TW202036793A - Semiconducotr structure and method for fabricating the same - Google Patents

Semiconducotr structure and method for fabricating the same Download PDF

Info

Publication number
TW202036793A
TW202036793A TW108110210A TW108110210A TW202036793A TW 202036793 A TW202036793 A TW 202036793A TW 108110210 A TW108110210 A TW 108110210A TW 108110210 A TW108110210 A TW 108110210A TW 202036793 A TW202036793 A TW 202036793A
Authority
TW
Taiwan
Prior art keywords
layer
gallium nitride
dry etching
substrate
semiconductor structure
Prior art date
Application number
TW108110210A
Other languages
Chinese (zh)
Other versions
TWI718506B (en
Inventor
林永豐
周鈺傑
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW108110210A priority Critical patent/TWI718506B/en
Publication of TW202036793A publication Critical patent/TW202036793A/en
Application granted granted Critical
Publication of TWI718506B publication Critical patent/TWI718506B/en

Links

Images

Abstract

Embodiments of the present disclosure provide a semiconductor structure and a method for fabricating the semiconductor structure. The method includes providing a substrate; forming a silicon layer on the substrate, wherein an edge region of a top surface of the substrate is exposed from the silicon layer; epitaxially growing a GaN-based semiconductor material on the silicon layer and the substrate to form a GaN-based semiconductor layer on the silicon layer and a plurality of GaN-based nodules on the edge region of the top surface of the substrate; and performing a first dry etch step to remove the GaN-based nodules, wherein performing the first dry etch step includes applying a first bias power that is equal to or higher than 1500 W.

Description

半導體結構及其製造方法Semiconductor structure and manufacturing method thereof

本揭露內容是有關於半導體製造技術,且特別是有關於具有氮化鎵系半導體材料的半導體結構及其製造方法。The content of this disclosure is related to semiconductor manufacturing technology, and in particular to semiconductor structures with gallium nitride-based semiconductor materials and manufacturing methods thereof.

氮化鎵系(GaN-based)半導體材料具有許多優秀的材料特性,例如高抗熱性、寬能隙(band-gap)、與高電子飽和速率。因此,氮化鎵系半導體材料適合應用於高速與高溫的操作環境。近年來,氮化鎵系半導體材料已廣泛地應用於發光二極體(light emitting diode,LED)元件、高頻率元件,例如具有異質界面結構的高電子遷移率電晶體(high electron mobility transistor,HEMT)。GaN-based semiconductor materials have many excellent material properties, such as high heat resistance, wide band-gap, and high electron saturation rate. Therefore, GaN-based semiconductor materials are suitable for high-speed and high-temperature operating environments. In recent years, GaN-based semiconductor materials have been widely used in light emitting diode (LED) devices and high-frequency devices, such as high electron mobility transistors (HEMTs) with heterogeneous interface structures. ).

隨著氮化鎵系半導體材料的發展,這些使用氮化鎵系半導體材料的半導體結構應用於更嚴苛的工作環境中,例如更高頻、更高溫或更高電壓的工作環境。因此,具有氮化鎵系半導體材料的半導體結構之製程條件也面臨許多新的挑戰。With the development of gallium nitride-based semiconductor materials, these semiconductor structures using gallium nitride-based semiconductor materials are used in more severe working environments, such as higher frequency, higher temperature or higher voltage working environments. Therefore, the process conditions for semiconductor structures with gallium nitride-based semiconductor materials are also facing many new challenges.

本揭露內容的一些實施例提供半導體結構的製造方法,此方法包含提供一基底;在基底上形成矽層,其中基底的上表面的邊緣區域從矽層暴露出來;將氮化鎵系(GaN-based)半導體材料磊晶成長在矽層與基底上,以形成氮化鎵系半導體層於矽層上以及複數個氮化鎵系顆粒於基底的上表面的邊緣區域上;以及進行第一乾式蝕刻步驟以移除此些氮化鎵系顆粒,其中進行第一乾式蝕刻步驟包含施加第一偏壓功率,且第一偏壓功率係為等於或大於1500瓦。Some embodiments of the present disclosure provide a method for manufacturing a semiconductor structure. The method includes providing a substrate; forming a silicon layer on the substrate, wherein the edge region of the upper surface of the substrate is exposed from the silicon layer; and gallium nitride (GaN- based) The semiconductor material is epitaxially grown on the silicon layer and the substrate to form a gallium nitride semiconductor layer on the silicon layer and a plurality of gallium nitride particles on the edge area of the upper surface of the substrate; and perform a first dry etching A step to remove these gallium nitride particles, wherein performing the first dry etching step includes applying a first bias power, and the first bias power is equal to or greater than 1500 watts.

本揭露內容的一些實施例提供半導體結構,此半導體結構包含氮化鋁基底、矽層以及氮化鎵系半導體層。矽層形成於氮化鋁基底上。氮化鋁基底的邊緣區域的上表面從矽層暴露出來。氮化鎵系半導體層形成於矽層上。氮化鎵系半導體層的側壁與底表面之間的夾角係為小於90度。Some embodiments of the present disclosure provide a semiconductor structure. The semiconductor structure includes an aluminum nitride substrate, a silicon layer, and a gallium nitride semiconductor layer. The silicon layer is formed on the aluminum nitride substrate. The upper surface of the edge area of the aluminum nitride substrate is exposed from the silicon layer. The gallium nitride semiconductor layer is formed on the silicon layer. The angle between the sidewall and the bottom surface of the gallium nitride-based semiconductor layer is less than 90 degrees.

本揭露內容的半導體結構可應用於多種類型的半導體裝置,為讓本揭露內容之特徵和優點能更明顯易懂,下文特舉出應用於高電子遷移率電晶體之實施例,並配合所附圖式,作詳細說明如下。The semiconductor structure of the present disclosure can be applied to various types of semiconductor devices. In order to make the features and advantages of the present disclosure more obvious and understandable, the following examples are applied to high electron mobility transistors, together with the attached The diagram is described in detail as follows.

以下的揭露內容提供了許多的實施例或範例,用於實施所提供的半導體結構之不同元件。各元件和其配置的具體範例描述如下,以簡化本揭露內容之實施例之說明。當然,這些僅僅是範例,並非用以限定本揭露內容之實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,同樣或相似的元件標號可能會在本揭露內容實施例之不同的範例中重複使用。如此重複是為了簡明和清楚,而非用以表示所討論的不同實施例之間的關係。The following disclosure provides many embodiments or examples for implementing different elements of the provided semiconductor structure. Specific examples of each element and its configuration are described below to simplify the description of the embodiments of the present disclosure. Of course, these are only examples and are not intended to limit the embodiments of the disclosure. For example, if the description mentions that the first element is formed on the second element, it may include an embodiment in which the first and second elements are in direct contact, or may include additional elements formed between the first and second elements. , So that they do not directly touch the embodiment. In addition, the same or similar component numbers may be used repeatedly in different examples of the embodiments of the present disclosure. Such repetition is for conciseness and clarity, and is not used to express the relationship between the different embodiments discussed.

以下描述實施例的一些變化。在不同圖式和說明的實施例中,相似的元件符號被用來標示相似的元件。可以理解的是,在方法的前、中、後可以提供額外的步驟,且一些所敘述的步驟可在所述方法的其他實施例被取代或刪除。Some changes of the embodiment are described below. In the embodiments of different drawings and descriptions, similar component symbols are used to denote similar components. It is understood that additional steps may be provided before, during, and after the method, and some of the described steps may be substituted or deleted in other embodiments of the method.

本揭露內容的實施例提供了半導體結構及其製造方法。在將氮化鎵系半導體材料磊晶成長在矽層上時,也會形成附著於基底上的氮化鎵系顆粒(nodule),而這些氮化鎵系顆粒很有可能會在後續的製程中脫落,因而污染後續的製程,這導致氮化鎵系顆粒成為半導體結構的製程中的可能缺陷源(defect source),但採用濕式蝕刻方式無法有效移除氮化鎵系顆粒。根據本揭露內容之實施例,採用等於或大於1500瓦的偏壓功率來進行第一乾式蝕刻步驟,能夠有效地將氮化鎵系顆粒清除乾淨,避免氮化鎵系顆粒成為半導體結構的製程中的缺陷源,因而可以提高半導體結構的製程的良率。The embodiments of the present disclosure provide a semiconductor structure and a manufacturing method thereof. When GaN-based semiconductor materials are epitaxially grown on a silicon layer, GaN-based particles (nodule) attached to the substrate will also be formed, and these GaN-based particles are likely to be used in subsequent processes Falling off, thereby contaminating the subsequent manufacturing process, causes the gallium nitride-based particles to become a possible defect source in the manufacturing process of the semiconductor structure, but the gallium nitride-based particles cannot be effectively removed by wet etching. According to the embodiment of the present disclosure, the first dry etching step is performed with a bias power equal to or greater than 1500 watts, which can effectively remove the gallium nitride particles and prevent the gallium nitride particles from becoming a semiconductor structure during the process Therefore, the yield of the semiconductor structure can be improved.

第1A至1F圖是根據本揭露內容的一些實施例,說明形成如第1F圖所示的半導體結構100在各個不同階段的剖面示意圖。請參照第1A圖,提供基底102。基底102可以是圓形的,並且基底102的直徑P可以是4英吋或以上,例如6英吋、8英吋或12英吋,以適用於半導體工業的製造設備。FIGS. 1A to 1F are schematic cross-sectional views illustrating various stages of forming the semiconductor structure 100 shown in FIG. 1F according to some embodiments of the present disclosure. Please refer to Figure 1A to provide a base 102. The substrate 102 may be circular, and the diameter P of the substrate 102 may be 4 inches or more, such as 6 inches, 8 inches, or 12 inches, to be suitable for manufacturing equipment in the semiconductor industry.

在一些實施例中,基底102是陶瓷基底,且是透過粉末冶金將陶瓷粉末高溫燒結所形成。舉例而言,基底102是氮化鋁(AlN)基底、碳化矽(SiC)基底、藍寶石(Sapphire)基底、適用的類似基底、或上述的任意組合。在一實施例中,基底102是氮化鋁基底。在一些實施例中,基底102係用於製造含有氮化鎵系(GaN-based)半導體層的半導體裝置,例如發光二極體(light-emitting diode,LED)、高頻裝置、或高壓裝置。高頻裝置或高壓裝置可以是例如,高電子遷移率電晶體(HEMT)、蕭特基二極體(schottky bipolar diode,SBD)、雙載體電晶體(bipolar junction transistor,BJT)、接面場效電晶體(junction field effect transistor,JFET)、或絕緣閘雙極電晶體(insulated gate bipolar transistor,IGBT)。In some embodiments, the substrate 102 is a ceramic substrate, and is formed by high temperature sintering of ceramic powder through powder metallurgy. For example, the substrate 102 is an aluminum nitride (AlN) substrate, a silicon carbide (SiC) substrate, a sapphire (Sapphire) substrate, a suitable similar substrate, or any combination of the foregoing. In one embodiment, the substrate 102 is an aluminum nitride substrate. In some embodiments, the substrate 102 is used to manufacture a semiconductor device containing a GaN-based semiconductor layer, such as a light-emitting diode (LED), a high-frequency device, or a high-voltage device. The high-frequency device or the high-voltage device can be, for example, a high electron mobility transistor (HEMT), a Schottky bipolar diode (SBD), a bipolar junction transistor (BJT), a junction field effect Junction field effect transistor (JFET) or insulated gate bipolar transistor (IGBT).

如第1A圖所示,在基底102上形成矽層104,基底102的上表面102a的邊緣區域102P從矽層104暴露出來。在一些實施例中,從上視方向來看,邊緣區域102P環繞矽層104(未繪示)。在一些實施例中,如第1A圖所示,矽層104的邊緣與基底102的邊緣相隔一個距離D1,此距離D1也就是邊緣區域102P的寬度。在一些實施例中,此距離D1可以是約1.5毫米(mm)至約3毫米,例如是大約2毫米。在一些實施例中,矽層104的厚度例如是約300奈米(nm)至約600奈米。As shown in FIG. 1A, a silicon layer 104 is formed on the substrate 102, and the edge region 102P of the upper surface 102a of the substrate 102 is exposed from the silicon layer 104. In some embodiments, from the top view, the edge region 102P surrounds the silicon layer 104 (not shown). In some embodiments, as shown in FIG. 1A, the edge of the silicon layer 104 is separated from the edge of the substrate 102 by a distance D1, which is the width of the edge region 102P. In some embodiments, the distance D1 may be about 1.5 millimeters (mm) to about 3 millimeters, for example, about 2 millimeters. In some embodiments, the thickness of the silicon layer 104 is, for example, about 300 nanometers (nm) to about 600 nanometers.

如第1B圖所示,將氮化鎵系(GaN-based)半導體材料磊晶成長在矽層104與基底102上,以形成氮化鎵系半導體層106於矽層140上、以及複數個氮化鎵系顆粒(nodules)107於基底102的上表面102a的邊緣區域102P上。在一些實施例中,氮化鎵系(GaN-based)半導體材料例如包含氮化鎵(GaN)、氮化鎵鋁(AlGaN)、其他適用的類似的氮化鎵系半導體材料、或上述之任意組合。在一些實施例中,氮化鎵系半導體層106的厚度是約5微米至約15微米。在一些實施例中,氮化鎵系顆粒107的尺寸是約1微米至約50微米。As shown in FIG. 1B, a GaN-based semiconductor material is epitaxially grown on the silicon layer 104 and the substrate 102 to form a GaN-based semiconductor layer 106 on the silicon layer 140, and a plurality of nitrogen Gallium-based particles (nodules) 107 are on the edge region 102P of the upper surface 102a of the substrate 102. In some embodiments, the GaN-based semiconductor material includes, for example, gallium nitride (GaN), aluminum gallium nitride (AlGaN), other applicable similar GaN-based semiconductor materials, or any of the foregoing combination. In some embodiments, the thickness of the gallium nitride-based semiconductor layer 106 is about 5 microns to about 15 microns. In some embodiments, the size of the gallium nitride-based particles 107 is about 1 micrometer to about 50 micrometers.

在本揭露內容的一些實施例中,氮化鎵系半導體層106磊晶成長於矽層140的(111)晶面上,換言之,氮化鎵系半導體層106例如是氮化鎵系磊晶層,且直接形成於矽層104的(111)晶面上。在一些實施例中,磊晶成長的氮化鎵系半導體層106具有實質上垂直的側壁,舉例而言,氮化鎵系半導體層106的側壁的延伸線與基底102的上表面102a之間的夾角θ例如是約85°至約95°,例如是大約90°。此外,基底102的上表面102a的邊緣區域102P不具有矽(111)晶面,不利於磊晶成長氮化鎵系半導體層,因此形成具有不規則形狀與大小的氮化鎵系顆粒107,且氮化鎵系顆粒107並未如氮化鎵系半導體層106一樣地穩定地附著於基底102上。In some embodiments of the present disclosure, the gallium nitride-based semiconductor layer 106 is epitaxially grown on the (111) plane of the silicon layer 140. In other words, the gallium nitride-based semiconductor layer 106 is, for example, a gallium nitride-based epitaxial layer , And directly formed on the (111) crystal plane of the silicon layer 104. In some embodiments, the epitaxially grown gallium nitride-based semiconductor layer 106 has substantially vertical sidewalls, for example, between the extension line of the sidewall of the gallium nitride-based semiconductor layer 106 and the upper surface 102a of the substrate 102 The included angle θ is, for example, about 85° to about 95°, for example, about 90°. In addition, the edge region 102P of the upper surface 102a of the substrate 102 does not have a silicon (111) crystal plane, which is not conducive to epitaxial growth of the gallium nitride semiconductor layer, so gallium nitride particles 107 with irregular shapes and sizes are formed, and The gallium nitride-based particles 107 are not stably attached to the substrate 102 like the gallium nitride-based semiconductor layer 106.

接著,在一些實施例中,如第1C圖至第1D圖所示,在氮化鎵系半導體層106上形成遮罩層112,使氮化鎵系半導體層106的邊緣部分的上表面106a及基底102的上表面102a的邊緣區域102P從遮罩層112暴露出來。在一些實施例中,遮罩層112可以是光阻層、硬遮罩層(例如氮化物層)、或上述之組合。在本揭露內容的一些實施例中,形成遮罩層112是在進行第一乾式蝕刻步驟160之前進行,第一乾式蝕刻步驟160的相關細節會在本文後段詳述。Next, in some embodiments, as shown in FIGS. 1C to 1D, a mask layer 112 is formed on the gallium nitride-based semiconductor layer 106, so that the upper surface 106a of the edge portion of the gallium nitride-based semiconductor layer 106 and The edge area 102P of the upper surface 102 a of the substrate 102 is exposed from the mask layer 112. In some embodiments, the mask layer 112 may be a photoresist layer, a hard mask layer (such as a nitride layer), or a combination thereof. In some embodiments of the present disclosure, the formation of the mask layer 112 is performed before the first dry etching step 160, and the related details of the first dry etching step 160 will be described in detail later in this article.

在一些實施例中,如第1C圖所示,在氮化鎵系半導體層106與基底102上形成遮罩材料層110。在一些實施例中,遮罩材料層110可以包含光阻材料、硬遮罩材料(例如氮化物)、或上述之組合。在一些實施例中,可透過旋轉塗佈(spin-on coating)、化學氣相沉積(CVD)、適用的類似方法、或上述的任意組合形成遮罩材料層110。如第1C圖所示,遮罩材料層110可覆蓋氮化鎵系半導體層106、矽層104、氮化鎵系顆粒107、與基底102的上表面102a。在一些實施例中,如第1C圖所示,遮罩材料層110的外周部(outer periphery)110P覆蓋氮化鎵系半導體層106的側壁、矽層104的側壁、氮化鎵系顆粒107、與基底102的上表面102a的邊緣區域102P。In some embodiments, as shown in FIG. 1C, a mask material layer 110 is formed on the GaN-based semiconductor layer 106 and the substrate 102. In some embodiments, the mask material layer 110 may include a photoresist material, a hard mask material (for example, nitride), or a combination thereof. In some embodiments, the mask material layer 110 may be formed by spin-on coating, chemical vapor deposition (CVD), applicable similar methods, or any combination of the foregoing. As shown in FIG. 1C, the mask material layer 110 can cover the GaN-based semiconductor layer 106, the silicon layer 104, the GaN-based particles 107, and the upper surface 102a of the substrate 102. In some embodiments, as shown in FIG. 1C, the outer periphery 110P of the mask material layer 110 covers the sidewalls of the gallium nitride-based semiconductor layer 106, the sidewalls of the silicon layer 104, the gallium nitride-based particles 107, And the edge area 102P of the upper surface 102a of the substrate 102.

接著,如第1D圖所示,對遮罩材料層110的外周部110P進行晶邊清除(edge bevel removal,EBR)步驟150,以部分地移除遮罩材料層110,並形成遮罩層112。在一些實施例中,如第1D圖所示,遮罩層112覆蓋裝置區域A,裝置區域A也就是定義來用於後續製作半導體裝置的基底102的有效區域。在一些實施例中,裝置區域A的邊界E與氮化鎵系半導體層106的邊緣相隔一個距離D2,此距離D2小於距離D1(也就是邊緣區域102P的寬度)。在一些實施例中,此距離D2大約是0.3毫米至1毫米,例如是大約0.5毫米。在一些實施例中,距離D1和距離D2的總和是等於或大於2.5毫米,例如是約2.5毫米至約3.5毫米。Next, as shown in FIG. 1D, an edge bevel removal (EBR) step 150 is performed on the outer peripheral portion 110P of the mask material layer 110 to partially remove the mask material layer 110 and form a mask layer 112 . In some embodiments, as shown in FIG. 1D, the mask layer 112 covers the device area A, and the device area A is defined as an effective area of the substrate 102 for subsequent fabrication of semiconductor devices. In some embodiments, the boundary E of the device region A is separated from the edge of the GaN-based semiconductor layer 106 by a distance D2, which is less than the distance D1 (that is, the width of the edge region 102P). In some embodiments, the distance D2 is about 0.3 mm to 1 mm, for example, about 0.5 mm. In some embodiments, the sum of the distance D1 and the distance D2 is equal to or greater than 2.5 mm, for example, about 2.5 mm to about 3.5 mm.

在一些實施例中,如第1D圖所示,進行晶邊清除(EBR)步驟150可包含從遮罩材料層110的側面對外周部110P噴灑清除液,將遮罩材料層110的外周部110P融化並移除,從而暴露出氮化鎵系半導體層106的邊緣部分的上表面106a。在一些實施例中,清除液可包含有機溶劑,例如可包含丙二醇單甲基醚(PGME)、丙二醇單甲基醚酯(PGMEA)、乙二醇單甲基醚酯(EGMEA)、乳酸乙酯、環己酮、或上述的任意組合。In some embodiments, as shown in FIG. 1D, performing the edge removal (EBR) step 150 may include spraying a cleaning solution from the side surface of the mask material layer 110 to the outer peripheral portion 110P to remove the outer peripheral portion 110P of the mask material layer 110 Melt and remove, thereby exposing the upper surface 106a of the edge portion of the gallium nitride-based semiconductor layer 106. In some embodiments, the scavenging solution may include an organic solvent, for example, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether ester (PGMEA), ethylene glycol monomethyl ether ester (EGMEA), ethyl lactate , Cyclohexanone, or any combination of the above.

在一些實施例中,如第1D圖所示的結構可設置於晶邊清除裝置的底座(未繪示)上,並且晶邊清除裝置的噴嘴(未繪示)設置於遮罩材料層110的側面,而不設置在遮罩材料層110的上方。接著,晶邊清除裝置的底座可帶動如第1D圖所示的結構相對於噴嘴旋轉,而使得從噴嘴噴灑出來的清除液可以環繞並完整地噴灑在遮罩材料層110的整個外周部110P上,從而將外周部110P融化並移除,並暴露出氮化鎵系半導體層106的邊緣部分的上表面106a。In some embodiments, the structure shown in FIG. 1D may be disposed on the base (not shown) of the crystal edge removal device, and the nozzle (not shown) of the crystal edge removal device is disposed on the mask material layer 110 The side surface is not arranged above the mask material layer 110. Then, the base of the crystal edge removing device can drive the structure as shown in Figure 1D to rotate relative to the nozzle, so that the cleaning liquid sprayed from the nozzle can surround and be completely sprayed on the entire outer circumference 110P of the mask material layer 110 Thus, the outer peripheral portion 110P is melted and removed, and the upper surface 106a of the edge portion of the gallium nitride-based semiconductor layer 106 is exposed.

在一些實施例中,如第1C圖至第1D圖所示,清除液的噴灑方向R1實質上平行於遮罩材料層110的上表面110a(也就是遮罩層112的上表面112a),換言之,清除液的噴灑方向R1實質上垂直於之前被外周部110P所覆蓋的氮化鎵系半導體層106的側壁。舉例而言,在一些實施例中,清除液的噴灑方向R1與遮罩材料層110的上表面110a(也就是遮罩層112的上表面112a)之間的夾角θ1例如是在約0°至約30°的範圍內,使得清除液大致上僅噴灑至遮罩材料層110的外周部110P上,而不噴灑至遮罩材料層110的上表面110a。如此一來,清除液僅能移除遮罩材料層110的外周部110P,僅露出後續預定要被移除的氮化鎵系顆粒107,並不會從遮罩材料層110的上方對遮罩材料層110的厚度造成減損。因此,形成的遮罩層112可在後續的乾式蝕刻步驟中用來保護位於裝置區域A中的下方的氮化鎵系半導體層106不會受到乾式蝕刻步驟的損傷,例如可以不受到乾式蝕刻步驟的電漿的損傷。In some embodiments, as shown in FIGS. 1C to 1D, the spray direction R1 of the cleaning liquid is substantially parallel to the upper surface 110a of the mask material layer 110 (that is, the upper surface 112a of the mask layer 112), in other words , The spray direction R1 of the cleaning liquid is substantially perpendicular to the sidewall of the gallium nitride-based semiconductor layer 106 previously covered by the outer peripheral portion 110P. For example, in some embodiments, the angle θ1 between the spray direction R1 of the cleaning liquid and the upper surface 110a of the mask material layer 110 (that is, the upper surface 112a of the mask layer 112) is, for example, about 0° to Within a range of about 30°, the cleaning liquid is generally sprayed only on the outer peripheral portion 110P of the mask material layer 110, and not sprayed on the upper surface 110a of the mask material layer 110. In this way, the cleaning liquid can only remove the outer peripheral portion 110P of the mask material layer 110, and only expose the gallium nitride-based particles 107 that are scheduled to be removed later, and will not attack the mask from above the mask material layer 110. The thickness of the material layer 110 causes impairment. Therefore, the formed mask layer 112 can be used in the subsequent dry etching step to protect the GaN-based semiconductor layer 106 located below the device region A from being damaged by the dry etching step, for example, it may not be subjected to the dry etching step. Damage to the plasma.

接著,請參照第1E圖,進行第一乾式蝕刻步驟160以移除氮化鎵系顆粒107。實施例中,進行第一乾式蝕刻步驟160包含施加第一偏壓功率,且第一偏壓功率例如是等於或大於1500瓦(W)。Next, referring to FIG. 1E, perform a first dry etching step 160 to remove the gallium nitride particles 107. In an embodiment, performing the first dry etching step 160 includes applying a first bias power, and the first bias power is, for example, equal to or greater than 1500 watts (W).

在將氮化鎵系半導體材料磊晶成長在矽層104上時,氮化鎵系半導體材料也會磊晶成長於基底102上。由於附著於基底102上的氮化鎵系顆粒107很有可能會在後續的製程中脫落,因而污染後續的製程,這導致氮化鎵系顆粒107成為半導體結構的製程中的可能缺陷源(defect source)。另一方面,氮化鎵系顆粒107相對於基底102又仍具有一定程度的附著力,不僅採用濕式蝕刻方式無法有效移除氮化鎵系顆粒107,採用能量不足的乾式蝕刻製程同樣無法有效地將氮化鎵系顆粒107清除乾淨。根據本揭露內容之實施例,採用等於或大於1500瓦的偏壓功率來進行第一乾式蝕刻步驟160,能夠有效地將氮化鎵系顆粒107清除乾淨,避免氮化鎵系顆粒107成為半導體結構的製程中的缺陷源,因而可以提高半導體結構的製程的良率。When the gallium nitride-based semiconductor material is epitaxially grown on the silicon layer 104, the gallium nitride-based semiconductor material will also be epitaxially grown on the substrate 102. Since the gallium nitride-based particles 107 attached to the substrate 102 are likely to fall off during the subsequent manufacturing process, the subsequent manufacturing process will be contaminated, which causes the gallium nitride-based particles 107 to become a possible source of defects in the manufacturing process of the semiconductor structure. source). On the other hand, the gallium nitride particles 107 still have a certain degree of adhesion to the substrate 102. Not only the wet etching method cannot effectively remove the gallium nitride particles 107, but the dry etching process with insufficient energy is also not effective. Ground the gallium nitride-based particles 107 are removed. According to the embodiment of the present disclosure, the first dry etching step 160 is performed with a bias power equal to or greater than 1500 watts, which can effectively remove the gallium nitride particles 107 and prevent the gallium nitride particles 107 from becoming a semiconductor structure The source of defects in the process can improve the yield of the semiconductor structure.

在一些實施例中,第一偏壓功率例如是等於或大於1800瓦。在一些實施例中,第一偏壓功率例如是約1800瓦至約2000瓦。In some embodiments, the first bias power is, for example, equal to or greater than 1800 watts. In some embodiments, the first bias power is, for example, about 1800 watts to about 2000 watts.

根據本揭露內容之實施例,當第一偏壓功率等於或大於1800瓦時,使得第一乾式蝕刻步驟160的偏壓功率基本上大於半導體結構的後續所有乾式製程所採用的偏壓功率。因此,採用等於或大於1800瓦的偏壓功率進行第一乾式蝕刻步驟160,可以有效確保即使此階段仍有部分的氮化鎵系顆粒107未被移除,也不可能在後續的製程中被採用低於1800瓦的其他乾式蝕刻製程的較小能量所移除,因此可以有效避免氮化鎵系顆粒107成為半導體結構的製程中的缺陷源,因而可以提高半導體結構的製程的良率。According to an embodiment of the present disclosure, when the first bias power is equal to or greater than 1800 watts, the bias power of the first dry etching step 160 is substantially greater than the bias power used in all subsequent dry processes of the semiconductor structure. Therefore, using a bias power equal to or greater than 1800 watts to perform the first dry etching step 160 can effectively ensure that even at this stage, some of the gallium nitride particles 107 have not been removed, and they cannot be removed in the subsequent process. The lower energy of other dry etching processes lower than 1800 watts is used to remove, so the gallium nitride-based particles 107 can be effectively prevented from becoming a source of defects in the process of semiconductor structure, and the yield of the process of semiconductor structure can be improved.

在一些實施例中,第一乾式蝕刻步驟160可包含使用含氟蝕刻劑、含氯蝕刻劑、或上述之組合之蝕刻劑。在一些實施例中,蝕刻劑可包含SF6 、CF4 、CHF3 、CH2 F2 、CH3 F、Cl2 、或上述的任意組合。在一實施例中,第一乾式蝕刻步驟160所使用的蝕刻劑可包含SF6 、CF4 、Cl2 、或上述的組合。In some embodiments, the first dry etching step 160 may include using a fluorine-containing etchant, a chlorine-containing etchant, or a combination of the foregoing etchant. In some embodiments, the etchant may include SF 6 , CF 4 , CHF 3 , CH 2 F 2 , CH 3 F, Cl 2 , or any combination of the foregoing. In one embodiment, the etchant used in the first dry etching step 160 may include SF 6 , CF 4 , Cl 2 , or a combination thereof.

根據本揭露內容之實施例,採用含氟蝕刻劑及/或含氯蝕刻劑,可以更有效地蝕刻移除氮化鎵系顆粒107及其殘留在表面的污染物。According to the embodiments of the present disclosure, the use of a fluorine-containing etchant and/or a chlorine-containing etchant can more effectively remove the gallium nitride particles 107 and the contaminants remaining on the surface.

在一些實施例中,第一乾式蝕刻步驟160例如是乾式電漿蝕刻製程,且進行約100秒至約400秒。在一實施例中,第一乾式蝕刻步驟160例如進行約200秒。In some embodiments, the first dry etching step 160 is, for example, a dry plasma etching process and is performed for about 100 seconds to about 400 seconds. In one embodiment, the first dry etching step 160 is performed for about 200 seconds, for example.

根據本揭露內容之實施例,乾式電漿蝕刻製程進行的時間在100秒以上而在400秒內,因此能夠持續足夠的時間以累積足夠的能量將氮化鎵系顆粒107移除,同時又能夠避免過長時間導致的過度的電漿蝕刻對基底102的上表面102a可能造成的損傷,因此可以有效地移除氮化鎵系顆粒107並且保持基底102的上表面102a的結構完整。According to the embodiment of the present disclosure, the dry plasma etching process takes more than 100 seconds but within 400 seconds, so it can last enough time to accumulate enough energy to remove the gallium nitride particles 107, and at the same time can To avoid possible damage to the upper surface 102a of the substrate 102 caused by excessive plasma etching caused by too long, therefore, the gallium nitride-based particles 107 can be effectively removed and the structure of the upper surface 102a of the substrate 102 is kept intact.

在一些實施例中,可將如第1D圖所示的結構放置在蝕刻設備的蝕刻腔室(未繪示)中的載台(未繪示)上,透過蝕刻設備的噴灑頭(未繪示)將蝕刻劑均勻地分散至蝕刻腔室中,然後透過蝕刻設備的偏壓功率產生源(未繪示)施加偏壓功率至蝕刻腔室,以產生偏壓電場在蝕刻設備的上電極(未繪示,通常設置於蝕刻腔室的頂部)與下電極(未繪示,通常設置於蝕刻腔室的載台內部)之間。蝕刻劑在蝕刻腔室中受到偏壓電場的加速,且朝著載台的方向,從遮罩層112的上方對如第1D圖所示的結構進行非等向性(anisotrpic)乾式蝕刻製程。在一些實施例中,請參照第1D圖,非等向性乾式蝕刻製程例如是施加在從遮罩層112暴露出來的氮化鎵系半導體層106的邊緣部分的上表面106a上及基底102的上表面102a的邊緣區域102P上。In some embodiments, the structure shown in FIG. 1D can be placed on a stage (not shown) in the etching chamber (not shown) of the etching equipment, through the spray head (not shown) of the etching equipment ) Disperse the etchant evenly into the etching chamber, and then apply bias power to the etching chamber through a bias power generation source (not shown) of the etching equipment to generate a bias voltage field on the upper electrode ( Not shown, usually set at the top of the etching chamber) and the bottom electrode (not shown, usually set inside the carrier of the etching chamber). The etchant is accelerated by the bias electric field in the etching chamber, and in the direction of the stage, an anisotrpic dry etching process is performed on the structure shown in Figure 1D from above the mask layer 112 . In some embodiments, referring to Figure 1D, an anisotropic dry etching process is applied, for example, on the upper surface 106a of the edge portion of the gallium nitride semiconductor layer 106 exposed from the mask layer 112 and on the substrate 102 On the edge area 102P of the upper surface 102a.

在一些實施例中,如第1E圖所示,第一乾式蝕刻步驟160移除基底102的上表面102a的邊緣區域102P上的氮化鎵系顆粒107。在一些實施例中,如第1E圖所示,第一乾式蝕刻步驟160也部分地移除從遮罩層112暴露出來的氮化鎵系半導體層106與矽層104,使得形成的氮化鎵系半導體層106’在未被遮罩層112所保護的區域具有傾斜的側壁,且形成的矽層104’ 在未被遮罩層112所保護的區域具有傾斜的側壁。In some embodiments, as shown in FIG. 1E, the first dry etching step 160 removes the gallium nitride-based particles 107 on the edge region 102P of the upper surface 102a of the substrate 102. In some embodiments, as shown in FIG. 1E, the first dry etching step 160 also partially removes the gallium nitride semiconductor layer 106 and the silicon layer 104 exposed from the mask layer 112, so that the formed gallium nitride The semiconductor layer 106 ′ has inclined sidewalls in the areas not protected by the mask layer 112, and the formed silicon layer 104 ′ has inclined sidewalls in the areas not protected by the mask layer 112.

在一些實施例中,如第1E圖所示,氮化鎵系半導體層106’的側壁與矽層104’的側壁形成一個連續傾斜側壁,此連續傾斜側壁與基底102的上表面102a之間的夾角例如是小於90度。在一些實施例中,此連續傾斜側壁與基底102的上表面102a之間的夾角例如是約50度至約85度。In some embodiments, as shown in FIG. 1E, the sidewalls of the gallium nitride-based semiconductor layer 106' and the sidewalls of the silicon layer 104' form a continuous sloped sidewall, and the gap between the continuous sloped sidewall and the upper surface 102a of the substrate 102 The included angle is, for example, less than 90 degrees. In some embodiments, the angle between the continuously inclined sidewall and the upper surface 102a of the base 102 is, for example, about 50 degrees to about 85 degrees.

在一些實施例中,如第1E圖所示,氮化鎵系半導體層106’的側壁與底表面106b之間的夾角θ2例如是小於90度。在一些實施例中,如第1E圖所示,氮化鎵系半導體層106’的側壁與底表面106b之間的夾角θ2例如是約50度至約85度。In some embodiments, as shown in FIG. 1E, the angle θ2 between the sidewall of the gallium nitride-based semiconductor layer 106' and the bottom surface 106b is, for example, less than 90 degrees. In some embodiments, as shown in FIG. 1E, the angle θ2 between the sidewall of the gallium nitride-based semiconductor layer 106' and the bottom surface 106b is, for example, about 50 degrees to about 85 degrees.

在一些實施例中,如第1E圖所示,矽層104’的側壁與底表面104b之間的夾角θ3例如是小於90度。在一些實施例中,如第1E圖所示,矽層104’的側壁與底表面104b之間的夾角θ3例如是約50度至約85度。在一些實施例中,夾角θ2與夾角θ3可以是相同的或相異的。In some embodiments, as shown in FIG. 1E, the angle θ3 between the sidewall of the silicon layer 104' and the bottom surface 104b is, for example, less than 90 degrees. In some embodiments, as shown in FIG. 1E, the angle θ3 between the sidewall of the silicon layer 104' and the bottom surface 104b is, for example, about 50 degrees to about 85 degrees. In some embodiments, the included angle θ2 and the included angle θ3 may be the same or different.

請參照第1F圖,在進行第一乾式蝕刻步驟160之後,移除遮罩層112。一些實施例中,例如可以使用灰化(ash)製程來移除遮罩層112。Please refer to FIG. 1F. After performing the first dry etching step 160, the mask layer 112 is removed. In some embodiments, for example, an ash process may be used to remove the mask layer 112.

在一些實施例中,移除遮罩層112之後,可進一步進行清洗步驟170,使用清洗液來清洗氮化鎵系半導體層106’與基底102的上表面102a的邊緣區域102P。在一些實施例中,清洗液可包含氨水(NH4 OH)、硫酸(H2 SO4 )、雙氧水(H2 O2 )、水、或上述的任意組合。In some embodiments, after the mask layer 112 is removed, a cleaning step 170 may be further performed to clean the gallium nitride-based semiconductor layer 106 ′ and the edge region 102P of the upper surface 102 a of the substrate 102 with a cleaning solution. In some embodiments, the cleaning solution may include ammonia (NH 4 OH), sulfuric acid (H 2 SO 4 ), hydrogen peroxide (H 2 O 2 ), water, or any combination of the foregoing.

在一些實施例中,可以使用硫酸與雙氧水(體積比為約2~4:1)的混合液以約130°C的溫度清洗掉移除遮罩層112後可能殘留的遮罩材料,並且可以使用氨水、雙氧水與水(體積比為約0.05~1:1:1)的混合液以約70°C的溫度清洗掉移除氮化鎵系顆粒107後可能殘留的金屬微粒。In some embodiments, a mixture of sulfuric acid and hydrogen peroxide (volume ratio of about 2~4:1) can be used to wash away the mask material that may remain after removing the mask layer 112 at a temperature of about 130°C, and Use a mixed solution of ammonia, hydrogen peroxide and water (volume ratio of about 0.05-1:1:1) to wash away metal particles that may remain after removing the gallium nitride particles 107 at a temperature of about 70°C.

根據本揭露內容的實施例,使用清洗液來清洗氮化鎵系半導體層106’與基底102的上表面102a的邊緣區域102P可以進一步將殘留的遮罩材料及/或殘留的金屬微粒清洗乾淨。至此,形成如第1F圖所示的半導體結構100。According to the embodiments of the present disclosure, using a cleaning solution to clean the GaN-based semiconductor layer 106' and the edge area 102P of the upper surface 102a of the substrate 102 can further clean the remaining mask material and/or remaining metal particles. So far, the semiconductor structure 100 as shown in FIG. 1F is formed.

接著,根據本揭露內容的實施例,可在氮化鎵系半導體層106’之上形成半導體材料層,以及進行乾式蝕刻製程以在此半導體材料層中形成至少一凹陷,且進行此乾式蝕刻製程所施加的偏壓功率小於第一乾式蝕刻步驟160的第一偏壓功率。在一些實施例中,在氮化鎵系半導體層106’之上形成的半導體材料層例如包含氮化鎵半導體層、氮化鎵鋁(Alx Ga1-x N,其中0<x<1)半導體層、其他適用的類似的氮化鎵系半導體層、或上述之任意組合。Next, according to an embodiment of the present disclosure, a semiconductor material layer may be formed on the gallium nitride-based semiconductor layer 106', and a dry etching process may be performed to form at least one recess in the semiconductor material layer, and the dry etching process may be performed The applied bias power is less than the first bias power of the first dry etching step 160. In some embodiments, the semiconductor material layer formed on the gallium nitride-based semiconductor layer 106' includes, for example, a gallium nitride semiconductor layer and aluminum gallium nitride (Al x Ga 1-x N, where 0<x<1) Semiconductor layer, other applicable similar GaN-based semiconductor layers, or any combination of the above.

本揭露內容的實施例中,除了在氮化鎵系半導體層106’之上形成半導體材料層以形成不同實施例之半導體結構,亦可以進一步將包含氮化鎵系半導體材料的其他裝置及/或元件形成於如第1F圖所示的半導體結構100上,以形成本揭露內容的其他進一步實施例的半導體結構。舉例而言,包含氮化鎵系半導體材料的半導體裝置可以是例如發光二極體(LED)、高電子遷移率電晶體(HEMT)、蕭特基二極體(SBD)、雙載體電晶體(BJT)、接面場效電晶體(JFET)、絕緣閘雙極電晶體(IGBT)、或其他類似裝置。以下,以高電子遷移率電晶體(HEMT)作為範例,說明將半導體裝置形成於第1F圖的半導體結構100上的實施例。In the embodiments of the present disclosure, in addition to forming a semiconductor material layer on the gallium nitride-based semiconductor layer 106' to form semiconductor structures of different embodiments, other devices and/or other devices including gallium nitride-based semiconductor materials can also be further used. The device is formed on the semiconductor structure 100 as shown in FIG. 1F to form a semiconductor structure according to other further embodiments of the disclosure. For example, a semiconductor device containing a gallium nitride-based semiconductor material may be, for example, a light emitting diode (LED), a high electron mobility transistor (HEMT), a Schottky diode (SBD), a dual carrier transistor ( BJT), junction field effect transistor (JFET), insulated gate bipolar transistor (IGBT), or other similar devices. Hereinafter, a high electron mobility transistor (HEMT) is taken as an example to describe an embodiment in which a semiconductor device is formed on the semiconductor structure 100 in FIG. 1F.

第2A至2E圖是根據本揭露內容的一些實施例,說明使用第1F圖的半導體結構進一步形成高電子遷移率電晶體在各個不同階段的剖面示意圖。本實施例中與前述實施例相同或相似的元件係沿用同樣或相似的元件標號,且相同或相似元件的相關說明請參考前述,在此不再贅述。FIGS. 2A to 2E are cross-sectional schematic diagrams illustrating the use of the semiconductor structure of FIG. 1F to further form a high electron mobility transistor at various stages according to some embodiments of the present disclosure. In this embodiment, the same or similar component numbers are used for the same or similar components in the previous embodiments, and the related description of the same or similar components please refer to the foregoing description, which will not be repeated here.

在以下如第2A圖至第2E圖的實施例中,僅繪示本揭露內容之實施例的半導體結構的裝置區域A,用以說明進一步將其他裝置及/或元件形成於第1F圖的半導體結構上,以形成其他進一步實施例的具有高電子遷移率電晶體的半導體結構。在以下如第2A圖至第2E圖的實施例中,第2A圖至第2E圖中的氮化鎵(GaN)半導體層204例如是前述的氮化鎵系半導體層106’的一個範例,第2A圖至第2E圖中氮化鎵鋁半導體層206例如是前述的半導體材料層的一個範例,但本揭露內容的實施例並不限於此。In the following embodiments as shown in FIG. 2A to FIG. 2E, only the device area A of the semiconductor structure of the embodiment of the present disclosure is shown to illustrate that other devices and/or elements are further formed on the semiconductor of FIG. 1F Structurally, to form other further embodiments of semiconductor structures with high electron mobility transistors. In the following embodiments as shown in FIGS. 2A to 2E, the gallium nitride (GaN) semiconductor layer 204 in FIGS. 2A to 2E is, for example, an example of the aforementioned gallium nitride semiconductor layer 106'. The aluminum gallium nitride semiconductor layer 206 in FIGS. 2A to 2E is, for example, an example of the aforementioned semiconductor material layer, but the embodiments of the disclosure are not limited thereto.

請參照第2A圖,在氮化鎵半導體層204(例如是前述的氮化鎵系半導體層106’)上形成氮化鎵鋁半導體層206(例如是前述的半導體材料層)。氮化鎵半導體層204與氮化鎵鋁半導體層206之間具有異質界面,可使二維電子氣(two-dimensional electron gas,2DEG)(未顯示)形成於此異質界面上,因此,如第2E圖所示之高電子遷移率電晶體200可利用二維電子氣作為導電載子。在一些實施例中,氮化鎵鋁半導體層206可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、適用的類似方法、或上述之任意組合。在一些實施例中,氮化鎵半導體層204和氮化鎵鋁半導體層206可具有摻雜物,例如n型摻雜物或p型摻雜物。Referring to FIG. 2A, an aluminum gallium nitride semiconductor layer 206 (for example, the aforementioned semiconductor material layer) is formed on the gallium nitride semiconductor layer 204 (for example, the aforementioned gallium nitride-based semiconductor layer 106'). There is a heterogeneous interface between the gallium nitride semiconductor layer 204 and the aluminum gallium nitride semiconductor layer 206, so that two-dimensional electron gas (2DEG) (not shown) can be formed on this heterogeneous interface. The high electron mobility transistor 200 shown in Fig. 2E can use two-dimensional electron gas as conductive carriers. In some embodiments, the aluminum gallium nitride semiconductor layer 206 may be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE) , Applicable similar methods, or any combination of the above. In some embodiments, the gallium nitride semiconductor layer 204 and the gallium aluminum nitride semiconductor layer 206 may have dopants, such as n-type dopants or p-type dopants.

接著,在氮化鎵半導體層204(例如是前述的氮化鎵系半導體層106’)上形成含矽絕緣層208。在一些實施例中,含矽絕緣層208可以是利用原子層沉積(ALD)、熱氧化製程或類似沉積製程形成的高品質薄膜,其材料可以是氧化矽、氮化矽、氮氧化矽、適用的類似材料、或上述之任意組合。在氮化鎵鋁半導體層206上形成高品質薄膜的含矽絕緣層208,可防止後續形成的源極接觸件(第一接觸件220)、汲極接觸件(第二接觸件222)和閘極接觸件(第三接觸件228)(顯示於第2E圖)之漏電流。Next, an insulating layer 208 containing silicon is formed on the gallium nitride semiconductor layer 204 (for example, the aforementioned gallium nitride-based semiconductor layer 106'). In some embodiments, the silicon-containing insulating layer 208 can be a high-quality thin film formed by atomic layer deposition (ALD), thermal oxidation process or similar deposition process, and its material can be silicon oxide, silicon nitride, silicon oxynitride, suitable Similar materials or any combination of the above. Forming a high-quality thin silicon-containing insulating layer 208 on the gallium aluminum nitride semiconductor layer 206 can prevent the subsequent formation of source contacts (first contact 220), drain contacts (second contact 222), and gate The leakage current of the pole contact (third contact 228) (shown in Figure 2E).

如第2A圖所示,在含矽絕緣層208上形成遮罩層210的材料層,並且利用光微影技術在遮罩層210的材料層中形成第一開口212和第二開口214,第一開口212和第二開口214暴露出含矽絕緣層208之上表面之一部份。As shown in FIG. 2A, a material layer of the mask layer 210 is formed on the silicon-containing insulating layer 208, and a first opening 212 and a second opening 214 are formed in the material layer of the mask layer 210 using photolithography technology. An opening 212 and a second opening 214 expose a part of the upper surface of the silicon-containing insulating layer 208.

接著,請參照第2B圖,通過遮罩層210的第一開口212和第二開口214,進行第二乾式蝕刻步驟510以在含矽絕緣層208中形成第一凹陷216’和第二凹陷218’。在一些實施例中,進行第二乾式蝕刻步驟510包含施加第二偏壓功率,且第二偏壓功率小於第一偏壓功率。根據本揭露內容之實施例,因為第二偏壓功率小於第一偏壓功率,即使仍有部分氮化鎵系顆粒107未被第一乾式蝕刻步驟160所移除,第二乾式蝕刻步驟510仍不會造成氮化鎵系顆粒107脫落,因此能避免製程良率受到不良的影響。在一些實施例中,第二偏壓功率例如是約100瓦至約500瓦。Next, referring to FIG. 2B, a second dry etching step 510 is performed through the first opening 212 and the second opening 214 of the mask layer 210 to form a first recess 216' and a second recess 218 in the silicon-containing insulating layer 208 '. In some embodiments, performing the second dry etching step 510 includes applying a second bias power, and the second bias power is less than the first bias power. According to the embodiment of the present disclosure, because the second bias power is less than the first bias power, even if some of the gallium nitride particles 107 are not removed by the first dry etching step 160, the second dry etching step 510 is still It will not cause the gallium nitride particles 107 to fall off, so it can prevent the process yield from being adversely affected. In some embodiments, the second bias power is, for example, about 100 watts to about 500 watts.

接著,請參照第2C圖,進行第三乾式蝕刻步驟520以蝕刻氮化鎵半導體層204(例如是前述的氮化鎵系半導體層106’)而將第一凹陷216’和第二凹陷218’延伸至氮化鎵鋁半導體層206中,而產生第一凹陷216和第二凹陷218。在一些實施例中,進行第三乾式蝕刻步驟520包含施加第三偏壓功率,且第三偏壓功率小於第一偏壓功率。根據本揭露內容之實施例,因為第三偏壓功率小於第一偏壓功率,即使仍有部分氮化鎵系顆粒107未被第一乾式蝕刻步驟160所移除,第三乾式蝕刻步驟520仍不會造成氮化鎵系顆粒107脫落,因此能避免製程良率受到不良的影響。在一些實施例中,第三偏壓功率例如是約1000瓦至約1350瓦。Next, referring to FIG. 2C, perform a third dry etching step 520 to etch the gallium nitride semiconductor layer 204 (for example, the aforementioned gallium nitride semiconductor layer 106') to align the first recess 216' and the second recess 218' Extending into the aluminum gallium nitride semiconductor layer 206, a first recess 216 and a second recess 218 are generated. In some embodiments, performing the third dry etching step 520 includes applying a third bias power, and the third bias power is less than the first bias power. According to the embodiment of the present disclosure, because the third bias power is less than the first bias power, even if some of the gallium nitride particles 107 are not removed by the first dry etching step 160, the third dry etching step 520 is still It will not cause the gallium nitride particles 107 to fall off, so it can prevent the process yield from being adversely affected. In some embodiments, the third bias power is, for example, about 1000 watts to about 1350 watts.

接著,請參照第2D圖,在第三乾式蝕刻步驟520之後,可進行灰化製程移除含矽絕緣層208上的遮罩層210。Next, referring to FIG. 2D, after the third dry etching step 520, an ashing process may be performed to remove the mask layer 210 on the silicon-containing insulating layer 208.

接著,請參照第2D圖,在第一凹陷216和第二凹陷218中分別形成第一接觸件220和第二接觸件222。在一些實施例中,第一接觸件220例如是源極接觸件,第二接觸件222例如是汲極接觸件。第一接觸件220和第二接觸件222位於氮化鎵鋁半導體層206上,且與氮化鎵鋁半導體層206電性接觸。在一些實施例中,第一接觸件220和第二接觸件222可不填滿第一凹陷216和第二凹陷218,而是沿著第一凹陷216和第二凹陷218的側壁和底面形成,並延伸至部份含矽絕緣層208的表面上。在一些實施例中,第一接觸件220和第二接觸件222的材料可以是導電材料,例如Au、Ni、Pt、Pd、Ir、Ti、Cr、W、Al、Cu、TaN、TiN、WSi2 、適用的類似材料、或上述之任意組合,且第一接觸件220和第二接觸件222可由原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(physical vapor deposition,PVD)、濺鍍、或適用的類似製程形成。在一些實施例中,第一接觸件220和第二接觸件222可在相同的沉積製程中一起形成。Next, referring to FIG. 2D, a first contact 220 and a second contact 222 are formed in the first recess 216 and the second recess 218, respectively. In some embodiments, the first contact 220 is, for example, a source contact, and the second contact 222 is, for example, a drain contact. The first contact 220 and the second contact 222 are located on the aluminum gallium nitride semiconductor layer 206 and are in electrical contact with the aluminum gallium nitride semiconductor layer 206. In some embodiments, the first contact member 220 and the second contact member 222 may not fill the first recess 216 and the second recess 218, but are formed along the sidewall and bottom surface of the first recess 216 and the second recess 218, and Extend to part of the surface of the silicon-containing insulating layer 208. In some embodiments, the material of the first contact 220 and the second contact 222 may be conductive materials, such as Au, Ni, Pt, Pd, Ir, Ti, Cr, W, Al, Cu, TaN, TiN, WSi 2. Applicable similar materials, or any combination of the above, and the first contact 220 and the second contact 222 can be made by atomic layer deposition (ALD), chemical vapor deposition (CVD), or physical vapor deposition (physical vapor deposition, PVD), sputtering, or applicable similar processes. In some embodiments, the first contact 220 and the second contact 222 may be formed together in the same deposition process.

接著,在一些實施例中,如第2E圖所示,在第一接觸件220和第二接觸件222上形成鈍化層224,鈍化層224覆蓋第一接觸件220和第二接觸件222。在一些實施例中,鈍化層224的材料可以是氮化矽、氧化矽、氮氧化矽、適用的類似材料、或上述之任意組合。在一些實施例中,鈍化層224可由化學氣相沉積(CVD)、電漿輔助化學氣相沉積(PECVD)、原子層沉積(ALD)、或適用的類似方法形成。Next, in some embodiments, as shown in FIG. 2E, a passivation layer 224 is formed on the first contact 220 and the second contact 222, and the passivation layer 224 covers the first contact 220 and the second contact 222. In some embodiments, the material of the passivation layer 224 may be silicon nitride, silicon oxide, silicon oxynitride, suitable similar materials, or any combination of the foregoing. In some embodiments, the passivation layer 224 may be formed by chemical vapor deposition (CVD), plasma assisted chemical vapor deposition (PECVD), atomic layer deposition (ALD), or a suitable similar method.

接著,在一些實施例中,如第2E圖所示,利用光微影技術和蝕刻製程在鈍化層224中形成第三凹陷226,第三凹陷226位於第一接觸件220和第二接觸件222之間。接著,在第一接觸件220和第二接觸件222之間的第三凹陷226中形成第三接觸件228。在一些實施例中,第三接觸件228例如是閘極接觸件,至此則形成高電子遷移率電晶體200。在一些實施例中,第三接觸件228位於含矽絕緣層208上,且位於第一接觸件220和第二接觸件222之間。在一些實施例中,第三接觸件228可不填滿第三凹陷226,而是沿著第三凹陷226的側壁和底面形成,並延伸至部份鈍化層224的表面上。在一些實施例中,第三接觸件228的材料可以是導電材料,例如Au、Ni、Pt、Pd、Ir、Ti、Cr、W、Al、Cu、TaN、TiN、WSi2 、適用的類似材料、或上述之任意組合,且第三接觸件228可由原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(PVD)、濺鍍、或適用的類似製程形成。第一接觸件220和第二接觸件222最後可經由穿過鈍化層224的金屬層(未顯示)與外部電路電性連接。Next, in some embodiments, as shown in FIG. 2E, a third recess 226 is formed in the passivation layer 224 using photolithography technology and an etching process, and the third recess 226 is located in the first contact 220 and the second contact 222 between. Next, a third contact 228 is formed in the third recess 226 between the first contact 220 and the second contact 222. In some embodiments, the third contact 228 is, for example, a gate contact, and the high electron mobility transistor 200 is formed so far. In some embodiments, the third contact 228 is located on the silicon-containing insulating layer 208 and between the first contact 220 and the second contact 222. In some embodiments, the third contact 228 may not fill the third recess 226 but is formed along the sidewall and bottom surface of the third recess 226 and extends to a part of the surface of the passivation layer 224. In some embodiments, the material of the third contact 228 may be a conductive material, such as Au, Ni, Pt, Pd, Ir, Ti, Cr, W, Al, Cu, TaN, TiN, WSi 2 , suitable similar materials , Or any combination of the above, and the third contact 228 can be formed by atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), sputtering, or a suitable similar process. The first contact 220 and the second contact 222 can finally be electrically connected to an external circuit through a metal layer (not shown) passing through the passivation layer 224.

以上概述數個實施例,以便在本發明所屬技術領域中具有通常知識者可以更理解本發明之實施例的觀點。在本發明所屬技術領域中具有通常知識者應該理解,他們能以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。Several embodiments are summarized above so that those with ordinary knowledge in the technical field of the present invention can better understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the technical field of the present invention should understand that they can design or modify other processes and structures based on the embodiments of the present invention to achieve the same purpose and/or advantages as the embodiments described herein. Those with ordinary knowledge in the technical field to which the present invention pertains should also understand that such equivalent manufacturing processes and structures do not depart from the spirit and scope of the present invention, and they can, without departing from the spirit and scope of the present invention, Make all kinds of changes, substitutions and replacements.

100:半導體結構102:基底102a、106a、110a、112a:上表面102P:邊緣區域104、104’:矽層104b、106b:底表面106、106’:氮化鎵系半導體層107:氮化鎵系顆粒110:遮罩材料層110P:外周部112、210:遮罩層150:晶邊清除步驟160:第一乾式蝕刻步驟170:清洗步驟200:高電子遷移率電晶體204:氮化鎵半導體層206:氮化鎵鋁半導體層208:含矽絕緣層212:第一開口214:第二開口216、216’:第一凹陷218、218’:第二凹陷220:第一接觸件222:第二接觸件224:鈍化層226:第三凹陷228:第三接觸件510:第二乾式蝕刻步驟520:第三乾式蝕刻步驟A:裝置區域D1、D2:距離E:邊界P:直徑R1:噴灑方向θ、θ1、θ2、θ3:夾角100: semiconductor structure 102: substrate 102a, 106a, 110a, 112a: upper surface 102P: edge area 104, 104': silicon layer 104b, 106b: bottom surface 106, 106': gallium nitride semiconductor layer 107: gallium nitride System particles 110: mask material layer 110P: outer peripheral portion 112, 210: mask layer 150: crystal edge removal step 160: first dry etching step 170: cleaning step 200: high electron mobility transistor 204: gallium nitride semiconductor Layer 206: aluminum gallium nitride semiconductor layer 208: silicon-containing insulating layer 212: first opening 214: second opening 216, 216': first recess 218, 218': second recess 220: first contact 222: first Second contact 224: passivation layer 226: third recess 228: third contact 510: second dry etching step 520: third dry etching step A: device area D1, D2: distance E: boundary P: diameter R1: spraying Direction θ, θ1, θ2, θ3: included angle

為讓本揭露內容之特徵和優點能更明顯易懂,下文特舉不同實施例,並配合所附圖式作詳細說明如下: 第1A至1F圖是根據本揭露內容的一些實施例,說明形成半導體結構在各個不同階段的剖面示意圖。 第2A至2E圖是根據本揭露內容的一些實施例,說明使用第1F圖的半導體結構進一步形成高電子遷移率電晶體在各個不同階段的剖面示意圖。In order to make the features and advantages of this disclosure more comprehensible, different embodiments are specifically cited below, together with the accompanying drawings, for detailed descriptions as follows: Figures 1A to 1F are based on some embodiments of the disclosure, illustrating the formation Cross-sectional schematic diagrams of the semiconductor structure at various stages. FIGS. 2A to 2E are cross-sectional schematic diagrams illustrating the use of the semiconductor structure of FIG. 1F to further form a high electron mobility transistor at various stages according to some embodiments of the present disclosure.

100:半導體結構 100: semiconductor structure

102:基底 102: Base

104’:矽層 104’: Silicon layer

106’:氮化鎵系半導體層 106’: Gallium nitride semiconductor layer

170:清洗步驟 170: Cleaning steps

A:裝置區域 A: Device area

E:邊界 E: boundary

P:直徑 P: diameter

Claims (20)

一種半導體結構的製造方法,包括: 提供一基底; 在該基底上形成一矽層,其中該基底的一上表面的一邊緣區域從該矽層暴露出來; 將一氮化鎵系(GaN-based)半導體材料磊晶成長在該矽層與該基底上,以形成一氮化鎵系半導體層於該矽層上以及複數個氮化鎵系顆粒於該基底的該上表面的該邊緣區域上;以及 進行一第一乾式蝕刻步驟以移除該些氮化鎵系顆粒,其中進行該第一乾式蝕刻步驟包括施加一第一偏壓功率,且該第一偏壓功率係為等於或大於1500瓦。A method for manufacturing a semiconductor structure includes: providing a substrate; forming a silicon layer on the substrate, wherein an edge region of an upper surface of the substrate is exposed from the silicon layer; and applying a GaN-based ) A semiconductor material is epitaxially grown on the silicon layer and the substrate to form a gallium nitride semiconductor layer on the silicon layer and a plurality of gallium nitride particles on the edge region of the upper surface of the substrate; And performing a first dry etching step to remove the gallium nitride particles, wherein performing the first dry etching step includes applying a first bias power, and the first bias power is equal to or greater than 1500 watts . 如申請專利範圍第1項所述之半導體結構的製造方法,其中該第一偏壓功率係為1800瓦至2000瓦。According to the manufacturing method of the semiconductor structure described in the first item of the scope of patent application, the first bias power is 1800 watts to 2000 watts. 如申請專利範圍第1項所述之半導體結構的製造方法,其中進行該第一乾式蝕刻步驟包括使用一含氟蝕刻劑、一含氯蝕刻劑、或上述之組合。According to the manufacturing method of the semiconductor structure described in claim 1, wherein performing the first dry etching step includes using a fluorine-containing etchant, a chlorine-containing etchant, or a combination thereof. 如申請專利範圍第1項所述之半導體結構的製造方法,其中該第一乾式蝕刻步驟係為一乾式電漿蝕刻製程,且進行100秒至400秒。According to the manufacturing method of the semiconductor structure described in the first item of the scope of patent application, the first dry etching step is a dry plasma etching process and is performed for 100 seconds to 400 seconds. 如申請專利範圍第1項所述之半導體結構的製造方法,更包括: 在進行該第一乾式蝕刻步驟之前,在該氮化鎵系半導體層上形成一遮罩層,其中該氮化鎵系半導體層的一邊緣部分的一上表面及該基底的該上表面的該邊緣區域從該遮罩層暴露出來。The method for manufacturing a semiconductor structure as described in claim 1 further includes: before performing the first dry etching step, forming a mask layer on the gallium nitride semiconductor layer, wherein the gallium nitride semiconductor layer An upper surface of an edge portion of the semiconductor layer and the edge area of the upper surface of the substrate are exposed from the mask layer. 如申請專利範圍第5項所述之半導體結構的製造方法,其中形成該遮罩層包括: 在該氮化鎵系半導體層與該基底上形成一遮罩材料層;以及 對該遮罩材料層的一外周部(outer periphery)進行一晶邊清除(edge bevel removal,EBR)步驟以部分地移除該遮罩材料層並形成該遮罩層。According to the manufacturing method of the semiconductor structure described in claim 5, forming the mask layer includes: forming a mask material layer on the gallium nitride semiconductor layer and the substrate; and the mask material layer An outer periphery of an outer periphery undergoes an edge bevel removal (EBR) step to partially remove the mask material layer and form the mask layer. 如申請專利範圍第6項所述之半導體結構的製造方法,其中進行該晶邊清除(EBR)步驟包括: 從該遮罩材料層的側面對該外周部噴灑一清除液。According to the manufacturing method of the semiconductor structure described in item 6 of the scope of patent application, the step of performing the edge removal (EBR) includes: spraying a cleaning liquid on the outer periphery from the side of the mask material layer. 如申請專利範圍第5項所述之半導體結構的製造方法,其中該第一乾式蝕刻步驟係為一非等向性乾式蝕刻製程,且從該遮罩層的上方進行,該非等向性乾式蝕刻製程係施加在從該遮罩層暴露出來的該氮化鎵系半導體層的該邊緣部分的該上表面上及該基底的該上表面的該邊緣區域上。According to the method of manufacturing a semiconductor structure described in claim 5, the first dry etching step is an anisotropic dry etching process, and is performed from above the mask layer, the anisotropic dry etching The process is applied on the upper surface of the edge portion of the gallium nitride-based semiconductor layer exposed from the mask layer and on the edge area of the upper surface of the substrate. 如申請專利範圍第5項所述之半導體結構的製造方法,其中該第一乾式蝕刻步驟部分地移除從該遮罩層暴露出來的該氮化鎵系半導體層與該矽層,使得該氮化鎵系半導體層的一側壁與該矽層的一側壁形成一連續傾斜側壁。According to the method of manufacturing a semiconductor structure described in claim 5, wherein the first dry etching step partially removes the gallium nitride-based semiconductor layer and the silicon layer exposed from the mask layer, so that the nitrogen A sidewall of the gallium sulfide semiconductor layer and a sidewall of the silicon layer form a continuous inclined sidewall. 如申請專利範圍第5項所述之半導體結構的製造方法,更包括: 在進行該第一乾式蝕刻步驟之後,移除該遮罩層;以及 使用一清洗液以清洗該氮化鎵系半導體層與該基底的該上表面的該邊緣區域,其中該清洗液包括氨水、硫酸、雙氧水、水、或上述的任意組合。The manufacturing method of the semiconductor structure as described in item 5 of the scope of the patent application further includes: after performing the first dry etching step, removing the mask layer; and using a cleaning solution to clean the gallium nitride semiconductor layer And the edge area of the upper surface of the substrate, wherein the cleaning liquid includes ammonia, sulfuric acid, hydrogen peroxide, water, or any combination of the foregoing. 如申請專利範圍第1項所述之半導體結構的製造方法,更包括: 在該氮化鎵系半導體層之上形成一半導體材料層;以及 進行一乾式蝕刻製程以在該半導體材料層中形成至少一凹陷,其中進行該乾式蝕刻製程所施加的一偏壓功率小於該第一乾式蝕刻步驟的該第一偏壓功率。The method for manufacturing a semiconductor structure as described in item 1 of the scope of the patent application further comprises: forming a semiconductor material layer on the gallium nitride semiconductor layer; and performing a dry etching process to form at least A recess, wherein a bias power applied to the dry etching process is less than the first bias power of the first dry etching step. 如申請專利範圍第1項所述之半導體結構的製造方法,更包括: 在該氮化鎵系半導體層上形成一含矽絕緣層;以及 進行一第二乾式蝕刻步驟以在該含矽絕緣層中形成一第一凹陷和一第二凹陷,其中進行該第二乾式蝕刻步驟包括施加一第二偏壓功率,且該第二偏壓功率小於該第一偏壓功率。The manufacturing method of the semiconductor structure described in the first item of the patent application further includes: forming a silicon-containing insulating layer on the gallium nitride-based semiconductor layer; and performing a second dry etching step on the silicon-containing insulating layer A first recess and a second recess are formed, wherein performing the second dry etching step includes applying a second bias power, and the second bias power is less than the first bias power. 如申請專利範圍第12項所述之半導體結構的製造方法,更包括: 進行一第三乾式蝕刻步驟以蝕刻該氮化鎵系半導體層而將該第一凹陷和該第二凹陷延伸至該氮化鎵鋁半導體層中,其中進行該第三乾式蝕刻步驟包括施加一第三偏壓功率,且該第三偏壓功率小於該第一偏壓功率。The method for manufacturing a semiconductor structure as described in claim 12 further includes: performing a third dry etching step to etch the gallium nitride-based semiconductor layer to extend the first recess and the second recess to the nitrogen In the gallium aluminum semiconductor layer, performing the third dry etching step includes applying a third bias power, and the third bias power is less than the first bias power. 如申請專利範圍第13項所述之半導體結構的製造方法,更包括: 在該第一凹陷和該第二凹陷中分別形成一第一接觸件和一第二接觸件;以及 在該第一接觸件和該第二接觸件之間形成一第三接觸件。The method for manufacturing a semiconductor structure as described in item 13 of the scope of the patent application further includes: forming a first contact and a second contact in the first recess and the second recess, respectively; and in the first contact A third contact member is formed between the second contact member and the second contact member. 一種半導體結構,包括: 一氮化鋁基底; 一矽層,形成於氮化鋁基底上,其中該氮化鋁基底的一邊緣區域的一上表面從該矽層暴露出來;以及 一氮化鎵系半導體層,形成於該矽層上,其中該氮化鎵系半導體層的一側壁與一底表面之間的夾角係為小於90度。A semiconductor structure includes: an aluminum nitride substrate; a silicon layer formed on the aluminum nitride substrate, wherein an upper surface of an edge region of the aluminum nitride substrate is exposed from the silicon layer; and a gallium nitride The semiconductor layer is formed on the silicon layer, wherein the angle between a sidewall and a bottom surface of the gallium nitride semiconductor layer is less than 90 degrees. 如申請專利範圍第15項所述之半導體結構,其中該氮化鎵系半導體層的該側壁與該底表面之間的夾角係為50度至85度。In the semiconductor structure described in claim 15, wherein the angle between the sidewall and the bottom surface of the GaN-based semiconductor layer is 50 degrees to 85 degrees. 如申請專利範圍第15項所述之半導體結構,其中該矽層的一側壁與一底表面之間的夾角係為小於90度。In the semiconductor structure described in claim 15, wherein the angle between a sidewall and a bottom surface of the silicon layer is less than 90 degrees. 如申請專利範圍第15項所述之半導體結構,其中該氮化鎵系半導體層的該側壁與該矽層的一側壁形成一連續傾斜側壁,該連續傾斜側壁與該氮化鋁基底的該上表面之間的夾角係為50度至85度。The semiconductor structure according to claim 15, wherein the sidewall of the gallium nitride-based semiconductor layer and a sidewall of the silicon layer form a continuous inclined sidewall, and the continuous inclined sidewall and the upper side of the aluminum nitride substrate The angle between the surfaces is 50 degrees to 85 degrees. 如申請專利範圍第15項所述之半導體結構,其中該氮化鎵系半導體層係為一氮化鎵系磊晶層,直接形成於該矽層的(111)晶面上。According to the semiconductor structure described in item 15 of the scope of patent application, the GaN-based semiconductor layer is a GaN-based epitaxial layer directly formed on the (111) crystal plane of the silicon layer. 如申請專利範圍第15項所述之半導體結構,其中該邊緣區域環繞該矽層。The semiconductor structure described in claim 15, wherein the edge region surrounds the silicon layer.
TW108110210A 2019-03-25 2019-03-25 Semiconducotr structure and method for fabricating the same TWI718506B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108110210A TWI718506B (en) 2019-03-25 2019-03-25 Semiconducotr structure and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108110210A TWI718506B (en) 2019-03-25 2019-03-25 Semiconducotr structure and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW202036793A true TW202036793A (en) 2020-10-01
TWI718506B TWI718506B (en) 2021-02-11

Family

ID=74091099

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108110210A TWI718506B (en) 2019-03-25 2019-03-25 Semiconducotr structure and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI718506B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451480B (en) * 2010-10-08 2014-09-01 Academia Sinica Method for fabricating group iii-nitride semiconductor
TWI433231B (en) * 2010-12-02 2014-04-01 Epistar Corp Method of manufacturing a semiconductor device
CN103400913B (en) * 2013-07-22 2016-03-02 南昌黄绿照明有限公司 A kind of rectangular graph silicon substrate for growing six side phase GaN
CN104157744B (en) * 2014-07-21 2017-07-28 中国电子科技集团公司第五十五研究所 It is a kind of that the method for realizing Buddha's warrior attendant ground mass GaN is shifted based on epitaxial layer
CN108288583B (en) * 2017-01-10 2020-07-10 清华大学 Method for growing gallium nitride epitaxy by silicon substrate
TWI619249B (en) * 2017-05-31 2018-03-21 環球晶圓股份有限公司 High-electron-mobility-transistor structure and formation thereof

Also Published As

Publication number Publication date
TWI718506B (en) 2021-02-11

Similar Documents

Publication Publication Date Title
KR101716049B1 (en) Semiconductor device and method for fabricating the same
TWI422075B (en) A method for forming a filp chip structure of semiconductor optoelectronic device and fabricated thereof
JP5970736B2 (en) Manufacturing method of semiconductor device
JP6134730B2 (en) Enhancement Mode Group III-N High Electron Mobility Transistor with Reverse Polarization Cap
JP2008166469A (en) Nitride semiconductor device and manufacturing method thereof
US10147811B2 (en) Process of forming a high electron mobility transistor (HEMT)
CN103545360A (en) High electron mobility transistor and method of forming the same
KR101932327B1 (en) Semiconductor wafer and method
CN112531025B (en) High electron mobility transistor
JP2007158149A (en) Semiconductor device
CN113990948A (en) Semiconductor device and application and manufacturing method thereof
US20150021666A1 (en) Transistor having partially or wholly replaced substrate and method of making the same
US11011391B2 (en) Semiconductor structure and method for fabricating the same
US11682713B2 (en) Methods of fabricating semiconductor structures with two-step etching
TWI718506B (en) Semiconducotr structure and method for fabricating the same
CN102640258B (en) Method of manufacturing nitride semiconductor device
CN111785609B (en) Semiconductor structure and manufacturing method thereof
JP2010212495A (en) Method of manufacturing hfet composed of group-iii nitride semiconductor
CN109755308B (en) Semiconductor structure and method for manufacturing high electron mobility transistor
TWI653683B (en) Methods for fabricating semiconductor structures and high electron mobility transistors
TW202010125A (en) Semiconductor devices and methods for forming same
JP7057473B1 (en) Semiconductor devices and methods for manufacturing semiconductor devices
US11798899B2 (en) Crack stop ring trench to prevent epitaxy crack propagation
JP2013187285A (en) Epitaxial wafer manufacturing method
US11380786B2 (en) Insulating structure of high electron mobility transistor and manufacturing method thereof