TWI528520B - Pressure sensor and manufacturing method of the same - Google Patents

Pressure sensor and manufacturing method of the same Download PDF

Info

Publication number
TWI528520B
TWI528520B TW102109756A TW102109756A TWI528520B TW I528520 B TWI528520 B TW I528520B TW 102109756 A TW102109756 A TW 102109756A TW 102109756 A TW102109756 A TW 102109756A TW I528520 B TWI528520 B TW I528520B
Authority
TW
Taiwan
Prior art keywords
layer
electrode layer
dielectric
pressure sensor
electrode
Prior art date
Application number
TW102109756A
Other languages
Chinese (zh)
Other versions
TW201438175A (en
Inventor
陳建銘
黃進文
王欽宏
林靖淵
謝佑聖
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW102109756A priority Critical patent/TWI528520B/en
Priority to CN201310135879.6A priority patent/CN104066040B/en
Publication of TW201438175A publication Critical patent/TW201438175A/en
Application granted granted Critical
Publication of TWI528520B publication Critical patent/TWI528520B/en

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Description

壓力感測器及其製造方法 Pressure sensor and method of manufacturing same

本揭露內容是有關於一種壓力感測器及其製造方法,且特別是有關於一種具有降低溫度變化所造成的變形程度及提升初始電容值之壓力感測器及其製造方法。 The present disclosure relates to a pressure sensor and a method of manufacturing the same, and more particularly to a pressure sensor having a degree of deformation caused by a change in temperature and an increase in initial capacitance value, and a method of manufacturing the same.

近年來,隨著智慧型手機與平板電腦的蓬勃發展,以及智慧型手機對於抗噪功能需求的提升,微機電(MEMS)麥克風的技術發展也日益成熟,市場對於微機電麥克風的需求也持續成長。 In recent years, with the rapid development of smart phones and tablets, and the demand for anti-noise functions of smart phones, the technology development of micro-electromechanical (MEMS) microphones has become increasingly mature, and the demand for MEMS microphones continues to grow. .

微機電麥克風可應用在語音秘書、語音導航及語音降噪等等,然而手機中的雜音可能會影響通話的品質。因此,為了能夠降低背景音量進而可以提升通話品質,微機電麥克風的雜音抑制技術是重要的課題之一。 MEMS microphones can be used in voice secretary, voice navigation and voice noise reduction, etc. However, noise in the phone may affect the quality of the call. Therefore, in order to reduce the background volume and thus improve the call quality, the noise suppression technology of the MEMS microphone is one of the important topics.

本揭露內容係有關於一種壓力感測器及其製造方法。實施例之壓力感測器中,第二電極層的導電/介電複合材料結構可以改善整體材料對於溫度變化所造成的變形程度,並且增大整個元件的初始電容值,進而提高元件的可靠性。 The disclosure relates to a pressure sensor and a method of manufacturing the same. In the pressure sensor of the embodiment, the conductive/dielectric composite structure of the second electrode layer can improve the deformation degree of the overall material caused by the temperature change, and increase the initial capacitance value of the entire component, thereby improving the reliability of the component. .

根據本揭露內容之一實施例,係提出一種壓力感測器。壓力感測器包括一基材、一介電氧化層、一第一電極層、一介電連接層以及一第二電極層。介電氧化層形成於基材上,第一電極層形成於介電氧化層上,介電連接層形成於第一電極層上,第二電極層形成於介電連接層上。第二電極層包括一圖案化導電層及一介電層,圖案化導電層具有複數個穿孔,介電層形成於圖案化導電層上且包覆該些穿孔之內壁。第一電極層、介電連接層及第二電極層定義一第一腔室於第一電極層和第二電極層之間。 According to one embodiment of the present disclosure, a pressure sensor is proposed. The pressure sensor includes a substrate, a dielectric oxide layer, a first electrode layer, a dielectric connection layer, and a second electrode layer. The dielectric oxide layer is formed on the substrate, the first electrode layer is formed on the dielectric oxide layer, the dielectric connection layer is formed on the first electrode layer, and the second electrode layer is formed on the dielectric connection layer. The second electrode layer includes a patterned conductive layer and a dielectric layer. The patterned conductive layer has a plurality of through holes, and a dielectric layer is formed on the patterned conductive layer and covers the inner walls of the through holes. The first electrode layer, the dielectric connecting layer and the second electrode layer define a first chamber between the first electrode layer and the second electrode layer.

根據本揭露內容之另一實施例,係提出一種壓力感測器的製造方法。壓力感測器的製造方法包括下列步驟。提供一基材;形成一介電氧化層於基材上;形成一第一電極層於介電氧化層上;形成一介電連接層於第一電極層上;以及形成一第二電極層於介電連接層上,包括:形成一圖案化導電層,具有複數個穿孔;及形成一介電層於圖案化導電層上且包覆該些穿孔之內壁。其中,第一電極層、介電連接層及第二電極層定義一第一腔室於第一電極層和第二電極層之間。 According to another embodiment of the present disclosure, a method of manufacturing a pressure sensor is proposed. The method of manufacturing the pressure sensor includes the following steps. Providing a substrate; forming a dielectric oxide layer on the substrate; forming a first electrode layer on the dielectric oxide layer; forming a dielectric connection layer on the first electrode layer; and forming a second electrode layer on the substrate The dielectric connecting layer comprises: forming a patterned conductive layer having a plurality of through holes; and forming a dielectric layer on the patterned conductive layer and covering the inner walls of the through holes. The first electrode layer, the dielectric connecting layer and the second electrode layer define a first chamber between the first electrode layer and the second electrode layer.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

100、200‧‧‧壓力感測器 100, 200‧‧‧ pressure sensor

110、110s、110s’、210‧‧‧基材 110, 110s, 110s', 210‧‧‧ substrates

110c‧‧‧第二腔室 110c‧‧‧ second chamber

120、120s、220‧‧‧第一電極層 120, 120s, 220‧‧‧ first electrode layer

120a‧‧‧第一電極層表面 120a‧‧‧First electrode layer surface

120t‧‧‧第一電極層開槽 120t‧‧‧first electrode layer slotting

130‧‧‧介電連接層 130‧‧‧Dielectric connection layer

130c‧‧‧凹穴 130c‧‧‧ recess

130s、143s1、143s2‧‧‧介電材料層 130s, 143s1, 143s2‧‧‧ dielectric material layer

140、240‧‧‧第二電極層 140, 240‧‧‧ second electrode layer

141‧‧‧圖案化導電層 141‧‧‧ patterned conductive layer

141t‧‧‧穿孔 141t‧‧‧Perforation

143‧‧‧介電層 143‧‧‧ dielectric layer

150‧‧‧第一腔室 150‧‧‧ first chamber

160‧‧‧凸狀結構 160‧‧‧ convex structure

170、170s、270‧‧‧介電氧化層 170, 170s, 270‧‧ dielectric oxide layer

245‧‧‧密封材料 245‧‧‧ Sealing material

G‧‧‧間隙 G‧‧‧ gap

第1圖繪示本揭露內容之一實施例之壓力感測器之示意圖。 FIG. 1 is a schematic diagram of a pressure sensor according to an embodiment of the disclosure.

第2圖繪示本揭露內容之一實施例之壓力感測器之爆炸圖。 FIG. 2 is an exploded view of a pressure sensor according to an embodiment of the present disclosure.

第3圖繪示本揭露內容之另一實施例之壓力感測器之示意 圖。 FIG. 3 is a schematic diagram of a pressure sensor according to another embodiment of the disclosure. Figure.

第4A圖至第4J圖繪示依照本發明之一實施例之一種壓力感測器之製造方法示意圖。 4A to 4J are schematic views showing a method of manufacturing a pressure sensor according to an embodiment of the present invention.

第5A圖至第5D圖繪示依照本發明之另一實施例之一種壓力感測器之製造方法示意圖。 5A to 5D are schematic views showing a manufacturing method of a pressure sensor according to another embodiment of the present invention.

本揭露內容之實施例中,壓力感測器中,第二電極層的導電/介電複合材料結構可以改善整體材料對於溫度變化所造成的變形程度,並且增大整個元件的初始電容值,進而提高元件的可靠性。以下係參照所附圖式詳細敘述本揭露內容之實施例。圖式中相同的標號係用以標示相同或類似之部分。需注意的是,圖式係已簡化以利清楚說明實施例之內容,實施例所提出的細部結構僅為舉例說明之用,並非對本揭露內容欲保護之範圍做限縮。具有通常知識者當可依據實際實施態樣的需要對該些結構加以修飾或變化。 In an embodiment of the present disclosure, in the pressure sensor, the conductive/dielectric composite structure of the second electrode layer can improve the degree of deformation of the overall material caused by temperature changes, and increase the initial capacitance value of the entire component, thereby Improve the reliability of components. Embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. The same reference numerals are used to designate the same or similar parts. It is to be noted that the drawings have been simplified to illustrate the details of the embodiments, and the detailed description of the embodiments is for illustrative purposes only and is not intended to limit the scope of the disclosure. Those having ordinary knowledge may modify or change the structures as needed in accordance with the actual implementation.

第1圖繪示本揭露內容之一實施例之壓力感測器100之示意圖。第2圖繪示本揭露內容之一實施例之壓力感測器100之爆炸圖。請參照第1~2圖。壓力感測器100包括基材110、第一電極層120、介電連接層130以及第二電極層140。第一電極層120形成於基材110上,介電連接層130形成於第一電極層120上,第二電極層140形成於介電連接層130上。第二電極層140包括圖案化導電層141及介電層143,圖案化導電層141具有複數個穿孔141t,介電層143形成於圖案化導電層141上且包 覆該些穿孔141t之內壁。第一電極層120、介電連接層130及第二電極層140定義一第一腔室150於第一電極層120和第二電極層140之間。 FIG. 1 is a schematic diagram of a pressure sensor 100 according to an embodiment of the present disclosure. FIG. 2 is an exploded view of the pressure sensor 100 of one embodiment of the present disclosure. Please refer to pictures 1~2. The pressure sensor 100 includes a substrate 110, a first electrode layer 120, a dielectric connection layer 130, and a second electrode layer 140. The first electrode layer 120 is formed on the substrate 110, the dielectric connection layer 130 is formed on the first electrode layer 120, and the second electrode layer 140 is formed on the dielectric connection layer 130. The second electrode layer 140 includes a patterned conductive layer 141 and a dielectric layer 143. The patterned conductive layer 141 has a plurality of vias 141t formed on the patterned conductive layer 141 and packaged. The inner walls of the perforations 141t are covered. The first electrode layer 120, the dielectric connection layer 130, and the second electrode layer 140 define a first chamber 150 between the first electrode layer 120 and the second electrode layer 140.

實施例中,如第1圖所示,基材110具有一第二腔室(opening)110c,第二腔室110c係暴露第一電極層120之表面120a。基材110例如是矽基材。 In the embodiment, as shown in FIG. 1, the substrate 110 has a second opening 110c, and the second chamber 110c exposes the surface 120a of the first electrode layer 120. The substrate 110 is, for example, a tantalum substrate.

實施例中,如第1圖所示,第一電極層120具有複數個開槽(slot)120t,該些開槽120t係連通第一腔室150和第二腔室110c。實施例中,如第2圖所示,第一電極層120之表面120a例如是圓形,開槽120t例如是交錯配置於表面120a的周圍區域。 In the embodiment, as shown in FIG. 1, the first electrode layer 120 has a plurality of slots 120t that communicate with the first chamber 150 and the second chamber 110c. In the embodiment, as shown in Fig. 2, the surface 120a of the first electrode layer 120 is, for example, circular, and the slits 120t are interlaced, for example, in a peripheral region of the surface 120a.

一實施例中,壓力感測器100例如是聲音壓力傳感器,例如是微機電麥克風,第一電極層120相對於第二電極層140係為可動件,而第一電極層120的開槽120t的設計來達到減緩及釋放材料應力的功效,藉此增加材料製程應力的變異容忍度。 In one embodiment, the pressure sensor 100 is, for example, a sound pressure sensor, such as a microelectromechanical microphone. The first electrode layer 120 is a movable member with respect to the second electrode layer 140, and the first electrode layer 120 is slotted 120t. Designed to achieve the effect of slowing and releasing material stress, thereby increasing the variation tolerance of material process stress.

實施例中,如第1圖所示,開槽120t與基材係以間隙(gap)G相隔開,第一電極層120與基材係以間隙G相隔開,第二腔室150並未暴露開槽120t。一實施例中,壓力感測器100例如是聲音壓力傳感器,間隙G形成聲阻通道以改善頻率響應,降低頻率響應在低頻衰退(decay)的情形,進而使得壓力感測器100感應到的頻率範圍更完整。 In the embodiment, as shown in FIG. 1, the groove 120t is separated from the substrate by a gap G, the first electrode layer 120 is separated from the substrate by a gap G, and the second chamber 150 is not exposed. Slot 120t. In one embodiment, the pressure sensor 100 is, for example, a sound pressure sensor, and the gap G forms an acoustic resistance channel to improve the frequency response, reducing the frequency response in the case of low frequency decay, thereby causing the frequency sensed by the pressure sensor 100. The scope is more complete.

實施例中,介電連接層130的材質係不同於第一電極層120的材質和第二電極層140的材質。介電連接層130連接第一電極層120和第二電極層140,藉此達到應力平衡的效果。製程當中,也因材料不同,介電連接層130的本質應力和兩個電 極層120和140之間的本質應力正好可相互補償。 In the embodiment, the material of the dielectric connection layer 130 is different from the material of the first electrode layer 120 and the material of the second electrode layer 140. The dielectric connection layer 130 connects the first electrode layer 120 and the second electrode layer 140, thereby achieving the effect of stress balance. In the process, also due to different materials, the essential stress of the dielectric connection layer 130 and two electricity The intrinsic stress between the pole layers 120 and 140 is exactly compensated for each other.

實施例中,第一電極層120例如是以多晶矽(polysilicon)製成,介電連接層130例如是氧化矽製成。第二電極層140中,圖案化導電層141例如是由具有導電性的金屬製成,介電層143例如是由氮化矽(SiN)製成。如此一來,由於此些材料與CMOS製程中常用到的材料相同,因此在製作壓力感測器100的製程前段中,可以應用與CMOS製程相同的材料與流程進行,接著僅需在CMOS製程部分完成後再增加簡單的微機電製程便可完成壓力感測器100的製作。並且,實施例中,第二電極層140的導電/介電複合材料相較於純金屬具有較低的等效熱膨脹係數(Coefficient of Thermal Expansion,CTE),因此可以改善整體材料對於溫度變化所造成的變形程度。 In the embodiment, the first electrode layer 120 is made of, for example, polysilicon, and the dielectric connection layer 130 is made of, for example, yttrium oxide. In the second electrode layer 140, the patterned conductive layer 141 is made of, for example, a metal having conductivity, and the dielectric layer 143 is made of, for example, tantalum nitride (SiN). In this way, since the materials are the same as those commonly used in the CMOS process, the same material and process as the CMOS process can be applied in the front stage of the process of fabricating the pressure sensor 100, and then only in the CMOS process portion. The pressure sensor 100 can be completed by adding a simple microelectromechanical process after completion. Moreover, in the embodiment, the conductive/dielectric composite material of the second electrode layer 140 has a lower coefficient of thermal expansion (CTE) than the pure metal, thereby improving the overall material caused by temperature changes. The degree of deformation.

再者,第二電極層140中,如第1圖所示,介電層143包覆圖案化導電層141,使得第一電極層120和圖案化導電層141之間除了空氣之外尚具有介電材料。以介電層143為氮化矽層為例,其介電常數大約是7,高於空氣的介電常數(大約為1),因此可以增大整個元件的初始電容值,並且降低元件中可能產生的寄生電容對於元件的運作及效能的影響,進而增加元件的靈敏度。 Furthermore, in the second electrode layer 140, as shown in FIG. 1, the dielectric layer 143 covers the patterned conductive layer 141 such that the first electrode layer 120 and the patterned conductive layer 141 are interposed except for air. Electrical material. Taking the dielectric layer 143 as a tantalum nitride layer as an example, the dielectric constant is about 7, which is higher than the dielectric constant of air (about 1), so that the initial capacitance value of the entire component can be increased, and the possibility of the component can be lowered. The resulting parasitic capacitance affects the operation and performance of the component, which in turn increases the sensitivity of the component.

一實施例中,如第1~2圖所示,圖案化導電層141的穿孔141t連通至第一腔室150,以壓力感測器100是聲音壓力傳感器為例,穿孔141t則可作為聲孔。實施例中,穿孔141t的數量與分佈方式視實際應用可以適當變化調整,並不以第1~2圖所示之態樣為限。 In one embodiment, as shown in FIGS. 1 to 2, the through hole 141t of the patterned conductive layer 141 is communicated to the first chamber 150, and the pressure sensor 100 is an acoustic pressure sensor, and the through hole 141t is used as a sound hole. . In the embodiment, the number and distribution of the through holes 141t may be appropriately changed depending on the actual application, and are not limited to the ones shown in FIGS.

實施例中,如第1圖所示,壓力感測器100可更包括介電氧化層170,介電氧化層170形成於基材110和第一電極層120之間。介電氧化層170可定義出間隙G的位置與大小。 In an embodiment, as shown in FIG. 1 , the pressure sensor 100 may further include a dielectric oxide layer 170 formed between the substrate 110 and the first electrode layer 120 . The dielectric oxide layer 170 can define the location and size of the gap G.

實施例中,如第1圖所示,壓力感測器100可更包括複數個凸狀結構(protrusion)160,凸狀結構160形成於第二電極層140上且位於第一電極層120和第二電極層140之間。請參照第2圖,複數個凸狀結構160(未繪示)例如可以形成在穿孔141t之間的第二電極層之表面上。實施例中,如第1圖所示,凸狀結構160係與介電層143一體成形。 In an embodiment, as shown in FIG. 1 , the pressure sensor 100 may further include a plurality of protrusions 160 formed on the second electrode layer 140 and located on the first electrode layer 120 and the first Between the two electrode layers 140. Referring to FIG. 2, a plurality of convex structures 160 (not shown) may be formed, for example, on the surface of the second electrode layer between the through holes 141t. In the embodiment, as shown in FIG. 1, the convex structure 160 is integrally formed with the dielectric layer 143.

凸狀結構160減少製程中的上下膜層(例如是第一電極層120和第二電極層140)接觸的面積。舉例來說,進行濕式蝕刻製程時,第一電極層120和第二電極層140有可能會沾黏在一起,由於凸狀結構160的存在,使得第一電極層120和第二電極層140最多只能經由凸狀結構160部分接觸減少附著力,因而可以達到製程中鄰近膜層抗沾黏的效果。並且,完成的產品在做掉落測試或是音壓很大時,第一腔室150兩側的膜層(例如是第一電極層120和第二電極層140)亦有可能接觸,經由凸狀結構160減少兩膜層的接觸面積,使得第一腔室150兩側的膜層即使接觸後仍可以輕易回復到原來的位置,可以克服靜電吸引力亦或凡得瓦爾力超過回復力的狀況,進而提高產品的可靠性。 The convex structure 160 reduces the area in which the upper and lower film layers (for example, the first electrode layer 120 and the second electrode layer 140) are in contact with each other in the process. For example, when the wet etching process is performed, the first electrode layer 120 and the second electrode layer 140 may be stuck together, and the first electrode layer 120 and the second electrode layer 140 are caused by the presence of the convex structure 160. At most, only the partial contact of the convex structure 160 can reduce the adhesion, so that the anti-adhesion effect of the adjacent film layer in the process can be achieved. Moreover, when the finished product is subjected to the drop test or the sound pressure is large, the film layers on both sides of the first chamber 150 (for example, the first electrode layer 120 and the second electrode layer 140) may also contact, via the convex. The structure 160 reduces the contact area of the two film layers, so that the film layers on both sides of the first chamber 150 can easily return to the original position even after contact, and can overcome the electrostatic attraction force or the condition that the Valle force exceeds the restoring force. , thereby improving the reliability of the product.

第3圖繪示本揭露內容之另一實施例之壓力感測器200之示意圖。本實施例之壓力感測器200與前述實施例之壓力感測器100的差異在於基材210、第一電極層220、第二電極層240及介電氧化層270的設計,其餘相同處不再贅述。 FIG. 3 is a schematic diagram of a pressure sensor 200 according to another embodiment of the disclosure. The pressure sensor 200 of the present embodiment differs from the pressure sensor 100 of the previous embodiment in the design of the substrate 210, the first electrode layer 220, the second electrode layer 240, and the dielectric oxide layer 270, and the rest are the same. Let me repeat.

實施例中,如第3圖所示,基材210不具有任何第二腔室,第一電極層220不具有任何開槽,第一電極層220、介電連接層130及第二電極層240係完全封閉(enclosing)第一腔室150。 In the embodiment, as shown in FIG. 3, the substrate 210 does not have any second chamber, the first electrode layer 220 does not have any slots, and the first electrode layer 220, the dielectric connection layer 130, and the second electrode layer 240 The first chamber 150 is completely closed.

實施例中,如第3圖所示,第二電極層240可更包括一密封材料(sealing material)245,密封材料245充填(filling)於穿孔141t中並且將穿孔141t完全填滿,使得第一電極層220、介電連接層130及第二電極層240完全封閉第一腔室150。實施例中,密封材料245例如是一種絕緣密封材料,可以是無機材料或有機材料,例如是二氧化矽(SiO2)或氮化矽(SiN)或聚對二甲苯(Parylene)。一實施例中,壓力感測器200例如是絕對壓力感測器。 In an embodiment, as shown in FIG. 3, the second electrode layer 240 may further include a sealing material 245, the sealing material 245 is filled in the through hole 141t and completely fills the through hole 141t, so that the first The electrode layer 220, the dielectric connection layer 130, and the second electrode layer 240 completely enclose the first chamber 150. In the embodiment, the sealing material 245 is, for example, an insulating sealing material, which may be an inorganic material or an organic material such as cerium oxide (SiO 2 ) or cerium nitride (SiN) or parylene. In one embodiment, the pressure sensor 200 is, for example, an absolute pressure sensor.

以下係提出實施例之一種壓力感測器100的製造方法,然該些步驟僅為舉例說明之用,並非用以限縮本發明。具有通常知識者當可依據實際實施態樣的需要對該些步驟加以修飾或變化。請參照第4A圖至第4J圖。第4A圖至第4J圖繪示依照本發明之一實施例之一種壓力感測器100之製造方法示意圖。 The following is a method of manufacturing a pressure sensor 100 of the embodiment, which is for illustrative purposes only and is not intended to limit the invention. Those having ordinary knowledge may modify or change the steps as needed according to the actual implementation. Please refer to Figures 4A to 4J. 4A to 4J are schematic views showing a manufacturing method of a pressure sensor 100 according to an embodiment of the present invention.

請參照第4A~4B圖。提供基材110s,以及形成第一電極層120於基材110s上。實施例中,形成第一電極層120於基材110s上之前,更可形成介電氧化層170s於基材110s上,以形成介電氧化層170s於基材110s和第一電極層120之間。 Please refer to pictures 4A~4B. A substrate 110s is provided, and a first electrode layer 120 is formed on the substrate 110s. In an embodiment, before the first electrode layer 120 is formed on the substrate 110s, a dielectric oxide layer 170s may be formed on the substrate 110s to form a dielectric oxide layer 170s between the substrate 110s and the first electrode layer 120. .

形成第一電極層120的製造方法例如包括以下步驟。如第4A圖所示,形成第一電極層120s於介電氧化層170s上,接著如第4B圖所示,蝕刻第一電極層120s以形成複數個開 槽120t。此些開槽120t係連通在後續製程中所形成的第一腔室和第二腔室。 The manufacturing method of forming the first electrode layer 120 includes, for example, the following steps. As shown in FIG. 4A, the first electrode layer 120s is formed on the dielectric oxide layer 170s, and then, as shown in FIG. 4B, the first electrode layer 120s is etched to form a plurality of openings. Slot 120t. The slots 120t are in communication with the first chamber and the second chamber formed in a subsequent process.

接著,請參照第4C~4J圖,形成介電連接層130於第一電極層120上,以及形成第二電極層140於介電連接層130上,其中第一電極層120、介電連接層130及第二電極層140定義第一腔室150於第一電極層120和第二電極層140之間。 Next, referring to FIGS. 4C-4J, a dielectric connection layer 130 is formed on the first electrode layer 120, and a second electrode layer 140 is formed on the dielectric connection layer 130. The first electrode layer 120 and the dielectric connection layer are formed. The 130 and second electrode layers 140 define a first chamber 150 between the first electrode layer 120 and the second electrode layer 140.

形成介電連接層130和第二電極層140的製造方法例如包括以下步驟。 The manufacturing method of forming the dielectric connection layer 130 and the second electrode layer 140 includes, for example, the following steps.

如第4C圖所示,形成介電材料層130s於第一電極層120上。此步驟中,介電材料層130s亦形成於開槽120t中。實施例中,亦可對基材110s進行一薄化的製程以形成薄化的基材110s’。實施例中,此基材薄化的步驟用以決定最終產品中基材110的厚度,而能決定第一腔室150的尺寸。實施例中,例如是以研磨(grinding)方式薄化基材。 As shown in FIG. 4C, a dielectric material layer 130s is formed on the first electrode layer 120. In this step, a dielectric material layer 130s is also formed in the trench 120t. In the embodiment, the substrate 110s may be subjected to a thinning process to form a thinned substrate 110s'. In an embodiment, the step of thinning the substrate is used to determine the thickness of the substrate 110 in the final product, and the size of the first chamber 150 can be determined. In the examples, the substrate is thinned, for example, by grinding.

如第4D圖所示,蝕刻介電材料層130s以形成複數個凹穴130c。此些凹穴130c用以定義在後續製程中所形成的凸狀結構的位置與尺寸。 As shown in FIG. 4D, the dielectric material layer 130s is etched to form a plurality of recesses 130c. These recesses 130c are used to define the position and size of the convex structures formed in subsequent processes.

如第4E圖所示,形成介電材料層143s1於介電材料層130s上並填充凹穴130c。 As shown in FIG. 4E, a dielectric material layer 143s1 is formed on the dielectric material layer 130s and filled with the recess 130c.

如第4F圖所示,形成圖案化導電層141於介電材料層143s1上。圖案化導電層141具有複數個穿孔141t,例如是以、蝕刻製程形成穿孔141t。 As shown in FIG. 4F, a patterned conductive layer 141 is formed on the dielectric material layer 143s1. The patterned conductive layer 141 has a plurality of vias 141t, for example, a via 141t formed by an etching process.

如第4G圖所示,形成介電材料層143s2於圖案化導電層141上並填充穿孔141t。介電材料層143s1和143s2完全 覆蓋圖案化導電層141。一實施例中,介電材料層143s1的材質和介電材料層143s2的材質係相同。 As shown in FIG. 4G, a dielectric material layer 143s2 is formed on the patterned conductive layer 141 and filled with the vias 141t. Dielectric material layers 143s1 and 143s2 are completely The patterned conductive layer 141 is covered. In one embodiment, the material of the dielectric material layer 143s1 and the material of the dielectric material layer 143s2 are the same.

如第4H圖所示,根據穿孔141t的位置蝕刻介電材料層143s1和143s2,以形成第二電極層140。此蝕刻步驟中,穿孔141t延伸至接觸介電材料層130s。第二電極層140中,介電層包覆穿孔141t之內壁。 As shown in FIG. 4H, the dielectric material layers 143s1 and 143s2 are etched according to the position of the through holes 141t to form the second electrode layer 140. In this etching step, the vias 141t extend to the contact dielectric material layer 130s. In the second electrode layer 140, the dielectric layer covers the inner wall of the through hole 141t.

如第4I圖所示,蝕刻基材110s以形成第二腔室110c,第二腔室110c係暴露第一電極層120之表面120a。實施例中,介電氧化層170s可以作為蝕刻基板時的蝕刻阻擋層。蝕刻基材以形成具有第二腔室110c的基材110之後,更可蝕刻介電氧化層170s以形成介電氧化層170以及間隙G於第一電極層120和基材110之間,例如是以一濕式蝕刻製程進行。 As shown in FIG. 4I, the substrate 110s is etched to form the second chamber 110c, and the second chamber 110c exposes the surface 120a of the first electrode layer 120. In an embodiment, the dielectric oxide layer 170s can serve as an etch barrier when etching a substrate. After etching the substrate to form the substrate 110 having the second chamber 110c, the dielectric oxide layer 170s may be further etched to form the dielectric oxide layer 170 and the gap G between the first electrode layer 120 and the substrate 110, for example It is carried out in a wet etching process.

如第4J圖所示,蝕刻介電材料層130s以形成介電連接層130、第一腔室150以及凸狀結構160。例如是以一濕式蝕刻製程進行。至此,形成如第4J圖(第1圖)所示之壓力感測器100。 As shown in FIG. 4J, the dielectric material layer 130s is etched to form the dielectric connection layer 130, the first chamber 150, and the convex structure 160. For example, it is carried out in a wet etching process. Thus far, the pressure sensor 100 as shown in Fig. 4J (Fig. 1) is formed.

以下係提出實施例之另一種壓力感測器200的製造方法,然該些步驟僅為舉例說明之用,並非用以限縮本發明。具有通常知識者當可依據實際實施態樣的需要對該些步驟加以修飾或變化。請同時參照第4C圖至第4H圖以及第5A圖至第5D圖。第5A圖至第5D圖繪示依照本發明之另一實施例之一種壓力感測器200之製造方法示意圖。 The following is a method of manufacturing another pressure sensor 200 of the embodiment, which is for illustrative purposes only and is not intended to limit the invention. Those having ordinary knowledge may modify or change the steps as needed according to the actual implementation. Please refer to the 4Cth to 4thth and 5A to 5D drawings at the same time. 5A to 5D are schematic views showing a manufacturing method of a pressure sensor 200 according to another embodiment of the present invention.

請參照第5A圖。提供基材210,形成介電氧化層 270於基材210上,以及形成第一電極層220於基材210上。 Please refer to Figure 5A. Providing a substrate 210 to form a dielectric oxide layer 270 is on the substrate 210, and the first electrode layer 220 is formed on the substrate 210.

請同時參照第4C~4H圖及第5B圖。以如第4C~4H圖所示之方式形成圖案化導電層141、介電層143及穿孔141t,穿孔141t延伸至接觸介電材料層130s。 Please refer to the 4C~4H and 5B drawings at the same time. The patterned conductive layer 141, the dielectric layer 143, and the through holes 141t are formed in a manner as shown in FIGS. 4C to 4H, and the through holes 141t extend to the contact dielectric material layer 130s.

請參照第5C圖。蝕刻介電材料層130s以形成介電連接層130和第一腔室150。此時,第一電極層220、介電連接層130及圖案化導電層141和介電層143定義第一腔室150於第一電極層220和圖案化導電層141之間。 Please refer to Figure 5C. The dielectric material layer 130s is etched to form the dielectric connection layer 130 and the first chamber 150. At this time, the first electrode layer 220, the dielectric connection layer 130, and the patterned conductive layer 141 and the dielectric layer 143 define the first chamber 150 between the first electrode layer 220 and the patterned conductive layer 141.

請參照第5D圖。充填一密封材料245於所有穿孔141t中,以密封所有穿孔141t,使得第一電極層220、介電連接層130及第二電極層240完全封閉第一腔室150。至此,形成如第5D圖(第3圖)所示之壓力感測器200。 Please refer to Figure 5D. A sealing material 245 is filled in all of the through holes 141t to seal all of the through holes 141t such that the first electrode layer 220, the dielectric connecting layer 130, and the second electrode layer 240 completely close the first chamber 150. So far, the pressure sensor 200 as shown in Fig. 5D (Fig. 3) is formed.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100‧‧‧壓力感測器 100‧‧‧pressure sensor

110‧‧‧基材 110‧‧‧Substrate

110c‧‧‧第二腔室 110c‧‧‧ second chamber

120‧‧‧第一電極層 120‧‧‧First electrode layer

120a‧‧‧第一電極層表面 120a‧‧‧First electrode layer surface

120t‧‧‧第一電極層開槽 120t‧‧‧first electrode layer slotting

130‧‧‧介電連接層 130‧‧‧Dielectric connection layer

140‧‧‧第二電極層 140‧‧‧Second electrode layer

141‧‧‧圖案化導電層 141‧‧‧ patterned conductive layer

141t‧‧‧穿孔 141t‧‧‧Perforation

143‧‧‧介電層 143‧‧‧ dielectric layer

150‧‧‧第一腔室 150‧‧‧ first chamber

160‧‧‧凸狀結構 160‧‧‧ convex structure

170‧‧‧介電氧化層 170‧‧‧Dielectric oxide layer

G‧‧‧間隙 G‧‧‧ gap

Claims (16)

一種壓力感測器,包括:一基材;一介電氧化層形成於基材上;一第一電極層形成於該介電氧化層上;一介電連接層形成於該第一電極層上;以及一第二電極層形成於該介電連接層上,該第二電極層包括:一圖案化導電層,具有複數個穿孔;及一介電層,形成於該圖案化導電層之側壁、頂部與底部上且包覆該些穿孔之內壁;其中,該第一電極層、該介電連接層及該第二電極層定義一第一腔室於該第一電極層和該第二電極層之間。 A pressure sensor comprising: a substrate; a dielectric oxide layer formed on the substrate; a first electrode layer formed on the dielectric oxide layer; a dielectric connection layer formed on the first electrode layer And a second electrode layer formed on the dielectric connection layer, the second electrode layer comprising: a patterned conductive layer having a plurality of vias; and a dielectric layer formed on sidewalls of the patterned conductive layer An inner wall covering the perforations on the top and the bottom; wherein the first electrode layer, the dielectric connecting layer and the second electrode layer define a first chamber on the first electrode layer and the second electrode Between the layers. 如申請專利範圍第1項所述之壓力感測器,其中該基材具有一第二腔室(opening),該第二腔室係暴露該第一電極之一表面。 The pressure sensor of claim 1, wherein the substrate has a second opening that exposes a surface of the first electrode. 如申請專利範圍第1項所述之壓力感測器,其中該第一電極層具有複數個開槽(slot),該些開槽係連通該第一腔室和該第二腔室。 The pressure sensor of claim 1, wherein the first electrode layer has a plurality of slots that communicate with the first chamber and the second chamber. 如申請專利範圍第3項所述之壓力感測器,其中該第一電極層與該基材係以一間隙(gap)相隔開。 The pressure sensor of claim 3, wherein the first electrode layer and the substrate are separated by a gap. 如申請專利範圍第1項所述之壓力感測器,其中該介電連接層的材質係不同於該第一電極層的材質和該第二電極層的材質。 The pressure sensor according to claim 1, wherein the material of the dielectric connecting layer is different from the material of the first electrode layer and the material of the second electrode layer. 如申請專利範圍第1項所述之壓力感測器,其中該些穿孔係連通至該第一腔室。 The pressure sensor of claim 1, wherein the perforations are connected to the first chamber. 如申請專利範圍第1項所述之壓力感測器,更包括複數個凸狀結構(protrusion)形成於該第二電極層上且位於該第一電極層和該第二電極層之間。 The pressure sensor of claim 1, further comprising a plurality of protrusions formed on the second electrode layer between the first electrode layer and the second electrode layer. 如申請專利範圍第1項所述之壓力感測器,更包括一介電氧化層形成於該基材和該第一電極層之間。 The pressure sensor of claim 1, further comprising a dielectric oxide layer formed between the substrate and the first electrode layer. 如申請專利範圍第1項所述之壓力感測器,其中該第二電極層更包括一密封材料(sealing material)充填(filling)於該些穿孔中,以使該第一電極層、該介電連接層及該第二電極層完全封閉該第一腔室。 The pressure sensor of claim 1, wherein the second electrode layer further comprises a sealing material filled in the perforations, so that the first electrode layer and the dielectric layer The electrical connection layer and the second electrode layer completely enclose the first chamber. 一種壓力感測器之製造方法,包括:提供一基材;形成一介電氧化層於該基材上;形成一第一電極層於該介電氧化層上;形成一介電連接層於該第一電極層上;以及 形成一第二電極層於該介電連接層上,包括:形成一圖案化導電層,具有複數個穿孔;及形成一介電層於該圖案化導電層之側壁、頂部與底部上且包覆該些穿孔之內壁;其中,該第一電極層、該介電連接層及該第二電極層定義一第一腔室於該第一電極層和該第二電極層之間。 A method of manufacturing a pressure sensor, comprising: providing a substrate; forming a dielectric oxide layer on the substrate; forming a first electrode layer on the dielectric oxide layer; forming a dielectric connection layer thereon On the first electrode layer; Forming a second electrode layer on the dielectric connecting layer, comprising: forming a patterned conductive layer having a plurality of through holes; and forming a dielectric layer on the sidewall, the top and the bottom of the patterned conductive layer and coating The inner wall of the perforations; wherein the first electrode layer, the dielectric connecting layer and the second electrode layer define a first chamber between the first electrode layer and the second electrode layer. 如申請專利範圍第10項所述之壓力感測器之製造方法,更包括:蝕刻該基材以形成一第二腔室,該第二腔室係暴露該第一電極層之一表面。 The method of manufacturing a pressure sensor according to claim 10, further comprising: etching the substrate to form a second chamber, the second chamber exposing a surface of the first electrode layer. 如申請專利範圍第11項所述之壓力感測器之製造方法,更包括:蝕刻該第一電極層以形成複數個開槽(slot),該些開槽係連通該第一腔室和該第二腔室。 The method of manufacturing the pressure sensor of claim 11, further comprising: etching the first electrode layer to form a plurality of slots, the slots connecting the first chamber and the Second chamber. 如申請專利範圍第10項所述之壓力感測器之製造方法,更包括:形成複數個凸狀結構(protrusion)於該第二電極上且位於該第一電極和該第二電極之間。 The method of manufacturing a pressure sensor according to claim 10, further comprising: forming a plurality of protrusions on the second electrode and between the first electrode and the second electrode. 如申請專利範圍第10項所述之壓力感測器之製造方法,更包括: 形成一介電氧化層於該基材和該第一電極層之間。 The method for manufacturing a pressure sensor according to claim 10, further comprising: A dielectric oxide layer is formed between the substrate and the first electrode layer. 如申請專利範圍第14項所述之壓力感測器之製造方法,更包括:蝕刻該介電氧化層以形成間隙(gap)於該第一電極層和該基材之間。 The method of manufacturing a pressure sensor according to claim 14, further comprising: etching the dielectric oxide layer to form a gap between the first electrode layer and the substrate. 如申請專利範圍第10項所述之壓力感測器之製造方法,更包括:充填(filling)一密封材料(sealing material)於該些穿孔中,以使該第一電極層、該介電連接層及該第二電極層完全封閉該第一腔室。 The method of manufacturing a pressure sensor according to claim 10, further comprising: filling a sealing material in the perforations to make the first electrode layer and the dielectric connection The layer and the second electrode layer completely enclose the first chamber.
TW102109756A 2013-03-19 2013-03-19 Pressure sensor and manufacturing method of the same TWI528520B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102109756A TWI528520B (en) 2013-03-19 2013-03-19 Pressure sensor and manufacturing method of the same
CN201310135879.6A CN104066040B (en) 2013-03-19 2013-04-18 Pressure sensor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102109756A TWI528520B (en) 2013-03-19 2013-03-19 Pressure sensor and manufacturing method of the same

Publications (2)

Publication Number Publication Date
TW201438175A TW201438175A (en) 2014-10-01
TWI528520B true TWI528520B (en) 2016-04-01

Family

ID=51553533

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102109756A TWI528520B (en) 2013-03-19 2013-03-19 Pressure sensor and manufacturing method of the same

Country Status (2)

Country Link
CN (1) CN104066040B (en)
TW (1) TWI528520B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070720B (en) 2015-07-13 2017-12-01 京东方科技集团股份有限公司 It is integrated with display panel of sensor and preparation method thereof and display device
US9878899B2 (en) 2015-10-02 2018-01-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for reducing in-process and in-use stiction for MEMS devices
TWI775227B (en) * 2020-11-30 2022-08-21 新唐科技股份有限公司 Capacitive pressure sensor and method of manufacturing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888845A (en) * 1996-05-02 1999-03-30 National Semiconductor Corporation Method of making high sensitivity micro-machined pressure sensors and acoustic transducers
CN1787694A (en) * 2004-12-10 2006-06-14 美律实业股份有限公司 Mfg. method for silicon crystal microphone
JP2009028808A (en) * 2007-07-24 2009-02-12 Rohm Co Ltd Mems sensor and manufacturing method of mems sensor
JP2009164849A (en) * 2007-12-28 2009-07-23 Yamaha Corp Mems transducer and its manufacturing method
CN101516053A (en) * 2008-02-20 2009-08-26 歌尔声学股份有限公司 Capacitor type microphone chip
CN101602479A (en) * 2008-06-11 2009-12-16 芯巧科技股份有限公司 Capacitive sensing device and preparation method thereof
TWM360536U (en) * 2009-03-05 2009-07-01 Memchip Technology Co Ltd Capacitive sensor
CN101959103B (en) * 2010-04-19 2016-06-08 瑞声声学科技(深圳)有限公司 Vibrating diaphragm and the mike including this vibrating diaphragm
CN101959107A (en) * 2010-04-19 2011-01-26 瑞声声学科技(深圳)有限公司 MEMS (Micro Electro Mechanical Systems) microphone
JP5400708B2 (en) * 2010-05-27 2014-01-29 オムロン株式会社 Acoustic sensor, acoustic transducer, microphone using the acoustic transducer, and method of manufacturing the acoustic transducer
TWI439413B (en) * 2011-03-30 2014-06-01 Pixart Imaging Inc Mems sensing device and method for making same

Also Published As

Publication number Publication date
CN104066040A (en) 2014-09-24
CN104066040B (en) 2018-12-21
TW201438175A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
US9681234B2 (en) MEMS microphone structure and method of manufacturing the same
KR102486586B1 (en) MEMS microphone and method of fabricating the same
US8587078B2 (en) Integrated circuit and fabricating method thereof
US9266716B2 (en) MEMS acoustic transducer with silicon nitride backplate and silicon sacrificial layer
US7795063B2 (en) Micro-electro-mechanical systems (MEMS) device and process for fabricating the same
TWI396242B (en) Microelectronic device, method for fabricating microelectronic device, and mems package and method for fabricating the same
US8921997B2 (en) Electrical component and method of manufacturing the same
TWI592030B (en) MEMS microphone and its formation method
WO2009101757A1 (en) Capacitor microphone and mems device
WO2006124002A1 (en) Silicon microphone
CN111225329B (en) Microphone, preparation method thereof and electronic equipment
TWI439413B (en) Mems sensing device and method for making same
US11533565B2 (en) Dual back-plate and diaphragm microphone
CN105792084A (en) Micro-electromechanical System (MEMS) microphone and manufacturing method thereof
TWI528520B (en) Pressure sensor and manufacturing method of the same
TW202013991A (en) Microphone, MEMS device and method of manufacturing MEMS device
JP2014155980A (en) Electric component and method for producing the same
CN104627948A (en) Micromechanical sensor device and corresponding manufacturing method
US10177027B2 (en) Method for reducing cracks in a step-shaped cavity
CN101534465A (en) Micro electronmechanical microphone and packaging method thereof
US11402288B2 (en) Membrane-based sensor having a plurality of spacers extending from a cap layer
CN106608614B (en) Method for manufacturing MEMS structure
TWI475642B (en) Integrated circuit and fabricating method thereof
CN102223591A (en) Wafer level packaging structure of micro electro mechanical system microphone and manufacturing method thereof
JP4567643B2 (en) Capacitor and manufacturing method thereof