TWI690938B - Semiconductor memory - Google Patents

Semiconductor memory Download PDF

Info

Publication number
TWI690938B
TWI690938B TW108119852A TW108119852A TWI690938B TW I690938 B TWI690938 B TW I690938B TW 108119852 A TW108119852 A TW 108119852A TW 108119852 A TW108119852 A TW 108119852A TW I690938 B TWI690938 B TW I690938B
Authority
TW
Taiwan
Prior art keywords
nmos transistor
voltage
control signal
drain
node
Prior art date
Application number
TW108119852A
Other languages
Chinese (zh)
Other versions
TW202046310A (en
Inventor
劉文頡
蕭明椿
高慶沅
周含科
Original Assignee
修平學校財團法人修平科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 修平學校財團法人修平科技大學 filed Critical 修平學校財團法人修平科技大學
Priority to TW108119852A priority Critical patent/TWI690938B/en
Application granted granted Critical
Publication of TWI690938B publication Critical patent/TWI690938B/en
Publication of TW202046310A publication Critical patent/TW202046310A/en

Links

Images

Abstract

本發明提出一種具高寫入速度之靜態隨機存取記憶體的半導體記憶體,其主要包括一記憶體陣列、複數個控制電路(2)、複數個預充電電路(3)、一待機啟動電路(4)、複數個字元線電壓位準轉換電路(5)、複數個高電壓位準控制電路(6)以及複數個寫入驅動電路(7),該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞設置一個控制電路(2)、一個字元線電壓位準轉換電路(5)以及一個高電壓位準控制電路(6),且每一行記憶體晶胞設置一個預充電電路(3)以及一個寫入驅動電路(7),藉此於寫入模式時,可藉由該複數個控制電路(2)以及該複數個寫入驅動電路(7)以有效防止寫入邏輯1困難之同時,亦提高寫入邏輯0之速度,於讀取模式時,一方面藉由該複數個控制電路(2)以及該複數個高電壓位準控制電路(6)以於提高讀取速度的同時,亦避免無謂的功率耗損,另一方面藉由該複數個字元線電壓位準轉換電路(5)以有效降低讀取時之半選定晶胞干擾。 The invention provides a semiconductor memory with a static random access memory with high writing speed, which mainly includes a memory array, a plurality of control circuits (2), a plurality of precharge circuits (3), and a standby start circuit (4), a plurality of word line voltage level conversion circuits (5), a plurality of high voltage level control circuits (6), and a plurality of write drive circuits (7), the memory array is composed of a plurality of rows of memory The cell is composed of a plurality of rows of memory cells, each column of memory cells is provided with a control circuit (2), a word line voltage level conversion circuit (5) and a high voltage level control circuit (6), And each row of memory cells is provided with a precharge circuit (3) and a write drive circuit (7), so that in the write mode, the plurality of control circuits (2) and the plurality of writes The driving circuit (7) effectively prevents the difficulty of writing logic 1 and also increases the speed of writing logic 0. In the reading mode, on the one hand, by the plurality of control circuits (2) and the plurality of high voltage bits The level control circuit (6) improves the reading speed while avoiding unnecessary power consumption. On the other hand, the multiple word line voltage level conversion circuits (5) are used to effectively reduce the half selection during reading Cell interference.

Description

半導體記憶體 Semiconductor memory

本發明係有關於一種具高寫入速度之靜態隨機存取記憶體(Static Random Access Memory,簡稱SRAM)的半導體記憶體,尤指一種有效提高SRAM待機效能,並能有效提高讀取速度與寫入速度,且能有效降低漏電流(leakage current)、降低讀取時之半選定晶胞干擾以及避免無謂的功率耗損之SRAM。 The invention relates to a static random access memory (SRAM) semiconductor memory with high writing speed, in particular to a kind of SRAM which effectively improves the standby performance of SRAM and can effectively improve the reading speed and writing SRAM that can reduce the leakage current (leakage current), reduce half-selected cell interference during reading, and avoid unnecessary power consumption.

習知之6T靜態隨機存取記憶體(SRAM)如第1a圖所示,其主要包括一記憶體陣列(memory array),該記憶體陣列係由複數個記憶體區塊(memory block,MB1、MB2等)所組成,每一記憶體區塊更由複數列記憶體晶胞(a plurality of rows of memory cells)與複數行記憶體晶胞(a plurality of columns of memory cells)所組成,每一列記憶體晶胞與每一行記憶體晶胞各包括有複數個記憶體晶胞;複數條字元線(word line,WL1、WL2等),每一字元線對應至複數列記憶體晶胞中之一列;以及複數位元線對(bit line pairs,BL1、BLB1...BLm、BLBm等),每一位元線對係對應至複數行記憶體晶胞中之一行,且每一位元線對係由一位元線(BL1...BLm)及一互補位元線(BLB1...BLBm)所組成。 The conventional 6T static random access memory (SRAM) is shown in Figure 1a, which mainly includes a memory array (memory array), which is composed of a plurality of memory blocks (memory block, MB 1 , MB 2 etc.), each memory block is further composed of a plurality of rows of memory cells and a plurality of rows of memory cells, each A row of memory cells and each row of memory cells each include a plurality of memory cells; a plurality of word lines (word lines, WL 1 , WL 2 etc.), each word line corresponds to a plurality of rows of memory cells One row in the unit cell; and plural bit line pairs (BL 1 , BLB 1 ... BL m , BLB m, etc.), each bit line pair corresponds to one of the plural row memory cells One row, and each bit line pair is composed of a bit line (BL 1 ... BL m ) and a complementary bit line (BLB 1 ... BLB m ).

第1b圖所示即是6T靜態隨機存取記憶體(SRAM)晶胞之電 路示意圖,其中,PMOS電晶體(P1)和(P2)稱為負載電晶體(load transistor),NMOS電晶體(M1)和(M2)稱為驅動電晶體(driving transistor),NMOS電晶體(M3)和(M4)稱為存取電晶體(access transistor),WL為字元線(word line),而BL及BLB分別為位元線(bit line)及互補位元線(complementary bit line),由於該單埠SRAM晶胞需要6個電晶體,且於讀取邏輯0時,為了避免讀取操作初始瞬間(initial instant)另一驅動電晶體導通,節點A之讀取初始瞬間電壓(VAR)必須滿足方程式(1):VAR=VDD×(RM1)/(RM1+RM3)<VTM2 (1) Figure 1b shows the circuit diagram of the 6T static random access memory (SRAM) cell. Among them, PMOS transistors (P1) and (P2) are called load transistors and NMOS transistors (M1). ) And (M2) are called driving transistors, NMOS transistors (M3) and (M4) are called access transistors, WL is a word line, and BL and BLB These are the bit line and the complementary bit line, because the SRAM cell of this port requires 6 transistors, and when reading logic 0, in order to avoid the initial moment of the read operation (initial instant) The other driving transistor is turned on, and the initial instantaneous voltage (V AR ) of node A must satisfy equation (1): V AR = V DD ×(R M1 )/(R M1 +R M3 )<V TM2 ( 1)

其中,VAR表示節點A之讀取初始瞬間電壓,RM1與RM3分別表示該NMOS電晶體(M1)與該NMOS電晶體(M3)之導通電阻,而VDD與VTM2分別表示電源供應電壓與該NMOS電晶體(M2)之臨界電壓,此導致驅動電晶體與存取電晶體之間的電流驅動能力比(即單元比率,cell ratio)通常設定在2.2至3.5之間(請參考98年10月20日第US76060B2號專利說明書第2欄第8-10行)。 Where, V AR represents the initial instantaneous voltage of node A, R M1 and R M3 respectively represent the on-resistance of the NMOS transistor (M1) and the NMOS transistor (M3), and V DD and V TM2 respectively represent the power supply Voltage and the threshold voltage of the NMOS transistor (M2), which results in the current driving capability ratio (ie cell ratio) between the driving transistor and the access transistor usually set between 2.2 and 3.5 (please refer to 98 Patent Specification No. US76060B2, October 20, 2010, column 2, lines 8-10).

第1b圖所示6T靜態隨機存取記憶體晶胞於寫入操作時之HSPICE暫態分析模擬結果,如第2圖所示,其係使用TSMC 90奈米CMOS製程參數加以模擬。 Figure 1b shows the HSPICE transient analysis simulation results of the 6T static random access memory cell during the write operation. As shown in Figure 2, it is simulated using TSMC 90nm CMOS process parameters.

用來減少6T靜態隨機存取記憶體(SRAM)晶胞之電晶體數之一種方式係揭露於第3圖中。第3圖顯示一種僅具單一位元線之5T靜態隨機存取記憶體晶胞之電路示意圖,與第1b圖之6T靜態隨機存取記憶體晶胞相比,此種5T靜態隨機存取記憶體晶胞比6T靜態隨機存取記憶體晶胞少一個電晶體及少一條位元線,惟該5T靜態隨機存取記憶體晶胞在不變更PMOS 電晶體P1和P2以及NMOS電晶體M1、M2和M3的通道寬長比(亦即保持與6T SRAM晶胞相同之電晶體通道寬長比)的情況下存在寫入邏輯1相當困難之問題。茲考慮記憶晶胞左側節點A原本儲存邏輯0的情況,由於節點A之電荷僅單獨自位元線(BL)傳送,因此在將節點A中先前寫入的邏輯0蓋寫成邏輯1之寫入初始瞬間電壓(VAW)等於方程式(2):VAW=VDD×(RM1)/(RM1+RM3) (2)其中,VAW表示節點A之寫入初始瞬間電壓,RM1與RM3分別表示NMOS電晶體(M1)與NMOS電晶體(M3)之導通電阻,比較方程式(1)與方程式(2)可知,寫入初始瞬間電壓(VAW)小於NMOS電晶體(M2)之臨界電壓(VTM2),因而無法完成寫入邏輯1之操作。第3圖所示之5T靜態隨機存取記憶體晶胞,於寫入操作時之HSPICE暫態分析模擬結果,如第4圖所示,其係使用TSMC 90奈米CMOS製程參數加以模擬,由該模擬結果可証實,具單一位元線之5T靜態隨機存取記憶體晶胞存在寫入邏輯1相當困難之問題。 One way to reduce the number of transistors in the 6T static random access memory (SRAM) cell is shown in Figure 3. Figure 3 shows a circuit diagram of a 5T static random access memory cell with only a single bit line. Compared with the 6T static random access memory cell of Figure 1b, this 5T static random access memory The body cell has one transistor and one bit line less than the 6T static random access memory cell, but the 5T static random access memory cell does not change the PMOS transistors P1 and P2 and the NMOS transistor M1. In the case of the channel width-to-length ratio of M2 and M3 (that is, maintaining the same transistor channel width-to-length ratio as the 6T SRAM cell), there is a problem that writing logic 1 is quite difficult. Consider the case where the node A on the left side of the memory cell originally stores logic 0. Since the charge of node A is only transferred from the bit line (BL), the logic 0 previously written in node A is overwritten by the logic 1 write. The initial instantaneous voltage (V AW ) is equal to equation (2): V AW = V DD × (R M1 )/(R M1 + R M3 ) (2) where V AW represents the initial instantaneous voltage of node A, R M1 And R M3 represent the on-resistance of NMOS transistor (M1) and NMOS transistor (M3) respectively. Comparing equation (1) and equation (2), we can see that the initial instantaneous voltage (V AW ) is less than NMOS transistor (M2) The threshold voltage (V TM2 ) cannot complete the logic 1 write operation. The simulation results of the HSPICE transient analysis of the 5T static random access memory cell shown in Figure 3 during the write operation are shown in Figure 4, which are simulated using TSMC 90nm CMOS process parameters. The simulation results can confirm that the 5T static random access memory cell with a single bit line has a problem that it is quite difficult to write logic 1.

至今,有許多解決上述第4圖5T靜態隨機存取記憶體晶胞寫入邏輯1困難之方法被提出,第一種方法為寫入時將供應至記憶體晶胞之電壓位準拉低至低於電源供應電壓(VDD),以便於寫入邏輯1時(假設節點A原本儲存邏輯0,而現在欲寫入邏輯1),藉由提高驅動電晶體NMOS電晶體M1之導通電阻以於寫入操作期間能使驅動電晶體NMOS電晶體M2導通,而完成寫入邏輯1之操作,該等方法例如專利文獻1(99年4月27日第US 7706203B2號)所提出之「Memory System」、專利文獻2(103年2月11日第TW I426514B號)所提出之「寫入操作時降低電源電壓之5T靜態隨機存取 記憶體」及專利文獻3(105年5月21日第TW I534802B號)所提出之「半導體儲存器」等,其雖可有效解決寫入邏輯1困難之問題,惟由於該等方法需設置雙電源及/或放電路徑,且該等方法寫入時須將供應至記憶體晶胞之電壓位準拉低至低於電源供應電壓(VDD)並於寫入完成後將供應至記憶體晶胞之電壓位準回復為電源供應電壓(VDD),因此均會造成無謂的功率耗損。 So far, many methods have been proposed to solve the difficulty of writing logic 1 in the static random access memory cell of FIG. 5T described above. The first method is to lower the voltage level supplied to the memory cell to It is lower than the power supply voltage (V DD ) to facilitate the writing of logic 1 (assuming that node A originally stored logic 0, and now wants to write logic 1), by increasing the on-resistance of driving transistor NMOS transistor M1 During the writing operation, the driving transistor NMOS transistor M2 can be turned on to complete the operation of writing logic 1, such as the "Memory System" proposed in Patent Document 1 (April 27, 1999 No. US 7706203B2) , Patent Document 2 (TW I426514B, February 11, 103), "5T Static Random Access Memory for Reducing Power Supply Voltage during Write Operation" and Patent Document 3 (TW I534802B, May 21, 105 No.) proposed "semiconductor memory", etc., although it can effectively solve the difficulty of writing logic 1, but because these methods need to set up dual power supply and/or discharge path, and these methods must be supplied when writing The voltage level to the memory cell is pulled lower than the power supply voltage (V DD ) and the voltage level supplied to the memory cell is restored to the power supply voltage (V DD ) after writing is completed Will cause unnecessary power consumption.

第二種方法為重新設計PMOS電晶體P1和P2以及NMOS電晶體M1、M2和M3的通道寬長比,例如非專利文獻4(Satyanand Nalam et al.,”5T SRAM with asymmetric sizing for improved read stability”,IEEE Journal of Solid-State Circuits.,Vol.46.No.10,pp 2431-2442,Oct.2011.),惟由於PMOS電晶體P1和P2的通道寬長比不相同且NMOS電晶體M1和M2的通道寬長比不相同,因此會使靜態雜訊邊際(SNM)降低。 The second method is to redesign the channel width-to-length ratio of PMOS transistors P1 and P2 and NMOS transistors M1, M2 and M3, such as Non-Patent Document 4 (Satyanand Nalam et al., "5T SRAM with asymmetric sizing for improved read stability ", IEEE Journal of Solid-State Circuits ., Vol. 46.No. 10, pp 2431-2442, Oct. 2011.), but because the channel width-to-length ratios of PMOS transistors P1 and P2 are different and NMOS transistor M1 The channel width and length ratios of M2 and M2 are different, so the static noise margin (SNM) will be reduced.

第三種方法為寫入時將供應至記憶體晶胞之存取電晶體M3閘極之字元線(WL)電壓位準拉高至高於電源供應電壓(VDD),以便於寫入邏輯1時(假設節點A原本儲存邏輯0,而現在欲寫入邏輯1),藉由降低存取電晶體M3之導通電阻以於寫入初始瞬間能使驅動電晶體NMOS電晶體M2導通,而完成寫入邏輯1之操作,例如專利文獻5(102年8月1日第TW I404065B號)所提出之「寫入操作時提高字元線電壓位準之單埠靜態隨機存取記憶體」,惟由於寫入時將供應至記憶體晶胞之存取電晶體M3閘極之字元線(WL)電壓位準拉高至高於電源供應電壓(VDD),因此會導致增加寫入時之半選定晶胞干擾(half-selected cell disturbance)。 The third method is to increase the voltage level of the word line (WL) of the access transistor M3 gate supplied to the memory cell during writing to be higher than the power supply voltage (V DD ) to facilitate writing logic At 1 (assuming that node A originally stored logic 0, and now wants to write logic 1), the drive transistor NMOS transistor M2 can be turned on at the initial moment of writing by reducing the on resistance of access transistor M3 The operation of writing logic 1, such as the "Port Static Random Access Memory that raises the voltage level of the word line during writing operation" proposed in Patent Document 5 (TW I404065B on August 1, 102), but Since the voltage level of the word line (WL) of the access transistor M3 gate supplied to the memory cell is increased during writing to be higher than the power supply voltage (V DD ), it will increase the half of the writing time Selected cell disturbance (half-selected cell disturbance).

第四種方法為寫入時將驅動電晶體NMOS電晶體M1之源極電壓位準拉高至高於接地電壓,以便於寫入邏輯1時(假設節點A原本儲存邏輯0,而現在欲寫入邏輯1),藉由提高驅動電晶體NMOS電晶體M1之汲極電壓位準,以於寫入初始瞬間能使驅動電晶體NMOS電晶體M2導通,而完 成寫入邏輯1之操作,例如專利文獻6(107年10月11日第TW I638364B號)所提出之「具高寫入速度之靜態隨機存取記憶體」、專利文獻7(107年10月11日第TW I638365B號)所提出之「具高寫入速度之靜態隨機存取記憶體」及專利文獻8(107年10月11日第TW I638355B號)所提出之「具高寫入速度之靜態隨機存取記憶體」等均屬之。 The fourth method is to increase the source voltage level of the driving transistor NMOS transistor M1 to be higher than the ground voltage during writing, so that when writing logic 1 (assuming that node A originally stored logic 0, and now wants to write Logic 1), by raising the level of the drain voltage of the driving transistor NMOS transistor M1, the driving transistor NMOS transistor M2 can be turned on at the initial moment of writing, and the end The operation of writing into logic 1, such as "Static Random Access Memory with High Writing Speed" proposed in Patent Document 6 (TW I638364B on October 11, 107), Patent Document 7 (October 107 (No. TW I638365B on the 11th) proposed "Static Random Access Memory with High Writing Speed" and Patent Document 8 (No. TW I638355B on October 11, 107) "Static random access memory" and so on.

第五種方法為寫入時藉由背閘極偏壓(back gate bias)技術以提高驅動電晶體NMOS電晶體M1之臨界電壓並同時降低存取電晶體M3之臨界電壓,以便於寫入邏輯1時(假設節點A原本儲存邏輯0,而現在欲寫入邏輯1),藉由提高驅動電晶體NMOS電晶體M1之汲極電壓位準,以於寫入初始瞬間能使驅動電晶體NMOS電晶體M2導通,而完成寫入邏輯1之操作,惟該方法須使用分離井(split well)會增加製程複雜度,因此較少使用。 The fifth method is to increase the threshold voltage of the driving transistor NMOS transistor M1 and at the same time lower the threshold voltage of the access transistor M3 by using the back gate bias technology to write logic At 1 (assuming that node A originally stored logic 0 and now wants to write logic 1), by increasing the drain voltage level of the driving transistor NMOS transistor M1, the driving transistor NMOS can be enabled at the initial moment of writing The crystal M2 is turned on, and the operation of writing logic 1 is completed, but this method requires the use of a split well, which increases the complexity of the process and is therefore less used.

第六種方法為重新設計PMOS電晶體P1和P2以及NMOS電晶體M1、M2和M3之間的連接關係,例如非專利文獻9(Chua-Chin Wang et al.,”A single-ended disturb-free 5T loadless SRAM with leakage sensor and read delay compensation using 40nm process”,2014 International Symposium on Circuits and Systems,pp 1126-1129,June 2014.)及非專利文獻10(Shyam Akashe et al.,”High density and low leakage current based 5T SRAM cell using 45nm technology”,2011 International Conference on Nanoscience,Engineering and Technology(ICONSET),pp 346-350,Nov.2011.)等均屬之。 The sixth method is to redesign the connection relationship between PMOS transistors P1 and P2 and NMOS transistors M1, M2 and M3, such as Non-Patent Document 9 (Chua-Chin Wang et al., "A single-ended disturb-free 5T loadless SRAM with leakage sensor and read delay compensation using 40nm process", 2014 International Symposium on Circuits and Systems, pp 1126-1129, June 2014.) and non-patent literature 10 (Shyam Akashe et al., "High density and low leakage "current based 5T SRAM cell using 45nm technology", 2011 International Conference on Nanoscience, Engineering and Technology (ICONSET), pp 346-350, Nov. 2011.) and so on.

以上所述之該等技術雖可有效解決寫入邏輯1困難之問題,惟該等技術均未考慮到如何提高寫入邏輯0之速度,其中專利文獻6至專利文獻8雖考慮到於寫入邏輯1時,設計將位元線電壓位準拉高至高於電源供應電壓之寫入驅動電路,以有效防止寫入邏輯1困難之同時,亦能有效提高寫入邏輯1之速度,惟並未考慮到如何提高寫入邏輯0之速度,例如均未考 慮到於寫入邏輯0時,藉由將位元線電壓位準拉低至低於接地電壓,以有效提高寫入邏輯0之速度,因此仍有改進空間。 Although the above-mentioned techniques can effectively solve the problem of writing logic 1 difficult, but these techniques have not considered how to increase the speed of writing logic 0, of which Patent Literature 6 to Patent Literature 8 consider the writing When logic 1, design the write drive circuit that raises the bit line voltage level to be higher than the power supply voltage, to effectively prevent the difficulty of writing logic 1, and also effectively increase the speed of writing logic 1, but it does not Considering how to increase the speed of writing logic 0, for example, have not tested Considering that when writing logic 0, the bit line voltage level is lowered below the ground voltage to effectively increase the speed of writing logic 0, so there is still room for improvement.

有鑑於此,本發明之主要目的係提出一種具高寫入速度之靜態隨機存取記憶體的半導體記憶體,其能藉由設計一將位元線電壓位準拉低至低於接地電壓之寫入驅動電路,以有效提高寫入邏輯0之速度。 In view of this, the main object of the present invention is to propose a semiconductor memory with a high random write speed static random access memory, which can be designed to lower the bit line voltage level below ground voltage Write drive circuit to effectively increase the speed of writing logic 0.

本發明之次要目的係提出一種具高寫入速度之靜態隨機存取記憶體的半導體記憶體,其能藉由字元線電壓位準轉換電路以及高電壓位準控制電路,以於有效降低讀取時之半選定晶胞干擾的同時,亦能有效提高讀取速度。 The secondary object of the present invention is to provide a semiconductor memory with a high random write speed static random access memory, which can be effectively reduced by a word line voltage level conversion circuit and a high voltage level control circuit At the same time as the interference of the selected cell during reading, it can also effectively improve the reading speed.

本發明之再一目的係提出一種具高寫入速度之靜態隨機存取記憶體的半導體記憶體,其能藉由控制電路以有效提高讀取速度,且能藉由二階段的讀取控制以於提高讀取速度的同時,亦避免無謂的功率耗損。 Still another object of the present invention is to provide a semiconductor memory with a static random access memory with a high writing speed, which can effectively increase the reading speed by a control circuit and can be controlled by two-stage reading While improving the reading speed, it also avoids unnecessary power consumption.

本發明提出一種具高寫入速度之靜態隨機存取記憶體的半導體記憶體,其主要包括一記憶體陣列、複數個控制電路(2)、複數個預充電電路(3)、一待機啟動電路(4)、複數個字元線電壓位準轉換電路(5)、複數個高電壓位準控制電路(6)以及複數個寫入驅動電路(7),該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞設置一個控制電路(2)、一個字元線電壓位準轉換電路(5)以及一個高電壓位準控制電路(6),且每一行記憶體晶胞設置一個預充電電路(3)以及一個寫入驅動電路(7),藉此於寫入模式時,可藉由該複數個控制電路(2)以及該複數個寫入驅動電路(7)以有效防止寫入邏輯1困難之同時, 亦提高寫入邏輯0之速度,於讀取模式時,一方面藉由該複數個控制電路(2)以及該複數個高電壓位準控制電路(6)以於提高讀取速度的同時,亦避免無謂的功率耗損,另一方面藉由該複數個字元線電壓位準轉換電路(5)以有效降低讀取時之半選定晶胞干擾。 The invention provides a semiconductor memory with a static random access memory with high writing speed, which mainly includes a memory array, a plurality of control circuits (2), a plurality of precharge circuits (3), and a standby start circuit (4), a plurality of word line voltage level conversion circuits (5), a plurality of high voltage level control circuits (6), and a plurality of write drive circuits (7), the memory array is composed of a plurality of rows of memory The cell is composed of a plurality of rows of memory cells, each column of memory cells is provided with a control circuit (2), a word line voltage level conversion circuit (5) and a high voltage level control circuit (6), And each row of memory cells is provided with a precharge circuit (3) and a write drive circuit (7), so that in the write mode, the plurality of control circuits (2) and the plurality of writes The drive circuit (7) effectively prevents the difficulty of writing logic 1 while It also increases the speed of writing logic 0. In the reading mode, on the one hand, the plurality of control circuits (2) and the plurality of high-voltage level control circuits (6) are used to increase the reading speed while also To avoid unnecessary power consumption, on the other hand, the plurality of word line voltage level conversion circuits (5) are used to effectively reduce the interference of the semi-selected cells during reading.

1‧‧‧SRAM晶胞 1‧‧‧SRAM cell

2‧‧‧控制電路 2‧‧‧Control circuit

3‧‧‧預充電電路 3‧‧‧Precharge circuit

4‧‧‧待機啟動電路 4‧‧‧ Standby start circuit

5‧‧‧字元線電壓位準轉換電路 5‧‧‧Character line voltage level conversion circuit

6‧‧‧高電壓位準控制電路 6‧‧‧High voltage level control circuit

7‧‧‧寫入驅動電路 7‧‧‧Write driver circuit

P11‧‧‧第一PMOS電晶體 P11‧‧‧The first PMOS transistor

P12‧‧‧第二PMOS電晶體 P12‧‧‧ Second PMOS transistor

M11‧‧‧第一NMOS電晶體 M11‧‧‧First NMOS transistor

M12‧‧‧第二NMOS電晶體 M12‧‧‧Second NMOS transistor

M13‧‧‧第三NMOS電晶體 M13‧‧‧ Third NMOS transistor

A‧‧‧儲存節點 A‧‧‧storage node

B‧‧‧反相儲存節點 B‧‧‧Inverted storage node

BL‧‧‧位元線 BL‧‧‧bit line

WLC‧‧‧字元線控制信號 WLC‧‧‧Character line control signal

VDD‧‧‧電源供應電壓 V DD ‧‧‧ Power supply voltage

VH‧‧‧高電壓節點 VH‧‧‧High voltage node

VL1‧‧‧第一低電壓節點 VL1‧‧‧The first low voltage node

VL2‧‧‧第二低電壓節點 VL2‧‧‧second low voltage node

S‧‧‧待機模式控制信號 S‧‧‧Standby mode control signal

/S‧‧‧反相待機模式控制信號 /S‧‧‧Inverted standby mode control signal

M21‧‧‧第四NMOS電晶體 M21‧‧‧ Fourth NMOS transistor

M22‧‧‧第五NMOS電晶體 M22‧‧‧Fifth NMOS transistor

M23‧‧‧第六NMOS電晶體 M23‧‧‧Sixth NMOS transistor

M24‧‧‧第七NMOS電晶體 M24‧‧‧NMOS transistor

M25‧‧‧第八NMOS電晶體 M25‧‧‧Eighth NMOS transistor

M26‧‧‧第九NMOS電晶體 M26‧‧‧Ninth NMOS transistor

M27‧‧‧第十NMOS電晶體 M27‧‧‧Tenth NMOS transistor

M28‧‧‧第十一NMOS電晶體 M28‧‧‧Eleventh NMOS transistor

RC‧‧‧讀取控制信號 RC‧‧‧Read control signal

RGND‧‧‧加速讀取電壓 RGND‧‧‧Accelerated reading voltage

/RC‧‧‧反相讀取控制信號 /RC‧‧‧Reverse read control signal

/WC‧‧‧反相寫入控制信號 /WC‧‧‧Inverse write control signal

INV‧‧‧第三反相器 INV‧‧‧ third inverter

D1‧‧‧第一延遲電路 D1‧‧‧ First delay circuit

P31‧‧‧第三PMOS電晶體 P31‧‧‧The third PMOS transistor

P‧‧‧預充電信號 P‧‧‧Precharge signal

M41‧‧‧第十二NMOS電晶體 M41‧‧‧Twelfth NMOS transistor

P41‧‧‧第四PMOS電晶體 P41‧‧‧ Fourth PMOS transistor

C‧‧‧節點 C‧‧‧Node

D2‧‧‧第二延遲電路 D2‧‧‧second delay circuit

WL‧‧‧字元線 WL‧‧‧character line

R‧‧‧讀取信號 R‧‧‧Read signal

P51‧‧‧第五PMOS電晶體 P51‧‧‧ fifth PMOS transistor

M51‧‧‧第十三NMOS電晶體 M51‧‧‧Thirteenth NMOS transistor

M52‧‧‧第十四NMOS電晶體 M52‧‧‧14th NMOS transistor

P61‧‧‧第六PMOS電晶體 P61‧‧‧The sixth PMOS transistor

P62‧‧‧第七PMOS電晶體 P62‧‧‧The seventh PMOS transistor

I63‧‧‧第四反相器 I63‧‧‧ fourth inverter

VDDH1‧‧‧第一高電源供應電壓 V DDH1 ‧‧‧The highest power supply voltage

VDDH2‧‧‧第二高電源供應電壓 V DDH2 ‧‧‧The second highest power supply voltage

P71‧‧‧第八PMOS電晶體 P71‧‧‧Eighth PMOS transistor

M71‧‧‧第十五NMOS電晶體 M71‧‧‧The fifteenth NMOS transistor

M72‧‧‧第十六NMOS電晶體 M72‧‧‧Sixteenth NMOS transistor

M73‧‧‧第十七NMOS電晶體 M73‧‧‧The 17th NMOS transistor

I71‧‧‧第五反相器 I71‧‧‧fifth inverter

I72‧‧‧第六反相器 I72‧‧‧ sixth inverter

Cap‧‧‧電容器 Cap‧‧‧Capacitor

Din‧‧‧輸入資料 Din‧‧‧Enter data

D3‧‧‧第三延遲電路 D3‧‧‧The third delay circuit

D4‧‧‧第四延遲電路 D4‧‧‧ Fourth Delay Circuit

Y‧‧‧行解碼器輸出信號 Y‧‧‧Line decoder output signal

BLB1…BLBm‧‧‧互補位元線 BLB 1 …BLB m ‧‧‧ complementary bit line

BLB‧‧‧互補位元線 BLB‧‧‧Complementary bit line

MB1…MBk‧‧‧記憶體區塊 MB 1 …MB k ‧‧‧ memory block

WL1…WLn‧‧‧字元線 WL 1 …WL n ‧‧‧ character line

BL1…BLm‧‧‧位元線 BL 1 …BL m ‧‧‧bit line

P1…P2‧‧‧PMOS電晶體 P1…P2‧‧‧PMOS transistor

M1…M4‧‧‧NMOS電晶體 M1…M4‧‧‧‧NMOS transistor

第1a圖 係顯示習知之靜態隨機存取記憶體;第1b圖 係顯示習知6T靜態隨機存取記憶體晶胞之電路示意圖;第2圖 係顯示習知6T靜態隨機存取記憶體晶胞之寫入動作時序圖;第3圖 係顯示習知5T靜態隨機存取記憶體晶胞之電路示意圖;第4圖 係顯示習知5T靜態隨機存取記憶體晶胞之寫入動作時序圖;第5圖 係顯示本發明較佳實施例所提出之電路示意圖;第6圖 係顯示第5圖之本發明較佳實施例於寫入期間之簡化電路圖;第7圖 係顯示第5圖之本發明較佳實施例於讀取期間之簡化電路圖。 Figure 1a shows the conventional static random access memory; Figure 1b shows the schematic circuit diagram of the conventional 6T static random access memory cell; Figure 2 shows the conventional 6T static random access memory cell Figure 3 is a circuit diagram of the conventional 5T static random access memory cell; Figure 4 is a circuit diagram of the conventional 5T static random access memory cell; Figure 5 shows a schematic circuit diagram of the preferred embodiment of the present invention; Figure 6 shows a simplified circuit diagram of the preferred embodiment of the present invention in Figure 5 during the writing period; Figure 7 shows the basic diagram of Figure 5 Simplified circuit diagram of the preferred embodiment of the invention during reading.

根據上述之主要目的,本發明提出一種具高寫入速度之靜態隨機存取記憶體的半導體記憶體,其主要包括一記憶體陣列,該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞與每一行記憶體晶胞均包括有複數個記憶體晶胞(1);複數個控制電路(2),每一列記憶晶胞設置一個控制電路(2);複數個預充電電路(3),每一行記憶晶胞設置一個預充電電路(3);一待機啟動電路(4),該待機啟動電路(4)係促使SRAM快速進入待機模式,以有效提高SRAM之待機 效能;複數個字元線電壓位準轉換電路(5),每一列記憶體晶胞設置一個字元線電壓位準轉換電路(5);複數個高電壓位準控制電路(6),每一列記憶體晶胞設置一個高電壓位準控制電路(6);以及複數個寫入驅動電路(7),每一行記憶體晶胞設置一個寫入驅動電路(7)。 According to the above-mentioned main objective, the present invention provides a semiconductor memory with a high random write speed static random access memory, which mainly includes a memory array composed of a plurality of rows of memory cells and a plurality of rows The memory cell is composed of each row of memory cells and each row of memory cells includes a plurality of memory cells (1); a plurality of control circuits (2), each row of memory cells is provided with a control circuit (2); a plurality of pre-charging circuits (3), each row of memory cells is provided with a pre-charging circuit (3); a standby start circuit (4), the standby start circuit (4) prompts the SRAM to quickly enter the standby mode, To effectively improve the standby of SRAM Efficiency; plural word line voltage level conversion circuits (5), each column of memory cells is provided with a word line voltage level conversion circuit (5); plural high voltage level control circuits (6), each column The memory cell is provided with a high voltage level control circuit (6); and a plurality of write drive circuits (7), and each row of memory cells is provided with a write drive circuit (7).

為了便於說明起見,第5圖所示之靜態隨機存取記憶體僅以一個記憶體晶胞(1)、一條字元線(WL)、一條位元線(BL)、一控制電路(2)、一預充電電路(3)、一待機啟動電路(4)以及一字元線電壓位準轉換電路(5)、一高電壓位準控制電路(6)以及一寫入驅動電路(7)做為實施例來說明。該記憶體晶胞(1)係包括一第一反相器(由一第一PMOS電晶體P11與一第一NMOS電晶體M11所組成)、一第二反相器(由一第二PMOS電晶體P12與一第二NMOS電晶體M12所組成)以及一第三NMOS電晶體(M13),其中,該第一反相器及該第二反相器係呈交互耦合連接,亦即該第一反相器之輸出(即節點A)係連接該第二反相器之輸入,而該第二反相器之輸出(即節點B)則連接該第一反相器之輸入,並且該第一反相器之輸出(節點A)係用於儲存SRAM晶胞之資料,而該第二反相器之輸出(節點B)則用於儲存SRAM晶胞之反相資料。在此值得注意的是,該第一NMOS電晶體(M11)與該第二NMOS電晶體(M12)具有相同之通道寬長比,該第一PMOS電晶體(P11)與該第二PMOS電晶體(P12)亦具有相同之通道寬長比。 For ease of explanation, the static random access memory shown in Figure 5 only has a memory cell (1), a word line (WL), a bit line (BL), and a control circuit (2 ), a precharge circuit (3), a standby start circuit (4) and a word line voltage level conversion circuit (5), a high voltage level control circuit (6) and a write drive circuit (7) As an example. The memory cell (1) includes a first inverter (composed of a first PMOS transistor P11 and a first NMOS transistor M11), and a second inverter (composed of a second PMOS transistor Crystal P12 and a second NMOS transistor M12) and a third NMOS transistor (M13), wherein the first inverter and the second inverter are connected by mutual coupling, that is, the first The output of the inverter (ie, node A) is connected to the input of the second inverter, and the output of the second inverter (ie, node B) is connected to the input of the first inverter, and the first The output of the inverter (node A) is used to store the data of the SRAM cell, and the output of the second inverter (node B) is used to store the inverted data of the SRAM cell. It is worth noting here that the first NMOS transistor (M11) and the second NMOS transistor (M12) have the same channel width-to-length ratio, and the first PMOS transistor (P11) and the second PMOS transistor (P12) also has the same channel width to length ratio.

請再參考第5圖,該控制電路(2)係由一第四NMOS電晶體(M21)、一第五NMOS電晶體(M22)、一第六NMOS電晶體(M23)、一第七NMOS電晶體(M24)、一第八NMOS電晶體(M25)、一第九NMOS 電晶體(M26)、一第十NMOS電晶體(M27)、一第十一NMOS電晶體(M28)、一讀取控制信號(RC)、一第三反相器(INV)、一第一延遲電路(D1)、一加速讀取電壓(RGND)、一反相寫入控制信號(/WC)、一待機模式控制信號(S)以及一反相待機模式控制信號(/S)所組成。該第四NMOS電晶體(M21)之源極、閘極與汲極係分別連接至接地電壓、該反相待機模式控制信號(/S)與一第二低電壓節點(VL2);該第五NMOS電晶體(M22)之源極、閘極與汲極係分別連接至該第二低電壓節點(VL2)、該待機模式控制信號(S)與一第一低電壓節點(VL1);該第六NMOS電晶體(M23)之源極係連接至接地電壓,而閘極與汲極連接在一起並連接至該第一低電壓節點(VL1);該第七NMOS電晶體(M24)之源極、閘極與汲極係分別連接至該第八NMOS電晶體(M25)之汲極、該讀取控制信號(RC)與該第一低電壓節點(VL1);該第八NMOS電晶體(M25)之源極、閘極與汲極係分別連接至該加速讀取電壓(RGND)、該第一延遲電路(D1)之輸出與該第七NMOS電晶體(M24)之源極;該第一延遲電路(D1)係連接在該第三反相器(INV)之輸出與該第八NMOS電晶體(M25)之閘極之間;該第三反相器(INV)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第一延遲電路(D1)之輸入;該第九NMOS電晶體(M26)之源極、閘極與汲極係分別連接至接地電壓、該第十NMOS電晶體(M27)之汲極與該第一低電壓節點(VL1);該第十NMOS電晶體(M27)之源極、閘極與汲極係分別連接至該接地電壓、該待機模式控制信號(S)與該第九NMOS電晶體(M26)之閘極;而該第十一NMOS電晶體(M28)之源極、閘極與汲極則分別連接至該反相寫入控制信號(/WC)、該反相待機模式控 制信號(/S)與該第九NMOS電晶體(M26)之閘極。其中,該反相待機模式控制信號(/S)係由該待機模式控制信號(S)經一反相器而獲得,且該反相寫入控制信號(/WC)係由一寫入控制信號(WC)經另一反相器而獲得。 Please refer to FIG. 5 again. The control circuit (2) is composed of a fourth NMOS transistor (M21), a fifth NMOS transistor (M22), a sixth NMOS transistor (M23), and a seventh NMOS transistor Crystal (M24), an eighth NMOS transistor (M25), a ninth NMOS Transistor (M26), a tenth NMOS transistor (M27), an eleventh NMOS transistor (M28), a read control signal (RC), a third inverter (INV), a first delay The circuit (D1), an accelerated read voltage (RGND), an inverted write control signal (/WC), a standby mode control signal (S) and an inverted standby mode control signal (/S). The source, gate, and drain of the fourth NMOS transistor (M21) are connected to the ground voltage, the reverse standby mode control signal (/S), and a second low voltage node (VL2); the fifth The source, gate and drain of the NMOS transistor (M22) are connected to the second low voltage node (VL2), the standby mode control signal (S) and a first low voltage node (VL1); the first The source of the six NMOS transistors (M23) is connected to the ground voltage, and the gate and the drain are connected together and connected to the first low voltage node (VL1); the source of the seventh NMOS transistor (M24) , The gate and the drain are connected to the drain of the eighth NMOS transistor (M25), the read control signal (RC) and the first low voltage node (VL1); the eighth NMOS transistor (M25) ) Source, gate and drain are connected to the accelerated read voltage (RGND), the output of the first delay circuit (D1) and the source of the seventh NMOS transistor (M24); the first The delay circuit (D1) is connected between the output of the third inverter (INV) and the gate of the eighth NMOS transistor (M25); the input of the third inverter (INV) is for receiving the Read the control signal (RC), and the output is connected to the input of the first delay circuit (D1); the source, gate, and drain of the ninth NMOS transistor (M26) are connected to the ground voltage, the The drain of the tenth NMOS transistor (M27) and the first low voltage node (VL1); the source, gate, and drain of the tenth NMOS transistor (M27) are connected to the ground voltage and the standby, respectively The mode control signal (S) and the gate of the ninth NMOS transistor (M26); and the source, gate and drain of the eleventh NMOS transistor (M28) are respectively connected to the inverse write control Signal (/WC), the reverse standby mode control Signal (/S) and the gate of the ninth NMOS transistor (M26). Wherein, the inverted standby mode control signal (/S) is obtained from the standby mode control signal (S) through an inverter, and the inverted write control signal (/WC) is derived from a write control signal (WC) is obtained via another inverter.

其中,該第十一NMOS電晶體(M28)之汲極、該第十NMOS電晶體(M27)之汲極及該第九NMOS電晶體(M26)之閘極係連接在一起並形成一節點(C),當該待機模式控制信號(S)為邏輯低位準時,該節點(C)之電壓位準係為該反相寫入控制信號(/WC)之邏輯位準,而當該待機模式控制信號(S)為邏輯高位準時,該節點(C)之電壓位準係為接地電壓,藉此可具有穩定的待機模式(由於寫入操作期間節點C之電壓位準恆為接地電壓);再者,該節點(C)之邏輯高位準係為該電源供應電壓(VDD)扣減該第十一NMOS電晶體(M28)之一臨界電壓(VTM28)的電壓位準,因此當該5T靜態隨機存取記憶體於非寫入模式(此時對應之該反相寫入控制信號(/WC)為邏輯高位準)時,該節點(C)係為該電源供應電壓(VDD)扣減該第十一NMOS電晶體(M28)之該臨界電壓(VTM28)的電壓位準,而非該電源供應電壓(VDD)之電壓位準,故可具有較低之功率消耗;且於後續進入寫入模式(此時對應之該反相寫入控制信號(/WC)為邏輯低位準)時,由於可快速地將儲存於該節點(C)之電荷經由該第十一NMOS電晶體(M28)放電至足以關閉以該節點(C)作為閘極之該第九NMOS電晶體(M26),故可較快速地進入該寫入模式。 Among them, the drain of the eleventh NMOS transistor (M28), the drain of the tenth NMOS transistor (M27) and the gate of the ninth NMOS transistor (M26) are connected together to form a node ( C), when the standby mode control signal (S) is a logic low level, the voltage level of the node (C) is the logic level of the reverse write control signal (/WC), and when the standby mode control When the signal (S) is at a logic high level, the voltage level of the node (C) is the ground voltage, thereby having a stable standby mode (because the voltage level of the node C is constantly at the ground voltage during the writing operation); In addition, the logic high level of the node (C) is the voltage level of the power supply voltage (VDD) minus a critical voltage (V TM28 ) of the eleventh NMOS transistor (M28), so when the 5T is static When the random access memory is in the non-write mode (the corresponding inverse write control signal (/WC) is at a logic high level), the node (C) deducts the power supply voltage (VDD) The voltage level of the threshold voltage (V TM28 ) of the eleventh NMOS transistor (M28) is not the voltage level of the power supply voltage (VDD), so it can have lower power consumption; In the input mode (the corresponding inverse write control signal (/WC) is a logic low level), the charge stored in the node (C) can be quickly passed through the eleventh NMOS transistor (M28) The discharge is sufficient to turn off the ninth NMOS transistor (M26) with the node (C) as the gate, so the write mode can be entered relatively quickly.

該控制電路(2)係設計成可因應不同操作模式而控制該第一低電壓節點(VL1)與該第二低電壓節點(VL2)之電壓位準,於寫入模 式時,將選定晶胞中較接近位元線(BL)之驅動電晶體(即該第一NMOS電晶體M11)的源極電壓(即該第一低電壓節點VL1)設定成較接地電壓為高之一預定電壓(即該第六NMOS電晶體(M23)之閘源極電壓VGS(M23))且將選定晶胞中另一驅動電晶體(即該第二NMOS電晶體M12)的源極電壓(即該第二低電壓節點VL2)設定成接地電壓,以便防止寫入邏輯1困難之問題。 The control circuit (2) is designed to control the voltage levels of the first low-voltage node (VL1) and the second low-voltage node (VL2) according to different operation modes. The source voltage (i.e., the first low voltage node VL1) of the driving transistor (i.e., the first NMOS transistor M11) closer to the bit line (BL) is set to a predetermined voltage (i.e., higher than the ground voltage) The gate-source voltage V GS(M23) of the sixth NMOS transistor (M23) and the source voltage of the other driving transistor (that is, the second NMOS transistor M12) in the selected cell (that is, the second The low-voltage node VL2) is set to the ground voltage in order to prevent the problem of difficulty in writing logic 1.

於讀取模式之第一階段時,將選定晶胞中較接近位元線(BL)之驅動電晶體(即該第一NMOS電晶體M11)的源極電壓(即該第一低電壓節點VL1)設定成呈較接地電壓為低之該加速讀取電壓(RGND),該較接地電壓為低之該加速讀取電壓(RGND)可有效提高讀取速度,而於讀取模式之第二階段時,將選定晶胞中較接近位元線(BL)之驅動電晶體(即該第一NMOS電晶體M11)的源極電壓設定回接地電壓,以便減少無謂的功率消耗,其中該讀取模式之該第二階段與該第一階段相隔之時間,係等於該讀取控制信號(RC)由邏輯低位準轉變為邏輯高位準起算,並至該第八NMOS電晶體(M25)之閘極電壓足以關閉該第八NMOS電晶體(M25)為止之時間,其值可藉由該第三反相器(INV)之下降延遲時間與該第一延遲電路(D1)所提供之延遲時間來調整。 In the first stage of the read mode, the source voltage of the driving transistor (ie, the first NMOS transistor M11) in the cell closer to the bit line (BL) is selected (ie, the first low voltage node VL1 ) Is set to the accelerated read voltage (RGND) that is lower than the ground voltage. The accelerated read voltage (RGND) that is lower than the ground voltage can effectively improve the reading speed, and in the second stage of the reading mode , The source voltage of the driving transistor (ie, the first NMOS transistor M11) in the selected cell closer to the bit line (BL) is set back to the ground voltage in order to reduce unnecessary power consumption, wherein the read mode The time between the second phase and the first phase is equal to the read control signal (RC) from the logic low level to the logic high level, and to the eighth NMOS transistor (M25) gate voltage The time enough to turn off the eighth NMOS transistor (M25) can be adjusted by the falling delay time of the third inverter (INV) and the delay time provided by the first delay circuit (D1).

於待機模式時,將所有記憶晶胞中之驅動電晶體的源極電壓設定成較接地電壓為高之該預定電壓,以便降低漏電流;而於保持模式時則將記憶晶胞中之驅動電晶體的源極電壓設定成接地電壓,以便維持原來之保持特性,其詳細工作電壓位準如表1所示。 In the standby mode, the source voltage of the driving transistors in all memory cells is set to the predetermined voltage higher than the ground voltage in order to reduce the leakage current; in the hold mode, the driving power in the memory cells is set The source voltage of the crystal is set to the ground voltage in order to maintain the original retention characteristics. Its detailed working voltage level is shown in Table 1.

Figure 108119852-A0101-12-0012-1
Figure 108119852-A0101-12-0012-1

表1中之該寫入控制信號(WC)為一寫入信號(W)與該字元線(WL)信號的及閘(AND gate)運算結果,此時僅於該寫入信號(W)信號與該字元線(WL)信號均為邏輯高位準時,該寫入控制信號(WC)方為邏輯高位準;該讀取控制信號(RC)為一讀取信號(R)與該字元線(WL)信號的及閘運算結果。在此值得注意的是,對於非讀取模式期間之該讀取控制信號(RC)係設定為該加速讀取電壓(RGND)之位準,以防止該第七NMOS電晶體(M24)之漏電流。 The write control signal (WC) in Table 1 is the result of the AND gate operation of a write signal (W) and the word line (WL) signal, at this time only the write signal (W) When the signal and the word line (WL) signal are at a logic high level, the write control signal (WC) is a logic high level; the read control signal (RC) is a read signal (R) and the character WL signal and gate operation result. It is worth noting here that for the non-read mode, the read control signal (RC) is set to the level of the accelerated read voltage (RGND) to prevent leakage of the seventh NMOS transistor (M24) Current.

請參考第5圖,該預充電電路(3)係由一第四PMOS電晶體(P31)以及一預充電信號(P)所組成,該第三PMOS電晶體(P31)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該預充電信號(P)與該位元線(BL),以便於預充電期間,藉由邏輯低位準之該預充電信號(P),以將該位元線(BL)預充電至該電源供應電壓(VDD)之位準。 Please refer to Fig. 5, the precharge circuit (3) is composed of a fourth PMOS transistor (P31) and a precharge signal (P), the source and gate of the third PMOS transistor (P31) And the drain are connected to the power supply voltage (V DD ), the precharge signal (P) and the bit line (BL), respectively, so that during the precharge period, the precharge signal (P ) To pre-charge the bit line (BL) to the level of the power supply voltage (V DD ).

請再參考第5圖,該待機啟動電路(4)係由一第四PMOS電 晶體(P41)、一第十二NMOS電晶體(M41)、一第二延遲電路(D2)以及該反相待機模式控制信號(/S)所組成。該第四PMOS電晶體(P41)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該反相待機模式控制信號(/S)與該第十二NMOS電晶體(M41)之汲極;該第十二NMOS電晶體(M41)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該第二延遲電路(D2)之輸出與該第四PMOS電晶體(P41)之汲極;該第二延遲電路(D2)之輸入連接至該反相待機模式控制信號(/S),而該第二延遲電路(D2)之輸出則連接至該第十二NMOS電晶體(M41)之閘極。 Please refer to Figure 5 again, the standby start circuit (4) is powered by a fourth PMOS The crystal (P41), a twelfth NMOS transistor (M41), a second delay circuit (D2) and the inverse standby mode control signal (/S). The source, gate, and drain of the fourth PMOS transistor (P41) are connected to the power supply voltage (VDD), the inverted standby mode control signal (/S), and the twelfth NMOS transistor ( M41) drain; the source, gate and drain of the twelfth NMOS transistor (M41) are connected to the output of the first low voltage node (VL1) and the second delay circuit (D2) and The drain of the fourth PMOS transistor (P41); the input of the second delay circuit (D2) is connected to the inverted standby mode control signal (/S), and the output of the second delay circuit (D2) is connected To the gate of the twelfth NMOS transistor (M41).

請再參考第5圖,該字元線電壓位準轉換電路(5)係由一第五PMOS電晶體(P51)、一第十三NMOS電晶體(M51)、一第十四NMOS電晶體(M52)、該讀取控制信號(RC)、一反相寫入控制信號(/WC)、一反相讀取控制信號(/RC)以及一字元線控制信號(WLC)所組成。該第五PMOS電晶體(P51)之源極、閘極與汲極係分別連接至該字元線(WL)、該反相寫入控制信號(/WC)與該字元線控制信號(WLC);該第十三NMOS電晶體(M51)之源極、閘極與汲極係分別連接至該字元線控制信號(WLC)、該讀取控制信號(RC)與該字元線(WL);而該第十四NMOS電晶體(M52)之源極、閘極與汲極係分別連接至該字元線控制信號(WLC)、該反相讀取控制信號(/RC)與該字元線(WL)。 Please refer to FIG. 5 again. The word line voltage level conversion circuit (5) is composed of a fifth PMOS transistor (P51), a thirteenth NMOS transistor (M51), and a fourteenth NMOS transistor ( M52), the read control signal (RC), an inverted write control signal (/WC), an inverted read control signal (/RC) and a word line control signal (WLC). The source, gate, and drain of the fifth PMOS transistor (P51) are connected to the word line (WL), the inverted write control signal (/WC), and the word line control signal (WLC, respectively) ); the source, gate and drain of the thirteenth NMOS transistor (M51) are respectively connected to the word line control signal (WLC), the read control signal (RC) and the word line (WL ); and the source, gate and drain of the fourteenth NMOS transistor (M52) are connected to the word line control signal (WLC), the inverse read control signal (/RC) and the word, respectively Yuan Line (WL).

該字元線電壓位準轉換電路(5)之詳細工作電壓位準如表2所示,其中VTM51表示該第十二NMOS電晶體(M51)之臨界電壓。在此值得注意的是,本發明一方面藉由二階段的讀取控制以於提高讀取速度的同時,亦避免無謂的功率耗損,另一方面藉由該字元線電壓位準轉換電路 (5),以於讀取操作期間將施加至選定晶胞之存取電晶體的字元線電壓下拉至低於該電源供應電壓(即VDD-VTM51),以有效降低讀取時之半選定晶胞干擾。 The detailed operating voltage level of the word line voltage level conversion circuit (5) is shown in Table 2, where V TM51 represents the critical voltage of the twelfth NMOS transistor (M51). It is worth noting here that on the one hand, the invention uses two-stage reading control to improve the reading speed while avoiding unnecessary power consumption; on the other hand, the word line voltage level conversion circuit ( 5), during the reading operation, the word line voltage applied to the access transistor of the selected cell is pulled below the power supply voltage (ie, V DD -V TM51 ) to effectively reduce the reading half Selected cell interference.

Figure 108119852-A0101-12-0014-2
Figure 108119852-A0101-12-0014-2

請再參考第5圖,該高電壓位準控制電路(6)係由一第六PMOS電晶體(P61)、一第七PMOS電晶體(P62)、一第四反相器(I63)、該讀取控制信號(RC)以及一第一高電源供應電壓(VDDH1)所組成,其中該第六PMOS電晶體(P61)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該讀取控制信號(RC)與一高電壓節點(VH),該第七PMOS電晶體(P62)之源極、閘極與汲極係分別連接至該第一高電源供應電壓(VDDH1)、該第四反相器(I63)之輸出與該高電壓節點(VH),而該第四反相器(I63)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第七PMOS電晶體(P62)之閘極。 Please refer to FIG. 5 again, the high voltage level control circuit (6) is composed of a sixth PMOS transistor (P61), a seventh PMOS transistor (P62), a fourth inverter (I63), the It consists of a read control signal (RC) and a first high power supply voltage (V DDH1 ), wherein the source, gate and drain of the sixth PMOS transistor (P61) are connected to the power supply voltage ( V DD ), the read control signal (RC) and a high voltage node (VH), the source, gate and drain of the seventh PMOS transistor (P62) are respectively connected to the first high power supply voltage (V DDH1 ), the output of the fourth inverter (I63) and the high voltage node (VH), and the input of the fourth inverter (I63) is for receiving the read control signal (RC), and The output is connected to the gate of the seventh PMOS transistor (P62).

請再參考第5圖,該寫入驅動電路(7)係由一第八PMOS電晶體(P71)、一第十五NMOS電晶體(M71)、一第十六NMOS電晶體(M72)、 一第十七NMOS電晶體(M73)、一第五反相器(I71)、一第六反相器(I72)、一電容器(Cap)、一輸入資料(Din)、一行解碼器輸出信號(Y)、一第三延遲電路(D3)、一第四延遲電路(D4)以及一第二高電源供應電壓(VDDH2)所組成,其中該第八PMOS電晶體(P71)之源極、閘極與汲極係分別連接至該第二高電源供應電壓(VDDH2)、該第五反相器(I71)之輸出與該第十四NMOS電晶體(M71)之汲極,該第十五NMOS電晶體(M71)之源極、閘極與汲極係分別連接至該第十七NMOS電晶體(M73)之汲極、該第五反相器(I71)之輸出與該第八PMOS電晶體(P71)之汲極,該第十六NMOS電晶體(M72)之源極、閘極與汲極係分別連接至該接地電壓、該第三延遲電路(D3)之輸出與該第八PMOS電晶體(P71)之汲極,該第十七NMOS電晶體(M73)之源極、閘極與汲極係分別連接至該接地電壓、該第六反相器(I72)之輸出與該第十五NMOS電晶體(M71)之源極,該第五反相器(I71)之輸入係供接收該輸入資料(Din),而輸出則連接至該第八PMOS電晶體(P71)之閘極、該第十五NMOS電晶體(M71)之閘極以及該第三延遲電路(D3)之輸入,該第六反相器(I72)之輸入係供接收該行解碼器輸出信號(Y),而輸出則連接至該第四延遲電路(D4)之輸入以及該第十七NMOS電晶體(M73)之閘極,該電容器(Cap)之一端係連接至該第四延遲電路(D4)之輸出,而該電容器(Cap)之另一端則連接至該第十五NMOS電晶體(M71)之源極以及該第十七NMOS電晶體(M73)之汲極,其中,該第八PMOS電晶體(P71)之汲極、該第十五NMOS電晶體(M71)之汲極與該第十六NMOS電晶體(M72)之汲極係共同連接至該位元線(BL),該位元線(BL)於寫入邏輯0之第一階段係設計成低於於該接地電壓之 電壓位準,以加速寫入邏輯0之速度,而於寫入邏輯1時則設計成高於該電源供應電壓(VDD)之該第二高電源供應電壓(VDDH2)的位準,以加速寫入邏輯1之速度。 Please refer to FIG. 5 again, the write drive circuit (7) is composed of an eighth PMOS transistor (P71), a fifteenth NMOS transistor (M71), a sixteenth NMOS transistor (M72), a Seventeenth NMOS transistor (M73), a fifth inverter (I71), a sixth inverter (I72), a capacitor (Cap), an input data (Din), a row of decoder output signals (Y ), a third delay circuit (D3), a fourth delay circuit (D4) and a second high power supply voltage (V DDH2 ), wherein the source and gate of the eighth PMOS transistor (P71) And the drain are respectively connected to the second highest power supply voltage (V DDH2 ), the output of the fifth inverter (I71) and the drain of the fourteenth NMOS transistor (M71), the fifteenth NMOS The source, gate and drain of the transistor (M71) are respectively connected to the drain of the seventeenth NMOS transistor (M73), the output of the fifth inverter (I71) and the eighth PMOS transistor (P71) drain, the source, gate and drain of the sixteenth NMOS transistor (M72) are connected to the ground voltage, the output of the third delay circuit (D3) and the eighth PMOS The drain of the crystal (P71), the source, gate and drain of the seventeenth NMOS transistor (M73) are connected to the ground voltage, the output of the sixth inverter (I72) and the tenth The source of five NMOS transistors (M71), the input of the fifth inverter (I71) is used to receive the input data (Din), and the output is connected to the gate of the eighth PMOS transistor (P71), The gate of the fifteenth NMOS transistor (M71) and the input of the third delay circuit (D3), the input of the sixth inverter (I72) are used to receive the output signal (Y) of the row decoder, and The output is connected to the input of the fourth delay circuit (D4) and the gate of the seventeenth NMOS transistor (M73), and one end of the capacitor (Cap) is connected to the output of the fourth delay circuit (D4), The other end of the capacitor (Cap) is connected to the source of the fifteenth NMOS transistor (M71) and the drain of the seventeenth NMOS transistor (M73), wherein the eighth PMOS transistor (P71) ), the drain of the fifteenth NMOS transistor (M71) and the drain of the sixteenth NMOS transistor (M72) are commonly connected to the bit line (BL), the bit line (BL ) The first stage of writing logic 0 is designed to be at a voltage level lower than the ground voltage to speed up the writing of logic 0, while writing logic 1 is designed to be higher than the power supply voltage ( V DD ) the level of the second highest power supply voltage (V DDH2 ) to accelerate the speed of writing logic 1.

該寫入驅動電路(7)致能與否係由該行解碼器輸出信號(Y)之邏輯位準決定,當該行解碼器輸出信號(Y)為邏輯低位準時,該寫入驅動電路(7)為非致能狀態,而當該行解碼器輸出信號(Y)為邏輯高位準時,該寫入驅動電路(7)處於致能狀態。當該行解碼器輸出信號(Y)為邏輯低位準時,該第六反相器(I72)之輸出為邏輯高位準,一方面導通該第十七NMOS電晶體(M73),另一方面經過該第四延遲電路(D4)所提供之延遲時間後對該電容器(Cap)之一端充電,由於導通的該第十七NMOS電晶體(M73),使得該電容器(Cap)之另一端為該接地電壓,而該電容器(Cap)之一端則會因電容器(Cap)的充電而保持該電源供應電壓(VDD)之電壓位準。 Whether the write drive circuit (7) is enabled or not is determined by the logic level of the row decoder output signal (Y). When the row decoder output signal (Y) is a logic low level, the write drive circuit (7) 7) It is in the disabled state, and when the output signal (Y) of the row decoder is at a logic high level, the write drive circuit (7) is in the enabled state. When the row decoder output signal (Y) is at a logic low level, the output of the sixth inverter (I72) is at a logic high level, on the one hand turning on the seventeenth NMOS transistor (M73), and on the other hand passing the The delay time provided by the fourth delay circuit (D4) charges one end of the capacitor (Cap), and the seventeenth NMOS transistor (M73) turned on makes the other end of the capacitor (Cap) the ground voltage , And one end of the capacitor (Cap) will maintain the voltage level of the power supply voltage (V DD ) due to the charging of the capacitor (Cap).

該寫入驅動電路(7)於寫入邏輯0之致能狀態時係採用二階段操作,於該寫入驅動電路(7)致能的第一階段,邏輯高位準之該行解碼器輸出信號(Y),使得該第六反相器(I72)之輸出為邏輯低位準,一方面使該第十七NMOS電晶體(M73)為截止(OFF)狀態,另一方面經過該第四延遲電路(D4)所提供之延遲時間後對該電容器(Cap)之一端快速放電至該接地電壓,由於此時該輸入資料(Din)為邏輯低位準,使得該第五反相器(I71)之輸出為邏輯高位準,於是導通該第十五NMOS電晶體(M71),並使該第八PMOS電晶體(P71)為截止(OFF)狀態,因此該位元線(BL)之電壓位準於該寫入驅動電路(7)寫入邏輯0之第一階段時滿足方程式 (3):VBL1=-VDD×Cap/(Cap+CBL) (3) The write drive circuit (7) uses a two-stage operation when writing to the logic 0 enable state. In the first stage of the write drive circuit (7) enabling, the row decoder of the logic high level outputs a signal (Y), so that the output of the sixth inverter (I72) is a logic low level, on the one hand, the seventeenth NMOS transistor (M73) is turned off (OFF) state, on the other hand, through the fourth delay circuit (D4) After the delay time provided, one end of the capacitor (Cap) is quickly discharged to the ground voltage. Since the input data (Din) is at a logic low level at this time, the output of the fifth inverter (I71) Is a logic high level, so the 15th NMOS transistor (M71) is turned on, and the 8th PMOS transistor (P71) is turned off, so the voltage level of the bit line (BL) is at this level The write drive circuit (7) satisfies equation (3) when writing the first stage of logic 0: V BL1 =-V DD ×Cap/(Cap+C BL ) (3)

其中,VBL1表示該位元線(BL)於寫入邏輯0之第一階段的電壓位準,VBL1的絕對值設計為小於該第三NMOS電晶體(M13)之臨界電壓,例如可設計為-100mV、-150mV或-200mV,VDD為該電源供應電壓(VDD)之電壓位準,而Cap與CBL分別表示該該電容器(Cap)之電容值與該位元線(BL)之寄生電容值。 Where, V BL1 represents the voltage level of the bit line (BL) at the first stage of writing logic 0, and the absolute value of V BL1 is designed to be less than the threshold voltage of the third NMOS transistor (M13), for example, it can be designed Is -100mV, -150mV or -200mV, V DD is the voltage level of the power supply voltage (V DD ), and Cap and C BL represent the capacitance value of the capacitor (Cap) and the bit line (BL), respectively The parasitic capacitance value.

當邏輯低位準之該輸入資料(Din)經過該第五反相器(I71)以及該第三延遲電路(D3)所提供之延遲時間後,該寫入驅動電路(7)進入致能的第二階段,此時由於該第十六NMOS電晶體(M72)為導通狀態,使得該位元線(BL)之電壓位準於該寫入驅動電路(7)寫入邏輯0之第二階段時滿足方程式(4):VBL2=0 (4) When the input data (Din) of the logic low level passes the delay time provided by the fifth inverter (I71) and the third delay circuit (D3), the write drive circuit (7) enters the enabled In the second stage, since the sixteenth NMOS transistor (M72) is in the on state, the voltage level of the bit line (BL) is in the second stage of writing a logic 0 in the write driver circuit (7) Satisfy equation (4): V BL2 =0 (4)

其中,VBL2表示該位元線(BL)於寫入邏輯0之第二階段的電壓位準。 Where, V BL2 represents the voltage level of the bit line (BL) in the second stage of writing logic 0.

茲依單埠SRAM之工作模式說明第5圖之本發明較佳實施例的工作原理如下:(I)寫入模式(write mode) The working mode of the port SRAM is described below. The working principle of the preferred embodiment of the present invention shown in FIG. 5 is as follows: (I) write mode

於寫入操作開始前,該待機模式控制信號(S)為邏輯低位準,使得該第十一NMOS電晶體(M28)導通(ON),並使得該第十NMOS電晶體(M27)截止(OFF),由於此時該反相寫入控制信號(/WC)為邏輯高位準,於是該第十一NMOS電晶體(M28)之汲極呈邏輯高位準,該邏輯高位準之該第十一NMOS電晶體(M28)之汲極會導通該第九NMOS電晶體(M26),並使 得該第一低電壓節點(VL1)呈接地電壓。 Before the start of the writing operation, the standby mode control signal (S) is at a logic low level, so that the eleventh NMOS transistor (M28) is turned on (ON), and the tenth NMOS transistor (M27) is turned off (OFF) ), since the inverted write control signal (/WC) is at a logic high level at this time, the drain of the eleventh NMOS transistor (M28) is at a logic high level, and the eleventh NMOS at the logic high level The drain of the transistor (M28) will turn on the ninth NMOS transistor (M26) and make It is obtained that the first low voltage node (VL1) has a ground voltage.

而於寫入操作期間內,該反相寫入控制信號(/WC)為邏輯低位準,使得該第十一NMOS電晶體(M28)之汲極呈邏輯低位準,該邏輯低位準之該第十一NMOS電晶體(M28)之汲極會使得該第九NMOS電晶體(M26)截止,並使得該第一低電壓節點(VL1)等於該第六NMOS電晶體(M23)之閘源極電壓VGS(M26),藉此得以有效防止寫入邏輯1困難之問題。第6圖所示為第5圖之本發明較佳實施例於寫入期間之簡化電路圖。 During the write operation, the inverted write control signal (/WC) is at a logic low level, so that the drain of the eleventh NMOS transistor (M28) is at a logic low level, and the logic low level at the first The drain of the eleventh NMOS transistor (M28) turns off the ninth NMOS transistor (M26) and makes the first low voltage node (VL1) equal to the gate-source voltage of the sixth NMOS transistor (M23) V GS(M26) , which can effectively prevent the difficulty of writing logic 1. FIG. 6 is a simplified circuit diagram of the preferred embodiment of the invention of FIG. 5 during the writing period.

接下來依單埠SRAM之4種寫入狀態來說明第6圖之本發明較佳實施例如何完成寫入動作。 Next, according to the four write states of the port SRAM, the following describes how the preferred embodiment of the present invention shown in FIG. 6 completes the write operation.

(一)節點A原本儲存邏輯0,而現在欲寫入邏輯0:在寫入動作發生前(該字元線控制信號WLC為接地電壓),該第一NMOS電晶體(M11)為導通(ON)。因為該第一NMOS電晶體(M11)為ON,所以當寫入動作開始時,該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓VDD)。當該字元線控制信號(WLC)的電壓大於該第三NMOS電晶體(M13)(即存取電晶體)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為該第一NMOS電晶體(M11)為導通,該節點A之電壓位準於寫入邏輯0之第一階段時,雖會因方程式(3)而呈現小於接地電壓的電壓位準,惟於寫入邏輯0之第二階段時,則會因方程式(4)而使得該節點A回復為原本之接地電壓,直到寫入週期結束。 (1) Node A originally stored logic 0, and now wants to write logic 0: before the write operation occurs (the word line control signal WLC is the ground voltage), the first NMOS transistor (M11) is turned on (ON ). Since the first NMOS transistor (M11) is ON, when the writing operation starts, the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage V DD ). When the voltage of the word line control signal (WLC) is greater than the threshold voltage of the third NMOS transistor (M13) (ie, access transistor), the third NMOS transistor (M13) changes from OFF to OFF On, at this time, because the first NMOS transistor (M11) is on, the voltage level of the node A is at the first stage of writing logic 0, although it will be less than the ground voltage due to equation (3) However, during the second phase of writing logic 0, the node A will return to the original ground voltage due to equation (4) until the end of the write cycle.

(二)節點A原本儲存邏輯0,而現在欲寫入邏輯1:在寫入動作發生前(該字元線控制信號WLC為接地電壓),該第一 NMOS電晶體(M11)為導通(ON)。因為該第一NMOS電晶體(M11)為ON,所以當寫入動作開始時,該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓VDD),該節點A的電壓會跟隨該字元線控制信號(WLC)的電壓而上升。 (2) Node A originally stored logic 0, but now wants to write logic 1: Before the write operation occurs (the word line control signal WLC is the ground voltage), the first NMOS transistor (M11) is turned on (ON ). Because the first NMOS transistor (M11) is ON, when the writing operation starts, the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage V DD ), the node A The voltage of will rise following the voltage of the word line control signal (WLC).

當該字元線控制信號(WLC)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為該位元線(BL)為該第二高電源供應電壓(VDDH2)之電壓位準,並且因為該第一NMOS電晶體(M11)仍為ON且該節點B處於電壓位準為接近於該電源供應電壓(VDD)之電壓位準的初始狀態,所以該第一PMOS電晶體(P11)仍為截止(OFF),而該節點A之寫入初始瞬間電壓(VAWI1)滿足方程式(5):VAWI1=VDDH2×(RM11+RM23)/(RM13+RM11+RM23)>VTM12 (5) When the voltage of the word line control signal (WLC) is greater than the threshold voltage of the third NMOS transistor (M13), the third NMOS transistor (M13) changes from OFF to ON. Because the bit line (BL) is the voltage level of the second highest power supply voltage (V DDH2 ), and because the first NMOS transistor (M11) is still ON and the node B is at a voltage level close to The initial state of the voltage level of the power supply voltage (V DD ), so the first PMOS transistor (P11) is still OFF, and the initial writing instantaneous voltage (V AWI1 ) of the node A satisfies the equation ( 5): V AWI1 =V DDH2 ×(R M11 +R M23 )/(R M13 +R M11 +R M23 )>V TM12 (5)

VAWI1表示節點A由邏輯0寫入邏輯1之寫入初始瞬間電壓,RM11、RM13與RM23分別表示該第一NMOS電晶體(M11)、該第三NMOS電晶體(M13)與該第六NMOS電晶體(M23)之導通電阻,而VDDH2與VTM12分別表示該第二高電源供應電壓(VDDH2)與該第二NMOS電晶體(M12)之臨界電壓,由於該第二高電源供應電壓(VDDH2)之電壓位準係設計成高於該電源供應電壓(VDD)之電壓位準,且於該第一低電壓節點(VL1)處提供一等於該第六NMOS電晶體(M23)之閘-源極電壓VGS(M23)之電壓位準,因此可輕易地將節點A之電壓位準設定成比第4圖之習知5T靜態隨機存取記憶體晶胞之該節點A之電壓位準還要高許多。該還要高許多之分壓電壓位準足以使該第二NMOS電晶體(M12)導通,於是使得節點B放電至一較低電壓位準,該 節點B之較低電壓位準會使得該第一NMOS電晶體(M11)之導通電阻(RM11)呈現較高的電阻值,該第一NMOS電晶體(M11)之該較高的電阻值會於該節點A獲得較高電壓位準,該節點A之較高電壓位準又會經由該第二反相器(由第二PMOS電晶體P12與第二NMOS電晶體M12所組成),而使得該節點B呈現更低電壓位準,該節點B之更低電壓位準又會經由該第一反相器(由第一PMOS電晶體P11與第一NMOS電晶體M11所組成),而使得該節點A獲得更高電壓位準,依此循環,即可將該節點A充電至該電源供應電壓(VDD),而完成邏輯1的寫入動作。 V AWI1 represents the initial instantaneous voltage of node A written from logic 0 to logic 1, R M11 , R M13 and R M23 represent the first NMOS transistor (M11), the third NMOS transistor (M13) and the The on-resistance of the sixth NMOS transistor (M23), and V DDH2 and V TM12 represent the second highest power supply voltage (V DDH2 ) and the threshold voltage of the second NMOS transistor (M12) respectively, due to the second highest The voltage level of the power supply voltage (V DDH2 ) is designed to be higher than the voltage level of the power supply voltage (V DD ), and a voltage equal to the sixth NMOS transistor is provided at the first low voltage node (VL1) (M23) gate-source voltage V GS(M23) voltage level, so the voltage level of node A can be easily set to be higher than that of the conventional 5T static random access memory cell of FIG. 4 The voltage level of node A is much higher. The much higher divided voltage level is sufficient to turn on the second NMOS transistor (M12), so that the node B discharges to a lower voltage level, and the lower voltage level of the node B causes the first The on-resistance (R M11 ) of an NMOS transistor (M11) exhibits a higher resistance value, the higher resistance value of the first NMOS transistor (M11) will obtain a higher voltage level at the node A, the The higher voltage level of node A will pass through the second inverter (composed of the second PMOS transistor P12 and the second NMOS transistor M12), so that the node B exhibits a lower voltage level, the node The lower voltage level of B will pass through the first inverter (composed of the first PMOS transistor P11 and the first NMOS transistor M11), so that the node A obtains a higher voltage level, and the cycle , The node A can be charged to the power supply voltage (V DD ), and the logic 1 write operation is completed.

在此值得注意的是,該第一低電壓節點(VL1)於節點A原本儲存邏輯0,而寫入邏輯1之期間,係具有等於該第六NMOS電晶體(M23)之閘源極電壓VGS(M23)的電壓位準,而於寫入邏輯1後,又會因經由該第九NMOS電晶體(M26)放電而具有接地電壓之位準。 It is worth noting here that the first low-voltage node (VL1) originally stores logic 0 at node A, and the period of writing logic 1 has a gate-source voltage V equal to the sixth NMOS transistor (M23) The voltage level of GS (M23) , after writing logic 1, will have the level of ground voltage due to the discharge through the ninth NMOS transistor (M26).

(三)節點A原本儲存邏輯1,而現在欲寫入邏輯1:在寫入動作發生前(字元線控制信號WLC為接地電壓),該第一PMOS電晶體(P11)為導通(ON)。當該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓VDD),由於該節點A為該電源供應電壓(VDD)之電壓位準,且該位元線(BL)為該第二高電源供應電壓(VDDH2)之電壓位準,因此會使該第三NMOS電晶體(M13)繼續保持截止(OFF)狀態;此時因為該第一PMOS電晶體(P11)仍為ON,該節點A之電壓位準雖會因該第二高電源供應電壓(VDDH2)之電壓位準而呈現稍大於該電源供應電壓(VDD)的電壓位準,惟於寫入完成後,該節點A會回復為原本之該電源供應電壓(VDD)的電壓位準。 (3) Node A originally stored logic 1, and now wants to write logic 1: before the write operation occurs (word line control signal WLC is the ground voltage), the first PMOS transistor (P11) is turned on (ON) . When the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage V DD ), since the node A is the voltage level of the power supply voltage (V DD ), and the bit line (BL) is the voltage level of the second highest power supply voltage (V DDH2 ), so the third NMOS transistor (M13) will continue to be kept in the OFF state; at this time, because the first PMOS transistor ( P11) is still ON, although the voltage level of the node A will be slightly higher than the power supply voltage (V DD ) due to the voltage level of the second highest power supply voltage (V DDH2 ), but After the writing is completed, the node A will return to the original voltage level of the power supply voltage (V DD ).

(四)節點A原本儲存邏輯1,而現在欲寫入邏輯0:在寫入動作發生前(該字元線控制信號WLC為接地電壓),該第一PMOS電晶體(P11)為導通(ON)。當該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓VDD),且該字元線控制信號(WLC)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為該位元線(BL)之電壓位準為滿足方程式(3)的電壓位準(VBL1),其小於0V,並且因為該第一PMOS電晶體(P11)仍為ON且該節點B處於電壓位準為接近於該接地電壓之電壓位準的初始狀態,所以該第一NMOS電晶體(M11)仍為截止,而該節點A之寫入初始瞬間電壓(VAWI0)滿足方程式(6):VAWI0=VBL1×RP11/(RM13+RP11)+VDD×RM13/(RM13+RP11) (6) (4) Node A originally stored logic 1, but now wants to write logic 0: before the write operation occurs (the word line control signal WLC is the ground voltage), the first PMOS transistor (P11) is turned on (ON ). When the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage V DD ), and the voltage of the word line control signal (WLC) is greater than that of the third NMOS transistor (M13) At a critical voltage, the third NMOS transistor (M13) changes from OFF to ON, because the voltage level of the bit line (BL) is the voltage level that satisfies equation (3) ( V BL1 ), which is less than 0V, and because the first PMOS transistor (P11) is still ON and the node B is in an initial state where the voltage level is close to the voltage level of the ground voltage, the first NMOS power The crystal (M11) is still off, and the initial instantaneous voltage (V AWI0 ) of the node A satisfies equation (6): V AWI0 =V BL1 ×R P11 /(R M13 +R P11 )+V DD ×R M13 /(R M13 +R P11 ) (6)

VAWI0表示節點A由邏輯1寫入邏輯0之寫入初始瞬間電壓,RM13與RP11分別表示該第三NMOS電晶體(M13)與該第一PMOS電晶體(P11)之導通電阻,而VBL1與VDD分別表示該位元線(BL)於寫入邏輯0之第一階段的電壓位準與該電源供應電壓(VDD)之電壓位準,由於由邏輯1寫入邏輯0時,該第三NMOS電晶體(M13)係工作於飽和區,飽和區之電流係與其閘-源極電壓VGS(M13)之電壓位準扣減其臨界電壓後之平方成正比例,因此藉由該位元線(BL)於寫入邏輯0之第一階段的電壓位準(VBL1)小於0V的設計方式,可有效加速由邏輯1寫入邏輯0之速度。 V AWI0 represents the initial instantaneous voltage of node A written to logic 0 by logic 1, R M13 and R P11 represent the on-resistance of the third NMOS transistor (M13) and the first PMOS transistor (P11), and V BL1 and V DD represent the voltage level of the bit line (BL) at the first stage of writing logic 0 and the voltage level of the power supply voltage (V DD ), respectively, because when logic 1 is written to logic 0 , The third NMOS transistor (M13) works in the saturation region, and the current in the saturation region is proportional to the square of its gate-source voltage V GS (M13) voltage level minus its critical voltage, so by The design method in which the voltage level of the bit line (BL) at the first stage of writing logic 0 (V BL1 ) is less than 0V can effectively accelerate the speed of writing logic 1 from logic 1 to logic 0.

(II)讀取模式(read mode) (II) Read mode

於讀取操作開始前,該待機模式控制信號(S)為邏輯低位準,而該反相寫入控制信號(/WC)及該反相待機模式控制信號(/S)均為邏輯高位準, 使得該第十一NMOS電晶體(M28)導通,並使得該第十NMOS電晶體(M27)截止,於是該節點C呈邏輯高位準,邏輯高位準之該節點C會導通第九NMOS電晶體(M26),並使得該第一低電壓節點(VL1)呈接地電壓。另一方面,由於該讀取控制信號(RC)為邏輯低位準,使得該第七NMOS電晶體(M24)截止(OFF),並使得該第八NMOS電晶體(M25)導通(ON)。 Before the start of the read operation, the standby mode control signal (S) is at a logic low level, and the inverted write control signal (/WC) and the inverted standby mode control signal (/S) are at a logic high level, The eleventh NMOS transistor (M28) is turned on, and the tenth NMOS transistor (M27) is turned off, so the node C assumes a logic high level, and the node C at the logic high level turns on the ninth NMOS transistor ( M26), and make the first low voltage node (VL1) assume a ground voltage. On the other hand, since the read control signal (RC) is at a logic low level, the seventh NMOS transistor (M24) is turned off (OFF), and the eighth NMOS transistor (M25) is turned on (ON).

在此值得注意的是,於讀取操作開始前之預充電期間,該預充電信號(P)係為邏輯低位準,藉此以將相對應之位元線(BL)預充電至該電源供應電壓(VDD)之位準,惟由於例如10奈米以下製程技術之操作電壓將降為0.9伏特以下時將造成讀取速度降低而無法滿足規範之問題,因此,本發明提出二階段的讀取控制以於提高讀取速度並滿足規範的同時,亦避免無謂的功率耗損。 It is worth noting here that during the precharge period before the start of the read operation, the precharge signal (P) is at a logic low level, thereby precharging the corresponding bit line (BL) to the power supply Voltage (V DD ) level, but because the operating voltage of process technology such as below 10 nanometers will be reduced to below 0.9 volts, the reading speed will be reduced and it will not meet the specifications. Therefore, the present invention proposes a two-stage reading Take control to improve the reading speed and meet the specifications, while avoiding unnecessary power consumption.

第5圖所示之本發明較佳實施例係藉由二階段的讀取控制以於提高讀取速度的同時,亦避免無謂的功率耗損,於讀取操作之一第一階段,該讀取控制信號(RC)為邏輯高位準,使得該第七NMOS電晶體(M24)導通,由於此時該第八NMOS電晶體(M25)仍導通,於是該第一低電壓節點(VL1)大約呈較接地電壓為低之該加速讀取電壓(RGND),該較接地電壓為低之該加速讀取電壓(RGND)可有效提高讀取速度。 The preferred embodiment of the present invention shown in FIG. 5 uses two-stage reading control to improve the reading speed while avoiding unnecessary power consumption. In the first stage of the reading operation, the reading The control signal (RC) is at a logic high level, so that the seventh NMOS transistor (M24) is turned on. Since the eighth NMOS transistor (M25) is still turned on at this time, the first low voltage node (VL1) is approximately The accelerated read voltage (RGND) with a low ground voltage, and the accelerated read voltage (RGND) with a lower ground voltage can effectively improve the reading speed.

而於讀取操作之一第二階段,雖然該讀取控制信號(RC)仍為邏輯高位準,使得該第七NMOS電晶體(M24)仍為導通,惟由於此時該第八NMOS電晶體(M25)截止,於是該第一低電壓節點(VL1)會經由導通的該第九NMOS電晶體(M26)而呈接地電壓,藉此可有效減少無謂的功率消耗。在此值得注意的是,該讀取操作之該第二階段與該第一階段相隔之時 間,係等於該讀取控制信號(RC)由邏輯低位準轉變為邏輯高位準起算,並至該第八NMOS電晶體(M25)之閘極電壓足以關閉該第八NMOS電晶體(M25)為止之時間,其值可藉由該第三反相器(INV)之下降延遲時間與該第一延遲電路(D1)所提供之延遲時間來調整。再者,無論於讀取操作之該第一階段抑是該第二階段,該第九NMOS電晶體(M26)均呈導通狀態(由於該第九NMOS電晶體(M26)之閘極為邏輯高位準)。第7圖所示為第5圖之本發明較佳實施例於讀取期間之簡化電路圖。 In the second stage of the read operation, although the read control signal (RC) is still at a logic high level, the seventh NMOS transistor (M24) is still turned on, but due to the eighth NMOS transistor at this time (M25) is turned off, so that the first low voltage node (VL1) assumes a ground voltage through the turned-on ninth NMOS transistor (M26), thereby effectively reducing unnecessary power consumption. It is worth noting here that when the second phase of the read operation is separated from the first phase It is equal to that the read control signal (RC) changes from a logic low level to a logic high level, and until the gate voltage of the eighth NMOS transistor (M25) is sufficient to turn off the eighth NMOS transistor (M25) The time can be adjusted by the falling delay time of the third inverter (INV) and the delay time provided by the first delay circuit (D1). Furthermore, regardless of whether the first stage or the second stage of the read operation, the ninth NMOS transistor (M26) is turned on (because the gate of the ninth NMOS transistor (M26) is at a logic high level ). FIG. 7 is a simplified circuit diagram of the preferred embodiment of the present invention of FIG. 5 during reading.

接下來依單埠SRAM之2種讀取狀態來說明第7圖之本發明較佳實施例如何藉由控制電路(2)以及高電壓位準控制電路(6)以於提高讀取速度的同時,亦避免無謂的功率耗損,另一方面藉由字元線電壓位準轉換電路(5)以有效降低讀取時之半選定晶胞干擾。 Next, according to the two reading states of the port SRAM, how the preferred embodiment of the present invention shown in FIG. 7 can be improved by the control circuit (2) and the high voltage level control circuit (6) while increasing the reading speed It also avoids unnecessary power consumption. On the other hand, the word line voltage level conversion circuit (5) is used to effectively reduce the interference of the half-selected cells during reading.

(一)讀取邏輯1(節點A儲存邏輯1):在讀取動作發生前,該第一NMOS電晶體(M11)為截止(OFF)且該第二NMOS電晶體(M12)為導通(ON),該節點A與該節點B分別為該電源供應電壓(VDD)與接地電壓,而該位元線(BL)則因該預充電電路(3)而等於該電源供應電壓(VDD)。於讀取期間,由於該字元線控制信號(WLC)為該電源供應電壓扣抵該第十三NMOS電晶體(M51)之臨界電壓(即VDD-VTM51),且由於該節點A為該電源供應電壓(VDD)之電壓位準,因此該第三NMOS電晶體(M13)為截止(OFF)狀態,藉此可有效保持該位元線(BL)為該電源供應電壓直到讀取週期結束而順利完成讀取邏輯1之操作。在此值得注意的是,於讀取操作期間由於該字元線控制信號(WLC)為該電源供應電壓扣抵該第十三NMOS電晶體(M51)之臨界電壓(即VDD- VTM51),因此可有效降低讀取時之半選定晶胞干擾。此外,於讀取操作之該第一階段,該第一低電壓節點(VL1)於讀取邏輯1時之讀取初始瞬間電壓(VRVL1I)必須滿足方程式(7):VRVL1I=RGND×RM26/(RM26+RM24+RM25)>-VTM11 (7)以有效地防止讀取時之半選定晶胞干擾,其中,VRVL1I表示該第一低電壓節點(VL1)於讀取邏輯1時之讀取初始瞬間電壓,RGND表示該加速讀取電壓,RM26表示該第九NMOS電晶體(M26)之導通電阻,RM24表示該第七NMOS電晶體(M24)之導通電阻,RM25表示該第八NMOS電晶體(M25)之導通電阻,而VTM11表示該第一NMOS電晶體(M11)之臨界電壓;於該讀取操作之該第二階段,該第一低電壓節點(VL1)之電壓(VRVL1)可由方程式(8)表示:VRVL1=接地電壓 (8)藉此,可有效地減少無謂的功率消耗。 (1) Read logic 1 (node A stores logic 1): Before the read operation occurs, the first NMOS transistor (M11) is turned off (OFF) and the second NMOS transistor (M12) is turned on (ON ), the node A and the node B are the power supply voltage (V DD ) and the ground voltage, respectively, and the bit line (BL) is equal to the power supply voltage (V DD ) due to the precharge circuit (3) . During the reading period, since the word line control signal (WLC) is the power supply voltage deducting the threshold voltage of the thirteenth NMOS transistor (M51) (that is, V DD -V TM51 ), and because the node A is The voltage level of the power supply voltage (V DD ), so the third NMOS transistor (M13) is in the OFF state, thereby effectively keeping the bit line (BL) at the power supply voltage until reading At the end of the cycle, the operation of reading logic 1 is successfully completed. It is worth noting here that during the read operation, the word line control signal (WLC) deducts the threshold voltage of the thirteenth NMOS transistor (M51) (ie V DD -V TM51 ) for the power supply voltage Therefore, it can effectively reduce the half-selected cell interference during reading. In addition, in the first phase of the read operation, the first instantaneous voltage (V RVL1I ) of the first low voltage node (VL1) when reading logic 1 must satisfy equation (7): V RVL1I = RGND×R M26 /(R M26 +R M24 +R M25 )>-V TM11 (7) to effectively prevent the semi-selected cell interference during reading, where V RVL1I represents the first low voltage node (VL1) during reading Logic 1 reads the initial instantaneous voltage, RGND represents the accelerated read voltage, R M26 represents the on-resistance of the ninth NMOS transistor (M26), R M24 represents the on-resistance of the seventh NMOS transistor (M24), R M25 represents the on-resistance of the eighth NMOS transistor (M25), and V TM11 represents the threshold voltage of the first NMOS transistor (M11); during the second stage of the read operation, the first low voltage node The voltage of (VL1) (V RVL1 ) can be expressed by equation (8): V RVL1 = ground voltage (8) By this, unnecessary power consumption can be effectively reduced.

再者,為了有效降低讀取時之半選定晶胞干擾與有效降低漏電流,可更保守地將該加速讀取電壓(RGND)之絕對值設定為小於該第一NMOS電晶體(M11)之臨界電壓(VTM11),亦即|RGND|<VTM11 (9)其中,|RGND|與VTM11分別表示該加速讀取電壓之絕對值與該第一NMOS電晶體(M11)之臨界電壓。 Furthermore, in order to effectively reduce the interference of the semi-selected cell during reading and effectively reduce the leakage current, the absolute value of the accelerated read voltage (RGND) can be set more conservatively than that of the first NMOS transistor (M11) The threshold voltage (V TM11 ), that is, |RGND|<V TM11 (9) where |RGND| and V TM11 represent the absolute value of the accelerated reading voltage and the threshold voltage of the first NMOS transistor (M11), respectively.

(二)讀取邏輯0(節點A儲存邏輯0):在讀取動作發生前,該第一NMOS電晶體(M11)為導通(ON)且該第二NMOS電晶體(M12)為截止(OFF),該節點(A)與該節點(B)分別為 接地電壓與該第一高電源供應電壓(VDDH1),而該位元線(BL)則因該預充電電路(3)而等於該電源供應電壓(VDD)。因為該第一NMOS電晶體(M11)為ON,所以當讀取動作開始時,該字元線控制信號(WLC)由Low(接地電壓)轉High(該電源供應電壓扣抵該第十二NMOS電晶體M51之臨界電壓VDD-VTM51)。當該字元線控制信號(WLC)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時該節點A之讀取初始瞬間電壓(VAR0I)必須滿足方程式(10):VAR0I=VDD×(RM11+(RM24+RM25)∥RM26)/(RM13+RM11+(RM24+RM25)∥RM26)+RGND×(RM11+RM13)∥RM26/(RM24+RM25+(RM11+RM13)∥RM26)×RM13/(RM11+RM13)<VTM12 (10)以避免使該第二NMOS電晶體(M12)導通,其中,VAR0I表示節點A讀取邏輯0時之初始瞬間電壓,RM11、RM13、RM24、RM25與RM26分別表示該第一NMOS電晶體(M11)、該第三NMOS電晶體(M13)、該第七NMOS電晶體(M24)、該第八NMOS電晶體(M25)與該第九NMOS電晶體(M26)之導通電阻,而VDD、RGND與VTM12分別表示該電源供應電壓(VDD)、該加速讀取電壓(RGND)與該第二NMOS電晶體(M12)之臨界電壓。在此值得注意的是,該加速讀取電壓(RGND)係設計成低於接地電壓且該加速讀取電壓之絕對值設計成小於該第一NMOS電晶體(M11)之臨界電壓。再者,本發明於讀取期間之該字元線控制信號(WLC)係設定為該電源供應電壓扣抵該第十四NMOS電晶體(M51)之臨界電壓(VDD-VTM51),其一方面能有效降低讀取時之半選定晶胞干擾,另一方面可藉由增加該第三NMOS 電晶體(M13)之導通電阻(RM13)以更容易滿足方程式(10)。 (2) Read logic 0 (node A stores logic 0): Before the read action occurs, the first NMOS transistor (M11) is turned on (ON) and the second NMOS transistor (M12) is turned off (OFF ), the node (A) and the node (B) are the ground voltage and the first high power supply voltage (V DDH1 ), respectively, and the bit line (BL) is equal to the value due to the precharge circuit (3) Power supply voltage (V DD ). Because the first NMOS transistor (M11) is ON, when the reading operation starts, the word line control signal (WLC) changes from Low (ground voltage) to High (the power supply voltage deducts the twelfth NMOS The threshold voltage V DD -V TM51 of transistor M51). When the voltage of the word line control signal (WLC) is greater than the threshold voltage of the third NMOS transistor (M13), the third NMOS transistor (M13) changes from OFF to ON. The initial instantaneous voltage (V AR0I ) of the node A must satisfy equation (10): V AR0I = V DD ×(R M11 +(R M24 +R M25 )∥R M26 )/(R M13 +R M11 +( R M24 +R M25 )∥R M26 )+RGND×(R M11 +R M13 )∥R M26 /(R M24 +R M25 +(R M11 +R M13 )∥R M26 )×R M13 /(R M11 + R M13 )<V TM12 (10) to avoid turning on the second NMOS transistor (M12), where V AR0I represents the initial instantaneous voltage when node A reads logic 0, R M11 , R M13, R M24, R M25 and R M26 represent the first NMOS transistor (M11), the third NMOS transistor (M13), the seventh NMOS transistor (M24), the eighth NMOS transistor (M25) and the ninth NMOS, respectively The on-resistance of the transistor (M26), and V DD , RGND and V TM12 represent the power supply voltage (V DD ), the accelerated read voltage (RGND) and the threshold voltage of the second NMOS transistor (M12), respectively. It is worth noting here that the accelerated read voltage (RGND) is designed to be lower than the ground voltage and the absolute value of the accelerated read voltage is designed to be less than the threshold voltage of the first NMOS transistor (M11). Furthermore, in the present invention, the word line control signal (WLC) during the reading period is set such that the power supply voltage deducts the threshold voltage (V DD -V TM51 ) of the fourteenth NMOS transistor (M51), which On the one hand, it can effectively reduce the interference of the semi-selected cell during reading; on the other hand, it can be easier to satisfy equation (10) by increasing the on-resistance (R M13 ) of the third NMOS transistor (M13).

再者,於讀取邏輯0期間,由於節點B為該第一高電源供應電壓(VDDH1),且該第一低電壓節點(VL1)為較接地電壓為低之電壓,由於該第一高電源供應電壓(VDDH1)係設定為高於該電源供應電壓(VDD),因此,可藉由增加該第一NMOS電晶體(M11)之導通程度,以有效提高讀取速度。在此值得注意的是,該第一高電源供應電壓(VDDH1)係設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第二PMOS電晶體(P12)臨界電壓之絕對值|VTP12|的總和,亦即VDD<VDDH1<VDD+|VTP12| (11)其中,|VTP12|表示該第二PMOS電晶體(P12)臨界電壓之絕對值。 Furthermore, during the reading of logic 0, since node B is the first high power supply voltage (V DDH1 ), and the first low voltage node (VL1) is a voltage lower than the ground voltage, due to the first high The power supply voltage (V DDH1 ) is set to be higher than the power supply voltage (V DD ), therefore, the read speed can be effectively improved by increasing the conduction degree of the first NMOS transistor (M11). It is worth noting here that the first high power supply voltage (V DDH1 ) is set higher than the power supply voltage (V DD ) but lower than the power supply voltage (V DD ) and the second PMOS transistor ( P12) The absolute value of the critical voltage |V TP12 |, that is, V DD <V DDH1 <V DD +|V TP12 | (11) where |V TP12 | represents the critical voltage of the second PMOS transistor (P12) The absolute value.

在此值得注意的是,該第二高電源供應電壓(VDDH2)係設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第八PMOS電晶體(P71)臨界電壓之絕對值|VTP71|的總和,亦即VDD<VDDH2<VDD+|VTP71| (12) It is worth noting here that the second highest power supply voltage (V DDH2 ) is set higher than the power supply voltage (V DD ) but lower than the power supply voltage (V DD ) and the eighth PMOS transistor ( P71) The absolute value of the critical voltage | V TP71 | The sum of V DD <V DDH2 <V DD +|V TP71 | (12)

其中,|VTP71|表示該第八PMOS電晶體(P71)臨界電壓之絕對值。 Among them, |V TP71 | represents the absolute value of the critical voltage of the eighth PMOS transistor (P71).

當然,為了簡化電路規模,可將該第一高電源供應電壓(VDDH1)設定成與該第二高電源供應電壓(VDDH2)等電位。 Of course, in order to simplify the circuit scale, the first high power supply voltage (V DDH1 ) can be set to the same potential as the second high power supply voltage (V DDH2 ).

(III)待機模式(standby mode) (III) Standby mode

首先,說明第5圖之待機啟動電路(4)如何促使SRAM快速進入待機模式,以有效提高SRAM之待機效能:首先,於進入待機模式之前,該反相待機模式控制信號(/S)為邏輯High,該邏輯High之反相待機模式控制信號(/S)使得該第四PMOS電晶體(P41)截止(OFF),並使得該第十二NMOS電 晶體(M41)導通(ON);接著,於進入待機模式後,該反相待機模式控制信號(/S)為邏輯Low,該邏輯Low之反相待機模式控制信號(/S)使得該第四PMOS電晶體(P41)導通(ON),惟於待機模式之初始期間內(該初始期間係等於該反相待機模式控制信號(/S)由邏輯High轉變為邏輯Low起算,至該第十二NMOS電晶體(M41)之閘極電壓足以關閉該第十二NMOS電晶體(M41)為止之時間,其可藉由該第二延遲電路(D2)所提供之一延遲時間來調整),該第十二NMOS電晶體(M41)仍導通(ON),於是可對該第一低電壓節點(VL1)快速充電到達該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準,亦即單埠SRAM可快速進入待機模式。在此值得注意的是,於待機模式之初始期間後,該第十二NMOS電晶體(M41)關閉並停止供應電流。 First, explain how the standby start circuit (4) in Figure 5 prompts the SRAM to quickly enter the standby mode to effectively improve the standby performance of the SRAM: first, before entering the standby mode, the inverted standby mode control signal (/S) is logic High, the inverted standby mode control signal (/S) of the logic High causes the fourth PMOS transistor (P41) to turn off (OFF), and causes the twelfth NMOS transistor (M41) to turn on (ON); then, After entering the standby mode, the inverted standby mode control signal (/S) is logic Low, and the inverted standby mode control signal (/S) of the logic Low causes the fourth PMOS transistor (P41) to turn on (ON), However, during the initial period of the standby mode (the initial period is equal to the reverse standby mode control signal (/S) from logic High to logic Low, the gate voltage to the twelfth NMOS transistor (M41) is sufficient The time until the twelfth NMOS transistor (M41) is turned off can be adjusted by a delay time provided by the second delay circuit (D2)), the twelfth NMOS transistor (M41) is still on ( ON), so that the first low voltage node (VL1) can be quickly charged to the voltage level of the threshold voltage (V TM23 ) of the sixth NMOS transistor (M23), that is, the port SRAM can quickly enter the standby mode. It is worth noting here that after the initial period of standby mode, the twelfth NMOS transistor (M41) turns off and stops supplying current.

請參考第5圖,於待機模式時,該待機模式控制信號(S)為邏輯高位準,而該反相待機模式控制信號(/S)為邏輯低位準,該邏輯低位準之該反相待機模式控制信號(/S)可使得該控制電路(2)中之該第四NMOS電晶體(M21)截止(OFF),而該邏輯高位準之該待機模式控制信號(S)則使得該第五NMOS電晶體(M22)導通(ON),此時該第五NMOS電晶體(M22)係作為等化器(equalizer)使用,因此可藉由呈導通狀態之該第五NMOS電晶體(M22),使得該第一低電壓節點(VL1)之電壓位準相等於該第二低電壓節點(VL2)之電壓位準,且該等電壓位準均會等於該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準。第8圖所示為第5圖之本發明較佳實施例於待機期間之簡化電路圖。 Please refer to FIG. 5, in the standby mode, the standby mode control signal (S) is at a logic high level, and the inverted standby mode control signal (/S) is at a logic low level, and the inverted standby of the logic low level The mode control signal (/S) makes the fourth NMOS transistor (M21) in the control circuit (2) OFF, and the standby mode control signal (S) of the logic high level makes the fifth The NMOS transistor (M22) is turned on. At this time, the fifth NMOS transistor (M22) is used as an equalizer. Therefore, the fifth NMOS transistor (M22) in the on state can be used. Making the voltage level of the first low voltage node (VL1) equal to the voltage level of the second low voltage node (VL2), and the voltage levels will be equal to the threshold of the sixth NMOS transistor (M23) The voltage level of the voltage (V TM23 ). Figure 8 is a simplified circuit diagram of the preferred embodiment of the present invention in Figure 5 during standby.

(IV)保持模式(retension mode) (IV) Retention mode (retension mode)

保持模式時,由於該第一低電壓節點(VL1)與該第二低電壓節點(VL2)均設定成接地電壓,其工作原理相同於第3圖傳統具單一位元線之SRAM晶胞,於此不再累述。 In the hold mode, since the first low voltage node (VL1) and the second low voltage node (VL2) are set to ground voltage, the working principle is the same as the traditional SRAM cell with a single bit line in Figure 3, in This is no longer exhaustive.

【發明功效】 【Invention Effect】

本發明所提出之具高寫入速度之靜態隨機存取記憶體的半導體記憶體,具有如下功效:(1)提高寫入邏輯0之速度:由於由邏輯1寫入邏輯0時,存取電晶體(即第三NMOS電晶體M13)係工作於飽和區,飽和區之電流係與其閘-源極電壓VGS(M13)之電壓位準扣減其臨界電壓後之平方成正比例,因此藉由將該位元線(BL)於寫入邏輯0之第一階段設計成低於於該接地電壓之電壓位準,可有效加速寫入邏輯0之速度;(2)高設計自由度:由於本發明於讀取邏輯0時,將儲存節點(A)下拉至低於第二NMOS電晶體(M12)之臨界電壓(VTM12)共有二個機制,一個為藉由字元線電壓位準轉換電路(5),以將施加至選定晶胞之存取電晶體(即第三NMOS電晶體M13)的字元線電壓下拉至低於電源供應電壓(即VDD-VTM51),另一個為藉由低於接地電壓之加速讀取電壓(RGND)以下拉儲存節點(A),因此具備高設計自由度之功效;(3)有效降低讀取時之半選定晶胞干擾:本發明可藉由字元線電壓位準轉換電路(5),以於讀取操作期間將施加至選定晶胞之存取電晶體(即第三NMOS電晶體M13)的字元線電壓下拉至低於該電源供應電壓(即VDD-VTM51),其一方面可降低半選定晶胞中之第三NMOS電晶體(M13)的讀取干擾,另一方面可藉由減輕滿足方程式(10)所需之加速讀取電壓(RGND),以降低半選定晶胞中之第一NMOS電晶體(M11)的讀取干擾,因此具備有效降低讀取時之半選定晶胞干擾之功效;(4)高讀取速度並避免無謂的功率消耗:本發明係採用二階段讀取操作, 於讀取操作之第一階段藉由將該第一低電壓節點(VL1)設定成較接地電壓為低之加速讀取電壓(RGND),並配合高電壓位準控制電路(6)以將該高電壓節點(VH)拉高至高於該電源供應電壓(VDD)之電壓位準,因此可有效提高讀取速度,而於讀取操作之第二階段則藉由將第一低電壓節點(VL1)設定回接地電壓,以便減少無謂的功率消耗;(5)快速進入待機模式:由於本發明設置有待機啟動電路(4)以促使SRAM快速進入待機模式,並藉此以謀求提高單埠SRAM之待機效能;(6)提高寫入邏輯1之速度,並避免寫入邏輯1困難之問題:本發明於寫入操作時,可藉由該複數個控制電路(2)以及該複數個寫入驅動電路(7)以有效防止寫入邏輯1困難之同時,亦提高寫入邏輯1之速度;(7)低待機電流:由於本發明於待機模式時,可藉由呈導通狀態之第五NMOS電晶體(M22),以使得該第一低電壓節點(VL1)之電壓位準相等於該第二低電壓節點(VL2)之電壓位準,並使得該等電壓位準均等於該第六NMOS電晶體(M23)之臨界電壓的位準,因此本發明亦具備低待機電流之功效;(8)低電晶體數:對於具有1024列1024行之SRAM陣列而言,傳統第1b圖6T靜態隨機存取記憶體陣列共需1024×1024×6=6,291,456顆電晶體,而本發明所提出之靜態隨機存取記憶體僅需1024×1024×5+1024×37+6=5,280,774顆電晶體,其減少16.1%之電晶體數。 The semiconductor memory of the static random access memory with high writing speed proposed by the present invention has the following functions: (1) Increase the speed of writing logic 0: when logic 0 is written by logic 1, the access power The crystal (that is, the third NMOS transistor M13) works in the saturation region. The current in the saturation region is proportional to the square of its gate-source voltage V GS(M13) after deducting its critical voltage, so by Designing the bit line (BL) in the first stage of writing logic 0 to a voltage level lower than the ground voltage can effectively accelerate the speed of writing logic 0; (2) High design freedom: due to Invented to read the logic 0, pull down the storage node (A) below the threshold voltage (V TM12 ) of the second NMOS transistor (M12), there are two mechanisms, one is by word line voltage level conversion circuit (5), the word line voltage applied to the access transistor of the selected cell (ie, the third NMOS transistor M13) is pulled below the power supply voltage (ie, V DD -V TM51 ), and the other is used The storage node (A) is pulled down by the accelerated read voltage (RGND) lower than the ground voltage, so it has the effect of high design freedom; (3) Effectively reduce the interference of the semi-selected cell during reading: the invention can be achieved by Word line voltage level conversion circuit (5) to pull down the word line voltage applied to the access transistor (ie, the third NMOS transistor M13) of the selected cell during the read operation below the power supply Voltage (that is, V DD -V TM51 ), on the one hand, it can reduce the read interference of the third NMOS transistor (M13) in the semi-selected cell, on the other hand, it can reduce the acceleration required to satisfy equation (10) Read voltage (RGND) to reduce the read interference of the first NMOS transistor (M11) in the semi-selected cell, so it has the effect of effectively reducing the interference of the semi-selected cell during reading; (4) high read Speed and avoid unnecessary power consumption: The present invention adopts a two-stage read operation. In the first stage of the read operation, the first low voltage node (VL1) is set to an accelerated read voltage lower than the ground voltage (RGND), and cooperate with the high voltage level control circuit (6) to pull the high voltage node (VH) to a voltage level higher than the power supply voltage (V DD ), so the reading speed can be effectively improved, and In the second stage of the reading operation, the first low voltage node (VL1) is set back to the ground voltage in order to reduce unnecessary power consumption; (5) Quickly enter the standby mode: because the present invention is provided with a standby start circuit (4 ) To prompt the SRAM to enter the standby mode quickly, and thereby to improve the standby performance of the port SRAM; (6) increase the speed of writing logic 1, and avoid the problem of writing logic 1 difficult: the present invention is in the writing operation , The plurality of control circuits (2) and the plurality of write drive circuits (7) can effectively prevent the difficulty of writing logic 1 and also increase the speed of writing logic 1; (7) Low standby current: Thanks to the invention In the standby mode, the fifth NMOS transistor (M22) in the on state can be used to make the voltage level of the first low voltage node (VL1) equal to the voltage level of the second low voltage node (VL2) And make the voltage levels equal to the critical voltage level of the sixth NMOS transistor (M23), so the present invention also has the effect of low standby current; (8) low transistor number: for 1024 columns For the SRAM array of 1024 rows, the traditional 1B Figure 6T static random access memory array requires a total of 1024×1024×6=6,291,456 transistors, while the static random access memory proposed by the present invention only requires 1024×1024 ×5+1024×37+6=5,280,774 transistors, which reduces the number of transistors by 16.1%.

雖然本發明特別揭露並描述了所選之較佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本發明的精神與範圍。因此,所有相關技術範疇內之改變都包括在本發明之申請專利範圍內。 Although the present invention specifically discloses and describes selected preferred embodiments, those skilled in the art may understand that any possible changes in form or detail do not depart from the spirit and scope of the present invention. Therefore, all changes within the relevant technical category are included in the patent application scope of the present invention.

1‧‧‧SRAM晶胞 1‧‧‧SRAM cell

2‧‧‧控制電路 2‧‧‧Control circuit

3‧‧‧預充電電路 3‧‧‧Precharge circuit

4‧‧‧待機啟動電路 4‧‧‧ Standby start circuit

5‧‧‧字元線電壓位準轉換電路 5‧‧‧Character line voltage level conversion circuit

6‧‧‧高電壓位準控制電路 6‧‧‧High voltage level control circuit

7‧‧‧寫入驅動電路 7‧‧‧Write driver circuit

P11‧‧‧第一PMOS電晶體 P11‧‧‧The first PMOS transistor

P12‧‧‧第二PMOS電晶體 P12‧‧‧ Second PMOS transistor

M11‧‧‧第一NMOS電晶體 M11‧‧‧First NMOS transistor

M12‧‧‧第二NMOS電晶體 M12‧‧‧Second NMOS transistor

M13‧‧‧第三NMOS電晶體 M13‧‧‧ Third NMOS transistor

A‧‧‧儲存節點 A‧‧‧storage node

B‧‧‧反相儲存節點 B‧‧‧Inverted storage node

BL‧‧‧位元線 BL‧‧‧bit line

WLC‧‧‧字元線控制信號 WLC‧‧‧Character line control signal

VDD‧‧‧電源供應電壓 V DD ‧‧‧ Power supply voltage

VH‧‧‧高電壓節點 VH‧‧‧High voltage node

VL1‧‧‧第一低電壓節點 VL1‧‧‧The first low voltage node

VL2‧‧‧第二低電壓節點 VL2‧‧‧second low voltage node

S‧‧‧待機模式控制信號 S‧‧‧Standby mode control signal

/S‧‧‧反相待機模式控制信號 /S‧‧‧Inverted standby mode control signal

M21‧‧‧第四NMOS電晶體 M21‧‧‧ Fourth NMOS transistor

M22‧‧‧第五NMOS電晶體 M22‧‧‧Fifth NMOS transistor

M23‧‧‧第六NMOS電晶體 M23‧‧‧Sixth NMOS transistor

M24‧‧‧第七NMOS電晶體 M24‧‧‧NMOS transistor

M25‧‧‧第八NMOS電晶體 M25‧‧‧Eighth NMOS transistor

M26‧‧‧第九NMOS電晶體 M26‧‧‧Ninth NMOS transistor

M27‧‧‧第十NMOS電晶體 M27‧‧‧Tenth NMOS transistor

M28‧‧‧第十一NMOS電晶體 M28‧‧‧Eleventh NMOS transistor

RC‧‧‧讀取控制信號 RC‧‧‧Read control signal

RGND‧‧‧加速讀取電壓 RGND‧‧‧Accelerated reading voltage

/RC‧‧‧反相讀取控制信號 /RC‧‧‧Reverse read control signal

/WC‧‧‧反相寫入控制信號 /WC‧‧‧Inverse write control signal

INV‧‧‧第三反相器 INV‧‧‧ third inverter

D1‧‧‧第一延遲電路 D1‧‧‧ First delay circuit

P31‧‧‧第三PMOS電晶體 P31‧‧‧The third PMOS transistor

P‧‧‧預充電信號 P‧‧‧Precharge signal

M41‧‧‧第十二NMOS電晶體 M41‧‧‧Twelfth NMOS transistor

P41‧‧‧第四PMOS電晶體 P41‧‧‧ Fourth PMOS transistor

C‧‧‧節點 C‧‧‧Node

D2‧‧‧第二延遲電路 D2‧‧‧second delay circuit

WL‧‧‧字元線 WL‧‧‧character line

R‧‧‧讀取信號 R‧‧‧Read signal

P51‧‧‧第五PMOS電晶體 P51‧‧‧ fifth PMOS transistor

M51‧‧‧第十三NMOS電晶體 M51‧‧‧Thirteenth NMOS transistor

M52‧‧‧第十四NMOS電晶體 M52‧‧‧14th NMOS transistor

P61‧‧‧第六PMOS電晶體 P61‧‧‧The sixth PMOS transistor

P62‧‧‧第七PMOS電晶體 P62‧‧‧The seventh PMOS transistor

I63‧‧‧第四反相器 I63‧‧‧ fourth inverter

VDDH1‧‧‧第一高電源供應電壓 V DDH1 ‧‧‧The highest power supply voltage

VDDH2‧‧‧第二高電源供應電壓 V DDH2 ‧‧‧The second highest power supply voltage

P71‧‧‧第八PMOS電晶體 P71‧‧‧Eighth PMOS transistor

M71‧‧‧第十五NMOS電晶體 M71‧‧‧The fifteenth NMOS transistor

M72‧‧‧第十六NMOS電晶體 M72‧‧‧Sixteenth NMOS transistor

M73‧‧‧第十七NMOS電晶體 M73‧‧‧The 17th NMOS transistor

I71‧‧‧第五反相器 I71‧‧‧fifth inverter

I72‧‧‧第六反相器 I72‧‧‧ sixth inverter

Cap‧‧‧電容器 Cap‧‧‧Capacitor

Din‧‧‧輸入資料 Din‧‧‧Enter data

D3‧‧‧第三延遲電路 D3‧‧‧The third delay circuit

D4‧‧‧第四延遲電路 D4‧‧‧ Fourth Delay Circuit

Y‧‧‧行解碼器輸出信號 Y‧‧‧Line decoder output signal

Claims (10)

一種半導體記憶體,包括:一記憶體陣列,該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞與每一行記憶體晶胞均包含有複數個記憶體晶胞(1);複數個控制電路(2),每一列記憶體晶胞設置一個控制電路(2);複數個預充電電路(3),每一行記憶體晶胞設置一個預充電電路(3);一待機啟動電路(4),該待機啟動電路(4)係促使該半導體記憶體快速進入待機模式,以有效提高該半導體記憶體之待機效能;複數個字元線電壓位準轉換電路(5),每一列記憶體晶胞設置一個字元線電壓位準轉換電路(5),以有效降低讀取時之半選定晶胞干擾;複數個高電壓位準控制電路(6),每一列記憶晶胞設置一個高電壓位準控制電路(6),以在讀取邏輯0時提高讀取速度;以及複數個寫入驅動電路(7),每一行記憶體晶胞設置一個寫入驅動電路(7),以在寫入操作時提高寫入速度;其中,每一記憶體晶胞(1)更包含:一第一反相器,係由一第一PMOS電晶體(P11)與一第一NMOS電晶體(M11)所組成,該第一反相器係連接在一電源供應電壓(VDD)與一第一低電壓節點(VL1)之間;一第二反相器,係由一第二PMOS電晶體(P12)與一第二NMOS電晶體(M12)所組成,該第二反相器係連接在一高電壓節點(VH)與一第二低電壓節點(VL2)之間;一儲存節點(A),係由該第一反相器之輸出端所形成;一反相儲存節點(B),係由該第二反相器之輸出端所形成;一第三NMOS電晶體(M13),係連接在該儲存節點(A)與一位元線(BL)之間,且閘極連接至一字元線控制信號(WLC);其中,該第一反相器和該第二反相器係呈交互耦合連接,亦即該第一反相器之輸出端(即該儲存節點A)係連接至該第二反相器之輸入端,而該第二反相器之輸出端(即該反相儲存節點B)則連接至該第一反相器之輸入端; 而每一控制電路(2)更包含:一第四NMOS電晶體(M21)、一第五NMOS電晶體(M22)、一第六NMOS電晶體(M23)、一第七NMOS電晶體(M24)、一第八NMOS電晶體(M25)、一第九NMOS電晶體(M26)、一第十NMOS電晶體(M27)、一第十一NMOS電晶體(M28)、一讀取控制信號(RC)、一第三反相器(INV)、一第一延遲電路(D1)、一加速讀取電壓(RGND)、一反相寫入控制信號(/WC)、一待機模式控制信號(S)以及一反相待機模式控制信號(/S);其中,該第四NMOS電晶體(M21)之源極、閘極與汲極係分別連接至接地電壓、該反相待機模式控制信號(/S)與該第二低電壓節點(VL2);該第五NMOS電晶體(M22)之源極、閘極與汲極係分別連接至該第二低電壓節點(VL2)、該待機模式控制信號(S)與該第一低電壓節點(VL1);該第六NMOS電晶體(M23)之源極係連接至該接地電壓,而閘極與汲極連接在一起並連接至該第一低電壓節點(VL1);該第七NMOS電晶體(M24)之源極、閘極與汲極係分別連接至該第八NMOS電晶體(M25)之汲極、該讀取控制信號(RC)與該第一低電壓節點(VL1);該第八NMOS電晶體(M25)之源極、閘極與汲極係分別連接至該加速讀取電壓(RGND)、該第一延遲電路(D1)之輸出與該第七NMOS電晶體(M24)之源極;該第一延遲電路(D1)係連接在該第三反相器(INV)之輸出與該第八NMOS電晶體(M25)之閘極之間;該第三反相器(INV)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第一延遲電路(D1)之輸入;該第九NMOS電晶體(M26)之源極、閘極與汲極係分別連接至該接地電壓、該第十NMOS電晶體(M27)之汲極與該第一低電壓節點(VL1);該第十NMOS電晶體(M27)之源極、閘極與汲極係分別連接至該接地電壓、該待機模式控制信號(S)與該第九NMOS電晶體(M26)之閘極;該第十一NMOS電晶體(M28)之源極、閘極與汲極則分別連接至該反相寫入控制信號(/WC)、該反相待機模式控制信號(/S)與該第九NMOS 電晶體(M26)之閘極;其中,該第十一NMOS電晶體(M28)之汲極、該第十NMOS電晶體(M27)之汲極及該第九NMOS電晶體(M26)之閘極係連接在一起並形成一節點(C),當該待機模式控制信號(S)為邏輯低位準時,該節點(C)之電壓位準係為該反相寫入控制信號(/WC)之邏輯位準,而當該待機模式控制信號(S)為邏輯高位準時,該節點(C)之電壓位準係為接地電壓,藉此可具有穩定的待機模式(由於寫入操作期間該節點C之電壓位準恆為該接地電壓);再者,該節點(C)之邏輯高位準係為該電源供應電壓(VDD)扣減該第十一NMOS電晶體(M28)之一臨界電壓(VTM28)的電壓位準,因此當該半導體記憶體於非寫入模式(此時對應之該反相寫入控制信號(/WC)為邏輯高位準)時,該節點(C)係為該電源供應電壓(VDD)扣減該第十一NMOS電晶體(M28)之該臨界電壓(VTM28)的電壓位準,而非該電源供應電壓(VDD)之電壓位準,故可具有較低之功率消耗;且於後續進入寫入模式(此時對應之該反相寫入控制信號(/WC)為邏輯低位準)時,由於可快速地將儲存於該節點(C)之電荷經由該第十一NMOS電晶體(M28)放電至足以關閉以該節點(C)作為閘極之該第九NMOS電晶體(M26),故可較快速地進入該寫入模式;其中,對於非讀取模式期間之該讀取控制信號(RC)係設定為該加速讀取電壓(RGND)之位準,以防止該第七NMOS電晶體(M24)於非讀取模式期間之漏電流;此外,該待機啟動電路(4)係設計成於進入待機模式之一初始期間內,對該第一低電壓節點(VL1)處之寄生電容快速充電至該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準;此外,每一字元線電壓位準轉換電路(5)更包含:一第五PMOS電晶體(P51)、一第十三NMOS電晶體(M51)、一第十四NMOS電晶體(M52)、該讀取控制信號(RC)、一反相寫入控制信號(/WC)、一反相讀取控制信號(/RC)以及該字元線控制信號(WLC);其中,該第五PMOS電晶體(P51)之源極、閘極與汲極係分別連接至一字元線(WL)、該反相寫入控制信號(/WC)與該字元線控制信號(WLC); 該第十三NMOS電晶體(M51)之源極、閘極與汲極係分別連接至該字元線控制信號(WLC)、該讀取控制信號(RC)與該字元線(WL);而該第十四NMOS電晶體(M52)之源極、閘極與汲極係分別連接至該字元線控制信號(WLC)、該反相讀取控制信號(/RC)與該字元線(WL);其中,每一字元線電壓位準轉換電路(5)於讀取操作時,將選定晶胞之該字元線(WL)由該電源供應電壓(VDD)轉變為該電源供應電壓(VDD)扣抵該第十三NMOS電晶體(M51)之臨界電壓(VTM51)(即VDD-VTM51)後提供給與該字元線控制信號(WLC);而於寫入操作時,則將選定晶胞之該字元線(WL)的該電源供應電壓(VDD)提供給與該字元線控制信號(WLC);再者,每一高電壓位準控制電路(6)更包含:一第六PMOS電晶體(P61)、一第七PMOS電晶體(P62)一第四反相器(I63)、該讀取控制信號(RC)以及一第一高電源供應電壓(VDDH1),其中該第六PMOS電晶體(P61)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該讀取控制信號(RC)與該高電壓節點(VH),該第七PMOS電晶體(P62)之源極、閘極與汲極係分別連接至該第一高電源供應電壓(VDDH1)、該第四反相器(I63)之輸出與該高電壓節點(VH),而該第四反相器(I63)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第七PMOS電晶體(P62)之閘極;最後,每一寫入驅動電路(7)更包含:一第八PMOS電晶體(P71)、一第十五NMOS電晶體(M71)、一第十六NMOS電晶體(M72)、一第十七NMOS電晶體(M73)、一第五反相器(I71)、一第六反相器(I72)、一電容器(Cap)、一輸入資料(Din)、一行解碼器輸出信號(Y)、一第三延遲電路(D3)、一第四延遲電路(D4)以及一第二高電源供應電壓(VDDH2);其中,該第八PMOS電晶體(P71)之源極、閘極與汲極係分別連接至該第二高電源供應電壓(VDDH2)、該第五反相器(I71)之輸出與該第十五NMOS電晶體(M71)之汲極;該第十五NMOS電晶體(M71)之源極、閘極與汲極係分別連接至該第十七NMOS電晶體(M73)之汲極、該第五反相器(I71)之輸出與該第 八PMOS電晶體(P71)之汲極;該第十六NMOS電晶體(M72)之源極、閘極與汲極係分別連接至該接地電壓、該第三延遲電路(D3)之輸出與該第八PMOS電晶體(P71)之汲極;該第十七NMOS電晶體(M73)之源極、閘極與汲極係分別連接至該接地電壓、該第六反相器(I72)之輸出與該第十五NMOS電晶體(M71)之源極;該第五反相器(I71)之輸入係供接收該輸入資料(Din),而輸出則連接至該第八PMOS電晶體(P71)之閘極、該第十五NMOS電晶體(M71)之閘極以及該第三延遲電路(D3)之輸入;該第六反相器(I72)之輸入係供接收該行解碼器輸出信號(Y),而輸出則連接至該第四延遲電路(D4)之輸入以及該第十七NMOS電晶體(M73)之閘極;該電容器(Cap)之一端係連接至該第四延遲電路(D4)之輸出,而該電容器(Cap)之另一端則連接至該第十五NMOS電晶體(M71)之源極以及該第十七NMOS電晶體(M73)之汲極;其中,該第八PMOS電晶體(P71)之汲極、該第十五NMOS電晶體(M71)之汲極與該第十六NMOS電晶體(M72)之汲極係共同連接至該位元線(BL),該位元線(BL)於寫入邏輯0之第一階段係設計成低於於該接地電壓之電壓位準,以加速寫入邏輯0之速度,而於寫入邏輯1時則設計成高於該電源供應電壓(VDD)之該第二高電源供應電壓(VDDH2)的位準,以加速寫入邏輯1之速度。 A semiconductor memory includes: a memory array composed of a plurality of rows of memory cells and a plurality of rows of memory cells, each row of memory cells and each row of memory cells includes Plural memory cells (1); plural control circuits (2), each column of memory cells is provided with a control circuit (2); plural precharge circuits (3), each row of memory cells is provided with a pre- Charging circuit (3); a standby start circuit (4), the standby start circuit (4) prompts the semiconductor memory to quickly enter a standby mode, so as to effectively improve the standby performance of the semiconductor memory; a plurality of word line voltage bits Standard conversion circuit (5), each column of memory cells is provided with a word line voltage level conversion circuit (5) to effectively reduce the interference of half-selected cells during reading; a plurality of high voltage level control circuits (6 ), each column of memory cells is provided with a high voltage level control circuit (6) to increase the reading speed when reading logic 0; and a plurality of write drive circuits (7), each row of memory cells is provided with one Write drive circuit (7) to increase the write speed during the write operation; wherein, each memory cell (1) further includes: a first inverter, which is composed of a first PMOS transistor (P11) ) And a first NMOS transistor (M11), the first inverter is connected between a power supply voltage (V DD ) and a first low voltage node (VL1); a second inverter , Is composed of a second PMOS transistor (P12) and a second NMOS transistor (M12), the second inverter is connected to a high voltage node (VH) and a second low voltage node (VL2 ); a storage node (A) is formed by the output of the first inverter; an inverted storage node (B) is formed by the output of the second inverter; a first Three NMOS transistors (M13) are connected between the storage node (A) and a bit line (BL), and the gate is connected to a word line control signal (WLC); wherein, the first inversion The inverter and the second inverter are alternately coupled, that is, the output terminal of the first inverter (that is, the storage node A) is connected to the input terminal of the second inverter, and the second inverter The output terminal of the phase inverter (that is, the inverted storage node B) is connected to the input terminal of the first inverter; and each control circuit (2) further includes: a fourth NMOS transistor (M21), a first Five NMOS transistors (M22), a sixth NMOS transistor (M23), a seventh NMOS transistor (M24), an eighth NMOS transistor (M25), a ninth NMOS transistor (M26), a first Ten NMOS transistors (M27), an eleventh NMOS transistor (M28), a read control signal (RC), a third inverter (INV), a first delay circuit (D1), an accelerated read Take voltage (RGND), an inverted write control signal (/WC), a standby mode control signal (S) and an inverted standby mode control signal (/ S); wherein, the source, gate, and drain of the fourth NMOS transistor (M21) are respectively connected to the ground voltage, the reverse standby mode control signal (/S), and the second low voltage node (VL2 ); the source, gate and drain of the fifth NMOS transistor (M22) are respectively connected to the second low voltage node (VL2), the standby mode control signal (S) and the first low voltage node ( VL1); the source of the sixth NMOS transistor (M23) is connected to the ground voltage, and the gate and the drain are connected together and connected to the first low voltage node (VL1); the seventh NMOS transistor The source, gate and drain of (M24) are connected to the drain of the eighth NMOS transistor (M25), the read control signal (RC) and the first low voltage node (VL1); the first The source, gate and drain of the eight NMOS transistors (M25) are respectively connected to the accelerated read voltage (RGND), the output of the first delay circuit (D1) and the seventh NMOS transistor (M24) Source; the first delay circuit (D1) is connected between the output of the third inverter (INV) and the gate of the eighth NMOS transistor (M25); the third inverter (INV) The input is for receiving the read control signal (RC), and the output is connected to the input of the first delay circuit (D1); the source, gate and drain of the ninth NMOS transistor (M26) are respectively Connected to the ground voltage, the drain of the tenth NMOS transistor (M27) and the first low voltage node (VL1); the source, gate and drain of the tenth NMOS transistor (M27) are respectively connected To the ground voltage, the standby mode control signal (S) and the gate of the ninth NMOS transistor (M26); the source, gate and drain of the eleventh NMOS transistor (M28) are connected to The inverted write control signal (/WC), the inverted standby mode control signal (/S) and the gate of the ninth NMOS transistor (M26); wherein, the eleventh NMOS transistor (M28) The drain, the drain of the tenth NMOS transistor (M27) and the gate of the ninth NMOS transistor (M26) are connected together and form a node (C), when the standby mode control signal (S) is When the logic low level is, the voltage level of the node (C) is the logic level of the inverted write control signal (/WC), and when the standby mode control signal (S) is the logic high level, the node (C ) Is the ground voltage, which can have a stable standby mode (because the voltage level of the node C is always the ground voltage during the write operation); furthermore, the logic high level of the node (C) It is the voltage level of the power supply voltage (VDD) minus a critical voltage (V TM28 ) of the eleventh NMOS transistor (M28), so when the semiconductor memory is in the non-write mode (corresponding to When the inverted write control signal (/WC) is a logic high level), the node ( C) is the voltage level of the power supply voltage (VDD) minus the threshold voltage (V TM28 ) of the eleventh NMOS transistor (M28), not the voltage level of the power supply voltage (VDD), Therefore, it can have lower power consumption; and when entering the write mode (the corresponding inverse write control signal (/WC) at this time is a logic low level), it can be quickly stored in the node (C ) The charge is discharged through the eleventh NMOS transistor (M28) enough to close the ninth NMOS transistor (M26) with the node (C) as the gate, so it can enter the write mode more quickly; For the non-read mode, the read control signal (RC) is set to the level of the accelerated read voltage (RGND) to prevent the leakage of the seventh NMOS transistor (M24) during the non-read mode In addition, the standby start circuit (4) is designed to quickly charge the parasitic capacitance at the first low voltage node (VL1) to the sixth NMOS transistor (M23) during an initial period of entering standby mode Voltage level of the threshold voltage (V TM23 ); in addition, each word line voltage level conversion circuit (5) further includes: a fifth PMOS transistor (P51), a thirteenth NMOS transistor (M51) , A fourteenth NMOS transistor (M52), the read control signal (RC), an inverted write control signal (/WC), an inverted read control signal (/RC) and the word line control Signal (WLC); wherein the source, gate and drain of the fifth PMOS transistor (P51) are connected to a word line (WL), the reverse write control signal (/WC) and the Word line control signal (WLC); the source, gate and drain of the thirteenth NMOS transistor (M51) are connected to the word line control signal (WLC) and the read control signal (RC), respectively And the word line (WL); and the source, gate and drain of the fourteenth NMOS transistor (M52) are respectively connected to the word line control signal (WLC) and the inverted read control signal (/RC) and the word line (WL); wherein, each word line voltage level conversion circuit (5) supplies the word line (WL) of the selected cell from the power supply during the read operation The voltage (V DD ) is converted into the power supply voltage (V DD ) after deducting the threshold voltage (V TM51 ) of the thirteenth NMOS transistor (M51) (that is, V DD -V TM51 ) and supplied to the word line Control signal (WLC); and during the writing operation, the power supply voltage (V DD ) of the word line (WL) of the selected cell is provided to the word line control signal (WLC); Each high voltage level control circuit (6) further includes: a sixth PMOS transistor (P61), a seventh PMOS transistor (P62), a fourth inverter (I63), and the read control signal ( RC) and a first high power supply voltage (V DDH1 ), wherein the source, gate and drain of the sixth PMOS transistor (P61) are respectively connected to the power supply voltage (V DD ), the read control signal (RC) and the high voltage node (VH), the source, gate and drain of the seventh PMOS transistor (P62) are connected to the first high power supply voltage (V DDH1 ) and the output of the fourth inverter (I63) and The high voltage node (VH), and the input of the fourth inverter (I63) is for receiving the read control signal (RC), and the output is connected to the gate of the seventh PMOS transistor (P62); Finally, each write drive circuit (7) further includes: an eighth PMOS transistor (P71), a fifteenth NMOS transistor (M71), a sixteenth NMOS transistor (M72), a seventeenth NMOS transistor (M73), a fifth inverter (I71), a sixth inverter (I72), a capacitor (Cap), an input data (Din), a row of decoder output signals (Y), a The third delay circuit (D3), a fourth delay circuit (D4) and a second high power supply voltage (V DDH2 ); wherein the source, gate and drain of the eighth PMOS transistor (P71) are Connected to the second highest power supply voltage (V DDH2 ), the output of the fifth inverter (I71) and the drain of the fifteenth NMOS transistor (M71); the fifteenth NMOS transistor (M71) ) The source, gate and drain are connected to the drain of the seventeenth NMOS transistor (M73), the output of the fifth inverter (I71) and the eighth PMOS transistor (P71) Drain; the source, gate and drain of the sixteenth NMOS transistor (M72) are connected to the ground voltage, the output of the third delay circuit (D3) and the eighth PMOS transistor (P71), respectively The drain; the source, gate and drain of the seventeenth NMOS transistor (M73) are connected to the ground voltage, the output of the sixth inverter (I72) and the fifteenth NMOS transistor respectively (M71) source; the input of the fifth inverter (I71) is for receiving the input data (Din), and the output is connected to the gate of the eighth PMOS transistor (P71), the fifteenth The gate of the NMOS transistor (M71) and the input of the third delay circuit (D3); the input of the sixth inverter (I72) is used to receive the output signal (Y) of the row decoder, and the output is connected to The input of the fourth delay circuit (D4) and the gate of the seventeenth NMOS transistor (M73); one end of the capacitor (Cap) is connected to the output of the fourth delay circuit (D4), and the capacitor ( Cap) is connected to the source of the fifteenth NMOS transistor (M71) and the drain of the seventeenth NMOS transistor (M73); wherein, the drain of the eighth PMOS transistor (P71) 15th NM The drain of the OS transistor (M71) and the drain of the sixteenth NMOS transistor (M72) are connected to the bit line (BL), the bit line (BL) is the first to write a logic 0 The stage is designed to be at a voltage level lower than the ground voltage to speed up the writing of logic 0, while writing to logic 1 is designed to be the second highest power supply above the power supply voltage (V DD ) The level of the supply voltage (V DDH2 ) to accelerate the speed of writing logic 1. 如申請專利範圍第1項所述之半導體記憶體,其中,每一預充電電路(3)係由一第三PMOS電晶體(P31)以及一預充電信號(P)所組成;其中,該第三PMOS電晶體(P31)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該預充電信號(P)與對應之位元線(BL),以便於一預充電期間,藉由邏輯低位準之該預充電信號(P),以將該對應之位元線(BL)預充電至該電源供應電壓(VDD)之位準。 The semiconductor memory as described in item 1 of the patent application scope, wherein each precharge circuit (3) is composed of a third PMOS transistor (P31) and a precharge signal (P); The source, gate and drain of the three PMOS transistors (P31) are connected to the power supply voltage (V DD ), the precharge signal (P) and the corresponding bit line (BL), respectively During charging, the precharge signal (P) at a logic low level is used to precharge the corresponding bit line (BL) to the level of the power supply voltage (V DD ). 如申請專利範圍第2項所述之半導體記憶體,其中,該待機啟動電路(4)係由一第四PMOS電晶體(P41)、一第十二NMOS電晶體(M41)、 一第二延遲電路(D2)以及該反相待機模式控制信號(/S)所組成;其中,該第四PMOS電晶體(P41)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該反相待機模式控制信號(/S)與該第十二NMOS電晶體(M41)之汲極;該第十二NMOS電晶體(M41)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該第二延遲電路(D2)之輸出與該第四PMOS電晶體(P41)之汲極;該第二延遲電路(D2)之輸入連接至該反相待機模式控制信號(/S),而該第二延遲電路(D2)之該輸出則連接至該第十二NMOS電晶體(M41)之閘極。 The semiconductor memory as described in item 2 of the patent application scope, wherein the standby start circuit (4) is composed of a fourth PMOS transistor (P41), a twelfth NMOS transistor (M41), A second delay circuit (D2) and the inverted standby mode control signal (/S); wherein, the source, gate and drain of the fourth PMOS transistor (P41) are respectively connected to the power supply Voltage (VDD), the inverted standby mode control signal (/S) and the drain of the twelfth NMOS transistor (M41); the source, gate and drain of the twelfth NMOS transistor (M41) Are connected to the first low voltage node (VL1), the output of the second delay circuit (D2) and the drain of the fourth PMOS transistor (P41); the input of the second delay circuit (D2) is connected to The inverted standby mode control signal (/S), and the output of the second delay circuit (D2) is connected to the gate of the twelfth NMOS transistor (M41). 如申請專利範圍第3項所述之半導體記憶體,其中,每一寫入驅動電路(7)寫入邏輯0之該第一階段滿足下列方程式:VBL1=-VDD×Cap/(Cap+CBL)其中,VBL1表示該位元線(BL)於寫入邏輯0之該第一階段的電壓位準,VBL1的絕對值設計為小於該第三NMOS電晶體(M13)之臨界電壓,VDD為該電源供應電壓(VDD)之電壓位準,而Cap與CBL分別表示該該電容器(Cap)之電容值與該位元線(BL)之寄生電容值。 The semiconductor memory as described in item 3 of the patent application scope, wherein the first stage in which each write drive circuit (7) writes a logic 0 satisfies the following equation: V BL1 = -V DD ×Cap/(Cap+ C BL ), where V BL1 represents the voltage level of the bit line (BL) at the first stage of writing logic 0, and the absolute value of V BL1 is designed to be less than the threshold voltage of the third NMOS transistor (M13) , V DD is the voltage level of the power supply voltage (V DD ), and Cap and C BL represent the capacitance value of the capacitor (Cap) and the parasitic capacitance value of the bit line (BL), respectively. 如申請專利範圍第4項所述之半導體記憶體,其中,該儲存節點(A)由邏輯0寫入邏輯1之寫入初始瞬間電壓(VAWI1)滿足下列方程式:VAWI1=VDDH2×(RM11+RM23)/(RM13+RM11+RM23)且VAWI1>VTM12其中,RM11、RM13與RM23分別表示該第一NMOS電晶體(M11)、該第三NMOS電晶體(M13)與該第六NMOS電晶體(M23)之導通電阻,而VDDH2與VTM12分別表示該第二高電源供應電壓(VDDH2)之電壓位準與該第二NMOS電晶體(M12)之臨界電壓。 The semiconductor memory as described in item 4 of the patent application scope, in which the initial instantaneous voltage (V AWI1 ) of the storage node (A) written from logic 0 to logic 1 satisfies the following equation: V AWI1 = V DDH2 ×( R M11 + R M23 )/(R M13 + R M11 + R M23 ) and V AWI1 > V TM12 where R M11 , R M13 and R M23 represent the first NMOS transistor (M11) and the third NMOS transistor respectively The on-resistance of the crystal (M13) and the sixth NMOS transistor (M23), and V DDH2 and V TM12 respectively represent the voltage level of the second highest power supply voltage (V DDH2 ) and the second NMOS transistor (M12) ) Of the critical voltage. 如申請專利範圍第5項所述之半導體記憶體,其中,該儲存節點(A)由邏輯1寫入邏輯0之寫入初始瞬間電壓(VAWI0)滿足下列方程式:VAWI0=VBL1×RP11/(RM13+RP11)+VDD×RM13/(RM13+RP11)其中,RM13與RP11分別表示該第三NMOS電晶體(M13)與該第一PMOS電晶體(P11)之導通電阻,而VBL1與VDD分別表示該位元線(BL)於寫入邏輯0之該第一階段的電壓位準與該電源供應電壓(VDD)之電壓 位準。 The semiconductor memory as described in item 5 of the patent application scope, in which the initial instantaneous voltage (V AWI0 ) of the storage node (A) written from logic 1 to logic 0 satisfies the following equation: V AWI0 = V BL1 ×R P11 /(R M13 +R P11 )+V DD ×R M13 /(R M13 +R P11 ) where R M13 and R P11 represent the third NMOS transistor (M13) and the first PMOS transistor (P11 ), and V BL1 and V DD represent the voltage level of the bit line (BL) at the first stage of writing logic 0 and the voltage level of the power supply voltage (V DD ), respectively. 如申請專利範圍第1項所述之半導體記憶體,其中,該儲存節點A讀取邏輯0時之讀取初始瞬間電壓(VAR0I)滿足下列方程式:VAR0I=VDD×(RM11+(RM24+RM25)∥RM26)/(RM13+RM11+(RM24+RM25)∥RM26)+RGND×(RM11+RM13)∥RM26/(RM24+RM25+(RM11+RM13)∥RM26)×RM13/(RM11+RM13)且VAR0I<VTM12其中,RM11、RM13、RM24、RM25與RM26分別表示該第一NMOS電晶體(M11)、該第三NMOS電晶體(M13)、該第七NMOS電晶體(M24)、該第八NMOS電晶體(M25)與該第九NMOS電晶體(M26)之導通電阻,而VDD、RGND與VTM12分別表示該電源供應電壓(VDD)、該加速讀取電壓(RGND)與該第二NMOS電晶體(M12)之臨界電壓。 The semiconductor memory as described in item 1 of the patent application scope, wherein the initial instantaneous voltage (V AR0I ) when the storage node A reads logic 0 satisfies the following equation: V AR0I = V DD ×(R M11 +( R M24 +R M25 )∥R M26 )/(R M13 +R M11 +(R M24 +R M25 )∥R M26 )+RGND×(R M11 +R M13 )∥R M26 /(R M24 +R M25 + (R M11 +R M13 )∥R M26 )×R M13 /(R M11 +R M13 ) and V AR0I <V TM12 where R M11 , R M13 , R M24 , R M25 and R M26 represent the first NMOS respectively On-resistance of the transistor (M11), the third NMOS transistor (M13), the seventh NMOS transistor (M24), the eighth NMOS transistor (M25) and the ninth NMOS transistor (M26), and V DD , RGND and V TM12 represent the power supply voltage (V DD ), the accelerated read voltage (RGND) and the threshold voltage of the second NMOS transistor (M12), respectively. 如申請專利範圍第1項所述之半導體記憶體,其中,該第一低電壓節點(VL1)於讀取邏輯1時之讀取初始瞬間電壓(VRVL1I)滿足下列方程式:VRVL1I=RGND×RM26/(RM26+RM24+RM25)且VRVL1I>-VTM11其中,RGND表示該加速讀取電壓,RM26、RM24與RM25分別表示該第九NMOS電晶體(M26)、該第七NMOS電晶體(M24)與該第八NMOS電晶體(M25)之導通電阻,而VTM11表示該第一NMOS電晶體(M11)之臨界電壓。 The semiconductor memory as described in item 1 of the patent application scope, wherein the first instantaneous voltage (V RVL1I ) of the first low voltage node (VL1) when reading logic 1 satisfies the following equation: V RVL1I =RGND× R M26 /(R M26 +R M24 +R M25 ) and V RVL1I >-V TM11 where RGND represents the accelerated reading voltage, and R M26 , R M24 and R M25 represent the ninth NMOS transistor (M26), The on-resistance of the seventh NMOS transistor (M24) and the eighth NMOS transistor (M25), and V TM11 represents the threshold voltage of the first NMOS transistor (M11). 如申請專利範圍第1項所述之半導體記憶體,其中,該第一高電源供應電壓(VDDH1)係設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第二PMOS電晶體(P12)臨界電壓之絕對值|VTP12|的總和,亦即VDD<VDDH1<VDD+|VTP12|。 The semiconductor memory according to item 1 of the patent application scope, wherein the first high power supply voltage (V DDH1 ) is set to be higher than the power supply voltage (V DD ) but lower than the power supply voltage (V DD ) And the absolute value of the critical voltage of the second PMOS transistor (P12) |V TP12 |, that is, V DD <V DDH1 <V DD +|V TP12 |. 如申請專利範圍第1項所述之半導體記憶體,其中,該第二高電源供應 電壓(VDDH2)係設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第八PMOS電晶體(P71)臨界電壓之絕對值|VTP71|的總和,亦即VDD<VDDH2<VDD+|VTP71|。 The semiconductor memory according to item 1 of the patent application scope, wherein the second highest power supply voltage (V DDH2 ) is set to be higher than the power supply voltage (V DD ) but lower than the power supply voltage (V DD ) And the absolute value of the critical voltage of the eighth PMOS transistor (P71) |V TP71 |, that is, V DD <V DDH2 <V DD +|V TP71 |.
TW108119852A 2019-06-10 2019-06-10 Semiconductor memory TWI690938B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108119852A TWI690938B (en) 2019-06-10 2019-06-10 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108119852A TWI690938B (en) 2019-06-10 2019-06-10 Semiconductor memory

Publications (2)

Publication Number Publication Date
TWI690938B true TWI690938B (en) 2020-04-11
TW202046310A TW202046310A (en) 2020-12-16

Family

ID=71134251

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108119852A TWI690938B (en) 2019-06-10 2019-06-10 Semiconductor memory

Country Status (1)

Country Link
TW (1) TWI690938B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120014055A1 (en) * 2010-07-15 2012-01-19 Hon Hai Precision Industry Co., Ltd. Computer case with guiding plates for drives
US20150380079A1 (en) * 2014-06-27 2015-12-31 International Business Machines Corporation Low power sense amplifier for static random access memory
US20160035414A1 (en) * 2012-12-27 2016-02-04 Hieu T. Ngo Sram bit-line and write assist apparatus and method for lowering dynamic power and peak current, and a dual input level-shifter
US20170270999A1 (en) * 2016-03-21 2017-09-21 Globalfoundries Inc. Static random access memory (sram) write assist circuit with improved boost
US9786364B1 (en) * 2016-12-16 2017-10-10 Stmicroelectronics International N.V. Low voltage selftime tracking circuitry for write assist based memory operation
TW201919050A (en) * 2017-11-10 2019-05-16 修平學校財團法人修平科技大學 5T single port static random access memory comprising a memory array, control circuits, precharged circuits, a standby start circuit, word line voltage level conversion circuits, high voltage level control circuits, and write drive circuits

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120014055A1 (en) * 2010-07-15 2012-01-19 Hon Hai Precision Industry Co., Ltd. Computer case with guiding plates for drives
US20160035414A1 (en) * 2012-12-27 2016-02-04 Hieu T. Ngo Sram bit-line and write assist apparatus and method for lowering dynamic power and peak current, and a dual input level-shifter
US20150380079A1 (en) * 2014-06-27 2015-12-31 International Business Machines Corporation Low power sense amplifier for static random access memory
US20170270999A1 (en) * 2016-03-21 2017-09-21 Globalfoundries Inc. Static random access memory (sram) write assist circuit with improved boost
US9786364B1 (en) * 2016-12-16 2017-10-10 Stmicroelectronics International N.V. Low voltage selftime tracking circuitry for write assist based memory operation
TW201919050A (en) * 2017-11-10 2019-05-16 修平學校財團法人修平科技大學 5T single port static random access memory comprising a memory array, control circuits, precharged circuits, a standby start circuit, word line voltage level conversion circuits, high voltage level control circuits, and write drive circuits

Also Published As

Publication number Publication date
TW202046310A (en) 2020-12-16

Similar Documents

Publication Publication Date Title
TWI681392B (en) Five-transistor single port static random access memory with fast write speed
TWI638365B (en) Five-transistor static random access memory with fast write speed
TW201824267A (en) Five-transistor single port static random access memory with fast read speed includes a memory array, a plurality of control circuits, a plurality of pre-charging circuits, a standby activation circuit, a plurality of word line voltage level converting circuits and a plurality of high voltage level control circuits
TWI618082B (en) Five transistor static random access memory
TWI611424B (en) Five transistor static random access memory with fast read speed
TW201919050A (en) 5T single port static random access memory comprising a memory array, control circuits, precharged circuits, a standby start circuit, word line voltage level conversion circuits, high voltage level control circuits, and write drive circuits
TWI665671B (en) Single port static random access memory with fast read/write speed
TWI660349B (en) Five-transistor single port static random access memory with fast read/write speed
TWI618085B (en) Static random access memory
TWI690938B (en) Semiconductor memory
TWI689924B (en) Five-transistor static random access memory
TWI716214B (en) Five-transistor single port static random access memory
TWI681389B (en) Semiconductor memory device
TWI715093B (en) Static random access memory with fast write speed
TWI694444B (en) Five-transistor static random access memory with fast write speed
TWI694458B (en) Single port static random access memory with fast write speed
TW201828299A (en) Five transistor single port static random access memory with standby initiating circuit to effectively make the static random access memory quickly enter a standby mode
TWI660350B (en) Five-transistor single port static random access memory with improved access speed
TWI633560B (en) Single port static random access memory
TWI676173B (en) Five-transistor single port static random access memory
TWI618062B (en) Static random access memory with five transistors
TWI611423B (en) Single port static random access memory with fast read speed
TWI622062B (en) Static random access memory with fast read speed
TWI618088B (en) Static random access memory
TWI618061B (en) Single port static random access memory

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees