TWI719722B - Semiconductor structure and method of forming the same - Google Patents
Semiconductor structure and method of forming the same Download PDFInfo
- Publication number
- TWI719722B TWI719722B TW108142228A TW108142228A TWI719722B TW I719722 B TWI719722 B TW I719722B TW 108142228 A TW108142228 A TW 108142228A TW 108142228 A TW108142228 A TW 108142228A TW I719722 B TWI719722 B TW I719722B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- forming
- protective layer
- semiconductor structure
- combination
- Prior art date
Links
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本發明實施例係有關於一種半導體結構,特別係有關於高電子移動率電晶體(high electron mobility transistor,HEMT)。The embodiment of the present invention relates to a semiconductor structure, and particularly relates to a high electron mobility transistor (HEMT).
高電子移動率電晶體(High Electron Mobility Transistor,HEMT)因具有高崩潰電壓、高輸出電壓等優點,廣泛應用於高功率半導體裝置當中。High Electron Mobility Transistor (HEMT) is widely used in high-power semiconductor devices due to its advantages of high breakdown voltage and high output voltage.
GaN材料因為具有寬能帶間隙及高速移動電子,所以GaN HEMT在射頻與功率的應用上被積極的開發。GaN HEMT的導通電阻主要是由二維電子氣通道以及源極和汲極與GaN的異質接面來決定。由於源極和汲極與GaN的異質接面的電阻極高。因此,通常會藉由加熱製程,使部分的源極和汲極的金屬擴散至二維電子氣通道,從而形成良好的歐姆接觸(ohmic contact)。Because GaN materials have a wide band gap and high-speed mobile electrons, GaN HEMTs are actively developed in radio frequency and power applications. The on-resistance of the GaN HEMT is mainly determined by the two-dimensional electron gas channel and the heterojunction between the source and drain and GaN. Due to the extremely high resistance of the source and drain with the heterojunction of GaN. Therefore, a heating process is usually used to diffuse part of the source and drain metal into the two-dimensional electron gas channel, thereby forming a good ohmic contact.
然而,源極和汲極的材料同樣也會擴散至氧化層。因為矽在400°C左右對一些材料,例如鋁,有相當程度的固態溶解度(Solid Solubility),所以在溫度400°C以上的製程溫度的期間,鋁會與矽表面發生擴散的現象,矽就會藉由擴散效應進入鋁,而鋁也會回填矽因擴散作用所遺留下來的空隙,因此在鋁與矽接觸的地方,會形成所謂的突穿現象(Spiking),使得源極和汲極與閘極產生不希望的電性連接,而導致短路。However, the source and drain materials will also diffuse to the oxide layer. Because silicon has a considerable degree of solid solubility (Solid Solubility) for some materials, such as aluminum, at about 400°C, during the process temperature above 400°C, aluminum will diffuse with the silicon surface. Will enter aluminum by diffusion effect, and aluminum will backfill the void left by silicon due to diffusion. Therefore, where aluminum and silicon are in contact, a so-called puncture phenomenon (Spiking) will be formed, causing the source and drain to interact with each other. The gate produces an undesirable electrical connection, resulting in a short circuit.
雖然現有的高電子移動率電晶體大致上可改善突穿現象,但並非各方面皆令人滿意。因此,仍需要一種新的高電子移動率電晶體,以符合各方面的需求。Although the existing high electron mobility transistors can generally improve the breakthrough phenomenon, they are not satisfactory in all aspects. Therefore, there is still a need for a new type of high electron mobility transistor to meet various requirements.
根據本發明的一些實施例,提供一種半導體結構。半導體結構包含基底、緩衝層、阻障層、介電層、保護層以及源極結構和汲極結構。前述緩衝層設置在基底上。前述阻障層設置在緩衝層上。前述介電層設置在阻障層上。前述保護層設置在介電層上。前述源極結構和前述汲極結構設置在保護層上。According to some embodiments of the present invention, a semiconductor structure is provided. The semiconductor structure includes a substrate, a buffer layer, a barrier layer, a dielectric layer, a protective layer, and a source structure and a drain structure. The aforementioned buffer layer is provided on the substrate. The aforementioned barrier layer is provided on the buffer layer. The aforementioned dielectric layer is disposed on the barrier layer. The aforementioned protective layer is provided on the dielectric layer. The source structure and the drain structure are arranged on the protective layer.
根據本發明的一些實施例,提供一種半導體結構的形成方法。方法包含提供基底;形成緩衝層於基底上;形成阻障層於緩衝層上;形成介電層於阻障層上;形成保護層於介電層上;以及形成源極結構和汲極結構於保護層上。According to some embodiments of the present invention, a method for forming a semiconductor structure is provided. The method includes providing a substrate; forming a buffer layer on the substrate; forming a barrier layer on the buffer layer; forming a dielectric layer on the barrier layer; forming a protective layer on the dielectric layer; and forming a source structure and a drain structure on the On the protective layer.
以下公開許多不同的實施方法或是例子來實行本發明實施例之不同特徵,以下描述具體的元件及其排列的實施例以闡述本發明實施例。當然這些實施例僅用以例示,且不該以此限定本發明實施例的範圍。例如,在說明書中提到第一特徵形成於第二特徵之上,其包括第一特徵與第二特徵是直接接觸的實施例,另外也包括於第一特徵與第二特徵之間另外有其他特徵的實施例,亦即,第一特徵與第二特徵並非直接接觸。此外,在不同實施例中可能使用重複的標號或標示,這些重複僅為了簡單清楚地敘述本發明實施例,不代表所討論的不同實施例及/或結構之間有特定的關係。Many different implementation methods or examples are disclosed below to implement the different features of the embodiments of the present invention. The following describes specific elements and their arrangement embodiments to illustrate the embodiments of the present invention. Of course, these embodiments are only for illustration, and should not be used to limit the scope of the embodiments of the present invention. For example, in the specification, it is mentioned that the first feature is formed on the second feature, which includes the embodiment in which the first feature and the second feature are in direct contact, and it also includes other embodiments between the first feature and the second feature. The embodiment of the feature, that is, the first feature and the second feature are not in direct contact. In addition, repeated reference numerals or labels may be used in different embodiments. These repetitions are only used to describe the embodiments of the present invention simply and clearly, and do not represent a specific relationship between the different embodiments and/or structures discussed.
此外,其中可能用到與空間相對用語,例如「在…下方」、「下方」、「較低的」、「上方」、「較高的」及類似的用語,這些空間相對用語係為了便於描述圖示中一個(些)元件或特徵與另一個(些)元件或特徵之間的關係,這些空間相對用語包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),則其中所使用的空間相對形容詞也將依轉向後的方位來解釋。In addition, terms relative to space may be used, such as "below", "below", "lower", "above", "higher" and similar terms. These spatial relative terms are used for ease of description The relationship between one element or feature(s) and another element(s) or feature in the illustration. These spatial relative terms include the different orientations of the device in use or operation, as well as the orientation described in the drawings. When the device is turned in different directions (rotated by 90 degrees or other directions), the spatially relative adjectives used therein will also be interpreted according to the turned position.
在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。Here, the terms "about", "approximately", and "approximately" usually mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or 3 Within %, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantity provided in the manual is an approximate quantity, that is, without specifying "about", "approximately", "approximately", "about", "approximately" and "approximately" can still be implied. The meaning of "probably".
能理解的是,雖然在此可使用用語「第一」、「第二」、「第三」等來敘述各種元件、組成成分、區域、層、及/或部分,這些元件、組成成分、區域、層、及/或部分不應被這些用語限定,且這些用語僅是用來區別不同的元件、組成成分、區域、層、及/或部分。因此,以下討論的一第一元件、組成成分、區域、層、及/或部分可在不偏離本揭露之教示的情況下被稱為一第二元件、組成成分、區域、層、及/或部分。It can be understood that although the terms "first", "second", "third", etc. may be used herein to describe various elements, components, regions, layers, and/or parts, these elements, components, regions , Layers, and/or parts should not be limited by these terms, and these terms are only used to distinguish different elements, components, regions, layers, and/or parts. Therefore, a first element, component, region, layer, and/or part discussed below may be referred to as a second element, component, region, layer, and/or without departing from the teachings of the present disclosure section.
雖然所述的一些實施例中的步驟以特定順序進行,這些步驟亦可以其他合邏輯的順序進行。在不同實施例中,可替換或省略一些所述的步驟,亦可於本發明實施例所述的步驟之前、之中、及/或之後進行一些其他操作。本發明實施例中的高電子移動率電晶體可加入其他的特徵。在不同實施例中,可替換或省略一些特徵。Although the steps in some of the described embodiments are performed in a specific order, these steps can also be performed in other logical orders. In different embodiments, some of the steps described may be replaced or omitted, and some other operations may be performed before, during, and/or after the steps described in the embodiments of the present invention. Other features can be added to the high electron mobility transistor in the embodiment of the present invention. In different embodiments, some features may be replaced or omitted.
若未特別說明,類似名稱的元件或層可採用類似的材料或方法形成。Unless otherwise specified, elements or layers with similar names can be formed by using similar materials or methods.
本發明實施例提供一種半導體結構及其形成方法。藉由在源極結構和介電層以及在汲極結構和介電層之間設置保護層設置,可避免在執行加熱製程以形成歐姆接觸(ohmic contact)時,源極結構和汲極結構的導電材料擴散到介電層,從而避免源極結構和汲極結構與閘極結構產生短路。The embodiment of the present invention provides a semiconductor structure and a forming method thereof. By providing a protective layer arrangement between the source structure and the dielectric layer and between the drain structure and the dielectric layer, it is possible to avoid the problem of the source structure and the drain structure when the heating process is performed to form an ohmic contact. The conductive material diffuses into the dielectric layer, so as to avoid short circuit between the source structure and the drain structure and the gate structure.
第1至5圖係根據一些實施例繪示出形成半導體結構100的不同階段的剖面示意圖。如第1圖所繪示,提供一基底102。在一些實施例中,基底102可為Al
2O
3(藍寶石(sapphire))基底。此外,基底102亦可為半導體基底。前述半導體基底可為元素半導體,包含矽(silicon)或鍺(germanium);化合物半導體,包含氮化鎵(gallium nitride,GaN)、碳化矽(silicon carbide)、砷化鎵(gallium arsenide)、磷化鎵(gallium phosphide)、磷化銦(indium phosphide)、砷化銦(indium arsenide)及/或銻化銦(indium antimonide);合金半導體,包含矽鍺合金(SiGe)、磷砷鎵合金(GaAsP)、砷鋁銦合金(AlInAs)、砷鋁鎵合金(AlGaAs)、砷銦鎵合金(GaInAs)、磷銦鎵合金(GaInP)及/或磷砷銦鎵合金(GaInAsP)、或上述材料之組合。在一些實施例中,基底102可為單晶基底、多層基底(multi-layer substrate)、梯度基底(gradient substrate)、其他適當之基底、或上述之組合。此外,基底102也可以是絕緣層上覆半導體(semiconductor on insulator,SOI)基底,上述絕緣層覆半導體基底可包含底板、設置於底板上之埋藏氧化物層、或設置於埋藏氧化物層上之半導體層。
FIGS. 1 to 5 are schematic cross-sectional views illustrating different stages of forming the
接著,在基底102上形成緩衝層104。在一些實施例中,緩衝層104包含III-V族半導體,例如GaN。緩衝層104亦可包含AlGaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、其他適當的III-V族半導體材料或上述之組合。在一些實施例中,可使用分子束磊晶法(molecular-beam epitaxy,MBE) 、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、有機金屬氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、化學氣相沉積法(chemical vapor deposition,CVD)、原子層沉積法(atomic layer deposition,ALD)、物理氣相沉積法(physical vapor deposition,PVD)、分子束沉積法(molecular beam deposition,MBD)、電漿增強化學氣相沉積法(plasma enhanced chemical vapor deposition,CVD)、其他適當之方法、或上述之組合在基底102上形成緩衝層104。Next, a
接著,在緩衝層104上形成阻障層106,在一些實施例中,阻障層106包含與緩衝層104相異之材料。阻障層106可包含III-V族半導體,例如Al
xGa
1-xN,其中0>x>1。阻障層106亦可包含GaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、其他適當的III-V族材料、或上述之組合。在一些實施例中,可藉由分子束磊晶法、氫化物氣相磊晶法、有機金屬氣相沉積法、化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在緩衝層104上形成阻障層106。
Next, a
由於緩衝層104與阻障層106之材料相異,其能帶間隙(band gap)不同,緩衝層104與阻障層106的界面處形成異質接面(heterojunction)。異質接面處的能帶彎曲,導帶(conduction band)彎曲深處形成量子井(quantum well),將壓電效應(Piezoelectricity)所產生的電子約束於量子井中,因此在緩衝層104與阻障層106的界面處形成二維電子氣(two-dimensional electron gas,2DEG),進而形成導通電流。如第1圖所示,在緩衝層104與阻障層106的界面處形成通道區108,通道區108即為二維電子氣形成導通電流之處。Since the materials of the
接著,請參閱第2圖,在阻障層106上形成介電層110。在一些實施例中,介電層110包含SiO
2、SiN
3、SiON、Al
2O
3、MgO、Sc
2O
3、HfO
2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、LaO、ZrO、TiO
2、ZnO
2、ZrO
2、AlSiN
3、SiC、或Ta
2O
5、其他適當的介電材料、或上述之組合。在一些實施例中,可藉由分子束磊晶法、氫化物氣相磊晶法、有機金屬氣相沉積法、化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在阻障層106上形成介電層110。
Next, referring to FIG. 2, a
然後,在介電層110上形成一保護層112。保護層112包含高溫不熔的材料,例如在550°C至1000°C不熔的材料、在650°C至1100°C不熔的材料、在750°C至1200°C不熔的材料或在850°C至1300°C不熔的材料。舉例而言,保護層112的材料包含TiN、SiN、前述類似材料或前述之組合。在一些實施例中,可藉由分子束磊晶法、氫化物氣相磊晶法、有機金屬氣相沉積法、化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在介電層110上形成一保護層112。在一些實施例中,保護層112可為多層結構(未繪示)。舉例而言,保護層112包含高溫不熔的材料層及在高溫不熔的材料層上的鈍化層。由於高溫不熔的材料層可能會受到到後續的一些製程的傷害,例如光阻移除、表面清潔製程,鈍化層可避免高溫不熔的材料層受到後續的一些製程的傷害。Then, a
接著,請參閱第3圖,形成穿過保護層112、介電層110、阻障層106和部分緩衝層104的開口114。詳細而言,藉由合適的製程例如旋轉塗佈或化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法或其他合適的沉積法或前述之組合,將光阻材料形成於保護層112的頂面上,接著執行光學曝光、曝光後烘烤和顯影,以移除部分的光阻材料而形成圖案化的光阻層,圖案化的光阻層將作為用於蝕刻的蝕刻遮罩。可執行雙層或三層的光阻。然後,使用任何可接受的蝕刻製程,例如反應離子蝕刻、中性束蝕刻、類似蝕刻或前述之組合,來蝕刻穿過保護層112、介電層110、阻障層106和部分緩衝層104,以形成開口114。應理解的是,開口114可視實際需要穿過或是不穿過通道區108。雖然開口的剖面形狀為矩形,但應理解的是,開口的剖面形狀僅用以說明例示,並非用於限定本發明。Next, referring to FIG. 3, an
接著,請參閱第4圖,在保護層112上形成導電材料層116。在一些實施例中,導電材料層116的材料包含多晶矽、金屬(例如鎢、鈦、鋁、銅、鉬、鎳、鉑、其相似物、或以上之組合)、金屬合金、金屬氮化物(例如氮化鎢、氮化鉬、氮化鈦、氮化鉭、其相似物、或以上之組合)、金屬矽化物(例如矽化鎢、矽化鈦、矽化鈷、矽化鎳、矽化鉑、矽化鉺、其相似物、或以上之組合)、金屬氧化物(氧化釕、氧化銦錫、其相似物、或以上之組合)、其他適用的導電材料、或上述之組合。在一特定實施例中,導電材料層116的材料包含鈦、鋁或前述之組合。在一些實施例中,可藉由分子束磊晶法、氫化物氣相磊晶法、有機金屬氣相沉積法、化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法、或上述之組合在保護層112上形成導電材料層116。在一些實施例中,導電材料層116為多層結構(未繪示)。Next, referring to FIG. 4, a
接著,請參閱第5圖,將導電材料層116和保護層112圖案化,以形成源極結構116S和汲極結構116D與保護層112’。詳細而言,藉由合適的製程例如旋轉塗佈或化學氣相沉積法、原子層沉積法、物理氣相沉積法、分子束沉積法、電漿增強化學氣相沉積法、其他適當之方法或其他合適的沉積法或前述之組合,將光阻材料形成於導電材料層116的頂面上,接著執行光學曝光、曝光後烘烤和顯影,以移除部分的光阻材料而形成圖案化的光阻層,圖案化的光阻層將作為用於蝕刻的蝕刻遮罩。可執行雙層或三層的光阻。然後,使用任何可接受的蝕刻製程,例如反應離子蝕刻、中性束蝕刻、類似蝕刻或前述之組合,來蝕刻露出的部分導電材料層116和保護層112。Next, referring to FIG. 5, the
源極結構116S具有在開口114外的上部部分和在開口114內的下部部分。源極結構116S的上部部分具有和保護層112’的側壁齊平的側壁。在一些實施例中,保護層112’的側壁可延伸超過源極結構116S的上部部分的側壁。源極結構116S的下部部分與緩衝層104直接接觸。The
汲極結構116D具有在開口114外的上部部分和在開口114內的下部部分。汲極結構116D的上部部分具有和保護層112’的側壁齊平的側壁。在一些實施例中,保護層112’的側壁可延伸超過汲極結構116D的上部部分的側壁。汲極結構116D的下部部分與緩衝層104直接接觸。The
然後,藉由加熱製程,例如快速熱退火製程,以使源極結構116S、汲極結構116D以及通道區108形成歐姆接觸。Then, a heating process, such as a rapid thermal annealing process, is used to make the
由於保護層設置在源極結構的上部部分和介電層之間以及在汲極結構的上部部分和介電層之間,因此可避免在形成歐姆接觸(ohmic contact)時,源極結構和汲極結構的導電材料擴散到介電層,從而避免源極結構和汲極結構與其它層結構產生短路。Since the protective layer is disposed between the upper part of the source structure and the dielectric layer and between the upper part of the drain structure and the dielectric layer, it can avoid the formation of ohmic contact (ohmic contact), the source structure and the drain The conductive material of the pole structure diffuses into the dielectric layer, so as to avoid short circuit between the source structure and the drain structure and other layer structures.
此外,為了形成良好的歐姆接觸,源極結構和汲極結構通常具有固定的厚度比例及材料的堆疊結構。保護層能不影響源極結構和汲極結構的堆疊結構維持固定的厚度比例及材料,且能避免源極結構和汲極結構的導電材料擴散到介電層,從而提升製程寬裕度。In addition, in order to form a good ohmic contact, the source structure and the drain structure usually have a fixed thickness ratio and a stacked structure of materials. The protective layer does not affect the stack structure of the source structure and the drain structure to maintain a fixed thickness ratio and material, and can prevent the conductive material of the source structure and the drain structure from diffusing into the dielectric layer, thereby increasing the process margin.
半導體結構100可包含其他元件。舉例而言,如第6圖所示,半導體結構100可包含閘極結構118於源極結構116S和汲極結構116D之間以及介電層120於保護層112’和介電層110之間且於閘極結構118上。The
閘極結構118包含閘極118a和在閘極118a上的閘極電極層118b。在一些實施例中,閘極層118a可包含GaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、MgGaN、其他適當參雜的III-V族材料、或上述之組合。在一特定實施例中,閘極層118a包含MgGaN。在一些實施例中,閘極電極層118b可包含多晶矽、金屬(例如鎢、鈦、鋁、銅、鉬、鎳、鉑、其相似物、或以上之組合)、金屬合金、金屬氮化物(例如氮化鎢、氮化鉬、氮化鈦、氮化鉭、其相似物、或以上之組合)、金屬矽化物(例如矽化鎢、矽化鈦、矽化鈷、矽化鎳、矽化鉑、矽化鉺、其相似物、或以上之組合)、金屬氧化物(氧化釕、氧化銦錫、其相似物、或以上之組合)、其他適用的導電材料、或上述之組合。在一特定實施例中,閘極電極層118b可包含金屬氮化物,例如氮化鈦(TiN)。在一些實施例中,介電層120包含SiO
2、SiN
3、SiON、Al
2O
3、MgO、Sc
2O
3、HfO
2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、LaO、ZrO、TiO
2、ZnO
2、ZrO
2、AlSiN
3、SiC、或Ta
2O
5、其他適當的介電材料、或上述之組合。
The
相較於習知技術,本發明實施例所提供之半導體結構及其形成方法至少具有以下優點: (1) 藉由在源極結構和介電層以及在汲極結構和介電層之間設置保護層,可避免在執行加熱製程以形成歐姆接觸(ohmic contact)的期間,源極結構和汲極結構的導電材料擴散到介電層,從而避免源極結構和汲極結構與閘極結構產生短路。 (2) 為了形成良好的歐姆接觸,源極結構和汲極結構通常具有固定的厚度比例及材料的堆疊結構。保護層能不影響源極結構和汲極結構的堆疊結構維持固定的厚度比例及材料,而能避免源極結構和汲極結構的導電材料擴散到介電層,從而提升製程寬裕度。 (3) 此外,由於保護層還可包含一鈍化層,以避免高溫不熔的材料層受到後續的一些製程的傷害,例如光阻移除、表面清潔製程。 Compared with the prior art, the semiconductor structure and its forming method provided by the embodiments of the present invention have at least the following advantages: (1) By providing a protective layer between the source structure and the dielectric layer, and between the drain structure and the dielectric layer, it is possible to avoid the source structure and the drain during the heating process to form an ohmic contact. The conductive material of the electrode structure diffuses into the dielectric layer, thereby avoiding short circuit between the source structure and the drain structure and the gate structure. (2) In order to form a good ohmic contact, the source structure and the drain structure usually have a fixed thickness ratio and a stacked structure of materials. The protective layer can not affect the stack structure of the source structure and the drain structure to maintain a fixed thickness ratio and material, and can prevent the conductive material of the source structure and the drain structure from diffusing into the dielectric layer, thereby increasing the process margin. (3) In addition, since the protective layer can also include a passivation layer, the high-temperature infusible material layer is prevented from being damaged by some subsequent processes, such as photoresist removal and surface cleaning processes.
雖然本發明的實施例及其優點已揭露如上,但應該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。此外,本揭露之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本揭露揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本揭露使用。因此,本揭露之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本揭露之保護範圍也包括各個申請專利範圍及實施例的組合。Although the embodiments of the present invention and its advantages have been disclosed as above, it should be understood that any person with ordinary knowledge in the relevant technical field can make changes, substitutions and modifications without departing from the spirit and scope of the present disclosure. In addition, the scope of protection of this disclosure is not limited to the manufacturing process, machinery, manufacturing, material composition, device, method, and steps in the specific embodiments described in the specification. Anyone with ordinary knowledge in the technical field can disclose the content from this disclosure. It is understood that the current or future developed processes, machines, manufacturing, material composition, devices, methods, and steps can be used according to the present disclosure as long as they can implement substantially the same functions or obtain substantially the same results in the embodiments described herein. Therefore, the protection scope of the present disclosure includes the above-mentioned manufacturing processes, machines, manufacturing, material composition, devices, methods, and steps. In addition, each patent application scope constitutes an individual embodiment, and the protection scope of the present disclosure also includes each patent application scope and a combination of embodiments.
100:半導體結構
102:基底
104:緩衝層
106:阻障層
108:通道區
110:介電層
112、112’:保護層
114:開口
116:導電材料層
116S:源極結構
116D:汲極結構
118:閘極結構
118a:閘極層
118b:閘極電極層100: semiconductor structure
102: Base
104: buffer layer
106: barrier layer
108: Passage area
110:
以下將配合所附圖式詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 第1至5圖係根據一些實施例繪示出形成半導體結構的不同階段的剖面圖。 第6圖係根據一些實施例繪示的半導體結構的剖面圖。 The embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be noted that, according to standard practices in the industry, various features are not drawn to scale and are only used for illustration and illustration. In fact, it is possible to arbitrarily enlarge or reduce the size of the element to clearly show the characteristics of the embodiment of the present invention. FIGS. 1 to 5 are cross-sectional views illustrating different stages of forming a semiconductor structure according to some embodiments. FIG. 6 is a cross-sectional view of a semiconductor structure according to some embodiments.
100:半導體結構 100: semiconductor structure
102:基底 102: Base
104:緩衝層 104: buffer layer
106:阻障層 106: barrier layer
108:通道區 108: Passage area
110:介電層 110: Dielectric layer
112’:保護層 112’: Protective layer
116S:源極結構 116S: source structure
116D:汲極結構 116D: Drain structure
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108142228A TWI719722B (en) | 2019-11-21 | 2019-11-21 | Semiconductor structure and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108142228A TWI719722B (en) | 2019-11-21 | 2019-11-21 | Semiconductor structure and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI719722B true TWI719722B (en) | 2021-02-21 |
TW202121684A TW202121684A (en) | 2021-06-01 |
Family
ID=75745953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108142228A TWI719722B (en) | 2019-11-21 | 2019-11-21 | Semiconductor structure and method of forming the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI719722B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160308002A1 (en) * | 2014-12-19 | 2016-10-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Silicide Regions in Vertical Gate All Around (VGAA) Devices and Methods of Forming Same |
US20180197856A1 (en) * | 2013-02-26 | 2018-07-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor Device Containing HEMT and MISFET and Method of Forming the Same |
US20180294161A1 (en) * | 2017-04-07 | 2018-10-11 | Semiconductor Manufacturing International (Shanghai) Corporation | Vertical transistor having a silicided bottom and method for fabricating thereof |
US20190081167A1 (en) * | 2017-09-08 | 2019-03-14 | Wavetek Microelectronics Corporation | Nitride semiconductor device |
-
2019
- 2019-11-21 TW TW108142228A patent/TWI719722B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180197856A1 (en) * | 2013-02-26 | 2018-07-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor Device Containing HEMT and MISFET and Method of Forming the Same |
US20160308002A1 (en) * | 2014-12-19 | 2016-10-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Silicide Regions in Vertical Gate All Around (VGAA) Devices and Methods of Forming Same |
US20180294161A1 (en) * | 2017-04-07 | 2018-10-11 | Semiconductor Manufacturing International (Shanghai) Corporation | Vertical transistor having a silicided bottom and method for fabricating thereof |
US20190081167A1 (en) * | 2017-09-08 | 2019-03-14 | Wavetek Microelectronics Corporation | Nitride semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
TW202121684A (en) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI608568B (en) | Semiconductor component and manufacturing method thereof | |
JP6280796B2 (en) | Manufacturing method of semiconductor device having Schottky diode and high electron mobility transistor | |
JP7065370B2 (en) | Semiconductor devices and their manufacturing methods | |
US11043583B2 (en) | Semiconductor structure and method for forming the same | |
US11114532B2 (en) | Semiconductor structures and methods of forming the same | |
CN113016074A (en) | Semiconductor device and method for manufacturing the same | |
US10002956B1 (en) | High electron mobility transistor | |
CN109524460B (en) | High Hole Mobility Transistor | |
CN113287200B (en) | Semiconductor device and method for manufacturing the same | |
JP2016174140A (en) | High electron mobility transistor device and manufacturing method thereof | |
JP6147018B2 (en) | Enhancement mode GaN HEMT device with gate spacer and method of manufacturing the same | |
US11955522B2 (en) | Semiconductor structure and method of forming the same | |
KR102757148B1 (en) | Gallium nitride-based device with step-wise field plate and method making the same | |
CN113272970B (en) | Semiconductor device and method of manufacturing the same | |
CN112420825B (en) | Semiconductor structure and method for forming the same | |
CN110875383B (en) | Semiconductor device and method for manufacturing the same | |
TWI719722B (en) | Semiconductor structure and method of forming the same | |
WO2023141749A1 (en) | GaN-BASED SEMICONDUCTOR DEVICE WITH REDUCED LEAKAGE CURRENT AND METHOD FOR MANUFACTURING THE SAME | |
CN112640127B (en) | Semiconductor device and method of manufacturing the same | |
TWI740058B (en) | Semiconductor devices and methods for forming same | |
TWI706564B (en) | Semiconductor structures and methods of forming the same | |
CN112909089A (en) | Semiconductor structure and forming method thereof | |
CN216213472U (en) | semiconductor device | |
CN115812253B (en) | Nitride-based semiconductor device and method of manufacturing the same | |
US20240014307A1 (en) | High electron mobility transistor (hemt) device and method of forming the same |