接件接觸該基板之該裝置層且連接至一第一電子電路之電節點,且其中該反向偏壓電壓施加於接觸該二極體結構之該摻雜頂層之一電連接件與接觸該二極體結構之該摻雜底層之電連接件之間,接觸該等摻雜頂層及底層之該等電連接件連接至與該第一電子電路分離之一第二電子電路之電節點。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/235,197 | 2018-12-28 | ||
US16/235,197 US10739622B2 (en) | 2018-12-28 | 2018-12-28 | Integrated optoelectronic device with heater |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202101073A true TW202101073A (zh) | 2021-01-01 |
TWI740195B TWI740195B (zh) | 2021-09-21 |
Family
ID=67003210
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108130466A TWI740195B (zh) | 2018-12-28 | 2019-08-26 | 具有加熱器之積體光電裝置 |
TW110132215A TWI807403B (zh) | 2018-12-28 | 2019-08-26 | 具有加熱器之積體光電裝置及其操作方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110132215A TWI807403B (zh) | 2018-12-28 | 2019-08-26 | 具有加熱器之積體光電裝置及其操作方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10739622B2 (zh) |
EP (1) | EP3674780B1 (zh) |
KR (2) | KR102285372B1 (zh) |
CN (2) | CN111381388B (zh) |
SG (1) | SG10201907470PA (zh) |
TW (2) | TWI740195B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11106060B2 (en) | 2018-12-28 | 2021-08-31 | Juniper Networks, Inc. | Integrated optoelectronic device with heater |
TWI846490B (zh) * | 2023-04-03 | 2024-06-21 | 台灣積體電路製造股份有限公司 | 積體晶片及其形成方法 |
TWI860609B (zh) * | 2022-05-06 | 2024-11-01 | 新加坡商先進微晶圓私人有限公司 | 矽光子調變器的平衡差分調變方案 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11209673B2 (en) * | 2019-10-30 | 2021-12-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Heater structure configured to improve thermal efficiency in a modulator device |
GB2589335B (en) * | 2019-11-26 | 2022-12-14 | Rockley Photonics Ltd | Integrated III-V/silicon optoelectronic device and method of manufacture thereof |
US11536899B2 (en) * | 2020-06-30 | 2022-12-27 | Openlight Photonics, Inc. | Integrated bandgap temperature sensor |
CN112666726B (zh) * | 2020-12-23 | 2024-02-06 | 联合微电子中心有限责任公司 | 一种热光移相器及其制备方法 |
US11994716B2 (en) * | 2021-03-18 | 2024-05-28 | Rockley Photonics Limited | Waveguide heater |
CN114335206B (zh) * | 2021-12-29 | 2024-05-03 | 华进半导体封装先导技术研发中心有限公司 | 一种位置探测器及其制备方法 |
KR20240155370A (ko) | 2022-03-18 | 2024-10-28 | 셀레스티얼 에이아이 인코포레이티드 | 광 멀티 다이 상호 연결 브리지(omib) |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19942692B4 (de) * | 1999-09-07 | 2007-04-12 | Infineon Technologies Ag | Optoelektronische Mikroelektronikanordnung |
US6665105B2 (en) | 2001-07-31 | 2003-12-16 | Agility Communications, Inc. | Tunable electro-absorption modulator |
JP3847668B2 (ja) * | 2002-06-13 | 2006-11-22 | 日本オプネクスト株式会社 | 進行波型光変調装置 |
FR2868171B1 (fr) * | 2004-03-29 | 2006-09-15 | Univ Paris Sud | Modulateur optoelectronique haute frequence integre sur silicium |
TWI240424B (en) * | 2004-09-17 | 2005-09-21 | Univ Nat Central | Electro-absorption modulator |
JP4755854B2 (ja) * | 2005-06-02 | 2011-08-24 | 富士通株式会社 | 半導体受光装置及びその製造方法 |
US8014636B2 (en) * | 2009-02-20 | 2011-09-06 | Oracle America | Electrical contacts on top of waveguide structures for efficient optical modulation in silicon photonic devices |
FR2943802B1 (fr) * | 2009-03-24 | 2011-09-30 | Univ Paris Sud | Modulateur optique a haut debit en semi-conducteur sur isolant |
JP5429579B2 (ja) * | 2009-09-10 | 2014-02-26 | 日本電気株式会社 | 電気光学変調器 |
JP5303793B2 (ja) * | 2010-03-10 | 2013-10-02 | Nttエレクトロニクス株式会社 | フォトダイオード |
JP2012037658A (ja) * | 2010-08-05 | 2012-02-23 | Sumitomo Electric Ind Ltd | 半導体光変調素子、マッハツエンダ型半導体光変調器、及び半導体光変調素子の製造方法 |
KR101758141B1 (ko) * | 2010-09-17 | 2017-07-14 | 삼성전자주식회사 | 수직 슬랩들을 포함하는 광전자 장치 |
US9122085B2 (en) * | 2010-10-07 | 2015-09-01 | Alcatel Lucent | Thermally controlled semiconductor optical waveguide |
JP5649219B2 (ja) * | 2011-01-24 | 2015-01-07 | Nttエレクトロニクス株式会社 | 半導体装置 |
US8600201B2 (en) * | 2011-02-22 | 2013-12-03 | Oracle International Corporation | Optical device with enhanced mechanical strength |
US9513497B2 (en) | 2014-02-05 | 2016-12-06 | Aurrion, Inc. | Opto-electronic modulator utilizing one or more heating elements |
GB2543122B (en) * | 2015-11-12 | 2018-07-18 | Rockley Photonics Ltd | An optoelectronic component |
US9448422B2 (en) * | 2014-03-05 | 2016-09-20 | Huawei Technologies Co., Ltd. | Integrated thermo-optic switch with thermally isolated and heat restricting pillars |
JP2017518538A (ja) * | 2014-04-18 | 2017-07-06 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | 透明導電・低屈折率ゲートを有するmosキャパシタ型光変調器 |
US9857610B2 (en) * | 2014-06-19 | 2018-01-02 | Hitachi, Ltd. | Optical modulator and method for manufacturing same |
US10088697B2 (en) * | 2015-03-12 | 2018-10-02 | International Business Machines Corporation | Dual-use electro-optic and thermo-optic modulator |
US9523870B2 (en) * | 2015-04-07 | 2016-12-20 | Futurewei Technologies, Inc. | Vertical PN silicon modulator |
CN104992953B (zh) * | 2015-07-13 | 2018-02-09 | 成都海威华芯科技有限公司 | 基于GaAs的光电集成器件及其制备方法 |
US9806112B1 (en) * | 2016-05-02 | 2017-10-31 | Huawei Technologies Co., Ltd. | Electrostatic discharge guard structure |
US10054806B2 (en) * | 2016-11-08 | 2018-08-21 | Xilinx, Inc. | Segmented electro-absorption modulation |
US10042192B2 (en) * | 2016-11-28 | 2018-08-07 | Futurewei Technologies, Inc. | Electro-absorption modulator with local temperature control |
US10353267B2 (en) | 2016-12-30 | 2019-07-16 | Huawei Technologies Co., Ltd. | Carrier-effect based optical switch |
US10761396B2 (en) * | 2017-03-03 | 2020-09-01 | Neophotonics Corporation | High frequency optical modulator with laterally displaced conduction plane relative to modulating electrodes |
US10218454B2 (en) * | 2017-03-13 | 2019-02-26 | Google Llc | Open, modular, and scalable optical line system |
CN109001881A (zh) * | 2018-07-27 | 2018-12-14 | 武汉光迅科技股份有限公司 | 一种液晶芯片和波长选择开关 |
US10739622B2 (en) | 2018-12-28 | 2020-08-11 | Juniper Networks, Inc. | Integrated optoelectronic device with heater |
-
2018
- 2018-12-28 US US16/235,197 patent/US10739622B2/en active Active
-
2019
- 2019-06-21 EP EP19181590.1A patent/EP3674780B1/en active Active
- 2019-08-14 SG SG10201907470PA patent/SG10201907470PA/en unknown
- 2019-08-26 TW TW108130466A patent/TWI740195B/zh active
- 2019-08-26 TW TW110132215A patent/TWI807403B/zh active
- 2019-09-25 CN CN201910911376.0A patent/CN111381388B/zh active Active
- 2019-09-25 CN CN202110836409.7A patent/CN113589557B/zh active Active
- 2019-09-25 KR KR1020190117992A patent/KR102285372B1/ko active Active
-
2020
- 2020-07-02 US US16/919,802 patent/US11106060B2/en active Active
-
2021
- 2021-07-28 KR KR1020210099470A patent/KR102377357B1/ko active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11106060B2 (en) | 2018-12-28 | 2021-08-31 | Juniper Networks, Inc. | Integrated optoelectronic device with heater |
TWI860609B (zh) * | 2022-05-06 | 2024-11-01 | 新加坡商先進微晶圓私人有限公司 | 矽光子調變器的平衡差分調變方案 |
TWI846490B (zh) * | 2023-04-03 | 2024-06-21 | 台灣積體電路製造股份有限公司 | 積體晶片及其形成方法 |
Also Published As
Publication number | Publication date |
---|---|
SG10201907470PA (en) | 2020-07-29 |
TW202146982A (zh) | 2021-12-16 |
US20200209655A1 (en) | 2020-07-02 |
US11106060B2 (en) | 2021-08-31 |
KR20200083182A (ko) | 2020-07-08 |
KR102285372B1 (ko) | 2021-08-04 |
KR102377357B1 (ko) | 2022-03-21 |
EP3674780B1 (en) | 2023-05-24 |
CN111381388A (zh) | 2020-07-07 |
TWI740195B (zh) | 2021-09-21 |
US20200333641A1 (en) | 2020-10-22 |
KR20210096053A (ko) | 2021-08-04 |
CN113589557A (zh) | 2021-11-02 |
EP3674780A1 (en) | 2020-07-01 |
CN113589557B (zh) | 2022-07-12 |
TWI807403B (zh) | 2023-07-01 |
US10739622B2 (en) | 2020-08-11 |
CN111381388B (zh) | 2021-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI740195B (zh) | 具有加熱器之積體光電裝置 | |
US11271370B2 (en) | Tensile strained semiconductor photon emission and detection devices and integrated photonics system | |
US10078233B2 (en) | Optical waveguide resonators | |
JP2928535B2 (ja) | 集積された多量子井戸光子及び電子デバイス | |
US5889913A (en) | Optical semiconductor device and method of fabricating the same | |
CN111384007B (zh) | Pin二极管中的高效散热 | |
CN113050304B (zh) | 具有改进的光电均匀性的电吸收调制器 | |
US9588360B2 (en) | Temperature control of components on an optical device | |
US11495938B2 (en) | Hybrid semiconductor laser component and method for manufacturing such a component | |
JP2023539482A (ja) | 半導体集積回路及びその製造方法 | |
Szelag et al. | Hybrid III-V/Si DFB laser integration on a 220 mm fully CMOS-compatible silionn photonlcsplotform | |
JPH08125225A (ja) | 半導体装置 | |
US6931041B2 (en) | Integrated semiconductor laser device and method of manufacture thereof | |
JP2000277791A (ja) | 半導体受光装置及びその作製方法 | |
KR20080079869A (ko) | 레이저 소자를 갖는 다층 구조의 반도체 소자 및 그제조방법 | |
JP2006080140A (ja) | 半導体装置 |