TW202100327A - Robot arm calibration system and method of robot arm calibration - Google Patents

Robot arm calibration system and method of robot arm calibration Download PDF

Info

Publication number
TW202100327A
TW202100327A TW108121408A TW108121408A TW202100327A TW 202100327 A TW202100327 A TW 202100327A TW 108121408 A TW108121408 A TW 108121408A TW 108121408 A TW108121408 A TW 108121408A TW 202100327 A TW202100327 A TW 202100327A
Authority
TW
Taiwan
Prior art keywords
action
robotic arm
robot arm
sensor
arm
Prior art date
Application number
TW108121408A
Other languages
Chinese (zh)
Other versions
TWI693133B (en
Inventor
方泰又
劉冠君
盧佳源
Original Assignee
竹陞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 竹陞科技股份有限公司 filed Critical 竹陞科技股份有限公司
Priority to TW108121408A priority Critical patent/TWI693133B/en
Priority to CN201910962038.XA priority patent/CN112114909B/en
Application granted granted Critical
Publication of TWI693133B publication Critical patent/TWI693133B/en
Publication of TW202100327A publication Critical patent/TW202100327A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/448Execution paradigms, e.g. implementations of programming paradigms
    • G06F9/4482Procedural
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Manipulator (AREA)

Abstract

A robot arm calibration system and a method of robot arm calibration are provided. The method of robot arm calibration includes: performing, by a robot arm, a first action corresponding to a first X-Y plane; detecting, by a sensor, whether the robot arm is located in a sensing area; determining, during the first action of the robot arm, a first execution time of the first action according to time points when the robot arm leaves the sensing area and returns to the sensing area; and comparing the first execution time with a first reference time to determine whether the robot arm needs to be calibrated.

Description

機械手臂校正系統和機械手臂校正方法Mechanical arm correction system and mechanical arm correction method

本發明是有關於一種校正機械手臂的技術,且特別是有關於一種機械手臂校正系統和機械手臂校正方法。The present invention relates to a technology for calibrating a mechanical arm, and particularly relates to a mechanical arm correction system and a mechanical arm correction method.

長期的運作過程會導致機械手臂耗損。例如,機械手臂可能因機構磨損或材質老化等因素而使機械手臂的移動產生偏移。對於一些需要非常精準地機械手臂操作的製程,這些偏移往往會造成製程中出現異常。The long-term operation process will cause the mechanical arm to wear out. For example, the robot arm may shift due to factors such as mechanical wear or material aging. For some manufacturing processes that require very precise robotic operation, these deviations often cause abnormalities in the manufacturing process.

有鑑於此,本發明提供一種機械手臂校正系統和機械手臂校正方法,可在機械手臂開啟後執行預設的行動,藉以對機械手臂進行校正。In view of this, the present invention provides a robot arm calibration system and a robot arm calibration method, which can execute a preset action after the robot arm is turned on, so as to calibrate the robot arm.

本發明的機械手臂校正系統,包括機械手臂、感測器以及處理器。機械手臂執行對應於第一X-Y平面的第一行動。感測器,偵測機械手臂是否位於感測範圍內。處理器耦接機械手臂以及感測器,其中處理器經配置以執行:在機械手臂執行第一行動期間,根據機械手臂離開感測範圍和重回感測範圍的時間點判斷第一行動的第一執行時間;以及比較第一執行時間和第一參考時間以判斷機械手臂是否需要被校正。The robot arm calibration system of the present invention includes a robot arm, a sensor and a processor. The robotic arm performs the first action corresponding to the first X-Y plane. The sensor detects whether the robotic arm is within the sensing range. The processor is coupled to the robot arm and the sensor, wherein the processor is configured to execute: during the first action of the robot arm, determine the first action of the first action according to the time point when the robot arm leaves the sensing range and returns to the sensing range An execution time; and compare the first execution time with the first reference time to determine whether the robotic arm needs to be corrected.

在本發明的一實施例中,上述的機械手臂校正系統更包括儲存媒體。儲存媒體耦接處理器,其中第一參考時間預儲存於儲存媒體中。In an embodiment of the present invention, the aforementioned robotic arm calibration system further includes a storage medium. The storage medium is coupled to the processor, and the first reference time is pre-stored in the storage medium.

在本發明的一實施例中,在機械手臂執行完第一行動後,機械手臂在沿著Z軸移動並接著執行對應於第二X-Y平面的第二行動,並且處理器更經配置以執行:在機械手臂執行第二行動期間,根據機械手臂離開感測範圍和重回感測範圍的時間點判斷第二行動的第二執行時間;以及比較第二執行時間和第二參考時間以判斷機械手臂是否需要被校正。In an embodiment of the present invention, after the robotic arm performs the first action, the robotic arm moves along the Z axis and then performs a second action corresponding to the second XY plane, and the processor is further configured to perform: During the execution of the second action by the robot arm, determine the second execution time of the second action according to the time point when the robot arm leaves the sensing range and returns to the sensing range; and compare the second execution time with the second reference time to determine the robot arm Whether it needs to be corrected.

在本發明的一實施例中,上述的處理器耦接至輸出裝置,並且處理器響應於判斷機械手臂需要被校正而通過輸出裝置發出提示。In an embodiment of the present invention, the aforementioned processor is coupled to the output device, and the processor sends a prompt through the output device in response to determining that the robot arm needs to be corrected.

在本發明的一實施例中,上述的感測器為雷射感測器,並且感測器經設置以將偵測用的雷射光束射向感測範圍。In an embodiment of the present invention, the aforementioned sensor is a laser sensor, and the sensor is configured to direct the laser beam used for detection to the sensing range.

本發明的機械手臂校正方法,適用於機械手臂,包括:由機械手臂執行對應於第一X-Y平面的第一行動;由感測器偵測機械手臂是否位於感測範圍內;在機械手臂執行第一行動期間,根據機械手臂離開感測範圍和重回感測範圍的時間點判斷第一行動的第一執行時間;以及比較第一執行時間和第一參考時間以判斷機械手臂是否需要被校正。The robot arm calibration method of the present invention is suitable for a robot arm, and includes: the robot arm executes a first action corresponding to the first XY plane; a sensor detects whether the robot arm is within the sensing range; and the robot arm executes the first action During an action, the first execution time of the first action is determined according to the time point when the robot arm leaves the sensing range and returns to the sensing range; and the first execution time is compared with the first reference time to determine whether the robot arm needs to be corrected.

在本發明的一實施例中,上述的機械手臂校正方法更包括:將第一參考時間預儲存於儲存媒體中。In an embodiment of the present invention, the aforementioned mechanical arm calibration method further includes: pre-storing the first reference time in a storage medium.

在本發明的一實施例中,上述的機械手臂校正方法更包括:在機械手臂執行完第一行動後,由機械手臂沿著Z軸移動並接著執行對應於第二X-Y平面的第二行動;在機械手臂執行第二行動期間,根據機械手臂離開感測範圍和重回感測範圍的時間點判斷第二行動的第二執行時間;以及比較第二執行時間和第二參考時間以判斷機械手臂是否需要被校正。In an embodiment of the present invention, the above-mentioned robotic arm calibration method further includes: after the robotic arm performs the first action, the robotic arm moves along the Z axis and then executes the second action corresponding to the second XY plane; During the execution of the second action by the robot arm, determine the second execution time of the second action according to the time point when the robot arm leaves the sensing range and returns to the sensing range; and compare the second execution time with the second reference time to determine the robot arm Whether it needs to be corrected.

在本發明的一實施例中,上述的機械手臂校正方法更包括:響應於判斷機械手臂需要被校正而通過輸出裝置發出提示。In an embodiment of the present invention, the above-mentioned mechanical arm calibration method further includes: in response to determining that the mechanical arm needs to be calibrated, sending a prompt through the output device.

在本發明的一實施例中,上述的感測器為雷射感測器,並且感測器經設置以將偵測用的雷射光束射向感測範圍。In an embodiment of the present invention, the aforementioned sensor is a laser sensor, and the sensor is configured to direct the laser beam used for detection to the sensing range.

基於上述,本發明的機械手臂校正系統可根據機械手臂預設之行動的執行時間判斷所述機械手臂是否需要被校正。Based on the above, the robot arm calibration system of the present invention can determine whether the robot arm needs to be calibrated according to the execution time of the actions preset by the robot arm.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

為了使本發明之內容可以被更容易明瞭,以下特舉實施例做為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the content of the present invention more comprehensible, the following embodiments are specifically cited as examples on which the present invention can indeed be implemented. In addition, wherever possible, elements/components/steps with the same reference numbers in the drawings and embodiments represent the same or similar components.

圖1根據本發明的實施例繪示機械手臂校正系統10的示意圖。機械手臂校正系統10包括處理器100、儲存媒體200、感測器300以及機械手臂400。FIG. 1 illustrates a schematic diagram of a robot arm calibration system 10 according to an embodiment of the present invention. The robot arm calibration system 10 includes a processor 100, a storage medium 200, a sensor 300, and a robot arm 400.

處理器100耦接至儲存媒體200、感測器300以及機械手臂400。處理器100例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。The processor 100 is coupled to the storage medium 200, the sensor 300 and the robotic arm 400. The processor 100 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose micro control unit (MCU), microprocessor, or digital signal processing Digital signal processor (DSP), programmable controller, application specific integrated circuit (ASIC), graphics processing unit (GPU), arithmetic logic unit (ALU) , Complex programmable logic device (CPLD), field programmable gate array (FPGA) or other similar components or combinations of the above components.

儲存媒體200例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由機械手臂校正系統10或處理器100執行的多個模組或各種應用程式。The storage medium 200 is, for example, any type of fixed or removable random access memory (RAM), read-only memory (ROM), or flash memory. , Hard disk drive (HDD), solid state drive (solid state drive, SSD) or similar components or a combination of the above components, and used to store multiple modules that can be executed by the robotic arm calibration system 10 or the processor 100 Or various applications.

感測器300用以偵測機械手臂400是否位於特定位置。具體來說,感測器300為一雷射感測器,其經設置而將用以偵測機械手臂400的雷射光束310射向X-Y平面的特定位置,以在X-Y平面上形成感測範圍。圖2根據本發明的實施例繪示機械手臂400的俯視圖。如圖2所示,當機械手臂400處於感測範圍EP內的特定位置時,感測器300將可通過雷射光束310偵測到機械手臂400的存在。相對來說,當機械手臂400不處於感測範圍EP內的特定位置時,感測器300的雷射光束310將無法偵測到機械手臂400的存在。須注意的是,感測範圍EP的大小可與感測器300的設置位置或機械手臂400的外型有關。The sensor 300 is used to detect whether the robotic arm 400 is located at a specific position. Specifically, the sensor 300 is a laser sensor, which is configured to detect the laser beam 310 of the robot arm 400 toward a specific position on the XY plane to form a sensing range on the XY plane . FIG. 2 shows a top view of a robotic arm 400 according to an embodiment of the present invention. As shown in FIG. 2, when the robotic arm 400 is at a specific position within the sensing range EP, the sensor 300 can detect the presence of the robotic arm 400 through the laser beam 310. In contrast, when the robotic arm 400 is not at a specific position within the sensing range EP, the laser beam 310 of the sensor 300 will not be able to detect the existence of the robotic arm 400. It should be noted that the size of the sensing range EP may be related to the setting position of the sensor 300 or the appearance of the robotic arm 400.

請同時參照圖1和圖2,其中圖1和圖2中的X、Y和Z代表直角坐標系的三個座標軸。儲存媒體200可預儲存關聯於機械手臂之行動及其對應之參考時間的查找表,如表1所示,其中所述查找表可被視為是記載了機械手臂400之校正程序的表格。須注意的是,在本實施例中,表1記載的參考時間是從機械手臂400之校正程序起始後開始累計(但本發明不限於此)。若機械手臂400具有偏移的現象,則對應於每個行動之偏移將會造成所述行動的執行時間與對應的參考時間之間的時間差。因此,越後面執行之行動將會累積對應於先前之行動的時間差。換句話說,越後面執行之行動的執行時間可能越偏離所述行動所對應的參考時間。 表1 行動 參考時間 第一行動:沿著X軸移動+10釐米 9~15秒 第二行動:沿著Y軸移動-10釐米 14~20秒 第三行動:沿著Z軸移動-15釐米 19~30秒 第四行動:沿著X軸移動+10釐米 29~35秒 第五行動:沿著Y軸移動-10釐米 34~40秒 Please refer to Figure 1 and Figure 2 at the same time, where X, Y and Z in Figure 1 and Figure 2 represent the three coordinate axes of the Cartesian coordinate system. The storage medium 200 may pre-store a look-up table related to the actions of the robot arm and the corresponding reference time, as shown in Table 1, wherein the look-up table can be regarded as a table recording the calibration procedure of the robot arm 400. It should be noted that in this embodiment, the reference time described in Table 1 is accumulated after the start of the calibration procedure of the robotic arm 400 (but the present invention is not limited to this). If the robot arm 400 has an offset phenomenon, the offset corresponding to each action will cause a time difference between the execution time of the action and the corresponding reference time. Therefore, the actions performed later will accumulate the time difference corresponding to the previous actions. In other words, the execution time of the action executed later may deviate from the reference time corresponding to the action. Table 1 action Reference time First action: move +10 cm along the X axis 9~15 seconds The second action: move -10 cm along the Y axis 14-20 seconds The third action: move -15 cm along the Z axis 19~30 seconds Fourth action: move +10 cm along the X axis 29~35 seconds The fifth action: move -10 cm along the Y axis 34~40 seconds

在本實施例中,當機械手臂400啟動後,機械手臂校正系統10的處理器100可控制機械手臂400依序執行如表1所記載之行動,藉以進行機械手臂400的校正程序。In this embodiment, when the robot arm 400 is activated, the processor 100 of the robot arm calibration system 10 can control the robot arm 400 to sequentially execute the actions described in Table 1 to perform the calibration procedure of the robot arm 400.

具體來說,在機械手臂400啟動後,處理器100可根據表1控制機械手臂400執行第一行動。在執行第一行動的過程中,機械手臂400會沿著X軸移動+10釐米,從而離開感測器300的感測範圍EP。接著,機械手臂400沿著X軸移動-10釐米以進行歸位。在機械手臂400歸位後,機械手臂400將重新回到感測器300的感測範圍EP,並且第一行動將結束。Specifically, after the robotic arm 400 is started, the processor 100 can control the robotic arm 400 to perform the first action according to Table 1. In the process of performing the first action, the robotic arm 400 moves +10 cm along the X axis, thereby leaving the sensing range EP of the sensor 300. Next, the robotic arm 400 moves -10 cm along the X axis to return to its position. After the robotic arm 400 returns, the robotic arm 400 will return to the sensing range EP of the sensor 300, and the first action will end.

在機械手臂400執行第一行動的期間,處理器100可根據機械手臂400離開感測範圍EP和重回感測範圍EP的時間點判斷第一行動的第一執行時間。接著,處理器100可比較第一執行時間與表1中對應於第一行動的參考時間,藉以判斷機械手臂是否需要被校正。舉例來說,在機械手臂400執行第一行動的期間,若處理器100通過感測器300偵測到機械手臂400在第10.5秒時離開感測範圍EP,並且在第14.5秒時重回感測範圍EP,則處理器100可基於機械手臂400執行第一行動所使用的第一執行時間在參考時間10~15秒之內而判斷機械手臂400不存在偏移,或機械手臂400的偏移還未達到需要被校正的程度。相對來說,若處理器100通過感測器300偵測到機械手臂400在第10秒時離開感測範圍EP,並且在第15.5秒時重回感測範圍EP,則處理器100可基於機械手臂400執行第一行動所使用的第一執行時間在參考時間10~15秒之外而判斷機械手臂400需要進行校正。During the period when the robotic arm 400 performs the first action, the processor 100 may determine the first execution time of the first action according to the time point when the robotic arm 400 leaves the sensing range EP and returns to the sensing range EP. Then, the processor 100 can compare the first execution time with the reference time corresponding to the first action in Table 1, so as to determine whether the robotic arm needs to be corrected. For example, during the first action of the robotic arm 400, if the processor 100 detects through the sensor 300 that the robotic arm 400 leaves the sensing range EP at 10.5 seconds, and returns to sensing at 14.5 seconds Measuring the range EP, the processor 100 can determine that there is no offset of the robot 400 or the offset of the robot 400 based on the first execution time used by the robot 400 to perform the first action within the reference time of 10-15 seconds It has not yet reached the point where it needs to be corrected. In contrast, if the processor 100 detects through the sensor 300 that the robotic arm 400 leaves the sensing range EP at the 10th second and returns to the sensing range EP at the 15.5 second, the processor 100 can be based on the mechanical The first execution time used by the arm 400 to execute the first action is outside the reference time of 10-15 seconds, and it is determined that the robotic arm 400 needs to be corrected.

在上述的描述中,由於處理器100需要根據機械手臂400離開或重回感測範圍EP的時間點來判斷機械手臂400是否需要被校正。因此,針對X軸的各個行動(例如:表1所示的第一行動或第四行動)都需要被配置為可使機械手臂400完全地離開感測器300的感測範圍EP。若處理器100通過感測器300偵測到機械手臂400沿著X軸移動的行動但所述行動並未使機械手臂400離開感測範圍EP,則處理器100可據此判斷所述行動為無效的行動。In the above description, the processor 100 needs to determine whether the robot arm 400 needs to be corrected according to the time point when the robot arm 400 leaves or returns to the sensing range EP. Therefore, each action for the X axis (for example, the first action or the fourth action shown in Table 1) needs to be configured so that the robot arm 400 can completely leave the sensing range EP of the sensor 300. If the processor 100 detects the movement of the robotic arm 400 along the X axis through the sensor 300 but the movement does not cause the robotic arm 400 to leave the sensing range EP, the processor 100 can determine that the action is Invalid action.

在執行完第一行動後,處理器100可根據表1而控制機械手臂400執行第二行動。處理器100可基於機械手臂400執行第二行動所使用的第二執行時間在參考時間14~20秒之內而判斷機械手臂400不存在偏移,或機械手臂400的偏移還未達到需要被校正的程度。相對來說,處理器100可基於機械手臂400執行第二行動所使用的第二執行時間在參考時間14~20秒之外而判斷機械手臂400需要進行校正。After performing the first action, the processor 100 can control the robotic arm 400 to perform the second action according to Table 1. The processor 100 can determine that the robot arm 400 does not have an offset based on the second execution time used by the robot arm 400 to perform the second action within the reference time of 14 to 20 seconds, or that the offset of the robot arm 400 has not yet reached the required value. The degree of correction. Relatively speaking, the processor 100 may determine that the robot arm 400 needs to be corrected based on the second execution time used by the robot arm 400 to execute the second action is outside the reference time of 14-20 seconds.

在上述的描述中,由於處理器100需要根據機械手臂400離開或重回感測範圍EP的時間點才能判斷機械手臂400是否需要被校正。因此,針對Y軸的各個行動(例如:表1所示的第二行動或第五行動)都需要被配置為可使機械手臂400完全地離開感測器300的感測範圍EP。若處理器100通過感測器300偵測到機械手臂400沿著Y軸移動的行動但所述行動並未使機械手臂400離開感測範圍EP,則處理器100可據此判斷所述行動為無效的行動。In the above description, the processor 100 needs to determine whether the robot arm 400 needs to be calibrated according to the time point when the robot arm 400 leaves or returns to the sensing range EP. Therefore, each action for the Y axis (for example, the second action or the fifth action shown in Table 1) needs to be configured so that the robot arm 400 can completely leave the sensing range EP of the sensor 300. If the processor 100 detects the movement of the robotic arm 400 along the Y axis through the sensor 300 but the movement does not cause the robotic arm 400 to leave the sensing range EP, the processor 100 can determine that the action is Invalid action.

在執行完對應於X-Y平面的第一行動和第二行動後,處理器100可控制機械手臂400執行第三行動,進而使得機械手臂400沿著Z軸移動-15釐米。第三行動並包括機械手臂400的歸位指示,因此,在機械手臂400沿著Z軸移動-15釐米後,第三行動即會結束。在執行第三行動的期間,機械手臂400將不會離開感測器300的感測範圍EP。因此,處理器100將無法根據機械手臂400離開感測範圍EP或重回感測範圍EP的時間點來判斷機械手臂400是否需要被校正。相對來說,處理器100將通過感測器300的雷射光束310直接地測量出機械手臂400在Z軸移動的距離。處理器100可基於機械手臂400執行第三行動所使用的第三執行時間在參考時間19~30秒之內而判斷機械手臂400不存在偏移,或機械手臂400的偏移還未達到需要被校正的程度。相對來說,處理器100可基於機械手臂400執行第三行動所使用的第三執行時間在參考時間19~30秒之外而判斷機械手臂400需要進行校正。After performing the first action and the second action corresponding to the X-Y plane, the processor 100 may control the robotic arm 400 to perform the third action, thereby causing the robotic arm 400 to move -15 cm along the Z axis. The third action also includes the homing instructions of the robotic arm 400. Therefore, the third action will end after the robotic arm 400 moves -15 cm along the Z axis. During the execution of the third action, the robotic arm 400 will not leave the sensing range EP of the sensor 300. Therefore, the processor 100 will not be able to determine whether the robotic arm 400 needs to be calibrated according to the time point when the robotic arm 400 leaves the sensing range EP or returns to the sensing range EP. In contrast, the processor 100 directly measures the distance moved by the robot arm 400 along the Z axis through the laser beam 310 of the sensor 300. The processor 100 can determine that the robot arm 400 does not have an offset based on the third execution time used by the robot arm 400 to perform the third action within the reference time of 19 to 30 seconds, or that the offset of the robot arm 400 has not yet reached the required value. The degree of correction. Relatively speaking, the processor 100 can determine that the robot arm 400 needs to be corrected based on the third execution time used by the robot arm 400 to execute the third action outside the reference time of 19-30 seconds.

在執行完第三行動後,處理器100可控制機械手臂400依序執行如表1所示的第四行動、第五行動、…等行動,直到機械手臂400的校正程序結束為止。須注意的是,雖然在本實施例中,第四行動與第一行動相同(但兩者分別對應於不同的X-Y平面),但本發明不限於此。舉例來說,第四行動可以是與第一行動不同的「沿著X軸移動+20釐米」。After the third action is executed, the processor 100 may control the robotic arm 400 to sequentially execute the fourth action, the fifth action, etc. shown in Table 1 until the calibration procedure of the robotic arm 400 ends. It should be noted that although in this embodiment, the fourth action is the same as the first action (but the two respectively correspond to different X-Y planes), the present invention is not limited to this. For example, the fourth action may be "moving along the X axis + 20 cm" which is different from the first action.

在一些實施例中,處理器100可耦接至諸如螢幕或揚聲器等輸出裝置。響應於處理器100判斷機械手臂400需要被校正,處理器100將可通過所述輸出裝置發出提示以指示操作人員對機械手臂400進行校正。In some embodiments, the processor 100 may be coupled to an output device such as a screen or a speaker. In response to the processor 100 determining that the robotic arm 400 needs to be calibrated, the processor 100 can issue a prompt through the output device to instruct the operator to calibrate the robotic arm 400.

圖3根據本發明的實施例繪示機械手臂校正方法的流程圖,其中所述機械手臂校正方法適用於一機械手臂,並且所述機械手臂校正方法可由如圖1所示的機械手臂校正系統10實施。在步驟S301中,由機械手臂400執行對應於第一X-Y平面的第一行動。在步驟S303中,由感測器300偵測機械手臂400是否位於感測範圍EP內。在步驟S305中,在機械手臂400執行第一行動期間,根據機械手臂400離開感測範圍EP和重回感測範圍EP的時間點判斷第一行動的第一執行時間。在步驟S307中,比較第一執行時間和第一參考時間以判斷機械手臂400是否需要被校正。FIG. 3 illustrates a flowchart of a method for calibrating a robot arm according to an embodiment of the present invention, wherein the method for calibrating a robot arm is applicable to a robot arm, and the method for calibrating a robot arm can be used by the robot arm calibration system 10 shown in FIG. Implement. In step S301, the robotic arm 400 executes a first action corresponding to the first X-Y plane. In step S303, the sensor 300 detects whether the robotic arm 400 is within the sensing range EP. In step S305, during the first action performed by the robotic arm 400, the first execution time of the first action is determined according to the time point when the robotic arm 400 leaves the sensing range EP and returns to the sensing range EP. In step S307, the first execution time and the first reference time are compared to determine whether the robotic arm 400 needs to be corrected.

綜上所述,本發明的機械手臂校正系統可通過雷射光束感測器偵測機械手臂執行預設之行動的執行時間,再根據查找表來判斷所述行動的執行時間是否在誤差範圍之內。若所述行動的執行時間超出的誤差範圍,則處理器可判斷機械手臂可能需要被校正,並且將判斷結果通知給機械手臂的操作員。In summary, the robot arm calibration system of the present invention can detect the execution time of the robot arm performing a preset action through the laser beam sensor, and then determine whether the execution time of the action is within the error range according to the lookup table Inside. If the execution time of the action exceeds the error range, the processor may determine that the robot arm may need to be corrected, and notify the operator of the robot arm of the determination result.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

10:機械手臂校正系統 100:處理器 200:儲存媒體 300:感測器 310:雷射光束 400:機械手臂 EP:感測範圍 S301、S303、S305、S307:步驟10: Robotic arm correction system 100: processor 200: storage media 300: Sensor 310: Laser beam 400: Robotic arm EP: Sensing range S301, S303, S305, S307: steps

圖1根據本發明的實施例繪示機械手臂校正系統的示意圖。 圖2根據本發明的實施例繪示機械手臂的俯視圖。 圖3根據本發明的實施例繪示機械手臂校正方法的流程圖。Fig. 1 illustrates a schematic diagram of a mechanical arm calibration system according to an embodiment of the present invention. Fig. 2 shows a top view of a robotic arm according to an embodiment of the present invention. Fig. 3 shows a flowchart of a method for calibrating a robot arm according to an embodiment of the present invention.

S301、S303、S305、S307:步驟 S301, S303, S305, S307: steps

Claims (10)

一種機械手臂校正系統,包括: 機械手臂,執行對應於第一X-Y平面的第一行動; 感測器,偵測所述機械手臂是否位於感測範圍內;以及 處理器,耦接所述機械手臂以及所述感測器,其中所述處理器經配置以執行: 在所述機械手臂執行所述第一行動期間,根據所述機械手臂離開所述感測範圍和重回所述感測範圍的時間點判斷所述第一行動的第一執行時間;以及 比較所述第一執行時間和第一參考時間以判斷所述機械手臂是否需要被校正。A mechanical arm correction system, including: The robotic arm performs the first action corresponding to the first X-Y plane; A sensor to detect whether the robotic arm is within the sensing range; and A processor coupled to the robotic arm and the sensor, wherein the processor is configured to execute: During the execution of the first action by the robotic arm, judging the first execution time of the first action according to the time point when the robotic arm leaves the sensing range and returns to the sensing range; and The first execution time and the first reference time are compared to determine whether the robotic arm needs to be corrected. 如申請專利範圍第1項所述的機械手臂校正系統,更包括: 儲存媒體,耦接所述處理器,其中所述第一參考時間預儲存於所述儲存媒體中。The robot arm correction system described in item 1 of the scope of patent application further includes: A storage medium coupled to the processor, wherein the first reference time is pre-stored in the storage medium. 如申請專利範圍第1項所述的機械手臂校正系統,其中在所述機械手臂執行完所述第一行動後,所述機械手臂在沿著Z軸移動並接著執行對應於第二X-Y平面的第二行動,並且所述處理器更經配置以執行: 在所述機械手臂執行所述第二行動期間,根據所述機械手臂離開所述感測範圍和重回所述感測範圍的時間點判斷所述第二行動的第二執行時間;以及 比較所述第二執行時間和第二參考時間以判斷所述機械手臂是否需要被校正。The robot arm calibration system described in the first item of the scope of patent application, wherein after the robot arm performs the first action, the robot arm moves along the Z axis and then executes the corresponding to the second XY plane The second action, and the processor is further configured to perform: During the second action performed by the robotic arm, judging the second execution time of the second action according to the time point when the robotic arm leaves the sensing range and returns to the sensing range; and The second execution time and the second reference time are compared to determine whether the robotic arm needs to be corrected. 如申請專利範圍第1項所述的機械手臂校正系統,其中所述處理器耦接至輸出裝置,並且所述處理器響應於判斷所述機械手臂需要被校正而通過所述輸出裝置發出提示。The robot arm calibration system according to the first item of the scope of patent application, wherein the processor is coupled to an output device, and the processor sends a prompt through the output device in response to determining that the robot arm needs to be corrected. 如申請專利範圍第1項所述的機械手臂校正系統,其中所述感測器為雷射感測器,並且所述感測器經設置以將偵測用的雷射光束射向所述感測範圍。The robot arm calibration system described in the first item of the scope of patent application, wherein the sensor is a laser sensor, and the sensor is set to direct the laser beam for detection to the sensor Measuring range. 一種機械手臂校正方法,適用於機械手臂,包括: 由所述機械手臂執行對應於第一X-Y平面的第一行動; 由感測器偵測所述機械手臂是否位於感測範圍內; 在所述機械手臂執行所述第一行動期間,根據所述機械手臂離開所述感測範圍和重回所述感測範圍的時間點判斷所述第一行動的第一執行時間;以及 比較所述第一執行時間和第一參考時間以判斷所述機械手臂是否需要被校正。A correction method for a robotic arm, suitable for robotic arms, including: The first action corresponding to the first X-Y plane is executed by the robotic arm; The sensor detects whether the robotic arm is within the sensing range; During the execution of the first action by the robotic arm, judging the first execution time of the first action according to the time point when the robotic arm leaves the sensing range and returns to the sensing range; and The first execution time and the first reference time are compared to determine whether the robotic arm needs to be corrected. 如申請專利範圍第6項所述的機械手臂校正方法,更包括: 將所述第一參考時間預儲存於儲存媒體中。As described in item 6 of the scope of patent application, the robot arm calibration method further includes: The first reference time is pre-stored in the storage medium. 如申請專利範圍第6項所述的機械手臂校正方法,更包括: 在所述機械手臂執行完所述第一行動後,由所述機械手臂沿著Z軸移動並接著執行對應於第二X-Y平面的第二行動; 在所述機械手臂執行所述第二行動期間,根據所述機械手臂離開所述感測範圍和重回所述感測範圍的時間點判斷所述第二行動的第二執行時間;以及 比較所述第二執行時間和第二參考時間以判斷所述機械手臂是否需要被校正。As described in item 6 of the scope of patent application, the robot arm calibration method further includes: After the robotic arm performs the first action, the robotic arm moves along the Z axis and then performs a second action corresponding to the second X-Y plane; During the second action performed by the robotic arm, judging the second execution time of the second action according to the time point when the robotic arm leaves the sensing range and returns to the sensing range; and The second execution time and the second reference time are compared to determine whether the robotic arm needs to be corrected. 如申請專利範圍第6項所述的機械手臂校正方法,更包括:響應於判斷所述機械手臂需要被校正而通過輸出裝置發出提示。As described in item 6 of the scope of patent application, the robot arm calibration method further includes: in response to determining that the robot arm needs to be calibrated, sending a prompt through an output device. 如申請專利範圍第6項所述的機械手臂校正方法,其中所述感測器為雷射感測器,並且所述感測器經設置以將偵測用的雷射光束射向所述感測範圍。The robot arm calibration method as described in item 6 of the scope of patent application, wherein the sensor is a laser sensor, and the sensor is set to direct the laser beam for detection to the sensor Measuring range.
TW108121408A 2019-06-20 2019-06-20 Robot arm calibration system and method of robot arm calibration TWI693133B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108121408A TWI693133B (en) 2019-06-20 2019-06-20 Robot arm calibration system and method of robot arm calibration
CN201910962038.XA CN112114909B (en) 2019-06-20 2019-10-11 Mechanical arm correction system and mechanical arm correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108121408A TWI693133B (en) 2019-06-20 2019-06-20 Robot arm calibration system and method of robot arm calibration

Publications (2)

Publication Number Publication Date
TWI693133B TWI693133B (en) 2020-05-11
TW202100327A true TW202100327A (en) 2021-01-01

Family

ID=71895882

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108121408A TWI693133B (en) 2019-06-20 2019-06-20 Robot arm calibration system and method of robot arm calibration

Country Status (2)

Country Link
CN (1) CN112114909B (en)
TW (1) TWI693133B (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06149327A (en) * 1992-11-12 1994-05-27 Fanuc Ltd Real-time position correcting method
KR100224862B1 (en) * 1997-08-20 1999-10-15 윤종용 Apparatus and method for callibration of robot arm
TWI301441B (en) * 2006-06-06 2008-10-01 Powerchip Semiconductor Corp Wireless 3d position auto-offset system for robot arms
TW200826223A (en) * 2006-12-01 2008-06-16 Foxsemicon Integrated Tech Inc Transfer robot with automatic calibration function
JP2008141098A (en) * 2006-12-05 2008-06-19 Dainippon Screen Mfg Co Ltd Inspecting equipment for substrate carrier, and substrate treating equipment
SG2013025770A (en) * 2013-04-05 2014-11-27 Sigenic Pte Ltd Apparatus and method for detecting position drift in a machine operation using a robot arm
TW201509617A (en) * 2013-09-14 2015-03-16 Nat Univ Chung Hsing Robot arm precision measurement system and measuring method thereof
JP6415190B2 (en) * 2014-09-03 2018-10-31 キヤノン株式会社 ROBOT DEVICE, ROBOT CONTROL PROGRAM, RECORDING MEDIUM, AND ROBOT DEVICE CONTROL METHOD
JP2016078149A (en) * 2014-10-15 2016-05-16 キヤノン株式会社 Robot device control method, robot device, program and recording medium
CN104690736B (en) * 2015-02-12 2017-03-08 成都天马微电子有限公司 Mechanical arm and its detecting system and detection method
JP6996177B2 (en) * 2017-09-11 2022-01-17 セイコーエプソン株式会社 Robot, offset correction device for force sensor, and robot control method

Also Published As

Publication number Publication date
CN112114909B (en) 2024-03-15
TWI693133B (en) 2020-05-11
CN112114909A (en) 2020-12-22

Similar Documents

Publication Publication Date Title
US10471601B2 (en) Apparatus and method of controlling robot arm
US9667868B2 (en) Auto calibration method and OIS camera using the same
US10688658B2 (en) Method of controlling holding apparatus, holding apparatus, and robot apparatus
US11642800B2 (en) Apparatus and method for use with robot
JP2021025973A5 (en)
TWI693133B (en) Robot arm calibration system and method of robot arm calibration
JP5284486B2 (en) How to identify the center position of the board
JP7289387B2 (en) Joystick assemblies and game controllers
WO2017070872A1 (en) Method and apparatus for abnormality detection
WO2020111179A1 (en) Gas pressure detection device, robot comprising gas pressure detection device, and gas pressure detection method for same
US11904464B2 (en) Three-dimensional measuring device and robotic arm calibration method thereof
JP2005274572A5 (en)
JP7096544B2 (en) Screw tightening device and screw tightening method
JP6729436B2 (en) Automatic pressure control valve and vacuum pumping system
US20220034775A1 (en) Material testing machine and method of controlling material testing machine
JP2010062215A5 (en)
TW201926398A (en) Method and device for matching process results between different reaction chambers
US10737386B2 (en) Automatic control method and automatic control device
WO2020100320A1 (en) Proximity sensor unit and distance observation device
US20220379499A1 (en) Apparatus and method for calibrating laser displacement sensor for use with robot
JP2016071193A5 (en)
KR102430643B1 (en) Method and Apparatus for revising position of stage in semiconductor device processing
TW202015868A (en) Method for calibrating tcp of robot arm
TWI782675B (en) Workpiece processing system, distance measuring device and method for setting workpiece placing path
TWI636857B (en) Calibration method and calibration device of electric joint