TWI301441B - Wireless 3d position auto-offset system for robot arms - Google Patents
Wireless 3d position auto-offset system for robot arms Download PDFInfo
- Publication number
- TWI301441B TWI301441B TW95119992A TW95119992A TWI301441B TW I301441 B TWI301441 B TW I301441B TW 95119992 A TW95119992 A TW 95119992A TW 95119992 A TW95119992 A TW 95119992A TW I301441 B TWI301441 B TW I301441B
- Authority
- TW
- Taiwan
- Prior art keywords
- wireless
- sensor
- dimensional displacement
- correction system
- board
- Prior art date
Links
Landscapes
- Manipulator (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
1301441 .九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種校正器,且特別有關於一種機械 手臂之無線三維(3D)位移校正系統。 【先前技彳标】 半導體製造廠在生產矽晶圓時,利用符合機械標準介 面(Standard Mechanical Interface,SMIF )的機械手臂 (Robot Arm)自動將晶圓自晶圓盒(Front 〇pening unified Pod’F0UP)中取出,然後送入機台以防止晶圓受到污染。 然而,機台的機械手臂常因不同異常狀況而導致手臂 前端的鋏子(Pincette)變形,因此設備人員必須隨時根據 不同異常狀況對機械手臂進行調整以提高產品品質與生產 效率。現行的調整方式係由人為主觀判定,但往往因為人 員素質及認定上不同而產生不同的調機品質。其次,機台 的空間狹小,故無法容納身材較高大的設備人員。綜上所 述’人員的主觀判定與身材會間接影響機台復機的品質與 時效。 因此’本發明提供了一種機械手臂之無線三維位移校 正系統,可有效改善調機品質。 【發明内容】 基於上述目的,本發明實施例揭露了一種機械手臂之 無線二維位移校正系統,包括一無線三維位移監視感測器BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrector, and more particularly to a wireless three-dimensional (3D) displacement correction system for a mechanical arm. [Previous technical standards] Semiconductor manufacturers use the robot arm (Robot Arm) that conforms to the Mechanical Standard Interface (SMIF) to automatically wafer the wafer from the wafer box (Front 〇pening unified Pod') F0UP) is taken out and sent to the machine to prevent contamination of the wafer. However, the mechanical arm of the machine often deforms the Pincette at the front end of the arm due to different abnormal conditions. Therefore, the equipment personnel must adjust the robot arm according to different abnormal conditions at any time to improve product quality and production efficiency. The current adjustment method is based on people's subjective judgment, but often different quality of the machine is produced because of the different quality and identification. Secondly, the space of the machine is so small that it cannot accommodate the taller equipment personnel. In summary, the subjective judgment and body of the staff will indirectly affect the quality and timeliness of the machine. Therefore, the present invention provides a wireless three-dimensional displacement correction system for a robot arm, which can effectively improve the quality of the adjustment machine. SUMMARY OF THE INVENTION Based on the above objects, an embodiment of the present invention discloses a wireless two-dimensional displacement correction system for a robot arm, including a wireless three-dimensional displacement monitoring sensor.
Clienfs Docket No. : PT.AP-604 TT^s Docket No : 0532-A40757-.TW/Final/Alex Chen c 1301441 -與一权正裔。該無線二維位移監視感測器包括一電子水平 感測斋’該電子水平感測器具有一弧狀空間與一 感測 器。該弧狀空間的内部以液態物質填充且具有一氣泡。該 感測器用以感測該氣泡的位置。該校正器自該感測哭取得 該氣泡的位置並且顯示在其顯示幕上,根據一預設標準範 圍判斷一製程設備是否呈現水平狀態,以及若非為水平狀 態則計算出該製程設備的偏移量。 本發明實施例更揭露了一種機械手臂之無線三維位移 • 校正系統,包括一三腳製程板、一無線三維位移監視感測 器以及一校正器。該三腳製程板具有三支腳位。該無線二 維位移監視感測态具有一光學尺’其設置於該三腳製程板 上方,其中當該光學尺為一雙光學尺,將其中一光學尺做 為一發射端以發出細密平行光束,另一光學尺做為一接收 端以收取光束訊號。該校正器自該無線三維位移監視感測 器接收光束被遮斷的狀態並且顯示在其顯示幕上,並且、辨 過運算後判斷該三腳製程板之每一腳位的z軸間隙是否赶 •出一預設值。 本發明實施例更揭露了 一種機械手臂之無線三維彳立矛夕 校正糸統’包括一製程板、一無線二維位移監視感測器以 及一校正器。該製程板上具有一中央記號。該無線三維位 移監視感測器設置於該製程板上方,其具有一 x_Yi CCD 監視感測器感測器。該X-Y軸CCD監視感測器上定義有 一標準記號,其將該中央記號之中心位置與該標準記號之 中心位置進行比對。該校正器自該感測器取得該中央★己替Clienfs Docket No. : PT.AP-604 TT^s Docket No : 0532-A40757-.TW/Final/Alex Chen c 1301441 - With a righteous descent. The wireless two-dimensional displacement monitoring sensor includes an electronic level sensing device. The electronic level sensor has an arcuate space and a sensor. The interior of the arcuate space is filled with a liquid substance and has a bubble. The sensor is used to sense the position of the bubble. The corrector obtains the position of the bubble from the sensing and displays it on the display screen, determines whether a process device presents a horizontal state according to a preset standard range, and calculates an offset of the process device if it is not a horizontal state. the amount. Embodiments of the present invention further disclose a wireless three-dimensional displacement correction system for a robot arm, including a three-leg process board, a wireless three-dimensional displacement monitoring sensor, and a corrector. The three-legged process board has three legs. The wireless two-dimensional displacement monitoring sensing state has an optical scale disposed above the tripod processing board, wherein when the optical scale is a pair of optical scales, one of the optical scales is used as a transmitting end to emit a fine parallel beam Another optical tape acts as a receiving end to receive the beam signal. The corrector receives the state in which the light beam is blocked from the wireless three-dimensional displacement monitoring sensor and displays it on the display screen thereof, and determines whether the z-axis gap of each foot of the three-legged processing board is rushed after the operation is recognized. • A default value is given. The embodiment of the present invention further discloses a wireless three-dimensional tilting correction system for a robot arm, which includes a processing board, a wireless two-dimensional displacement monitoring sensor, and a corrector. The process board has a central mark. The wireless three-dimensional displacement monitoring sensor is disposed above the processing board and has an x_Yi CCD monitoring sensor sensor. A standard mark is defined on the X-Y axis CCD monitor sensor, which compares the center position of the center mark with the center position of the standard mark. The corrector obtains the central control from the sensor
Client’s Docket No. ·· PT.AP-604 TT5s Docket No : 0532-A40757-TW/Final/Alex Chen 1301441 , 之中心位置與該標準記號之中心位置的相對位置資訊,並 且根據該相對位置資訊判斷該製程板是否發生偏移,以及 當發生偏移時計算出該製程板的偏移量。 【實施方式】 為了讓本發明之目的、特徵、及優點能更明顯易懂, 下文特舉較佳實施例,並配合所附圖示第1圖至第10C 圖,做詳細之說明。本發明說明書提供不同的實施例來說 明本發明不同實施方式的技術特徵。其中,實施例中的各 元件之配置係為說明之用,並非用以限制本發明。且實施 例中圖式標號之部分重複,係為了簡化說明,並非意指不 同實施例之間的關聯性。 本發明實施例揭露了一種機械手臂之無線三維位移校 正系統。 本發明實施例之無線三維位移校正系統利用一無線機 械手臂之3D位移校正器與無線3D位移監視感測器,可有 效降低因人為主觀意識而導致之調機誤差。該無線3D位 移監視感測器包括一電子式水平感測器(Leveiing Sensor) 與一光學尺(Optical Scale)。電子式水平感測器可更精確 了解製程板(Process Plate)或是鋏子(Pincette)的水平 狀態。光學尺可檢測鋏子與製程板在z軸(z-axis)上的 安全高度。 第1圖係顯示本發明實施例之校正器的外觀示意圖。 本發明實施例之校正器100為一低功率訊號接收器, 其具有顯示(Display)、X_Y軸偏移感測(xY_axes ShiftClient's Docket No. · PT.AP-604 TT5s Docket No : 0532-A40757-TW/Final/Alex Chen 1301441 , the relative position information of the center position and the center position of the standard mark, and judged according to the relative position information Whether the process board is offset, and the offset of the process board is calculated when an offset occurs. DETAILED DESCRIPTION OF THE INVENTION In order to make the objects, features, and advantages of the present invention more comprehensible, the preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings Figures 1 through 10C. The present specification provides various embodiments to illustrate the technical features of various embodiments of the present invention. The arrangement of the various elements in the embodiments is for illustrative purposes and is not intended to limit the invention. The repeated repetition of the drawings in the embodiments is intended to simplify the description and does not mean the relationship between the different embodiments. Embodiments of the present invention disclose a wireless three-dimensional displacement correction system for a robot arm. The wireless three-dimensional displacement correction system of the embodiment of the present invention utilizes a 3D displacement corrector of a wireless mechanical arm and a wireless 3D displacement monitoring sensor, which can effectively reduce the adjustment error caused by subjective consciousness. The wireless 3D displacement monitoring sensor includes an electronic level sensor (Leveiing Sensor) and an optical scale (Optical Scale). The electronic level sensor provides a more accurate understanding of the level of the Process Plate or the Pincette. The optical scale detects the safe height of the tweezers and the process plate on the z-axis. Fig. 1 is a schematic view showing the appearance of a corrector according to an embodiment of the present invention. The corrector 100 of the embodiment of the present invention is a low power signal receiver having a display and X_Y axis offset sensing (xY_axes Shift)
Client’s Docket No. : ΡΤ.ΑΡ-604 TT5s Docket No : 0532-A40757-TW/Final/Alex Chen 1301441 .Judgment)、Z 軸間隙感測(z-axis Gap Judgment)以及水 平感測(Leveling Judgment)等功能。 第2圖係顯示本發明實施例之無線3 d位移監視感測器 (Monitor Sensor) 200 的外觀示意圖。 本發明實施例之無線3D位移監視感測器2〇〇為一低功 率訊號發射器,其包括一電子水平感測器(Electric Leveling Sensor)、一 Z 軸光學尺(〇pticai Scale)以及一 χ_γ 軸電 子電荷耦合元件監視感測器(XY-axes CCD Monitor Sensor)。X-Y軸電子CCD監視感測器係用以監視χ-γ軸 偏移之即時狀態。Ζ軸光學尺係用以監視三腳位製程板 (3-Pin Process Plate )之腳位與晶圓間的間隙(Gap )大小。 電子水平感測裔用以監視無線3D位移監視感測器2〇〇的 水平狀悲。此外,校正器1〇〇與無線位移監視感測器 200彼此間係以無線方式連結。 第3圖係顯不本發明實施例之無線3D位移監視感測器 200的結構剖析示意圖。 如上所述,無線3D位移監視感測器2〇〇包括電子水平 感測器210 (如無線3D位移監視感測器之俯視圖2〇〇,所 示)、光學尺220 (如無線3D位移監視感測器之侧視圖 200”與底視圖200…所示)以及χ-γ軸CCD監視感測器 230 (如無線3D位移監視感測器之侧視圖2〇〇,,與底視圖 200’’’所示)〇 ’ 如第4圖所示,電子水平感測器21〇分為兩個部分, 其一為弧狀空間、,其内部注入液態物質且具有一氣泡Client's Docket No. : ΡΤ.ΑΡ-604 TT5s Docket No : 0532-A40757-TW/Final/Alex Chen 1301441 .Judgment), Z-axis Gap Judgment, Leveling Judgment, etc. Features. 2 is a schematic diagram showing the appearance of a wireless 3 d displacement monitor sensor (200) according to an embodiment of the present invention. The wireless 3D displacement monitoring sensor 2 of the embodiment of the present invention is a low-power signal transmitter, which includes an electronic level sensor (Electric Leveling Sensor), a Z-axis optical scale (〇pticai Scale), and a χ_γ Axis electronic charge coupled device monitor sensor (XY-axes CCD Monitor Sensor). The X-Y axis electronic CCD monitoring sensor is used to monitor the instantaneous state of the χ-γ axis offset. The 光学-axis optical ruler is used to monitor the gap between the foot of the 3-Pin Process Plate and the gap between the wafers (Gap). Electronic level sensing is used to monitor the horizontal sadness of the wireless 3D displacement monitoring sensor. Further, the corrector 1 and the wireless displacement monitoring sensor 200 are wirelessly coupled to each other. Figure 3 is a schematic cross-sectional view showing the structure of the wireless 3D displacement monitoring sensor 200 of the embodiment of the present invention. As described above, the wireless 3D displacement monitoring sensor 2 includes an electronic level sensor 210 (as shown in the top view of the wireless 3D displacement monitoring sensor), and an optical scale 220 (such as a wireless 3D displacement monitoring sense). Side view 200" and bottom view 200 of the detector) and χ-γ axis CCD monitor sensor 230 (such as the side view of the wireless 3D displacement monitoring sensor 2, and the bottom view 200'' As shown in Fig. 4, the electronic level sensor 21 is divided into two parts, one of which is an arc-shaped space, in which a liquid substance is injected and has a bubble
Client’s Docket No· ·· PTAP-604 TT5s Docket No · 0532-A40757-TW / Final / Alex Chen 1301441 另為CCD感測盗2150。由電子水平感測器210的 ^見圖21G,與側視圖21G,,可以报清楚地看到,當呈水平狀 悲時’氣泡215係位於電子水平感測器2i〇的正中央頂部。 根據氣泡215的位置可判斷機械手臂前端之鋏子、三腳位 (3 Pm)製程板之腳位以及製程板的水平狀態。 參考第5A圖,利用機械手臂前端之鋏子將無線 3J)位移監視感測器2〇〇夾住,即可藉由觀察電+水平感測 器210之氣泡215的位置得知鋏子3〇〇的水平狀態,從而 得知機械手臂的水平狀態。參考第5B圖,將無線犯位移 監,,測器200置於三腳位(3_pin)製程板4〇〇的腳位上, 再觀祭氣泡215的位置,即可得知腳位的水平狀態。參考 第5C圖,將無線3D位移監視感測器2〇〇置於製程板5〇〇 上,再觀祭氣泡215的位置,即可得知製程板5〇〇的水平 狀態。 此外’利用光學尺220可得知無線3D位移監視感測器 200與製程板(三腳位製程板4〇〇或製程板5〇〇)間之z 軸間隙的大小 '如第6A圖所示,光學尺220具有至少二 支光學尺,其中一光學尺做為發射端,用以發出細密平行 光束訊號,另一光學尺做為接收端,用以收取光束訊號, 然後將光束被遮斷的狀態傳回校正器100來判斷Z軸間隙 的大小。此外,當光學尺220發出之平行光束未接觸到製 程板上的腳位,則可利用鋏子300將無線3D位移監視感 測器200在製程板上前後移動以使平行光束接觸腳位來判 斷Z轴間隙的大小。Client’s Docket No··· PTAP-604 TT5s Docket No · 0532-A40757-TW / Final / Alex Chen 1301441 Another CCD sensor steals 2150. From Fig. 21G of the electronic level sensor 210, and the side view 21G, it can be clearly seen that the bubble 215 is located at the center of the center of the electronic level sensor 2i when it is horizontally sad. According to the position of the bubble 215, the position of the front end of the robot arm, the position of the three-pin position (3 Pm) process board, and the horizontal state of the process board can be judged. Referring to Fig. 5A, the wireless 3J) displacement monitoring sensor 2 is clamped by the tweezers of the front end of the robot arm, and the position of the bubble 215 of the electric + level sensor 210 can be observed. The horizontal state of the cockroach, so as to know the horizontal state of the robot arm. Referring to FIG. 5B, the wireless guilt is monitored, and the detector 200 is placed on the foot of the three-pin (3_pin) process board 4 ,, and then the position of the air bubble 215 is observed, and the horizontal state of the foot position can be known. . Referring to Fig. 5C, the wireless 3D displacement monitoring sensor 2 is placed on the process board 5 ,, and then the position of the bubble 215 is observed, and the horizontal state of the process board 5 即可 can be known. In addition, the size of the z-axis gap between the wireless 3D displacement monitoring sensor 200 and the process board (three-leg process board 4 〇〇 or process board 5 〇〇) can be known by using the optical scale 220 as shown in FIG. 6A. The optical scale 220 has at least two optical scales, wherein one optical scale is used as a transmitting end for emitting a fine parallel beam signal, and the other optical scale is used as a receiving end for receiving a beam signal, and then the beam is blocked. The state is passed back to the corrector 100 to determine the size of the Z-axis gap. In addition, when the parallel beam emitted by the optical scale 220 does not contact the foot on the process board, the wireless 3D displacement monitoring sensor 200 can be moved back and forth on the processing board by the dice 300 to make the parallel beam contact the foot position. The size of the Z-axis gap.
Client’s Docket No. ·· PT.AP-604 TT5s Docket No · 0532-A40757-TW / Final / Alex Chen 9 1301441 、 X_Y軸CCD監視感測器230主要係用以擷取製程板 500之中央記號(Center Mark),並將該影像傳回校正器 100,並且與一標準記號相比較,以判斷製程板500或機械 手臂在X-Y軸是否發生偏移。如第7A圖所示,將無線3D 位移監視感測器200設置於製程板.500的上方以偵測製程 板500之中央記號550。再參考第7B圖,標準記號235係 標記在製程板500上,當χ-γ轴CCd監視感測器偵測到 中央記號550時,會取得中央記號550與標準記號235間 的相對位置,並且根據該相對位置判斷製程板500是否發 生偏移,以及若發生偏移,則偏移距離是否在一預設範圍 内,亦即取得機械手臂在X-Y軸的偏移量。 校正器100可取得無線3D位移監視感測器200傳回之 感測值,並且經過運算後顯示感測結果。如前文所述,本 發明實施例之校正器1〇〇為一低功率訊號接收器,其可顯 示X-Y轴偏移感測、Z軸間隙感測以及水平感測之感測結 果,如第1圖所示。下文再對電子水平感測器、z軸光學 尺以及X-Y軸電子電荷耦合元件監視感測器之運作做更詳 細的描述。 參考第8A圖,電子水平感測器21〇可根據其氣泡215 判斷機械手臂前端之鋏子300、三腳位製程板4〇〇之腳仅 以及製程板500的水平狀態,並且判斷氣泡215是否在〜 標準範圍内(StandardRange,SR)(如第8B圖所示)。 其操作流程如下。 首先,電子水平感測器210中的CCD感測器感測氣泡Client's Docket No. · PT.AP-604 TT5s Docket No · 0532-A40757-TW / Final / Alex Chen 9 1301441 , X_Y Axis CCD Surveillance Sensor 230 is mainly used to capture the central mark of the process board 500 (Center Mark), and the image is passed back to the corrector 100 and compared with a standard mark to determine whether the process plate 500 or the robot arm is offset on the XY axis. As shown in FIG. 7A, the wireless 3D displacement monitoring sensor 200 is disposed above the process board .500 to detect the central mark 550 of the processing board 500. Referring again to FIG. 7B, the standard mark 235 is marked on the process board 500. When the χ-γ axis CCd monitor sensor detects the central mark 550, the relative position between the central mark 550 and the standard mark 235 is obtained, and Whether the offset of the process board 500 occurs is determined based on the relative position, and if an offset occurs, whether the offset distance is within a predetermined range, that is, the offset of the robot arm on the XY axis is obtained. The corrector 100 can obtain the sensed value returned by the wireless 3D displacement monitor sensor 200, and display the sensed result after the operation. As described above, the corrector 1 of the embodiment of the present invention is a low-power signal receiver capable of displaying XY-axis offset sensing, Z-axis gap sensing, and sensing results of horizontal sensing, such as the first The figure shows. The operation of the electronic level sensor, the z-axis optical scale, and the X-Y axis electronic charge coupled device monitoring sensor will be described in more detail below. Referring to FIG. 8A, the electronic level sensor 21 判断 can determine the dice 300 of the front end of the robot arm, the foot of the three-leg process board 4 and the horizontal state of the processing board 500 according to the bubble 215 thereof, and determine whether the bubble 215 is Within the standard range (StandardRange, SR) (as shown in Figure 8B). The operation flow is as follows. First, the CCD sensor in the electronic level sensor 210 senses the bubble
Client’s Docket No. : PT.AP-604 TT’s Docket No : 0532-A40757-TW/Final/Alex Chen 1301441 、215的位置。接著,將其位置傳送給校正器1〇〇,使得校正 裔100在螢幕上顯示氣泡215的位置,並且根據上述標準 範圍(SR)判斷鋏子300、三腳位製程板4〇〇之腳位以及 製程板500的水平狀態,即判斷偏移量是否正常以及偏移 多少角度。 淨J用光4*尺220感測出z軸間隙的大小的流程如下。 參考第9A圖,光學尺220之其中一光學尺做為發射端發 出細密平行光束,另一光學尺做為接收端以收取光束訊 鲁號’然後將光束才皮遮斷的狀態傳回校正器100來判斷z軸 間隙的大小。參考第9B圖,利用鋏子3〇〇將無線3D位移 監視感測态200夾住,然後定位在三腳位製程板4〇〇上方。 接著,利用鋏子300帶動無線3D位移監視感測器2〇〇前 進與後退,以藉由其上設置之單光學尺225通過三腳位製 程板400之每一腳位,以偵測出腳位與晶圓間在z軸方向 的間隙大小。將光學尺220或單光學尺225感測所得之間 隙值傳回給校正器1〇〇,使得校正器1〇〇在榮幕上顯示每 •-腳位的間隙值(如第9C圖所示),並且在運算後判斷 出每一腳位的間隙值是否超出一預設值。 電子水平感測210藉由又_¥軸CCD監視感測器23〇 比對標準記號235與中央記號55〇的中心位置,來換算出 機械手臂在X-Y軸的偏移量。其運作流程如下。Client’s Docket No. : PT.AP-604 TT’s Docket No : 0532-A40757-TW/Final/Alex Chen 1301441, 215 position. Then, the position is transmitted to the corrector 1〇〇, so that the correcting person 100 displays the position of the bubble 215 on the screen, and judges the position of the dice 300 and the three-leg process board 4 according to the above-mentioned standard range (SR). And the horizontal state of the process board 500, that is, whether the offset is normal and how many angles are offset. The flow of the net J light 4* rule 220 to sense the size of the z-axis gap is as follows. Referring to FIG. 9A, one of the optical scales 220 serves as a transmitting end to emit a fine parallel beam, and the other optical tape serves as a receiving end to receive the beam signal '' and then returns the state of the beam to the corrector. 100 to determine the size of the z-axis gap. Referring to Fig. 9B, the wireless 3D displacement monitoring sensing state 200 is clamped by the dice 3, and then positioned above the three-leg process board 4〇〇. Then, the wireless 3D displacement monitoring sensor 2 is forwarded and retracted by the dice 300 to pass through each pin of the three-leg process board 400 by the single optical scale 225 disposed thereon to detect the foot. The size of the gap between the bit and the wafer in the z-axis direction. The gap value sensed by the optical scale 220 or the single optical scale 225 is transmitted back to the corrector 1〇〇, so that the corrector 1〇〇 displays the gap value of each of the feet on the honor screen (as shown in FIG. 9C). ), and after the operation, it is judged whether the gap value of each pin exceeds a preset value. The electronic level sensing 210 converts the offset of the robot arm on the X-Y axis by the _¥ axis CCD monitoring sensor 23 〇 comparing the center positions of the standard mark 235 and the center mark 55 。. The operation process is as follows.
參考第10A圖,首先,取得製程板5〇〇之中央記號 550,然後將中央記號550的中心位置555與χ-γ軸CCD 監視感測器230之標準記號235的中心位置2355進行比對Referring to Fig. 10A, first, the central mark 550 of the process board 5 is obtained, and then the center position 555 of the central mark 550 is compared with the center position 2355 of the standard mark 235 of the χ-γ axis CCD monitor sensor 230.
Client’s Docket No. : PT.AP-604 TT5s Docket No : 0532-A40757-TW / Final / Alex Chen 11 1301441 * (如第10B圖所不),將兩者間的相對位置資訊回傳給校 正器100,以計算出製程板500的偏移,進而得知機械手 臂在X-Y轴的偏移量。 本發明實施例之三維位移校正系統係採無線設計,故 使用上方便且較無人員身材及環境空間限制。此外,可避 免個人主觀判定之誤差而影響機台調機品質以及自動顯示 感測與判斷結果。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限疋本發明,任何热習此技藝者’在不脫離本發明之精神 和範圍内’當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖係顯示本發明實施例之校正器的外觀示意圖。 弟2圖係顯示本發明貫施例之無線3D位移監視感測器 的外觀示意圖。 第3圖係顯示本發明貫施例之無線3D位移監視感測器 的結構剖析示意圖。 第4圖係顯示本發明實施例之電子水平感測器的結構 剖析不意圖。 第5A圖係顯示本發明實施例之檢測機械手臂前端之 鋏子之水平狀態的示意圖。 第5B圖係顯示本發明實施例之檢測三腳位製程板之 水平狀態的示意圖。 弟5C圖係顯示本發明實施例之撿測製程板之水平狀Client's Docket No. : PT.AP-604 TT5s Docket No : 0532-A40757-TW / Final / Alex Chen 11 1301441 * (as shown in Figure 10B), return the relative position information between the two to the corrector 100 In order to calculate the offset of the process board 500, the offset of the robot arm on the XY axis is known. The three-dimensional displacement correction system of the embodiment of the invention adopts a wireless design, so it is convenient to use and has no physical body and environmental space limitation. In addition, it can avoid the error of subjective judgment and affect the quality of the machine and automatically display the sensing and judgment results. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any skilled person can make various changes and modifications without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the appearance of a corrector according to an embodiment of the present invention. Figure 2 is a schematic diagram showing the appearance of a wireless 3D displacement monitoring sensor according to an embodiment of the present invention. Fig. 3 is a schematic cross-sectional view showing the structure of a wireless 3D displacement monitoring sensor according to an embodiment of the present invention. Fig. 4 is a view showing the structural analysis of the electronic level sensor of the embodiment of the present invention. Fig. 5A is a view showing the horizontal state of the tweezer for detecting the front end of the robot arm according to the embodiment of the present invention. Fig. 5B is a view showing the state of detecting the horizontal state of the three-foot process board in the embodiment of the present invention. The 5C diagram shows the horizontal shape of the test process board of the embodiment of the present invention.
Client’s Docket No. : PT.AP-604 TT^ Docket No : 0532-A40757-TW / Final / Alex Chen 1301441 • 態的示意圖。 第6A、6B圖係顯示本發明實施例之利用光學尺檢測Z 轴間隙的不意圖。 第7A、7B圖係顯示本發明實施例之利用X-Y軸CCD 監視感測為檢測X-Y轴偏移的不意圖。 第8A、8B圖係顯示本發明實施例之利用電子水平感 測器檢測設備之水平狀態與利用校正器顯示水平狀態資訊 的示意圖。 ⑩ 第9A〜9C圖係顯示本發明實施例之光學尺檢測設備 之Z轴間隙與利用校正器顯示間隙資訊的示意圖。 第10A〜10C圖係顯示本發明實施例之利用X-Y轴 CCD監視感測器檢測設備之X-Y轴偏移與利用校正器顯 示偏移資訊的示意圖。 【主要元件符號說明】 100〜校正器 φ 200〜無線3D位移監視感測器 2 0 05〜無線3 D位移監視感測器之俯視圖 200’’〜無線3D位移監視感測器之側視圖 200’’’〜無線3D位移監視感測器之底視圖 210〜電子水平感測器 215〜氣泡 2150〜CCD感測器 220〜光學尺 230〜X-Y軸CCD監視感測器Client’s Docket No. : PT.AP-604 TT^ Docket No : 0532-A40757-TW / Final / Alex Chen 1301441 • Schematic diagram of the state. 6A and 6B are views showing the intention of detecting the Z-axis gap by the optical scale in the embodiment of the present invention. 7A and 7B are diagrams showing the intention of detecting the X-Y axis shift by the X-Y axis CCD monitoring in the embodiment of the present invention. 8A and 8B are diagrams showing the use of the electronic level sensor to detect the horizontal state of the apparatus and the display of the horizontal state information by the corrector according to the embodiment of the present invention. 10A to 9C are diagrams showing the Z-axis gap of the optical scale detecting device of the embodiment of the present invention and the gap information displayed by the corrector. 10A to 10C are diagrams showing the X-Y axis offset of the sensor detecting device using the X-Y axis CCD and the offset information displayed by the corrector using the X-Y axis CCD according to the embodiment of the present invention. [Main component symbol description] 100~corrector φ 200~ wireless 3D displacement monitoring sensor 2 0 05~ wireless 3 D displacement monitoring sensor top view 200''~ wireless 3D displacement monitoring sensor side view 200' ''~Bottom view of wireless 3D displacement monitoring sensor 210~electronic level sensor 215~bubble 2150~CCD sensor 220~optical scale 230~XY axis CCD monitoring sensor
Client’s Docket No. : PT.AP-604 TT^ Docket No : 0532-A40757-TW / Final / Alex Chen 13 1301441 、 235〜標準記號 2355〜標準記號的中心位置 300〜機械手臂前端之鋏子 400〜三腳位製程板 500〜製程板 550〜中央記號 555〜中央記號的中心位置Client's Docket No. : PT.AP-604 TT^ Docket No : 0532-A40757-TW / Final / Alex Chen 13 1301441 , 235 ~ standard mark 2355 ~ standard mark center position 300 ~ mechanical arm front end of the dice 400 ~ three Center position of the foot processing board 500 to the processing board 550 to the central mark 555 to the central mark
Client’s Docket No. : PT.AP-604 TT’s Docket No : 0532-A40757-TW/Final/Alex Chen 14Client’s Docket No. : PT.AP-604 TT’s Docket No : 0532-A40757-TW/Final/Alex Chen 14
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95119992A TWI301441B (en) | 2006-06-06 | 2006-06-06 | Wireless 3d position auto-offset system for robot arms |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95119992A TWI301441B (en) | 2006-06-06 | 2006-06-06 | Wireless 3d position auto-offset system for robot arms |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200744807A TW200744807A (en) | 2007-12-16 |
TWI301441B true TWI301441B (en) | 2008-10-01 |
Family
ID=45070228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95119992A TWI301441B (en) | 2006-06-06 | 2006-06-06 | Wireless 3d position auto-offset system for robot arms |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI301441B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI693133B (en) * | 2019-06-20 | 2020-05-11 | 竹陞科技股份有限公司 | Robot arm calibration system and method of robot arm calibration |
-
2006
- 2006-06-06 TW TW95119992A patent/TWI301441B/en active
Also Published As
Publication number | Publication date |
---|---|
TW200744807A (en) | 2007-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI512875B (en) | System and method for adjusting the position and orientation of a feed arm associated with a wafer handling robot | |
TWI548878B (en) | Probe device | |
TW480340B (en) | IC package testing device and method for testing IC package using the same | |
CN110168712A (en) | For semiconductor or field of display systems transmitting place measurement test model and utilize the accurate transfer measurement method for semiconductor or the transmitting place measurement test model of field of display systems | |
IL278170B1 (en) | Wireless substrate-like teaching sensor for semiconductor processing | |
TW201520577A (en) | Length measuring method and length measuring apparatus | |
CN105326508A (en) | Human body static balance testing method and instrument | |
TWI457540B (en) | Mobile distance device | |
CN109820476A (en) | A kind of balanced capacity appraisal procedure and the device and system using this method | |
TWI301441B (en) | Wireless 3d position auto-offset system for robot arms | |
CN107422241B (en) | Method and system for using probe card | |
TWI589897B (en) | Alignment support device for probe device and alignment support method | |
CN209166353U (en) | The measuring device of dimension of object | |
CN215639285U (en) | Sag measuring device and system for high-voltage tower line | |
TW202107954A (en) | Method and equipment for detecting hole position information of printed circuit board | |
CN112233183A (en) | 3D structured light module support calibration method, device and equipment | |
CN112161579A (en) | Anchor hole inner diameter measuring device and measuring method | |
CN211668639U (en) | Body temperature automatic measuring device based on cooperation robot | |
TW200537110A (en) | Testing apparatus | |
JP2002243663A (en) | Fluoroscope | |
JP2013223542A (en) | Centroid oscillation measurement system | |
CN110095071A (en) | A kind of electronic surveying cubing and electronic measuring method | |
JP2009145140A (en) | Friction measuring device | |
CN212567289U (en) | Visual inspection equipment | |
CN221686636U (en) | Sensor relative position calibrating device based on underwater vision positioning |