TW202027226A - Method of manufacturing complementary metal oxide semiconductor micro-electrical mechanical system microphone prevents doped polysilicon layer and metal back plate from occurring short circuit - Google Patents

Method of manufacturing complementary metal oxide semiconductor micro-electrical mechanical system microphone prevents doped polysilicon layer and metal back plate from occurring short circuit Download PDF

Info

Publication number
TW202027226A
TW202027226A TW107147562A TW107147562A TW202027226A TW 202027226 A TW202027226 A TW 202027226A TW 107147562 A TW107147562 A TW 107147562A TW 107147562 A TW107147562 A TW 107147562A TW 202027226 A TW202027226 A TW 202027226A
Authority
TW
Taiwan
Prior art keywords
metal
layer
oxide
polysilicon
manufacturing
Prior art date
Application number
TW107147562A
Other languages
Chinese (zh)
Other versions
TWI677941B (en
Inventor
王傳蔚
Original Assignee
王傳蔚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王傳蔚 filed Critical 王傳蔚
Priority to TW107147562A priority Critical patent/TWI677941B/en
Application granted granted Critical
Publication of TWI677941B publication Critical patent/TWI677941B/en
Priority to US16/695,839 priority patent/US11008215B2/en
Publication of TW202027226A publication Critical patent/TW202027226A/en

Links

Images

Abstract

The present invention discloses a method of manufacturing complementary metal oxide semiconductor micro-electrical mechanical system microphone, comprising the steps of firstly providing a complementary metal oxide semiconductor device containing a semiconductor substrate, a first oxide insulating layer, a doped polysilicon layer, a second oxide insulating layer, a pattern polysilicon layer, and a metal wiring layer sequentially disposed upward. The metal wiring layer is disposed on the second oxide insulating layer. The pattern polysilicon layer comprises the un-doped polysilicon. Next, a portion of metal wiring layer is removed to form a metal back plate, and a cavity penetrating through the semiconductor substrate is opened to expose the first oxide insulating layer in order to further form a micro-electrical mechanical system microphone. The present invention utilizes un-doped polysilicon of the pattern polysilicon layer to avoid the doped polysilicon layer and the metal back plate from occurring short circuit.

Description

互補式金氧半微機電麥克風之製作方法Manufacturing method of complementary metal oxide semi-microelectromechanical microphone

本發明係關於一種麥克風之製作方法,且特別關於一種互補式金氧半微機電麥克風之製作方法。The present invention relates to a method for manufacturing a microphone, and more particularly to a method for manufacturing a complementary metal oxide semi-microelectromechanical microphone.

在過去的三十年中,互補金屬氧化物半導體(CMOS)已廣泛用於積體電路(IC)的製造。 由於大量的研究人力和投入,積體電路的發展和創新取得了突飛猛進的發展,顯著提高了其可靠性和產量,同時,生產成本大幅降低。目前,此技術已達到成熟穩定的水平,對於半導體的持續發展,除了緊跟當前技術發展趨勢外,必須實現突破,提供特殊的生產工藝,增強系統整合度。In the past three decades, complementary metal oxide semiconductor (CMOS) has been widely used in the manufacture of integrated circuits (IC). Due to a large amount of research manpower and investment, the development and innovation of integrated circuits have made rapid progress, significantly improving their reliability and output, and at the same time, greatly reducing production costs. At present, this technology has reached a mature and stable level. For the continuous development of semiconductors, in addition to keeping up with the current technology development trend, breakthroughs must be achieved, special production processes, and system integration enhanced.

在這方面,微機電系統(MEMS)是一種完全不同於傳統技術的新型加工技術。 它主要利用半導體技術生產MEMS結構; 同時它能夠製造具有電子和機械功能的產品。 因此,它具有批量處理,小型化和高性能的優點,並且非常適用於需要以降低的成本進行大規模生產的生產工業。因此,對於這種穩定且不斷發展的CMOS技術,MEMS和電路的集成可以是實現系統集成的更好方法。在傳統技術中,如第1圖所示,微機電麥克風通常有一背板10、一隔膜12與一半導體基板14。背板10與隔膜12中間有空隙,半導體基板14開設有一空腔16,空腔16位於隔膜12下方。當聲壓透過空氣振動傳遞到隔膜12時,隔膜12會振動。若製程有誤差時,背板10與隔膜12施加的電壓會造成背板10與隔膜12發生短路。舉例來說,歐洲專利EP2536168A2與美國專利US9758370都有揭露麥克風之結構,其背板與振動膜之間並無任何阻隔物,故振動膜振動時,背板與振動膜容易發生短路。此外,美國專利US7666698雖有利用蝕刻阻擋(etch stop)層在MEMS裝置的上方形成空腔(cavity),但此蝕刻阻擋層之材質為氮化矽(SiN),並非為標準製程所使用的多晶矽(polysilicon)。美國專利20070218661A1則是對純多晶矽層進行圖案化與蝕刻,以形成有摻雜離子之閘極,與麥克風結構無關。In this regard, micro-electromechanical systems (MEMS) is a new processing technology that is completely different from traditional technologies. It mainly uses semiconductor technology to produce MEMS structures; at the same time, it can manufacture products with electronic and mechanical functions. Therefore, it has the advantages of batch processing, miniaturization and high performance, and is very suitable for production industries that require mass production at reduced costs. Therefore, for this stable and evolving CMOS technology, the integration of MEMS and circuits can be a better way to achieve system integration. In the conventional technology, as shown in FIG. 1, a MEMS microphone usually has a back plate 10, a diaphragm 12, and a semiconductor substrate 14. There is a gap between the back plate 10 and the diaphragm 12, the semiconductor substrate 14 has a cavity 16, and the cavity 16 is located under the diaphragm 12. When sound pressure is transmitted to the diaphragm 12 through air vibration, the diaphragm 12 vibrates. If there is an error in the manufacturing process, the voltage applied by the back plate 10 and the diaphragm 12 will cause a short circuit between the back plate 10 and the diaphragm 12. For example, European patent EP2536168A2 and US patent US9758370 both disclose the structure of the microphone. There is no barrier between the back plate and the diaphragm. Therefore, when the diaphragm vibrates, the back plate and the diaphragm are prone to short-circuit. In addition, although US patent US7666698 uses an etch stop layer to form a cavity above the MEMS device, the material of the etch stop layer is silicon nitride (SiN), which is not polysilicon used in standard manufacturing processes. (Polysilicon). The US patent 20070218661A1 patterned and etched a pure polysilicon layer to form a gate electrode doped with ions, regardless of the microphone structure.

因此,本發明係在針對上述的困擾,提出一種互補式金氧半微機電麥克風之製作方法,以解決習知所產生的問題。Therefore, the present invention aims at solving the above-mentioned problems and proposes a method for manufacturing a complementary metal-oxygen semi-microelectromechanical microphone to solve the conventional problems.

本發明的主要目的,在於提供一種互補式金氧半微機電麥克風之製作方法,其係利用圖案化多晶矽層之未摻雜多晶矽隔離有摻雜多晶矽層與金屬背板,以避免有摻雜多晶矽層與金屬背板發生短路,同時避免有摻雜多晶矽層被蝕刻。The main purpose of the present invention is to provide a method for manufacturing a complementary metal oxide semi-microelectromechanical microphone, which uses the undoped polysilicon of the patterned polysilicon layer to isolate the doped polysilicon layer and the metal back plate to avoid doped polysilicon The layer and the metal back plate are short-circuited, and at the same time, the doped polysilicon layer is prevented from being etched.

為達上述目的,本發明提供一種互補式金氧半微機電麥克風之製作方法,首先,提供一互補式金氧半裝置,其係包含依序由下而上設置的一半導體基板、一第一氧化絕緣層、一有摻雜多晶矽層、一第二氧化絕緣層、一圖案化多晶矽層與一金屬佈線層,金屬佈線層設於第二氧化絕緣層上,圖案化多晶矽層包含未摻雜多晶矽。接著,移除部分之金屬佈線層,以形成位於未摻雜多晶矽之上方之一金屬背板,以利用未摻雜多晶矽隔離金屬背板與有摻雜多晶矽層,並於半導體基板開設貫穿自身之一空腔(Chamber),以露出有摻雜多晶矽層作為震動隔膜(Diaphragm),進而形成一微機電麥克風。To achieve the above objective, the present invention provides a method of manufacturing a complementary metal oxide semi-microelectromechanical microphone. First, a complementary metal oxide semi-device is provided, which includes a semiconductor substrate and a first semiconductor substrate arranged from bottom to top in sequence. An oxide insulating layer, a doped polysilicon layer, a second oxide insulating layer, a patterned polysilicon layer and a metal wiring layer, the metal wiring layer is provided on the second oxide insulating layer, and the patterned polysilicon layer includes undoped polysilicon . Then, remove part of the metal wiring layer to form a metal back plate located above the undoped polysilicon to isolate the metal back plate from the doped polysilicon layer by using the undoped polysilicon, and open the semiconductor substrate through itself A cavity (Chamber), with the exposed doped polysilicon layer as a vibration diaphragm (Diaphragm), thereby forming a MEMS microphone.

在本發明之一實施例中,係先移除部分之金屬佈線層,以形成金屬背板,再於半導體基板開設空腔,以露出第一氧化絕緣層。In an embodiment of the present invention, a part of the metal wiring layer is first removed to form a metal backplane, and then a cavity is opened in the semiconductor substrate to expose the first insulating oxide layer.

在本發明之一實施例中,係先於半導體基板開設空腔,以露出第一氧化絕緣層,再移除部分之金屬佈線層,以形成金屬背板。In one embodiment of the present invention, a cavity is first opened in the semiconductor substrate to expose the first insulating oxide layer, and then part of the metal wiring layer is removed to form a metal backplane.

在本發明之一實施例中,金屬佈線層更包含一氧化絕緣結構、一第一金屬層、一第二金屬層、一第一金屬通孔、一第二金屬通孔與一第三金屬層,氧化絕緣結構設於第二氧化絕緣層與圖案化多晶矽層上,第一金屬層、第二金屬層、第一金屬通孔、第二金屬通孔與第三金屬層嵌入氧化絕緣結構中,第一金屬層、第二金屬層與第三金屬層彼此相隔,並依序由下而上設置,第一金屬層與圖案化多晶矽層相隔,第一金屬通孔位於第二金屬層與第三金屬層之間,以電性連接第二金屬層與第三金屬層,第二金屬通孔連接第二氧化絕緣層及未摻雜多晶矽之至少其中一者與第三金屬層。In an embodiment of the present invention, the metal wiring layer further includes an oxide insulating structure, a first metal layer, a second metal layer, a first metal via, a second metal via, and a third metal layer , The oxide insulating structure is disposed on the second oxide insulating layer and the patterned polysilicon layer, and the first metal layer, the second metal layer, the first metal via, the second metal via and the third metal layer are embedded in the oxide insulating structure, The first metal layer, the second metal layer, and the third metal layer are separated from each other and arranged sequentially from bottom to top. The first metal layer is separated from the patterned polysilicon layer. The first metal via is located between the second metal layer and the third metal layer. Between the metal layers, the second metal layer and the third metal layer are electrically connected, and the second metal through hole connects at least one of the second insulating oxide layer and the undoped polysilicon to the third metal layer.

在本發明之一實施例中,氧化絕緣結構之材質為二氧化矽。In an embodiment of the present invention, the material of the oxide insulating structure is silicon dioxide.

在本發明之一實施例中,金屬佈線層更包含一氮化矽(SiN)層,其係設於氧化絕緣結構與第三金屬層上。In an embodiment of the present invention, the metal wiring layer further includes a silicon nitride (SiN) layer, which is disposed on the oxide insulating structure and the third metal layer.

在本發明之一實施例中,先移除部分之氧化絕緣結構,以露出部分之圖案化多晶矽層,再移除其餘之氧化絕緣結構、第一金屬層與部分之第二金屬層,以利用第一金屬通孔、第三金屬層與其餘之第二金屬層形成金屬背板。In one embodiment of the present invention, first remove part of the oxidized insulating structure to expose part of the patterned polysilicon layer, and then remove the remaining oxidized insulating structure, the first metal layer and part of the second metal layer to use The first metal via, the third metal layer and the remaining second metal layers form a metal backplane.

在本發明之一實施例中,部分之氧化絕緣結構之移除方法為乾蝕刻法,其餘之氧化絕緣結構、第一金屬層與部分之第二金屬層之移除方法為濕蝕刻法。In an embodiment of the present invention, the method for removing part of the oxide insulating structure is dry etching, and the method for removing the remaining oxide insulating structure, the first metal layer and part of the second metal layer is wet etching.

在本發明之一實施例中,空腔之開設方法為深層離子蝕刻(DRIE)法。In an embodiment of the present invention, the method for opening the cavity is a deep ion etching (DRIE) method.

在本發明之一實施例中,圖案化多晶矽層更包含有摻雜多晶矽。In an embodiment of the present invention, the patterned polysilicon layer further includes doped polysilicon.

在本發明之一實施例中,半導體基板為矽基板,且第一氧化絕緣層與第二氧化絕緣層為二氧化矽層。In an embodiment of the present invention, the semiconductor substrate is a silicon substrate, and the first insulating oxide layer and the second insulating oxide layer are silicon dioxide layers.

茲為使 貴審查委員對本發明的結構特徵及所達成的功效更有進一步的瞭解與認識,謹佐以較佳的實施例圖及配合詳細的說明,說明如後:In order to make your reviewer have a better understanding and understanding of the structural features of the present invention and the achieved effects, a preferred embodiment diagram and detailed description are provided. The description is as follows:

本發明之實施例將藉由下文配合相關圖式進一步加以解說。盡可能的,於圖式與說明書中,相同標號係代表相同或相似構件。於圖式中,基於簡化與方便標示,形狀與厚度可能經過誇大表示。可以理解的是,未特別顯示於圖式中或描述於說明書中之元件,為所屬技術領域中具有通常技術者所知之形態。本領域之通常技術者可依據本發明之內容而進行多種之改變與修改。The embodiments of the present invention will be further explained by following relevant drawings. As far as possible, in the drawings and description, the same reference numerals represent the same or similar components. In the drawings, the shape and thickness may be exaggerated for simplicity and convenience. It can be understood that the elements not particularly shown in the drawings or described in the specification are in the form known to those skilled in the art. Those skilled in the art can make various changes and modifications based on the content of the present invention.

一般而言,互補式金氧半(CMOS)製程中的多晶矽(polysilicon)中都有摻雜N型或P型離子,以作為導電材料,通常可以作為閘極、電阻或多晶矽(PIP, poly interconnect poly)電容,但本發明卻未在多晶矽中摻雜任何離子,即使用純多晶矽,不但能在製作微機電麥克風時作為蝕刻阻擋層,亦能防止麥克風發生短路事件。Generally speaking, the polysilicon (polysilicon) in the complementary metal-oxide-semiconductor (CMOS) process is doped with N-type or P-type ions as a conductive material, usually as a gate, resistor or polysilicon (PIP, poly interconnect poly) Capacitor, but the present invention does not dope any ions in the polysilicon. Even if pure polysilicon is used, it can not only serve as an etching barrier in the manufacture of MEMS microphones, but also prevent short-circuit events in the microphone.

以下請參閱第2(a)圖至第2(d)圖, 以介紹本發明之互補式金氧半微機電麥克風之製作方法之第一實施例。首先,如第2(a)圖所示,提供一互補式金氧半裝置18,其係包含依序由下而上設置的一半導體基板20、一第一氧化絕緣層22、一有摻雜多晶矽層24、一第二氧化絕緣層26、一圖案化多晶矽層28與一金屬佈線層30,金屬佈線層30設於第二氧化絕緣層26上,圖案化多晶矽層28包含未摻雜多晶矽或同時包含未摻雜多晶矽與有摻雜多晶矽。若圖案化多晶矽層28僅包含未摻雜多晶矽,則圖案化多晶矽層28之全部區域之材質皆為未摻雜多晶矽。在第一實施例中,圖案化多晶矽層28同時包含未摻雜多晶矽281與有摻雜多晶矽282為例。換言之,圖案化多晶矽層28之部分區域之材質為未摻雜多晶矽281,圖案化多晶矽層28之其餘區域之材質為有摻雜多晶矽282,其中未摻雜多晶矽281之區域係以剖面線表示,有摻雜多晶矽282之區域係以空白表示。本發明所使用的有摻雜多晶矽282可摻雜P型離子或N型離子,相對未摻雜多晶矽281更加具有導電性。此外,本發明所使用的未摻雜多晶矽281為純多晶矽,根據NAGA SIVAKUMAR YAGNAMURTHY 於2013年所著之EFFECT OF GRAIN STRUCTURE AND DOPING ON THE MECHANICAL PROPERTIES OF POLYSILICON THIN FILMS FOR MEMS ,未摻雜多晶矽的電阻率為無限大,有摻雜磷矽玻璃(PSG)相對為摻雜多晶矽的電阻率則較低,故本發明所使用的未摻雜多晶矽,可視為絕緣體,並用來防止二導體發生短路。為了詳細說明本發明互補式金氧半微機電麥克風之製作方法,在第一實施例中,係具體描述互補式金氧半裝置18之結構,但本發明並不限定於此。Please refer to FIG. 2(a) to FIG. 2(d) below to introduce the first embodiment of the manufacturing method of the complementary metal oxide semi-microelectromechanical microphone of the present invention. First, as shown in Figure 2(a), a complementary metal oxide semiconductor device 18 is provided, which includes a semiconductor substrate 20, a first insulating oxide layer 22, and a doped The polysilicon layer 24, a second insulating oxide layer 26, a patterned polysilicon layer 28 and a metal wiring layer 30. The metal wiring layer 30 is provided on the second insulating oxide layer 26. The patterned polysilicon layer 28 includes undoped polysilicon or Contains both undoped polysilicon and doped polysilicon. If the patterned polysilicon layer 28 only includes undoped polysilicon, the material of all regions of the patterned polysilicon layer 28 is undoped polysilicon. In the first embodiment, the patterned polysilicon layer 28 includes both undoped polysilicon 281 and doped polysilicon 282 as an example. In other words, the material of a part of the patterned polysilicon layer 28 is undoped polysilicon 281, and the material of the rest of the patterned polysilicon layer 28 is doped polysilicon 282, and the area of the undoped polysilicon 281 is shown by cross-sections. The area of doped polysilicon 282 is shown as blank. The doped polysilicon 282 used in the present invention can be doped with P-type ions or N-type ions, and is more conductive than the undoped polysilicon 281. In addition, the undoped polysilicon 281 used in the present invention is pure polysilicon. According to the EFFECT OF GRAIN STRUCTURE AND DOPING ON THE MECHANICAL PROPERTIES OF POLYSILICON THIN FILMS FOR MEMS by NAGA SIVAKUMAR YAGNAMURTHY in 2013, the resistivity of undoped polysilicon As infinite, the resistivity of doped phosphosilicate glass (PSG) is lower than that of doped polysilicon. Therefore, the undoped polysilicon used in the present invention can be regarded as an insulator and used to prevent short circuits between two conductors. In order to describe in detail the manufacturing method of the complementary metal oxide semi-microelectromechanical microphone of the present invention, in the first embodiment, the structure of the complementary metal oxide semi-microphone 18 is specifically described, but the present invention is not limited to this.

在互補式金氧半裝置18中,半導體基板20為矽基板,且第一氧化絕緣層22與第二氧化絕緣層26為二氧化矽層。金屬佈線層30更包含一氧化絕緣結構32、一第一金屬層34、一第二金屬層36、一第一金屬通孔(via)38、一第二金屬通孔(via)40、一第三金屬層42與一氮化矽(SiN)層44,氧化絕緣結構32之材質可為二氧化矽,第一金屬層34、第二金屬層36、第一金屬通孔38、第二金屬通孔40與第三金屬層42皆為導電材質。氧化絕緣結構32設於第二氧化絕緣層26與圖案化多晶矽層28上,第一金屬層34、第二金屬層36、第一金屬通孔38、第二金屬通孔40與第三金屬層42嵌入氧化絕緣結構32中,第一金屬層34、第二金屬層36與第三金屬層42彼此相隔,並依序由下而上設置,第一金屬層34與圖案化多晶矽層28相隔,第一金屬通孔38位於第二金屬層36與第三金屬層42之間,以電性連接第二金屬層36與第三金屬層42,第二金屬通孔40連接第二氧化絕緣層26及圖案化多晶矽層28之未摻雜多晶矽281之至少其中一者與第三金屬層42。在第一實施例中,第二金屬通孔40同時連接第二氧化絕緣層26、圖案化多晶矽層28之未摻雜多晶矽281與第三金屬層42。In the complementary metal oxide semiconductor device 18, the semiconductor substrate 20 is a silicon substrate, and the first insulating oxide layer 22 and the second insulating oxide layer 26 are silicon dioxide layers. The metal wiring layer 30 further includes an oxide insulating structure 32, a first metal layer 34, a second metal layer 36, a first metal via 38, a second metal via 40, and a second metal via 40. Three metal layers 42 and a silicon nitride (SiN) layer 44. The material of the oxide insulating structure 32 can be silicon dioxide. The first metal layer 34, the second metal layer 36, the first metal via 38, the second metal via Both the hole 40 and the third metal layer 42 are made of conductive material. The oxide insulating structure 32 is provided on the second oxide insulating layer 26 and the patterned polysilicon layer 28, the first metal layer 34, the second metal layer 36, the first metal via 38, the second metal via 40 and the third metal layer 42 is embedded in the oxide insulating structure 32. The first metal layer 34, the second metal layer 36 and the third metal layer 42 are separated from each other and arranged from bottom to top in sequence. The first metal layer 34 is separated from the patterned polysilicon layer 28. The first metal via 38 is located between the second metal layer 36 and the third metal layer 42 to electrically connect the second metal layer 36 and the third metal layer 42, and the second metal via 40 connects to the second insulating oxide layer 26 And at least one of the undoped polysilicon 281 of the patterned polysilicon layer 28 and the third metal layer 42. In the first embodiment, the second metal via 40 simultaneously connects the second insulating oxide layer 26, the undoped polysilicon 281 of the patterned polysilicon layer 28, and the third metal layer 42.

接著,如第2(b)圖所示,以乾蝕刻法移除部分之氧化絕緣結構32,以露出部分之圖案化多晶矽層28。然後,如第2(c)圖所示,以濕蝕刻法移除其餘之氧化絕緣結構32、第一金屬層34與部分之第二金屬層36,以利用第一金屬通孔38、第三金屬層42與其餘之第二金屬層36形成一金屬背板46,並形成設於金屬背板46與圖案化多晶矽層28之間的一腔體(cavity)47。在第2(b)圖與第2(c)圖之步驟中,由於圖案化多晶矽層28之未摻雜多晶矽281隔離有摻雜多晶矽層24與氧化絕緣結構32,故能避免蝕刻有摻雜多晶矽層24。此外,因為圖案化多晶矽層28之未摻雜多晶矽281位於有摻雜多晶矽層24與金屬背板46之間,使金屬背板46位於圖案化多晶矽層28之未摻雜多晶矽281之上方,以利用未摻雜多晶矽281隔離有摻雜多晶矽層24與金屬背板46,故當有摻雜多晶矽層24作為隔膜振動,且有摻雜多晶矽層24與金屬背板46上施加電壓時,能避免有摻雜多晶矽層24與金屬背板46發生短路。最後,如第2(d)圖所示,為了使聲壓能傳遞到隔膜,以深層離子蝕刻(DRIE,Deep reactive-ion etching)法於半導體基板20開設貫穿自身之一空腔48,以露出第一氧化絕緣層22,進而形成一微機電麥克風。Then, as shown in FIG. 2(b), part of the oxide insulating structure 32 is removed by dry etching to expose part of the patterned polysilicon layer 28. Then, as shown in FIG. 2(c), the remaining oxide insulating structure 32, the first metal layer 34, and part of the second metal layer 36 are removed by wet etching to use the first metal via 38, the third The metal layer 42 and the remaining second metal layer 36 form a metal back plate 46 and form a cavity 47 between the metal back plate 46 and the patterned polysilicon layer 28. In the steps of Fig. 2(b) and Fig. 2(c), since the undoped polysilicon 281 of the patterned polysilicon layer 28 isolates the doped polysilicon layer 24 and the oxide insulating structure 32, it is possible to avoid the doped etching Polysilicon layer 24. In addition, because the undoped polysilicon 281 of the patterned polysilicon layer 28 is located between the doped polysilicon layer 24 and the metal back plate 46, the metal back plate 46 is located above the undoped polysilicon 281 of the patterned polysilicon layer 28 to The undoped polysilicon 281 is used to isolate the doped polysilicon layer 24 and the metal back plate 46. Therefore, when the doped polysilicon layer 24 is used as a diaphragm to vibrate, and voltage is applied to the doped polysilicon layer 24 and the metal back plate 46, it can avoid The doped polysilicon layer 24 and the metal back plate 46 are short-circuited. Finally, as shown in Figure 2(d), in order to transmit the sound pressure energy to the diaphragm, a cavity 48 is opened in the semiconductor substrate 20 through deep reactive-ion etching (DRIE) to expose the first The insulating layer 22 is oxidized to form a MEMS microphone.

第2(b)圖、第2(c)圖與第2(d)圖之步驟除了可以依序進行外,亦可同時進行。即在一步驟中,以蝕刻法移除部分之金屬佈線層30,以形成位於未摻雜多晶矽281之上方之金屬背板46,以利用未摻雜多晶矽281隔離金屬背板46與有摻雜多晶矽層24,並於半導體基板20開設貫穿自身之空腔48,以露出第一氧化絕緣層22,進而形成微機電麥克風。The steps in Figure 2(b), Figure 2(c), and Figure 2(d) can be performed in sequence or simultaneously. That is, in one step, a part of the metal wiring layer 30 is removed by etching to form a metal back plate 46 above the undoped polysilicon 281, so as to isolate the metal back plate 46 from the doped polysilicon 281. The polysilicon layer 24 has a cavity 48 penetrating the semiconductor substrate 20 to expose the first insulating oxide layer 22 to form a microelectromechanical microphone.

以下請參閱第3(a)圖至第3(d)圖, 以介紹本發明之互補式金氧半微機電麥克風之製作方法之第二實施例。首先,如第3(a)圖所示,提供一互補式金氧半裝置18,其結構與第2(a)圖中的互補式金氧半裝置18之結構相同,於此不再贅述。接著,如第3(b)圖所示,以深層離子蝕刻(DRIE)法於半導體基板20開設貫穿自身之一空腔48,以露出第一氧化絕緣層22。然後,如第3(c)圖所示,以乾蝕刻移除部分之氧化絕緣結構32,以露出部分之圖案化多晶矽層28。最後,如第3(d)圖所示,以濕蝕刻法移除其餘之氧化絕緣結構32、第一金屬層34與部分之第二金屬層36,以利用第一金屬通孔38、第三金屬層42與其餘之第二金屬層36形成一金屬背板46,並形成設於金屬背板46與圖案化多晶矽層28之間的一腔體(cavity)47,進而形成一微機電麥克風。在第3(c)圖與第3(d)圖之步驟中,由於圖案化多晶矽層28之未摻雜多晶矽281隔離有摻雜多晶矽層24與氧化絕緣結構32,故能避免蝕刻有摻雜多晶矽層24。此外,因為圖案化多晶矽層28之未摻雜多晶矽281位於有摻雜多晶矽層24與金屬背板46之間,使金屬背板46位於圖案化多晶矽層28之未摻雜多晶矽281之上方,以利用未摻雜多晶矽281隔離有摻雜多晶矽層24與金屬背板46,故當有摻雜多晶矽層24作為隔膜透過空腔48接收聲壓進行振動,且有摻雜多晶矽層24與金屬背板46上施加電壓時,能避免有摻雜多晶矽層24與金屬背板46發生短路。Please refer to FIG. 3(a) to FIG. 3(d) below to introduce the second embodiment of the manufacturing method of the complementary metal oxide semi-microelectromechanical microphone of the present invention. First, as shown in Figure 3(a), a complementary metal oxide half device 18 is provided, and its structure is the same as that of the complementary metal oxide half device 18 in Figure 2(a), and will not be repeated here. Next, as shown in FIG. 3(b), a cavity 48 that penetrates through itself is opened in the semiconductor substrate 20 by a deep ion etching (DRIE) method to expose the first insulating oxide layer 22. Then, as shown in FIG. 3(c), part of the oxide insulating structure 32 is removed by dry etching to expose part of the patterned polysilicon layer 28. Finally, as shown in FIG. 3(d), the remaining oxide insulating structure 32, the first metal layer 34, and part of the second metal layer 36 are removed by wet etching to use the first metal via 38, the third The metal layer 42 and the remaining second metal layer 36 form a metal back plate 46 and form a cavity 47 between the metal back plate 46 and the patterned polysilicon layer 28 to form a microelectromechanical microphone. In the steps of Figure 3(c) and Figure 3(d), since the undoped polysilicon 281 of the patterned polysilicon layer 28 isolates the doped polysilicon layer 24 and the oxide insulating structure 32, it is possible to avoid etching doped Polysilicon layer 24. In addition, because the undoped polysilicon 281 of the patterned polysilicon layer 28 is located between the doped polysilicon layer 24 and the metal back plate 46, the metal back plate 46 is located above the undoped polysilicon 281 of the patterned polysilicon layer 28 to The undoped polysilicon 281 is used to isolate the doped polysilicon layer 24 and the metal back plate 46, so when the doped polysilicon layer 24 is used as a diaphragm to receive sound pressure and vibrate through the cavity 48, and the doped polysilicon layer 24 and the metal back plate When a voltage is applied to 46, the short circuit between the doped polysilicon layer 24 and the metal back plate 46 can be avoided.

以下介紹本發明之互補式金氧半裝置18之製作過程,但本發明並不限定於此。首先,如第4(a)圖所示,於半導體基板20上以熱氧化法(thermal oxidation)形成第一氧化絕緣層22。接著,配合離子佈植法(ion implantation),於第一氧化絕緣層22上形成有摻雜多晶矽層24。再來,以熱氧化法形成第二氧化絕緣層26於有摻雜多晶矽層24上。形成完後,配合圖案化(patterning)與蝕刻(etching)製程及離子佈植法,於第二氧化絕緣層26上形成圖案化多晶矽層28。最後,如第4(b)圖所示,配合熱氧化法、圖案化與蝕刻製程與金屬沈積法形成金屬佈線層30於圖案化多晶矽層28與第二氧化絕緣層26上。The following describes the manufacturing process of the complementary metal-oxygen half device 18 of the present invention, but the present invention is not limited to this. First, as shown in FIG. 4(a), the first insulating oxide layer 22 is formed on the semiconductor substrate 20 by thermal oxidation. Then, with ion implantation, a doped polysilicon layer 24 is formed on the first insulating oxide layer 22. Then, a second insulating oxide layer 26 is formed on the doped polysilicon layer 24 by a thermal oxidation method. After the formation is completed, a patterned polysilicon layer 28 is formed on the second insulating oxide layer 26 in combination with a patterning and etching process and an ion implantation method. Finally, as shown in FIG. 4(b), a metal wiring layer 30 is formed on the patterned polysilicon layer 28 and the second insulating oxide layer 26 by combining the thermal oxidation method, the patterning and etching process, and the metal deposition method.

綜上所述,本發明利用圖案化多晶矽層之未摻雜多晶矽隔離有摻雜多晶矽層與金屬背板,以避免有摻雜多晶矽層與金屬背板發生短路,同時避免有摻雜多晶矽層被蝕刻。In summary, the present invention uses the undoped polysilicon of the patterned polysilicon layer to isolate the doped polysilicon layer from the metal backplane, so as to avoid the short circuit between the doped polysilicon layer and the metal backplane, and at the same time prevent the doped polysilicon layer from being Etching.

以上所述者,僅為本發明一較佳實施例而已,並非用來限定本發明實施之範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。The above is only a preferred embodiment of the present invention, and is not used to limit the scope of implementation of the present invention. Therefore, all the shapes, structures, features and spirits described in the scope of the patent application of the present invention are equally changed and modified. , Should be included in the scope of patent application of the present invention.

10:背板12:隔膜14:半導體基板16:空腔18:互補式金氧半裝置20:半導體基板22:第一氧化絕緣層24:有摻雜多晶矽層26:第二氧化絕緣層28:圖案化多晶矽層281:未摻雜多晶矽282:有摻雜多晶矽30:金屬佈線層32:氧化絕緣結構34:第一金屬層36:第二金屬層38:第一金屬通孔40:第二金屬通孔42:第三金屬層44:氮化矽層46:金屬背板47:腔體48:空腔10: Backplane 12: Diaphragm 14: Semiconductor substrate 16: Cavity 18: Complementary metal oxide half device 20: Semiconductor substrate 22: First insulating oxide layer 24: Doped polysilicon layer 26: Second insulating oxide layer 28: Patterned polysilicon layer 281: undoped polysilicon 282: doped polysilicon 30: metal wiring layer 32: oxide insulating structure 34: first metal layer 36: second metal layer 38: first metal via 40: second metal Via 42: third metal layer 44: silicon nitride layer 46: metal back plate 47: cavity 48: cavity

第1圖為先前技術之微機電麥克風之結構剖視圖。 第2(a)圖至第2(d)圖為本發明之製作互補式金氧半微機電麥克風之第一實施例之各步驟結構剖視圖。 第3(a)圖至第3(d)圖為本發明之製作互補式金氧半微機電麥克風之第二實施例之各步驟結構剖視圖。 第4(a)圖至第4(b)圖為本發明之製作互補式金氧半裝置之一實施例之各步驟結構剖視圖。Figure 1 is a cross-sectional view of the structure of a prior art MEMS microphone. Fig. 2(a) to Fig. 2(d) are cross-sectional views of the structure of each step of the first embodiment of manufacturing a complementary metal oxide semi-microelectromechanical microphone according to the present invention. Figures 3(a) to 3(d) are cross-sectional views of the structure of each step of the second embodiment of manufacturing a complementary metal oxide semi-microelectromechanical microphone according to the present invention. Figures 4(a) to 4(b) are cross-sectional views of the structure of each step of an embodiment of the complementary metal-oxygen half-fabricating device of the present invention.

18:互補式金氧半裝置 18: Complementary metal oxygen half device

20:半導體基板 20: Semiconductor substrate

22:第一氧化絕緣層 22: first oxide insulating layer

24:有摻雜多晶矽層 24: Doped polysilicon layer

26:第二氧化絕緣層 26: second oxide insulating layer

28:圖案化多晶矽層 28: Patterned polysilicon layer

281:未摻雜多晶矽 281: undoped polysilicon

282:有摻雜多晶矽 282: doped polysilicon

30:金屬佈線層 30: Metal wiring layer

32:氧化絕緣結構 32: Oxidation insulation structure

34:第一金屬層 34: The first metal layer

36:第二金屬層 36: second metal layer

38:第一金屬通孔 38: The first metal via

40:第二金屬通孔 40: second metal via

42:第三金屬層 42: third metal layer

44:氮化矽層 44: silicon nitride layer

Claims (11)

一種互補式金氧半微機電麥克風之製作方法,包含: 提供一互補式金氧半裝置,其係包含依序由下而上設置的一半導體基板、一第一氧化絕緣層、一有摻雜多晶矽層、一第二氧化絕緣層、一圖案化多晶矽層與一金屬佈線層,該金屬佈線層設於該第二氧化絕緣層上,該圖案化多晶矽層包含未摻雜多晶矽;以及 移除部分之該金屬佈線層,以形成位於該未摻雜多晶矽之上方之一金屬背板,以利用該未摻雜多晶矽隔離該金屬背板與該有摻雜多晶矽層,並於該半導體基板開設貫穿自身之一空腔(chamber),以露出該摻雜多晶矽層,進而形成一微機電麥克風。A method for manufacturing a complementary metal oxide semi-microelectromechanical microphone includes: providing a complementary metal oxide semi-device, which includes a semiconductor substrate, a first insulating oxide layer, and a doped semiconductor substrate arranged sequentially from bottom to top A polysilicon layer, a second insulating oxide layer, a patterned polysilicon layer, and a metal wiring layer, the metal wiring layer is disposed on the second insulating oxide layer, the patterned polysilicon layer includes undoped polysilicon; and the removed part The metal wiring layer forms a metal back plate located above the undoped polysilicon to isolate the metal back plate and the doped polysilicon layer by the undoped polysilicon, and penetrates the semiconductor substrate through itself A cavity (chamber) to expose the doped polysilicon layer to form a MEMS microphone. 如請求項1所述之互補式金氧半微機電麥克風之製作方法,其中在移除該部分之該金屬佈線層,以形成該金屬背板,並於該半導體基板開設該空腔,以露出該第一氧化絕緣層之步驟中,係先移除該部分之該金屬佈線層,以形成該金屬背板,再於該半導體基板開設該空腔,以露出該第一氧化絕緣層。The method for manufacturing a complementary metal oxide semi-microelectromechanical microphone according to claim 1, wherein the part of the metal wiring layer is removed to form the metal back plate, and the cavity is opened in the semiconductor substrate to expose In the step of the first insulating oxide layer, the part of the metal wiring layer is first removed to form the metal back plate, and then the cavity is opened in the semiconductor substrate to expose the first insulating oxide layer. 如請求項1所述之互補式金氧半微機電麥克風之製作方法,其中在移除該部分之該金屬佈線層,以形成該金屬背板,並於該半導體基板開設該空腔,以露出該第一氧化絕緣層之步驟中,係先於該半導體基板開設該空腔,以露出該第一氧化絕緣層,再移除該部分之該金屬佈線層,以形成該金屬背板。The method for manufacturing a complementary metal oxide semi-microelectromechanical microphone according to claim 1, wherein the part of the metal wiring layer is removed to form the metal back plate, and the cavity is opened in the semiconductor substrate to expose In the step of the first insulating oxide layer, the cavity is firstly opened in the semiconductor substrate to expose the first insulating oxide layer, and then the part of the metal wiring layer is removed to form the metal backplane. 如請求項1所述之互補式金氧半微機電麥克風之製作方法,其中該金屬佈線層更包含一氧化絕緣結構、一第一金屬層、一第二金屬層、一第一金屬通孔、一第二金屬通孔與一第三金屬層,該氧化絕緣結構設於該第二氧化絕緣層與該圖案化多晶矽層上,該第一金屬層、該第二金屬層、該第一金屬通孔、該第二金屬通孔與該第三金屬層嵌入該氧化絕緣結構中,該第一金屬層、該第二金屬層與該第三金屬層彼此相隔,並依序由下而上設置,該第一金屬層與該圖案化多晶矽層相隔,該第一金屬通孔位於該第二金屬層與該第三金屬層之間,以電性連接該第二金屬層與該第三金屬層,該第二金屬通孔連接該第二氧化絕緣層及該未摻雜多晶矽之至少其中一者與該第三金屬層。The method for manufacturing a complementary metal oxide semi-microelectromechanical microphone according to claim 1, wherein the metal wiring layer further comprises an oxide insulating structure, a first metal layer, a second metal layer, a first metal via, A second metal through hole and a third metal layer, the oxide insulating structure is disposed on the second oxide insulating layer and the patterned polysilicon layer, the first metal layer, the second metal layer, and the first metal The hole, the second metal through hole, and the third metal layer are embedded in the oxide insulating structure, the first metal layer, the second metal layer, and the third metal layer are separated from each other and arranged from bottom to top in sequence, The first metal layer is separated from the patterned polysilicon layer, and the first metal through hole is located between the second metal layer and the third metal layer to electrically connect the second metal layer and the third metal layer, The second metal through hole connects at least one of the second insulating oxide layer and the undoped polysilicon to the third metal layer. 如請求項4所述之互補式金氧半微機電麥克風之製作方法,其中該氧化絕緣結構之材質為二氧化矽。The manufacturing method of the complementary metal oxide semi-microelectromechanical microphone according to claim 4, wherein the material of the oxide insulating structure is silicon dioxide. 如請求項5所述之互補式金氧半微機電麥克風之製作方法,其中該金屬佈線層更包含一氮化矽(SiN)層,其係設於該氧化絕緣結構與該第三金屬層上。The method for manufacturing a complementary metal oxide semi-microelectromechanical microphone according to claim 5, wherein the metal wiring layer further comprises a silicon nitride (SiN) layer, which is disposed on the oxide insulating structure and the third metal layer . 如請求項4所述之互補式金氧半微機電麥克風之製作方法,其中在移除該部分之該金屬佈線層,以形成該金屬背板之步驟中,先移除部分之該氧化絕緣結構,以露出部分之該圖案化多晶矽層,再移除其餘之該氧化絕緣結構、該第一金屬層與部分之該第二金屬層,以利用該第一金屬通孔、該第三金屬層與其餘之該第二金屬層形成該金屬背板。The method for manufacturing a complementary metal oxide semi-microelectromechanical microphone according to claim 4, wherein in the step of removing the part of the metal wiring layer to form the metal back plate, first removing part of the oxide insulating structure , To expose part of the patterned polysilicon layer, and then remove the rest of the oxide insulating structure, the first metal layer and part of the second metal layer to use the first metal via, the third metal layer and The remaining second metal layer forms the metal backplane. 如請求項7所述之互補式金氧半微機電麥克風之製作方法,其中該部分之該氧化絕緣結構之移除方法為乾蝕刻法,該其餘之該氧化絕緣結構、該第一金屬層與該部分之該第二金屬層之移除方法為濕蝕刻法。The method for manufacturing a complementary metal oxide semi-microelectromechanical microphone according to claim 7, wherein the method for removing the oxide insulating structure of the part is dry etching, and the remaining oxide insulating structure, the first metal layer and The method for removing the second metal layer of the part is a wet etching method. 如請求項1所述之互補式金氧半微機電麥克風之製作方法,其中該空腔之開設方法為深層離子蝕刻法(DRIE)法。The manufacturing method of the complementary metal-oxygen semi-microelectromechanical microphone according to claim 1, wherein the opening method of the cavity is a deep ion etching (DRIE) method. 如請求項1所述之互補式金氧半微機電麥克風之製作方法,其中該圖案化多晶矽層更包含有摻雜多晶矽。The method for manufacturing a complementary metal oxide semi-microelectromechanical microphone according to claim 1, wherein the patterned polysilicon layer further includes doped polysilicon. 如請求項1所述之互補式金氧半微機電麥克風之製作方法,其中該半導體基板為矽基板,且該第一氧化絕緣層與該第二氧化絕緣層為二氧化矽層。The manufacturing method of the complementary metal oxide semi-microelectromechanical microphone according to claim 1, wherein the semiconductor substrate is a silicon substrate, and the first insulating oxide layer and the second insulating oxide layer are silicon dioxide layers.
TW107147562A 2018-12-28 2018-12-28 Manufacturing method of complementary metal-oxide semi-electromechanical microphone TWI677941B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107147562A TWI677941B (en) 2018-12-28 2018-12-28 Manufacturing method of complementary metal-oxide semi-electromechanical microphone
US16/695,839 US11008215B2 (en) 2018-12-28 2019-11-26 Complementary metal-oxide-semiconductor (CMOS) micro electro-mechanical (MEMS) microphone and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107147562A TWI677941B (en) 2018-12-28 2018-12-28 Manufacturing method of complementary metal-oxide semi-electromechanical microphone

Publications (2)

Publication Number Publication Date
TWI677941B TWI677941B (en) 2019-11-21
TW202027226A true TW202027226A (en) 2020-07-16

Family

ID=69188993

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107147562A TWI677941B (en) 2018-12-28 2018-12-28 Manufacturing method of complementary metal-oxide semi-electromechanical microphone

Country Status (1)

Country Link
TW (1) TWI677941B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111807315B (en) * 2020-07-20 2023-10-03 中国科学院长春光学精密机械与物理研究所 Conductive oxide plasmon nanometer optical antenna and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161702A1 (en) * 2011-12-25 2013-06-27 Kun-Lung Chen Integrated mems device
US9584889B2 (en) * 2013-08-27 2017-02-28 Infineon Technologies Ag System and method for packaged MEMS device having embedding arrangement, MEMS die, and grille
CN104796832B (en) * 2015-02-16 2018-10-16 迈尔森电子(天津)有限公司 MEMS microphone and forming method thereof

Also Published As

Publication number Publication date
TWI677941B (en) 2019-11-21

Similar Documents

Publication Publication Date Title
KR100849570B1 (en) Thin film structure body and formation method thereof, vibrating sensor, pressure sensor and degree of acceleration sensor
TWI396242B (en) Microelectronic device, method for fabricating microelectronic device, and mems package and method for fabricating the same
CN105070823A (en) Pressure sensor and manufacturing method thereof
CN106101975B (en) Method for producing microphone and pressure sensor structures in a layer structure of a MEMS component
JP2014184513A (en) Electric component and method for producing the same
TWI484594B (en) Integrated circuit having microelectromechanical system device and method of fabricating the same
TW202027226A (en) Method of manufacturing complementary metal oxide semiconductor micro-electrical mechanical system microphone prevents doped polysilicon layer and metal back plate from occurring short circuit
US10177027B2 (en) Method for reducing cracks in a step-shaped cavity
US10832920B2 (en) Insulator semiconductor device-structure
WO2011082250A2 (en) Microphone integrated with integrated circuit
JP2003163998A (en) Capacitor microphone, method for manufacturing the same, and electronic equipment
KR20030058853A (en) Method for Forming of Semiconductor Device
CN110316692B (en) CMOS micro-electromechanical microphone and manufacturing method thereof
TWI528520B (en) Pressure sensor and manufacturing method of the same
JP6582273B2 (en) Manufacturing method of MEMS element
TWI691105B (en) Piezoelectric device, method for forming piezoelectric device and method for forming piezoelectric structure
JP6675181B2 (en) Transducer device and manufacturing method thereof
JP4567643B2 (en) Capacitor and manufacturing method thereof
US11008215B2 (en) Complementary metal-oxide-semiconductor (CMOS) micro electro-mechanical (MEMS) microphone and method for fabricating the same
TWI808926B (en) Fabrication method of complementary metal oxide semi-microelectromechanical pressure sensor
TWI475642B (en) Integrated circuit and fabricating method thereof
TWI799061B (en) Capacitor structure and manufacturing method thereof
JP2003153393A (en) Capacitor microphone, manufacturing method thereof and electronic device
JPS60140818A (en) Manufacture of semiconductor device
JP2010187384A (en) Capacitor and method of manufacturing the same