TW202030547A - 樣本方案產生及最佳化之方法 - Google Patents

樣本方案產生及最佳化之方法 Download PDF

Info

Publication number
TW202030547A
TW202030547A TW108146342A TW108146342A TW202030547A TW 202030547 A TW202030547 A TW 202030547A TW 108146342 A TW108146342 A TW 108146342A TW 108146342 A TW108146342 A TW 108146342A TW 202030547 A TW202030547 A TW 202030547A
Authority
TW
Taiwan
Prior art keywords
measurement data
measurement
substrate
wafer
sample
Prior art date
Application number
TW108146342A
Other languages
English (en)
Other versions
TWI788611B (zh
Inventor
皮埃爾路基 福爾斯柯
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP19151797.8A external-priority patent/EP3683626A1/en
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202030547A publication Critical patent/TW202030547A/zh
Application granted granted Critical
Publication of TWI788611B publication Critical patent/TWI788611B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一種用於樣本方案(624)產生之方法具有以下步驟:獲得(606)與一組部位相關聯之量測資料(608);分析(610)該量測資料以判定該等部位之統計上不同之群組;及基於該等統計上不同之群組組態(614)一樣本方案產生演算法(622)。一種方法包括:獲得與橫越一或多個基板之一樣本方案相關聯的一約束(618)及/或複數個關鍵效能指示符(620);及在包含一多目標遺傳演算法(622)之一樣本方案產生演算法中使用該約束(618)及/或該複數個關鍵效能指示符(620)。該等部位可界定跨越橫越一或多個基板之複數個場的一或多個區,且分析(610)該量測資料之步驟可包含橫越該所跨越之複數個場使用不同各別子取樣來堆疊。

Description

樣本方案產生及最佳化之方法
本發明係關於樣本方案產生及最佳化,以及關聯電腦程式、微影及檢測裝置。
微影裝置為將所要圖案施加至基板上(通常施加至基板之目標部分上)之機器。微影裝置可用於例如積體電路(IC)之製造中。在彼情況下,圖案化器件(其替代地被稱作光罩或倍縮光罩)可用以產生待形成於IC之個別層上之電路圖案。可將此圖案轉印至基板(例如,矽晶圓)上之目標部分(例如,包含晶粒之部分、一個晶粒或若干晶粒)上。通常經由成像至提供於基板上之輻射敏感材料(抗蝕劑)層上來進行圖案之轉印。一般而言,單一基板將含有經順次地圖案化之鄰近目標部分之網路。已知微影裝置包括:所謂的步進器,其中藉由一次性將整個圖案曝光至目標部分上來輻照每一目標部分;及所謂的掃描器,其中藉由在給定方向(「掃描」方向)上經由輻射光束而掃描圖案同時平行或反平行於此方向而同步地掃描基板來輻照每一目標部分。亦有可能藉由將圖案壓印至基板上而將圖案自圖案化器件轉印至基板。
無論使用哪種類型之裝置,圖案於基板上之準確置放為用於縮減電路組件及可藉由微影產生之其他產品之大小的主要挑戰。特定言之,準確地量測基板上已經被敷設之特徵的挑戰為能夠足夠準確地定位處於疊加之特徵之順次層而以高良率生產工作器件時的關鍵步驟。一般而言,在當今之亞微米半導體器件中,所謂的疊對應在幾十奈米內、在最臨界層中降至幾奈米來達成。
藉由涉及晶圓上之標記之曝光及量測的若干測試來執行微影裝置(諸如掃描器)之效能之校準及品質評估。此標記量測被稱作標記讀出。在取樣方案中被讀出之一組標記被稱作標記讀出佈局。
在特定測試條件下發生曝光。藉由與測試相關之標記來圖案化特定倍縮光罩。使用倍縮光罩之曝光係在特定曝光設定下,例如照明、劑量、夾盤次序、層之數目等來執行。一旦曝光且顯影晶圓,就執行標記讀出,例如量測經印刷對準、焦點或疊對標記。標記讀出可藉由掃描器或其他器件,諸如檢測裝置(例如角度解析散射計)來執行。
讀出值通常用於微影裝置(掃描器)之校準及/或品質評估中。在兩種狀況下,測試皆傳回關鍵效能指示符(KPI),其為指示測試如何進行之值。每一測試經常傳回若干KPI。
當製造掃描器(例如在設置序列期間在掃描器製造工廠中)時、在恢復期間(例如,在半導體製造商處,當調換掃描器之部件時)及在生產期間皆執行此等測試以測試掃描器之漂移。
在習知途徑中,在測試中曝光之所有標記皆自測試晶圓被讀出,因此,存在完整的標記讀出佈局。旨在縮減標記讀出之已知方法之效能係有限的,此係因為其降低所計算KPI之準確度。
希望具有縮減讀出標記之數目而不損害測試效能且將允許較短設置、恢復及漂移校準/驗證時間的一般(亦即適用於讀出標記的所有測試)方法。
根據本發明之一第一態樣,提供一種方法,其包含: - 獲得與一組部位相關聯之量測資料; - 分析該量測資料以判定該等部位之統計上不同之群組;及 - 基於該等統計上不同之群組組態一樣本方案產生演算法。
根據本發明之一第二態樣,提供一種方法,其包含: - 獲得與橫越一或多個基板之一樣本方案相關聯的一約束及/或複數個關鍵效能指示符;及 - 在包含一多目標遺傳演算法之一樣本方案產生演算法中使用該約束及/或該複數個關鍵效能指示符。
根據本發明之一第三態樣,提供一種方法,其包含: - 獲得與橫越一或多個基板之一組部位相關聯的量測資料; - 分析該量測資料;及 - 基於該分析最佳化一樣本方案, 其中該等部位界定跨越橫越一或多個基板之複數個場的一或多個區,該複數個場在該取樣方案中具有不同的各別子取樣;且 其中該分析該量測資料之步驟包含橫越該所跨越之複數個場使用其不同各別子取樣來堆疊該量測資料。
根據本發明之一第四態樣,提供一種微影裝置,其特定適合於進行該第一態樣之該方法之該等步驟。
根據本發明之一第五態樣,提供一種檢測裝置,其特定適合於進行該第一態樣之該方法之該等步驟。
根據本發明之一第六態樣,提供一種電腦程式,其包含當執行於合適電腦裝置上時致使該電腦裝置執行該第一態樣之該方法的電腦可讀指令。
根據本發明之一第七態樣,提供一種電腦程式產品,其包含該第六態樣之該電腦程式。
根據本發明之一第八態樣,提供一種微影裝置,其特定適合於進行該第二態樣之該方法之該等步驟。
根據本發明之一第九態樣,提供一種檢測裝置,其特定適合於進行該第二態樣之該方法之該等步驟。
根據本發明之一第十態樣,提供一種電腦程式,其包含當執行於合適電腦裝置上時致使該電腦裝置執行該第二態樣之該方法的電腦可讀指令。
根據本發明之一第十一態樣,提供一種電腦程式產品,其包含該第十態樣之該電腦程式。
根據本發明之一第十二態樣,提供一種微影裝置,其特定適合於進行該第三態樣之該方法之該等步驟。
根據本發明之一第十三態樣,提供一種檢測裝置,其特定適合於進行該第三態樣之該方法之該等步驟。
根據本發明之一第十四態樣,提供一種電腦程式,其包含當執行於合適電腦裝置上時致使該電腦裝置執行該第三態樣之該方法的電腦可讀指令。
根據本發明之一第十五態樣,提供一種電腦程式產品,其包含該第十四態樣之該電腦程式。
圖1示意性地描繪可供實施實施例之微影裝置LA。該裝置包含: i. 照明系統(照明器) IL,其經組態以調節輻射光束B (例如,UV輻射或EUV輻射); ii.     支撐結構(例如光罩台) MT,其經建構以支撐圖案化器件(例如光罩) MA,且連接至經組態以根據某些參數來準確地定位該圖案化器件之第一定位器PM; iii.    基板台(例如,晶圓台) WTa或WTb,其經建構以固持基板(例如,抗蝕劑塗佈晶圓) W,且連接至經組態以根據某些參數來準確地定位該基板之第二定位器PW;及 iv.    投影系統(例如,折射投影透鏡系統) PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如,包含一或多個晶粒)上。
照明系統可包括用於導向、塑形或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件或其任何組合。
支撐結構支撐圖案化器件,亦即,承載圖案化器件之重量。支撐結構以取決於圖案化器件之定向、微影裝置之設計及其他條件(諸如,圖案化器件是否被固持於真空環境中)的方式來固持圖案化器件。支撐結構可使用機械、真空、靜電或其他夾持技術來固持圖案化器件。支撐結構可為例如框架或台,其可視需要而固定或可移動。支撐結構可確保圖案化器件(例如)相對於投影系統處於所要位置。可認為本文中對術語「倍縮光罩」或「光罩」之任何使用皆與更一般之術語「圖案化器件」同義。
本文中所使用之術語「圖案化器件」應被廣泛地解譯為係指可用以在輻射光束之橫截面中向輻射光束賦予圖案以便在基板之目標部分中產生圖案的任何器件。應注意,舉例而言,若被賦予至輻射光束之圖案包括相移特徵或所謂的輔助特徵,則該圖案可不確切地對應於基板之目標部分中之所要圖案。通常,被賦予至輻射光束之圖案將對應於目標部分中所產生之器件(諸如積體電路)中的特定功能層。
圖案化器件可為透射的或反射的。圖案化器件之實例包括光罩、可程式化鏡面陣列,及可程式化LCD面板。光罩在微影中係熟知的,且包括諸如二元、交變相移及衰減相移之光罩類型,以及各種混合式光罩類型。可程式化鏡面陣列之一實例使用小鏡面之矩陣配置,該等小鏡面中之每一者可個別地傾斜,以便使入射輻射光束在不同方向上反射。傾斜鏡面在由鏡面矩陣反射之輻射光束中賦予圖案。
本文所使用之術語「投影系統」應被廣泛地解譯為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的任何類型之投影系統,包括折射、反射、反射折射、磁性、電磁及靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用皆與更一般之術語「投影系統」同義。
如此處所描繪,裝置屬於透射類型(例如,使用透射光罩)。替代地,裝置可屬於反射類型(例如,使用如上文所提及之類型之可程式化鏡面陣列,或使用反射光罩)。
微影裝置可屬於具有兩個(雙載物台)或多於兩個基板台(及/或兩個或多於兩個光罩台)之類型。在此等「多載物台」機器中,可並行地使用額外台,或可對一或多個台進行預備步驟,同時將一或多個其他台用於曝光。可以單機方式來使用本文所揭示之本發明,但詳言之,本發明可在單載物台裝置抑或多載物台裝置之曝光前量測階段中提供額外功能。
微影裝置亦可屬於如下類型:其中基板之至少一部分可由具有相對較高折射率之液體(例如,水)覆蓋,以便填充投影系統與基板之間的空間。亦可將浸潤液體施加至微影裝置中之其他空間,例如,光罩與投影系統之間的空間。浸潤技術在此項技術中被熟知用於增加投影系統之數值孔徑。本文中所使用之術語「浸潤」並不意謂諸如基板之結構必須浸沒於液體中,而是僅意謂液體在曝光期間位於投影系統與基板之間。
參看圖1,照明器IL自輻射源SO接收輻射光束。舉例而言,當源為準分子雷射時,源及微影裝置可為單獨實體。在此類狀況下,不認為源形成微影裝置之部分,且輻射光束係憑藉包含例如合適導向鏡及/或光束擴展器之光束遞送系統BD而自源SO傳遞至照明器IL。在其他狀況下,舉例而言,當源為水銀燈時,源可為微影裝置之整體部分。源SO及照明器IL連同光束遞送系統BD (在需要時)可被稱作輻射系統。
照明器IL可包含用於調整輻射光束之角強度分佈之調整器AD。通常,可調整照明器之光瞳平面中之強度分佈的至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作 外部及 內部)。另外,照明器IL可包含各種其他組件,諸如,積光器IN及聚光器CO。照明器可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。
輻射光束B入射於被固持於支撐結構(例如,光罩台MT)上之圖案化器件(例如,光罩MA)上,且係由該圖案化器件而圖案化。在已橫穿光罩MA的情況下,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器IF (例如,干涉器件、線性編碼器或電容性感測器),可準確地移動基板台WTa/WTb,例如,以便使不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM及另一位置感測器(其未在圖1中被明確地描繪)可用以(例如)在自光罩庫之機械擷取之後或在掃描期間相對於輻射光束B之路徑來準確地定位光罩MA。一般而言,可憑藉形成第一定位器PM之部件之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現光罩台MT之移動。相似地,可使用形成第二定位器PW之部件之長衝程模組及短衝程模組來實現基板台WTa/WTb之移動。在步進器(相對於掃描器)之狀況下,光罩台MT可僅連接至短衝程致動器,或可固定。可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準光罩MA及基板W。儘管如所說明之基板對準標記佔據專用目標部分,但該等基板對準標記可位於目標部分之間的空間中(此等標記被稱為切割道對準標記)。相似地,在多於一個晶粒提供於光罩MA上之情形中,光罩對準標記可位於該等晶粒之間。
所描繪裝置可用於以下模式中之至少一者中:
1. 在步進模式中,在將被賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使光罩台MT及基板台WTa/WTb保持基本上靜止(亦即,單次靜態曝光)。接著,使基板台WTa/WTb在X及/或Y方向上移位,使得可曝光不同目標部分C。在步進模式中,曝光場之最大大小限制單次靜態曝光中所成像之目標部分C之大小。
2. 在掃描模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描光罩台MT及基板台WTa/WTb (亦即,單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WTa/WTb相對於光罩台MT之速度及方向。在掃描模式中,曝光場之最大大小限制單次動態曝光中之目標部分之寬度(在非掃描方向上),而掃描運動之長度判定目標部分之高度(在掃描方向上)。
3. 在另一模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使光罩台MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WTa/WTb。在此模式中,通常使用脈衝式輻射源,且在基板台WTa/WTb之每一移動之後或在一掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如,上文所提及之類型之可程式化鏡面陣列)之無光罩微影。
亦可使用對上文所描述之使用模式之組合及/或變化或完全不同之使用模式。
此實例中之微影裝置LA屬於所謂的雙載物台類型,其具有兩個基板台WTa及WTb以及兩個站--曝光站及量測站--在該兩個站之間可交換基板台。在曝光站EXP處曝光一個基板台上之一個基板的同時,可在量測站MEA處將另一基板裝載至另一基板台上,使得可進行各種預備步驟。該等預備步驟可包括使用位階感測器LS來映射基板之表面,及使用對準感測器AS來量測基板上之對準標記之位置。此情形實現裝置之產出率之相當大的增加。若在基板台處於量測站以及處於曝光站時位置感測器IF不能夠量測基板台之位置,則可提供第二位置感測器以使得能夠在兩個站處追蹤基板台之位置。本發明可應用於具有僅一個基板台或具有多於兩個基板台之裝置中。
該裝置進一步包括微影裝置控制單元LACU,該微影裝置控制單元LACU控制所描述之各種致動器及感測器之所有移動及量測。LACU亦包括用以實施與裝置之操作相關之所要演算的信號處理及資料處理能力。實務上,控制單元LACU將被實現為許多子單元之系統,每一子單元處置裝置內之一子系統或組件之即時資料獲取、處理及控制。舉例而言,一個處理子系統可專用於基板定位器PW之伺服控制。單獨的單元甚至可處置粗略致動器及精細致動器,或不同軸線。另一單元可能專用於位置感測器IF之讀出。裝置之總控制可受到中央處理單元控制,中央處理單元與此等子系統處理單元通信、與操作員通信,且與微影製造製程中涉及之其他裝置通信。
圖2說明用以將目標部分(例如,晶粒)曝光於圖1之雙載物台裝置中之基板W上之已知步驟。量測站MEA處所執行之步驟係在點線框內之左側,而右側展示曝光站EXP處所執行之步驟。不時地,基板台WTa、WTb中之一者將在曝光站處,而另一者係在量測站處,如上文所描述。出於此描述之目的,假定基板W已經被裝載至曝光站中。在步驟200處,藉由圖中未繪示之一機構將新基板W'裝載至裝置。並行地處理此兩個基板以便增加微影裝置之產出率。最初參看新近裝載之基板W',此基板可為先前未經處理之基板,其係運用新光阻而製備以供在裝置中第一次曝光。然而,一般而言,所描述之微影製程將僅僅為一系列曝光及處理步驟中之一個步驟,使得基板W'已經通過此裝置及/或其他微影裝置若干次,且亦可經歷後續製程。
可在如剛才所提及之其他微影裝置中執行先前及/或後續製程,且可甚至在不同類型之微影裝置中執行先前及/或後續製程。舉例而言,器件製造製程中之在諸如解析度及疊對之參數上要求極高的一些層相比於要求較不高之其他層可在更進階微影工具中來執行。因此,一些層可曝光於浸潤型微影工具中,而其他層曝光於「乾式」工具中。一些層可曝光於在DUV波長下工作之工具中,而其他層係使用EUV波長輻射來曝光。
在圖2中,在202處,使用使用基板標記P1等之對準量測及影像感測器(圖中未繪示)以量測及記錄基板相對於基板台WTa/WTb之對準。另外,將量測橫越基板W'之若干對準標記以建立「晶圓柵格」,晶圓柵格極準確地映射橫越基板之標記之分佈,包括相對於標稱矩形柵格之任何失真。在步驟204處,亦量測相對於X-Y位置之基板高度圖,以用於準確地聚焦經曝光圖案。
當裝載基板W'時,接收配方資料206,其定義待執行之曝光,且亦定義基板及先前產生之圖案及待產生於晶圓上之圖案之屬性。將在202、204處獲得之基板位置、基板柵格及高度圖之量測添加至此等配方資料,以使得可將配方及量測資料208之完整集合傳遞至曝光載物台。對準資料之量測(例如)包含以與作為微影製程之產品的產品圖案成固定或標稱固定關係而形成之對準目標之X位置及Y位置。恰好在曝光之前獲取之此等對準資料經組合及內插以提供對準模型之參數。此等參數及對準模型將在曝光操作期間用以校正當前微影步驟中所施加之圖案之位置。習知對準模型可能包含四個、五個或六個參數,該等參數一起以不同尺寸界定「理想」柵格之平移、旋轉及按比例調整。如下文進一步所描述,使用較多參數之進階模型係已知的。
在210處,調換晶圓W'與W,使得經量測基板W'變為基板W而進入曝光站EXP。藉由交換裝置內之支撐件WTa與WTb來執行此調換,使得基板W、W'保持準確地被夾持且定位於彼等支撐件上,以保留基板台與基板自身之間的相對對準。因此,一旦已調換該等台,則為了利用用於基板W (以前為W')之量測資訊202、204以控制曝光步驟,必需判定投影系統PS與基板台WTb (以前為WTa)之間的相對位置。在步驟212處,使用光罩對準標記M1、M2來執行倍縮光罩對準。在步驟214、216、218中,將掃描運動及輻射脈衝施加於橫越基板W之順次目標部位處,以便完成數個圖案之曝光。藉使用在執行曝光步驟中在量測站處所獲得之對準資料及高度圖,使此等圖案相對於所要部位準確地對準,且詳言之,相對於先前放置於同一基板上之特徵準確地對準。在步驟220處自裝置卸載現在被標註為W''之經曝光基板,以根據經曝光圖案使其經歷蝕刻或其他製程。
圖3為經由微影裝置之校準或品質評估之樣本方案產生的流程圖。
樣本方案產生步驟302產生樣本方案,在此狀況下為標記讀出佈局304。為了校準或品質評估微影裝置,曝光及顯影306一晶圓或一系列晶圓。在標記讀出步驟308處,使用標記讀出佈局304以用於晶圓上之標記之量測。該等量測產生讀出值310,該等讀出值用於校準或品質評估312以產生所計算之關鍵效能指示符(KPI) 314。
在實施例中,可將樣本方案產生步驟302視為多目標最佳化問題,其係運用泛用啟發式最佳化演算法來求解。一個目標為待讀出之標記之數目(其需要縮減),另一目標為KPI降級(其應儘可能地小,亦即,亦縮減)。
泛用啟發式為經設計以尋找、產生或選擇可尤其在具有不完全或不完美資訊或有限演算能力的情況下提供對最佳化問題之足夠良好之解的試探(部分搜尋演算法)之高階工序或試探。
演化演算法(evolutionary algorithm,EA)係通用的基於群體之泛用啟發式最佳化演算法。
遺傳演算法(GA)係一種類型之EA。在GA中,對最佳化問題之候選解(被稱為個體、生物或表型)的群體朝向較佳解演進。每一候選解具有由解域中之座標表示的一組屬性(其染色體或基因型),其可經突變及變更。可以二進位形式將解表示為0及1之字串,但其他編碼亦有可能。
模擬退火(simulated annealing,SA)係用於近似給定函數之全域最佳的機率技術。SA為用以在大搜尋空間或解域中近似全域最佳化的泛用啟發式。
禁忌搜尋(tabu search)為使用用於數學最佳化之局域搜尋方法的另一泛用啟發式搜尋方法。
遺傳演算法維持解之集區,而非僅維持一個解。新候選解不僅由「突變」(如在SA中)產生,而且由來自集區之兩個解之「重組」產生。類似於SA中使用之準則的機率性準則用以選擇候選者以供重複、突變或組合(藉由交叉),且用於自集區捨棄過量解。
在數學最佳化中,成本函數或損失函數為將事件或一或多個變數之值映射至直觀地表示與事件相關聯之某一「成本」之實數上的函數。最佳化問題試圖最小化成本函數。目標函數可為成本函數抑或其負函數(有時被稱為優質化函數、獎勵函數、利潤函數、效用函數、適合度函數等),在此狀況下其將被最大化。
約束為解必須滿足的最佳化問題之條件。
實施例涉及對測試資料執行統計分析(諸如在圖6中之步驟610處)以理解變化源。
在給定來自所有標記之先前測試之讀出資料(諸如圖6中之步驟606)的情況下,可以不同方式將測試晶圓中之標記分組。舉例而言,吾人可根據以下各項將標記進行分組:在向上掃描(或向下掃描)場中之標記、在不同象限(或測試相關之任何其他晶圓分割區)中之標記、在不同晶圓中之標記、在不同場行/列/部位中之標記,…,及此等分組之組合。對於此等分組中之每一者,吾人可標繪每一群組中之標記之分佈(或至給定分佈之擬合,類似於高斯分佈)以判定統計上不同之群組。統計差之實例為: 分組中之標記具有其關聯讀出值之不同的平均值; 分組中之標記具有其關聯讀出值之不同的標準偏差(standard deviation; std);及 沒有分組展示其關聯讀出值之統計差。
舉例而言,可判定不同行中之標記具有不同的平均值,或晶圓之邊緣處之標記與晶圓之其餘部分中之標記相比具有較高方差。此等實例由圖4及圖5加以說明。
圖4說明至針對橫越一場之標記之五個不同的群組之量測之高斯分佈的擬合。每一群組為曝光場中之不同行。相對於以任意單位計之標記讀出值(水平軸)來標繪402以任意單位計之機率密度(豎直軸)。不同行具有不同平均值,如由該五個曲線之水平偏移所展示,該五個曲線各自對應於一行群組。
圖5說明至針對橫越一晶圓之標記之五個不同的群組之量測之高斯分佈的擬合。每一群組為橫越晶圓之不同區。相對於以任意單位計之標記讀出值(水平軸)來標繪502、504以任意單位計之機率密度(豎直軸)。晶圓之邊緣處之標記與晶圓之其餘部分中之標記相比具有較高方差,如由與針對遠離晶圓之邊緣的區之剩餘四個曲線502之較窄分佈相比,對應於晶圓邊緣群組的曲線504之較寬分佈所展示。因此,取決於橫越晶圓之標記部位,存在不同標準偏差。
圖6為涉及根據一實施例之樣本方案產生之方法的流程圖。該方法具有以下步驟:
602:關於橫越一或多個基板之部位之選擇,界定預定義群組604。
群組中之部位可一起界定場內之一或多個區,該場橫越一或多個基板而重複。在此狀況下,每一場具有相同縮減之標記讀出佈局且操作(交越/突變)係在場內位階處。
另外或替代地,可將群組定義為跨越橫越一晶圓、橫越一晶圓批次或複數個晶圓批次之場的一或多個區。群組中之部位可一起界定跨越橫越一或多個基板之複數個場的一或多個區,該複數個場在由樣本方案產生演算法產生之取樣方案中具有不同的各別子取樣。跨越一個基板之此不同各別子取樣在圖12中加以展示。
606:獲得與橫越一或多個基板之一組部位相關聯的量測資料608。在此實例中,讀出所有曝光之標記,使得儘可能多的資訊可用於經最佳化樣本方案產生。
610:分析量測資料608以判定部位之統計上不同之群組612。此實例中之群組為預定義群組604。
在群組中之部位一起界定跨越橫越一或多個基板之複數個場的一或多個區之狀況下(該複數個場具有不同的各別子取樣),則分析量測資料之步驟610包含橫越所跨越之複數個場使用其不同各別子取樣來堆疊量測資料,以判定部位之統計上不同之群組。在此狀況下,不同場具有不同的縮減之佈局且操作(交越/突變)處於場間/晶圓間/批次位階處。此可被描述為使用堆疊之場/晶圓/批次重建構。
如由流程圖連接符1A所指示,對於參看圖7所描述之方法,在步驟702處獲得之約束可基於分析步驟610之後果612。
614:基於統計上不同之群組組態樣本方案產生演算法之運算子。此步驟輸出一或多個遺傳運算子組態616。此實例中之樣本方案產生演算法為遺傳演算法,且組態運算子之步驟包含組態交越運算子以調換經判定之統計上不同群組之間的取樣資訊。組態運算子之步驟亦可包含組態突變運算子以使選定經判定之統計上不同群組中的取樣資訊突變。遺傳運算子組態616可用於其他實施例中,如由流程圖連接1B所指示。
多目標遺傳演算法(MOGA)為遺傳演算法(GA)之擴展。其為能夠最佳化多目標最佳化問題(凸或不凸,具有或不具有約束,…)之一類演算法。GA為單目標最佳化演算法。此等演算法考慮「個體」:吾人想要求解之問題的可能的解。在此實例中,個體為縮減之標記讀出佈局。根據適合度函數來評估個體。在此實例中,適合度函數將傳回針對給定縮減之標記讀出佈局之所計算之關鍵效能指示符(KPI)。
在此實例中,在樣本方案產生演算法622包含多目標遺傳演算法的情況下,方法進一步包含獲得與橫越一或多個基板之樣本方案相關聯的複數個關鍵效能指示符620。在樣本方案產生演算法中之適合度函數中使用該等關鍵效能指示符。適合度函數包含針對該組部位之量測資料所計算的關鍵效能指示符與針對個別縮減之標記讀出佈局所計算之關鍵效能指示符之間的比較。
為了匹配機器之間的疊對(在掃描器校準或品質評估期間),吾人可使用適合度函數,該適合度函數傳回僅與機器效能相關之KPI (如:平均值+3 std、針對平均晶圓及針對不同晶圓之間之差異的針對夾盤1及夾盤2之x及y的99.7的百分位數)。吾人亦可使用診斷學所需之更大組KPI (諸如場內、場間或隙縫指紋參數)。
適合度函數傳回完整標記讀出佈局與所產生之縮減之標記讀出佈局之間的此等KPI之差異。適合度函數可傳回與縮減之佈局在一組機器上如何表現(與完整佈局相比)相關之更複雜度量。
GA使用在反覆期間變化的個體(被稱為「群體」)之群組。在給定產生X處之群體的情況下,獲得產生X+1處之群體,其對產生X之個體執行遺傳操作。可將該等操作分類成三個群組: 選擇:忽視產生X之某個體。剩餘個體係用作以下兩個操作之輸入。選擇之實例為競賽選擇及輪盤輪。 交越(重組):使用兩個(或多於兩個)選定個體來產生新個體。舉例而言,若分析步驟610指示在至晶圓之邊緣之標記相對於晶圓之其餘部分中之標記的對準或疊對標準偏差之間存在差的情況下,則可相應地組態交越操作。因此,在給定兩個個體I1及I2的情況下,藉由使用存在於I1中之邊緣標記及存在於I2中之剩餘標記之交越來產生新個體。 突變:使用一個選定個體以產生新個體。舉例而言,若分析步驟610展示存在於晶圓之較低象限中之標記之標準偏差顯著地高於存在於晶圓之上部象限中之標記之標準偏差,則吾人可相應地實施突變。舉例而言,突變操作可經組態以增加在晶圓之較低象限中所讀出之標記之數目。
此等遺傳操作可具有恆定參數或隨產生而改變的參數。
在MOGA中,可實施其他運算子(除了關於步驟622所描述之運算子以外)以提供縮減之標記讀出佈局。舉例而言,吾人可實施場重建構:在給定一組場的情況下,對其中之每一者進行子取樣使得該組中沒有場之所有標記皆被讀出(亦即,不可產生場內映射),但此等場中讀出之標記之組合允許重建構一場。
基於分析步驟610之後果612,可將約束618添加至由MOGA產生之解。約束618係與橫越一或多個基板之樣本方案相關聯。約束618係用作至樣本方案產生演算法622之輸入。該約束可基於分析610。舉例而言,若分析步驟610展示在存在於不同場行中之標記之間存在顯著差異612,則吾人可迫使MOGA產生解(亦即縮減之標記讀出佈局)使得沒有場行會在該縮減之標記讀出佈局中消失。此意謂允許在行中遺失標記,但不允許移除行中之所有標記。
因為適合度函數傳回多於一個KPI,所以MOGA可傳回滿足所有此等KPI之解。樣本方案產生步驟622之MOGA將接著傳回縮減之場標記讀出佈局624。因此,樣本方案產生演算法用以產生最佳化樣本方案624。
圖7為根據一實施例之涉及MOGA之方法的流程圖。該方法具有以下步驟:
702:獲得與橫越一或多個基板之樣本方案相關聯的約束718。如由流程圖連接符1A所指示,此等約束可基於分析步驟610之後果612。
704:獲得與橫越一或多個基板之樣本方案相關聯的複數個關鍵效能指示符720。該等KPI 720可用於關於圖6所描述之實施例中,如由流程圖連接符2A所展示。
722:在包含多目標遺傳演算法之樣本方案產生演算法中使用約束718及/或複數個關鍵效能指示符720。可根據圖6之步驟614組態遺傳運算子組態716,如由流程圖連接符1B所指示。
樣本方案產生演算法用以產生最佳化樣本方案(縮減之標記讀出佈局) 724。最佳化標記讀出佈局允許在不損害測試KPI的情況下測試較快速。此導致設置、恢復及漂移校準/驗證時間縮減。
圖8為根據一實施例之涉及樣本方案最佳化之方法的流程圖。該方法具有以下步驟:
806:獲得與橫越一或多個基板之一組部位相關聯的量測資料808。該等部位界定跨越橫越一或多個基板之複數個場的一或多個區,該複數個場在取樣方案中具有不同的各別子取樣。
810:藉由橫越所跨越之複數個場使用其不同各別子取樣來堆疊量測資料來分析量測資料。
822:基於步驟810之分析最佳化樣本方案。
樣本方案產生演算法用以產生最佳化樣本方案(縮減之標記讀出佈局) 824。當樣本方案產生演算法為MOGA時,不同的場具有不同的縮減之佈局且操作(交越/突變)處於場間/晶圓間/批次位階處。此可被描述為使用堆疊之場/晶圓/批次重建構。最佳化標記讀出佈局允許在不損害測試KPI的情況下測試較快速。此導致設置、恢復及漂移校準/驗證時間縮減。
圖9為根據一實施例之涉及組合圖7及圖8之方法之MOGA的方法的流程圖。
參看圖9,該方法具有與用相同元件符號標記的圖7及圖8相同的步驟:
806:獲得與橫越一或多個基板之一組部位相關聯的量測資料808。該等部位界定跨越橫越一或多個基板之複數個場的一或多個區,該複數個場在取樣方案中具有不同的各別子取樣。
810:藉由橫越所跨越之複數個場使用其不同各別子取樣來堆疊量測資料來分析量測資料。
702:獲得與橫越一或多個基板之樣本方案相關聯的約束718。此等約束係基於分析步驟810之後果。
704:獲得與橫越一或多個基板之樣本方案相關聯的複數個關鍵效能指示符(KPI) 720。
922:基於分析最佳化樣本方案。此步驟922可在MOGA中使用約束718及/或複數個關鍵效能指示符720。該約束可基於分析810。舉例而言,若分析步驟810展示在存在於不同場行中之標記之間存在顯著差異,則吾人可迫使遺傳演算法產生解(亦即縮減之標記讀出佈局)使得沒有場行會在該縮減之標記讀出佈局中消失。此意謂允許在行中遺失標記,但不允許移除行中之所有標記。此步驟922可涉及組態樣本方案產生演算法之交越運算子以調換該等場之間的取樣資訊。此步驟可涉及組態樣本方案產生演算法之突變運算子以使選定場中之取樣資訊突變。當樣本方案產生演算法為遺傳演算法時,不同的場具有不同的縮減之佈局且操作(交越/突變)係處於場間/晶圓間/批次位階處。此可被描述為使用堆疊之場/晶圓/批次重建構。運算子組態916係基於分析步驟810。
樣本方案最佳化步驟922用以產生縮減之標記讀出佈局924。
圖10描繪藉由一實施例產生之兩個不同的場標記讀出佈局。圖10之場標記佈局係由MOGA傳回,該MOGA係針對疊對標記取樣而實施,以用於匹配不同的掃描器。每一標記係由一交叉影線矩形表示。最左側場1002具有10個標記。最右側場1004具有16個標記。
圖11為關於具有與完整標記讀出佈局相比相同的縮減之標記讀出佈局之場的帕累托前沿。MOGA傳回許多資料,該等資料中之最重要資料為縮減之佈局。但運用剩餘資料,吾人可標繪帕累托前沿(及其他標繪圖)。帕累托前沿之目的為查看不同目標彼此如何相關。可使用此資訊例如以更佳地理解問題或改良MOGA。此等標繪圖展示在所考慮之最佳化問題中不同的KPI彼此如何相關。參看圖11,展示帕累托前沿作為實例,其中所有場具有相同的標記讀出佈局。水平軸為針對每一場所讀出之標記之數目(N)。豎直軸為完整取樣之標記讀出佈局與縮減之(最佳化)標記讀出佈局之間的以奈米為單位之增量平均值(M)及標準偏差(SD)。平均值1102及標準偏差1104 (虛線)之此等標繪圖展示:若與每場較少標記相比,吾人讀出每場24個或更多標記,則存在效能之突然增加。
在第一途徑中,群組中之部位可一起界定一場內之一或多個區,橫越一或多個基板重複之該場給出縮減數目個讀出標記如何影響所考慮之KPI之指示。舉例而言,效能減低不高於+/-5% (吾人將此稱為「降級」)可為可接受的。此意謂對於每一KPI,與由完整佈局傳回之KPI相比,由縮減之佈局傳回之值至多為+5%或-5%。
如上文所描述,在除了第一途徑以外或替代第一途徑的第二途徑中,可將群組界定為跨越橫越一晶圓、橫越一晶圓批次或複數個晶圓批次之場的一或多個區。群組中之部位可一起界定跨越橫越一或多個基板之複數個場的一或多個區,該複數個場在由樣本方案產生演算法產生之取樣方案中具有不同的各別子取樣。在此狀況下,樣本方案產生或最佳化可傳回具有與第一途徑相同之效能,但讀出較少標記的縮減之佈局。舉例而言,若所考慮之測試具有70個場,產生具有每場10個標記之縮減之佈局(亦即,總共700個標記被讀出)及+/-5%降級,則第二途徑可傳回具有+/-5%降級且總共不到700個標記被讀出的另一佈局。
在MOGA中,可實施其他運算子(除了關於步驟622所描述之運算子以外)以提供縮減之標記讀出佈局。舉例而言,吾人可實施場重建構:在給定一組場的情況下,對其中之每一者進行子取樣使得該組中沒有場之所有標記皆被讀出(亦即,不可產生場內映射),但此等場中讀出之標記之組合允許重建構一場。
圖12描繪由參看圖6及圖7所描述之實施例產生的縮減之晶圓標記讀出佈局。晶圓圖1202被劃分成若干場1204。在晶圓圖1202內,標記佈局被展示為具有表示標記讀出之小圓點。此為允許在不損害測試KPI的情況下測試較快速的最佳化標記讀出佈局。此導致設置、恢復及漂移校準/驗證時間縮減。
實施例可經應用至自經曝光晶圓讀出標記的所有測試。以上所描述之方法傳回一組縮減之標記讀出使得由每一測試傳回之KPI不具有降級(亦即,其等於當所有標記被讀出時所傳回之值)或具有小降級。此繼而縮減設置及恢復時間。
本文件中所提及之量測可對應於獲得具有橫越與一或多個基板相關聯或由該一或多個基板所界定之平面的空間分佈(指紋)之任何參數之值。舉例而言,該等量測可指如藉由對處理基板上之產品特徵及/或目標特徵之檢測所量測的疊對誤差、臨界尺寸、焦點、邊緣置放誤差的值。替代地,該等量測可指如藉由感測器在橫越投影系統PS之光學平面之多個部位處所量測的投影系統PS之劑量、焦點、(倍縮光罩)標記位置或像差位準的值。通常,光學平面為投影系統PS之影像平面(基板在由微影裝置曝光時通常定位於該平面處)。在大多數狀況下,橫越微影裝置之光學平面內所包含之場來執行該等量測,該場橫越由微影裝置照明(在曝光操作期間)之光學平面而延伸。因此,本文件中之實施例不限於藉由對基板上之結構之檢測所獲得的量測、讀出值及量測資料,而是由任何感測系統橫越微影裝置及/或基板之光學平面所獲得的任何量測及/或量測結果皆在本發明之範疇內。
在橫越光學平面內之場進行量測之狀況下,感測器通常為劑量、像差或影像感測器。影像感測器通常為經組態以量測倍縮光罩上之標記相對於基板台WT之相對位置的感測器。在感測器整合於基板台內之狀況下,可藉由將基板台移動至感測器量測場內之所要部位處之所關注參數的位置來執行橫越該場之量測。
然而,量測許多部位處之所關注參數可能過於耗時且並不為獲得橫越場之所關注參數之足夠準確行為所需。
在給出自所有部位之先前測試所獲得之感測器讀出資料的情況下(諸如類似於圖6中之步驟606),可以不同方式將感測器已量測所關注參數之部位進行分組。舉例而言,吾人可根據以下條件將橫越場之部位進行分組:處於不同場行/列/部位中之部位。對於選定分組,吾人可標繪每一群組中之部位之分佈(或至給定分佈之擬合,類似於高斯分佈)以判定統計上不同之群組。統計差之實例為:
分組中之標記具有其關聯感測器讀出值之不同的平均值;
分組中之部位具有其關聯感測器讀出值之不同的標準偏差(standard deviation; std);及
沒有分組展示其關聯讀出值之統計差。
舉例而言,可判定橫越場之不同行中之部位處的感測器讀出具有不同的平均值,或場之邊緣處之部位與場之其餘部分中之部位相比具有較高方差。
此外,在量測與以場內感測器為基礎之量測相關而非與目標結構之檢測相關的狀況下,與先前所描述相同之方法可用以組態樣本方案產生演算法,在此狀況下該樣本方案產生演算法經組態以界定橫越場之感測器應量測所關注參數(像差、劑量、標記位置、焦點及其類似者)之部位。
在一實施例中,提供一種方法,其包含:獲得與橫越一或多個場所執行之複數個量測相關聯的量測資料;分析該量測資料以判定該一或多個場內之統計上不同之部位;及基於該等統計上不同之部位組態樣本方案產生演算法之運算子。
視情況,該等部位界定跨越複數個場之一或多個區,該複數個場在由樣本方案產生演算法產生之取樣方案中具有不同的各別子取樣;且分析量測資料之步驟包含橫越所跨越之複數個場使用其不同各別子取樣來堆疊量測資料,以判定統計上不同之部位。
視情況,該樣本方案產生演算法包含遺傳演算法。
視情況,組態運算子之步驟包含組態交越運算子以調換經判定之統計上不同部位之間的取樣資訊。
視情況,組態運算子之步驟包含組態突變運算子以使選定經判定之統計上不同部位中之取樣資訊突變。
視情況,樣本方案產生演算法包含多目標遺傳演算法且該方法進一步包含: - 獲得與橫越場之樣本方案相關聯的約束;及 - 使用該約束作為至樣本方案產生演算法之輸入。
視情況,樣本方案產生演算法包含多目標遺傳演算法且該方法進一步包含:獲得與橫越場之樣本方案相關聯的複數個關鍵效能指示符;及在樣本方案產生演算法中之適合度函數中使用該等關鍵效能指示符。
視情況,該適合度函數包含針對一組部位之量測資料所計算的關鍵效能指示符與針對縮減之樣本方案個體所計算之關鍵效能指示符之間的比較。
在上述實施例中,用於掃描器效能之校準及品質評估之縮減之佈局一旦經判定,就已固定。因而,讀出係靜態的:即使量測不再添加任何重要資訊,量測亦可繼續進行。讀出策略先驗被界定且無法改變。
作為特定實例,機器匹配疊對測試(對疊對之品質評估或驗證測試)可包含在相同條件下曝光及量測六個晶圓:在(例如雙載物台系統之)第一夾盤上曝光3個晶圓,且在第二夾盤上曝光另外3個晶圓。在上述實施例中,即使曝光於同一夾盤上之所有晶圓在內場內具有極相似的經量測標記值,亦可將相同的標記讀出應用至全部6個晶圓。
提議可執行靈活的取樣方案或量測方案途徑。舉例而言,此靈活的取樣方案可包含量測曝光於第一夾盤上之第一晶圓上之所有標記。接著,對於曝光於第一夾盤上之第二晶圓,可在中心開始標記之量測(例如內場中之標記),其中直接檢查每一量測以建立量測值與第一晶圓上之對應標記之量測值的變化程度。若針對至少一個或前幾個標記(例如針對至少預定最小數目個標記)之此變化足夠小(在規格內),則可決定跳過一些標記(例如內場內之其他未量測之標記)之量測,且取而代之立即開始對預期到更多變化(例如邊緣處或附近)之場進行取樣。取決於此等邊緣場處之變化程度,可對被預期具有大變化程度之場選擇緻密取樣,或對被預期具有小變化程度之場選擇較不緻密取樣。
更一般而言,此途徑可包含「以先前量測為基礎之」途徑。對於量測多於一個晶圓的任何測試、驗證或校準,可量測第一組晶圓(例如包含前一或多個晶圓)上之所有標記。量測誤差之可接受的邊界係為吾人所知。對於第二組晶圓(例如在第一組晶圓之後的晶圓),執行靈活取樣。此可包含僅量測第二組晶圓之第一晶圓上的幾個標記(第一子集)。若此等標記之量測值與第一組晶圓中之對應標記之量測值之差(當該第一組包含多於一個晶圓時,可平均化或以其他方式組合對應標記值)係在量測誤差邊界內,則當前晶圓之量測可結束且可緊接開始第二組之下一晶圓之量測。然而,若第二晶圓上之量測值係在邊界之外,則量測當前晶圓上之更多標記。在此實施例中,經量測之第一標記可為被預期在若干晶圓之間具有最大變化的標記。
替代地,在規格內之第一值之判定可觸發晶圓之特定區(例如第一區或中心區)之量測結束且針對同一晶圓之另一區(例如第二區或邊緣區,亦被稱作周邊區)之量測開始;在此實施例中,經量測之第一標記可為被預期在若干晶圓之間具有最小、或至少較小變化的標記。可接著對此第二區採取相同的靈活取樣方案途徑,使得取決於前幾個標記相對於第一組中之對應標記之量測值的變化以及所允許量測誤差來量測此區中之一些或所有標記。可接著對下一區(若多於兩個)或下一晶圓繼續進行量測。
可使用經設計以用於第二組之第一晶圓的相同取樣方案來量測第二組中之後續晶圓,或否則可使用針對每一組相同之途徑對第二組之每一晶圓採取靈活途徑,使得取樣方案在若干晶圓之間係靈活的。
在另一實施例中,提議用於判定靈活取樣方案或量測方案之以動態模型為基礎之途徑。再次,此方法可適合於量測多於一個晶圓的任何測試、驗證或校準。替代地或另外,此方法可用於追蹤諸如疊對之所關注參數的任何測試:例如,此策略可用於檢查晶圓誤差校正(Wafer Error Correction; WEC)圖。此實施例可使用將要被量測者之「動態模型」。在此內容背景中之術語「動態模型」可被視為意謂基於相對稀疏量測資料集(僅幾個部位之量測資料),輸出外推及/或內插未得到對應量測資料的晶圓部位(未量測之部位)之值的經回歸或經擬合模型之函數。舉例而言,動態模型可基於幾個稀疏量測擬合給定場間形狀。
此方法可包含自第一晶圓(或第一組晶圓)量測幾個標記且使用該等標記以擬合動態模型從而獲得晶圓之擬合模型的第一步驟。下一步驟包含量測另外標記且比較每一量測值(或考量新量測值的整個晶圓之擬合之修正值)與由擬合模型預測之值。若足夠數目個量測值係在給定容許度內,則可停止量測。應瞭解,可執行量測直至信賴等級超過某一準則。此工作方式與貝斯推理技術及主動式學習之方式相似。在此等技術中,新資料獲取旨在最小化模型之不確定性。因而,方法可包含基於已經量測之晶圓動態地更新與在量測中之晶圓上之未量測之部位相關聯的信賴等級(不確定性度量);及動態地得到在量測中之當前晶圓之量測結果。
可根據高斯製程作出關於哪一標記應為待量測之下一標記之決策;例如,待量測之下一標記可為: i  在擬合模型中具有最高不確定性之標記; ii 具有包含模型之最小值/最大值(最小/最大峰值)之最高機會的標記。
在一實施例中,動態模型可隨著時間推移演變以適應於漂移。舉例而言,假定初始動態模型屬於如下形式:f = c1 X2 + c2 Y2 (其中X及Y為標記之晶圓座標)。該模型一旦經擬合,就傳回場間擬合模型。晶圓上之第一量測使能夠判定c1 c2 ,且因此外推晶圓之非量測部位之值。然而,若由此擬合模型預測之值與經量測之值相差甚遠(相差臨限值或百分比),則動態模型可將實際模型改變成例如經更新模型f ' = c1 X2 + c2 Y2 + c3 X 。若此經更新模型f 'f 更佳地擬合經量測資料,則此模型可被選擇為用於接下來的晶圓之初始動態模型。
模型之演進(隨著時間推移改變)可基於: ●  先前知識:若例如已知晶圓台之降級向晶圓台模型添加項,則在晶圓台降級時可添加模型項; ●  軟體:遺傳程式設計軟體可選擇由一有限組之給定函數構成的最佳模型。
若在已量測所有標記之後,當前晶圓之量測之信賴等級(與擬合模型相比)不超過某一臨限值,則可改變界定動態模型之函數。此允許模型適應於漂移。
用於靈活取樣之另一途徑可包含搜尋給定點。此方法可包含搜尋晶圓上之可在定向、移位等方面變化的特定形狀(例如基於先前知識及已知行為模式)。一旦發現該形狀,就可運用最小數目個量測判定及/或特性化其最大值之部位。此可藉由以下操作來達成:對晶圓進行使給定形狀與晶圓之定向、移位等擬合所需的最小次數取樣,且接著對在可預期發現最大值之區處在此擬合形狀內之晶圓進行取樣。
此後一途徑亦可適合於品質評估掃描器部件(例如而非進行晶圓量測)。舉例而言,當產生浸潤罩時,必須對其進行測試以檢查是否所有孔(亦即,提供水、移除水及吹散CO2 的孔)敞開且不包含影響通過其之流之污染。可使用當施加壓力時量測自此等孔輸出之流的器件來執行此操作。在現有技術中,此量測方案可針對所有孔遵循固定(例如6×6)柵格使得遍及36個點對每一孔進行取樣。若孔適當地敞開及未阻斷,則6×6流量測值應界定高斯形狀。因而,高斯形狀可為在此實施例中在中心處具有峰值所搜尋的特定形狀;將此靈活量測方案應用至測試可將針對每一孔之量測之數目自36縮減至最小值5 (例如描述高斯形狀),從而縮減測試時間。
上文所描述之方法的步驟可在圖1中所展示之微影裝置控制單元LACU內或在諸如角度解析散射計之檢測裝置中自動化。此單元LACU可包括如圖13中所展示之電腦總成。該電腦總成可為在根據本發明之總成之實施例中呈控制單元之形式的專用電腦,或替代地為控制微影投影裝置之中央電腦。該電腦總成可經配置以用於載入包含電腦可執行碼之電腦程式產品。此可使得電腦總成能夠在下載電腦程式產品時藉由位階感測器AS及對準感測器LS之實施例控制對微影裝置之前述使用。
連接至處理器1327之記憶體1329可包含數個記憶體組件,比如硬碟1361、唯讀記憶體(ROM) 1362、電可抹除可程式化唯讀記憶體(EEPROM) 1363或隨機存取記憶體(RAM) 1364。並不需要皆存在所有前述記憶體組件。此外,前述記憶體組件並非必需實體地緊鄰處理器1327或彼此緊鄰。其可經定位成相隔一距離。
處理器1327亦可連接至某種類之使用者介面,例如,鍵盤1365或滑鼠1366。亦可使用為熟習此項技術者所知之觸控式螢幕、軌跡球、語音轉換器或其他介面。
處理器1327可連接至讀取單元1367,該讀取單元經配置以自資料載體(比如固態機1368或CDROM 1369)讀取例如呈電腦可執行碼之形式的資料,且在一些情況下將資料儲存於資料載體(比如固態機1368或CDROM 1369)上。亦可使用DVD或為熟習此項技術者所知之其他資料載體。
處理器1327亦可連接至印表機1370以在紙張上印出輸出資料,以及連接至熟習此項技術者所知的任何其他類型之顯示器的顯示器1371,例如監視器或液晶顯示器(Liquid Crystal Display; LCD)。
處理器1327可藉助於負責輸入/輸出(I/O)之傳輸器/接收器1373而連接至通信網路1372,例如公眾交換式電話網路(PSTN)、區域網路(LAN)、廣域網路(WAN)等。處理器1327可經配置以經由通信網路1372而與其他通信系統通信。在本發明之一實施例中,外部電腦(圖中未繪示) (例如操作者之個人電腦)可經由通信網路1372而登入至處理器1327中。
處理器1327可被實施為獨立系統或被實施為並行地操作之數個處理單元,其中每一處理單元經配置以執行較大程式之子任務。亦可將處理單元劃分成一或多個主處理單元與若干子處理單元。處理器1327之一些處理單元可甚至經定位成與其他處理單元相隔一距離且經由通信網路1372而通信。可使模組之間的連接為有線的或無線的。
電腦系統可為經配置以執行此處所論述之功能的具有類比及/或數位及/或軟體技術之任何信號處理系統。
本文所使用之術語「基板」可指晶圓或圖案化器件,諸如倍縮光罩。在微影中,倍縮光罩具有成像至諸如晶圓之目標基板的圖案。
在以下經編號條項之清單中揭示了本發明之另外實施例: 1.     一種方法,其包含: - 獲得與橫越一或多個基板之一組部位相關聯的量測資料; - 分析該量測資料以判定該等部位之統計上不同之群組;及 - 基於該等統計上不同之群組組態一樣本方案產生演算法之一運算子,或基於該等統計上不同之群組組態該樣本方案產生演算法。 2.     如條項1之方法,其中一群組中之該等部位一起界定一場內之一或多個區,該場橫越該一或多個基板而重複。 3.     如條項1之方法,其中: - 一群組中之該等部位一起界定跨越橫越一或多個基板之複數個場的一或多個區,該複數個場在由該樣本方案產生演算法產生之一取樣方案中具有不同的各別子取樣;及 - 該分析該量測資料之步驟包含橫越該跨越之複數個場使用其不同各別子取樣來堆疊該量測資料,以判定該等部位之該等統計上不同之群組。 4.     如任一前述條項之方法,其中該樣本方案產生演算法包含一遺傳演算法。 5.     如條項4之方法,其中該組態一運算子之步驟包含組態一交越運算子以調換該等經判定之統計上不同群組之間的取樣資訊。 6.     如條項4之方法,其中該組態一運算子之步驟包含組態一突變運算子以使一選定經判定之統計上不同群組中的取樣資訊突變。 7.     如條項4至6中任一項之方法,其中該樣本方案產生演算法包含一多目標遺傳演算法且該方法進一步包含: - 獲得與橫越該一或多個基板之一樣本方案相關聯的一約束;及 - 使用該約束作為至該樣本方案產生演算法之一輸入。 8.     如條項4至7中任一項之方法,其中該樣本方案產生演算法包含一多目標遺傳演算法且該方法進一步包含: - 獲得與橫越該一或多個基板之一樣本方案相關聯的複數個關鍵效能指示符;及 - 在該樣本方案產生演算法中之一適合度函數中使用該等關鍵效能指示符。 9.     如條項8之方法,其中該適合度函數包含針對該組部位之該量測資料所計算之該等關鍵效能指示符與針對一縮減之樣本方案個體所計算之該等關鍵效能指示符之間的一比較。 10.   一種方法,其包含: - 獲得與橫越一或多個基板之一樣本方案相關聯的一約束及/或複數個關鍵效能指示符;及 - 在包含一多目標遺傳演算法之一樣本方案產生演算法中使用該約束及/或該複數個關鍵效能指示符。 11.   如條項10之方法,其進一步包含: - 獲得與橫越該一或多個基板之一組部位相關聯的量測資料; - 分析該量測資料;及 - 基於該分析最佳化一樣本方案, 其中該等部位界定跨越橫越一或多個基板之複數個場的一或多個區,該複數個場在該取樣方案中具有不同的各別子取樣; 其中該約束係基於該分析;且 其中該分析該量測資料之步驟包含橫越該所跨越之複數個場使用其不同各別子取樣來堆疊該量測資料。 12.   如條項11之方法,其中該最佳化該樣本方案之步驟包含組態一樣本方案產生演算法之一交越運算子以調換該等場之間的取樣資訊。 13.   如條項11之方法,其中該最佳化該樣本方案之步驟包含組態一樣本方案產生演算法之一突變運算子以使一選定場中之取樣資訊突變。 14.   一種方法,其包含: - 獲得與橫越一或多個基板之一組部位相關聯的量測資料; - 分析該量測資料;及 - 基於該分析最佳化一樣本方案, 其中該等部位界定跨越橫越一或多個基板之複數個場的一或多個區,該複數個場在該取樣方案中具有不同的各別子取樣;且 其中該分析該量測資料之步驟包含橫越該所跨越之複數個場使用其不同各別子取樣來堆疊該量測資料。 15.   一種微影裝置,其特定適合於進行如條項1至9或10至13或14中任一項之方法之步驟。 16.   一種檢測裝置,其特定適合於進行如條項1至9或10至13或14中任一項之方法之步驟。 17.   一種電腦程式,其包含在經執行於合適電腦裝置上時致使該電腦裝置執行如條項1至9或10至13或14中任一項之方法的電腦可讀指令。 18.   一種電腦程式產品,其包含如條項17之電腦程式。 19.   一種方法,其包含: - 獲得與橫越通常包含於一光學平面內之一或多個場之一組部位相關聯的量測資料; - 分析該量測資料以判定該等部位之統計上不同之群組;及 - 基於該等統計上不同之群組組態一樣本方案產生演算法之一運算子。 20.   如條項19之方法,其中一群組中之該等部位一起界定該場內之一或多個區。 21.   如條項19之方法,其中: - 一群組中之該等部位一起界定跨越複數個場之一或多個區,該複數個場在由該樣本方案產生演算法產生之一取樣方案中具有不同的各別子取樣;及 - 該分析該量測資料之步驟包含橫越該跨越之複數個場使用其不同各別子取樣來堆疊該量測資料,以判定該等部位之該等統計上不同之群組。 22.   如條項19至21中任一項之方法,其中該樣本方案產生演算法包含一遺傳演算法。 23.   如條項22之方法,其中該組態一運算子之步驟包含組態一交越運算子以調換該等經判定之統計上不同群組之間的取樣資訊。 24.   如條項22之方法,其中該組態一運算子之步驟包含組態一突變運算子以使一選定經判定之統計上不同群組中的取樣資訊突變。 25.   如條項22至24中任一項之方法,其中該樣本方案產生演算法包含一多目標遺傳演算法且該方法進一步包含:-獲得與橫越該場之一樣本方案相關聯的一約束;及 - 使用該約束作為至該樣本方案產生演算法之一輸入。 26.   如條項22至25中任一項之方法,其中該樣本方案產生演算法包含一多目標遺傳演算法且該方法進一步包含:-獲得與橫越該場之一樣本方案相關聯的複數個關鍵效能指示符;及 - 在該樣本方案產生演算法中之一適合度函數中使用該等關鍵效能指示符。 27.   如條項26之方法,其中該適合度函數包含針對該組部位之該量測資料所計算的該等關鍵效能指示符與針對一縮減之樣本方案所計算之該等關鍵效能指示符之間的一比較。 28.   如條項19至27中任一項之方法,其中該量測資料包含由一光學平面內之一感測器橫越該場所量測的一參數之值。 29.   如條項28之方法,其中該參數為以下各者中之一者:一像差位準、一劑量、一聚焦位階或一標記之一經偵測之位置。 30.   一種判定一靈活量測方案之方法,該靈活量測方案定義與一目標之一或多個物件或區相關的量測部位之一靈活子集,該方法包含: - 獲得與該等量測部位中之一或多者處之量測相關的量測資料; - 獲得與該目標之該一或多個物件或該等區之一特性相關的特性資料;及 - 基於該特性資料及該量測資料判定該靈活量測方案。 31.   如條項30之方法,其中該量測資料提供用於描述根據一準則由該量測資料所描述的一參數之變化之資訊。 32.   如條項30或31之方法,該量測資料包含一第一組量測及一後續組量測,其中該特性資料係與該第一組量測及關聯容許度裕度相關,該第一組量測係與該目標之該一或多個物件或該等區之一第一適當子集相關聯;且該方法包含:比較該後續組量測中所包含之一或多個後續量測值與該第一組量測中所包含之各別對應第一量測值;及 基於該一或多個後續量測值與該等各別對應第一量測值之一差是否在該容許度裕度內判定該靈活量測方案。 33.   如條項32之方法,其中判定該靈活量測方案包含藉由順序量測目前在量測中的一目標或其區上之該等量測部位之一未量測之量測部位來獲得該等後續量測值;及 基於該差是否在該容許度裕度內,判定對目前在量測中的該目標或其區執行之量測之數目是否足夠。 34.   如條項33之方法,當存在待量測之另外物件或其區時,開始一後續目標或其區之量測。 35.   如條項32至34中任一項之方法,其中該一或多個物件包含至少一第一區及一第二區,使得該第一區之差異被預期變化小於該第二區中之差異。 36.   如條項35之方法,其中對一目標之該第一區及該第二區個別地執行該判定該靈活量測方案之步驟。 37.   如條項35或36之方法,其中該第一區包含一中心區且該第二區包含該一或多個物件之一周邊區。 38.   如條項32至37中任一項之方法,其中對其他後續物件中之每一者執行該等後續物件中之一第一物件所判定之該靈活量測方案。 39.   如條項32至37中任一項之方法,其中對該等後續物件中之每一者個別地執行該判定該靈活量測方案之步驟。 40.   如條項30之方法,其中該特性資料包含描述與該量測資料相關的該目標之該一或多個物件或該等區之一參數的一模型,且該量測資料包含一第一組量測及一後續組量測;該方法包含: 將該模型擬合至該第一組量測以獲得一擬合模型; 使用該後續組量測來評估該擬合模型之一模型效能;及 基於該擬合模型效能之該評估判定該靈活量測方案。 41.   如條項40之方法,其中該第一組量測係與該一或多個物件之一第一目標或該目標之該區之一第一區相關。 42.   如條項40或41之方法,其中該評估該模型效能包含如下順序步驟: 獲得與該後續組量測之一非量測之量測部位相關的一後續量測值; 比較該後續量測值與使用該擬合模型預測之對應的各別預測量測值。 43.   如條項42之方法,其中執行該等順序步驟直至該評估步驟判定某數目個該等後續量測值在一容許度裕度內。 44.   如條項40或41之方法,其中該方法包含判定描述該擬合模型之一擬合優度之一值,且該評估該模型效能包含如下順序步驟: 藉由量測該後續組量測之一非量測之量測部位來獲得一後續量測值; 重複該擬合步驟; 判定描述該擬合優度之一修正值;及 評估該擬合優度是否已改良。 45.   如條項44之方法,其中執行該等順序步驟直至該評估步驟判定該擬合優度係在一容許度裕度內。 46.   如條項42至45中任一項之方法,其中該評估該模型效能包含判定描述與非量測之部位相關聯的一不確定性位準之一不確定性度量;且針對該等後續量測值執行該等順序步驟直至該不確定性度量滿足一不確定性準則。 47.   如條項46之方法,其包含藉由選擇經判定為在該擬合模型中具有最高不確定性的未量測之量測部位;或在該擬合模型中具有包含一最小值/最大值之最高機會的未量測之量測部位來判定在該第一順序步驟中用於量測之一下一未量測之量測部位。 48.   如條項40至47中任一項之方法,其包含: 當該模型之該模型效能低於一臨限值時調適該模型; 評估該經調適模型之模型效能; 比較該經調適模型之該模型效能與該模型之該模型效能; 若該經調適模型之該模型效能比該模型之該模型效能更佳,則藉由該經調適模型更新該模型。 49.   如條項48之方法,其中該模型之該更新係基於以下各者中之一者或兩者: 已知及/或預期行為之知識;及 可操作以選擇由一有限組之給定函數構成的一最佳模型之遺傳程式設計軟體。 50.   如條項30之方法,其中該特性資料包含一預期圖案或形狀;且該方法包含: 獲得與該一或多個物件之該等量測部位中之一或多者處之量測相關的量測資料; 判定該圖案或形狀之一最大值或最小值所位於的該圖案或形狀之一部位;及 獲得與該部位處之一量測相關的一另外量測資料。 51.   如條項30至50中任一項之方法,其中一目標之該等物件或區各自包含用於在一微影製程中圖案化之一基板。 52.   如條項50之方法,其中一目標之該等物件或區各自包含用於一微影裝置之一浸潤罩之一孔徑。 53.   一種微影裝置,其特定適合於進行如條項19至52中任一項之方法之步驟。 54.   一種檢測裝置,其特定適合於進行如條項19至52中任一項之方法之步驟。 55.   一種電腦程式,其包含在經執行於合適電腦裝置上時致使該電腦裝置執行如條項19至52中任一項之方法的電腦可讀指令。 56.   一種電腦程式產品,其包含如條項55之電腦程式。 57.   如條項50之方法,其中一目標之該等物件或區各自包含一微影裝置之一組件。
儘管在本文中可特定地參考微影裝置在IC製造中之使用,但應理解,本文中所描述之微影裝置可具有其他應用,諸如製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭等。熟習此項技術者將瞭解,在此等替代應用之內容背景中,可認為本文中對術語「晶圓」或「場/晶粒」之任何使用分別與更一般之術語「基板」或「目標部分」同義。可在曝光之前或之後在(例如)塗佈顯影系統(通常將抗蝕劑層施加至基板且顯影經曝光抗蝕劑之工具)、度量衡工具及/或檢測工具中處理本文中所提及之基板。適用時,可將本文中之揭示內容應用於此類及其他基板處理工具。另外,可將基板處理多於一次,例如,以便產生多層IC,使得本文中所使用之術語基板亦可指已經含有多個經處理層之基板。
儘管上文可特定地參考在光學微影之內容背景中對本發明之實施例之使用,但應瞭解,本發明可用於其他應用(例如,壓印微影)中,且在內容背景允許時不限於光學微影。在壓印微影中,圖案化器件中之構形界定產生於基板上之圖案。可將圖案化器件之構形壓入被供應至基板之抗蝕劑層中,在基板上,抗蝕劑係藉由施加電磁輻射、熱、壓力或其組合而固化。在抗蝕劑固化之後,將圖案化器件移出抗蝕劑,從而在其中留下圖案。
本文所使用之術語「輻射」及「光束」涵蓋所有類型之電磁輻射,包括紫外線(UV)輻射(例如,具有為或為約365奈米、248奈米、193奈米、157奈米或126奈米之波長)及極紫外線(EUV)輻射(例如,具有在5奈米至20奈米之範圍內之波長);以及粒子束(諸如,離子束或電子束)。
術語「透鏡」在內容背景允許時可指各種類型之光學組件中之任一者或其組合,包括折射、反射、磁性、電磁及靜電光學組件。
雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描述方式不同之其他方式來實踐本發明。舉例而言,本發明可採取如下形式:電腦程式,其含有描述如上文所揭示之方法的機器可讀指令之一或多個序列;或資料儲存媒體(例如,半導體記憶體、磁碟或光碟),其具有儲存於其中之此電腦程式。
以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者而言將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下對所描述之本發明進行修改。另外,應瞭解,本文中之任一實施例中所展示或描述之結構特徵或方法步驟亦可用於其他實施例中。
AD:調整器 AS:對準感測器 B:輻射光束 BD:光束遞送系統 C:目標部分 CO:聚光器 EXP:曝光站 IF:位置感測器 IL:照明系統/照明器 IN:激光器 LA:微影裝置 LACU:微影裝置控制單元 LS:位階感測器 M1:光罩對準標記 M2:光罩對準標記 MA:圖案化器件/光罩 MEA:量測站 MT:支撐結構/光罩台 P1:基板對準標記 P2:基板對準標記 PM:第一定位器 PS:投影系統 PW:第二定位器/基板定位器 SO:輻射源 W:基板 W':基板 W'':經曝光基板 WTa:基板台/支撐件 WTb:基板台/支撐件 1A:流程圖連接符 1B:流程圖連接符 2A:流程圖連接符 200:步驟 202:量測資訊 204:步驟/量測資訊 206:配方資料 208:量測資料 210:步驟 212:步驟 214:步驟 216:步驟 218:步驟 220:步驟 302:樣本方案產生步驟 304:標記讀出佈局 306:曝光及顯影 308:標記讀出步驟 310:讀出值 312:校準或品質評估 314:關鍵效能指示符(KPI) 402:標繪 502:曲線 504:曲線 602:步驟 604:預定義群組 606:步驟 608:量測資料 610:分析步驟 612:統計上不同之群組/後果 614:步驟 616:遺傳運算子組態 618:約束 620:關鍵效能指示符 622:樣本方案產生演算法/步驟 624:縮減之場標記讀出佈局/最佳化樣本方案 702:步驟 704:步驟 716:遺傳運算子組態 718:約束 720:關鍵效能指示符/KPI 722:步驟 724:最佳化樣本方案 806:步驟 808:量測資料 810:分析步驟 822:步驟 824:最佳化樣本方案 916:運算子組態 922:樣本方案最佳化步驟 924:縮減之標記讀出佈局 1002:最左側場 1004:最右場 1102:平均值 1104:標準偏差 1202:晶圓圖 1204:場 1327:處理器 1329:記憶體 1361:硬碟 1362:唯讀記憶體(ROM) 1363:電可抹除可程式化唯讀記憶體(EEPROM) 1364:隨機存取記憶體(RAM) 1365:鍵盤 1366:滑鼠 1367:讀取單元 1368:固態機 1369:CDROM 1370:印表機 1371:顯示器 1372:通信網路 1373:傳輸器/接收器
現在將參看隨附示意性圖式而僅作為實例來描述本發明之實施例,在該等圖式中,對應元件符號指示對應部件,且在該等圖式中:
圖1示意性地描繪微影裝置;
圖2示意性地描繪圖1之裝置中之量測及曝光製程中的階段;
圖3為經由微影裝置之校準或品質評估之樣本方案產生的流程圖;
圖4描繪至針對橫越一場之標記之五個不同的群組之量測之高斯分佈的擬合;
圖5描繪至針對橫越一晶圓之標記之五個不同的群組之量測之高斯分佈的擬合;
圖6為根據一實施例之涉及樣本方案產生之方法的流程圖;
圖7為根據一實施例之涉及多目標遺傳演算法之方法的流程圖;
圖8為根據一實施例之涉及樣本方案最佳化之方法的流程圖;
圖9為根據一實施例之涉及組合圖7及圖8之方法之多目標遺傳演算法的方法的流程圖;
圖10描繪藉由一實施例產生之兩個不同的場標記讀出佈局;
圖11為關於具有與完整標記讀出佈局相比相同的縮減之標記讀出佈局之場的帕累托前沿;及
圖12描繪藉由一實施例產生之縮減之晶圓標記讀出佈局。
圖13為根據一實施例之微影裝置控制單元。
1A:流程圖連接符
1B:流程圖連接符
2A:流程圖連接符
602:步驟
604:預定義群組
606:步驟
608:量測資料
610:分析步驟
612:統計上不同之群組/後果
614:步驟
616:遺傳運算子組態
618:約束
620:關鍵效能指示符
622:樣本方案產生演算法/步驟
624:縮減之場標記讀出佈局/最佳化樣本方案

Claims (15)

  1. 一種方法,其包含: 獲得與一組部位相關聯之量測資料; 分析該量測資料以判定該等部位之統計上不同之群組;及 基於該等統計上不同之群組組態一樣本方案產生演算法。
  2. 如請求項1之方法,其中一群組中之該等部位一起界定一場內之一或多個區,該場橫越一或多個基板而重複。
  3. 如請求項1之方法,其中: 一群組中之該等部位一起界定跨越橫越一或多個基板之複數個場的一或多個區,該複數個場在由該樣本方案產生演算法產生之一取樣方案中具有不同的各別子取樣;及 該分析該量測資料之步驟包含橫越該跨越之複數個場使用其不同各別子取樣來堆疊該量測資料,以判定該等部位之該等統計上不同之群組。
  4. 如請求項1之方法,其中該樣本方案產生演算法包含一遺傳演算法。
  5. 如請求項4之方法,其中該組態一運算子之步驟包含組態一交越運算子以調換該等經判定之統計上不同群組之間的取樣資訊。
  6. 如請求項4之方法,其中該組態一運算子之步驟包含組態一突變運算子以使一選定經判定之統計上不同群組中的取樣資訊突變。
  7. 如請求項4之方法,其中該樣本方案產生演算法包含一多目標遺傳演算法且該方法進一步包含: 獲得與橫越一或多個基板之一樣本方案相關聯的一約束;及 使用該約束作為至該樣本方案產生演算法之一輸入。
  8. 如請求項4之方法,其中該樣本方案產生演算法包含一多目標遺傳演算法且該方法進一步包含: 獲得與橫越一或多個基板之一樣本方案相關聯的複數個關鍵效能指示符;及 在該樣本方案產生演算法中之一適合度函數中使用該等關鍵效能指示符。
  9. 如請求項8之方法,其中該適合度函數包含針對該組部位之該量測資料所計算的該等關鍵效能指示符與針對一縮減之樣本方案個體所計算之該等關鍵效能指示符之間的一比較。
  10. 如請求項1之方法,其中該組部位係橫越一或多個基板而界定。
  11. 如請求項1之方法,其中該組部位係橫越一或多個場而界定。
  12. 如請求項11之方法,其中該量測資料包含由一光學平面內之一感測器橫越一場所量測的一參數之值。
  13. 如請求項12之方法,其中該參數為以下各者中之一者:一像差位準、一劑量、一聚焦位階或一標記之一經偵測之位置。
  14. 一種電腦程式,其包含當執行於合適電腦裝置上時致使該電腦裝置執行如請求項1之方法的電腦可讀指令。
  15. 一種電腦程式產品,其包含如請求項14之電腦程式。
TW108146342A 2018-12-19 2019-12-18 樣本方案產生及最佳化之方法 TWI788611B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP18214088.9 2018-12-19
EP18214088 2018-12-19
EP19151797.8 2019-01-15
EP19151797.8A EP3683626A1 (en) 2019-01-15 2019-01-15 Methods for sample scheme generation and optimization
EP19215179 2019-12-11
EP19215179.3 2019-12-11

Publications (2)

Publication Number Publication Date
TW202030547A true TW202030547A (zh) 2020-08-16
TWI788611B TWI788611B (zh) 2023-01-01

Family

ID=68887421

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111145896A TWI814653B (zh) 2018-12-19 2019-12-18 樣本方案產生及最佳化之方法
TW108146342A TWI788611B (zh) 2018-12-19 2019-12-18 樣本方案產生及最佳化之方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111145896A TWI814653B (zh) 2018-12-19 2019-12-18 樣本方案產生及最佳化之方法

Country Status (6)

Country Link
US (2) US11775728B2 (zh)
EP (1) EP3899664A1 (zh)
KR (1) KR102716799B1 (zh)
CN (1) CN113242997A (zh)
TW (2) TWI814653B (zh)
WO (1) WO2020126774A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230013886A1 (en) * 2021-07-13 2023-01-19 Changxin Memory Technologies, Inc. Measurement map configuration method and apparatus
CN115621142A (zh) * 2021-07-13 2023-01-17 长鑫存储技术有限公司 测量图的配置方法及装置
CN113987689B (zh) * 2021-11-10 2024-06-14 中航沈飞民用飞机有限责任公司 一种基于修形的复合材料格栅加筋后压力框综合优化设计方法
CN115469555B (zh) * 2022-11-14 2023-03-31 中国科学院光电技术研究所 用于传感芯片投影光刻机的空间像预测及像质优化方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI299520B (en) 2006-03-27 2008-08-01 Univ Chung Yuan Christian Mix-and-match control for lithography overlay
US8175831B2 (en) * 2007-04-23 2012-05-08 Kla-Tencor Corp. Methods and systems for creating or performing a dynamic sampling scheme for a process during which measurements are performed on wafers
US9620426B2 (en) * 2010-02-18 2017-04-11 Kla-Tencor Corporation Method and system for providing process tool correctables using an optimized sampling scheme with smart interpolation
US9606453B2 (en) 2010-09-30 2017-03-28 Kla-Tencor Corporation Method and system for providing tool induced shift using a sub-sampling scheme
KR20170124578A (ko) * 2015-04-10 2017-11-10 에이에스엠엘 네델란즈 비.브이. 검사와 계측을 위한 방법 및 장치
EP3279735A1 (en) * 2016-08-01 2018-02-07 ASML Netherlands B.V. Metrology method and apparatus, computer program and lithographic system
WO2018069015A1 (en) * 2016-10-14 2018-04-19 Asml Netherlands B.V. Selecting a set of locations associated with a measurement or feature on a substrate
EP3312693A1 (en) * 2016-10-21 2018-04-25 ASML Netherlands B.V. Methods & apparatus for controlling an industrial process
US11614690B2 (en) * 2017-01-26 2023-03-28 Asml Netherlands B.V. Methods of tuning process models
US10832396B2 (en) * 2018-10-19 2020-11-10 Kla-Tencor Corp. And noise based care areas

Also Published As

Publication number Publication date
US20220057716A1 (en) 2022-02-24
TW202314375A (zh) 2023-04-01
WO2020126774A1 (en) 2020-06-25
CN113242997A (zh) 2021-08-10
TWI788611B (zh) 2023-01-01
EP3899664A1 (en) 2021-10-27
KR102716799B1 (ko) 2024-10-15
KR20210091792A (ko) 2021-07-22
US11775728B2 (en) 2023-10-03
TWI814653B (zh) 2023-09-01
US20240046022A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
CN110622069B (zh) 用于预测器件制造工艺的良率的方法
CN108431695B (zh) 控制图案形成过程的方法、器件制造方法、用于光刻设备的控制系统以及光刻设备
CN109863458B (zh) 选择与衬底上的测量或特征相关联的部位的集合
CN113168111B (zh) 用于预测半导体制造过程的产率的方法
TWI814653B (zh) 樣本方案產生及最佳化之方法
CN111656282B (zh) 确定衬底栅格的测量设备和方法
JP2022001965A (ja) リソグラフィプロセスおよびリソグラフィ装置、ならびに検査プロセスおよび検査装置
KR102585099B1 (ko) 측정 방법 및 장치
KR102217214B1 (ko) 성능 파라미터의 핑거프린트를 결정하는 장치 및 방법
US20240036479A1 (en) Method of determining at least a target layout and associated metrology apparatus
TWI775370B (zh) 判定抽樣方案之方法、相關設備及電腦程式
TWI706216B (zh) 判定橫跨圖案化器件或基板的標記佈局
CN111480119B (zh) 用于控制制造设备的方法以及相关联的设备
CN115398345A (zh) 在半导体制造过程中用于确定对于一组衬底的检查策略的方法
KR20240152949A (ko) 샘플 스킴 생성 및 최적화 방법
EP3683626A1 (en) Methods for sample scheme generation and optimization
TWI754249B (zh) 判定一組度量衡點的方法及判定用於擬合量測之模型之方法