TW202022869A - Five-transistor single port static random access memory with fast write speed - Google Patents

Five-transistor single port static random access memory with fast write speed Download PDF

Info

Publication number
TW202022869A
TW202022869A TW107144251A TW107144251A TW202022869A TW 202022869 A TW202022869 A TW 202022869A TW 107144251 A TW107144251 A TW 107144251A TW 107144251 A TW107144251 A TW 107144251A TW 202022869 A TW202022869 A TW 202022869A
Authority
TW
Taiwan
Prior art keywords
nmos transistor
voltage
control signal
drain
transistor
Prior art date
Application number
TW107144251A
Other languages
Chinese (zh)
Other versions
TWI681392B (en
Inventor
蕭明椿
陳瑋鈞
Original Assignee
修平學校財團法人修平科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 修平學校財團法人修平科技大學 filed Critical 修平學校財團法人修平科技大學
Priority to TW107144251A priority Critical patent/TWI681392B/en
Application granted granted Critical
Publication of TWI681392B publication Critical patent/TWI681392B/en
Publication of TW202022869A publication Critical patent/TW202022869A/en

Links

Images

Landscapes

  • Static Random-Access Memory (AREA)

Abstract

The invention provides a 5T (five-transistor) port static random access memory with fast write speed, which comprises a memory array, a plurality of control circuits (2), a plurality of pre-charge circuits (3), a standby start-up circuit (4), a plurality of word line voltage level conversion circuits (5), a plurality of high voltage level control circuits (6), and a plurality of write driving circuits (7). The memory array is composed of a plurality of column memory cells and a plurality of rows of memory cells. Each column of memory cells is provided with a control circuit (2), a word line voltage level conversion circuit (5), and a high voltage level control circuit (6). Each row of memory cells is provided with a pre-charge circuit (3) and a write driving circuit (7). In this way, in the write mode, the plurality of control circuits (2) and the plurality of write driving circuits (7) are used to effectively avoid difficulty in writing logic 1, and also increase the speed of writing logic 0. In the read mode, on the one hand, the plurality of control circuits (2) and the plurality of high-voltage level control circuits (6) are used to increase the write speed while avoiding unnecessary power loss and, on the other hand, the plurality of word line voltage level conversion circuits (5) are used to effectively reduce the interference of half-selected cells during reading. In the standby mode, the plurality of control circuits (2) are used to effectively reduce the leakage current, and the design of the standby start-up circuit (4) may effectively enable the static random access memory to quickly enter the standby mode.

Description

具高寫入速度之5T單埠靜態隨機存取記憶體 5T single-port static random access memory with high write speed

本發明係有關於一種具高寫入速度之5T單埠靜態隨機存取記憶體(Static Random Access Memory,簡稱SRAM),尤指一種有效提高SRAM待機效能,並能有效提高讀取速度與寫入速度,且能有效降低漏電流(leakage current)、降低讀取時之半選定晶胞干擾以及避免無謂的功率耗損之SRAM。 The present invention relates to a 5T single-port static random access memory (SRAM) with a high writing speed, especially a method that can effectively improve the standby performance of SRAM, and can effectively improve the reading speed and writing speed. Speed, and can effectively reduce the leakage current (leakage current), reduce the half-selected cell interference when reading, and avoid unnecessary power consumption SRAM.

習知之6T靜態隨機存取記憶體(SRAM)如第1a圖所示,其主要包括一記憶體陣列(memory array),該記憶體陣列係由複數個記憶體區塊(memory block,MB1、MB2等)所組成,每一記憶體區塊更由複數列記憶體晶胞(a plurality of rows of memory cells)與複數行記憶體晶胞(a plurality of columns of memory cells)所組成,每一列記憶體晶胞與每一行記憶體晶胞各包括有複數個記憶體晶胞;複數條字元線(word line,WL1、WL2等),每一字元線對應至複數列記憶體晶胞中之一列;以及複數位元線對(bit line pairs,BL1、BLB1...BLm、BLBm等),每一位元線對係對應至複數行記憶體晶胞中之一行,且每一位元線對係由一位元線(BL1...BLm)及一互補位元線(BLB1...BLBm)所組成。 The conventional 6T static random access memory (SRAM), as shown in Figure 1a, mainly includes a memory array (memory array) consisting of a plurality of memory blocks (MB 1 , MB 2, etc.), each memory block is composed of a plurality of rows of memory cells (a plurality of rows of memory cells) and a plurality of rows of memory cells (a plurality of columns of memory cells). A row of memory cell and each row of memory cell each include a plurality of memory cells; a plurality of word lines (WL 1 , WL 2, etc.), each word line corresponds to a plurality of rows of memory A column in the unit cell; and a plurality of bit line pairs (BL 1 , BLB 1 ... BL m , BLB m, etc.), each bit line pair corresponds to one of the plural rows of memory cell One row, and each bit line pair is composed of a bit line (BL 1 ... BL m ) and a complementary bit line (BLB 1 ... BLB m ).

第1b圖所示即是6T靜態隨機存取記憶體(SRAM)晶胞之電路示意圖,其中,PMOS電晶體(P1)和(P2)稱為負載電晶體(load transistor),NMOS電晶體(M1)和(M2)稱為驅動電晶體(driving transistor),NMOS電晶體(M3)和(M4)稱為存取電晶體(access transistor),WL為字元線(word line),而BL及BLB分別為位元線(bit line)及互補位元線(complementary bit line),由於該單埠SRAM晶胞需要6個電晶體,且於讀取邏輯0時,為了避免讀取操作初始瞬間(initial instant)另一驅動電晶體導通,節點A之讀取初始瞬間電壓(VAR)必須滿足方程式(1):VAR=VDD×(RM1)/(RM1+RM3)<VTM2 (1) Figure 1b shows the circuit diagram of a 6T static random access memory (SRAM) unit cell. Among them, PMOS transistors (P1) and (P2) are called load transistors, and NMOS transistors (M1) ) And (M2) are called driving transistors, NMOS transistors (M3) and (M4) are called access transistors, WL is a word line, and BL and BLB They are the bit line and the complementary bit line. Since the single-port SRAM cell requires 6 transistors, and when reading logic 0, in order to avoid the initial moment of the read operation (initial instant) Another driving transistor is turned on, and the read initial instant voltage (V AR ) of node A must satisfy equation (1): V AR =V DD ×(R M1 )/(R M1 +R M3 )<V TM2 ( 1)

其中,VAR表示節點A之讀取初始瞬間電壓,RM1與RM3分別表示該NMOS電晶體(M1)與該NMOS電晶體(M3)之導通電阻,而VDD與VTM2分別表示電源供應電壓與該NMOS電晶體(M2)之臨界電壓,此導致驅動電晶體與存取電晶體之間的電流驅動能力比(即單元比率,cell ratio)通常設定在2.2至3.5之間(請參考98年10月20日第US76060B2號專利說明書第2欄第8-10行)。 Among them, V AR represents the read initial instantaneous voltage of node A, R M1 and R M3 represent the on-resistance of the NMOS transistor (M1) and the NMOS transistor (M3) respectively, and V DD and V TM2 represent the power supply respectively The voltage and the threshold voltage of the NMOS transistor (M2), which results in the current drive capability ratio (ie cell ratio) between the drive transistor and the access transistor is usually set between 2.2 and 3.5 (please refer to 98 Patent Specification No. US76060B2 dated October 20, 2010, column 2, lines 8-10).

第1b圖所示6T靜態隨機存取記憶體晶胞於寫入操作時之HSPICE暫態分析模擬結果,如第2圖所示,其係使用TSMC 90奈米CMOS製程參數加以模擬。 Figure 1b shows the HSPICE transient analysis simulation results of the 6T static random access memory cell during the write operation. As shown in Figure 2, it is simulated using TSMC 90nm CMOS process parameters.

用來減少6T靜態隨機存取記憶體(SRAM)晶胞之電晶體數之一種方式係揭露於第3圖中。第3圖顯示一種僅具單一位元線之5T靜態隨機存取記憶體晶胞之電路示意圖,與第1b圖之6T靜態隨機存取記憶體晶胞相比,此種5T靜態隨機存取記憶體晶胞比6T靜態隨機存取記憶體晶胞少一 個電晶體及少一條位元線,惟該5T靜態隨機存取記憶體晶胞在不變更PMOS電晶體P1和P2以及NMOS電晶體M1、M2和M3的通道寬長比(亦即保持與6T SRAM晶胞相同之電晶體通道寬長比)的情況下存在寫入邏輯1相當困難之問題。茲考慮記憶晶胞左側節點A原本儲存邏輯0的情況,由於節點A之電荷僅單獨自位元線(BL)傳送,因此在將節點A中先前寫入的邏輯0蓋寫成邏輯1之寫入初始瞬間電壓(VAW)等於方程式(2):VAW=VDD×(RM1)/(RM1+RM3) (2)其中,VAW表示節點A之寫入初始瞬間電壓,RM1與RM3分別表示NMOS電晶體(M1)與NMOS電晶體(M3)之導通電阻,比較方程式(1)與方程式(2)可知,寫入初始瞬間電壓(VAW)小於NMOS電晶體(M2)之臨界電壓(VTM2),因而無法完成寫入邏輯1之操作。第3圖所示之5T靜態隨機存取記憶體晶胞,於寫入操作時之HSPICE暫態分析模擬結果,如第4圖所示,其係使用TSMC 90奈米CMOS製程參數加以模擬,由該模擬結果可証實,具單一位元線之5T靜態隨機存取記憶體晶胞存在寫入邏輯1相當困難之問題。 One way to reduce the number of transistors in a 6T static random access memory (SRAM) cell is disclosed in Figure 3. Figure 3 shows a schematic circuit diagram of a 5T static random access memory cell with only a single bit line. Compared with the 6T static random access memory cell in Figure 1b, this 5T static random access memory cell The bulk cell is one less transistor and one bit line less than the 6T static random access memory cell. However, the 5T static random access memory cell does not change the PMOS transistors P1 and P2 and the NMOS transistor M1. In the case of the channel width-to-length ratio of M2 and M3 (that is, maintaining the same transistor channel width-to-length ratio as the 6T SRAM unit cell), there is a problem that writing logic 1 is quite difficult. Consider the situation where the node A on the left side of the memory cell originally stores logic 0. Since the charge of node A is only transferred from the bit line (BL) alone, the logic 0 written in node A is overwritten as a logic 1 write The initial instantaneous voltage (V AW ) is equal to equation (2): V AW =V DD ×(R M1 )/(R M1 +R M3 ) (2) Among them, V AW represents the initial instantaneous voltage of node A, R M1 R M3 and R M3 respectively represent the on-resistance of NMOS transistor (M1) and NMOS transistor (M3). Comparing equation (1) and equation (2), we can see that the initial write instant voltage (V AW ) is less than that of NMOS transistor (M2) The threshold voltage (V TM2 ), so the operation of writing logic 1 cannot be completed. The HSPICE transient analysis simulation results of the 5T static random access memory cell shown in Figure 3 during the write operation, as shown in Figure 4, are simulated using TSMC 90nm CMOS process parameters, which are simulated by The simulation results can confirm that the 5T static random access memory cell with a single bit line has the problem that it is quite difficult to write logic 1.

至今,有許多解決上述第4圖5T靜態隨機存取記憶體晶胞寫入邏輯1困難之方法被提出,第一種方法為寫入時將供應至記憶體晶胞之電壓位準拉低至低於電源供應電壓(VDD),以便於寫入邏輯1時(假設節點A原本儲存邏輯0,而現在欲寫入邏輯1),藉由提高驅動電晶體NMOS電晶體M1之導通電阻以於寫入操作期間能使驅動電晶體NMOS電晶體M2導通,而完成寫入邏輯1之操作,該等方法例如專利文獻1(99年4月27日第US 7706203B2號)所提出之「Memory System」、專利文獻2(103年2月11日第 TW I426514B號)所提出之「寫入操作時降低電源電壓之5T靜態隨機存取記憶體」及專利文獻3(105年5月21日第TW I534802B號)所提出之「半導體儲存器」等,其雖可有效解決寫入邏輯1困難之問題,惟由於該等方法需設置雙電源及/或放電路徑,且該等方法寫入時須將供應至記憶體晶胞之電壓位準拉低至低於電源供應電壓(VDD)並於寫入完成後將供應至記憶體晶胞之電壓位準回復為電源供應電壓(VDD),因此均會造成無謂的功率耗損。 So far, many methods have been proposed to solve the difficulty of writing logic 1 in the static random access memory cell of Figure 4 5T. The first method is to lower the voltage level supplied to the memory cell during writing. It is lower than the power supply voltage (V DD ) to facilitate writing logic 1 (assuming node A originally stored logic 0 and now wants to write logic 1), by increasing the on-resistance of the driving transistor NMOS transistor M1 During the writing operation, the driving transistor NMOS transistor M2 can be turned on to complete the operation of writing logic 1. These methods are for example the "Memory System" proposed in Patent Document 1 (April 27, 1999, US 7706203B2) , Patent Document 2 (No. TW I426514B on February 11, 103) proposed "5T static random access memory with reduced power supply voltage during write operation" and Patent Document 3 (No. TW I534802B on May 21, 2015) No.) "Semiconductor memory", etc., which can effectively solve the problem of difficulty in writing logic 1, but because these methods need to set up dual power and/or discharge paths, and these methods must be The voltage level to the memory cell is pulled down to be lower than the power supply voltage (V DD ) and the voltage level supplied to the memory cell is restored to the power supply voltage (V DD ) after the writing is completed, so both Will cause unnecessary power loss.

第二種方法為重新設計PMOS電晶體P1和P2以及NMOS電晶體M1、M2和M3的通道寬長比,例如非專利文獻4(Satyanand Nalam et al.,”5T SRAM with asymmetric sizing for improved read stability”,IEEE Journal of Solid-State Circuits.,Vol.46.No.10,pp 2431-2442,Oct.2011.),惟由於PMOS電晶體P1和P2的通道寬長比不相同且NMOS電晶體M1和M2的通道寬長比不相同,因此會使靜態雜訊邊際(SNM)降低。 The second method is to redesign the channel width-to-length ratio of PMOS transistors P1 and P2 and NMOS transistors M1, M2, and M3. For example, Non-Patent Document 4 (Satyan and Nalam et al., "5T SRAM with asymmetric sizing for improved read stability ”, IEEE Journal of Solid-State Circuits. ,Vol.46.No.10,pp 2431-2442,Oct.2011.), but because the PMOS transistors P1 and P2 have different channel width-to-length ratios and NMOS transistors M1 The channel width to length ratio is different from that of M2, so the static noise margin (SNM) will be reduced.

第三種方法為寫入時將供應至記憶體晶胞之存取電晶體M3閘極之字元線(WL)電壓位準拉高至高於電源供應電壓(VDD),以便於寫入邏輯1時(假設節點A原本儲存邏輯0,而現在欲寫入邏輯1),藉由降低存取電晶體M3之導通電阻以於寫入初始瞬間能使驅動電晶體NMOS電晶體M2導通,而完成寫入邏輯1之操作,例如專利文獻5(102年8月1日第TW I404065B號)所提出之「寫入操作時提高字元線電壓位準之單埠靜態隨機存取記憶體」,惟由於寫入時將供應至記憶體晶胞之存取電晶體M3閘極之字元線(WL)電壓位準拉高至高於電源供應電壓(VDD),因此會導致增加寫入時之半選定晶胞干擾(half-selected cell disturbance)。 The third method is to raise the word line (WL) voltage level of the gate of the access transistor M3 supplied to the memory cell to be higher than the power supply voltage (V DD ) during writing to facilitate writing logic 1 o'clock (assuming that node A originally stored logic 0, and now wants to write logic 1), by reducing the on-resistance of the access transistor M3 to turn on the driving transistor NMOS transistor M2 at the initial instant of writing. The operation of writing logic 1, such as the "Single-port static random access memory for increasing the voltage level of the word line during writing" proposed in Patent Document 5 (No. TW I404065B on August 1, 102), but Since the word line (WL) voltage level of the gate of the access transistor M3 supplied to the memory cell is pulled up higher than the power supply voltage (V DD ) during writing, it will increase the writing time by half Half-selected cell disturbance (half-selected cell disturbance).

第四種方法為寫入時將驅動電晶體NMOS電晶體M1之源極電壓位準拉高至高於接地電壓,以便於寫入邏輯1時(假設節點A原本儲存邏輯0,而現在欲寫入邏輯1),藉由提高驅動電晶體NMOS電晶體M1之汲極 電壓位準,以於寫入初始瞬間能使驅動電晶體NMOS電晶體M2導通,而完成寫入邏輯1之操作,例如專利文獻6(107年10月11日第TW I638364B號)所提出之「具高寫入速度之5T單埠靜態隨機存取記憶體」、專利文獻7(107年10月11日第TW I638365B號)所提出之「具高寫入速度之5T靜態隨機存取記憶體」及專利文獻8(107年10月11日第TW I638355B號)所提出之「具高寫入速度之5t靜態隨機存取記憶體」等均屬之。 The fourth method is to pull the source voltage level of the driving transistor NMOS transistor M1 higher than the ground voltage during writing to facilitate writing to logic 1 (assuming that node A originally stores logic 0 and now wants to write Logic 1), by increasing the drain of the driving transistor NMOS transistor M1 Voltage level to enable the drive transistor NMOS transistor M2 to be turned on at the initial instant of writing to complete the operation of writing logic 1, for example, Patent Document 6 (No. TW I638364B on October 11, 107) proposed " 5T single-port static random access memory with high writing speed", "5T static random access memory with high writing speed" proposed in Patent Document 7 (No. TW I638365B on October 11, 107) And patent document 8 (No. TW I638355B on October 11, 107) proposed "5t static random access memory with high writing speed" and so on.

第五種方法為寫入時藉由背閘極偏壓(back gate bias)技術以提高驅動電晶體NMOS電晶體M1之臨界電壓並同時降低存取電晶體M3之臨界電壓,以便於寫入邏輯1時(假設節點A原本儲存邏輯0,而現在欲寫入邏輯1),藉由提高驅動電晶體NMOS電晶體M1之汲極電壓位準,以於寫入初始瞬間能使驅動電晶體NMOS電晶體M2導通,而完成寫入邏輯1之操作,惟該方法須使用分離井(split well)會增加製程複雜度,因此較少使用。 The fifth method is to use back gate bias technology to increase the threshold voltage of the driving transistor NMOS transistor M1 while reducing the threshold voltage of the access transistor M3 to facilitate writing logic At 1 o'clock (assuming that node A originally stored logic 0 and now wants to write logic 1), by increasing the drain voltage level of the driving transistor NMOS transistor M1, the driving transistor NMOS transistor can be enabled at the initial instant of writing. The crystal M2 is turned on to complete the operation of writing logic 1, but this method requires the use of split wells, which will increase the process complexity, so it is less used.

第六種方法為重新設計PMOS電晶體P1和P2以及NMOS電晶體M1、M2和M3之間的連接關係,例如非專利文獻9(Chua-Chin Wang et al.,”A single-ended disturb-free 5T loadless SRAM with leakage sensor and read delay compensation using 40nm process”,2014 International Symposium on Circuits and Systems,pp 1126-1129,June 2014.)及非專利文獻10(Shyam Akashe et al.,”High density and low leakage current based 5T SRAM cell using 45nm technology”,2011 International Conference on Nanoscience,Engineering and Technology(ICONSET),pp 346-350,Nov.2011.)等均屬之。 The sixth method is to redesign the connection relationship between PMOS transistors P1 and P2 and NMOS transistors M1, M2 and M3, such as Non-Patent Document 9 (Chua-Chin Wang et al., "A single-ended disturb-free 5T loadless SRAM with leakage sensor and read delay compensation using 40nm process”, 2014 International Symposium on Circuits and Systems, pp 1126-1129, June 2014.) and Non-Patent Document 10 (Shyam Akashe et al., “High density and low leakage Current based 5T SRAM cell using 45nm technology", 2011 International Conference on Nanoscience, Engineering and Technology (ICONSET), pp 346-350, Nov. 2011.), etc.

以上所述之該等技術雖可有效解決寫入邏輯1困難之問題,惟該等技術均未考慮到如何提高寫入邏輯0之速度,其中專利文獻6至專利文獻8雖考慮到於寫入邏輯1時,設計將位元線電壓位準拉高至高於電源供應電壓之寫入驅動電路,以有效防止寫入邏輯1困難之同時,亦能有效提高 寫入邏輯1之速度,惟均未考慮到如何提高寫入邏輯0之速度,例如均未考慮到於寫入邏輯0時,藉由將位元線電壓位準拉低至低於接地電壓,以有效提高寫入邏輯0之速度,因此仍有改進空間。 Although the above-mentioned technologies can effectively solve the problem of difficulty in writing logic 1, none of these technologies consider how to increase the speed of writing logic 0. Among them, Patent Literature 6 to Patent Literature 8 consider the In the case of logic 1, design a write drive circuit that pulls the bit line voltage level higher than the power supply voltage to effectively prevent the difficulty of writing logic 1, while also effectively improving The speed of writing logic 1 is not considered how to increase the speed of writing logic 0. For example, when writing logic 0, the bit line voltage level is lowered to be lower than the ground voltage. In order to effectively increase the speed of writing logic 0, there is still room for improvement.

有鑑於此,本發明之主要目的係提出一種具高寫入速度之5T單埠靜態隨機存取記憶體,其能藉由設計一將位元線電壓位準拉低至低於接地電壓之寫入驅動電路,以有效提高寫入邏輯0之速度。 In view of this, the main purpose of the present invention is to provide a 5T single-port static random access memory with high writing speed, which can be designed to lower the bit line voltage level to lower than the ground voltage. Into the drive circuit to effectively increase the speed of writing logic 0.

本發明之次要目的係提出一種具高寫入速度之5T單埠靜態隨機存取記憶體,其能藉由字元線電壓位準轉換電路以及高電壓位準控制電路,以於有效降低讀取時之半選定晶胞干擾的同時,亦能有效提高讀取速度。 The secondary objective of the present invention is to provide a 5T single-port static random access memory with high writing speed, which can effectively reduce read readings through word-line voltage level conversion circuits and high-voltage level control circuits. While taking half of the time to select the cell interference, it can also effectively improve the reading speed.

本發明之再一目的係提出一種具高寫入速度之5T單埠靜態隨機存取記憶體,其能藉由控制電路以有效提高讀取速度,且能藉由二階段的讀取控制以於提高讀取速度的同時,亦避免無謂的功率耗損。 Another object of the present invention is to provide a 5T single-port static random access memory with high write speed, which can effectively increase the read speed by the control circuit, and can be controlled by two stages of read While improving the reading speed, it also avoids unnecessary power consumption.

本發明提出一種具高寫入速度之5T單埠靜態隨機存取記憶體,其主要包括一記憶體陣列、複數個控制電路(2)、複數個預充電電路(3)、一待機啟動電路(4)、複數個字元線電壓位準轉換電路(5)、複數個高電壓位準控制電路(6)以及複數個寫入驅動電路(7),該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞設置一個控制電路(2)、一個字元線電壓位準轉換電路(5)以及一個高電壓位準控制電路(6),且每一行記憶體晶胞設置一個預充電電路(3)以及一個寫入驅動電路(7),藉此於寫入模式時,可藉由該複數個控制電 路(2)以及該複數個寫入驅動電路(7)以有效防止寫入邏輯1困難之同時,亦提高寫入邏輯0之速度,於讀取模式時,一方面藉由該複數個控制電路(2)以及該複數個高電壓位準控制電路(6)以於提高讀取速度的同時,亦避免無謂的功率耗損,另一方面藉由該複數個字元線電壓位準轉換電路(5)以有效降低讀取時之半選定晶胞干擾,於待機模式時,可藉由該複數個控制電路(2)以有效降低漏電流,且可藉由該待機啟動電路(4)的設計,以有效促使靜態隨機存取記憶體快速進入待機模式。 The present invention provides a 5T single-port static random access memory with high writing speed, which mainly includes a memory array, a plurality of control circuits (2), a plurality of precharge circuits (3), and a standby startup circuit ( 4) A plurality of word line voltage level conversion circuits (5), a plurality of high voltage level control circuits (6) and a plurality of write drive circuits (7), the memory array is composed of a plurality of rows of memory crystals It is composed of a cell and a plurality of rows of memory cell, each column of memory cell is provided with a control circuit (2), a word line voltage level conversion circuit (5) and a high voltage level control circuit (6), and Each row of memory cell is provided with a precharge circuit (3) and a write drive circuit (7), so that in the write mode, the plurality of control circuits can be used The circuit (2) and the plurality of write drive circuits (7) effectively prevent the difficulty of writing logic 1 while also increasing the speed of writing logic 0. In the read mode, on the one hand, through the plurality of control circuits (2) and the plurality of high voltage level control circuits (6) to improve the reading speed while avoiding unnecessary power loss. On the other hand, the plurality of word line voltage level conversion circuits (5) ) In order to effectively reduce the half-selected cell interference during reading, in the standby mode, the plurality of control circuits (2) can be used to effectively reduce the leakage current, and the standby start circuit (4) can be designed to In order to effectively promote the static random access memory to quickly enter the standby mode.

1‧‧‧SRAM晶胞 1‧‧‧SRAM cell

2‧‧‧控制電路 2‧‧‧Control circuit

3‧‧‧預充電電路 3‧‧‧Pre-charge circuit

4‧‧‧待機啟動電路 4‧‧‧Standby start circuit

5‧‧‧字元線電壓位準轉換電路 5‧‧‧Character line voltage level conversion circuit

6‧‧‧高電壓位準控制電路 6‧‧‧High voltage level control circuit

7‧‧‧寫入驅動電路 7‧‧‧Write drive circuit

P11‧‧‧第一PMOS電晶體 P11‧‧‧The first PMOS transistor

P12‧‧‧第二PMOS電晶體 P12‧‧‧Second PMOS Transistor

M11‧‧‧第一NMOS電晶體 M11‧‧‧First NMOS transistor

M12‧‧‧第二NMOS電晶體 M12‧‧‧Second NMOS Transistor

M13‧‧‧第三NMOS電晶體 M13‧‧‧The third NMOS transistor

A‧‧‧儲存節點 A‧‧‧Storage Node

B‧‧‧反相儲存節點 B‧‧‧Inverted storage node

BL‧‧‧位元線 BL‧‧‧bit line

WLC‧‧‧字元線控制信號 WLC‧‧‧Character line control signal

VDD‧‧‧電源供應電壓 V DD ‧‧‧Power supply voltage

VH‧‧‧高電壓節點 VH‧‧‧High Voltage Node

VL1‧‧‧第一低電壓節點 VL1‧‧‧The first low voltage node

VL2‧‧‧第二低電壓節點 VL2‧‧‧The second low voltage node

S‧‧‧待機模式控制信號 S‧‧‧Standby mode control signal

/S‧‧‧反相待機模式控制信號 /S‧‧‧Inverted standby mode control signal

M21‧‧‧第四NMOS電晶體 M21‧‧‧Fourth NMOS Transistor

M22‧‧‧第五NMOS電晶體 M22‧‧‧Fifth NMOS Transistor

M23‧‧‧第六NMOS電晶體 M23‧‧‧The sixth NMOS transistor

M24‧‧‧第七NMOS電晶體 M24‧‧‧The seventh NMOS transistor

M25‧‧‧第八NMOS電晶體 M25‧‧‧Eighth NMOS Transistor

M26‧‧‧第九NMOS電晶體 M26‧‧‧Ninth NMOS Transistor

M27‧‧‧第十NMOS電晶體 M27‧‧‧Tenth NMOS Transistor

P21‧‧‧第三PMOS電晶體 P21‧‧‧The third PMOS transistor

RC‧‧‧讀取控制信號 RC‧‧‧Read control signal

RGND‧‧‧加速讀取電壓 RGND‧‧‧Accelerated reading voltage

/RC‧‧‧反相讀取控制信號 /RC‧‧‧Inverted reading control signal

/WC‧‧‧反相寫入控制信號 /WC‧‧‧Inverted write control signal

INV‧‧‧第三反相器 INV‧‧‧Third inverter

D1‧‧‧第一延遲電路 D1‧‧‧First delay circuit

P31‧‧‧第四PMOS電晶體 P31‧‧‧Fourth PMOS Transistor

P‧‧‧預充電信號 P‧‧‧Precharge signal

M41‧‧‧第十一NMOS電晶體 M41‧‧‧Eleventh NMOS Transistor

P41‧‧‧第五PMOS電晶體 P41‧‧‧Fifth PMOS Transistor

C‧‧‧節點 C‧‧‧node

D2‧‧‧第二延遲電路 D2‧‧‧Second delay circuit

WL‧‧‧字元線 WL‧‧‧character line

R‧‧‧讀取信號 R‧‧‧Read signal

P51‧‧‧第六PMOS電晶體 P51‧‧‧The sixth PMOS transistor

M51‧‧‧第十二NMOS電晶體 M51‧‧‧Twelfth NMOS Transistor

M52‧‧‧第十三NMOS電晶體 M52‧‧‧Thirteenth NMOS Transistor

P61‧‧‧第七PMOS電晶體 P61‧‧‧The seventh PMOS transistor

P62‧‧‧第八PMOS電晶體 P62‧‧‧Eighth PMOS Transistor

I63‧‧‧第四反相器 I63‧‧‧Fourth inverter

VDDH1‧‧‧第一高電源供應電壓 V DDH1 ‧‧‧The highest power supply voltage

VDDH2‧‧‧第二高電源供應電壓 V DDH2 ‧‧‧The second highest power supply voltage

P71‧‧‧第九PMOS電晶體 P71‧‧‧Ninth PMOS Transistor

M71‧‧‧第十四NMOS電晶體 M71‧‧‧14th NMOS Transistor

M72‧‧‧第十五NMOS電晶體 M72‧‧‧Fifteenth NMOS Transistor

M73‧‧‧第十六NMOS電晶體 M73‧‧‧Sixteenth NMOS Transistor

I71‧‧‧第五反相器 I71‧‧‧Fifth inverter

I72‧‧‧第六反相器 I72‧‧‧Sixth inverter

Cap‧‧‧電容器 Cap‧‧‧Capacitor

Din‧‧‧輸入資料 Din‧‧‧Enter data

D3‧‧‧第三延遲電路 D3‧‧‧The third delay circuit

D4‧‧‧第四延遲電路 D4‧‧‧The fourth delay circuit

Y‧‧‧行解碼器輸出信號 Y‧‧‧Line decoder output signal

BLB1 BLBm‧‧‧互補位元線 BLB 1 BLB m ‧‧‧Complementary bit line

BLB‧‧‧互補位元線 BLB‧‧‧Complementary bit line

MB1 MBk‧‧‧記憶體區塊 MB 1 MB k ‧‧‧Memory block

WL1 WLn‧‧‧字元線 WL 1 WL n ‧‧‧Character line

BL1 BLm‧‧‧位元線 BL 1 BL m ‧‧‧Bit line

I1、I2、I3‧‧‧漏電流 I 1 , I 2 , I 3 ‧‧‧Leakage current

M1M4‧‧‧NMOS電晶體 M1 M4‧‧‧NMOS transistor

P1P2‧‧‧PMOS電晶體 P1 P2‧‧‧PMOS transistor

第1a圖 係顯示習知之靜態隨機存取記憶體;第1b圖 係顯示習知6T靜態隨機存取記憶體晶胞之電路示意圖;第2圖 係顯示習知6T靜態隨機存取記憶體晶胞之寫入動作時序圖;第3圖 係顯示習知5T靜態隨機存取記憶體晶胞之電路示意圖;第4圖 係顯示習知5T靜態隨機存取記憶體晶胞之寫入動作時序圖;第5圖 係顯示本發明較佳實施例所提出之電路示意圖;第6圖 係顯示第5圖之本發明較佳實施例於寫入期間之簡化電路圖;第7圖 係顯示第5圖之本發明較佳實施例於讀取期間之簡化電路圖;第8圖 係顯示第5圖之本發明較佳實施例於待機期間之簡化電路圖。 Figure 1a shows the conventional static random access memory; Figure 1b shows the circuit diagram of the conventional 6T static random access memory cell; Figure 2 shows the conventional 6T static random access memory cell Figure 3 is a schematic diagram showing the circuit of the conventional 5T static random access memory cell; Figure 4 is a time chart showing the writing operation of the conventional 5T static random access memory cell; Fig. 5 is a schematic diagram showing the circuit proposed by the preferred embodiment of the present invention; Fig. 6 is a simplified circuit diagram showing the preferred embodiment of the present invention in Fig. 5 during the writing period; Fig. 7 is a schematic diagram showing the circuit of Fig. 5 The simplified circuit diagram of the preferred embodiment of the present invention during the read period; FIG. 8 shows the simplified circuit diagram of the preferred embodiment of the present invention in FIG. 5 during the standby period.

根據上述之主要目的,本發明提出一種具高寫入速度之5T單埠靜態隨機存取記憶體,其主要包括一記憶體陣列,該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞與每一 行記憶體晶胞均包括有複數個記憶體晶胞(1);複數個控制電路(2),每一列記憶晶胞設置一個控制電路(2);複數個預充電電路(3),每一行記憶晶胞設置一個預充電電路(3);一待機啟動電路(4),該待機啟動電路(4)係促使SRAM快速進入待機模式,以有效提高SRAM之待機效能;複數個字元線電壓位準轉換電路(5),每一列記憶體晶胞設置一個字元線電壓位準轉換電路(5);複數個高電壓位準控制電路(6),每一列記憶體晶胞設置一個高電壓位準控制電路(6);以及複數個寫入驅動電路(7),每一行記憶體晶胞設置一個寫入驅動電路(7)。 According to the above-mentioned main purpose, the present invention proposes a 5T single-port static random access memory with high writing speed, which mainly includes a memory array composed of multiple rows of memory cell and multiple rows of memory Body cell, each row of memory cell and each The row memory cell includes a plurality of memory cell (1); a plurality of control circuits (2), each column of memory cell is provided with a control circuit (2); a plurality of precharge circuits (3), each row The memory cell is equipped with a pre-charging circuit (3); a standby startup circuit (4), the standby startup circuit (4) prompts the SRAM to quickly enter the standby mode to effectively improve the standby performance of the SRAM; multiple word line voltage levels Standard conversion circuit (5), each row of memory cell is provided with a word line voltage level conversion circuit (5); multiple high voltage level control circuits (6), each row of memory cell is provided with a high voltage level Quasi-control circuit (6); and a plurality of write drive circuits (7), each row of memory cell is provided with a write drive circuit (7).

為了便於說明起見,第5圖所示之靜態隨機存取記憶體僅以一個記憶體晶胞(1)、一條字元線(WL)、一條位元線(BL)、一控制電路(2)、一預充電電路(3)、一待機啟動電路(4)以及一字元線電壓位準轉換電路(5)、一高電壓位準控制電路(6)以及一寫入驅動電路(7)做為實施例來說明。該記憶體晶胞(1)係包括一第一反相器(由一第一PMOS電晶體P11與一第一NMOS電晶體M11所組成)、一第二反相器(由一第二PMOS電晶體P12與一第二NMOS電晶體M12所組成)以及一第三NMOS電晶體(M13),其中,該第一反相器及該第二反相器係呈交互耦合連接,亦即該第一反相器之輸出(即節點A)係連接該第二反相器之輸入,而該第二反相器之輸出(即節點B)則連接該第一反相器之輸入,並且該第一反相器之輸出(節點A)係用於儲存SRAM晶胞之資料,而該第二反相器之輸出(節點B)則用於儲存SRAM晶胞之反相資料。在此值得注意的是,該第一NMOS電晶體(M11)與該第二NMOS電晶體(M12)具有相同之通道寬長比,該第一PMOS電晶體(P11)與該第二PMOS電晶體(P12)亦具有相同之通道 寬長比。 For ease of description, the static random access memory shown in Figure 5 only uses a memory cell (1), a word line (WL), a bit line (BL), and a control circuit (2). ), a precharge circuit (3), a standby startup circuit (4), a word line voltage level conversion circuit (5), a high voltage level control circuit (6), and a write drive circuit (7) It is described as an example. The memory cell (1) includes a first inverter (composed of a first PMOS transistor P11 and a first NMOS transistor M11), a second inverter (composed of a second PMOS transistor) (Transistor P12 and a second NMOS transistor M12) and a third NMOS transistor (M13), wherein the first inverter and the second inverter are mutually coupled, that is, the first The output of the inverter (ie node A) is connected to the input of the second inverter, and the output of the second inverter (ie node B) is connected to the input of the first inverter, and the first The output of the inverter (node A) is used to store the data of the SRAM cell, and the output of the second inverter (node B) is used to store the inverted data of the SRAM cell. It is worth noting here that the first NMOS transistor (M11) and the second NMOS transistor (M12) have the same channel width to length ratio, and the first PMOS transistor (P11) and the second PMOS transistor (P12) Also has the same channel Aspect ratio.

請再參考第5圖,該控制電路(2)係由一第四NMOS電晶體(M21)、一第五NMOS電晶體(M22)、一第六NMOS電晶體(M23)、一第七NMOS電晶體(M24)、一第八NMOS電晶體(M25)、一第九NMOS電晶體(M26)、一第十NMOS電晶體(M27)、一第三PMOS電晶體(P21)、一讀取控制信號(RC)、一第三反相器(INV)、一第一延遲電路(D1)、一加速讀取電壓(RGND)、一寫入控制信號(WC)、一待機模式控制信號(S)以及一反相待機模式控制信號(/S)所組成。該第四NMOS電晶體(M21)之源極、閘極與汲極係分別連接至接地電壓、該反相待機模式控制信號(/S)與一第二低電壓節點(VL2);該第五NMOS電晶體(M22)之源極、閘極與汲極係分別連接至該第二低電壓節點(VL2)、該待機模式控制信號(S)與一第一低電壓節點(VL1);該第六NMOS電晶體(M23)之源極係連接至接地電壓,而閘極與汲極連接在一起並連接至該第一低電壓節點(VL1);該第七NMOS電晶體(M24)之源極、閘極與汲極係分別連接至該第八NMOS電晶體(M25)之汲極、該讀取控制信號(RC)與該第一低電壓節點(VL1);該第八NMOS電晶體(M25)之源極、閘極與汲極係分別連接至該加速讀取電壓(RGND)、該第一延遲電路(D1)之輸出與該第七NMOS電晶體(M24)之源極;該第一延遲電路(D1)係連接在該第三反相器(INV)之輸出與該第八NMOS電晶體(M25)之閘極之間;該第三反相器(INV)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第一延遲電路(D1)之輸入;該第九NMOS電晶體(M26)之源極、閘極與汲極係分別連接至接地電壓、該第十NMOS電晶體(M27)之汲 極與該第一低電壓節點(VL1);該第十NMOS電晶體(M27)之源極、閘極與汲極係分別連接至該接地電壓、該寫入控制信號(WC)與該第九NMOS電晶體(M26)之閘極;而該第三PMOS電晶體(P21)之源極、閘極與汲極係分別連接至該反相待機模式控制信號(/S)、該寫入控制信號(WC)與該第十NMOS電晶體(M27)之汲極。在此值得注意的是,該反相待機模式控制信號(/S)係由該待機模式控制信號(S)經一反相器而獲得。 Please refer to Figure 5 again. The control circuit (2) consists of a fourth NMOS transistor (M21), a fifth NMOS transistor (M22), a sixth NMOS transistor (M23), and a seventh NMOS transistor. Crystal (M24), an eighth NMOS transistor (M25), a ninth NMOS transistor (M26), a tenth NMOS transistor (M27), a third PMOS transistor (P21), a read control signal (RC), a third inverter (INV), a first delay circuit (D1), an acceleration read voltage (RGND), a write control signal (WC), a standby mode control signal (S), and An inverted standby mode control signal (/S) is composed. The source, gate, and drain of the fourth NMOS transistor (M21) are respectively connected to the ground voltage, the inverted standby mode control signal (/S) and a second low voltage node (VL2); the fifth The source, gate and drain of the NMOS transistor (M22) are respectively connected to the second low voltage node (VL2), the standby mode control signal (S) and a first low voltage node (VL1); The source of the six NMOS transistors (M23) is connected to the ground voltage, while the gate and drain are connected together and connected to the first low voltage node (VL1); the source of the seventh NMOS transistor (M24) , The gate and the drain are respectively connected to the drain of the eighth NMOS transistor (M25), the read control signal (RC) and the first low voltage node (VL1); the eighth NMOS transistor (M25) The source, gate and drain of) are respectively connected to the accelerated read voltage (RGND), the output of the first delay circuit (D1) and the source of the seventh NMOS transistor (M24); the first The delay circuit (D1) is connected between the output of the third inverter (INV) and the gate of the eighth NMOS transistor (M25); the input of the third inverter (INV) is for receiving the The control signal (RC) is read, and the output is connected to the input of the first delay circuit (D1); the source, gate and drain of the ninth NMOS transistor (M26) are connected to the ground voltage and the The drain of the tenth NMOS transistor (M27) And the first low voltage node (VL1); the source, gate and drain of the tenth NMOS transistor (M27) are connected to the ground voltage, the write control signal (WC) and the ninth The gate of the NMOS transistor (M26); and the source, gate and drain of the third PMOS transistor (P21) are respectively connected to the inverted standby mode control signal (/S) and the write control signal (WC) and the drain of the tenth NMOS transistor (M27). It is worth noting here that the inverted standby mode control signal (/S) is obtained from the standby mode control signal (S) through an inverter.

其中,該第三PMOS電晶體(P21)之汲極、該第十NMOS電晶體(M27)之汲極及該第九NMOS電晶體(M26)之閘極係連接在一起並形成一節點(C),當該寫入控制信號(WC)為邏輯低位準時,該節點(C)之電壓位準係為該反相待機模式控制信號(/S)之邏輯電壓位準,而當該寫入控制信號(WC)為邏輯高位準時,該節點(C)之電壓位準係為該接地電壓,藉此以穩定地完成寫入操作(由於寫入操作期間該節點C之電壓位準恆為該接地電壓)。 Wherein, the drain of the third PMOS transistor (P21), the drain of the tenth NMOS transistor (M27), and the gate of the ninth NMOS transistor (M26) are connected together to form a node (C ), when the write control signal (WC) is at a logic low level, the voltage level of the node (C) is the logic voltage level of the inverted standby mode control signal (/S), and when the write control When the signal (WC) is at the logic high level, the voltage level of the node (C) is the ground voltage, so as to stably complete the write operation (because the voltage level of the node C during the write operation is always the ground Voltage).

該控制電路(2)係設計成可因應不同操作模式而控制該第一低電壓節點(VL1)與該第二低電壓節點(VL2)之電壓位準,於寫入模式時,將選定晶胞中較接近位元線(BL)之驅動電晶體(即該第一NMOS電晶體M11)的源極電壓(即該第一低電壓節點VL1)設定成較接地電壓為高之一預定電壓(即該第六NMOS電晶體(M23)之閘源極電壓VGS(M23))且將選定晶胞中另一驅動電晶體(即該第二NMOS電晶體M12)的源極電壓(即該第二低電壓節點VL2)設定成接地電壓,以便防止寫入邏輯1困難之問題。 The control circuit (2) is designed to control the voltage levels of the first low-voltage node (VL1) and the second low-voltage node (VL2) in response to different operating modes. In the write mode, the unit cell is selected The source voltage (that is, the first low voltage node VL1) of the driving transistor (that is, the first NMOS transistor M11) closer to the bit line (BL) is set to be a predetermined voltage higher than the ground voltage (that is, The gate-source voltage V GS (M23) of the sixth NMOS transistor (M23) and the source voltage of another driving transistor in the unit cell (that is, the second NMOS transistor M12) (that is, the second The low voltage node VL2) is set to the ground voltage in order to prevent the problem of difficulty in writing logic 1.

於讀取模式之第一階段時,將選定晶胞中較接近位元線(BL)之驅動電晶體(即該第一NMOS電晶體M11)的源極電壓(即該第一低電壓 節點VL1)設定成呈較接地電壓為低之該加速讀取電壓(RGND),該較接地電壓為低之該加速讀取電壓(RGND)可有效提高讀取速度,而於讀取模式之第二階段時,將選定晶胞中較接近位元線(BL)之驅動電晶體(即該第一NMOS電晶體M11)的源極電壓設定回接地電壓,以便減少無謂的功率消耗,其中該讀取模式之該第二階段與該第一階段相隔之時間,係等於該讀取控制信號(RC)由邏輯低位準轉變為邏輯高位準起算,並至該第八NMOS電晶體(M25)之閘極電壓足以關閉該第八NMOS電晶體(M25)為止之時間,其值可藉由該第三反相器(INV)之下降延遲時間與該第一延遲電路(D1)所提供之延遲時間來調整。 In the first stage of the read mode, the source voltage (ie the first low voltage) of the drive transistor (ie the first NMOS transistor M11) closer to the bit line (BL) in the cell is selected The node VL1) is set to present the accelerated reading voltage (RGND) lower than the ground voltage, and the accelerated reading voltage (RGND) lower than the ground voltage can effectively increase the reading speed. In the second stage, the source voltage of the driving transistor (ie, the first NMOS transistor M11) closer to the bit line (BL) in the selected unit cell is set back to the ground voltage to reduce unnecessary power consumption. The time between the second stage and the first stage of the mode selection is equal to the time when the read control signal (RC) changes from a logic low level to a logic high level and reaches the gate of the eighth NMOS transistor (M25) The time until the voltage is sufficient to turn off the eighth NMOS transistor (M25), the value can be determined by the falling delay time of the third inverter (INV) and the delay time provided by the first delay circuit (D1) Adjustment.

於待機模式時,將所有記憶晶胞中之驅動電晶體的源極電壓設定成較接地電壓為高之該預定電壓,以便降低漏電流;而於保持模式時則將記憶晶胞中之驅動電晶體的源極電壓設定成接地電壓,以便維持原來之保持特性,其詳細工作電壓位準如表1所示。 In the standby mode, the source voltages of the driving transistors in all the memory cells are set to a predetermined voltage higher than the ground voltage in order to reduce the leakage current; and in the holding mode, the driving power in the memory cells is set The source voltage of the crystal is set to the ground voltage to maintain the original retention characteristics. The detailed operating voltage levels are shown in Table 1.

Figure 107144251-A0101-12-0011-1
Figure 107144251-A0101-12-0011-1

表1中之該寫入控制信號(WC)為一寫入信號(W)與該字元線(WL)信號的及閘(AND gate)運算結果,此時僅於該寫入信號(W)信號與該字元線(WL)信號均為邏輯高位準時,該寫入控制信號(WC)方為邏輯高位準;該讀取控制信號(RC)為一讀取信號(R)與該字元線(WL)信號的及閘運算結果。在此值得注意的是,對於非讀取模式期間之該讀取控制信號(RC)係設定為該加速讀取電壓(RGND)之位準,以防止該第七NMOS電晶體(M24)之漏電流。 The write control signal (WC) in Table 1 is the AND gate operation result of a write signal (W) and the word line (WL) signal. At this time, only the write signal (W) When the signal and the word line (WL) signal are both at a high logic level, the write control signal (WC) is at a high logic level; the read control signal (RC) is a read signal (R) and the character Line (WL) signal and gate operation result. It is worth noting here that the read control signal (RC) during the non-read mode is set to the level of the accelerated read voltage (RGND) to prevent leakage of the seventh NMOS transistor (M24) Current.

請參考第5圖,該預充電電路(3)係由一第四PMOS電晶體(P31)以及一預充電信號(P)所組成,該第四PMOS電晶體(P31)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該預充電信號(P)與該位元線(BL),以便於預充電期間,藉由邏輯低位準之該預充電信號(P),以將該位元線(BL)預充電至該電源供應電壓(VDD)之位準。 Please refer to Figure 5. The precharge circuit (3) is composed of a fourth PMOS transistor (P31) and a precharge signal (P). The source and gate of the fourth PMOS transistor (P31) And the drain are respectively connected to the power supply voltage (V DD ), the precharge signal (P) and the bit line (BL), so that during the precharge period, the precharge signal (P ) To precharge the bit line (BL) to the level of the power supply voltage (V DD ).

請再參考第5圖,該待機啟動電路(4)係由一第五PMOS電晶體(P41)、一第十一NMOS電晶體(M41)、一第二延遲電路(D2)以及該反相待機模式控制信號(/S)所組成。該第五PMOS電晶體(P41)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該反相待機模式控制信號(/S)與該第十一NMOS電晶體(M41)之汲極;該第十一NMOS電晶體(M41)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該第二延遲電路(D2)之輸出與該第五PMOS電晶體(P41)之汲極;該第二延遲電路(D2)之輸入連接至該反相待機模式控制信號(/S),而該第二延遲電路(D2)之輸出則連接至該第十一NMOS電晶體(M41)之閘極。 Please refer to Figure 5 again, the standby startup circuit (4) is composed of a fifth PMOS transistor (P41), an eleventh NMOS transistor (M41), a second delay circuit (D2) and the inverting standby circuit Mode control signal (/S) composed. The source, gate and drain of the fifth PMOS transistor (P41) are respectively connected to the power supply voltage (VDD), the inverted standby mode control signal (/S) and the eleventh NMOS transistor ( M41) the drain; the source, gate and drain of the eleventh NMOS transistor (M41) are connected to the first low voltage node (VL1), the output of the second delay circuit (D2) and The drain of the fifth PMOS transistor (P41); the input of the second delay circuit (D2) is connected to the inverted standby mode control signal (/S), and the output of the second delay circuit (D2) is connected To the gate of the eleventh NMOS transistor (M41).

請再參考第5圖,該字元線電壓位準轉換電路(5)係由一第 六PMOS電晶體(P51)、一第十二NMOS電晶體(M51)、一第十三NMOS電晶體(M52)、該讀取控制信號(RC)、一反相寫入控制信號(/WC)、一反相讀取控制信號(/RC)以及一字元線控制信號(WLC)所組成。該第六PMOS電晶體(P51)之源極、閘極與汲極係分別連接至該字元線(WL)、該反相寫入控制信號(/WC)與該字元線控制信號(WLC);該第十二NMOS電晶體(M51)之源極、閘極與汲極係分別連接至該字元線控制信號(WLC)、該讀取控制信號(RC)與該字元線(WL);而該第十三NMOS電晶體(M52)之源極、閘極與汲極係分別連接至該字元線控制信號(WLC)、該反相讀取控制信號(/RC)與該字元線(WL)。 Please refer to Figure 5 again, the word line voltage level conversion circuit (5) is composed of a Six PMOS transistors (P51), a twelfth NMOS transistor (M51), a thirteenth NMOS transistor (M52), the read control signal (RC), and an inverted write control signal (/WC) , It is composed of an inverted read control signal (/RC) and a word line control signal (WLC). The source, gate and drain of the sixth PMOS transistor (P51) are respectively connected to the word line (WL), the inverted write control signal (/WC) and the word line control signal (WLC) ); The source, gate and drain of the twelfth NMOS transistor (M51) are respectively connected to the word line control signal (WLC), the read control signal (RC) and the word line (WL) ); And the source, gate and drain of the thirteenth NMOS transistor (M52) are respectively connected to the word line control signal (WLC), the inverted read control signal (/RC) and the word Yuan line (WL).

該字元線電壓位準轉換電路(5)之詳細工作電壓位準如表2所示。 The detailed working voltage level of the word line voltage level conversion circuit (5) is shown in Table 2.

Figure 107144251-A0101-12-0013-3
其中VTM51表示該第十二NMOS電晶體(M51)之臨界電壓。在此值得注意的是,本發明一方面藉由二階段的讀取控制以於提高讀取速度的同時,亦避免無謂的功率耗損,另一方面藉由該字元線電壓位準轉換電路(5),以於讀取操作期間將施加至選定晶胞之存取電晶體的字元線電壓下拉至低於 該電源供應電壓(即VDD-VTM51),以有效降低讀取時之半選定晶胞干擾。
Figure 107144251-A0101-12-0013-3
Where V TM51 represents the threshold voltage of the twelfth NMOS transistor (M51). It is worth noting that, on the one hand, the present invention uses a two-stage read control to increase the read speed while avoiding unnecessary power loss. On the other hand, the word line voltage level conversion circuit ( 5) To pull down the word line voltage applied to the access transistor of the selected cell during the read operation to be lower than the power supply voltage (ie V DD -V TM51 ) to effectively reduce the half of the read time Selected cell interference.

請再參考第5圖,該高電壓位準控制電路(6)係由一第七PMOS電晶體(P61)、一第八PMOS電晶體(P62)一第四反相器(I63)、該讀取控制信號(RC)以及一第一高電源供應電壓(VDDH1)所組成,其中該第七PMOS電晶體(P61)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該讀取控制信號(RC)與一高電壓節點(VH),該第八PMOS電晶體(P62)之源極、閘極與汲極係分別連接至該第一高電源供應電壓(VDDH1)、該第四反相器(I63)之輸出與該高電壓節點(VH),而該第四反相器(I63)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第八PMOS電晶體(P62)之閘極。在此值得注意的是,該第一反相器係連接在該電源供應電壓(VDD)與該第一低電壓節點(VL1)之間,而該第二反相器則連接在該高電壓節點(VH)與該第二低電壓節點(VL2)之間。 Please refer to Figure 5 again. The high voltage level control circuit (6) consists of a seventh PMOS transistor (P61), an eighth PMOS transistor (P62), a fourth inverter (I63), and the read It is composed of a control signal (RC) and a first high power supply voltage (V DDH1 ), wherein the source, gate and drain of the seventh PMOS transistor (P61) are respectively connected to the power supply voltage (V DD ), the read control signal (RC) and a high voltage node (VH), the source, gate and drain of the eighth PMOS transistor (P62) are respectively connected to the first high power supply voltage ( V DDH1 ), the output of the fourth inverter (I63) and the high voltage node (VH), and the input of the fourth inverter (I63) is for receiving the read control signal (RC) and outputting It is connected to the gate of the eighth PMOS transistor (P62). It is worth noting here that the first inverter is connected between the power supply voltage (V DD ) and the first low voltage node (VL1), and the second inverter is connected to the high voltage Between the node (VH) and the second low voltage node (VL2).

請再參考第5圖,該寫入驅動電路(7)係由一第九PMOS電晶體(P71)、一第十四NMOS電晶體(M71)、一第十五NMOS電晶體(M72)、一第十六NMOS電晶體(M73)、一第五反相器(I71)、一第六反相器(I72)、一電容器(Cap)、一輸入資料(Din)、一行解碼器輸出信號(Y)、一第三延遲電路(D3)、一第四延遲電路(D4)以及一第二高電源供應電壓(VDDH2)所組成,其中該第九PMOS電晶體(P71)之源極、閘極與汲極係分別連接至該第二高電源供應電壓(VDDH2)、該第五反相器(I71)之輸出與該第十四NMOS電晶體(M71)之汲極,該第十四NMOS電晶體(M71)之源極、閘極與汲極係分別連接至該第十六NMOS電晶體(M73)之汲極、該第五反相器(I71)之輸出與該第九PMOS電晶體(P71)之汲極,該第十五NMOS 電晶體(M72)之源極、閘極與汲極係分別連接至該接地電壓、該第三延遲電路(D3)之輸出與該第九PMOS電晶體(P71)之汲極,該第十六NMOS電晶體(M73)之源極、閘極與汲極係分別連接至該接地電壓、該第六反相器(I72)之輸出與該第十四NMOS電晶體(M71)之源極,該第五反相器(I71)之輸入係供接收該輸入資料(Din),而輸出則連接至該第九PMOS電晶體(P71)之閘極、該第十四NMOS電晶體(M71)之閘極以及該第三延遲電路(D3)之輸入,該第六反相器(I72)之輸入係供接收該行解碼器輸出信號(Y),而輸出則連接至該第四延遲電路(D4)之輸入以及該第十六NMOS電晶體(M73)之閘極,該電容器(Cap)之一端係連接至該第四延遲電路(D4)之輸出,而該電容器(Cap)之另一端則連接至該第十四NMOS電晶體(M71)之源極以及該第十六NMOS電晶體(M73)之汲極,其中,該第九PMOS電晶體(P71)之汲極、該第十四NMOS電晶體(M71)之汲極與該第十五NMOS電晶體(M72)之汲極係共同連接至該位元線(BL),該位元線(BL)於寫入邏輯0之第一階段係設計成低於於該接地電壓之電壓位準,以加速寫入邏輯0之速度,而於寫入邏輯1時則設計成高於該電源供應電壓(VDD)之該第二高電源供應電壓(VDDH2)的位準,以加速寫入邏輯1之速度。 Please refer to Figure 5 again. The write drive circuit (7) consists of a ninth PMOS transistor (P71), a fourteenth NMOS transistor (M71), a fifteenth NMOS transistor (M72), and a Sixteenth NMOS transistor (M73), a fifth inverter (I71), a sixth inverter (I72), a capacitor (Cap), an input data (Din), a row of decoder output signal (Y ), a third delay circuit (D3), a fourth delay circuit (D4), and a second high power supply voltage (V DDH2 ), wherein the source and gate of the ninth PMOS transistor (P71) And the drain are respectively connected to the second high power supply voltage (V DDH2 ), the output of the fifth inverter (I71) and the drain of the fourteenth NMOS transistor (M71), the fourteenth NMOS The source, gate and drain of the transistor (M71) are respectively connected to the drain of the sixteenth NMOS transistor (M73), the output of the fifth inverter (I71) and the ninth PMOS transistor (P71), the source, gate and drain of the fifteenth NMOS transistor (M72) are connected to the ground voltage, the output of the third delay circuit (D3) and the ninth PMOS transistor, respectively The drain of the crystal (P71), the source, gate and drain of the sixteenth NMOS transistor (M73) are connected to the ground voltage, the output of the sixth inverter (I72) and the tenth The source of four NMOS transistors (M71), the input of the fifth inverter (I71) is for receiving the input data (Din), and the output is connected to the gate of the ninth PMOS transistor (P71), The gate of the fourteenth NMOS transistor (M71) and the input of the third delay circuit (D3), the input of the sixth inverter (I72) is for receiving the row decoder output signal (Y), and The output is connected to the input of the fourth delay circuit (D4) and the gate of the sixteenth NMOS transistor (M73), one end of the capacitor (Cap) is connected to the output of the fourth delay circuit (D4), The other end of the capacitor (Cap) is connected to the source of the fourteenth NMOS transistor (M71) and the drain of the sixteenth NMOS transistor (M73), wherein the ninth PMOS transistor (P71) ), the drain of the fourteenth NMOS transistor (M71) and the drain of the fifteenth NMOS transistor (M72) are connected to the bit line (BL), the bit line (BL ) The first stage of writing logic 0 is designed to be lower than the ground voltage to accelerate the speed of writing logic 0, and when writing logic 1, it is designed to be higher than the power supply voltage ( The level of the second highest power supply voltage (V DDH2 ) of V DD ) is used to accelerate the writing speed of logic 1.

該寫入驅動電路(7)致能與否係由該行解碼器輸出信號(Y)之邏輯位準決定,當該行解碼器輸出信號(Y)為邏輯低位準時,該寫入驅動電路(7)為非致能狀態,而當該行解碼器輸出信號(Y)為邏輯高位準時,該寫入驅動電路(7)處於致能狀態。當該行解碼器輸出信號(Y)為邏輯低位準時,該第六反相器(I72)之輸出為邏輯高位準,一方面導通該 第十六NMOS電晶體(M73),另一方面經過該第四延遲電路(D4)所提供之延遲時間後對該電容器(Cap)之一端充電,由於導通的該第十六NMOS電晶體(M73),使得該電容器(Cap)之另一端為該接地電壓,而該電容器(Cap)之一端則會因電容器(Cap)的充電而保持該電源供應電壓(VDD)之電壓位準。 Whether the write drive circuit (7) is enabled or not is determined by the logic level of the row decoder output signal (Y). When the row decoder output signal (Y) is at a logic low level, the write drive circuit ( 7) is in the disabled state, and when the row decoder output signal (Y) is at a logic high level, the write drive circuit (7) is in the enabled state. When the row decoder output signal (Y) is at a logic low level, the output of the sixth inverter (I72) is at a logic high level. On the one hand, the sixteenth NMOS transistor (M73) is turned on, and on the other hand, it passes through the After the delay time provided by the fourth delay circuit (D4), one end of the capacitor (Cap) is charged. Because the 16th NMOS transistor (M73) is turned on, the other end of the capacitor (Cap) is the ground voltage , And one end of the capacitor (Cap) will maintain the voltage level of the power supply voltage (V DD ) due to the charging of the capacitor (Cap).

該寫入驅動電路(7)於寫入邏輯0之致能狀態時係採用二階段操作,於該寫入驅動電路(7)致能的第一階段,邏輯高位準之該行解碼器輸出信號(Y),使得該第六反相器(I72)之輸出為邏輯低位準,一方面使該第十六NMOS電晶體(M73)為截止(OFF)狀態,另一方面經過該第四延遲電路(D4)所提供之延遲時間後對該電容器(Cap)之一端快速放電至該接地電壓,由於此時該輸入資料(Din)為邏輯低位準,使得該第五反相器(I71)之輸出為邏輯高位準,於是導通該第十四NMOS電晶體(M71),並使該第九PMOS電晶體(P71)為截止(OFF)狀態,因此該位元線(BL)之電壓位準於該寫入驅動電路(7)寫入邏輯0之第一階段時滿足方程式(3):VBL1=-VDD×Cap/(Cap+CBL) (3) The write drive circuit (7) adopts a two-stage operation when writing to the enable state of logic 0. In the first stage of the write drive circuit (7) is enabled, the row decoder output signal at a logic high level (Y) to make the output of the sixth inverter (I72) a logic low level. On the one hand, the sixteenth NMOS transistor (M73) is turned off (OFF), and on the other hand, it passes through the fourth delay circuit After the delay time provided by (D4), one end of the capacitor (Cap) is quickly discharged to the ground voltage. Because the input data (Din) is at a logic low level at this time, the output of the fifth inverter (I71) Is a logic high level, so the fourteenth NMOS transistor (M71) is turned on, and the ninth PMOS transistor (P71) is turned off (OFF), so the voltage level of the bit line (BL) is at the The writing drive circuit (7) satisfies equation (3) when writing the first stage of logic 0: V BL1 = -V DD ×Cap/(Cap+C BL ) (3)

其中,VBL1表示該位元線(BL)於寫入邏輯0之第一階段的電壓位準,VBL1的絕對值設計為小於該第三NMOS電晶體(M13)之臨界電壓,例如可設計為-100mV、-150mV或-200mV,VDD為該電源供應電壓(VDD)之電壓位準,而Cap與CBL分別表示該該電容器(Cap)之電容值與該位元線(BL)之寄生電容值。 Wherein, V BL1 represents the voltage level of the bit line (BL) in the first stage of writing logic 0, and the absolute value of V BL1 is designed to be smaller than the threshold voltage of the third NMOS transistor (M13), for example, it can be designed It is -100mV, -150mV or -200mV, V DD is the voltage level of the power supply voltage (V DD ), and Cap and C BL represent the capacitance value of the capacitor (Cap) and the bit line (BL) respectively The parasitic capacitance value.

當邏輯低位準之該輸入資料(Din)經過該第五反相器(I71) 以及該第三延遲電路(D3)所提供之延遲時間後,該寫入驅動電路(7)進入致能的第二階段,此時由於該第十五NMOS電晶體(M72)為導通狀態,使得該位元線(BL)之電壓位準於該寫入驅動電路(7)寫入邏輯0之第二階段時滿足方程式(4):VBL2=0 (4) When the input data (Din) at the logic low level has passed the delay time provided by the fifth inverter (I71) and the third delay circuit (D3), the write drive circuit (7) enters the enabled first In the second stage, since the fifteenth NMOS transistor (M72) is turned on, the voltage level of the bit line (BL) is in the second stage when the write drive circuit (7) writes logic 0 Satisfy equation (4): V BL2 =0 (4)

其中,VBL2表示該位元線(BL)於寫入邏輯0之第二階段的電壓位準。 Wherein, V BL2 represents the voltage level of the bit line (BL) in the second stage of writing logic 0.

茲依單埠SRAM之工作模式說明第5圖之本發明較佳實施例的工作原理如下: The working principle of the preferred embodiment of the present invention shown in Figure 5 is described based on the working mode of the SRAM as follows:

(I)寫入模式(write mode) (I) write mode

於寫入操作開始前,該寫入控制信號(WC)為邏輯低位準,使得該第三PMOS電晶體(P21)導通(ON),並使得該第十NMOS電晶體(M27)截止(OFF),由於此時該反相待機模式控制信號(/S)為邏輯高位準,於是該第三PMOS電晶體(P21)之汲極呈邏輯高位準,該邏輯高位準之該第三PMOS電晶體(P21)之汲極會導通該第九NMOS電晶體(M26),並使得該第一低電壓節點(VL1)呈接地電壓。 Before the write operation starts, the write control signal (WC) is at a logic low level, so that the third PMOS transistor (P21) is turned on (ON), and the tenth NMOS transistor (M27) is turned off (OFF) , Because the inverted standby mode control signal (/S) is at a logic high level at this time, the drain of the third PMOS transistor (P21) is at a logic high level, and the third PMOS transistor ( The drain of P21) turns on the ninth NMOS transistor (M26) and makes the first low voltage node (VL1) present a ground voltage.

而於寫入操作期間內,該寫入控制信號(WC)為邏輯高位準,使得該第十NMOS電晶體(M27)導通,並使得該節點C呈接地電壓(由於此時該待機模式控制信號(S)為接地電壓之邏輯低位準),於是使得該第九NMOS電晶體(M26)截止,並使得該第一低電壓節點(VL1)等於該第六NMOS電晶體(M23)之閘源極電壓VGS(M26),藉此得以有效防止寫入邏輯1困難之問題。第6圖所示為第5圖之本發明較佳實施例於寫入期間之簡化電路圖。 During the write operation period, the write control signal (WC) is at a logic high level, so that the tenth NMOS transistor (M27) is turned on and the node C is at the ground voltage (because the standby mode control signal (S) is the logic low level of the ground voltage), so the ninth NMOS transistor (M26) is turned off, and the first low voltage node (VL1) is equal to the gate source of the sixth NMOS transistor (M23) The voltage V GS (M26) can effectively prevent the problem of difficulty in writing logic 1. FIG. 6 is a simplified circuit diagram of the preferred embodiment of the present invention in FIG. 5 during the writing period.

接下來依單埠SRAM之4種寫入狀態來說明第6圖之本發明較佳實施例如何完成寫入動作。 Next, according to the four write states of the single-port SRAM, how to complete the write operation in the preferred embodiment of the present invention shown in FIG. 6 is described.

(一)節點A原本儲存邏輯0,而現在欲寫入邏輯0:在寫入動作發生前(該字元線控制信號WLC為接地電壓),該第一NMOS電晶體(M11)為導通(ON)。因為該第一NMOS電晶體(M11)為ON,所以當寫入動作開始時,該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓VDD)。當該字元線控制信號(WLC)的電壓大於該第三NMOS電晶體(M13)(即存取電晶體)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為該第一NMOS電晶體(M11)為導通,該節點A之電壓位準於寫入邏輯0之第一階段時,雖會因方程式(3)而呈現小於接地電壓的電壓位準,惟於寫入邏輯0之第二階段時,則會因方程式(4)而使得該節點A回復為原本之接地電壓,直到寫入週期結束。 (1) Node A originally stored logic 0, but now wants to write logic 0: Before the write operation occurs (the word line control signal WLC is the ground voltage), the first NMOS transistor (M11) is turned on (ON) ). Because the first NMOS transistor (M11) is ON, when the writing operation starts, the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage V DD ). When the voltage of the word line control signal (WLC) is greater than the threshold voltage of the third NMOS transistor (M13) (ie, access transistor), the third NMOS transistor (M13) changes from OFF to On (ON), at this time, because the first NMOS transistor (M11) is on, the voltage level of the node A is at the first stage of writing logic 0, although it will be less than the ground voltage due to equation (3) However, in the second phase of writing logic 0, the node A will return to the original ground voltage due to equation (4) until the end of the writing cycle.

(二)節點A原本儲存邏輯0,而現在欲寫入邏輯1:在寫入動作發生前(該字元線控制信號WLC為接地電壓),該第一NMOS電晶體(M11)為導通(ON)。因為該第一NMOS電晶體(M11)為ON,所以當寫入動作開始時,該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓VDD),該節點A的電壓會跟隨該字元線控制信號(WLC)的電壓而上升。 (2) Node A originally stored logic 0, but now wants to write logic 1: Before the write action occurs (the word line control signal WLC is the ground voltage), the first NMOS transistor (M11) is turned on (ON) ). Because the first NMOS transistor (M11) is ON, when the write operation starts, the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage V DD ), and the node A The voltage of will rise with the voltage of the word line control signal (WLC).

當該字元線控制信號(WLC)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為該位元線(BL)為該第二高電源供應電壓 (VDDH2)之電壓位準,並且因為該第一NMOS電晶體(M11)仍為ON且該節點B處於電壓位準為接近於該電源供應電壓(VDD)之電壓位準的初始狀態,所以該第一PMOS電晶體(P11)仍為截止(OFF),而該節點A之寫入初始瞬間電壓(VAWI1)滿足方程式(5):VAWI1=VDDH2×(RM11+RM23)/(RM13+RM11+RM23)>VTM12 (5) When the voltage of the word line control signal (WLC) is greater than the threshold voltage of the third NMOS transistor (M13), the third NMOS transistor (M13) changes from off (OFF) to on (ON). Because the bit line (BL) is the voltage level of the second high power supply voltage (V DDH2 ), and because the first NMOS transistor (M11) is still ON and the node B is at the voltage level, it is close to The initial state of the voltage level of the power supply voltage (V DD ), so the first PMOS transistor (P11) is still OFF, and the initial instantaneous voltage (V AWI1 ) written to node A satisfies the equation ( 5): V AWI1 =V DDH2 ×(R M11 +R M23 )/(R M13 +R M11 +R M23 )>V TM12 (5)

VAWI1表示節點A由邏輯0寫入邏輯1之寫入初始瞬間電壓,RM11、RM13與RM23分別表示該第一NMOS電晶體(M11)、該第三NMOS電晶體(M13)與該第六NMOS電晶體(M23)之導通電阻,而VDDH2與VTM12分別表示該第二高電源供應電壓(VDDH2)與該第二NMOS電晶體(M12)之臨界電壓,由於該第二高電源供應電壓(VDDH2)之電壓位準係設計成高於該電源供應電壓(VDD)之電壓位準,且於該第一低電壓節點(VL1)處提供一等於該第六NMOS電晶體(M23)之閘-源極電壓VGS(M23)之電壓位準,因此可輕易地將節點A之電壓位準設定成比第4圖之習知5T靜態隨機存取記憶體晶胞之該節點A之電壓位準還要高許多。該還要高許多之分壓電壓位準足以使該第二NMOS電晶體(M12)導通,於是使得節點B放電至一較低電壓位準,該節點B之較低電壓位準會使得該第一NMOS電晶體(M11)之導通電阻(RM11)呈現較高的電阻值,該第一NMOS電晶體(M11)之該較高的電阻值會於該節點A獲得較高電壓位準,該節點A之較高電壓位準又會經由該第二反相器(由第二PMOS電晶體P12與第二NMOS電晶體M12所組成),而使得該節點B呈現更低電壓位準,該節點B之更低電壓位準又會經由該第一反相器(由第一PMOS電晶體P11與第一NMOS電晶體M11所組成),而使得該節點A獲得更高電壓位準,依此循環,即可將該節點A充電至該電源供應電壓(VDD), 而完成邏輯1的寫入動作。 V AWI1 represents the initial instantaneous voltage at which node A is written from logic 0 to logic 1, and R M11 , R M13 and R M23 represent the first NMOS transistor (M11), the third NMOS transistor (M13) and the The on-resistance of the sixth NMOS transistor (M23), and V DDH2 and V TM12 represent the second high power supply voltage (V DDH2 ) and the threshold voltage of the second NMOS transistor (M12), respectively, due to the second high The voltage level of the power supply voltage (V DDH2 ) is designed to be higher than the voltage level of the power supply voltage (V DD ), and a sixth NMOS transistor is provided at the first low voltage node (VL1) (M23) gate-source voltage V GS (M23) voltage level, so the voltage level of node A can be easily set to be higher than that of the conventional 5T static random access memory cell in Figure 4 The voltage level of node A is much higher. The divided voltage level is much higher enough to turn on the second NMOS transistor (M12), so that node B is discharged to a lower voltage level, and the lower voltage level of node B will make the second NMOS transistor The on-resistance (R M11 ) of an NMOS transistor (M11) exhibits a higher resistance value, and the higher resistance value of the first NMOS transistor (M11) will obtain a higher voltage level at the node A, the The higher voltage level of node A passes through the second inverter (composed of the second PMOS transistor P12 and the second NMOS transistor M12), so that the node B presents a lower voltage level. The lower voltage level of B passes through the first inverter (consisting of the first PMOS transistor P11 and the first NMOS transistor M11), so that the node A obtains a higher voltage level, and so on. , The node A can be charged to the power supply voltage (V DD ), and the logic 1 write operation is completed.

在此值得注意的是,該第一低電壓節點(VL1)於節點A原本儲存邏輯0,而寫入邏輯1之期間,係具有等於該第六NMOS電晶體(M23)之閘源極電壓VGS(M23)的電壓位準,而於寫入邏輯1後,又會因經由該第九NMOS電晶體(M26)放電而具有接地電壓之位準。 It is worth noting here that the first low voltage node (VL1) originally stores logic 0 at node A, and the period of writing logic 1 is equal to the gate-source voltage V of the sixth NMOS transistor (M23) The voltage level of GS (M23) , after writing logic 1, will have the ground voltage level due to the discharge through the ninth NMOS transistor (M26).

(三)節點A原本儲存邏輯1,而現在欲寫入邏輯1:在寫入動作發生前(字元線控制信號WLC為接地電壓),該第一PMOS電晶體(P11)為導通(ON)。當該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓VDD),由於該節點A為該電源供應電壓(VDD)之電壓位準,且該位元線(BL)為該第二高電源供應電壓(VDDH2)之電壓位準,因此會使該第三NMOS電晶體(M13)繼續保持截止(OFF)狀態;此時因為該第一PMOS電晶體(P11)仍為ON,該節點A之電壓位準雖會因該第二高電源供應電壓(VDDH2)之電壓位準而呈現稍大於該電源供應電壓(VDD)的電壓位準,惟於寫入完成後,該節點A會回復為原本之該電源供應電壓(VDD)的電壓位準。 (3) Node A originally stored logic 1, but now it wants to write logic 1: Before the write operation occurs (the word line control signal WLC is the ground voltage), the first PMOS transistor (P11) is turned on (ON) . When the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage V DD ), because the node A is the voltage level of the power supply voltage (V DD ), and the bit line (BL) is the voltage level of the second high power supply voltage (V DDH2 ), so the third NMOS transistor (M13) will continue to remain in the OFF state; at this time, because the first PMOS transistor ( P11) is still ON, although the voltage level of the node A will be slightly larger than the power supply voltage (V DD ) due to the voltage level of the second highest power supply voltage (V DDH2 ), but After the writing is completed, the node A will return to the original voltage level of the power supply voltage (V DD ).

(四)節點A原本儲存邏輯1,而現在欲寫入邏輯0:在寫入動作發生前(該字元線控制信號WLC為接地電壓),該第一PMOS電晶體(P11)為導通(ON)。當該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓VDD),且該字元線控制信號(WLC)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為該位元線(BL)之電壓位準為滿足方程式(3)的電壓位準(VBL1),其小於0V,並且因為 該第一PMOS電晶體(P11)仍為ON且該節點B處於電壓位準為接近於該接地電壓之電壓位準的初始狀態,所以該第一NMOS電晶體(M11)仍為截止,而該節點A之寫入初始瞬間電壓(VAWI0)滿足方程式(6):VAWI0=VBL1×RP11/(RM13+RP11)+VDD×RM13/(RM13+RP11) (6) (4) Node A originally stored logic 1, but now wants to write logic 0: Before the write action occurs (the word line control signal WLC is the ground voltage), the first PMOS transistor (P11) is ON ). When the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage V DD ), and the voltage of the word line control signal (WLC) is greater than that of the third NMOS transistor (M13) When the threshold voltage is reached, the third NMOS transistor (M13) turns off (OFF) to on (ON), because the voltage level of the bit line (BL) is the voltage level that satisfies the equation (3) ( V BL1 ), which is less than 0V, and because the first PMOS transistor (P11) is still ON and the node B is in the initial state where the voltage level is close to the voltage level of the ground voltage, the first NMOS transistor The crystal (M11) is still off, and the initial instantaneous voltage (V AWI0 ) written to node A satisfies equation (6): V AWI0 =V BL1 ×R P11 /(R M13 +R P11 )+V DD ×R M13 /(R M13 +R P11 ) (6)

VAWI0表示節點A由邏輯1寫入邏輯0之寫入初始瞬間電壓,RM13與RP11分別表示該第三NMOS電晶體(M13)與該第一PMOS電晶體(P11)之導通電阻,而VBL1與VDD分別表示該位元線(BL)於寫入邏輯0之第一階段的電壓位準與該電源供應電壓(VDD)之電壓位準,由於由邏輯1寫入邏輯0時,該第三NMOS電晶體(M13)係工作於飽和區,飽和區之電流係與其閘-源極電壓VGS(M13)之電壓位準扣減其臨界電壓後之平方成正比例,因此藉由該位元線(BL)於寫入邏輯0之第一階段的電壓位準(VBL1)小於0V的設計方式,可有效加速由邏輯1寫入邏輯0之速度。 V AWI0 represents the initial instant voltage at which node A is written to logic 0 from logic 1, R M13 and R P11 represent the on-resistance of the third NMOS transistor (M13) and the first PMOS transistor (P11), and V BL1 and V DD respectively represent the voltage level of the bit line (BL) in the first stage of writing logic 0 and the voltage level of the power supply voltage (V DD ), because when logic 1 is written to logic 0 , The third NMOS transistor (M13) works in the saturation region, and the current in the saturation region is proportional to the square of its gate-source voltage V GS (M13) minus its threshold voltage. Therefore, by The design of the bit line (BL) with a voltage level (V BL1 ) of less than 0V in the first stage of writing logic 0 can effectively accelerate the speed of writing logic 0 from logic 1.

(II)讀取模式(read mode) (II) Read mode

於讀取操作開始前,該寫入控制信號(WC)為邏輯低位準,而該反相待機模式控制信號(/S)為邏輯高位準,使得該節點C呈邏輯高位準,邏輯高位準之該節點C會導通第九NMOS電晶體(M26),並使得該第一低電壓節點(VL1)呈接地電壓。另一方面,由於該讀取控制信號(RC)為邏輯低位準,使得該第七NMOS電晶體(M24)截止(OFF),並使得該第八NMOS電晶體(M25)導通(ON)。 Before the start of the read operation, the write control signal (WC) is at a logic low level, and the inverted standby mode control signal (/S) is at a logic high level, so that the node C is at a logic high level, which is higher than the logic level. The node C will turn on the ninth NMOS transistor (M26), and make the first low voltage node (VL1) a ground voltage. On the other hand, because the read control signal (RC) is at a logic low level, the seventh NMOS transistor (M24) is turned off (OFF), and the eighth NMOS transistor (M25) is turned on (ON).

在此值得注意的是,於讀取操作開始前之預充電期間,該預充電信號(P)係為邏輯低位準,藉此以將相對應之位元線(BL)預充電至該電源供應電壓(VDD)之位準,惟由於例如10奈米以下製程技術之操作電壓 將降為0.9伏特以下時將造成讀取速度降低而無法滿足規範之問題,因此,本發明提出二階段的讀取控制以於提高讀取速度並滿足規範的同時,亦避免無謂的功率耗損。 It is worth noting here that during the precharge period before the start of the read operation, the precharge signal (P) is at a logic low level, thereby precharging the corresponding bit line (BL) to the power supply Voltage (V DD ) level, but because the operating voltage of the process technology below 10 nanometers will drop below 0.9 volts, the reading speed will be reduced and the specification cannot be met. Therefore, the present invention proposes a two-stage reading The control is used to improve the reading speed and meet the specifications while avoiding unnecessary power consumption.

第5圖所示之本發明較佳實施例係藉由二階段的讀取控制以於提高讀取速度的同時,亦避免無謂的功率耗損,於讀取操作之一第一階段,該讀取控制信號(RC)為邏輯高位準,使得該第七NMOS電晶體(M24)導通,由於此時該第八NMOS電晶體(M25)仍導通,於是該第一低電壓節點(VL1)大約呈較接地電壓為低之該加速讀取電壓(RGND),該較接地電壓為低之該加速讀取電壓(RGND)可有效提高讀取速度。 The preferred embodiment of the present invention shown in Figure 5 uses a two-stage read control to increase the read speed while avoiding unnecessary power consumption. In the first stage of the read operation, the read The control signal (RC) is at a logic high level, so that the seventh NMOS transistor (M24) is turned on. Since the eighth NMOS transistor (M25) is still turned on at this time, the first low voltage node (VL1) is approximately The accelerated reading voltage (RGND) whose ground voltage is low, and the accelerated reading voltage (RGND) whose ground voltage is lower than the ground voltage can effectively increase the reading speed.

而於讀取操作之一第二階段,雖然該讀取控制信號(RC)仍為邏輯高位準,使得該第七NMOS電晶體(M24)仍為導通,惟由於此時該第八NMOS電晶體(M25)截止,於是該第一低電壓節點(VL1)會經由導通的該第九NMOS電晶體(M26)而呈接地電壓,藉此可有效減少無謂的功率消耗。在此值得注意的是,該讀取操作之該第二階段與該第一階段相隔之時間,係等於該讀取控制信號(RC)由邏輯低位準轉變為邏輯高位準起算,並至該第八NMOS電晶體(M25)之閘極電壓足以關閉該第八NMOS電晶體(M25)為止之時間,其值可藉由該第三反相器(INV)之下降延遲時間與該第一延遲電路(D1)所提供之延遲時間來調整。再者,無論於讀取操作之該第一階段抑是該第二階段,該第九NMOS電晶體(M26)均呈導通狀態(由於該第九NMOS電晶體(M26)之閘極為邏輯高位準)。第7圖所示為第5圖之本發明較佳實施例於讀取期間之簡化電路圖。 In the second stage of the read operation, although the read control signal (RC) is still at a logic high level, the seventh NMOS transistor (M24) is still turned on, but at this time, the eighth NMOS transistor (M25) is turned off, so the first low voltage node (VL1) will be at the ground voltage through the ninth NMOS transistor (M26) turned on, thereby effectively reducing unnecessary power consumption. It is worth noting here that the time between the second stage and the first stage of the read operation is equal to the time when the read control signal (RC) changes from a logic low level to a logic high level, and reaches the first stage. The time until the gate voltage of the eight NMOS transistor (M25) is sufficient to turn off the eighth NMOS transistor (M25) can be determined by the fall delay time of the third inverter (INV) and the first delay circuit (D1) Adjust the delay time provided. Furthermore, whether in the first stage or the second stage of the read operation, the ninth NMOS transistor (M26) is in a conducting state (because the gate of the ninth NMOS transistor (M26) is at a high logic level ). FIG. 7 is a simplified circuit diagram of the preferred embodiment of the present invention in FIG. 5 during the read period.

接下來依單埠SRAM之2種讀取狀態來說明第7圖之本發明 較佳實施例如何藉由控制電路(2)以及高電壓位準控制電路(6)以於提高讀取速度的同時,亦避免無謂的功率耗損,另一方面藉由字元線電壓位準轉換電路(5)以有效降低讀取時之半選定晶胞干擾。 Next, the invention in Figure 7 will be explained based on the two read states of the SRAM port. The preferred embodiment uses the control circuit (2) and the high voltage level control circuit (6) to improve the reading speed while avoiding unnecessary power loss. On the other hand, the word line voltage level conversion is used Circuit (5) effectively reduces the half-selected cell interference during reading.

(一)讀取邏輯1(節點A儲存邏輯1):在讀取動作發生前,該第一NMOS電晶體(M11)為截止(OFF)且該第二NMOS電晶體(M12)為導通(ON),該節點A與該節點B分別為該電源供應電壓(VDD)與接地電壓,而該位元線(BL)則因該預充電電路(3)而等於該電源供應電壓(VDD)。於讀取期間,由於該字元線控制信號(WLC)為該電源供應電壓扣抵該第十二NMOS電晶體(M51)之臨界電壓(即VDD-VTM51),且由於該節點A為該電源供應電壓(VDD)之電壓位準,因此該第三NMOS電晶體(M13)為截止(OFF)狀態,藉此可有效保持該位元線(BL)為該電源供應電壓直到讀取週期結束而順利完成讀取邏輯1之操作。在此值得注意的是,於讀取操作期間由於該字元線控制信號(WLC)為該電源供應電壓扣抵該第十二NMOS電晶體(M51)之臨界電壓(即VDD-VTM51),因此可有效降低讀取時之半選定晶胞干擾。此外,於讀取操作之該第一階段,該第一低電壓節點(VL1)於讀取邏輯1時之讀取初始瞬間電壓(VRVL1I)必須滿足方程式(7):VRVL1I=RGND×RM26/(RM26+RM24+RM25)>-VTM11 (7)以有效地防止讀取時之半選定晶胞干擾,其中,VRVL1I表示該第一低電壓節點(VL1)於讀取邏輯1時之讀取初始瞬間電壓,RGND表示該加速讀取電壓,RM26表示該第九NMOS電晶體(M26)之導通電阻,RM24表示該第七NMOS電晶體(M24)之導通電阻,RM25表示該第八NMOS電晶體(M25) 之導通電阻,而VTM11表示該第一NMOS電晶體(M11)之臨界電壓;於該讀取操作之該第二階段,該第一低電壓節點(VL1)之電壓(VRVL1)可由方程式(8)表示:VRVL1=接地電壓 (8)藉此,可有效地減少無謂的功率消耗。 (1) Read logic 1 (node A stores logic 1): Before the read operation occurs, the first NMOS transistor (M11) is OFF and the second NMOS transistor (M12) is ON ), the node A and the node B are the power supply voltage (V DD ) and the ground voltage, respectively, and the bit line (BL) is equal to the power supply voltage (V DD ) due to the precharge circuit (3) . During the reading period, because the word line control signal (WLC) deducts the threshold voltage of the twelfth NMOS transistor (M51) (ie V DD -V TM51 ) for the power supply voltage, and because the node A is The voltage level of the power supply voltage (V DD ), so the third NMOS transistor (M13) is in an OFF state, thereby effectively keeping the bit line (BL) at the power supply voltage until read The cycle ends and the operation of reading logic 1 is successfully completed. It is worth noting here that during the read operation, the word line control signal (WLC) is used for the power supply voltage to deduct the threshold voltage of the twelfth NMOS transistor (M51) (ie V DD -V TM51 ) , So it can effectively reduce the half-selected cell interference during reading. In addition, in the first stage of the read operation, the read initial instantaneous voltage (V RVL1I ) of the first low voltage node (VL1) when reading logic 1 must satisfy equation (7): V RVL1I = RGND×R M26 /(R M26 +R M24 +R M25 )>-V TM11 (7) to effectively prevent half-selected cell interference during reading, where V RVL1I represents the first low voltage node (VL1) during reading Read the initial instantaneous voltage at logic 1, RGND represents the accelerated reading voltage, R M26 represents the on-resistance of the ninth NMOS transistor (M26), and R M24 represents the on-resistance of the seventh NMOS transistor (M24). R M25 represents the on-resistance of the eighth NMOS transistor (M25), and V TM11 represents the threshold voltage of the first NMOS transistor (M11); in the second stage of the read operation, the first low voltage node The voltage (V RVL1 ) of (VL1) can be expressed by equation (8): V RVL1 = ground voltage (8), thereby effectively reducing unnecessary power consumption.

再者,為了有效降低讀取時之半選定晶胞干擾與有效降低漏電流,可更保守地將該加速讀取電壓(RGND)之絕對值設定為小於該第一NMOS電晶體(M11)之臨界電壓(VTM11),亦即|RGND|<VTM11 (9)其中,|RGND|與VTM11分別表示該加速讀取電壓之絕對值與該第一NMOS電晶體(M11)之臨界電壓。 Furthermore, in order to effectively reduce the half-selected cell interference during reading and effectively reduce the leakage current, the absolute value of the accelerated reading voltage (RGND) can be set to be less than that of the first NMOS transistor (M11) more conservatively The threshold voltage (V TM11 ), namely |RGND|<V TM11 (9), where |RGND| and V TM11 respectively represent the absolute value of the acceleration read voltage and the threshold voltage of the first NMOS transistor (M11).

(二)讀取邏輯0(節點A儲存邏輯0):在讀取動作發生前,該第一NMOS電晶體(M11)為導通(ON)且該第二NMOS電晶體(M12)為截止(OFF),該節點(A)與該節點(B)分別為接地電壓與該第一高電源供應電壓(VDDH1),而該位元線(BL)則因該預充電電路(3)而等於該電源供應電壓(VDD)。因為該第一NMOS電晶體(M11)為ON,所以當讀取動作開始時,該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓扣抵該第十二NMOS電晶體M51之臨界電壓VDD-VTM51)。當該字元線控制信號(WLC)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時該節點A之讀取初始瞬間電壓(VAR0I)必須滿足方程式(10): VAR0I=VDD×(RM11+(RM24+RM25)∥RM26)/(RM13+RM11+(RM24+RM25)∥RM26)+RGND×(RM11+RM13)∥RM26/(RM24+RM25+(RM11+RM13)∥RM26)×RM13/(RM11+RM13)<VTM12 (10)以避免使該第二NMOS電晶體(M12)導通,其中,VAR0I表示節點A讀取邏輯0時之初始瞬間電壓,RM11、RM13、RM24、RM25與RM26分別表示該第一NMOS電晶體(M11)、該第三NMOS電晶體(M13)、該第七NMOS電晶體(M24)、該第八NMOS電晶體(M25)與該第九NMOS電晶體(M26)之導通電阻,而VDD、RGND與VTM12分別表示該電源供應電壓(VDD)、該加速讀取電壓(RGND)與該第二NMOS電晶體(M12)之臨界電壓。在此值得注意的是,該加速讀取電壓(RGND)係設計成低於接地電壓且該加速讀取電壓之絕對值設計成小於該第一NMOS電晶體(M11)之臨界電壓。再者,本發明於讀取期間之該字元線控制信號(WLC)係設定為該電源供應電壓扣抵該第十三NMOS電晶體(M51)之臨界電壓(VDD-VTM51),其一方面能有效降低讀取時之半選定晶胞干擾,另一方面可藉由增加該第三NMOS電晶體(M13)之導通電阻(RM13)以更容易滿足方程式(10)。 (2) Read logic 0 (node A stores logic 0): Before the read operation occurs, the first NMOS transistor (M11) is turned on (ON) and the second NMOS transistor (M12) is turned off (OFF) ), the node (A) and the node (B) are ground voltage and the first high power supply voltage (V DDH1 ) respectively, and the bit line (BL) is equal to the precharge circuit (3) Power supply voltage (V DD ). Because the first NMOS transistor (M11) is ON, when the read operation starts, the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage offsets the twelfth NMOS The threshold voltage of transistor M51 is V DD -V TM51 ). When the voltage of the word line control signal (WLC) is greater than the threshold voltage of the third NMOS transistor (M13), the third NMOS transistor (M13) changes from off (OFF) to on (ON). The read initial instantaneous voltage (V AR0I ) of the node A must satisfy equation (10): V AR0I =V DD ×(R M11 +(R M24 +R M25 )∥R M26 )/(R M13 +R M11 +( R M24 +R M25 )∥R M26 )+RGND×(R M11 +R M13 )∥R M26 /(R M24 +R M25 +(R M11 +R M13 )∥R M26 )×R M13 /(R M11 + R M13 )<V TM12 (10) to avoid turning on the second NMOS transistor (M12), where V AR0I represents the initial instantaneous voltage when node A reads logic 0, R M11 , R M13, R M24, R M25 and R M26 respectively represent the first NMOS transistor (M11), the third NMOS transistor (M13), the seventh NMOS transistor (M24), the eighth NMOS transistor (M25) and the ninth NMOS transistor. The on-resistance of the transistor (M26), and V DD , RGND and V TM12 respectively represent the threshold voltage of the power supply voltage (V DD ), the accelerated reading voltage (RGND) and the second NMOS transistor (M12). It is worth noting here that the accelerated reading voltage (RGND) is designed to be lower than the ground voltage and the absolute value of the accelerated reading voltage is designed to be smaller than the threshold voltage of the first NMOS transistor (M11). Furthermore, the word line control signal (WLC) in the reading period of the present invention is set to the power supply voltage to subtract the threshold voltage (V DD -V TM51 ) of the thirteenth NMOS transistor (M51), which On the one hand, it can effectively reduce the half-selected cell interference during reading. On the other hand, the on-resistance (R M13 ) of the third NMOS transistor (M13) can be increased to more easily satisfy the equation (10).

再者,於讀取邏輯0期間,由於節點B為該第一高電源供應電壓(VDDH1),且該第一低電壓節點(VL1)為較接地電壓為低之電壓,由於該第一高電源供應電壓(VDDH1)係設定為高於該電源供應電壓(VDD),因此,可藉由增加該第一NMOS電晶體(M11)之導通程度,以有效提高讀取速度。在此值得注意的是,該第一高電源供應電壓(VDDH1)係設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第二PMOS電晶體(P12)臨界電壓之絕對值|VTP12|的總和,亦即 VDD<VDDH1<VDD+|VTP12| (11)其中,|VTP12|表示該第二PMOS電晶體(P12)臨界電壓之絕對值。 Furthermore, during the read logic 0 period, since node B is the first high power supply voltage (V DDH1 ), and the first low voltage node (VL1) is a voltage lower than the ground voltage, due to the first high The power supply voltage (V DDH1 ) is set higher than the power supply voltage (V DD ). Therefore, the conduction degree of the first NMOS transistor (M11) can be increased to effectively increase the reading speed. It is worth noting here that the first high power supply voltage (V DDH1 ) is set higher than the power supply voltage (V DD ) but lower than the power supply voltage (V DD ) and the second PMOS transistor ( P12) The sum of the absolute value of the threshold voltage |V TP12 |, that is, V DD <V DDH1 <V DD + |V TP12 | (11) Where |V TP12 | represents the threshold voltage of the second PMOS transistor (P12) The absolute value.

在此值得注意的是,該第二高電源供應電壓(VDDH2)係設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第九PMOS電晶體(P71)臨界電壓之絕對值|VTP71|的總和,亦即VDD<VDDH2<VDD+|VTP71| (12) It is worth noting here that the second high power supply voltage (V DDH2 ) is set higher than the power supply voltage (V DD ) but lower than the power supply voltage (V DD ) and the ninth PMOS transistor ( P71) The sum of the absolute value of the critical voltage|V TP71 |, that is, V DD <V DDH2 <V DD +|V TP71 | (12)

其中,|VTP71|表示該第九PMOS電晶體(P71)臨界電壓之絕對值。 Among them, |V TP71 | represents the absolute value of the threshold voltage of the ninth PMOS transistor (P71).

當然,為了簡化電路規模,可將該第一高電源供應電壓(VDDH1)設定成與該第二高電源供應電壓(VDDH2)等電位。 Of course, in order to simplify the circuit scale, the first high power supply voltage (V DDH1 ) can be set to the same potential as the second high power supply voltage (V DDH2 ).

(III)待機模式(standby mode) (III) Standby mode

首先,說明第5圖之待機啟動電路(4)如何促使單埠SRAM快速進入待機模式,以有效提高SRAM之待機效能:首先,於進入待機模式之前,該反相待機模式控制信號(/S)為邏輯High,該邏輯High之反相待機模式控制信號(/S)使得該第四PMOS電晶體(P41)截止(OFF),並使得該第十二NMOS電晶體(M41)導通(ON);接著,於進入待機模式後,該反相待機模式控制信號(/S)為邏輯Low,該邏輯Low之反相待機模式控制信號(/S)使得該第四PMOS電晶體(P41)導通(ON),惟於待機模式之初始期間內(該初始期間係等於該反相待機模式控制信號(/S)由邏輯High轉變為邏輯Low起算,至該第十二NMOS電晶體(M41)之閘極電壓足以關閉該第十二NMOS電晶體(M41)為止之時間,其可藉由該第二延遲電路(D2)所提供之一延遲時間來調整),該第十二NMOS電晶體(M41)仍導通(ON),於是可對該第一低電壓節點(VL1)快速充電到達該第六NMOS電晶體(M23)之 臨界電壓(VTM23)的電壓位準,亦即單埠SRAM可快速進入待機模式。在此值得注意的是,於待機模式之初始期間後,該第十二NMOS電晶體(M41)關閉並停止供應電流。 First, explain how the standby startup circuit (4) in Figure 5 prompts the SRAM to quickly enter the standby mode to effectively improve the standby performance of the SRAM: first, before entering the standby mode, the inverted standby mode control signal (/S) It is logic High, and the inverted standby mode control signal (/S) of the logic High turns off the fourth PMOS transistor (P41) and turns on the twelfth NMOS transistor (M41); Then, after entering the standby mode, the inverted standby mode control signal (/S) is logic Low, and the inverted standby mode control signal (/S) of the logic Low makes the fourth PMOS transistor (P41) conductive (ON) ), but in the initial period of the standby mode (the initial period is equal to the inverted standby mode control signal (/S) from the logic High to the logic Low to count, to the gate of the twelfth NMOS transistor (M41) The time until the voltage is sufficient to turn off the twelfth NMOS transistor (M41), which can be adjusted by a delay time provided by the second delay circuit (D2)), the twelfth NMOS transistor (M41) remains Turning on (ON), so the first low voltage node (VL1) can be quickly charged to the voltage level of the threshold voltage (V TM23 ) of the sixth NMOS transistor (M23), that is, the single port SRAM can quickly enter standby mode. It is worth noting here that after the initial period of the standby mode, the twelfth NMOS transistor (M41) turns off and stops supplying current.

請參考第5圖,於待機模式時,該待機模式控制信號(S)為邏輯高位準,而該反相待機模式控制信號(/S)為邏輯低位準,該邏輯低位準之該反相待機模式控制信號(/S)可使得該控制電路(2)中之該第四NMOS電晶體(M21)截止(OFF),而該邏輯高位準之該待機模式控制信號(S)則使得該第五NMOS電晶體(M22)導通(ON),此時該第五NMOS電晶體(M22)係作為等化器(equalizer)使用,因此可藉由呈導通狀態之該第五NMOS電晶體(M22),使得該第一低電壓節點(VL1)之電壓位準相等於該第二低電壓節點(VL2)之電壓位準,且該等電壓位準均會等於該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準。第8圖所示為第5圖之本發明較佳實施例於待機期間之簡化電路圖。 Please refer to Figure 5, in the standby mode, the standby mode control signal (S) is a logic high level, and the inverted standby mode control signal (/S) is a logic low level, and the logic low level is the inverted standby The mode control signal (/S) can make the fourth NMOS transistor (M21) in the control circuit (2) turn off (OFF), and the standby mode control signal (S) of the logic high level can make the fifth The NMOS transistor (M22) is turned on (ON). At this time, the fifth NMOS transistor (M22) is used as an equalizer. Therefore, the fifth NMOS transistor (M22) can be turned on. Make the voltage level of the first low voltage node (VL1) equal to the voltage level of the second low voltage node (VL2), and the voltage levels will all be equal to the threshold of the sixth NMOS transistor (M23) The voltage level of the voltage (V TM23 ). Figure 8 is a simplified circuit diagram of the preferred embodiment of the present invention in Figure 5 during standby.

接下來說明本發明於待機模式(standby mode)時如何減少漏電流,請參考第8圖,第8圖描述有本發明實施例處於待機模式時所產生之各漏電流(subthreshold leakage current)I1、I2、I3,其中假設SRAM晶胞中之該第一反相器之輸出(即節點A)為邏輯Low(在此值得注意的是,由於待機模式時該第二低電壓節點(VL2)之電壓位準係維持在該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準,因此節點A為邏輯Low之電壓位準亦維持在該VTM23的電壓位準),而該第二反相器之輸出(即節點B)為邏輯High(電源供應電壓VDD)。請參考第1b圖之先前技藝與第8圖之本發明實施例,來說明本發明所提出之靜態隨機存取記憶體與第1b圖 之6T SRAM於漏電流方面之比較,首先關於流經該第三NMOS電晶體(M13)之漏電流I1,由於本發明於待機模式時節點A之電壓位準係維持在該VTM23的電壓位準,且假設字元線(WL)於待機模式時係設定成接地電壓,而位元線(BL)於待機模式時則設定為該電源供應電壓(VDD),因此本發明之第三NMOS電晶體(M13)的閘源極電壓(VGS)為負值,反觀於待機模式時第1b圖先前技藝之NMOS電晶體(M3)的閘源極電壓(VGS)等於0,根據閘極引發汲極洩漏(Gate Induced Drain Leakage,簡稱GIDL)效應或2005年3月8日第US6865119號專利案第3(A)及3(B)圖之結果可知,對於NMOS電晶體而言,閘源極電壓為-0.1伏特時之次臨界電流約為閘源極電壓為0伏特時之次臨界電流的1%,因此導因於GIDL效應所引發之流經本發明之該第三NMOS電晶體(M13)之漏電流I1遠小於第1b圖先前技藝之NMOS電晶體(M3)者;再者,本發明該第三NMOS電晶體(M13)之汲源極電壓(VDS)為該電源供應電壓(VDD)扣減該VTM23的電壓位準,反觀於待機模式時傳統第1b圖6T靜態隨機存取記憶體之NMOS電晶體(M3)之汲源極電壓(VDS)係等於該電源供應電壓(VDD),根據汲極引發能障下跌(Drain-Induced Barrier Lowering,簡稱DIBL)效應,由於DIBL效應所引發之流經本發明之該第三NMOS電晶體(M13)之漏電流I1亦小於第1b圖先前技藝之NMOS電晶體(M3)者;結果,流經本發明之該第三NMOS電晶體(M13)之漏電流I1遠小於第1b圖先前技藝之NMOS電晶體(M3)者。 Next, the present invention is how to reduce the leakage current in the standby mode (standby mode), please refer to FIG. 8, FIG. 8 described respective leak current (subthreshold leakage current) I 1 generated by the embodiment of the present invention when in the standby mode , I 2 , I 3 , where it is assumed that the output of the first inverter in the SRAM cell (ie node A) is logic Low (it should be noted here that since the second low voltage node (VL2 The voltage level of) is maintained at the voltage level of the threshold voltage (V TM23 ) of the sixth NMOS transistor (M23), so the voltage level of the logic Low node A is also maintained at the voltage level of V TM23 ) , And the output of the second inverter (ie node B) is logic High (power supply voltage V DD ). Please refer to the prior art in Figure 1b and the embodiment of the present invention in Figure 8 to illustrate the comparison between the static random access memory proposed by the present invention and the 6T SRAM in Figure 1b in terms of leakage current. The leakage current I 1 of the third NMOS transistor (M13) is due to the fact that the voltage level of node A is maintained at the voltage level of V TM23 in the standby mode of the present invention, and it is assumed that the word line (WL) is in standby mode It is set to the ground voltage, and the bit line (BL) is set to the power supply voltage (V DD ) when in standby mode, so the gate-source voltage (V GS ) of the third NMOS transistor (M13) of the present invention It is a negative value. In contrast, in the standby mode, the gate-source voltage (V GS ) of the NMOS transistor (M3) of the previous art in Figure 1b is equal to 0, which causes the gate-induced drain leakage (GIDL) effect according to the gate. Or the results of Figures 3(A) and 3(B) of Patent No. US6865119 dated March 8, 2005 show that for NMOS transistors, when the gate-source voltage is -0.1 volts, the subcritical current is about The source voltage is 1% of the sub-critical current at 0 volts. Therefore, the leakage current I 1 flowing through the third NMOS transistor (M13) of the present invention caused by the GIDL effect is much smaller than that of the previous art in Figure 1b. NMOS transistor (M3); further, the drain-source voltage (V DS ) of the third NMOS transistor (M13) of the present invention is the voltage level of the power supply voltage (V DD ) minus the V TM23 , In contrast, in the standby mode, the drain-source voltage (V DS ) of the NMOS transistor (M3) of the traditional static random access memory in Figure 1b Figure 6T is equal to the power supply voltage (V DD ), and the energy barrier drops according to the drain (Drain-Induced Barrier Lowering, referred to as DIBL) effect, due to the DIBL effect, the leakage current I 1 flowing through the third NMOS transistor (M13) of the present invention is also smaller than that of the previous art NMOS transistor (M3) in Figure 1b As a result, the leakage current I 1 flowing through the third NMOS transistor (M13) of the present invention is much smaller than that of the NMOS transistor (M3) of the previous art in Figure 1b.

接著關於流經該第一PMOS電晶體(P11)之漏電流I2,由於待機模式時該第一PMOS電晶體(P11)之源極係為該電源供應電壓(VDD),而該第一PMOS電晶體(P11)之汲極係維持在該該VTM23的電壓位準,因此 本發明之該第一PMOS電晶體(P11)之源汲極電壓(VSD)為該電源供應電壓(VDD)扣減該VTM23的電壓位準,反觀於待機模式時第1b圖先前技藝之PMOS電晶體(P1)之源汲極電壓(VSD)係等於該電源供應電壓(VDD),根據DIBL效應,因此流經本發明之該第一PMOS電晶體(P11)之漏電流I2會小於第1b圖先前技藝之PMOS電晶體(P1)者。 Next, regarding the leakage current I 2 flowing through the first PMOS transistor (P11), since the source of the first PMOS transistor (P11) is the power supply voltage (V DD ) in the standby mode, and the first The drain of the PMOS transistor (P11) is maintained at the voltage level of the V TM23 , so the source and drain voltage (V SD ) of the first PMOS transistor (P11) of the present invention is the power supply voltage (V DD ) deduct the voltage level of the V TM23 . In contrast, the source-drain voltage (V SD ) of the PMOS transistor (P1) of the previous art in Figure 1b in the standby mode is equal to the power supply voltage (V DD ), according to Due to the DIBL effect, the leakage current I 2 flowing through the first PMOS transistor (P11) of the present invention is smaller than that of the PMOS transistor (P1) of the prior art in Figure 1b.

最後,關於流經該第二NMOS電晶體(M12)之漏電流I3,由於待機模式時該第二低電壓節點(VL2)之電壓位準係維持在該VTM23的電壓位準,節點A之電壓位準亦維持在該VTM23的電壓位準,而節點B之電壓位準係等於該電源供應電壓(VDD)且該第二NMOS電晶體(M12)之基底為接地電壓,因此本發明之該第二NMOS電晶體(M12)的基源極電壓(VBS)為負值,且該第二NMOS電晶體(M12)之汲源極電壓(VDS)為該電源供應電壓(VDD)扣減該VTM23的電壓位準,反觀於待機模式時第1b圖先前技藝之NMOS電晶體(M2)的基源極電壓(VBS)等於0,且NMOS電晶體(M2)之汲源極電壓(VDS)等於該電源供應電壓(VDD),根據本體效應(body effect)及DIBL效應可知,流經本發明之該第二NMOS電晶體(M12)之漏電流I3遠小於第1b圖先前技藝之NMOS電晶體(M2)者。由上述分析可知,本發明所提出之5T靜態隨機存取記憶體與第1b圖先前技藝相較具有較低之漏電流。 Finally, regarding the leakage current I 3 flowing through the second NMOS transistor (M12), since the voltage level of the second low voltage node (VL2) is maintained at the voltage level of V TM23 in the standby mode, the node A The voltage level of the node B is also maintained at the voltage level of the V TM23 , and the voltage level of the node B is equal to the power supply voltage (V DD ) and the substrate of the second NMOS transistor (M12) is the ground voltage. The base-source voltage (V BS ) of the second NMOS transistor (M12) of the invention is negative, and the drain-source voltage (V DS ) of the second NMOS transistor (M12) is the power supply voltage (V DD ) deduct the voltage level of V TM23 . In contrast, in standby mode, the base-source voltage (V BS ) of the NMOS transistor (M2) of the previous art in Figure 1b is equal to 0, and the drain of the NMOS transistor (M2) The source voltage (V DS ) is equal to the power supply voltage (V DD ). According to the body effect and the DIBL effect, the leakage current I 3 flowing through the second NMOS transistor (M12) of the present invention is much smaller than the first Figure 1b shows the NMOS transistor (M2) of the previous art. It can be seen from the above analysis that the 5T SRAM proposed by the present invention has a lower leakage current than the prior art in Figure 1b.

(IV)保持模式(retension mode) (IV) Retension mode

保持模式時,由於該第一低電壓節點(VL1)與該第二低電壓節點(VL2)均設定成接地電壓,其工作原理相同於第3圖傳統具單一位元線之5T SRAM 晶胞,於此不再累述。 In the hold mode, since the first low voltage node (VL1) and the second low voltage node (VL2) are both set to ground voltage, the working principle is the same as that of the traditional 5T SRAM with a single bit line in Figure 3. The unit cell will not be repeated here.

【發明功效】 【Efficacy of Invention】

本發明所提出之具高寫入速度之5T單埠靜態隨機存取記憶體,具有如下功效: The 5T single-port static random access memory with high writing speed proposed by the present invention has the following effects:

(1)提高寫入邏輯0之速度:由於由邏輯1寫入邏輯0時,存取電晶體(即第三NMOS電晶體M13)係工作於飽和區,飽和區之電流係與其閘-源極電壓VGS(M13)之電壓位準扣減其臨界電壓後之平方成正比例,因此藉由將該位元線(BL)於寫入邏輯0之第一階段設計成低於於該接地電壓之電壓位準,可有效加速寫入邏輯0之速度; (1) Improve the speed of writing logic 0: When logic 0 is written from logic 1, the access transistor (that is, the third NMOS transistor M13) works in the saturation region, and the current in the saturation region is connected to its gate-source The voltage level of the voltage V GS (M13) minus its threshold voltage is proportional to the square, so by designing the bit line (BL) in the first stage of writing logic 0 to be lower than the ground voltage The voltage level can effectively accelerate the speed of writing logic 0;

(2)高設計自由度:由於本發明於讀取邏輯0時,將儲存節點(A)下拉至低於第二NMOS電晶體(M12)之臨界電壓(VTM12)共有二個機制,一個為藉由字元線電壓位準轉換電路(5),以將施加至選定晶胞之存取電晶體(即第三NMOS電晶體M13)的字元線電壓下拉至低於電源供應電壓(即VDD-VTM51),另一個為藉由低於接地電壓之加速讀取電壓(RGND)以下拉儲存節點(A),因此具備高設計自由度之功效; (2) High degree of design freedom: because the present invention pulls down the storage node (A) below the threshold voltage (V TM12 ) of the second NMOS transistor (M12) when reading logic 0, there are two mechanisms, one is The word line voltage level conversion circuit (5) is used to pull down the word line voltage applied to the access transistor of the selected cell (ie the third NMOS transistor M13) to be lower than the power supply voltage (ie V DD -V TM51 ), the other is to pull down the storage node (A) by the accelerated read voltage (RGND) lower than the ground voltage, so it has the effect of high design freedom;

(3)有效降低讀取時之半選定晶胞干擾:本發明可藉由字元線電壓位準轉換電路(5),以於讀取操作期間將施加至選定晶胞之存取電晶體(即第三NMOS電晶體M13)的字元線電壓下拉至低於該電源供應電壓(即VDD-VTM51),其一方面可降低半選定晶胞中之第三NMOS電晶體(M13)的讀取干擾,另一方面可藉由減輕滿足方程式(10)所需之加速讀取電壓(RGND),以降低半選定晶胞中之第一NMOS電晶體(M11)的讀取干擾,因此具備有效降低讀取時之半選定晶胞干擾之功效; (3) Effectively reduce the half-selected cell interference during reading: The present invention can use the word line voltage level conversion circuit (5) to apply the access transistor ( That is, the word line voltage of the third NMOS transistor M13) is pulled down to be lower than the power supply voltage (ie V DD -V TM51 ), which on the one hand can reduce the third NMOS transistor (M13) in the half-selected cell Reading interference, on the other hand, by reducing the accelerated reading voltage (RGND) required to satisfy equation (10), the reading interference of the first NMOS transistor (M11) in the half-selected cell can be reduced, so it has Effectively reduce the effect of half-selected cell interference during reading;

(4)高讀取速度並避免無謂的功率消耗:本發明係採用二階段讀取操作,於讀取操作之第一階段藉由將該第一低電壓節點(VL1)設定成較接地電壓為低之加速讀取電壓(RGND),並配合高電壓位準控制電路(6)以將該高電壓節點(VH)拉高至高於該電源供應電壓(VDD)之電壓位準,因此可有效提高讀取速度,而於讀取操作之第二階段則藉由將第一低 電壓節點(VL1)設定回接地電壓,以便減少無謂的功率消耗; (4) High reading speed and avoiding unnecessary power consumption: The present invention adopts a two-stage reading operation. In the first stage of the reading operation, the first low voltage node (VL1) is set to be lower than the ground voltage. Low acceleration reading voltage (RGND), combined with high voltage level control circuit (6) to pull the high voltage node (VH) higher than the voltage level of the power supply voltage (V DD ), so it is effective Improve the reading speed, and in the second stage of the reading operation, the first low voltage node (VL1) is set back to the ground voltage to reduce unnecessary power consumption;

(5)快速進入待機模式:由於本發明設置有待機啟動電路(4)以促使SRAM快速進入待機模式,並藉此以謀求提高單埠SRAM之待機效能; (5) Quickly enter the standby mode: The present invention is provided with a standby start circuit (4) to prompt the SRAM to enter the standby mode quickly, and thereby seek to improve the standby performance of the single-port SRAM;

(6)提高寫入邏輯1之速度,並避免寫入邏輯1困難之問題:本發明於寫入操作時,可藉由該複數個控制電路(2)以及該複數個寫入驅動電路(7)以有效防止寫入邏輯1困難之同時,亦提高寫入邏輯1之速度; (6) Increase the speed of writing logic 1 and avoid the problem of difficulty in writing logic 1: The present invention can use the plurality of control circuits (2) and the plurality of write drive circuits (7) during the write operation. ) In order to effectively prevent the difficulty of writing logic 1, it also increases the speed of writing logic 1;

(7)低待機電流:由於本發明於待機模式時,可藉由呈導通狀態之第五NMOS電晶體(M22),以使得該第一低電壓節點(VL1)之電壓位準相等於該第二低電壓節點(VL2)之電壓位準,並使得該等電壓位準均等於該第六NMOS電晶體(M23)之臨界電壓的位準,因此本發明亦具備低待機電流之功效; (7) Low standby current: When the present invention is in standby mode, the fifth NMOS transistor (M22) can be turned on to make the voltage level of the first low voltage node (VL1) equal to the first low voltage node (VL1). The voltage levels of the two low voltage nodes (VL2), and the voltage levels are all equal to the threshold voltage level of the sixth NMOS transistor (M23), so the present invention also has the effect of low standby current;

(8)低電晶體數:對於具有1024列1024行之SRAM陣列而言,傳統第1b圖6T靜態隨機存取記憶體陣列共需1024×1024×6=6,291,456顆電晶體,而本發明所提出之靜態隨機存取記憶體僅需1024×1024×5+1024×37+6=5,280,774顆電晶體,其減少16.1%之電晶體數。 (8) Low number of transistors: For an SRAM array with 1024 columns and 1024 rows, the traditional static random access memory array in Figure 1b Figure 6T requires a total of 1024×1024×6=6,291,456 transistors, and the present invention proposes The static random access memory only needs 1024×1024×5+1024×37+6=5,280,774 transistors, which reduces the number of transistors by 16.1%.

(9)高穩定度地完成寫入操作:當該寫入控制信號(WC)為邏輯高位準時,該節點(C)之電壓位準係為該接地電壓,藉此可高穩定度地完成寫入操作(由於寫入操作期間該節點C之電壓位準恆為該接地電壓)。 (9) The write operation is completed with high stability: when the write control signal (WC) is at a logic high level, the voltage level of the node (C) is the ground voltage, so that the write can be completed with high stability Input operation (because the voltage level of the node C is always the ground voltage during the write operation).

雖然本發明特別揭露並描述了所選之較佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本發明的精神與範圍。因此,所有相關技術範疇內之改變都包括在本發明之申請專利範圍內。 Although the present invention has specifically disclosed and described the selected preferred embodiments, those skilled in the art will understand that any possible changes in form or details do not depart from the spirit and scope of the present invention. Therefore, all changes in the relevant technical category are included in the scope of patent application of the present invention.

1‧‧‧SRAM晶胞 1‧‧‧SRAM cell

2‧‧‧控制電路 2‧‧‧Control circuit

3‧‧‧預充電電路 3‧‧‧Pre-charge circuit

4‧‧‧待機啟動電路 4‧‧‧Standby start circuit

5‧‧‧字元線電壓位準轉換電路 5‧‧‧Character line voltage level conversion circuit

6‧‧‧高電壓位準控制電路 6‧‧‧High voltage level control circuit

7‧‧‧寫入驅動電路 7‧‧‧Write drive circuit

P11‧‧‧第一PMOS電晶體 P11‧‧‧The first PMOS transistor

P12‧‧‧第二PMOS電晶體 P12‧‧‧Second PMOS Transistor

M11‧‧‧第一NMOS電晶體 M11‧‧‧First NMOS transistor

M12‧‧‧第二NMOS電晶體 M12‧‧‧Second NMOS Transistor

M13‧‧‧第三NMOS電晶體 M13‧‧‧The third NMOS transistor

A‧‧‧儲存節點 A‧‧‧Storage Node

B‧‧‧反相儲存節點 B‧‧‧Inverted storage node

BL‧‧‧位元線 BL‧‧‧bit line

WLC‧‧‧字元線控制信號 WLC‧‧‧Character line control signal

VDD‧‧‧電源供應電壓 V DD ‧‧‧Power supply voltage

VH‧‧‧高電壓節點 VH‧‧‧High Voltage Node

VL1‧‧‧第一低電壓節點 VL1‧‧‧The first low voltage node

VL2‧‧‧第二低電壓節點 VL2‧‧‧The second low voltage node

S‧‧‧待機模式控制信號 S‧‧‧Standby mode control signal

/S‧‧‧反相待機模式控制信號 /S‧‧‧Inverted standby mode control signal

M21‧‧‧第四NMOS電晶體 M21‧‧‧Fourth NMOS Transistor

M22‧‧‧第五NMOS電晶體 M22‧‧‧Fifth NMOS Transistor

M23‧‧‧第六NMOS電晶體 M23‧‧‧The sixth NMOS transistor

M24‧‧‧第七NMOS電晶體 M24‧‧‧The seventh NMOS transistor

M25‧‧‧第八NMOS電晶體 M25‧‧‧Eighth NMOS Transistor

M26‧‧‧第九NMOS電晶體 M26‧‧‧Ninth NMOS Transistor

M27‧‧‧第十NMOS電晶體 M27‧‧‧Tenth NMOS Transistor

P21‧‧‧第三PMOS電晶體 P21‧‧‧The third PMOS transistor

RC‧‧‧讀取控制信號 RC‧‧‧Read control signal

RGND‧‧‧加速讀取電壓 RGND‧‧‧Accelerated reading voltage

/RC‧‧‧反相讀取控制信號 /RC‧‧‧Inverted reading control signal

/WC‧‧‧反相寫入控制信號 /WC‧‧‧Inverted write control signal

INV‧‧‧第三反相器 INV‧‧‧Third inverter

D1‧‧‧第一延遲電路 D1‧‧‧First delay circuit

P31‧‧‧第四PMOS電晶體 P31‧‧‧Fourth PMOS Transistor

P‧‧‧預充電信號 P‧‧‧Precharge signal

M41‧‧‧第十一NMOS電晶體 M41‧‧‧Eleventh NMOS Transistor

P41‧‧‧第五PMOS電晶體 P41‧‧‧Fifth PMOS Transistor

C‧‧‧節點 C‧‧‧node

D2‧‧‧第二延遲電路 D2‧‧‧Second delay circuit

WL‧‧‧字元線 WL‧‧‧character line

R‧‧‧讀取信號 R‧‧‧Read signal

P51‧‧‧第六PMOS電晶體 P51‧‧‧The sixth PMOS transistor

M51‧‧‧第十二NMOS電晶體 M51‧‧‧Twelfth NMOS Transistor

M52‧‧‧第十三NMOS電晶體 M52‧‧‧Thirteenth NMOS Transistor

P61‧‧‧第七PMOS電晶體 P61‧‧‧The seventh PMOS transistor

P62‧‧‧第八PMOS電晶體 P62‧‧‧Eighth PMOS Transistor

I63‧‧‧第四反相器 I63‧‧‧Fourth inverter

VDDH1‧‧‧第一高電源供應電壓 V DDH1 ‧‧‧The highest power supply voltage

VDDH2‧‧‧第二高電源供應電壓 V DDH2 ‧‧‧The second highest power supply voltage

P71‧‧‧第九PMOS電晶體 P71‧‧‧Ninth PMOS Transistor

M71‧‧‧第十四NMOS電晶體 M71‧‧‧14th NMOS Transistor

M72‧‧‧第十五NMOS電晶體 M72‧‧‧Fifteenth NMOS Transistor

M73‧‧‧第十六NMOS電晶體 M73‧‧‧Sixteenth NMOS Transistor

I71‧‧‧第五反相器 I71‧‧‧Fifth inverter

I72‧‧‧第六反相器 I72‧‧‧Sixth inverter

Cap‧‧‧電容器 Cap‧‧‧Capacitor

Din‧‧‧輸入資料 Din‧‧‧Enter data

D3‧‧‧第三延遲電路 D3‧‧‧The third delay circuit

D4‧‧‧第四延遲電路 D4‧‧‧The fourth delay circuit

Y‧‧‧行解碼器輸出信號 Y‧‧‧Line decoder output signal

Claims (10)

一種具高寫入速度之5T單埠靜態隨機存取記憶體,包括:一記憶體陣列,該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞與每一行記憶體晶胞均包含有複數個記憶體晶胞(1);複數個控制電路(2),每一列記憶體晶胞設置一個控制電路(2);複數個預充電電路(3),每一行記憶體晶胞設置一個預充電電路(3);一待機啟動電路(4),該待機啟動電路(4)係促使該5T單埠靜態隨機存取記憶體快速進入待機模式,以有效提高該5T單埠靜態隨機存取記憶體之待機效能;複數個字元線電壓位準轉換電路(5),每一列記憶體晶胞設置一個字元線電壓位準轉換電路(5),以有效降低讀取時之半選定晶胞干擾;複數個高電壓位準控制電路(6),每一列記憶晶胞設置一個高電壓位準控制電路(6),以在讀取邏輯0時提高讀取速度;以及複數個寫入驅動電路(7),每一行記憶體晶胞設置一個寫入驅動電路(7),以在寫入操作時提高寫入速度;其中,每一記憶體晶胞(1)更包含:一第一反相器,係由一第一PMOS電晶體(P11)與一第一NMOS電晶體(M11)所組成,該第一反相器係連接在一電源供應電壓(VDD)與一第一低電壓節點(VL1)之間;一第二反相器,係由一第二PMOS電晶體(P12)與一第二NMOS電晶體(M12)所組成,該第二反相器係連接在一高電壓節點(VH)與一第二低電壓節點(VL2)之間;一儲存節點(A),係由該第一反相器之輸出端所形成;一反相儲存節點(B),係由該第二反相器之輸出端所形成;一第三NMOS電晶體(M13),係連接在該儲存節點(A)與一位元線(BL)之間,且閘極連接至一字元線控制信號(WLC);其中,該第一反相器和該第二反相器係呈交互耦合連接,亦即該第一反相器之輸出端(即該儲存節點A)係連接至該第二反相器之輸入端,而該第二反相器之輸出端(即該反相儲存節點B)則連接至該第一反相器 之輸入端;而每一控制電路(2)更包含:一第四NMOS電晶體(M21)、一第五NMOS電晶體(M22)、一第六NMOS電晶體(M23)、一第七NMOS電晶體(M24)、一第八NMOS電晶體(M25)、一第九NMOS電晶體(M26)、一第十NMOS電晶體(M27)、一第三PMOS電晶體(P21)、一讀取控制信號(RC)、一第三反相器(INV)、一第一延遲電路(D1)、一加速讀取電壓(RGND)、一寫入控制信號(WC)、一待機模式控制信號(S)以及一反相待機模式控制信號(/S);其中,該第四NMOS電晶體(M21)之源極、閘極與汲極係分別連接至接地電壓、該反相待機模式控制信號(/S)與該第二低電壓節點(VL2);該第五NMOS電晶體(M22)之源極、閘極與汲極係分別連接至該第二低電壓節點(VL2)、該待機模式控制信號(S)與該第一低電壓節點(VL1);該第六NMOS電晶體(M23)之源極係連接至該接地電壓,而閘極與汲極連接在一起並連接至該第一低電壓節點(VL1);該第七NMOS電晶體(M24)之源極、閘極與汲極係分別連接至該第八NMOS電晶體(M25)之汲極、該讀取控制信號(RC)與該第一低電壓節點(VL1);該第八NMOS電晶體(M25)之源極、閘極與汲極係分別連接至該加速讀取電壓(RGND)、該第一延遲電路(D1)之輸出與該第七NMOS電晶體(M24)之源極;該第一延遲電路(D1)係連接在該第三反相器(INV)之輸出與該第八NMOS電晶體(M25)之閘極之間;該第三反相器(INV)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第一延遲電路(D1)之輸入;該第九NMOS電晶體(M26)之源極、閘極與汲極係分別連接至該接地電壓、該第十NMOS電晶體(M27)之汲極與該第一低電壓節點(VL1);該第十NMOS電晶體(M27)之源極、閘極與汲極係分別連接至該接地電壓、該寫入控制信號(WC)與該第九NMOS電晶體(M26)之閘極;該第三PMOS電晶體(P21)之源極、閘極與汲極係分別連接至該反相待 機模式控制信號(/S)、該寫入控制信號(WC)與該第十NMOS電晶體(M27)之汲極;其中,該第三PMOS電晶體(P21)之汲極、該第十NMOS電晶體(M27)之汲極及該第九NMOS電晶體(M26)之閘極係連接在一起並形成一節點(C),當該寫入控制信號(WC)為邏輯低位準時,該節點(C)之電壓位準係為該反相待機模式控制信號(/S)之邏輯電壓位準,而當該寫入控制信號(WC)為邏輯高位準時,該節點(C)之電壓位準係為該接地電壓,藉此以穩定地完成寫入操作(由於寫入操作期間該節點C之電壓位準恆為該接地電壓);其中,對於非讀取模式期間之該讀取控制信號(RC)係設定為該加速讀取電壓(RGND)之位準,以防止該第七NMOS電晶體(M24)於非讀取模式期間之漏電流;此外,該待機啟動電路(4)係設計成於進入待機模式之一初始期間內,對該第一低電壓節點(VL1)處之寄生電容快速充電至該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準;此外,每一字元線電壓位準轉換電路(5)更包含:一第六PMOS電晶體(P51)、一第十二NMOS電晶體(M51)、一第十三NMOS電晶體(M52)、該讀取控制信號(RC)、一反相寫入控制信號(/WC)、一反相讀取控制信號(/RC)以及該字元線控制信號(WLC);其中,該第六PMOS電晶體(P51)之源極、閘極與汲極係分別連接至一字元線(WL)、該反相寫入控制信號(/WC)與該字元線控制信號(WLC);該第十二NMOS電晶體(M51)之源極、閘極與汲極係分別連接至該字元線控制信號(WLC)、該讀取控制信號(RC)與該字元線(WL);而該第十三NMOS電晶體(M52)之源極、閘極與汲極係分別連接至該字元線控制信號(WLC)、該反相讀取控制信號(/RC)與該字元線(WL);其中,每一字元線電壓位準轉換電路(5)於讀取操作時,將選定晶胞之該字元線(WL)由該電源供應電壓(VDD)轉變為該電源供應電壓(VDD)扣抵該第十二NMOS電晶體(M51)之臨界電壓(VTM51)(即VDD-VTM51)後提供給與該字元線控制信號(WLC);而於寫入操作時,則將選定晶 胞之該字元線(WL)的該電源供應電壓(VDD)提供給與該字元線控制信號(WLC);再者,每一高電壓位準控制電路(6)更包含:一第七PMOS電晶體(P61)、一第八PMOS電晶體(P62)一第四反相器(I63)、該讀取控制信號(RC)以及一第一高電源供應電壓(VDDH1),其中該第七PMOS電晶體(P61)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該讀取控制信號(RC)與該高電壓節點(VH),該第八PMOS電晶體(P62)之源極、閘極與汲極係分別連接至該第一高電源供應電壓(VDDH1)、該第四反相器(I63)之輸出與該高電壓節點(VH),而該第四反相器(I63)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第八PMOS電晶體(P62)之閘極;最後,每一寫入驅動電路(7)更包含:一第九PMOS電晶體(P71)、一第十四NMOS電晶體(M71)、一第十五NMOS電晶體(M72)、一第十六NMOS電晶體(M73)、一第五反相器(I71)、一第六反相器(I72)、一電容器(Cap)、一輸入資料(Din)、一行解碼器輸出信號(Y)、一第三延遲電路(D3)、一第四延遲電路(D4)以及一第二高電源供應電壓(VDDH2);其中,該第九PMOS電晶體(P71)之源極、閘極與汲極係分別連接至該第二高電源供應電壓(VDDH2)、該第五反相器(I71)之輸出與該第十四NMOS電晶體(M71)之汲極;該第十四NMOS電晶體(M71)之源極、閘極與汲極係分別連接至該第十六NMOS電晶體(M73)之汲極、該第五反相器(I71)之輸出與該第九PMOS電晶體(P71)之汲極;該第十五NMOS電晶體(M72)之源極、閘極與汲極係分別連接至該接地電壓、該第三延遲電路(D3)之輸出與該第九PMOS電晶體(P71)之汲極;該第十六NMOS電晶體(M73)之源極、閘極與汲極係分別連接至該接地電壓、該第六反相器(I72)之輸出與該第十四NMOS電晶體(M71)之源極;該第五反相器(I71)之輸入係供接收該輸入資料(Din),而輸出則連接至 該第九PMOS電晶體(P71)之閘極、該第十四NMOS電晶體(M71)之閘極以及該第三延遲電路(D3)之輸入;該第六反相器(I72)之輸入係供接收該行解碼器輸出信號(Y),而輸出則連接至該第四延遲電路(D4)之輸入以及該第十六NMOS電晶體(M73)之閘極;該電容器(Cap)之一端係連接至該第四延遲電路(D4)之輸出,而該電容器(Cap)之另一端則連接至該第十四NMOS電晶體(M71)之源極以及該第十六NMOS電晶體(M73)之汲極;其中,該第九PMOS電晶體(P71)之汲極、該第十四NMOS電晶體(M71)之汲極與該第十五NMOS電晶體(M72)之汲極係共同連接至該位元線(BL),該位元線(BL)於寫入邏輯0之第一階段係設計成低於於該接地電壓之電壓位準,以加速寫入邏輯0之速度,而於寫入邏輯1時則設計成高於該電源供應電壓(VDD)之該第二高電源供應電壓(VDDH2)的位準,以加速寫入邏輯1之速度。 A 5T single-port static random access memory with high writing speed, including: a memory array, the memory array is composed of a plurality of rows of memory cell and a plurality of rows of memory cell, each row of memory The unit cell and each row of memory unit cells include multiple memory unit cells (1); multiple control circuits (2), each column of memory unit cells is provided with a control circuit (2); multiple precharge circuits ( 3) Each row of memory cell is equipped with a precharge circuit (3); a standby activation circuit (4), the standby activation circuit (4) prompts the 5T single-port static random access memory to quickly enter the standby mode, In order to effectively improve the standby performance of the 5T single-port static random access memory; a plurality of word-line voltage level conversion circuits (5), each row of memory cell sets a word-line voltage level conversion circuit (5) , In order to effectively reduce the interference of the half-selected cell during reading; a plurality of high-voltage level control circuits (6), each column of memory cell is equipped with a high-voltage level control circuit (6), in order to read logic 0 Improve the reading speed; and a plurality of writing drive circuits (7), each row of memory cell is provided with a writing drive circuit (7) to increase the writing speed during the writing operation; wherein, each memory crystal The cell (1) further includes: a first inverter composed of a first PMOS transistor (P11) and a first NMOS transistor (M11), and the first inverter is connected to a power supply Voltage (V DD ) and a first low-voltage node (VL1); a second inverter is composed of a second PMOS transistor (P12) and a second NMOS transistor (M12), the The second inverter is connected between a high voltage node (VH) and a second low voltage node (VL2); a storage node (A) is formed by the output terminal of the first inverter; The inverting storage node (B) is formed by the output terminal of the second inverter; a third NMOS transistor (M13) is connected between the storage node (A) and the bit line (BL) And the gate is connected to a word line control signal (WLC); wherein, the first inverter and the second inverter are alternately coupled, that is, the output terminal of the first inverter ( That is, the storage node A) is connected to the input terminal of the second inverter, and the output terminal of the second inverter (ie, the inverting storage node B) is connected to the input terminal of the first inverter ; And each control circuit (2) further includes: a fourth NMOS transistor (M21), a fifth NMOS transistor (M22), a sixth NMOS transistor (M23), a seventh NMOS transistor (M24) ), an eighth NMOS transistor (M25), a ninth NMOS transistor (M26), a tenth NMOS transistor (M27), a third PMOS transistor (P21), a read control signal (RC) , A third inverter (INV), a first delay circuit (D1), an acceleration read voltage (RGND), a write control signal (WC), a standby mode Type control signal (S) and an inverted standby mode control signal (/S); wherein the source, gate, and drain of the fourth NMOS transistor (M21) are connected to the ground voltage, and the inverted standby mode The mode control signal (/S) and the second low voltage node (VL2); the source, gate and drain of the fifth NMOS transistor (M22) are respectively connected to the second low voltage node (VL2), The standby mode control signal (S) and the first low voltage node (VL1); the source of the sixth NMOS transistor (M23) is connected to the ground voltage, and the gate and drain are connected together and connected to The first low voltage node (VL1); the source, gate, and drain of the seventh NMOS transistor (M24) are respectively connected to the drain of the eighth NMOS transistor (M25) and the read control signal (RC) and the first low voltage node (VL1); the source, gate, and drain of the eighth NMOS transistor (M25) are respectively connected to the accelerated read voltage (RGND) and the first delay circuit The output of (D1) and the source of the seventh NMOS transistor (M24); the first delay circuit (D1) is connected between the output of the third inverter (INV) and the eighth NMOS transistor (M25) ) Between the gates; the input of the third inverter (INV) is for receiving the read control signal (RC), and the output is connected to the input of the first delay circuit (D1); the ninth NMOS The source, gate, and drain of the transistor (M26) are connected to the ground voltage, the drain of the tenth NMOS transistor (M27) and the first low voltage node (VL1), respectively; the tenth NMOS transistor The source, gate and drain of the crystal (M27) are respectively connected to the ground voltage, the write control signal (WC) and the gate of the ninth NMOS transistor (M26); the third PMOS transistor ( The source, gate and drain of P21) are respectively connected to the inverted standby mode control signal (/S), the write control signal (WC) and the drain of the tenth NMOS transistor (M27); wherein , The drain of the third PMOS transistor (P21), the drain of the tenth NMOS transistor (M27) and the gate of the ninth NMOS transistor (M26) are connected together to form a node (C) , When the write control signal (WC) is at a logic low level, the voltage level of the node (C) is the logic voltage level of the inverted standby mode control signal (/S), and when the write control signal When (WC) is the logic high level, the voltage level of the node (C) is the ground voltage, so as to stably complete the write operation (because the voltage level of the node C during the write operation is always the ground voltage ); Wherein, the read control signal (RC) during the non-read mode is set to the level of the accelerated read voltage (RGND) to prevent the seventh NMOS transistor (M24) in the non-read mode Leakage current during the period; in addition, the standby startup circuit (4) is designed to enter the standby mode During the initial period of the first formula, the parasitic capacitance at the first low voltage node (VL1) is quickly charged to the voltage level of the threshold voltage (V TM23 ) of the sixth NMOS transistor (M23); in addition, each word The cell line voltage level conversion circuit (5) further includes: a sixth PMOS transistor (P51), a twelfth NMOS transistor (M51), a thirteenth NMOS transistor (M52), and the read control signal (RC), an inverted write control signal (/WC), an inverted read control signal (/RC), and the word line control signal (WLC); wherein the sixth PMOS transistor (P51) The source, gate and drain are respectively connected to a word line (WL), the inverted write control signal (/WC) and the word line control signal (WLC); the twelfth NMOS transistor ( The source, gate and drain of M51) are respectively connected to the word line control signal (WLC), the read control signal (RC) and the word line (WL); and the thirteenth NMOS transistor The source, gate and drain of (M52) are respectively connected to the word line control signal (WLC), the inverted read control signal (/RC) and the word line (WL); wherein, each The word line voltage level conversion circuit (5) converts the word line (WL) of the selected unit cell from the power supply voltage (V DD ) to the power supply voltage (V DD ) during the read operation. The threshold voltage (V TM51 ) (ie V DD -V TM51 ) of the twelfth NMOS transistor (M51) is then provided to the word line control signal (WLC); and during the write operation, the crystal is selected The power supply voltage (V DD ) of the word line (WL) of the cell is provided to the word line control signal (WLC); in addition, each high voltage level control circuit (6) further includes: a first Seven PMOS transistors (P61), an eighth PMOS transistor (P62), a fourth inverter (I63), the read control signal (RC), and a first high power supply voltage (V DDH1 ), wherein the The source, gate and drain of the seventh PMOS transistor (P61) are respectively connected to the power supply voltage (V DD ), the read control signal (RC) and the high voltage node (VH), the eighth The source, gate and drain of the PMOS transistor (P62) are respectively connected to the first high power supply voltage (V DDH1 ), the output of the fourth inverter (I63) and the high voltage node (VH) , And the input of the fourth inverter (I63) is for receiving the read control signal (RC), and the output is connected to the gate of the eighth PMOS transistor (P62); finally, every write drive The circuit (7) further includes: a ninth PMOS transistor (P71), a fourteenth NMOS transistor (M71), a fifteenth NMOS transistor (M72), a sixteenth NMOS transistor (M73), One fifth inverter (I71), one Six inverters (I72), a capacitor (Cap), an input data (Din), a row of decoder output signals (Y), a third delay circuit (D3), a fourth delay circuit (D4) and a first Two high power supply voltage (V DDH2 ); wherein, the source, gate and drain of the ninth PMOS transistor (P71) are respectively connected to the second high power supply voltage (V DDH2 ) and the fifth inverter The output of the phaser (I71) and the drain of the fourteenth NMOS transistor (M71); the source, gate and drain of the fourteenth NMOS transistor (M71) are respectively connected to the sixteenth NMOS The drain of the transistor (M73), the output of the fifth inverter (I71) and the drain of the ninth PMOS transistor (P71); the source and gate of the fifteenth NMOS transistor (M72) And the drain are respectively connected to the ground voltage, the output of the third delay circuit (D3) and the drain of the ninth PMOS transistor (P71); the source and gate of the sixteenth NMOS transistor (M73) The pole and the drain are respectively connected to the ground voltage, the output of the sixth inverter (I72) and the source of the fourteenth NMOS transistor (M71); the input of the fifth inverter (I71) is For receiving the input data (Din), and the output is connected to the gate of the ninth PMOS transistor (P71), the gate of the fourteenth NMOS transistor (M71) and the third delay circuit (D3) Input; the input of the sixth inverter (I72) is for receiving the row decoder output signal (Y), and the output is connected to the input of the fourth delay circuit (D4) and the sixteenth NMOS transistor ( M73) gate; one end of the capacitor (Cap) is connected to the output of the fourth delay circuit (D4), and the other end of the capacitor (Cap) is connected to the fourteenth NMOS transistor (M71) The source and the drain of the sixteenth NMOS transistor (M73); wherein the drain of the ninth PMOS transistor (P71), the drain of the fourteenth NMOS transistor (M71) and the fifteenth The drains of the NMOS transistor (M72) are commonly connected to the bit line (BL), and the bit line (BL) is designed to be lower than the ground voltage in the first stage of writing logic 0 , In order to accelerate the speed of writing logic 0, and when writing logic 1, it is designed to be higher than the power supply voltage (V DD ) of the second highest power supply voltage (V DDH2 ) level to accelerate writing The speed of logic 1. 如申請專利範圍第1項所述之具高寫入速度之5T單埠靜態隨機存取記憶體,其中,每一預充電電路(3)係由一第四PMOS電晶體(P31)以及一預充電信號(P)所組成;其中,該第四PMOS電晶體(P31)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該預充電信號(P)與對應之位元線(BL),以便於一預充電期間,藉由邏輯低位準之該預充電信號(P),以將該對應之位元線(BL)預充電至該電源供應電壓(VDD)之位準。 The 5T single-port static random access memory with high writing speed as described in the first item of the patent application, wherein each precharge circuit (3) is composed of a fourth PMOS transistor (P31) and a pre The charging signal (P) is composed; wherein the source, gate and drain of the fourth PMOS transistor (P31) are respectively connected to the power supply voltage (V DD ), the pre-charge signal (P) and the corresponding The bit line (BL) is used to precharge the corresponding bit line (BL) to the power supply voltage (V DD ) by the precharge signal (P) at a logic low level during a precharge period. ) Level. 如申請專利範圍第2項所述之具高寫入速度之5T單埠靜態隨機存取記憶體,其中,該待機啟動電路(4)係由一第五PMOS電晶體(P41)、一第十一NMOS電晶體(M41)、一第二延遲電路(D2)以及該反相待機模式控制信號(/S)所組成;其中,該第五PMOS電晶體(P41)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該反相待機模式控制信號(/S)與該第十一NMOS電晶體(M41)之汲極;該第十一NMOS電晶體(M41)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該第二延遲電路(D2)之輸出與該第五PMOS 電晶體(P41)之汲極;該第二延遲電路(D2)之輸入連接至該反相待機模式控制信號(/S),而該第二延遲電路(D2)之該輸出則連接至該第十一NMOS電晶體(M41)之閘極。 For example, the 5T single-port static random access memory with high writing speed described in the second item of the scope of patent application, wherein the standby startup circuit (4) is composed of a fifth PMOS transistor (P41), a tenth An NMOS transistor (M41), a second delay circuit (D2) and the inverted standby mode control signal (/S) are composed; wherein the source, gate and drain of the fifth PMOS transistor (P41) The poles are respectively connected to the power supply voltage (VDD), the inverted standby mode control signal (/S) and the drain of the eleventh NMOS transistor (M41); the drain of the eleventh NMOS transistor (M41) The source, gate, and drain are respectively connected to the first low voltage node (VL1), the output of the second delay circuit (D2), and the fifth PMOS The drain of the transistor (P41); the input of the second delay circuit (D2) is connected to the inverted standby mode control signal (/S), and the output of the second delay circuit (D2) is connected to the first Eleven NMOS transistor (M41) gate. 如申請專利範圍第3項所述之具高寫入速度之5T單埠靜態隨機存取記憶體,其中,每一寫入驅動電路(7)寫入邏輯0之該第一階段滿足下列方程式:VBL1=-VDD×Cap/(Cap+CBL)其中,VBL1表示該位元線(BL)於寫入邏輯0之該第一階段的電壓位準,VBL1的絕對值設計為小於該第三NMOS電晶體(M13)之臨界電壓,VDD為該電源供應電壓(VDD)之電壓位準,而Cap與CBL分別表示該該電容器(Cap)之電容值與該位元線(BL)之寄生電容值。 For example, the 5T single-port static random access memory with high writing speed described in item 3 of the scope of patent application, wherein the first stage of writing logic 0 in each writing drive circuit (7) satisfies the following equation: V BL1 = -V DD ×Cap/(Cap+C BL ) where, V BL1 represents the voltage level of the bit line (BL) in the first stage of writing logic 0, and the absolute value of V BL1 is designed to be less than The threshold voltage of the third NMOS transistor (M13), V DD is the voltage level of the power supply voltage (V DD ), and Cap and C BL represent the capacitance value of the capacitor (Cap) and the bit line, respectively (BL) Parasitic capacitance value. 如申請專利範圍第4項所述之具高寫入速度之5T單埠靜態隨機存取記憶體,其中,該儲存節點(A)由邏輯0寫入邏輯1之寫入初始瞬間電壓(VAWI1)滿足下列方程式:VAWI1=VDDH2×(RM11+RM23)/(RM13+RM11+RM23)且VAWI1>VTM12其中,RM11、RM13與RM23分別表示該第一NMOS電晶體(M11)、該第三NMOS電晶體(M13)與該第六NMOS電晶體(M23)之導通電阻,而VDDH2與VTM12分別表示該第二高電源供應電壓(VDDH2)之電壓位準與該第二NMOS電晶體(M12)之臨界電壓。 For example, the 5T single-port static random access memory with high write speed described in item 4 of the scope of patent application, wherein the storage node (A) is written from logic 0 to the initial instantaneous voltage of writing logic 1 (V AWI1 ) Satisfies the following equation: V AWI1 =V DDH2 ×(R M11 +R M23 )/(R M13 +R M11 +R M23 ) and V AWI1 >V TM12 where R M11 , R M13 and R M23 represent the first The on-resistance of the NMOS transistor (M11), the third NMOS transistor (M13) and the sixth NMOS transistor (M23), and V DDH2 and V TM12 respectively represent the difference between the second high power supply voltage (V DDH2 ) The voltage level and the threshold voltage of the second NMOS transistor (M12). 如申請專利範圍第5項所述之具高寫入速度之5T單埠靜態隨機存取記憶體,其中,該儲存節點(A)由邏輯1寫入邏輯0之寫入初始瞬間電壓(VAWI0)滿足下列方程式:VAWI0=VBL1×RP11/(RM13+RP11)+VDD×RM13/(RM13+RP11)其中,RM13與RP11分別表示該第三NMOS電晶體(M13)與該第一PMOS電晶體(P11)之導通電阻,而VBL1與VDD分別表示該位元線(BL)於寫入邏輯0之該第一階段的電壓位準與該電源供應電壓(VDD)之電壓位準。 For example, the 5T single-port static random access memory with high write speed as described in item 5 of the scope of patent application, wherein the storage node (A) is written with the initial instantaneous voltage (V AWI0 ) of logic 1 written to logic 0 ) Satisfies the following equation: V AWI0 =V BL1 ×R P11 /(R M13 +R P11 )+V DD ×R M13 /(R M13 +R P11 ) where R M13 and R P11 represent the third NMOS transistor respectively (M13) and the on-resistance of the first PMOS transistor (P11), and V BL1 and V DD respectively represent the voltage level of the bit line (BL) at the first stage of writing logic 0 and the power supply The voltage level of the voltage (V DD ). 如申請專利範圍第1項所述之具高寫入速度之5T單埠靜態隨機存取記憶 體,其中,該儲存節點A讀取邏輯0時之讀取初始瞬間電壓(VAR0I)滿足下列方程式:VAR0I=VDD×(RM11+(RM24+RM25)∥RM26)/(RM13+RM11+(RM24+RM25)∥RM26)+RGND×(RM11+RM13)∥RM26/(RM24+RM25+(RM11+RM13)∥RM26)×RM13/(RM11+RM13)且VAR0I<VTM12其中,RM11、RM13、RM24、RM25與RM26分別表示該第一NMOS電晶體(M11)、該第三NMOS電晶體(M13)、該第七NMOS電晶體(M24)、該第八NMOS電晶體(M25)與該第九NMOS電晶體(M26)之導通電阻,而VDD、RGND與VTM12分別表示該電源供應電壓(VDD)、該加速讀取電壓(RGND)與該第二NMOS電晶體(M12)之臨界電壓。 For example, the 5T single-port static random access memory with high write speed as described in the first item of the patent application, wherein the initial instantaneous voltage (V AR0I ) when the storage node A reads logic 0 satisfies the following equation :V AR0I =V DD ×(R M11 +(R M24 +R M25 )∥R M26 )/(R M13 +R M11 +(R M24 +R M25 )∥R M26 )+RGND×(R M11 +R M13 )∥R M26 /(R M24 +R M25 +(R M11 +R M13 )∥R M26 )×R M13 /(R M11 +R M13 ) and V AR0I <V TM12 where R M11 , R M13 , R M24 , R M25 and R M26 respectively represent the first NMOS transistor (M11), the third NMOS transistor (M13), the seventh NMOS transistor (M24), the eighth NMOS transistor (M25) and the Nine NMOS transistor (M26) on-resistance, and V DD , RGND and V TM12 respectively represent the power supply voltage (V DD ), the accelerated read voltage (RGND) and the second NMOS transistor (M12) critical Voltage. 如申請專利範圍第1項所述之具高寫入速度之5T單埠靜態隨機存取記憶體,其中,該第一低電壓節點(VL1)於讀取邏輯1時之讀取初始瞬間電壓(VRVL1I)滿足下列方程式:VRVL1I=RGND×RM26/(RM26+RM24+RM25)且VRVL1I>-VTM11其中,RGND表示該加速讀取電壓,RM26、RM24與RM25分別表示該第九NMOS電晶體(M26)、該第七NMOS電晶體(M24)與該第八NMOS電晶體(M25)之導通電阻,而VTM11表示該第一NMOS電晶體(M11)之臨界電壓。 For example, the 5T single-port static random access memory with high write speed described in the first item of the patent application, wherein the first low voltage node (VL1) reads the initial instantaneous voltage ( V RVL1I ) satisfies the following equation: V RVL1I =RGND×R M26 /(R M26 +R M24 +R M25 ) and V RVL1I >-V TM11 where RGND represents the accelerated reading voltage, R M26 , R M24 and R M25 Respectively represent the on-resistance of the ninth NMOS transistor (M26), the seventh NMOS transistor (M24) and the eighth NMOS transistor (M25), and V TM11 represents the criticality of the first NMOS transistor (M11) Voltage. 如申請專利範圍第1項所述之具高寫入速度之5T單埠靜態隨機存取記憶體,其中,該第一高電源供應電壓(VDDH1)係設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第二PMOS電晶體(P12)臨界電壓之絕對值|VTP12|的總和,亦即VDD<VDDH1<VDD+|VTP12|。 For example, the 5T single-port static random access memory with high writing speed described in the first item of the patent application, wherein the first high power supply voltage (V DDH1 ) is set higher than the power supply voltage (V DD ) but lower than the sum of the absolute value of the power supply voltage (V DD ) and the threshold voltage of the second PMOS transistor (P12) |V TP12 |, that is, V DD <V DDH1 <V DD +|V TP12 | . 如申請專利範圍第1項所述之具高寫入速度之5T單埠靜態隨機存取記憶 體,其中,該第二高電源供應電壓(VDDH2)係設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第九PMOS電晶體(P71)臨界電壓之絕對值|VTP71|的總和,亦即VDD<VDDH2<VDD+|VTP71|。 For example, the 5T single-port static random access memory with high writing speed described in the first item of the patent application, wherein the second high power supply voltage (V DDH2 ) is set higher than the power supply voltage (V DD ) but lower than the sum of the absolute value of the power supply voltage (V DD ) and the threshold voltage of the ninth PMOS transistor (P71)|V TP71 |, that is, V DD <V DDH2 <V DD +|V TP71 | .
TW107144251A 2018-12-10 2018-12-10 Five-transistor single port static random access memory with fast write speed TWI681392B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107144251A TWI681392B (en) 2018-12-10 2018-12-10 Five-transistor single port static random access memory with fast write speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107144251A TWI681392B (en) 2018-12-10 2018-12-10 Five-transistor single port static random access memory with fast write speed

Publications (2)

Publication Number Publication Date
TWI681392B TWI681392B (en) 2020-01-01
TW202022869A true TW202022869A (en) 2020-06-16

Family

ID=69942691

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107144251A TWI681392B (en) 2018-12-10 2018-12-10 Five-transistor single port static random access memory with fast write speed

Country Status (1)

Country Link
TW (1) TWI681392B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI727901B (en) * 2020-10-15 2021-05-11 修平學校財團法人修平科技大學 Static random access memory
TWI726823B (en) * 2020-10-15 2021-05-01 修平學校財團法人修平科技大學 Dual port static random access memory
TWI727909B (en) * 2020-11-25 2021-05-11 修平學校財團法人修平科技大學 Semiconductor memory device
TWI733624B (en) * 2020-11-25 2021-07-11 修平學校財團法人修平科技大學 Semiconductor memory device
TWI742992B (en) * 2021-01-28 2021-10-11 修平學校財團法人修平科技大學 Semiconductor device
TWI760153B (en) * 2021-03-23 2022-04-01 修平學校財團法人修平科技大學 Memory device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3549602B2 (en) * 1995-01-12 2004-08-04 株式会社ルネサステクノロジ Semiconductor storage device
US6570227B2 (en) * 1999-06-23 2003-05-27 Bae Systems Information And Electronics Systems Integration, Inc. High-performance high-density CMOS SRAM cell
JP3906166B2 (en) * 2003-02-25 2007-04-18 株式会社東芝 Semiconductor memory device
KR100604876B1 (en) * 2004-07-02 2006-07-31 삼성전자주식회사 SRAM device employing stable virtual rail scheme against process-voltage-temperature variations
TWI421880B (en) * 2010-03-25 2014-01-01 Faraday Tech Corp Sram writing system and related apparatus
US8503221B1 (en) * 2011-06-02 2013-08-06 Richard Frederic Hobson SRAM cell with common bit line and source line standby voltage
TWI633545B (en) * 2017-11-24 2018-08-21 修平學校財團法人修平科技大學 Seven-transistor static random access memory with fast write speed
TWI638365B (en) * 2017-12-08 2018-10-11 修平學校財團法人修平科技大學 Five-transistor static random access memory with fast write speed

Also Published As

Publication number Publication date
TWI681392B (en) 2020-01-01

Similar Documents

Publication Publication Date Title
TWI681392B (en) Five-transistor single port static random access memory with fast write speed
TWI638365B (en) Five-transistor static random access memory with fast write speed
TW201824267A (en) Five-transistor single port static random access memory with fast read speed includes a memory array, a plurality of control circuits, a plurality of pre-charging circuits, a standby activation circuit, a plurality of word line voltage level converting circuits and a plurality of high voltage level control circuits
TWI634564B (en) Five transistor single port static random access memory
TWI618082B (en) Five transistor static random access memory
TWI611424B (en) Five transistor static random access memory with fast read speed
TWI715093B (en) Static random access memory with fast write speed
TWI660349B (en) Five-transistor single port static random access memory with fast read/write speed
TWI638355B (en) Five-transistor static random access memory with fast write speed
TWI618085B (en) Static random access memory
TWI689924B (en) Five-transistor static random access memory
TWI694444B (en) Five-transistor static random access memory with fast write speed
TWI716214B (en) Five-transistor single port static random access memory
TWI694458B (en) Single port static random access memory with fast write speed
TWI690938B (en) Semiconductor memory
TWI681389B (en) Semiconductor memory device
TW201828299A (en) Five transistor single port static random access memory with standby initiating circuit to effectively make the static random access memory quickly enter a standby mode
TWI660366B (en) Five-transistor static random access memory with fast read/write speed
TWI678698B (en) Five-transistor static random access memory with improved access speed
TWI618062B (en) Static random access memory with five transistors
TWI638364B (en) Five-transistor single port static random access memory with fast write speed
TWI622062B (en) Static random access memory with fast read speed
TWI618061B (en) Single port static random access memory
TWI611423B (en) Single port static random access memory with fast read speed
TW202006731A (en) Single port static random access memory

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees