TW202010125A - Semiconductor devices and methods for forming same - Google Patents

Semiconductor devices and methods for forming same Download PDF

Info

Publication number
TW202010125A
TW202010125A TW107128800A TW107128800A TW202010125A TW 202010125 A TW202010125 A TW 202010125A TW 107128800 A TW107128800 A TW 107128800A TW 107128800 A TW107128800 A TW 107128800A TW 202010125 A TW202010125 A TW 202010125A
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor device
compound semiconductor
item
patent application
Prior art date
Application number
TW107128800A
Other languages
Chinese (zh)
Other versions
TWI740058B (en
Inventor
陳志諺
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW107128800A priority Critical patent/TWI740058B/en
Publication of TW202010125A publication Critical patent/TW202010125A/en
Application granted granted Critical
Publication of TWI740058B publication Critical patent/TWI740058B/en

Links

Images

Abstract

A semiconductor device including a channel layer disposed over a substrate; a barrier layer disposed over the channel layer; a compound semiconductor layer and a dopant holding layer disposed over the barrier layer; and a pair of source/drain disposed over the substrate and on both sides of the compound semiconductor layer; and a gate disposed over the compound semiconductor layer.

Description

半導體裝置及其製造方法 Semiconductor device and its manufacturing method

本發明實施例是關於半導體製造技術,特別是有關於半導體裝置及其製造方法。 The embodiments of the present invention relate to semiconductor manufacturing technologies, and in particular, to semiconductor devices and manufacturing methods thereof.

高電子遷移率電晶體(high electron mobility transistor,HEMT),又稱為異質結構場效電晶體(heterostructure FET,HFET)或調變摻雜場效電晶體(modulation-doped FET,MODFET),為一種場效電晶體(field effect transistor,FET),其由具有不同能隙(energy gap)的半導體材料組成。在鄰近不同半導體材料的所形成界面處會產生二維電子氣(two dimensional electron gas,2 DEG)層。由於二維電子氣的高電子移動性,高電子遷移率電晶體可以具有高崩潰電壓、高電子遷移率、低導通電阻與低輸入電容等優點,因而適合用於高功率元件上。 High electron mobility transistor (HEMT), also known as heterostructure field effect transistor (HFET) or modulation-doped field effect transistor (MODFET), is a kind of A field effect transistor (FET) is composed of semiconductor materials with different energy gaps. A two-dimensional electron gas (2 DEG) layer is generated at the formed interface adjacent to different semiconductor materials. Due to the high electron mobility of the two-dimensional electron gas, the high electron mobility transistor can have the advantages of high breakdown voltage, high electron mobility, low on-resistance and low input capacitance, and is therefore suitable for high power components.

為了提升效能,通常會對高電子遷移率電晶體進行摻雜。然而,這個摻雜的過程可能會伴隨缺陷產生,甚至可能損壞高電子遷移率電晶體。因此需要持續開發改良的高電子遷移率電晶體,以在提升效能的同時,改善良率,並有更廣泛的應用。 In order to improve efficiency, high electron mobility transistors are usually doped. However, this doping process may be accompanied by defects and may even damage high electron mobility transistors. Therefore, it is necessary to continue to develop improved high electron mobility transistors to improve yield, improve yield, and have wider applications.

根據本發明的一些實施例,提供半導體裝置。此半導體裝置包含通道層,設置於基底上方;阻障層,設置於通道層上方;化合物半導體層和摻質保持層,設置於阻障層上方;一對源極/汲極,設置於基底上方且位於化合物半導體層的兩側;以及閘極,設置於化合物半導體層上。 According to some embodiments of the present invention, a semiconductor device is provided. The semiconductor device includes a channel layer disposed above the substrate; a barrier layer disposed above the channel layer; a compound semiconductor layer and a doped retention layer disposed above the barrier layer; a pair of source/drain electrodes disposed above the substrate And located on both sides of the compound semiconductor layer; and the gate electrode is provided on the compound semiconductor layer.

在一些實施例中,在摻質保持層內的摻質含量大於在摻質保持層外的摻質含量。 In some embodiments, the dopant content within the dopant retention layer is greater than the dopant content outside the dopant retention layer.

在一些實施例中,摻質保持層包含氮化鋁、氮化鋁鎵、氮化銦鎵或前述之組合。 In some embodiments, the doped retention layer includes aluminum nitride, aluminum gallium nitride, indium gallium nitride, or a combination of the foregoing.

在一些實施例中,摻質保持層的厚度在0.5nm至5nm的範圍。 In some embodiments, the thickness of the doped retention layer is in the range of 0.5 nm to 5 nm.

在一些實施例中,摻質保持層包含第一摻質保持層,設置於化合物半導體層頂部、內部或底部;及/或第二摻質保持層,覆蓋化合物半導體層的側壁並在此對源極/汲極與阻障層之間延伸。 In some embodiments, the dopant retention layer includes a first dopant retention layer disposed on top, inside, or bottom of the compound semiconductor layer; and/or a second dopant retention layer covering the sidewall of the compound semiconductor layer and facing the source here The pole/drain extends between the barrier layer.

在一些實施例中,半導體裝置更包含此對源極/汲極穿過阻障層且延伸至通道層中,且第二摻質保持層在此對源極/汲極與通道層之間延伸。 In some embodiments, the semiconductor device further includes the pair of source/drain electrodes passing through the barrier layer and extending into the channel layer, and the second doped retention layer extends between the pair of source/drain electrodes and the channel layer .

在一些實施例中,第二保持層具有開口,設置於化合物半導體層上,且閘極設置於該開口處。 In some embodiments, the second holding layer has an opening, is disposed on the compound semiconductor layer, and the gate is disposed at the opening.

在一些實施例中,半導體裝置更包含二維電子氣回復層,覆蓋化合物半導體層的側壁且在此對源極/汲極與阻障層之間延伸。 In some embodiments, the semiconductor device further includes a two-dimensional electron gas recovery layer covering the sidewalls of the compound semiconductor layer and extending between the source/drain pair and the barrier layer.

在一些實施例中,半導體裝置更包含此對源極/汲極穿過阻障層且延伸至通道層中,且二維電子氣回復層在此對源極/汲極與通道層之間延伸。 In some embodiments, the semiconductor device further includes the pair of source/drain electrodes passing through the barrier layer and extending into the channel layer, and the two-dimensional electron gas recovery layer extends between the pair of source/drain electrodes and the channel layer .

在一些實施例中,二維電子氣回復層包含六方晶系的二元化合物半導體、石墨烯或前述之組合。 In some embodiments, the two-dimensional electron gas recovery layer includes a hexagonal binary semiconductor, graphene, or a combination of the foregoing.

根據本發明的另一些實施例,提供半導體裝置的製造方法。此方法包含在基底上方形成通道層;在通道層上方形成阻障層;在阻障層上方形成化合物半導體層和摻質保持層;在基底上方且在化合物半導體層的兩側形成一對源極/汲極;以及在化合物半導體層上方形成閘極。 According to other embodiments of the present invention, a method for manufacturing a semiconductor device is provided. This method includes forming a channel layer above the substrate; forming a barrier layer above the channel layer; forming a compound semiconductor layer and a doped retention layer above the barrier layer; forming a pair of source electrodes above the substrate and on both sides of the compound semiconductor layer /Drain; and forming a gate above the compound semiconductor layer

在一些實施例中,摻質保持層的形成包含使用有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶或前述之組合。 In some embodiments, the formation of the dopant retention layer includes using organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, or a combination of the foregoing.

在一些實施例中,摻質保持層包含氮化鋁、氮化鋁鎵、氮化銦鎵或前述之組合。 In some embodiments, the doped retention layer includes aluminum nitride, aluminum gallium nitride, indium gallium nitride, or a combination of the foregoing.

在一些實施例中,摻質保持層的厚度在0.5nm至5nm的範圍。 In some embodiments, the thickness of the doped retention layer is in the range of 0.5 nm to 5 nm.

在一些實施例中,摻質保持層的形成包含:在形成化合物半導體層期間,在化合物半導體層的頂部、內部或底部原位形成第一摻質保持層;及/或在化合物半導體層的側壁上形成第二摻質保持層,且第二摻質保持層在此對源極/汲極與通道層之間延伸。 In some embodiments, the formation of the dopant retention layer includes: during the formation of the compound semiconductor layer, forming a first dopant retention layer in situ on the top, inside, or bottom of the compound semiconductor layer; and/or on the sidewall of the compound semiconductor layer A second doped retention layer is formed thereon, and the second doped retention layer extends between the pair of source/drain and the channel layer.

在一些實施例中,此對源極/汲極更延伸至通道層中,且第二摻質保持層在此對源極/汲極與通道層之間延伸。 In some embodiments, the pair of source/drain electrodes extends further into the channel layer, and the second dopant retention layer extends between the pair of source/drain electrodes and the channel layer.

在一些實施例中,第二摻質保持層具有開口形成於化合物半導體層上方,且閘極設置於開口處。 In some embodiments, the second doped retention layer has an opening formed above the compound semiconductor layer, and the gate is disposed at the opening.

在一些實施例中,半導體裝置的製造方法更包含在化合物半導體層的側壁上形成二維電子氣回復層,且二維電子氣回復層在此對源極/汲極與通道層之間延伸。 In some embodiments, the manufacturing method of the semiconductor device further includes forming a two-dimensional electron gas recovery layer on the sidewall of the compound semiconductor layer, and the two-dimensional electron gas recovery layer extends between the source/drain and the channel layer.

在一些實施例中,此對源極/汲極更穿過阻障層且延伸至通道層中,且二維電子氣回復層在此對源極/汲極與通道層之間延伸。 In some embodiments, the pair of source/drain electrodes further passes through the barrier layer and extends into the channel layer, and the two-dimensional electron gas recovery layer extends between the pair of source/drain and channel layers.

在一些實施例中,二維電子氣回復層包含六方晶系的二元化合物半導體、石墨烯或前述之組合。 In some embodiments, the two-dimensional electron gas recovery layer includes a hexagonal binary semiconductor, graphene, or a combination of the foregoing.

100、200、300、400‧‧‧半導體裝置 100, 200, 300, 400 ‧‧‧ semiconductor device

110‧‧‧基底 110‧‧‧ base

120‧‧‧成核層 120‧‧‧Nuclear layer

130‧‧‧緩衝層 130‧‧‧buffer layer

140‧‧‧通道層 140‧‧‧channel layer

150‧‧‧阻障層 150‧‧‧ barrier layer

160‧‧‧化合物半導體層 160‧‧‧ Compound semiconductor layer

170‧‧‧第一摻質保持層 170‧‧‧ First doping retention layer

180‧‧‧源極/汲極 180‧‧‧ source/drain

190‧‧‧閘極 190‧‧‧Gate

210‧‧‧第二摻質保持層 210‧‧‧Second doped retention layer

220、420‧‧‧開口 220, 420‧‧‧ opening

410‧‧‧二維電子氣回復層 410‧‧‧Two-dimensional electronic gas recovery layer

T1、T2、T3‧‧‧厚度 T1, T2, T3 ‧‧‧ thickness

以下將配合所附圖式詳述本揭露之實施例。應注意的是,依據產業上的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本揭露的特徵。 The embodiments of the present disclosure will be described in detail below in conjunction with the accompanying drawings. It should be noted that, according to industry standard practices, various features are not drawn to scale and are for illustrative purposes only. In fact, the size of the elements may be arbitrarily enlarged or reduced to clearly show the features of the present disclosure.

第1A-1C圖是根據一些實施例繪示在製造半導體裝置的各個階段之剖面示意圖。 1A-1C are schematic cross-sectional views illustrating various stages of manufacturing a semiconductor device according to some embodiments.

第2-4圖是根據一些其他實施例繪示半導體裝置的剖面示意圖。 Figures 2-4 are schematic cross-sectional views of semiconductor devices according to some other embodiments.

以下概述一些實施例,以使得本發明所屬技術領域中具有通常知識者可以更容易理解本發明。然而,這些實施例只是範例,並非用於限制本發明。可以理解的是,本發 明所屬技術領域中具有通常知識者可以根據需求調整以下描述的實施例,例如改變製程順序及/或包含比在此描述的更多或更少步驟。 Some embodiments are summarized below so that those with ordinary knowledge in the technical field to which the present invention belongs can more easily understand the present invention. However, these embodiments are only examples and are not intended to limit the present invention. It can be understood that those with ordinary knowledge in the technical field to which the present invention belongs can adjust the embodiments described below according to requirements, for example, changing the process sequence and/or including more or fewer steps than described herein.

此外,可以在以下敘述的實施例的基礎上添加其他元件。舉例來說,「在第一元件上形成第二元件」的描述可能包含第一元件與第二元件直接接觸的實施例,也可能包含第一元件與第二元件之間具有其他元件,使得第一元件與第二元件不直接接觸的實施例,並且第一元件與第二元件的上下關係可能隨著裝置在不同方位操作或使用而改變。 In addition, other elements may be added on the basis of the embodiments described below. For example, the description of "forming a second element on a first element" may include an embodiment where the first element and the second element are in direct contact, or may include other elements between the first element and the second element, so that An embodiment in which an element does not directly contact the second element, and the up-down relationship of the first element and the second element may change as the device is operated or used in different orientations.

以下根據本發明的一些實施例,描述半導體裝置及其製造方法,且特別適用於高電子遷移率電晶體(HEMT)。本發明在半導體裝置設置摻質保持層,以避免化合物半導體層中的摻質擴散至周圍的組件,同時避免例如蝕刻製程等後續製程影響摻質保持層以內的區域,提升半導體裝置的良率。 In the following, according to some embodiments of the present invention, a semiconductor device and a manufacturing method thereof will be described, and it is particularly suitable for a high electron mobility transistor (HEMT). In the present invention, a dopant retention layer is provided in the semiconductor device to prevent the dopant in the compound semiconductor layer from diffusing to surrounding components, and to avoid subsequent processes such as an etching process from affecting the area within the dopant retention layer and improve the yield of the semiconductor device.

第1A-1C圖是根據一些實施例繪示在製造半導體裝置100的各個階段之剖面示意圖。如第1A圖所示,半導體裝置100包含基底110。可以使用任何適用於半導體裝置的基底材料。基底110可以是整塊的(bulk)半導體基底或包含由不同材料形成的複合基底,並且可以將基底110摻雜(例如使用p型或n型摻質)或不摻雜。在一些實施例中,基底110可以包含半導體基底、玻璃基底或陶瓷基底,例如矽基底、矽鍺基底、碳化矽(Silicon Carbide,SiC)、氮化鋁(Aluminium Nitride,AlN)基底、藍寶石(Sapphire)基底、前述之組合或類似的材 料。在一些實施例中,基底110可以包含絕緣體上覆半導體(semiconductor-on-insulator,SOI)基底,其係經由在絕緣層上設置半導體材料所形成。 1A-1C are schematic cross-sectional views illustrating various stages of manufacturing the semiconductor device 100 according to some embodiments. As shown in FIG. 1A, the semiconductor device 100 includes a substrate 110. Any base material suitable for semiconductor devices can be used. The substrate 110 may be a bulk semiconductor substrate or a composite substrate including different materials, and the substrate 110 may be doped (for example, using p-type or n-type dopants) or undoped. In some embodiments, the substrate 110 may include a semiconductor substrate, a glass substrate, or a ceramic substrate, such as a silicon substrate, a silicon germanium substrate, silicon carbide (SiC), aluminum nitride (AlN) substrate, sapphire (Sapphire) ) Substrate, combinations of the foregoing, or similar materials. In some embodiments, the substrate 110 may include a semiconductor-on-insulator (SOI) substrate, which is formed by disposing a semiconductor material on the insulating layer.

在一些實施例中,在基底110上方形成成核層120,以緩解基底110與上方成長的膜層之間的晶格差異,提升結晶品質。成核層120的形成可以包含沉積製程,例如有機金屬化學氣相沉積(Metal Organic Chemical Vapor Deposition,MOCVD)、原子層沉積(Atomic Layer Deposition,ALD)、分子束磊晶(Molecular Beam Epitaxy,MBE)、液相磊晶(Liquid Phase Epitaxy,LPE)、類似的製程或前述之組合。在一些實施例中,成核層120的厚度可以是在約1奈米(nanometer,nm)至約500nm的範圍,例如約200nm。 In some embodiments, a nucleation layer 120 is formed above the substrate 110 to alleviate the lattice difference between the substrate 110 and the film layer grown above and improve the crystalline quality. The formation of the nucleation layer 120 may include a deposition process, such as metal organic chemical vapor deposition (Metal Organic Chemical Vapor Deposition, MOCVD), atomic layer deposition (Atomic Layer Deposition, ALD), molecular beam epitaxy (Molecular Beam Epitaxy, MBE) , Liquid Phase Epitaxy (LPE), a similar process, or a combination of the foregoing. In some embodiments, the thickness of the nucleation layer 120 may be in the range of about 1 nanometer (nm) to about 500 nm, such as about 200 nm.

在一些實施例中,在成核層120上方形成緩衝層130,以緩解不同膜層之間的晶格差異,提升結晶品質。成核層120是選擇性的。在另一些實施例中,可以不設置成核層120,直接在基底上方形成緩衝層130,降低製程步驟亦可達到改善的效果。在一些實施例中,緩衝層130的材料可以包含III-V族化合物半導體材料,例如III族氮化物。舉例來說,緩衝層130的材料可以包含氮化鎵(Gallium Nitride,GaN)、氮化鋁(AlN)、氮化鋁鎵(AlGaN)、氮化銦鎵(AlInN)、類似的材料或前述之組合。在一些實施例中,緩衝層130的形成可以包含沉積製程,例如有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。 In some embodiments, a buffer layer 130 is formed above the nucleation layer 120 to alleviate the lattice difference between different film layers and improve the crystal quality. The nucleation layer 120 is selective. In other embodiments, the nucleation layer 120 may not be provided, and the buffer layer 130 may be formed directly on the substrate, and the process steps may be reduced to achieve an improved effect. In some embodiments, the material of the buffer layer 130 may include a group III-V compound semiconductor material, such as a group III nitride. For example, the material of the buffer layer 130 may include gallium nitride (GaN), aluminum nitride (AlN), aluminum gallium nitride (AlGaN), indium gallium nitride (AlInN), similar materials, or the foregoing combination. In some embodiments, the formation of the buffer layer 130 may include a deposition process, such as organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, a similar process, or a combination of the foregoing.

接著在緩衝層130上方形成通道層140。在一些實 施例中,通道層140的材料可以包含一或多種III-V族化合物半導體材料,例如III族氮化物。在一些實施例中,通道層140的材料例如為GaN、AlGaN、InGaN、InAlGaN、類似的材料或前述之組合。此外,可以將通道層140摻雜或不摻雜。根據一些實施例,通道層140的形成可以包含沉積製程,例如有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。在一些實施例中,通道層140的厚度在約0.05微米(micrometer,μm)和約1μm之間的範圍,例如約0.2μm。 Next, a channel layer 140 is formed on the buffer layer 130. In some embodiments, the material of the channel layer 140 may include one or more group III-V compound semiconductor materials, such as group III nitride. In some embodiments, the material of the channel layer 140 is, for example, GaN, AlGaN, InGaN, InAlGaN, similar materials, or a combination of the foregoing. In addition, the channel layer 140 may be doped or undoped. According to some embodiments, the formation of the channel layer 140 may include a deposition process, such as organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, a similar process, or a combination of the foregoing. In some embodiments, the thickness of the channel layer 140 is in a range between about 0.05 microns (micrometer, μm) and about 1 μm, such as about 0.2 μm.

然後在通道層140上方形成阻障層150,以在通道層140和阻障層150之間的界面產生二維電子氣。阻障層150的形成可以包含沉積製程,例如有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。在一些實施例中,阻障層150的材料可以包含III-V族化合物半導體材料,例如III族氮化物。舉例來說,阻障層150可以包含AlN、AlGaN、AlInN、AlGaInN、類似的材料或前述之組合。阻障層150可以包含單層或多層結構,且阻障層150可以是摻雜或不摻雜的。在一些實施例中,阻障層150的厚度可以在約1nm和約30nm之間的範圍內,例如約20nm。 A barrier layer 150 is then formed over the channel layer 140 to generate two-dimensional electron gas at the interface between the channel layer 140 and the barrier layer 150. The formation of the barrier layer 150 may include a deposition process, such as organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, a similar process, or a combination of the foregoing. In some embodiments, the material of the barrier layer 150 may include a group III-V compound semiconductor material, such as a group III nitride. For example, the barrier layer 150 may include AlN, AlGaN, AlInN, AlGaInN, similar materials, or a combination of the foregoing. The barrier layer 150 may include a single-layer or multi-layer structure, and the barrier layer 150 may be doped or undoped. In some embodiments, the thickness of the barrier layer 150 may be in a range between about 1 nm and about 30 nm, such as about 20 nm.

接著如第1B圖所示,根據一些實施例,在阻障層150上方設置化合物半導體層160,以空乏閘極下方的二維電子氣,達成半導體裝置的常關(normally-off)狀態。在一些實施例中,化合物半導體層160包含u型、n型或p型摻雜的氮化鎵。在一些實施例中,化合物半導體層160的厚度可在約30 nm和約150nm之間的範圍內,例如約80nm。 Next, as shown in FIG. 1B, according to some embodiments, a compound semiconductor layer 160 is provided above the barrier layer 150 to achieve a normally-off state of the semiconductor device with the two-dimensional electron gas under the depleted gate. In some embodiments, the compound semiconductor layer 160 includes u-type, n-type, or p-type doped gallium nitride. In some embodiments, the thickness of the compound semiconductor layer 160 may range between about 30 nm and about 150 nm, for example, about 80 nm.

在一些實施例中,化合物半導體層160的形成可以包含沉積製程以及圖案化製程。舉例來說,沉積製程包含有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。在一些實施例中,圖案化製程包含在沉積的材料層上形成圖案化遮罩層(未繪示),然後蝕刻沉積的材料層未被圖案化遮罩層覆蓋的部分,並且形成化合物半導體層160。化合物半導體層160的位置係根據預定設置閘極的位置調整。 In some embodiments, the formation of the compound semiconductor layer 160 may include a deposition process and a patterning process. For example, the deposition process includes organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, similar processes, or a combination of the foregoing. In some embodiments, the patterning process includes forming a patterned mask layer (not shown) on the deposited material layer, then etching a portion of the deposited material layer that is not covered by the patterned mask layer, and forming a compound semiconductor layer 160. The position of the compound semiconductor layer 160 is adjusted according to a predetermined position of the gate.

在一些實施例中,圖案化遮罩層可以是光阻,例如正型光阻或負型光阻。在另一些實施例中,圖案化遮罩層可以是硬遮罩,例如氧化矽、氮化矽、氮氧化矽、碳化矽、氮碳化矽、類似的材料或前述之組合。在一些實施例中,圖案化遮罩層的形成可以包含旋轉塗佈(spin-on coating)、物理氣相沉積(Physical Vapor Deposition,PVD)、化學氣相沉積(Chemical Vapor Deposition,CVD)、類似的製程或前述之組合。 In some embodiments, the patterned mask layer may be a photoresist, such as a positive photoresist or a negative photoresist. In other embodiments, the patterned mask layer may be a hard mask, such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon nitride carbide, similar materials, or a combination of the foregoing. In some embodiments, the formation of the patterned mask layer may include spin-on coating, physical vapor deposition (PVD), chemical vapor deposition (CVD), similar Process or a combination of the foregoing.

在一些實施例中,沉積的材料層的蝕刻可以使用乾式蝕刻製程、濕式蝕刻製程或前述之組合。舉例來說,沉積的材料層的蝕刻包含反應性離子蝕刻(Reactive Ion Etch,RIE)、感應耦合式電漿(Inductively-Coupled Plasma,ICP)蝕刻、中子束蝕刻(Neutral Beam Etch,NBE)、電子迴旋共振式(Electron Cyclotron Resonance,ERC)蝕刻、類似的蝕刻製程或前述之組合。 In some embodiments, the etching of the deposited material layer may use a dry etching process, a wet etching process, or a combination of the foregoing. For example, the etching of the deposited material layer includes reactive ion etching (Reactive Ion Etch, RIE), inductively coupled plasma (Inductively-Coupled Plasma, ICP) etching, neutron beam etching (Neutral Beam Etch, NBE), Electron Cyclotron Resonance (ERC) etching, similar etching process, or a combination of the foregoing.

此外,雖然圖式中化合物半導體層160具有大致上垂直的側壁和平坦的上表面,但本發明不限於此,化合物半導體層160也可以是其他形狀,例如傾斜的側壁及/或不平坦的上表面。 In addition, although the compound semiconductor layer 160 in the figure has substantially vertical sidewalls and a flat upper surface, the present invention is not limited thereto, and the compound semiconductor layer 160 may also have other shapes, such as inclined sidewalls and/or uneven upper surfaces surface.

在一些實施例中,化合物半導體層160的形成還包含使用摻質進行摻雜。舉例來說,對化合物半導體層160的材料為p型摻雜的氮化鎵而言,摻質可以包含鎂。然而,在半導體裝置100的製程期間,通常會進行多次熱處理,使得摻質熱擴散至化合物半導體層160之外,進入其他組件,影響半導體裝置100的性能,例如降低臨界電壓(threshold voltage,Vth)。 In some embodiments, the formation of the compound semiconductor layer 160 further includes doping using dopants. For example, for the compound semiconductor layer 160 whose material is p-type doped gallium nitride, the dopant may include magnesium. However, during the manufacturing process of the semiconductor device 100, multiple heat treatments are usually performed, so that the dopant thermally diffuses out of the compound semiconductor layer 160 and enters other components, affecting the performance of the semiconductor device 100, such as lowering the threshold voltage (Vththreshold voltage, Vth) ).

根據一些實施例,如第1B圖所示,在化合物半導體層160中設置第一摻質保持層170,以與摻質形成穩定的合金,避免摻質向外擴散至其他組件。在一些實施例中,第一摻質保持層170的形成可以包含沉積製程,例如有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。並且可以在形成化合物半導體層160期間,原位(in situ)形成第一摻質保持層170。在一些實施例中,第一摻質保持層170的厚度T1在約0.5nm至約5nm的範圍,例如約4nm。 According to some embodiments, as shown in FIG. 1B, a first dopant holding layer 170 is provided in the compound semiconductor layer 160 to form a stable alloy with the dopant to prevent the dopant from diffusing out to other components. In some embodiments, the formation of the first doped retention layer 170 may include a deposition process, such as organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, similar processes, or a combination of the foregoing. And the first dopant holding layer 170 may be formed in situ during the formation of the compound semiconductor layer 160. In some embodiments, the thickness T1 of the first doped retention layer 170 is in the range of about 0.5 nm to about 5 nm, for example, about 4 nm.

在一些實施例中,第一摻質保持層170的材料可以包含氮化鋁(AlN)、氮化鋁鎵(AlGaN)、類似的材料或前述之組合。由於第一摻質保持層170選用的材料可以與摻質形成合金,例如鎂鋁合金,可以將摻質固定在第一摻質保持層170 的位置。因此,在第一摻質保持層170內的摻質含量大於在第一摻質保持層170外的摻質含量。 In some embodiments, the material of the first doped retention layer 170 may include aluminum nitride (AlN), aluminum gallium nitride (AlGaN), similar materials, or a combination of the foregoing. Since the material selected for the first dopant holding layer 170 can form an alloy with the dopant, for example, magnesium aluminum alloy, the dopant can be fixed at the position of the first dopant holding layer 170. Therefore, the dopant content in the first dopant holding layer 170 is greater than the dopant content outside the first dopant holding layer 170.

雖然在繪示的實施例中,第一摻質保持層170位於化合物半導體層160內部,但本發明不限於此,可以調整第一摻質保持層170的位置,例如第一摻質保持層170可以設置於化合物半導體層160的頂部或底部。在一些實施例中,將第一摻質保持層170設置於化合物半導體層160的內部,相較於第一摻質保持層170位於化合物半導體層160的頂部或底部,由於第一摻質保持層170與其他組件(例如阻障層150)間隔一段距離,可以將摻質保持在離其他組件較遠處,更降低摻質影響其他組件的可能。 Although in the illustrated embodiment, the first doped retention layer 170 is located inside the compound semiconductor layer 160, the invention is not limited thereto, and the position of the first doped retention layer 170 can be adjusted, for example, the first doped retention layer 170 It may be provided on the top or bottom of the compound semiconductor layer 160. In some embodiments, the first doped retention layer 170 is disposed inside the compound semiconductor layer 160, compared to the first doped retention layer 170 located on the top or bottom of the compound semiconductor layer 160, because the first doped retention layer 170 is separated from other components (such as the barrier layer 150) by a distance, which can keep the dopant farther away from other components, and further reduce the possibility of the dopant affecting other components.

接著如第1C圖所示,根據一些實施例,設置一對源極/汲極180和閘極190,形成半導體裝置100。此對源極/汲極180在基底上方分別位於化合物半導體層160的兩側。在一些實施例中,此對源極/汲極180和閘極190的形成包含執行圖案化製程,以在化合物半導體層160的兩側凹蝕阻障層150和通道層140,形成穿過阻障層150並延伸至通道層140中的一對凹陷,然後在此對凹陷和化合物半導體層160上方沉積導電材料,並對沉積的導電材料執行圖案化製程,以在預期的位置形成此對源極/汲極180和閘極190。 Next, as shown in FIG. 1C, according to some embodiments, a pair of source/drain 180 and gate 190 are provided to form the semiconductor device 100. The pair of source/drain electrodes 180 are respectively located on both sides of the compound semiconductor layer 160 above the substrate. In some embodiments, the formation of the source/drain 180 and the gate 190 includes performing a patterning process to etch the barrier layer 150 and the channel layer 140 on both sides of the compound semiconductor layer 160 to form a through resistance The barrier layer 150 extends to a pair of recesses in the channel layer 140, and then a conductive material is deposited on the recesses and the compound semiconductor layer 160, and a patterning process is performed on the deposited conductive material to form the pair of sources at the desired location Pole/drain 180 and gate 190.

在一些實施例中,導電材料的沉積製程可以包含物理氣相沉積、化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。在一些實施例中,導電材料可以包含金屬、金屬矽化物、半導體材料、類似的材 料或前述之組合。舉例來說,金屬可以是金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、氮化鈦(TiN)、類似的材料、前述之合金、前述之多層結構或前述之組合,並且半導體材料可以包含多晶矽(poly-Si)或多晶鍺(poly-Ge)。 In some embodiments, the deposition process of the conductive material may include physical vapor deposition, chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, similar processes, or a combination of the foregoing. In some embodiments, the conductive material may include metal, metal silicide, semiconductor material, similar materials, or a combination of the foregoing. For example, the metal may be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al ), copper (Cu), titanium nitride (TiN), similar materials, the aforementioned alloys, the aforementioned multilayer structure, or a combination of the aforementioned, and the semiconductor material may include poly-Si or poly-Ge ).

雖然在第1C圖繪示的實施例中,此對源極/汲極170位於阻障層150上,並延伸至阻障層150和通道層140內,但本發明不限於此,可以依據實際產品所需的特性調整此對源極/汲極170延伸的深度。舉例來說,此對源極/汲極170也可以只延伸至部分阻障層150內,或不延伸至阻障層150內,以避免此對源極/汲極170穿過二維電子氣,進而維持通道層140和阻障層150之間的界面的二維電子氣。 Although in the embodiment shown in FIG. 1C, the pair of source/drain 170 is located on the barrier layer 150 and extends into the barrier layer 150 and the channel layer 140, the present invention is not limited to this, and can be based on actual conditions The desired characteristics of the product adjust the depth to which this pair of source/drain 170 extends. For example, the pair of source/drain 170 may only extend into part of the barrier layer 150, or may not extend into the barrier layer 150, to prevent the pair of source/drain 170 from passing through the two-dimensional electron gas , Thereby maintaining the two-dimensional electron gas at the interface between the channel layer 140 and the barrier layer 150.

雖然在此描述在同一步驟中形成源極/汲極180和閘極190,但本發明不限於此。舉例來說,可以在形成源極/汲極180之後形成閘極190。並且,源極/汲極180和閘極190的形成可以獨立地包含相同或不同的製程和材料。此外,源極/汲極180和閘極190的形狀不限於圖式中的垂直側壁,也可以是傾斜的側壁或具有其他形貌。 Although it is described here that the source/drain 180 and the gate 190 are formed in the same step, the present invention is not limited thereto. For example, the gate 190 may be formed after the source/drain 180 is formed. And, the formation of the source/drain 180 and the gate 190 may independently include the same or different processes and materials. In addition, the shapes of the source/drain 180 and the gate 190 are not limited to the vertical side walls in the drawings, but may be inclined side walls or have other shapes.

根據本發明的一些實施例,在半導體裝置100設置第一摻質保持層170,除了可以與化合物半導體層160內的摻質形成穩定的合金,提升摻質的熱穩定性,以避免摻質向周圍的組件擴散,還可以在後續製程期間保護其下方的區域,提升半導體裝置100的良率。此外,設置於化合物半導體層160內部的第一摻質保持層170可使摻質與第一摻質保持層 170形成的合金與其他組件之間具有間距,進一步降低摻質可能的不良影響。 According to some embodiments of the present invention, the first dopant holding layer 170 is provided in the semiconductor device 100, in addition to forming a stable alloy with the dopant in the compound semiconductor layer 160, improving the thermal stability of the dopant to avoid doping The diffusion of surrounding components can also protect the area below it during subsequent processes, improving the yield of the semiconductor device 100. In addition, the first dopant holding layer 170 provided inside the compound semiconductor layer 160 can provide a gap between the alloy formed by the dopant and the first dopant holding layer 170 and other components, further reducing the possible adverse effects of doping.

第2圖是根據另一些實施例繪示半導體裝置200的剖面示意圖。在一些實施例中,可以設置第二摻質保持層210覆蓋化合物半導體層160的側壁且延伸至這對源極/汲極180與阻障層150之間,以防止摻質的向外擴散並保護其下方的元件。 FIG. 2 is a schematic cross-sectional view of a semiconductor device 200 according to other embodiments. In some embodiments, the second dopant holding layer 210 may be provided to cover the sidewalls of the compound semiconductor layer 160 and extend between the pair of source/drain 180 and the barrier layer 150 to prevent the dopant from diffusing out and Protect the components below it.

在一些實施例中,第二摻質保持層210的形成可以選用如前所述第一摻質保持層170的製程和材料。由於第二摻質保持層210選用的材料可以與摻質形成對熱穩定的合金,可以將摻質固定在第二摻質保持層210的位置。因此,在第二摻質保持層210內的摻質含量大於在第二摻質保持層210外的摻質含量。在一些實施例中,第二摻質保持層210的厚度T2在約0.5nm至約5nm的範圍,例如約4nm。 In some embodiments, the formation of the second dopant retention layer 210 may use the process and material of the first dopant retention layer 170 as described above. Since the material selected for the second dopant holding layer 210 can form a thermally stable alloy with the dopant, the dopant can be fixed at the position of the second dopant holding layer 210. Therefore, the dopant content in the second dopant holding layer 210 is greater than the dopant content outside the second dopant holding layer 210. In some embodiments, the thickness T2 of the second doped retention layer 210 is in the range of about 0.5 nm to about 5 nm, for example, about 4 nm.

在形成第二摻質保持層210之後,在第二摻質保持層210中形成開口220,且開口420位於化合物半導體層160上方。開口220的位置係根據預定設置閘極190的位置調整。在一些實施例中,開口220的形成可以使用圖案化遮罩層(未繪示),蝕刻被圖案化遮罩層露出的一部分的第二摻質保持層210,以移除這部分的第二摻質保持層210。形成圖案化遮罩層的材料和方法如前所述,在此不重複描述。 After the second doped retention layer 210 is formed, an opening 220 is formed in the second doped retention layer 210, and the opening 420 is located above the compound semiconductor layer 160. The position of the opening 220 is adjusted according to the predetermined position of the gate electrode 190. In some embodiments, the opening 220 may be formed using a patterned mask layer (not shown), and a portion of the second doped retention layer 210 exposed by the patterned mask layer is etched to remove this portion of the second Doped retention layer 210. The materials and methods for forming the patterned mask layer are as described above and will not be repeated here.

在一些實施例中,第二摻質保持層210的蝕刻可以使用乾式蝕刻製程、濕式蝕刻製程或前述之組合。舉例來說,第二摻質保持層210的蝕刻包含反應性離子蝕刻(RIE)、 感應耦合式電漿(ICP)蝕刻、中子束蝕刻(NBE)、電子迴旋共振式(ERC)蝕刻、類似的蝕刻製程或前述之組合。 In some embodiments, the etching of the second doped retention layer 210 may use a dry etching process, a wet etching process, or a combination of the foregoing. For example, the etching of the second doped retention layer 210 includes reactive ion etching (RIE), inductively coupled plasma (ICP) etching, neutron beam etching (NBE), electron cyclotron resonance (ERC) etching, and the like Etching process or a combination of the foregoing.

接著沉積導電材料於開口220和此對凹槽中,以在阻障層150上方設置一對源極/汲極180,其分別位於化合物半導體層160的兩側,並且在開口220中設置閘極190,以形成半導體裝置200。雖然在此描述同時形成源極/汲極180和閘極190,但本發明不限於此。舉例來說,可以在形成源極/汲極180之後形成開口220,然後使用與開口220相同的圖案化遮罩層形成閘極190。並且,源極/汲極180和閘極190的形成可以獨立地包含相同或不同的製程和材料。此外,源極/汲極180和閘極190的形狀不限於圖式中的垂直側壁,也可以是傾斜的側壁或具有其他形貌。雖然在第2圖繪示的實施例中,開口220與閘極190的底面大致上具有相同面積,但本發明不限於此。 Next, a conductive material is deposited in the opening 220 and the pair of grooves to set a pair of source/drain 180 above the barrier layer 150, which are located on both sides of the compound semiconductor layer 160, and a gate in the opening 220 190, to form the semiconductor device 200. Although it is described here that the source/drain 180 and the gate 190 are simultaneously formed, the present invention is not limited thereto. For example, the opening 220 may be formed after the source/drain 180 is formed, and then the gate 190 may be formed using the same patterned mask layer as the opening 220. And, the formation of the source/drain 180 and the gate 190 may independently include the same or different processes and materials. In addition, the shapes of the source/drain 180 and the gate 190 are not limited to the vertical side walls in the drawings, but may be inclined side walls or have other shapes. Although in the embodiment shown in FIG. 2, the opening 220 and the bottom surface of the gate electrode 190 have substantially the same area, the invention is not limited thereto.

如前所述,可以調整此對源極/汲極180延伸至膜層的深度,因此亦可因應調整第二摻質保持層210的位置。舉例來說,在一些實施例中,對於此對源極/汲極180只延伸至部分阻障層150內,或不延伸至阻障層150內的情況,第二摻質保持層210設置延伸至這對源極/汲極180與阻障層150之間。另一方面,對於此對源極/汲極180進一步延伸至通道層140內的情況,第二摻質保持層210更設置在此對源極/汲極180與通道層140之間。 As described above, the depth of the source/drain 180 to the film layer can be adjusted, so the position of the second dopant holding layer 210 can also be adjusted accordingly. For example, in some embodiments, for the pair of source/drain 180 only extending into part of the barrier layer 150 or not extending into the barrier layer 150, the second doped retention layer 210 is set to extend Up to the source/drain pair 180 and the barrier layer 150. On the other hand, for the case where the pair of source/drain 180 further extends into the channel layer 140, the second doped retention layer 210 is further disposed between the pair of source/drain 180 and the channel layer 140.

根據本發明的一些實施例,在半導體裝置200設置第二摻質保持層210覆蓋化合物半導體層160的側壁且延伸 至源極/汲極180與阻障層150之間,可以與化合物半導體層160內的摻質形成穩定的合金,提升摻質的熱穩定性,以避免摻質向外擴散。此外,第二摻質保持層210可以在後續製程期間保護其下方的區域並且抑制漏電,提升半導體裝置200的良率和可靠性。 According to some embodiments of the present invention, the second dopant-retaining layer 210 is provided on the semiconductor device 200 to cover the sidewalls of the compound semiconductor layer 160 and extends between the source/drain 180 and the barrier layer 150, which may be in contact with the compound semiconductor layer 160 The admixtures inside form a stable alloy, which improves the thermal stability of the admixtures to avoid the diffusion of the admixtures. In addition, the second doped retention layer 210 can protect the area under it and suppress leakage during subsequent processes, improving the yield and reliability of the semiconductor device 200.

第3圖是根據一些實施例繪示半導體裝置300的剖面示意圖。在一些實施例中,如第3圖所示,可以同時設置第一摻質保持層170和第二摻質保持層210,以進一步提升摻質的熱穩定性,還可以更完整保護第一摻質保持層170和第二摻質保持層210下方的區域,並且可以減少漏電。第一摻質保持層170和第二摻質保持層210的位置、材料與製程如前所述,在此不重複說明。 FIG. 3 is a schematic cross-sectional view of a semiconductor device 300 according to some embodiments. In some embodiments, as shown in FIG. 3, the first dopant holding layer 170 and the second dopant holding layer 210 may be provided at the same time to further improve the thermal stability of the dopant, and also protect the first doping more completely The region under the mass retention layer 170 and the second doped retention layer 210, and leakage can be reduced. The positions, materials, and processes of the first doped retention layer 170 and the second doped retention layer 210 are as described above, and the description will not be repeated here.

為了方便繪示,第一摻質保持層170的厚度T1和第二摻質保持層210的厚度T2大致上相同,但本發明不限於此,可以使厚度T1大於、等於或小於厚度T2。此外,第一摻質保持層170和第二摻質保持層210的形成可以選用相同或不同的製程和材料,並且可以調整第一摻質保持層170和第二摻質保持層210的位置。 For ease of illustration, the thickness T1 of the first doped retention layer 170 and the thickness T2 of the second doped retention layer 210 are substantially the same, but the invention is not limited thereto, and the thickness T1 may be greater than, equal to, or less than the thickness T2. In addition, the formation of the first doped retention layer 170 and the second doped retention layer 210 may use the same or different processes and materials, and the positions of the first doped retention layer 170 and the second doped retention layer 210 may be adjusted.

第4圖是根據一些實施例繪示半導體裝置400的剖面示意圖。在一些實施例中,如第4圖所示,半導體裝置400更包含二維電子氣回復層410,覆蓋化合物半導體層160的側壁且延伸至源極/汲極180與阻障層150之間,以回復源極/汲極180周圍的二維電子氣的通道。 FIG. 4 is a schematic cross-sectional view of a semiconductor device 400 according to some embodiments. In some embodiments, as shown in FIG. 4, the semiconductor device 400 further includes a two-dimensional electron gas recovery layer 410 covering the sidewall of the compound semiconductor layer 160 and extending between the source/drain 180 and the barrier layer 150, In order to restore the channel of the two-dimensional electron gas around the source/drain 180.

在一些實施例中,二維電子氣回復層410的形成 包含沉積製程,例如有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。二維電子氣回復層410的材料可以包含六方晶系(hexagonal crystal)的二元化合物半導體、石墨烯(graphene)、類似的材料或前述之組合。在一些實施例中,二維電子氣回復層410的材料可以包含氮化鋁(AlN)、氧化鋅(Zinc Oxide,ZnO)、氮化銦(Indium Nitride,InN)、類似的材料或前述之組合。 In some embodiments, the formation of the two-dimensional electron gas recovery layer 410 includes a deposition process, such as organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, a similar process, or a combination of the foregoing. The material of the two-dimensional electron gas recovery layer 410 may include a binary compound semiconductor of hexagonal crystal, graphene, similar materials, or a combination of the foregoing. In some embodiments, the material of the two-dimensional electron gas recovery layer 410 may include aluminum nitride (AlN), zinc oxide (Zinc Oxide, ZnO), indium nitride (Indium Nitride, InN), similar materials, or a combination of the foregoing .

如前所述,可以調整此對源極/汲極180延伸至膜層的深度,因此亦可因應調整二維電子氣回復層410的位置。此外,二維電子氣回復層410可以具有設置閘極190的開口420。二維電子氣回復層410的開口420的形成方式可以選用如前所述第二摻質保持層210的開口220的形成方式,在此不重複敘述。 As mentioned above, the depth of the source/drain 180 extending to the film layer can be adjusted, so the position of the two-dimensional electron gas recovery layer 410 can also be adjusted accordingly. In addition, the two-dimensional electron gas recovery layer 410 may have an opening 420 in which a gate 190 is provided. The formation method of the opening 420 of the two-dimensional electron gas recovery layer 410 may be the formation method of the opening 220 of the second dopant-retaining layer 210 as described above, and the description will not be repeated here.

此外,雖然在第4圖中繪示半導體裝置400具有第一摻質保持層170和二維電子氣回復層410,但本發明不限於此。舉例來說,可以僅設置二維電子氣回復層410。 In addition, although the semiconductor device 400 is illustrated in FIG. 4 as having the first doped retention layer 170 and the two-dimensional electron gas recovery layer 410, the present invention is not limited to this. For example, only the two-dimensional electron gas recovery layer 410 may be provided.

在一些實施例中,二維電子氣回復層410的厚度T3在約0.5nm至約5nm的範圍,例如約4nm。為了方便繪示,第一摻質保持層170的厚度T1和二維電子氣回復層610的厚度T3大致上相同,但本發明不限於此,可以使厚度T1大於、等於或小於厚度T3。此外,第一摻質保持層170和二維電子氣回復層410的位置不限於說明用的圖式,例如第一摻質保持層170可以設置於化合物半導體層160的底部。 In some embodiments, the thickness T3 of the two-dimensional electron gas recovery layer 410 is in the range of about 0.5 nm to about 5 nm, for example, about 4 nm. For ease of illustration, the thickness T1 of the first doped retention layer 170 and the thickness T3 of the two-dimensional electron gas recovery layer 610 are substantially the same, but the invention is not limited thereto, and the thickness T1 may be greater than, equal to, or less than the thickness T3. In addition, the positions of the first doped retention layer 170 and the two-dimensional electron gas recovery layer 410 are not limited to the illustrated patterns. For example, the first doped retention layer 170 may be disposed on the bottom of the compound semiconductor layer 160.

根據本發明的一些實施例,在半導體裝置400設 置二維電子氣回復層410,除了可以降低接面電阻(RC)、改善導通電阻(RON),還可以保護下方的膜層不受到後續製程的影響,提升半導體裝置400的效能和良率。 According to some embodiments of the present invention, the provision of the two-dimensional electron gas recovery layer 410 in the semiconductor device 400 can not only reduce the junction resistance (R C ) and improve the on resistance (R ON ), but also protect the underlying film layer from subsequent The influence of the manufacturing process improves the efficiency and yield of the semiconductor device 400.

根據一些實施例,本發明在化合物半導體層頂部、內部、底部及/或側壁上設置一或多層摻質保持層,其組成可以與摻質形成穩定的合金,可避免化合物半導體層內的摻質向外擴散。另外,一或多層摻質保持層還可對其下方的區域提供保護,免於例如蝕刻製程等後續製程的影響,減少缺陷並提升良率。此外,可以根據一些實施例,調整一或多層摻質保持層的位置,進一步降低摻質對其他組件的影響,並且設置於特定區域的一或多層摻質保持層還可以抑制漏電,改善半導體裝置的可靠性。 According to some embodiments, the present invention provides one or more dopant retention layers on the top, inner, bottom and/or side walls of the compound semiconductor layer, the composition of which can form a stable alloy with the dopant, which can avoid the dopant in the compound semiconductor layer Spread outward. In addition, one or more doped retention layers can also provide protection to the area underneath, from subsequent processes such as the etching process, reduce defects and improve yield. In addition, according to some embodiments, the position of one or more doped retention layers can be adjusted to further reduce the influence of the dopants on other components, and the one or more doped retention layers provided in a specific area can also suppress leakage and improve semiconductor devices Reliability.

此外,本發明根據另一些實施例,在半導體裝置設置二維電子氣回復層,其覆蓋化合物半導體層的側壁且延伸至源極/汲極與阻障層之間,可以回復源極/汲極周圍的二維電子氣的通道,以降低接面電阻(RC),藉此改善半導體裝置的導通電阻(RON),同時可以對二維電子氣回復層下方的區域提供保護。 In addition, according to other embodiments of the present invention, a two-dimensional electron gas recovery layer is provided on the semiconductor device, which covers the sidewalls of the compound semiconductor layer and extends between the source/drain and the barrier layer to recover the source/drain The surrounding two-dimensional electron gas channel reduces the junction resistance (R C ), thereby improving the on-resistance (R ON ) of the semiconductor device, and at the same time provides protection for the area under the two-dimensional electron gas recovery layer.

雖然本發明已以多個實施例描述如上,但這些實施例並非用於限定本發明。本發明所屬技術領域中具有通常知識者應可理解,他們能以本發明實施例為基礎,做各式各樣的改變、取代和替換,以達到與在此描述的多個實施例相同的目的及/或優點。本發明所屬技術領域中具有通常知識者也可理解,此類修改或設計並未悖離本發明的精神和範圍。 因此,本發明之保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been described above with multiple embodiments, these embodiments are not intended to limit the present invention. Those of ordinary skill in the technical field to which the present invention belongs should understand that they can make various changes, substitutions, and replacements based on the embodiments of the present invention to achieve the same purpose as the multiple embodiments described herein And/or advantages. Those with ordinary knowledge in the technical field to which the present invention belongs can also understand that such modifications or designs do not depart from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be deemed as defined by the appended patent application scope.

110‧‧‧基底 110‧‧‧ base

120‧‧‧成核層 120‧‧‧Nuclear layer

130‧‧‧緩衝層 130‧‧‧buffer layer

140‧‧‧通道層 140‧‧‧channel layer

150‧‧‧阻障層 150‧‧‧ barrier layer

160‧‧‧化合物半導體層 160‧‧‧ Compound semiconductor layer

170‧‧‧第一摻質保持層 170‧‧‧ First doping retention layer

180‧‧‧源極/汲極 180‧‧‧ source/drain

190‧‧‧閘極 190‧‧‧Gate

210‧‧‧第二摻質保持層 210‧‧‧Second doped retention layer

220‧‧‧開口 220‧‧‧ opening

300‧‧‧半導體裝置 300‧‧‧Semiconductor device

T1、T2‧‧‧厚度 T1, T2‧‧‧thickness

Claims (20)

一種半導體裝置,包括:一通道層,設置於一基底上方;一阻障層,設置於該通道層上方;一化合物半導體層和一摻質保持層,設置於該阻障層上方;一對源極/汲極,設置於該基底上方且位於該化合物半導體層的兩側;以及一閘極,設置於該化合物半導體層上。 A semiconductor device includes: a channel layer disposed above a substrate; a barrier layer disposed above the channel layer; a compound semiconductor layer and a doped retention layer disposed above the barrier layer; a pair of sources A pole/drain is disposed above the substrate and located on both sides of the compound semiconductor layer; and a gate is disposed on the compound semiconductor layer. 如申請專利範圍第1項所述之半導體裝置,其中在該摻質保持層內的摻質含量大於在該摻質保持層外的摻質含量。 The semiconductor device as described in item 1 of the patent application range, wherein the dopant content in the dopant holding layer is greater than the dopant content outside the dopant holding layer. 如申請專利範圍第1項所述之半導體裝置,其中該摻質保持層包括氮化鋁、氮化鋁鎵、氮化銦鎵或前述之組合。 The semiconductor device as described in item 1 of the patent application range, wherein the doped retention layer includes aluminum nitride, aluminum gallium nitride, indium gallium nitride, or a combination of the foregoing. 如申請專利範圍第1項所述之半導體裝置,其中該摻質保持層的厚度在0.5nm至5nm的範圍。 The semiconductor device as described in item 1 of the patent application range, wherein the thickness of the doped retention layer is in the range of 0.5 nm to 5 nm. 如申請專利範圍第1項所述之半導體裝置,其中該摻質保持層包括:一第一摻質保持層,設置於化合物半導體層頂部、內部或底部;及/或一第二摻質保持層,覆蓋該化合物半導體層的側壁並在該對源極/汲極與該阻障層之間延伸。 The semiconductor device as described in item 1 of the patent application range, wherein the dopant holding layer includes: a first dopant holding layer disposed on top, inside, or bottom of the compound semiconductor layer; and/or a second dopant holding layer , Covering the sidewalls of the compound semiconductor layer and extending between the pair of source/drain and the barrier layer. 如申請專利範圍第5項所述之半導體裝置,更包括該對源極/汲極穿過該阻障層且延伸至該通道層中,且該第二摻質保持層在該對源極/汲極與該通道層之間延伸。 The semiconductor device as described in item 5 of the patent application scope further includes the pair of source/drain electrodes passing through the barrier layer and extending into the channel layer, and the second doped retention layer is on the pair of source/ The drain electrode extends between the channel layer. 如申請專利範圍第5項所述之半導體裝置,其中該第二保持層具有一開口,設置於該化合物半導體層上,且該閘極設置於該開口處。 The semiconductor device as described in item 5 of the patent application range, wherein the second holding layer has an opening provided on the compound semiconductor layer, and the gate is provided at the opening. 如申請專利範圍第1項所述之半導體裝置,更包括一二維電子氣回復層,覆蓋該化合物半導體層的側壁且在該對源極/汲極與該阻障層之間延伸。 The semiconductor device as described in item 1 of the patent application scope further includes a two-dimensional electron gas recovery layer covering the sidewall of the compound semiconductor layer and extending between the pair of source/drain electrodes and the barrier layer. 如申請專利範圍第8項所述之半導體裝置,更包括該對源極/汲極穿過該阻障層且延伸至該通道層中,且該二維電子氣回復層在該對源極/汲極與該通道層之間延伸。 The semiconductor device as described in item 8 of the patent application scope further includes the pair of source/drain electrodes passing through the barrier layer and extending into the channel layer, and the two-dimensional electron gas recovery layer is in the pair of source/ The drain electrode extends between the channel layer. 如申請專利範圍第8項所述之半導體裝置,其中該二維電子氣回復層包括六方晶系(hexagonal crystal)的二元化合物半導體、石墨烯(graphene)或前述之組合。 The semiconductor device as described in item 8 of the patent application range, wherein the two-dimensional electron gas recovery layer includes a hexagonal crystal binary compound semiconductor, graphene, or a combination of the foregoing. 一種半導體裝置的製造方法,包括:在一基底上方形成一通道層;在該通道層上方形成一阻障層;在該阻障層上方形成一化合物半導體層和一摻質保持層;在該基底上方且在該化合物半導體層的兩側形成一對源極/汲極;以及在該化合物半導體層上方形成一閘極。 A method for manufacturing a semiconductor device, comprising: forming a channel layer above a substrate; forming a barrier layer above the channel layer; forming a compound semiconductor layer and a doped retention layer above the barrier layer; on the substrate A pair of source/drain electrodes are formed above and on both sides of the compound semiconductor layer; and a gate electrode is formed above the compound semiconductor layer. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中該摻質保持層的形成包括使用有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶或前述之組合。 The method for manufacturing a semiconductor device as described in item 11 of the patent application range, wherein the formation of the dopant retention layer includes the use of organometallic chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, or a combination of the foregoing . 如申請專利範圍第11項所述之半導體裝置的製造方法,其中該摻質保持層包括氮化鋁、氮化鋁鎵、氮化銦鎵或前述之組合。 The method for manufacturing a semiconductor device as described in item 11 of the patent application range, wherein the doped retention layer includes aluminum nitride, aluminum gallium nitride, indium gallium nitride, or a combination of the foregoing. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中該摻質保持層的厚度在0.5nm至5nm的範圍。 The method for manufacturing a semiconductor device as described in item 11 of the patent application range, wherein the thickness of the doped retention layer is in the range of 0.5 nm to 5 nm. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中該摻質保持層的形成包括:在形成化合物半導體層期間,在化合物半導體層的頂部、內部或底部原位形成一第一摻質保持層;及/或在該化合物半導體層的側壁上形成一第二摻質保持層,且該第二摻質保持層在該對源極/汲極與該通道層之間延伸。 The method for manufacturing a semiconductor device as described in item 11 of the patent application range, wherein the formation of the dopant holding layer includes: during the formation of the compound semiconductor layer, forming a first dopant in situ on the top, inside or bottom of the compound semiconductor layer A mass-retaining layer; and/or a second dopant-retaining layer is formed on the sidewall of the compound semiconductor layer, and the second dopant-retaining layer extends between the pair of source/drain and the channel layer. 如申請專利範圍第15項所述之半導體裝置的製造方法,其中該對源極/汲極更延伸至該通道層中,且該第二摻質保持層在該對源極/汲極與該通道層之間延伸。 The method for manufacturing a semiconductor device as described in item 15 of the patent application range, wherein the pair of source/drain electrodes further extends into the channel layer, and the second doped retention layer is between the pair of source/drain electrodes and the Channels extend between layers. 如申請專利範圍第15項所述之半導體裝置的製造方法,其中該第二摻質保持層具有一開口形成於該化合物半導體層上方,且該閘極設置於該開口處。 The method for manufacturing a semiconductor device as described in item 15 of the patent application range, wherein the second doped retention layer has an opening formed above the compound semiconductor layer, and the gate is disposed at the opening. 如申請專利範圍第11項所述之半導體裝置的製造方法,更包括在該化合物半導體層的側壁上形成一二維電子氣回復層,且該二維電子氣回復層在該對源極/汲極與該通道層之間延伸。 The method for manufacturing a semiconductor device as described in item 11 of the patent application scope further includes forming a two-dimensional electron gas recovery layer on the sidewall of the compound semiconductor layer, and the two-dimensional electron gas recovery layer is located on the pair of source/drain Between the pole and the channel layer. 如申請專利範圍第18項所述之半導體裝置的製造方法,其中該對源極/汲極更穿過該阻障層且延伸至該通道層 中,且該二維電子氣回復層在該對源極/汲極與該通道層之間延伸。 The method for manufacturing a semiconductor device as described in item 18 of the patent application range, wherein the pair of source/drain electrodes further passes through the barrier layer and extends into the channel layer, and the two-dimensional electron gas recovery layer is in the pair The source/drain extends between the channel layer. 如申請專利範圍第18項所述之半導體裝置的製造方法,其中該二維電子氣回復層包括六方晶系(hexagonal crystal)的二元化合物半導體、石墨烯(graphene)或前述之組合。 The method for manufacturing a semiconductor device as described in item 18 of the patent application range, wherein the two-dimensional electron gas recovery layer includes a hexagonal crystal (hexagonal crystal) binary compound semiconductor, graphene (graphene) or a combination of the foregoing.
TW107128800A 2018-08-17 2018-08-17 Semiconductor devices and methods for forming same TWI740058B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107128800A TWI740058B (en) 2018-08-17 2018-08-17 Semiconductor devices and methods for forming same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107128800A TWI740058B (en) 2018-08-17 2018-08-17 Semiconductor devices and methods for forming same

Publications (2)

Publication Number Publication Date
TW202010125A true TW202010125A (en) 2020-03-01
TWI740058B TWI740058B (en) 2021-09-21

Family

ID=70766561

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107128800A TWI740058B (en) 2018-08-17 2018-08-17 Semiconductor devices and methods for forming same

Country Status (1)

Country Link
TW (1) TWI740058B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826172B (en) * 2022-12-08 2023-12-11 台亞半導體股份有限公司 High electron mobility transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20155503A1 (en) * 2015-11-12 2017-05-12 St Microelectronics Srl METHOD OF MANUFACTURE OF A HEMT TRANSISTOR AND HEMT TRANSISTOR WITH IMPROVED ELECTRONIC MOBILITY
JP2018060847A (en) * 2016-10-03 2018-04-12 株式会社東芝 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826172B (en) * 2022-12-08 2023-12-11 台亞半導體股份有限公司 High electron mobility transistor

Also Published As

Publication number Publication date
TWI740058B (en) 2021-09-21

Similar Documents

Publication Publication Date Title
TWI593102B (en) High electron mobility transistor and fabrication thereof
TWI608568B (en) Semiconductor device and method for fabricating the same
US10229978B2 (en) Semiconductor device and manufacturing method thereof
KR101202497B1 (en) Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US10700189B1 (en) Semiconductor devices and methods for forming the same
US10707322B2 (en) Semiconductor devices and methods for fabricating the same
TWI661554B (en) Enhancement mode hemt device and mehtod of forming the same
US11545567B2 (en) Methods for forming fluorine doped high electron mobility transistor (HEMT) devices
TWI676293B (en) Semiconductor devices and methods for forming same
TWI641133B (en) Semiconductor cell
US11335797B2 (en) Semiconductor devices and methods for fabricating the same
JP2023001273A (en) Nitride semiconductor device
TW202025258A (en) Method of manufacturing gate structure for gallium nitride hemt
JP6147018B2 (en) Enhancement mode GaN HEMT device with gate spacer and method of manufacturing the same
TW201635522A (en) Semiconductor cell
CN110875383B (en) Semiconductor device and method for manufacturing the same
TWI693716B (en) Semiconductor devices and methods for fabricating the same
TWI673868B (en) Semiconductor devices and methods for fabricating the same
TWI740058B (en) Semiconductor devices and methods for forming same
TW202329461A (en) High electron mobility transistor and method for fabricating the same
TWI726282B (en) Semiconductor devices and methods for fabricating the same
TWI701836B (en) Enhancement mode hemt device and method of manufacturing the same
CN111092118B (en) Semiconductor device and method for manufacturing the same
CN110581163B (en) Semiconductor device and method for manufacturing the same
TWI719722B (en) Semiconductor structure and method of forming the same