TWI299520B - Mix-and-match control for lithography overlay - Google Patents

Mix-and-match control for lithography overlay Download PDF

Info

Publication number
TWI299520B
TWI299520B TW095110696A TW95110696A TWI299520B TW I299520 B TWI299520 B TW I299520B TW 095110696 A TW095110696 A TW 095110696A TW 95110696 A TW95110696 A TW 95110696A TW I299520 B TWI299520 B TW I299520B
Authority
TW
Taiwan
Prior art keywords
error
item
mixing
control
lithography
Prior art date
Application number
TW095110696A
Other languages
Chinese (zh)
Other versions
TW200737297A (en
Inventor
Yaw Jen Chang
Chih Liang Hsu
Original Assignee
Univ Chung Yuan Christian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chung Yuan Christian filed Critical Univ Chung Yuan Christian
Priority to TW095110696A priority Critical patent/TWI299520B/en
Publication of TW200737297A publication Critical patent/TW200737297A/en
Application granted granted Critical
Publication of TWI299520B publication Critical patent/TWI299520B/en

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

1299520 九、發明說明: 【發明所屬之技術領域】 •本發明涉及一種微影疊對之混合並匹配控制之方法,尤 其是一種微影疊對之混合益匹配控制之方法。 【先前技術】 先學微影系統主要由光源系統、透鏡系統、光罩系統、 對準系統及晶圓載台系統等所構成,在這些次系統中,可能會 造成疊對誤差的因素有:(1)光源系統係利用汞燈產生微影時 所需的光源,隨著使用次數的增加,汞燈光源的強度會有衰退 現象,在曝光量不足的狀況下,則會有微影後造成圖形變形的 顧慮、(2)透鏡系統是由各透鏡組所組成,在透鏡的定位上, 如果產生定位偏差,則會影響光源的折射。另外透鏡表面輪廓 度如果不佳,會產生光源散射的現象,而這些都可能會是產生 圓形變形的原目之-,軸現行的郷設舰鏡表面輪廓都有 相當雨的品質’但在製作上仍有其物理極限存在,隨著要製作 圖形的關鍵尺寸不咖小,對於透縣面輪雜的要求將會越 來越嚴苛、⑶光罩載台及晶圓載台在運送光罩及晶圓時,隨 著運送次_增加’機械元件不斷的雜,將可能產生载台震 顏現象及無_確定位的狀況,_產生上電路圖形叠置 5 的位置偏差。除了前述那些微影系統中可能會產生的疊對誤差 源外,尚有S境因素、量測設備、人員操作及晶圓表面狀態等 可能導致疊對誤差產生的隨機因素存在。因此在製程穩定度及 良率提高的考量下,誤差源的歸屬及補償就變得不可或缺。此 外,微影設備間若能藉由適當調整而到達相同狀態時,如此在 設備間就可彼此互相取代,也能增加整體生產排程的自由度。 微影犁程(Photolithography Process)在半導體製作過程中 扮演著電路圖形轉移的角色,透過一道道結構層圖形的轉移及 疊置來形成最後所需的電子元件功能,因此微影過程的品質好 壞,將攸關於其所能製作的關鍵尺寸(CriticalDimensi()n , eD) 大小及圖形正確性。在微影製程中,通常透過一道“對準,,的 步驟來確保前後結構層圖形能確實落於原先期望的位置上,藉 此降低圖形在疊置時的疊對誤差。但各微影設備在實際運作的 過程中,可能會因外在環境因素、晶圓狀況或微影設備本身所 產生的隨機謓差,導致個別微影設備間產生不同型式的養對誤 差’並透過原本為了要減低工時的排程行為,使前層電路圖形 的疊對誤差累積到下一層電路圖形的製作過程上,而微影混合 並可匹配主要的意義在於期望來自不同微影設備所製作的結 構圖形’能在堆疊後不受疊對誤差累積的影響而保有原先預期 的整置效果。要提高Mix-and_ Match的方法之一,可從提高各 微影設備間的狀態相似度著手’從無法避免的養對誤差中,藉 1299520 由設備的調整,取得巷對誤差相似度高的前後層圖形番合結 果’將可減低前後層結構的叠對誤差,如此也能增加微影設備 的使用率及排程自由度(Degree offreedQm)。 目前在超大型積艘電路(yery Large Seale , VLSI)中所使㈣微影賴,其對準裝置彡枝制雷射與 COXChairge Coupled Diode)式攝影機等方式。而對準技術方 ,,面,則疋由晶圓切割道上的兩種疊對記號“·,,與,,匚 ’如第- A圖所示’其分別是前_層留下的疊對記號與目 前這廣的4對記號φ合成為” Q,,的樣式後,在以影像處理 技術測量兩個標記的位移量,如第一 B圖所示。 為了達到精確的微影疊對,製程工程師通常會根據一些 經驗法則及4對歷史資料的崎分析,來建立曼對誤差模型。 在建模上,一般將誤差區分為:Intrafidd誤差及Interfield誤差 等兩種會產生Intrafield誤差的原因,主要是來自於透鏡系 統與光罩系統之_誤差源所造成,而產生ΜεΓ臟誤差的 原因,則是主要來自於光罩系統與晶圓之間的誤差源所造成。 在4對誤差的分析上,㈣個鋪祕來分別探討1299520 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method of mixing and matching control of lithographic overlays, and more particularly to a method of mixing and matching control of lithographic overlays. [Prior Art] The lithography system is mainly composed of a light source system, a lens system, a mask system, an alignment system, and a wafer stage system. In these subsystems, the factors that may cause stacking errors are: 1) The light source system is a light source required to generate lithography by using a mercury lamp. As the number of times of use increases, the intensity of the mercury lamp source may be degraded. In the case of insufficient exposure, there will be a phenomenon after lithography. The problem of deformation, (2) the lens system is composed of each lens group, and if the positioning deviation occurs in the positioning of the lens, it will affect the refraction of the light source. In addition, if the lens surface profile is not good, it will cause the light source to scatter, and these may be the original purpose of circular deformation. The current surface of the axis has a fairly rainy quality. There are still physical limits in the production. As the key dimensions of the graphics are not small, the requirements for the wheel surface of the county will become more and more stringent. (3) The reticle stage and the wafer stage are transported in the reticle. In the case of wafers, as the number of shipments increases, the mechanical components continue to be mixed, which may result in a stage phenomenon and a position of no _determination bit, resulting in a positional deviation of the upper circuit pattern stack 5. In addition to the stacking error sources that may occur in the aforementioned lithography systems, there are also stochastic factors such as S-factors, measurement equipment, personnel operations, and wafer surface states that may cause stacking errors. Therefore, under the consideration of process stability and yield improvement, the attribution and compensation of the error source become indispensable. In addition, if the lithography equipment can be brought to the same state by appropriate adjustment, the equipment can be replaced with each other, and the degree of freedom of the overall production schedule can be increased. The Photolithography Process plays a role in the transfer of circuit graphics in the semiconductor manufacturing process. Through the transfer and stacking of structural layers, the final required electronic components are formed, so the quality of the lithography process is good or bad. The size and graphical correctness of the critical dimensions (CriticalDimensi()n, eD) that can be made. In the lithography process, an "alignment," step is usually used to ensure that the front and rear structural layer patterns can indeed fall to the original desired position, thereby reducing the overlay error of the graphics when stacked. However, each lithography device In the actual operation process, due to external environmental factors, wafer conditions or random coma generated by the lithography equipment itself, different types of nuisance errors may occur between individual lithography equipments, and in order to reduce The scheduling behavior of the working time enables the stacking error of the front layer circuit pattern to accumulate to the manufacturing process of the next layer circuit pattern, and the lithography blending and matching main meaning is to expect the structural pattern produced by different lithography devices. It can maintain the original expected rectification effect without being affected by the stacking error accumulation after stacking. One of the ways to improve Mix-and_ Match can start from improving the state similarity between lithography devices' from unavoidable In the error of raising the pair, by adjusting the equipment by 1299520, the result of the combination of the front and back layers with high similarity of the lanes will reduce the stacking error of the front and back layers. Poor, this can also increase the utilization rate of lithography equipment and the degree of freedom of scheduling (Degree of freedQm). Currently in the yery Large Seale (VLSI) (4) lithography, its aligning device lychee Laser and COXChairge Coupled Diode), etc., and the alignment of the technology side, the surface, then the two pairs of marks on the wafer cutting track "·,,,,,匚" as in Figure A Show that 'the difference between the overlapped mark left by the front _ layer and the current four pairs of mark φ is "Q,", after measuring the displacement of the two marks by image processing technology, such as the first B In order to achieve accurate lithography, process engineers usually establish a man-pair error model based on some empirical rules and four pairs of historical data. In modeling, the error is generally divided into: Intrafidd error. And Interfield error and other two causes of Intrafield error, mainly from the lens system and the reticle system caused by the error source, and the cause of the Μ Γ Γ dirty error is mainly from the reticle system and the wafer Between Source caused by the difference in the Analysis of the error, (iv), respectively, to explore a secret shop

Intrafield 及Interfidd誤差,如第一€圖所示,(χ,γ)座標系統以晶圓中 〜為座標原點,離,y)座獅統以曝光場中心為麟原點。以 Intrafield誤差來說,其間的疊對誤差主要包含有平移 (Translation)、旋轉(Rotati〇n)、擴張(Expansi〇n)、光罩傾斜 1299520 • (Trapezoid)、楔型(Wedge)失真、透鏡變形(Distortion),而 • Interfield誤差則主要包含有:平移(Translation)、旋轉 (Rotation)、擴張(Expansion)、臀曲(B〇w)等,如第一 D圖為各 式#對誤差。 微影疊對混合並可匹配旨在減低來自不同微影設備差異 所引辞的疊對誤差影響,使微影設備可以提高設備使用率及圖 形製作良率。因此必須先針對個別微影系統,藉由疊對誤差模 型的建立來分析其特徵,進而進行在設備間相似度上的比對及 尋找,藉此避免設備間因疊對誤差特徵上的差異而引起誤差累 積。目前在疊對誤差模型的參數估測上,較常使用的方法為最 小平方法(Least Square Method,LSM),通常微影製程執行結 束,將晶圓送至量測設備量取疊對記號上的疊對誤差,之後, 才由量得的疊對誤差以LSM法回歸至疊對誤差數學模型中的 各項誤差係數上,藉此做為下一次微影時的疊對誤差補償參 考。但由於引起整對誤差產生的原因很多,設備與設備之間不 管是在誤差⑽麵或糾起的誤差大小都會麵不同,依其 物理意義可區分為可祕差觀不可控誤差項,,誤差項包 含有圖形的平移、旋轉與縮放等,這些㈣誤差及_變形是 可藉由數雜型來對其作描述。而不可雛差細為其餘無法 以數學模絲正翻述_形變形或㈣縣,例如透鏡表面 !29952〇 輪靡的變形度會直接影響到光源的散射程度,導致後續微影出 來所產生的圖形扭曲變形。因此LSM在疊對誤差參數估計的 過程中,可能會在這些不可控誤差項因素的影響下,無法準確 地杯出疊對誤差模型係數的大小估測出來。 【發明内容】 黎於上碟之發明背景中,為了符合產業上某些利益之需 求’本發明提供一種微影疊對之混合並匹配控制之方法可用以 解決上述傳統之微影疊對之混合並匹配控制之方法未能達成 之標的。 本發明之一目的係提供一種微影疊對之混合並匹配控制 之方法。接著敘述。本段落格式為「發明内文」。 【實施方式】 本發明在此所探討的方向為一種微影疊對之混合並匹配 控制之方法。為了能徹底地瞭解本發明,將在下列的描述中提 出詳盡的步驟及其組成。顯然地,本發明的施行並未限定於微 影疊對之混合並匹配控制之方法之技藝者所熟習的特殊細 節。另一方面,眾所周知的組成或步驟並未描述於細節中,以 避免造成本發明不必要之限制。本發明的較佳實施例會詳細描 述如下’然而除了這些詳細描述之外,本發明還可以廣泛地施 9 1299520 打在其他的實棚+,且本發明的細錢限定,其以之後的 專利範圍為準。 Z〇ne-Ching Lin and Wen-Jang Wu(1999)在疊對誤差校正 模型中加進了高階透鏡變形及非線性項參數的影響後,利用多 重線性回歸方法來分析疊對誤差並加以調整。其中有關 Intrafield疊對誤差之數學模型定義如下: β fic = Tfic- Rj,y + Μβχ + Τ^χ2 ^ Tyxxy + w^y2 (11) + ^3χΧ(χ2 + y2) + ϋ5χΧ{χ2 + y2)2 或fy ^ TJy ^ Rfy^ M fyy + T^y^Txyxy + WfyX2 {χ 2) + D3yy(x2 + y2)+ D5yy(x2 + y2f 上式中的λ;、;y代表曝光場的位置,下標广χ^分別表 示Intrafield的誤差源在X、y方向造成的影響,^、心代表 在軸所造成的總疊對誤差,:^和7^分別代表曝光場在χ、 J軸上的平移係數,通常由光罩平台的定位精度所造成,^和 \代表曝光場的旋轉角度係數,由光罩旋轉造成,Μ和μ Y1 fy 代表曝光場放大係數,由光罩與鏡片間的距離所造成,r、 ^及表示光罩的傾斜係數,由光罩平面未垂直投影所 1299520 迨成,、%代表楔形失真係數,由光學透鏡中心的偏差所 造成’ ^\和D5y為透鏡變形係數,主要由濾鏡對 稱性的轉騎造賴造成。❿細脇㈣誤縣源數學模 型定義如下: dwx - RWXY +MmX +BmY2 dm -Tm - RmX +M + ΒψγΧ2 (1-3) (1-4) ;的义、F分別代表曝光場在晶圓座標系統的位置, 下‘ W、Z、F分触示細!鋪的縣源及贿麵在尤、y 方向所造成的卿、、代表U轴mteifleid _ =:為代表晶圓載台的平移係數,由晶圓平台的移Intrafield and Interfidd errors, as shown in the first figure, the (χ, γ) coordinate system uses the wafer as the coordinate origin, and the y) lion is based on the center of the exposure field. In terms of Intrafield error, the overlap error between them mainly includes translation, rotation, expansion (Expansi〇n), reticle tilt 1299520 • (Trapezoid), wedge (Wedge) distortion, lens Distortion, and • Interfield error mainly includes: translation, rotation (Rotation), expansion (Expansion), hip (B〇w), etc., such as the first D picture for the various # pairs of errors. The lithography stack mixes and matches the effects of overlay errors designed to reduce the quotation from different lithography devices, enabling lithography devices to increase device utilization and graphics yield. Therefore, it is necessary to analyze the characteristics of the individual lithography system by stacking the error model, and then compare and search the similarity between devices, thereby avoiding the difference in the error characteristics between the devices. Causes accumulation of errors. At present, in the parameter estimation of the overlay error model, the most commonly used method is the Least Square Method (LSM). Usually, the lithography process is finished, and the wafer is sent to the measuring device to measure the overlay mark. The stacking error is then returned to the error coefficients in the mathematical model of the overlay error by the LSM method, which is used as the reference for the overlay error compensation in the next lithography. However, there are many reasons for the error caused by the whole pair. The error between the device and the device is different in the error (10) plane or the error of the correction. According to its physical meaning, it can be distinguished as the uncontrollable error term of the secret difference. The item contains the translation, rotation and scaling of the graphic. These (4) errors and _ deformations can be described by the number of miscellaneous types. Can not be sloppy, the rest can not be described by mathematical molds _ shape deformation or (4) counties, such as lens surface! 29952 〇 变形 deformation degree will directly affect the degree of scattering of the light source, resulting in the subsequent lithography The graphic is distorted. Therefore, in the process of estimating the error parameters of the stack, the LSM may not accurately estimate the size of the stack error model coefficients under the influence of these uncontrollable error term factors. SUMMARY OF THE INVENTION In the background of the invention of Li Yu, in order to meet the needs of certain interests in the industry, the present invention provides a method for mixing and matching control of lithographic overlays, which can be used to solve the above-mentioned mixing of conventional lithographic overlays. And the method of matching control failed to achieve the target. It is an object of the present invention to provide a method of mixing and matching control of lithographic overlays. Then describe. The format of this paragraph is "inventive text". [Embodiment] The direction of the present invention as discussed herein is a method of mixing and matching control of a lithographic overlay. In order to thoroughly understand the present invention, detailed steps and compositions thereof will be presented in the following description. Obviously, the practice of the present invention is not limited to the specific details familiar to those skilled in the art of mixing and matching control methods. On the other hand, well-known components or steps are not described in detail to avoid unnecessarily limiting the invention. The preferred embodiment of the present invention will be described in detail below. However, in addition to these detailed descriptions, the present invention can also be widely applied to other real estates, and the fine money of the present invention is limited to the following patent scope. Prevail. Z〇ne-Ching Lin and Wen-Jang Wu (1999) added the effects of high-order lens deformation and nonlinear term parameters in the stack error correction model, and used multiple linear regression methods to analyze the overlay error and adjust it. The mathematical model for the Intrafield stack-to-error is defined as follows: β fic = Tfic- Rj,y + Μβχ + Τ^χ2 ^ Tyxxy + w^y2 (11) + ^3χΧ(χ2 + y2) + ϋ5χΧ{χ2 + y2) 2 or fy ^ TJy ^ Rfy^ M fyy + T^y^Txyxy + WfyX2 {χ 2) + D3yy(x2 + y2)+ D5yy(x2 + y2f λ; in the above formula; y represents the position of the exposure field, The subscript Guangχ^ respectively indicates the influence of the Intrafield error source in the X and y directions, and the heart represents the total stack error caused by the axis. ^^ and 7^ represent the exposure field on the χ and J axes, respectively. The translation coefficient is usually caused by the positioning accuracy of the reticle stage. ^ and \ represent the rotation angle coefficient of the exposure field, which is caused by the rotation of the reticle. Μ and μ Y1 fy represent the amplification factor of the exposure field, and the distance between the reticle and the lens. The resulting r, ^ and the tilt coefficient of the reticle are composed of 1299520 which is not perpendicular to the plane of the reticle, and % represents the wedge distortion coefficient, which is caused by the deviation of the center of the optical lens. ^ ^ and D5y are the lens deformation coefficients. It is mainly caused by the symmetry of the filter symmetry. The mathematical model of the county source is defined as follows: dwx - RWXY + MmX +BmY2 dm -Tm - RmX +M + ΒψγΧ2 (1-3) (1-4) ; The meaning and F respectively represent the position of the exposure field in the wafer coordinate system, and the lower 'W, Z, F points are thin. The county source and the bribe face in the direction of the y, y direction, the U axis mteifleid _ =: represents the translation coefficient of the wafer stage, moved by the wafer platform

以〜與V為晶11的旋轉角度係數,由 旋轉所造成〜盥财A曰η …曰圓載口的 产定位" 絲’由日日日®平台的高 度疋位铁差H ^與‘為晶_f曲 圓平台不平整所造成,在同時考慮這些次 = 後,可得到疊對時的總和誤差·· 斤綠差 11 1299520 dx+χ = ^wx + 及^; =^WX ~ ^WX ^ + WX ^ + ^wx^2 + fx ^R^y + Mβχ + τχχχ2 ^Tyxxy + w^y2 + D3jcx(x2 + y2) + D5xx(x2 + y2)2 dY + y = ^WY + ^ fy =Tm - + + ^wY^2 + ^Rfyx + Mfyy + Tyyy2 ^ + wfyx2 + D3yy(x2 + y2) + D5yy(x2 + y2)2 在實際製程中,除了包含前述所提到的疊對誤差源,另 外,會影響疊對誤差的因素還有相當多,因此將大部分可能會 引起疊對誤差的原因整理並分類於下: 疊對誤 差變異來 源 相關因素 環境 個別量測設備誤差、震動、潔淨度 晶圓 晶圓熱變形.. 微影系統本身 透鏡熱變形、透鏡組定位誤差、汞燈強度衰退、晶圓 載台定位、光罩載台定位 12 1299520 ’ 前製程 % ,薄膜分佈不均勻、CMP研磨不均勻、光阻塗佈不均 勻、軟烤的溫度及時間With the rotation angle coefficient of ~ and V as the crystal 11, caused by the rotation ~ 盥 曰 A 曰 曰 曰 载 载 载 载 曰 曰 曰 曰 曰 产 产 产 产 由 由 由 由 平台 平台 平台 平台 平台 平台 平台 平台 平台 平台 平台 平台 平台 平台 平台 平台 平台 平台 平台 平台 平台The crystal_f curved platform is caused by unevenness. After considering these times =, the total error of the stacking can be obtained. · 钟绿差11 1299520 dx+χ = ^wx + and ^; =^WX ~ ^WX ^ + WX ^ + ^wx^2 + fx ^R^y + Mβχ + τχχχ2 ^Tyxxy + w^y2 + D3jcx(x2 + y2) + D5xx(x2 + y2)2 dY + y = ^WY + ^ fy = Tm - + + ^wY^2 + ^Rfyx + Mfyy + Tyyy2 ^ + wfyx2 + D3yy(x2 + y2) + D5yy(x2 + y2)2 In the actual process, in addition to the above mentioned stacking error sources, In addition, there are quite a few factors that will affect the error of the overlay, so most of the reasons that may cause the error of the overlay are sorted and classified as follows: The factors related to the source of the error variation of the stack are related to the error, vibration, and cleanliness of the individual measurement equipment. Wafer wafer thermal deformation: lithography system itself lens thermal deformation, lens group positioning error, mercury lamp intensity degradation, wafer stage positioning, reticle stage positioning 12 1299520 ' % Process, uneven distribution of the film, the CMP polishing non-uniformity, uneven photoresist coating, soft baking temperature and time

本發明將前述所有因素加入考量,因此將(1-5)、(1-6)式 重新定義如下:The present invention takes all of the aforementioned factors into consideration, and thus the formulas (1-5) and (1-6) are redefined as follows:

άχ+Χ ^Tx+x^RW^Y + MmX +MΑχ + Κβ,γ + Γχ +χ ( 1.7 ) (其中 χ = + k )Άχ+Χ ^Tx+x^RW^Y + MmX +MΑχ + Κβ, γ + Γχ +χ ( 1.7 ) (where χ = + k )

dr+y ^TY^y^RmX + MmY + Mfyy + Rficx + rY^y ( 1 - 8 ) (其中Dr+y ^TY^y^RmX + MmY + Mfyy + Rficx + rY^y ( 1 - 8 ) (of which

上式中’依设備參數調整性而將疊對誤差分成可控及不 可控誤差項’其中可控誤差項係數包含了、A”、/W、 听、从肢、、%及/^,由晶圓載台及光罩 栽〇的疋位誤差所產生,而不可控誤差項,除了 包含一般的隨機誤差外,另外尚有(1_5)、(1_6)式中屬於影系統 本身不可調整的誤差,例如楔形失真及透鏡變形等。可控項誤 差的補償,可藉由相關控制參數補償,而不可控項誤差的修 正’除了可經由誤差源歸屬後消除外,尚可藉由微影系統上的 可控參數項將其影響調整至最小化。利用疊對誤差模型建立個 13 1299520 • 別微影系統的特徵,將助於後續微影系統群組間的混合並可匹 • 配分析。 引起微影設備產生疊對誤差的因素眾多,並且大部分都 會對電路圖形的幾何關係產生影響,例如晶圓表面不平整會造 成光阻塗佈時厚度的差異,導致微影時光線到達晶圓表面後折 射產生圖形變形。在透過疊對誤差模型描述這些不可控誤差項 〃的過程中,這類幾何關係的建立,往往很難能有明確且一致的 數學模型可以元整將其描述出來,因此造成LSM在叠對誤差 估計上,產生了部分幾何關係的遺漏,使得估計出的疊對誤 • 差,在之後補償過程中又產生另一項新的疊對誤差,稱之為 “模型誤差”。 因此,為了避免上述之模型誤差,本發明之一具體實施 例如第二囷所示,由位置參數21依據疊對誤差模型2〇可得出 線性轉移函數。再藉峨神經網路3G將㈣及(18)式疊對誤 差模型中無法描述的疊對誤差從中分離,最後再以lsm 24求 取儲存於網路中(1_7)及㈣式的可控誤差項參數估計25,如 此可獲得較貼近實際微影過程的疊對誤差模型。 上述之__路具有容錯、推廣及疏趨近的能力。 本具體實_之__路3G _咖卿_為例,孰希 相關領域之技術者可輕祕知尚有其他類神_路可應用於 本發明,應用該RBF類神網路為例係為清楚說明本發明,並 1299520 非用以限制本發3月。如第三圖所示,娜類神網路需經過基本 的訓練流程,並且隱藏層之一部分以區域線性函數%及高斯 函數33做為轉移函數的神經元混合搭配後,可分離不屬於疊 對誤差模财的不職項縣。部分神經域鱗性轉移 函數32齡4雜差_ +已知的可控誤差郷響,而前述 無法在叠對誤差模型中完整描述的不可控誤差項,則會错存在 -其餘以同斯函數33作為轉移函數的神經元中,因此(u)及㈣) 式叠封誤差模型中無法描述的疊對誤差便可從中分離。 在混合並可匹配的曼對控制上,除了可藉由前述叠對誤 差估測方法先將疊雜差翻中的各項φ對誤差大小估測出 來後’將可控縣項純砸修正外,祕糾财無法在叠 對誤差模i中a整描述或未知的誤差存在,例如:微影設備上 的透鏡熱變形量、量測設備的量測誤差及晶圓熱變形量等,而 且這些誤差的特性又會舰備、環境的不响有所差異,因此 在補償上錢再藉由郷設射的可縣數郷純補償,藉 此減輕由這些誤差所帶來的混合並可匹配疊對誤差影響。 第四圖為微齡統中的各次纽,其+包含有光源系統 4ί、透鏡系統42、對準系統43、光罩載台系統44及晶圓載台 系統45等’ -般在微影設備組裝完成後,透鏡系統似與光源 系統41除了故障維修外,為了維持其精確度,不會再隨意做 調整或修改。至於晶®載台系統45、光罩栽台系統44,除了 15 1299520 用來作為晶圓和光罩的傳送外,尚可藉其在移動的過程中麵 疊對誤差,耻在麵混合並可匹__差制參數選取 上由(1-7)及(1-8)式中,採用了一般微影製程中較常使用的晶 圓載台45平移、旋轉及升降與光罩載台μ的平移、旋轉與升 降等來做為混合並可匹配的控制參數。 本發明之另一具體實施例係一種微影疊對之混合並匹配 择制之方法’其流程設計如第五圖所示。首先晶圓Η在進行 微影製程510後,會經過疊對記號量測52〇,以產生疊對誤差 量測資料530,依據疊對誤差量測資料53〇與標準圖形/標準設 備52的疊對誤差量測資料進行疊對誤差模型參數的估計 540,之後,便可進行混合並可匹配疊對控制55〇,然後再進 行下一次的微影製程510。 在混合並可匹配控制參數值選取的過程中,需要有標準 圖形(Golden Pattern)或標準設備(Golden Equipment)來做為設 備在調整時的依歸,藉此減低不同設備製作出來的圖形在疊置 後的誤差。混合並可匹配標準圖形(GoldenPattem)的產生,通 常是以上一次微影的圖形形狀及位置來做為下一次圖形疊置 調整的依據,使前後結構圖形具有最佳的疊置效果,在如此不 斷重複的過程中,就能有效改善疊對誤差在微影結果中的影 響。標準設備(Golden Equipment)的產生,通常是從製作同樣 結構層圖形的譟備群組中,挑選出擁有最小疊對誤差製作能力 1299520 的設備來作為其它設備在調整時的鮮。因此在得出疊對誤差 模型參&6^計後’便可據此建立疊對誤差模型。 上述之混合並可匹配疊對控制550係經由最佳控制參數 選取後再_最她制參數妨控制。縣最健制參數的過 程可依前_具體實施綱述,藉輯可控參數補不可控參數 項的分離後’糾估計對可齡數項之調整量來對不可控參數 多進⑽差補償。其巾最佳控制參數選取絲如第六圖所示。 首先^驟551細田口式基因絲產生對可控參數項之 膽罝’以估計出控制參數值。接下來步驟552將控制參數值 帶入疊對块差模型,並且在步驟553映射到渴望函數中去比對 兩設備間在疊對誤鱗徵上的差異,其+,渴望函數值的產 生疋提供田口式基因决算法在最佳化控制參數適應值上的計 算,而適應值的大小是田口式細寅算法在最佳化控制參數選 取過程中絲觸是否已達最佳化軸部機制。接下來再以步 驟5M計算適應值,判斷控制參數選取是否已達最佳化,如果 尚未達到最佳化,再重新回到步驟551進行相同流程。 渴望函數具可依S崎徵料的触,因此將標準圖形 或標準設備在疊鑛差上哺徵建錄渴私射,之後,再 ^田口式綱算法中的蕞佳化流程,估出控制參數值帶入 ^誤差模型後,映射到渴望函數中去比對兩設備間在疊對誤 特被上的差異,藉由適應值的判斷,從中找出擁有最大渴望 17 1299520 值及最小疊對誤差的最佳控制參數解。 以下將詳述流程中的各項細節。首先說明最佳化效果評 估方法。混合並可匹配疊對控制在全域疊對誤差補償所依循的 標準可分為以下兩項: ⑴標準圖形(Golden Pattern) 在混合並可匹配中疊對誤差的調整上,為降低二次疊對 誤差的產生,因此還需考量在調整上,全域疊對誤差改變的方 向性問題。以前一層結構層的疊對誤差為調整時依循的參考, 此稱為標準圖形(Golden Pattern)”。 ⑵標準設備(Golden Equipment) 由同一型號或執行同一道步驟的群組設備中,找出擁有 最小疊對誤差的設備來作為模仿設備,並以此設備輸出結果作 為其它設備的調整參考,則稱此為“標準設備((}〇1如11 Equipment)”。 在疊對控制參數值選取的最佳化過程中,需有最佳化判 斷規則來輔助整個選取過程的正確性,由此才能有效得到所需 的最佳化結果,所以在最佳化效果的判斷規則上,可藉由渴望 函數的彈性設計雛,將要綱微影設備與鮮_或標準設 備上的疊對_她度絲設制渴望錄+,也就是將由標 準圖形或鮮設備所得_對誤差制#_來作為渴望函 18 1299520 式中的邊界線範圍定義,以此作為後續最佳化參數在選擇上的 結果判斷’如此將有助於在混合並可匹配的狀況中,依然可保 有好的電路圖形疊置效果,並且增加群組設備的相替代性及排 程自由度。 接下介紹渴望函數之原理,渴望函數的概念於1965年由 Harrington所提出,主要的概念是透過數學上的轉換,將原本 要求解的多響應(Multiresponse)問題轉換為單響應(Single Response)問題,Harrington 依製造成品的規格(Specification)對 品質之重要性定義出個別渴望值d(Individual Desirability)。 其個別渴望值的數學方程式如式(24):In the above formula, the stacking error is divided into controllable and uncontrollable error terms according to the device parameter adjustability, wherein the controllable error term coefficients include, A", /W, listening, slave, %, and /^, It is generated by the clamping error of the wafer stage and the photomask, and the uncontrollable error term, in addition to the general random error, there are also errors in the (1_5) and (1_6) modes that are not adjustable by the shadow system itself. For example, wedge distortion and lens deformation, etc. The compensation of the controllable error can be compensated by the relevant control parameters, and the correction of the uncontrollable error can be eliminated by the error source, but also by the lithography system. The controllable parameter items adjust their effects to a minimum. Using the overlay error model to create a 13 1299520 • lithography system feature will facilitate the mixing and analysis of subsequent lithography system groups. There are many factors in the lithography equipment that generate stacking errors, and most of them will affect the geometric relationship of the circuit pattern. For example, the unevenness of the wafer surface will cause the difference in thickness when the photoresist is applied, and the light will arrive when the lithography is caused. The post-refraction of the wafer surface produces pattern distortion. In the process of describing these uncontrollable error terms through the overlay error model, it is often difficult to have a clear and consistent mathematical model to describe the geometric relationship. Out, thus causing the LSM to make a partial geometric relationship omission in the stacking error estimation, so that the estimated stacking error is poor, and another new stacking error is generated in the subsequent compensation process, which is called “ Model error. Therefore, in order to avoid the above model error, one embodiment of the present invention, as shown in the second figure, can obtain a linear transfer function from the position parameter 21 according to the stack error model 2〇. 3G separates the stacking errors that cannot be described in the error models of (4) and (18), and finally uses lsm 24 to obtain the estimated error parameter parameters 25 stored in the network (1_7) and (4). A stack error model that is closer to the actual lithography process can be obtained. The above __ road has the ability to be fault-tolerant, generalized, and close to each other. This concrete ____路3G_咖卿_for example, 孰希 Related collar The technician can know that there are other kinds of gods that can be applied to the present invention, and the RBF-like God network is used as an example to clearly illustrate the present invention, and 1299520 is not used to limit the present invention to March. As shown in the figure, the Na-Shen network needs to go through the basic training process, and the part of the hidden layer is mixed and matched with the regional linear function % and the Gaussian function 33 as the transfer function. The unemployed county. Partial neural domain squamous transfer function 32-instar 4 _ _ + known controllable error squeak, and the aforementioned uncontrollable error term that cannot be fully described in the overlay error model will be wrong - the rest of the neurons with the same function as the transfer function, so the overlapping errors that cannot be described in the (u) and (iv))-stacked error models can be separated from them. On the mixed and matchable man-pair control, In addition to the above-mentioned stacking error estimation method, the φ of the stacking noise is estimated first, and then the error is estimated, and the correct control can not be corrected in the stacking error model. In the middle of a description or an unknown error exists, Such as: the amount of thermal deformation of the lens on the lithography equipment, the measurement error of the measuring equipment and the amount of thermal deformation of the wafer, etc., and the characteristics of these errors will be different from the shipboard and the environment, so the compensation is spent. The compensation can be mitigated by the error caused by these errors and can be matched by the error of the overlay error. The fourth picture shows the secondary points in the micro-age system, and the + includes the light source system 4, the lens system 42, the alignment system 43, the mask stage system 44, and the wafer stage system 45, etc. After the assembly is completed, the lens system seems to be in addition to the fault repair of the light source system 41, and in order to maintain its accuracy, no adjustment or modification is made at will. As for the crystal® stage system 45 and the reticle stage system 44, in addition to the transmission of the wafer and the reticle, in addition to the 15 1299520, it is possible to overlap the errors in the process of moving, shame and mix and __Differential parameters are selected from (1-7) and (1-8), using the wafer stage 45 which is commonly used in the general lithography process, translation, rotation and lifting and translation of the reticle stage μ , rotation and lifting, etc. as a mix and match control parameters. Another embodiment of the present invention is a method of mixing and matching matching of lithographic overlays. The flow design is as shown in the fifth figure. First, after the wafer 510 is subjected to the lithography process 510, it will be subjected to the overlay mark measurement 52 〇 to generate the overlay error measurement data 530 according to the stack of the error measurement data 53〇 and the standard graphic/standard device 52. The error measurement data is subjected to an estimation 540 of the overlay error model parameters, after which the mixing and matching of the overlay control 55〇 can be performed, and then the next lithography process 510 is performed. In the process of mixing and matching the selection of control parameter values, it is necessary to have a standard pattern (Golden Pattern) or a standard equipment (Golden Equipment) as the basis for the adjustment of the device, thereby reducing the overlay of the graphics produced by different devices. After the error. Mixing and matching the production of standard graphics (GoldenPattem), usually the shape and position of the lithography of the previous lithography as the basis for the next overlay of the graphics, so that the front and rear structural graphics have the best overlay effect, In the process of repetition, the influence of the overlay error on the lithography results can be effectively improved. The production of standard equipment (Golden Equipment) is usually selected from the noise group of the same structure layer pattern, and the equipment with the minimum stacking error production capability 1299520 is selected as the adjustment time of other equipment. Therefore, after the stack error model is obtained, the stack error model can be established accordingly. The above-mentioned hybrid and matchable pair control 550 is selected via the optimal control parameters and then controlled by the most determinate parameters. The process of the most healthy parameters of the county can be based on the previous _ specific implementation outline, after the separation of the controllable parameters and the uncontrollable parameter items, the correction of the number of ageable items can be used to compensate for the uncontrollable parameters. . The optimal control parameters of the towel are selected as shown in the sixth figure. First, the 551 (Tiandakou) gene filament produces a timidity of the controllable parameter item to estimate the control parameter value. Next step 552 brings the control parameter values into the overlapped block difference model and maps to the desired function in step 553 to compare the differences between the two devices in the stacking error scale, +, the desire function value is generated. The Taguchi gene-resolving algorithm is used to calculate the adaptive control parameter adaptation value, and the adaptation value is the Taguchi-style fine-grain algorithm. In the process of optimizing the control parameter selection, whether the silk touch has optimized the shaft mechanism. Next, the adaptive value is calculated in step 5M, and it is judged whether the control parameter selection has been optimized. If the optimization has not been achieved, the process returns to step 551 to perform the same process. The eager function can be touched by S-Saki, so the standard graphics or standard equipment is used to collect the thirsty shots on the stacking difference. After that, the control process in the ^Toukou-style algorithm is used to estimate the control. After the parameter value is brought into the error model, it is mapped to the desired function to compare the difference between the two devices. Based on the judgment of the fitness value, the maximum craving value of 17 1299520 and the minimum overlap are found out. The optimal control parameter solution for the error. The details of the process are detailed below. First, the method of evaluating the optimization effect will be explained. Hybrid and Matching Pair Control The criteria followed in the global overlap error compensation can be divided into the following two categories: (1) Standard Pattern (Golden Pattern) In the mixing and matching of the stack error adjustment, in order to reduce the double stack The error is generated, so it is also necessary to consider the directionality of the adjustment of the global overlap error. The stacking error of the previous layer is the reference for the adjustment. This is called the Golden Pattern. (2) Golden Equipment is found by the same model or group device performing the same step. The device with the smallest overlap error is used as the imitation device, and the output of the device is used as the adjustment reference for other devices. This is called “standard device ((}〇1如11 Equipment)”. The value of the control parameter value is selected in the stack. In the process of optimization, it is necessary to have an optimal judgment rule to assist the correctness of the entire selection process, so as to effectively obtain the desired optimization result, so in the judgment rule of the optimization effect, the desire can be The flexible design of the function, the lithography equipment and the _ or the standard equipment on the stack of _ she is eager to record +, that is, the standard graphics or fresh equipment _ to the error system #_ as a desire letter 18 1299520 The definition of the boundary line range in the equation, as a result of the selection of the subsequent optimization parameters on the selection. This will help to maintain good mixing and matching conditions. The circuit pattern overlay effect, and increase the group device's replacement and scheduling freedom. Next, introduce the principle of the desire function, the concept of the desire function was proposed by Harrington in 1965, the main concept is through mathematics The conversion converts the multiresponse problem originally required to be converted into a single response problem, and Harrington defines the individual desire value d (Individual Desirability) according to the quality of the manufactured product. The mathematical equation for the desired value is given by equation (24):

r 包二[USL + LSL) \ η \ USL - LSL y (2-1) 其中}代表第i·個實際響應值,[AS,L、LS,L分別代表規格 的容忍度上下界限,而在此則以標準圖形或標準設備所得的疊 對誤差量測資料來作為渴望函數容忍度上下界限界限值的定 義,W稱為偏項重要性(Deviation Importance),之後對每個個 別渴望值做幾何平均,可得總體渴望值Z)(Overaii 19 1299520r package two [USL + LSL] \ η \ USL - LSL y (2-1) where } represents the i-th actual response value, [AS, L, LS, L represent the upper and lower limits of the tolerance of the specification, respectively, In this case, the overlay error measurement data obtained from standard graphics or standard equipment is used as the definition of the upper and lower bounds of the desired function tolerance, which is called Deviation Importance, and then geometric for each individual desired value. On average, the overall desired value is Z) (Overaii 19 1299520

Desirability),如此可將多系統響應的最佳參數問題轉換成求取 最大總體渴望值的問題。Desirability), which converts the optimal parameter problem for multiple system responses into the problem of finding the maximum overall desired value.

Harrington提_渴望函數設計概念中,響應值遠離規格 中心點(Midpoint)在容忍度上下限移動時,其渴望值的改變速 率依然相同。 但從產業界多變的應用考量上,此種财方式較無法貼 近實際考用的需求,因此以恤料和驗重新修正渴望函 數為:In Harrington's concept of eager function design, the response value is far from the specification. When the center point (Midpoint) moves above the upper and lower tolerances, the rate of change of the desired value remains the same. However, from the application considerations of the industry, this kind of financial method is relatively incapable of being close to the actual needs of the application. Therefore, the desire function is re-corrected by the material and the test:

η η 丫η η 丫

V^LSLV^LSL

< J 卜〜收丫 fUSL<y< J 卜~收丫 fUSL<y

?LSL<y<T?LSL<y<T

J<y<USL y < LSL (2-2) .、式(2~2)巾,4代表渴望函值,w表疊對誤差翻的輸出, M戈表應_駿函減量,Γ代表期雜dW、£的大小可 ==知贿設計,其鋪大表*當雜r時,渴望值的 下降速率也會越大,^见及^见分別代表容忍誤差的上下界限。 1299520 因此在渴望函數在混合並可匹配疊對控制上的應用上(在 混合並可匹配狀況的考量下),要調設備的最佳控制參數選 取’需考慮其實際導入到微影設備後,所可能引起的全域疊對 誤差改變,如此才不會致使另一項疊對誤差的產生。並且為了 能更貼近實際使用上的需求,因此在微影設備控制參數的選擇 上’僅透過(1-7)及(1-8)式中晶圓載台的平移、旋轉、升降及光 罩載台的平移、旋轉、升降等基礎可控項的調整,來改善混合 並可匹龁疊對誤差的問題。一般在參數最佳化的過程中,常會 使用最佳化評估方法來引導可控項的選取方向。因此基於混合 並可匹配疊對誤差最小化的需求,從渴望函數的設計,將最佳 化參數選取過程引導至容忍的混合並可匹配疊對誤差範圍 内’另外渴望函數也能針對個別變異較大的曝光場區域做特別 需求限制,例如··某欠晶圓,在熱氧化製程中,產生晶圓區 熱變形時,可由渴望函數在特定區域做最佳化參數選取上的特 別限制’藉此縮小晶圓因熱變形後對混合並可匹配疊對誤差的 影響。在混合並可匹配狀況下的渴望函數設計方式如第七圖所 示,將標準設備(Golden Equipment)或標準圖形(Golden Pattern) 上的疊對誤差改變方向區分成四個象限,在象限圖中央兩軸相 交的位置為曝光場座標原點,在應用時,需將標準圖形中量得 每個位置的疊對誤差向量置於曝光場座標原點上,之後,依每 各量測位置上疊對誤差改變的方向,判斷要使用哪個象限上的 21 l2g952〇 參函數來做為之後要調設備在最佳控制參數選取時的限制 數考藉此筛取出能擁有最好混合並可匹配效果的最佳控制參 居、、咸低要調设備與標$設備或標準圖形在疊對上,前後 圖开/疊置„吳差的問題。最佳化參數值選取結果之判斷式如 下: 9P ^ Max(d) (2-3) 〇式巾⑽代表最佳控制參數^代表個別渴望值,由式(2-3) 可知’如村控項難量選取的越好,其所得_響應輸出也 會越接近值,渴望值也傾之增加,從财_大小可判 斷出可控彻整量的選取是否已達最佳化。 以下介紹田口式基因演算法應用在最佳控制參數值選取 流程。受限於疊對誤差中圖形的全域幾何關係,使得可控項的 調整量估計不易,田口式基因演算法(Taguehi-GeneticJ<y<USL y < LSL (2-2) ., (2~2) towel, 4 represents the value of the craving function, w the output of the stack of errors, and the M-table should be reduced by _june, Γ The size of the miscellaneous dW, £ can be == design bribe design, its large table * when the r, the rate of decline of the desired value will be greater, ^ see and ^ respectively represent the upper and lower limits of tolerance error. 1299520 Therefore, in the application of the eager function on the hybrid and matchable overlay control (under the consideration of mixing and matching conditions), the optimal control parameter selection of the device should be adjusted after considering the actual import into the lithography device. The global overlap error that may be caused is changed so as not to cause another stack error. In order to be closer to the actual use requirements, the selection of the control parameters of the lithography device is only through the translation, rotation, lifting and blister loading of the wafer stage in (1-7) and (1-8). The adjustment of the basic controllable items such as translation, rotation, and lifting of the table can improve the mixing and the problem of error. Generally, in the process of parameter optimization, an optimization evaluation method is often used to guide the selection direction of the controllable item. Therefore, based on the need to mix and match the error of stacking errors, from the design of the desired function, the optimization of the parameter selection process is guided to the tolerant mixture and can be matched within the range of the error. The additional eager function can also be targeted for individual variations. Large exposure field areas are subject to special requirements, such as a certain under-wafer, in the thermal oxidation process, when the wafer area is thermally deformed, the special limitation of the desired parameter selection in the specific area can be borrowed from the desired function. This reduces the effect of the wafer on the mixing and matching stacking errors due to thermal deformation. The design of the desired function in the mixed and matchable condition is as shown in the seventh figure. The direction of the overlay error on the standard equipment (Golden Equipment) or the standard pattern (Golden Pattern) is divided into four quadrants, in the center of the quadrant. The position where the two axes intersect is the origin of the exposure field coordinate. In application, the overlapping error vector of each position in the standard pattern is placed on the origin of the exposure field coordinate, and then stacked on each measurement position. In the direction of the error change, determine which limit to use the 21 l2g952 parameter function to be used as the limit number of the device to be selected in the optimal control parameters, so that the sieve can have the best mix and match the effect. The best control participation, salty low adjustment equipment and standard $ equipment or standard graphics on the stack, the front and rear map open / stack „ Wu difference. The optimal parameter value selection results are judged as follows: 9P ^ Max(d) (2-3) 〇-style towel (10) represents the best control parameter ^ represents the individual eager value, as shown by equation (2-3) 'if the village control item is difficult to select, the better _ response output Will be closer to the value, and the desired value will also be Increase, from the financial _ size can determine whether the selection of controllable integer has been optimized. The following describes the Taguchi gene algorithm applied in the optimal control parameter value selection process. Limited by the global domain of the overlay error The geometric relationship makes the adjustment of the controllable items difficult to estimate, and the Taguchi gene algorithm (Taguehi-Genetic)

Alg〇rithm’TGA)賤世代演化的能力,因此可從其演化的過 程中搜尋出最佳的參數解。 TGA與傳統式基因演算法(SGA)最大不同之處,在於其 加入了直父表貫驗e又计法與因子分析的概念,讓染色體之間在 22 1299520 又配時%提喊率,藉此增加TGA在全域最佳化搜尋過程中 的速度’並且運用了生物演化的特性,由大量繁殖的染色體 中採自以/匈;太的方式,筛選出最佳的混合並可匹配控制參數 解,一般在參數解的搜尋範圍定義上,通常是經由-些經驗法 則叹疋’在最佳化的需求中,通常會將參數解搜尋區域設定在 較廣的範圍下,但如紐雜_定義太過寬射,相對會在 最佳化的過程巾,耗費太㈣間並且難財效得到最佳的參數 解’藉由RBF輯朗路賴原㈣麟縣參數,來做為 最佳參數收尋區域設定時的參考,由此可增加整個最佳化過程 收敛的速度’並同時能確保最佳化過程的正確性。TGA内的 數值解’通常是由電腦中的隨機亂數產生後,透過編碼技術, 將隨機亂數轉換成一連串的基因,最後構成仿生物體内的染色 體,而染色體可用來執行訊息傳遞、交配、突變及進化等工作, TGA的演算流程如第八圖所示,之後將詳述這些功能。 首先,步驟810與步驟82〇進行染色體族群之產生過程。 最佳化效果的需求,可由初始染色體族群數的設計決定,每條 染色體裡的每個基因都是經由電腦產生隨機亂數後所轉編成 的二進制碼,染色體族群產生的方式如下: (2-4) C = random{POP,N X G ] c n} 23 1299520 (2 4)式中(^代表染色體族群,❿咖―代表隨機產生 的多組染色體,其中卿代表欲產㈣染色體數目1代表 參數數量,%代表基_段醜目,在演算進行的過程中, 會運用每-組基目轉作絲數喊舰,減料進行後續 的交配、突變等步驟後,再將這絲色麵所帶有的訊息經過 碼的動作還原成最佳錄的數飾,其解碼方法如下:Alg〇rithm’TGA) has the ability to evolve from generation to generation, so it can find the best parameter solution from its evolution. The biggest difference between TGA and traditional gene algorithm (SGA) is that it incorporates the concept of straight parental test and method and factor analysis, so that the chromosomes can be shouted at 22 1299520. This increases the speed of the TGA in the global optimization search process and uses the characteristics of biological evolution, from the mass-produced chromosomes in the way of /Hungarian; too, to screen out the best mix and match the control parameter solution Generally, in the definition of the search range of the parameter solution, it is usually sighed by some empirical rules. In the optimal demand, the parameter search area is usually set in a wider range, but Too wide shot, relatively optimized in the process towel, cost too (four) and difficult to get the best parameter solution for the financial efficiency 'by RBF series Long Lu Laiyuan (four) Lin County parameters, as the best parameters The reference to the locale setting can increase the speed at which the entire optimization process converges' while ensuring the correctness of the optimization process. The numerical solution in the TGA is usually generated by random random numbers in the computer. Through the coding technique, the random random number is converted into a series of genes, and finally the chromosomes in the imitation organism are formed, and the chromosomes can be used for message transmission, mating, The work of mutation and evolution, TGA's calculation process is shown in Figure 8, and these functions will be detailed later. First, step 810 and step 82 are performed to generate a chromosome population. The demand for optimization effect can be determined by the design of the number of initial chromosome groups. Each gene in each chromosome is a binary code that is converted into a random number after computer. The chromosome group is generated as follows: (2 4) C = random{POP, NXG ] cn} 23 1299520 (2 4) where (^ represents a chromosomal group, ❿ ― - represents a group of randomly generated chromosomes, where qing represents the desire to produce (4) the number of chromosomes 1 represents the number of parameters, % represents the base _ segment ugly, in the process of calculus, will use each group of groups to turn into a number of sharks, reduce the material for subsequent mating, mutation and other steps, then bring this silk color with The message is restored to the best recorded number by the action of the code. The decoding method is as follows:

Rr - L + ψ I kSi2Rr - L + ψ I kSi2

CckU(U-L) 2 bit-1 (2-5) &代表染色體解碼後,各個參數還原的數值解妨示對 n &體進仃解碼’卩、L相為各個參數在搜尋範圍設 最大及最小值,μ的大小代表每個參數所夾帶的訊息 夕夕錄因去表不,也就是參數解麵解碼過程的解析 度。 接下來由步驟83〇進行染色體適應值評估,並 概體。皿在4_雜中,會隨著不同的需 展出相對應的最佳化效果評估方法,—般可藉由這些規 =盖從數量料㈣㈣财,_㈣於餘化效果有明顯 改。的染瓣進行世代演化,,疊對咖量測及取樣 24 1299520 上,多半採對稱且多重曝光場量測的方式進行,藉此希望得知 疊對誤差在全域上的偏移特性,所以在疊對誤差修正參數最佳 化過程中,必須同時兼顧兩微影設備在混合並可匹配疊對誤差 上的相似度,而且微影系統中的控制參數之間亦具有幾何關 係’因此在控制參數調整時,如果只單獨針對某個量測點或某 個特定_光_域做修正時,將會引起其鱗光場區域的變 異增加。經由渴望函數的設計,可從染色體群植中挑選出符合 最佳化需求的染色體,並透過TGA⑽的適應函數設計來判 斷最佳化染色體麵取上衫正確,目此在齡並可匹配的狀 況中,可盡κ選取㈣最佳控制參數調整量,不致改變要調機 台的疊對誤差_方向脫_標準贿(Golden Equipment)或 鮮圖形(GGldenPattem)_職差。胁麵理由,適應函 數的設計方式如下: (2-6) F代表適應值,用來麟紐化效果的優劣,4代表各量 ,丄得ij的渴望值,w代表渴望函數的個數,依量測點數量 取决’ w代表權重,絲取決侧渴望鋪馳最佳化結果的 ^響輕重’軸函數的值愈大,代表選取的參數值效能越好, : 各抑〗點或曝光~的渴望值乘積,可確保在混合並可 25 1299520 匹配狀況中最佳參數選取的過程,其全域疊對誤差及圖形幾何 的關係不至於因參數修正錯誤而導致其它誤差產生。 再接下來,步驟850進行直交法交配。染色體彼此之間 藉由交配的動作交換資訊,一方面能避免在最佳化過程中陷入 區域最佳解n面可制全域搜尋的目的,TGA利用直 交表’挑選較佳的參數,使魏克服參數過多_色體過長的問CckU(UL) 2 bit-1 (2-5) & represents the numerical solution of the reduction of each parameter after the decoding of the chromosome, so that the n & 体 仃 卩 卩 卩 L L L L L L L L L L L L L L L L The minimum value, the size of μ, represents the resolution of the parameter encapsulation process. Next, the chromosome adaptation value is evaluated by step 83, and the outline is obtained. In the 4_ miscellaneous, the corresponding optimization effect evaluation method will be displayed with different needs. Generally, these measures can be used to cover the quantity (4) (4), and _ (4). The dyed flaps are evolved for generations, and the stacking and measuring of the coffee and the sampling 24 1299520 are mostly carried out by means of symmetrical and multiple exposure field measurement, thereby hoping to know the offset characteristics of the overlay error over the whole domain, so In the optimization process of the stack error correction parameters, the similarity of the two lithography equipments on the hybrid and matchable stacking errors must be considered, and the control parameters in the lithography system also have a geometric relationship 'so the control parameters When adjusting, if the correction is made only for a certain measurement point or a specific _light_field, the variation of the scale field area will increase. Through the design of the eager function, chromosomes that meet the optimization requirements can be selected from the genomic group, and the adaptive function design of TGA(10) can be used to judge the correct chromosomal face and the shirt is correct. In the middle, you can select (4) the optimal control parameter adjustment amount, and do not change the stacking error of the machine to be adjusted _ direction off _ standard bribe (Golden Equipment) or fresh graphics (GGldenPattem) _ job. For the reason of the threat, the design of the adaptive function is as follows: (2-6) F represents the fitness value, used for the merits of the lining effect, 4 represents the amount, the desired value of the ij, and w represents the number of the desired function. Depending on the number of measuring points, the weight of the 'W is the weight of the weight. The larger the value of the axis function is, the higher the value of the axis function is, the better the performance of the selected parameter value is. The desired value product ensures the optimal parameter selection in the hybrid and 25 1299520 matching conditions. The global overlap error and the graphical geometry are not related to other errors caused by parameter correction errors. Next, step 850 performs a straight-through method of mating. Chromosomes exchange information with each other through mating actions. On the one hand, it avoids the goal of entropy in the optimization process. The TGA uses the orthogonal table to select better parameters and overcome the Wei. Too many parameters _ color body is too long

直父的主要意義在於平衡參數因子之間的關係,並且在 不混合的情況之下,得知_因子所具有的興,也就是意謂. 在直交表的每_行巾,各水準現的次數會_。直交 表在資料分析上,可_立並且_的如每-細素的主效 果然後在^些域轉知每—目素對_實驗結果的影響 程度。直絲的實驗行為,事實上是屬於完全因素實驗中的部 伤因素實驗’因此可以大量節省進行完全因素實驗所需花費的 時間。直交表實驗本身具備有系統化推理的躲,所以在進行 縣因素實雜雜求得敎化參轉的近似解。 直又表與®子分析是—種典型的品質管制方法 ,可用2 =善染_魏,㈣_化更纽率。直絲的定義為 有N個因素和2個水準,則總共將有y種組合,當四】 ,)’(1’2),(2,1)’(2,2)在所有的試驗中平均發生時,則列中的, 因子會呈直角狀態。通常—次交配須要兩個染色體來進行 26 f 1299520 因此可以直找〜The main meaning of the straight father is to balance the relationship between the parameter factors, and in the case of no mixing, it is known that the _ factor has the meaning, that is, in each of the orthogonal tables, each level is present. The number will be _. In the data analysis, the direct analysis table can be used as the main effect of each-fine element and then the degree of influence of each element on the experimental result. The experimental behavior of straight silk is in fact an experimental of the trauma factor in the complete factor experiment, thus saving a lot of time in performing the full factor experiment. The orthogonal table experiment itself has the hiding of systematic reasoning, so the approximate solution of the county factor is obtained. Straight and ® sub-analysis is a typical quality control method, available 2 = good dyed _ Wei, (four) _ more than the rate. Straight wire is defined as having N factors and 2 levels, then there will be a total of y combinations, when four],)'(1'2), (2,1)'(2,2) in all experiments When the average occurs, the factor in the column will be in a right angle state. Usually - the second mating requires two chromosomes to carry out 26 f 1299520 so you can look straight ~

個變數,則可得到—各正_ _表不。右—條染色體中含N 矣订矣千忐. 整數β=2ί1〇82(Ν+1)1,因此所建立出的直交 表可表不成Ln(2n-1),且φ白人 7 ^ ^ 3 11列和汉行。假設一個染色體包 含7個變數,則可以逮# + 7 ^ , 個^(2〉的直交表如表4_1所示, 直父表的形成步驟如下: 步驟1 :將a軒放入第1行位置,射a因子的水準! >水準2連續出現的次數為购,即連續出現*個水準卜 再連續出現4個水準2。 步驟2:將b因子放入第2行位置,其中b因子的水準上 和水準2連續出現的次數為8/(2*2)=2。 步驟3:第3行的成份為axb,即若a==b=1或肝^ 2 貝1J a X b =1,否貝丨J狂X b =2。 步驟4 :將c因子放入第4行位置,其中c因子的水準丄 水準3連續出現的次數為8/(2*2*2) =1。 步驟5:第5、6、7行位步驟3類推。 表4-1直交表Le(27) 實驗 Factor —'— 適應 編號 1 2 3 4 5 6 7 值 成份 a b axb c axe bxc axbxc 1 1 1 1 1 1 1 1 γΓ 27 1299520 2 ΓΓ 1 1 2 ΓΓ 2 2 y2 3 1 2 2 1 1 2 2 y3 4 1 2 2 2 2 一 -—--- 1 1 y4 5 2 1 2 1 2 —~-—_ 2 y5 6 2 1 2 2 1 ———. 1 y6 7 2 2 1 1 2 1 y7 ill 2 2 1 1 2 y8 基於上述的討論,在應用上必須參數間的交互作用要 小,如果可將參數間的交互作用忽略,這樣一來就可將直交表 的每一行視為一個參數。經由直交表實驗的主效果評估,作為 參數選擇轉驗據。所主效果是由表4_1巾令%表示 Μ27)直交實驗中第f次實驗的評估函數值。則定義第j個因素 的让水準的主效果為:A variable can be obtained - each positive _ _ table does not. The right-segment chromosome contains N 矣 矣 矣 . The integer β=2ί1〇82(Ν+1)1, so the established orthogonal table can be expressed as Ln(2n-1), and φ white 7 ^ ^ 3 11 columns and Hanhang. Assuming that a chromosome contains 7 variables, you can catch # + 7 ^ , and the orthogonal table of ^(2> is shown in Table 4_1. The steps for forming the straight parent table are as follows: Step 1: Put a Xu into the first row. , the level of the a factor! > Level 2 consecutive occurrences of the purchase, that is, the emergence of * level and then continuously appear 4 levels 2. Step 2: put the b factor into the second line position, where factor b The number of consecutive occurrences on level and level 2 is 8/(2*2)=2. Step 3: The composition of line 3 is axb, ie if a==b=1 or liver^2 shell 1J a X b =1 , No Bellow J mad X b = 2. Step 4: Put the c factor into the 4th row position, where the level of the c factor level 3 appears consecutively 8/(2*2*2) =1. 5: 5, 6, and 7 row steps 3 analogy. Table 4-1 Straight table Le(27) Experiment Factor — '— Adaptation number 1 2 3 4 5 6 7 Value component abb c axe bxc axbxc 1 1 1 1 1 1 1 1 γΓ 27 1299520 2 ΓΓ 1 1 2 ΓΓ 2 2 y2 3 1 2 2 1 1 2 2 y3 4 1 2 2 2 2 One----- 1 1 y4 5 2 1 2 1 2 —~-— _ 2 y5 6 2 1 2 2 1 ———. 1 y6 7 2 2 1 1 2 1 y7 ill 2 2 1 1 2 y8 Based on the above discussion In the application, the interaction between the parameters must be small. If the interaction between the parameters can be neglected, then each line of the orthogonal table can be regarded as a parameter. The main effect evaluation of the experiment through the orthogonal table is used as a parameter selection. The main effect is the value of the evaluation function of the fth experiment in the orthogonal experiment of Μ27) indicated by Table 4_1. Then define the main effect of the j-th factor:

Sjk " Ji yt X Fk (2-7) 其中= 1表示level在第i次試驗中第j·個factor為灸; 否則的話,巧=〇。很明顯的,主效果可顯示出因子中每項個體 的效能,影響力最大的因子J擁有最大的主效果差(Maineffect 28 1299520 differ· ’MED) I 卜考量適應函數值要極大化的 情形如果主錄,表示 中所的效冑hbM 2 mevel還要好,使整體組合可以更接 近最佳解,否則的話改選為第2個ievei會比較好。交配過程 進行時會由族群中任意挑選出兩條染色體。崎色體是各參數 經編碼而每個參數為基本單位,作為直絲的實驗因 素,並採用二水準的直交表,各因素的水準〇與水準i則對應 到父代染色體Ό與母代染色體丨的參數。透過直交表實驗,可 以有效的萃取ίϋ父母代染色財的優良參數,姆組合後所得 到的新染色體會具有極佳的適應度。TGA交配運驗程如下: 步驟1:由直交表選出前⑹亍,其中η—ι)1(每— 個變數即直交表中每一個factor)。 步驟2:水準i和水準2中第y個因子表示母代染色體1 和父代染色體2中第)個變數。 步驟3 ·計算直交表中每一列組合的染色體之適應值%, 其中 ί= 1,2,···,η。 步驟4:計算出主效果心,其中y=1,2,…,Ν;_,2。 步驟5 :由每個變數決定最好的水準。當知》%則選擇 水準1由第7個變數,否則的話選擇水準2中第)個變數。 步驟6:第-個子代染色體找自於直交表中最好的—個 29 1299520 組合。 步驟7.由等級!至等級N中分類出最有影響力的因子, 擁有大的MED因子可分類至更高的等級。 步驟8 :除了最低分類的變數採用另一個水準外,第二個 染色體大致和第一個染色體相同。 綜合前面所述,傳統的GA可以在定義的參數空間中進 仃大量搜尋,但是在過乡參數需要求解時,參轉雜相對也 會^成極大,因此使得GA會收斂至區域最佳射,並且耗費 許夕不必要的^算時間。因此藉由基於直交表彳、統化的推理機 制,可在極短的時_ ’找出各因素的最佳組合,並改善搜尋 時間及區域最佳解等問題。 在進行步驟850之直交法交配後,尚需進行步驟860之 突變。麵色體進倾過程中,除了財最高適應值的染色體 卜同時也會在兼具運算效能的考量下,由適應值較差染色進 行突變_作’從單位基_重組過程中,嘗試進化出更好的 染色體,但由於突變的絲通#受到由電難生峨機亂數編 U目此難以卓控’所以染色體的適應值有可能變好,但 也有可能變得更差,-般在突變率的設計上,通常使其小於 0.1 U胃會用來進行突變行柄染色體,其在染色體族群中 所佔的百分比例小於10%。 30 1299520 在進行完步驟880之後,便完成一個世代的演化。為得 到最佳化的成果,需要進行足夠世代的演化才行,因此由步驟 870來判斷演化的世代是否足夠,如果還需要更多的世代,則 回到步驟810重新產生下一個世代。 TGA的進化行為,是保留前一個世代中最佳的染色體與 下一個世代競爭,藉此來維持最佳化的成果,並且同時達到演 „化的目的,在一般在優生學的過程中,通常最少會保留一條最 佳的染色體不進行交配和突變等步驟,而優生染色體的保留數 量,通常也會影響到進化的速度,因此適當的優生染色體數量 的選取,不只可以幫助TGA在最佳化的過程中減少運算時 間,並且能有效增加最佳化參數解在求解時的收斂性。 從前面所述的各項流程,在混合並可匹配疊對控制參數 值選取的過程中,參數值的補償,必須能以兼顧到各個量測位 置上的疊對方向與疊對誤差大小都可達到最小為原則,混合並 可匹配疊對方向的誤差,會直接影響到結構圖形在其他方向的 累積堆疊,致使電子元件原先無法產生職的魏,而疊對誤 差的變大,如果能維持在設計原則中,則尚可接受。因此透過 渴望函數的設計’首先要限制要調設備在最佳控制參數值的選 取時$與;^準圖形的疊對誤差能有相同的方向,以此減低微 影後圖形變綱導致的電子元件做鮮良顧慮,並且加上適應 函數將所有渴雜做_運算後,就能有效兼_每個曝光場 31 1299520 在混合並可匹配後疊對誤差方向的正確性。Sjk " Ji yt X Fk (2-7) where = 1 indicates that the level j factor in the i-th test is moxibustion; otherwise, Qiao = 〇. Obviously, the main effect can show the performance of each individual in the factor, and the factor J with the greatest influence has the largest difference in main effect (Maineffect 28 1299520 differ· 'MED) I. If the value of the adaptive function is to be maximized, The main record, indicating that the effect hbM 2 mevel is better, so that the overall combination can be closer to the best solution, otherwise it would be better to re-elect the second ievei. During the mating process, two chromosomes are randomly selected from the ethnic group. The color body is coded and each parameter is the basic unit. As the experimental factor of straight wire, and the two-level orthogonal table is used, the level 〇 and level i of each factor correspond to the parent chromosome and the mother chromosome.丨 parameters. Through the orthogonal test, the excellent parameters of the parental coloring can be effectively extracted, and the new chromosome obtained after the combination of the mice will have excellent fitness. The TGA mating process is as follows: Step 1: Select the front (6) 亍 from the orthogonal table, where η—ι)1 (each variable is the each factor in the orthogonal table). Step 2: The yth factor in level i and level 2 represents the first variable in parent chromosome 1 and parent chromosome 2. Step 3 • Calculate the % fitness value of the chromosomes of each column combination in the orthogonal table, where ί = 1, 2, ···, η. Step 4: Calculate the main effect, where y=1, 2,...,Ν;_,2. Step 5: Determine the best level by each variable. When you know %, select Level 1 from the 7th variable, otherwise choose Level 2 of the second variable. Step 6: The first progeny chromosome is found in the best of the orthogonal table - 29 1299520 combination. Step 7. By level! The most influential factors are classified into rank N, and large MED factors can be classified to higher ranks. Step 8: The second chromosome is roughly the same as the first chromosome except that the lowest categorical variable takes another level. In summary, the traditional GA can search a large number of parameters in the defined parameter space, but when the parameters of the foreign country need to be solved, the relative transformation will be extremely large, so that the GA will converge to the best shot in the region. And it takes a lot of time to calculate the time. Therefore, by using the orthogonal and unified reasoning mechanism, the best combination of factors can be found in a very short time _ ’, and the search time and regional optimal solution can be improved. After the orthogonal method of step 850, the mutation of step 860 is still required. In the process of color body tilting, in addition to the highest fitness value of the chromosome, it will also be subject to the calculation of the performance, and the mutation will be mutated by the poor adaptation of the _ _ 'from the unit base _ reorganization process, try to evolve more Good chromosomes, but because of the mutation of the silk pass # is difficult to control by the number of electric turbid machines, so the adaptation value of the chromosome may become better, but it may become worse, - in the mutation The rate is usually designed to be less than 0.1 U. The stomach will be used to mutate the stalk chromosome, which is less than 10% of the chromosomal population. 30 1299520 After the completion of step 880, the evolution of a generation is completed. In order to achieve optimal results, it is necessary to carry out evolution of sufficient generations. Therefore, it is determined by step 870 whether the evolutionary generation is sufficient. If more generations are needed, return to step 810 to regenerate the next generation. The evolutionary behavior of TGA is to preserve the best chromosomes in the previous generation and compete with the next generation, in order to maintain the optimal results, and at the same time achieve the purpose of the chemistry, usually in the process of eugenics, usually At least one of the best chromosomes will not be mated and mutated, and the number of eugenic chromosomes will usually affect the speed of evolution. Therefore, the selection of appropriate eugenic chromosomes can not only help TGA optimize. In the process, the computation time is reduced, and the convergence of the optimized parameter solution in the solution can be effectively increased. From the various processes described above, in the process of mixing and matching the selection of the control parameters, the compensation of the parameter values It must be able to achieve the principle that the overlapping direction and the stacking error of each measuring position can be minimized, and the mixing and matching errors of the overlapping direction directly affect the cumulative stacking of the structural figures in other directions. Causes the electronic components to be unable to produce the Wei, and the stacking error becomes larger. If it can be maintained in the design principle, then Accept. Therefore, through the design of the eager function, the first thing to do is to limit the selection of the optimal control parameter value to the device. The alignment error of the quasi-graphics can have the same direction, thereby reducing the morphing after the morphing. The electronic components make a good concern, and with the adaptation function, all the thirsty _ operations can be effective _ each exposure field 31 1299520 in the mixing and can be matched to the correctness of the error direction.

據此’本發明其中一具體實施例係一種微影疊對之混合 並匹配㈣之方法。首先m影贿對—物件進行一 第-微影餘’該第-郷餘鄉—卿__至該物件 以在該物件產生-映射卿,其巾相應於第—微影設備之標準 圖形_den Pat㈣/標準設備在疊對誤差 „上的特徵建錄-渴望函式。接下來制該崎卿之一疊對 决差量測龍差量晴料侧_無映賴形間的 誤差’依獅Φ對*差制資料產生_帛二郷設備之可控項 與不可控項;雜該可控項與料可控項產生―频誤差模 里,以最佳化方法依產生一組最佳控制參數,依據該最佳控 制參數肩整里將該第二微影設備;以及進行—第二微影製 程。其中最佳化方法包含:產生複數組控制參數;將每一植控 制參數被代人#對誤賴型册—疊職差並_到渴望函 數產生-财值,·崎該可望值直_出最佳_參數, 該最佳控難數具有最大财敍最小疊對誤差。、 之方去If 法可狀㈣式細料域其他相關 /,本發明並不加以限制。並且上述之可控雖不可 係籍由-轉_路所私,細_财 麵 他辦酬路,本發—_。3上 边之類神經網路分離微影細的可控項與不可控韻,再利 32Accordingly, one embodiment of the present invention is a method of mixing and matching (4) a lithographic overlay. First, the m-image bribery--the object carries out a first-micro-shadow' the first-郷余乡_卿__ to the object to produce - map the object in the object, and its towel corresponds to the standard figure of the first lithography device _ Den Pat (four) / standard equipment in the stacking error „ on the characteristics of the record-craving function. Next to the Qiqiqing one stack of the difference between the measured amount of difference between the amount of the raw material _ no reflection between the error The lion Φ pairs * difference data generation _ 帛 郷 郷 equipment controllable items and uncontrollable items; miscellaneous control items and material controllable items generate "frequency error mode", according to optimization method to generate a set of optimal control a parameter, according to the optimal control parameter, the second lithography device is carried out; and the second lithography process is performed. The optimization method comprises: generating a complex array control parameter; each plant control parameter is replaced #对误的册- 叠职差和_to the eager function to generate - financial value, · Saki is expected to be straight _ out of the best _ parameters, the best control difficulty has the largest accounting minimum overlap error. The other method is related to the If method (4) type fine material field, and the present invention is not limited thereto, and the above controllable Membership can be tied by the - _ turn the private road, the surface of fine _ Finance Office paid his way, the present side 3 -_ neural networks separated fine lithography controllable item and uncontrollable Yun, 32 reuse.

Claims (1)

1299520 十、申請專利範圍: 1· 一種微影豐對之混合並匹配控制之方法,包含: 以一第一微影設備對一物件進行一第一微影製程,該第一微影製 程投影一第一圖形(pattern)至該物件,以該第一微影設備與該結 構圖形作為微影疊對之混合並匹配控制之基準的標準圖形 (Golden Pattern)/^;準设備(Golden Equipment); 量測該第-結構_之疊對誤差量測㈣,該第_結構圖形之疊 對誤差量測資料係該第一圖形與該第一結構圖形間的誤差,其 中該第一結構圖形係依據該第一圖形所產生; 依據該第-結構®形之疊職差制賴定義—渴望函式中的邊 界線範圍; 以-第二微影設備對該物件進行—第二微影製程,該第二微影製 程投影一第二圖形至該物件; '、 量測-第二結構_之疊對誤差量測㈣,該第二結構圖形之疊 對誤差量測資料係該第二圖形與該第二結構圖形間的誤差,^ 中该第二結構圖形係依據該第二圖形所產生; 依據該第二結構®形之㈣誤差制資料產生—㈣誤差模型之 可控項與不可控項之疊對誤差特徵值; 、 以-取佳化方法依產生一組最健制參數,其中該最佳化方法包 含·· 產生複數組控制參數; 39 1299520 將每此制參數代入該疊對誤差模塑估計一疊對誤差並映射 到渴望函數產生-渴望值;以及 判斷4渴望值直到挑出該最佳控制參數,其中該最佳控制參數 所減之渴望值為最大,並且所相應之疊對誤差為最小;以及 依據該最佳控制參數調整該第二微影設備。 2·根據申請專利範圍第丨項之微影疊對之混合並匹配控制之方 法,更包含: 依據该第-結構圖形之疊職差量測資料產生-疊對誤差模型之 可控項與不可控項之疊對誤差特徵值; 以一最佳化方法依產生一組最佳控制參數;以及 依據該最佳控制參數調整該第一微影設備。 3·根據申明專利範圍弟1項之微影疊對之混合並匹配控制之方 法,更包含: 量測一第三結構圖形之疊對誤差量測資料,該第三結構圖形之疊 對誤差量測資料係一第三圖形與該第三結構圖形間的誤差,其 中該第三結構圖形係依據該第三圖形所產生; 依據該第三結構圖形之疊對誤差量測資料產生一疊對誤差模型之 可控項與不可控項之疊對誤差特徵值; 依據該第三結構圖形之疊對誤差量測資料定義該渴望函式中的邊 界線範圍; 以該最佳化方法依產生一組最佳控制參數;以及 1299520 .依據該最佳控制參數調整該第二微影設備。 4.根據申請專利範圍第丨項之微影疊對之混合並匹配控制之方 法,更包含: 里测一第二結構圖形之疊對誤差量測資料,該第三結構圖形之疊 對疾差1測資料係一第三圖形與該第三結構圖形間的誤差,其 中該第三結構圖形係依據該第三圖形所產生; 依據該第一結構圖形之疊對誤差量測資料產生一疊對誤差模型之 可控項與不可控項之疊對誤差特徵值; 以该最佳化方法依產生一組最佳控制參數;以及 依據該最佳控制參數調整該第二微影設備。 、5·根據中請專利範圍第1項之微影疊對之混合並匹配控制之方 法’其中上述之最佳化方法採用一田口式基因演算法。 6·根據申請專利範圍帛5項之微影疊對之混合並匹配控制之方 法,其中上述之控制參數之產生包含: 以最佳化方法係產生一組可控參數;以及 以α亥田口式基因演算法產生對該組可控參數之調整量;其 織控齡數係該組可控參數與賴整量之組合。 7·根射請專纖圍第丨項之微影疊對之混合並匹配控制之方 法,其中上述之可控參數係以最小平方法所產生。 8.根據中明專利㈣第丨項之微影疊對之混合並匹配控制之方 法’其中上述之可控猶不可控項係藉由 一類神經網路所產生。 41 1299520 9·根據申請專利範圍帛8項之微影疊對之混合並匹配控制之方 去其中上述之類神經網路包令^一第一神經元群組與一第二神 經兀群組,該第一神經元群組與該第二神經元群組分別產生該 可控項與不可控項。 10·根據申請專利範圍第9項之微影疊對之混合並匹配控制之方 法,其中上述之第一神經元群組係以線性函數為轉移函數來產 生該可控項。 11·根據申請專利範圍第9項之微影疊對之混合並匹配控制之方 法’其中上述之第二神經元群組係以高斯函數為轉移函數來產 生該不可控項。 12·根據申請專利範圍第8項之微影疊對之混合並匹配控制之方 法,其中上述之類神經網路係一徑向基底類神經網路。 13·根據申請專利範圍第丨項之微影疊對之混合並匹配控制之方 法,其中上述之微影設備具有一物件載台與一光罩載台,其中 該可控項包含下列群組之集合:晶圓載台之平移、晶圓載台之 旋轉、晶圓載台之升降與光罩載台之平移、光罩載台之旋轉與 光罩載台之升降。 14·根據申請專利範圍第13項之微影疊對之混合並匹配控制之方 法,其中上述之被影设備具有一物件載台與一光罩載台,其中 該不可控項不包含下列群組之集合:晶圓載台之平移、晶圓載 台之旋轉、晶圓載台之升降與光罩載台之平移、光罩載台之旋 42 1299520 • 轉與光罩載台之升降。 15·根據申請專利範圍第}項之微影疊對之混合並匹配控制之方 法’其中上述之渴望函式包含水平方向之疊對誤差的渴望函式 與其邊界線範圍。 16·根據申請專利範圍第1項之微影疊對之混合並匹配控制之方 法’其中上述之渴望函式包含垂直方向之®對誤差的渴望函式 與其邊界線範圍。 17·根據申請專利範圍第1項之微影疊對之混合並匹配控制之方 法,其中上述之可控項包含複數個運算元。 18·根據申請專利範圍第丨項之微影疊對之混合並匹配控制之方 法,其中上述之不可控項係一個運算元。 I9.根據申請專概圍第1項之微影疊於混合並匹配控制之方 法,其中上述之物件係一晶圓。 43 1299520 , 十一、圖式: 44 1299520 IBIBIBI _霤罾||調 ft — Ξ Ξ rr — hd Η ΓΓΓ — Ξ — 三 Η / /、區域對準記 -疊對量測 -全域對準 mmm 晶圓對準 第一A圖1299520 X. Patent application scope: 1. A method for mixing and matching control of a lithography pair, comprising: performing a first lithography process on an object by a first lithography device, the first lithography process projecting a first pattern to the object, the first lithography device and the structural pattern are mixed as a lithographic overlay and matched with a standard pattern of control (Golden Pattern)/^;Golden Equipment Measuring the first-structure _ stack-to-error measurement (4), the _ structure pattern of the stack-to-error measurement data is an error between the first pattern and the first structure pattern, wherein the first structure graphic system According to the first pattern, the definition of the boundary line in the eager function according to the first structure 形 — ; ; ; ; ; 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望 渴望The second lithography process projects a second pattern to the object; 'measuring - the second structure _ stacking error measurement (4), the second structure pattern stacking error measurement data is the second pattern and The error between the second structural figure, ^ The second structural pattern is generated according to the second graphic; according to the (4) error system data of the second structure, the (four) error characteristic value of the controllable item and the uncontrollable item of the error model is obtained; The method generates a set of the most robust parameters, wherein the optimization method comprises: generating a complex array control parameter; 39 1299520 Substituting each of the parameters into the stack error model to estimate a stack error and mapping to the desired function generation - craving a value; and judging 4 the desired value until the optimal control parameter is selected, wherein the optimal control parameter reduces the desired value to a maximum and the corresponding overlay error is minimal; and adjusts according to the optimal control parameter The second lithography device. 2. The method of mixing and matching control of the lithographic overlay according to the scope of the patent application, further comprising: the controllable item of the stack-to-fold error model according to the stacking measurement data of the first-structure figure The stack of error control features of the control; generating an optimal set of control parameters by an optimization method; and adjusting the first lithography device according to the optimal control parameter. 3. According to the method of mixing and matching control of the lithographic overlay of the first claim of the patent scope, the method further comprises: measuring the stack-to-error measurement data of the third structural figure, and the stacking error amount of the third structural figure The measurement data is an error between a third graphic and the third structural graphic, wherein the third structural graphic is generated according to the third graphic; and the stacking error is generated according to the stacking of the third structural graphic a stacking error eigenvalue of the controllable item and the uncontrollable item of the model; defining a boundary line range in the craving function according to the stacking error measurement data of the third structural figure; generating a set according to the optimization method Optimal control parameters; and 1299520. The second lithography apparatus is adjusted based on the optimal control parameters. 4. According to the method of mixing and matching control of the lithographic stack pair according to the scope of the patent application scope, the method further comprises: measuring the stacking error measurement data of the second structural figure, and the stacking of the third structural figure is different The measurement data is an error between a third graphic and the third structural graphic, wherein the third structural graphic is generated according to the third graphic; and the stack of the first structural graphic generates a stack of errors according to the error measurement data. The error characteristic value of the controllable item and the uncontrollable item of the error model; generating a set of optimal control parameters according to the optimization method; and adjusting the second lithography apparatus according to the optimal control parameter. 5. The method of mixing and matching control according to the lithographic overlay of item 1 of the patent application scope wherein the above optimization method adopts a Taguchi gene algorithm. 6. According to the method of mixing and matching control of lithographic overlays according to the scope of patent application ,5, wherein the generation of the above control parameters comprises: generating a set of controllable parameters by an optimization method; and The gene algorithm generates an adjustment amount of the controllable parameters of the group; the number of the control lengths is a combination of the controllable parameters and the amount of the control. 7. The root shot should be mixed with the lithography stack of the third item and matched with the control method, wherein the above controllable parameters are generated by the least square method. 8. The method of mixing and matching control according to the lithographic stacking of the third item of the Chinese Patent (4), wherein the above controllable uncontrollable item is generated by a type of neural network. 41 1299520 9· According to the patent application scope 帛 8 items of lithographic overlay pairs and matching control to the above-mentioned neural network package, a first neuron group and a second neural group, The first neuron group and the second neuron group respectively generate the controllable item and the uncontrollable item. 10. A method of mixing and matching control according to ninth aspect of the patent application scope, wherein the first group of neurons is a linear function as a transfer function to generate the controllable item. 11. The method of mixing and matching control of lithographic overlays according to item 9 of the patent application scope wherein the second group of neurons described above uses a Gaussian function as a transfer function to generate the uncontrollable term. 12. A method of mixing and matching control of lithographic overlays according to item 8 of the scope of the patent application, wherein the neural network is a radial base-like neural network. 13. The method of mixing and matching control of a lithographic overlay according to the scope of the patent application, wherein the lithography apparatus has an object stage and a reticle stage, wherein the controllable item comprises the following group Assembly: translation of the wafer stage, rotation of the wafer stage, lifting of the wafer stage and translation of the reticle stage, rotation of the reticle stage, and lifting of the reticle stage. 14. The method of mixing and matching control of a lithographic overlay according to claim 13 of the patent application scope, wherein the image forming apparatus has an object stage and a mask stage, wherein the uncontrollable item does not include the following group The set of groups: the translation of the wafer stage, the rotation of the wafer stage, the lifting of the wafer stage and the translation of the reticle stage, the rotation of the reticle stage 42 1299520 • The lifting of the reticle and the reticle stage. 15. A method of mixing and matching control according to the lithographic overlay of claim </ RTI> wherein the above-mentioned craving function includes a horizontally oriented stacking error error function and its boundary line range. 16. The method of mixing and matching control of lithographic overlays according to item 1 of the patent application scope wherein the above-mentioned craving function includes the vertical direction of the craving function of the error and its boundary line range. 17. A method of mixing and matching control of a lithographic overlay according to item 1 of the scope of the patent application, wherein the controllable item comprises a plurality of operands. 18. A method of mixing and matching control according to the lithographic overlay of the scope of the patent application, wherein the uncontrollable item is an operand. I9. According to the application, the lithography of the first item is superimposed on the method of mixing and matching control, wherein the object is a wafer. 43 1299520 , XI, Schema: 44 1299520 IBIBIBI _ slippery || ft ft — Ξ Ξ rr — hd Η ΓΓΓ — Ξ — three Η / /, area alignment - stack pair measurement - global alignment mmm crystal The circle is aligned with the first A picture (a)無偏移覆蓋誤差標記 (b)偏移時覆蓋誤差標記 第一 B圖(a) No offset coverage error flag (b) Overlap error flag when offset First B diagram
TW095110696A 2006-03-27 2006-03-27 Mix-and-match control for lithography overlay TWI299520B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095110696A TWI299520B (en) 2006-03-27 2006-03-27 Mix-and-match control for lithography overlay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095110696A TWI299520B (en) 2006-03-27 2006-03-27 Mix-and-match control for lithography overlay

Publications (2)

Publication Number Publication Date
TW200737297A TW200737297A (en) 2007-10-01
TWI299520B true TWI299520B (en) 2008-08-01

Family

ID=45069710

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095110696A TWI299520B (en) 2006-03-27 2006-03-27 Mix-and-match control for lithography overlay

Country Status (1)

Country Link
TW (1) TWI299520B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448658B (en) * 2008-08-19 2014-08-11 Asml Netherlands Bv A method of measuring overlay error and a device manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489396B (en) * 2013-03-01 2015-06-21 First Optotech Co Ltd Image structure analysis method
EP3518040A1 (en) * 2018-01-30 2019-07-31 ASML Netherlands B.V. A measurement apparatus and a method for determining a substrate grid
CN113242997A (en) 2018-12-19 2021-08-10 Asml荷兰有限公司 Method for sample plan generation and optimization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448658B (en) * 2008-08-19 2014-08-11 Asml Netherlands Bv A method of measuring overlay error and a device manufacturing method
US9201310B2 (en) 2008-08-19 2015-12-01 Asml Netherlands B.V. Method of measuring overlay error and a device manufacturing method
US9798250B2 (en) 2008-08-19 2017-10-24 Asml Netherlands B.V. Lithographic apparatus for measuring overlay error and a device manufacturing method

Also Published As

Publication number Publication date
TW200737297A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
TWI710852B (en) Method of ranking performance data sets and related computer program product
TWI700547B (en) Method and computer program product for computational metrology
TWI668775B (en) Method and system to reduce effects of nonlinear behavior
TWI767529B (en) Method for obtaining training data for training a model of a semiconductor manufacturing process
TWI332129B (en) Process control system and method of performing a fabrication process
TWI721298B (en) Metrology method and related computer program product
Jia et al. Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis
JP5597857B2 (en) Simplified microbridge formation and roughness analysis
TW201830172A (en) Selecting a set of locations associated with a measurement or feature on a substrate
TW201007383A (en) Illumination optimization
TWI299520B (en) Mix-and-match control for lithography overlay
TWI633395B (en) Method and apparatus to correct for patterning process error
TWI623811B (en) Method, computer program product, and system to correct patterning process error
JP2008117915A (en) Temperature setting method of heat treatment plate, program, computer-readable recording medium recording the program, and temperature setting device of heat treatment plate
Li et al. Robust pixel-based source and mask optimization for inverse lithography
Li et al. Applying robust multi-response quality engineering for parameter selection using a novel neural–genetic algorithm
TW201945852A (en) Control based on probability density function of parameter
CN113238460B (en) Deep learning-based optical proximity correction method for extreme ultraviolet
US20230118656A1 (en) Machine learning based model builder and its applications for pattern transferring in semiconductor manufacturing
Hati et al. Robust camera parameter estimation using genetic algorithm
Vaid et al. Hybrid metrology: from the lab into the fab
TWI801837B (en) Aligning a distorted image
Garg et al. Multi-objective optimisation framework of genetic programming for investigation of bullwhip effect and net stock amplification for three-stage supply chain systems
Ping et al. A mixed isomorphism approach for kinematic structure enumeration graphs based on intelligent design and manufacturing
Wang et al. An inverse-distance weighting genetic algorithm for optimizing the wafer exposure pattern for enhancing OWE for smart manufacturing

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees