TW202018182A - 飛輪能量儲存系統 - Google Patents

飛輪能量儲存系統 Download PDF

Info

Publication number
TW202018182A
TW202018182A TW107139438A TW107139438A TW202018182A TW 202018182 A TW202018182 A TW 202018182A TW 107139438 A TW107139438 A TW 107139438A TW 107139438 A TW107139438 A TW 107139438A TW 202018182 A TW202018182 A TW 202018182A
Authority
TW
Taiwan
Prior art keywords
motor
stator
storage system
flywheel
energy storage
Prior art date
Application number
TW107139438A
Other languages
English (en)
Other versions
TWI687591B (zh
Inventor
古煥隆
彭明燦
吳家麟
陽毅平
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW107139438A priority Critical patent/TWI687591B/zh
Priority to US16/230,041 priority patent/US10778061B2/en
Application granted granted Critical
Publication of TWI687591B publication Critical patent/TWI687591B/zh
Publication of TW202018182A publication Critical patent/TW202018182A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • H02K7/025Additional mass for increasing inertia, e.g. flywheels for power storage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1737Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本發明涉及一種飛輪能量儲存系統,包含一外殼、一轉軸、一飛輪以及至少一電機組。外殼具有一內真空腔室、至少一外容置槽及區隔內真空腔室與至少一外容置槽的至少一間隔結構。轉軸可樞轉地設置於內真空腔室中。飛輪位於內真空腔室中且固定於轉軸。電機組包含一第一電機轉子與一電機定子。電機定子容置於外容置槽中並固定於間隔結構上。第一電機轉子固設於轉軸上且介於轉軸與電機定子之間。其中介於第一電機轉子與電機定子之間的間隔結構的部分之材質包含導磁性材料。

Description

飛輪能量儲存系統
本發明係關於一種電動機,特別是一種飛輪能量儲存系統。
飛輪能量儲存(Flywheel energy storage,FES)系統,是一種能量儲存的方式,其主要是通過加速轉子(具有轉軸之飛輪)至極高速度,從而將能量以旋轉動能的形式儲存於系統中。當系統需要釋放能量時,根據能量守恆原理,飛輪的旋轉速度會下降;當系統需要儲存能量時,則可提高飛輪的旋轉速度。
詳細來說,典型的飛輪能量儲存系統包含一個腔體,其內配置有一轉子(飛輪)以及與之連接為一體的電機組(或稱電動機組)。飛輪於旋轉時具有機械位能,當其質量越大與旋轉速度越快時,其可儲存的能量可成正比成長,當飛輪相對於轉軸的力矩越大,其可儲存的能量將成平方比地增加。所述的電機組則作為能量輸出與輸入的裝置,能以馬達的形態接收電力輸入以驅動飛輪旋轉,也能改以發電機的形態將飛輪旋轉的機械位能轉換為電力輸出。
由此可知,飛輪能量儲存系統可切換為馬達功能或發電機功能,以將機械能與電能作直接的轉換。且由於飛輪的轉速能被快速地提升而得以快速地吸收能量或快速地釋放出能量,故其功率相對於其他儲能元件而言更大。因此,飛輪能量儲存系統的應用也越來越廣泛,能結合於其他機器上使用,例如裝設於車輛上,也能結合於各種供電系統中使用,例如小型家用風力系統,也能像化學電池一般,成為獨立且可移動的能量儲存單元。並且,飛輪能量儲存系統相較於一般的化學電池(例如鉛酸電池)的功率密度明顯高出許多,使得在某些需要快速儲存能量的場合,飛輪能量儲存系統比起化學電池更為適用,基於前述的原因與優勢使得飛輪能量儲存系統逐漸受到業界的重視,且在綠色能源的時代,其重要性也越來越高。
為了提高飛輪儲能系統的效能,有必要降低內部元件運動時的空氣阻力。為此,現在最有效的解決方式即是將所有元件都包覆於外殼之中,再將外殼內部抽真空,以讓動件可在真空的環境中運轉,避免空氣阻力消耗飛輪的旋轉能量。但同時,電機組之電機定子需要出線至系統外以接收或輸出電能,因此,外殼上需要形成出線孔以供使用,雖然出線孔上配置有氣密結構,但仍時常出現進氣的現象,從而降低了真空氣密度而影響系統的儲能品質。此外,內部的真空環境會增加系統內外的壓差,更加劇了外部空氣從出線孔進入系統的問題。傳統上,有業者採取對系統常態性地抽真空以持續維持真空度,但這樣的作法不僅浪費能源也增加成本。
除此之外,為了排除電機定子於運轉時所產生的高熱,以避免電機定子之線圈累積過多熱量而導致關機或燒毀等後果,還需要在外殼上再開設冷卻液管的穿孔,以供冷卻液管穿設。如此一來,又增加了空氣進入系統內的機率,使得系統內之氣密性更加難以維持。
據此,如何能維持飛輪儲能系統的真空密封性以解決傳統上飛輪能量儲存系統常有氣密不良的問題,實為目前業界所致力研究的重點項目之一。
有鑑於此,本發明提供一種飛輪能量儲存系統,藉以解決傳統之飛輪能量儲存系統中氣密度難以維持的問題。
根據本發明所揭露的一種飛輪能量儲存系統,包含一外殼、一轉軸、一飛輪以及至少一電機組。外殼具有一內真空腔室、至少一外容置槽及區隔內真空腔室與至少一外容置槽的至少一間隔結構。轉軸可樞轉地設置於內真空腔室中。飛輪位於內真空腔室中且固定於轉軸。電機組包含一第一電機轉子與一電機定子。電機定子容置於外容置槽中並固定於間隔結構上,第一電機轉子固設於轉軸上且介於轉軸與電機定子之間,其中介於第一電機轉子與電機定子之間的間隔結構的部分之材質包含導磁性材料。
根據本發明前述所揭露的飛輪能量儲存系統,由於外殼被間隔結構區隔為用於容置轉軸、飛輪與電機轉子的內真空腔室與用於容置電機定子的外容置槽,且電機轉子與電機定子之間的間隔結構之材質包含導磁性材料從而可視為電機定子的延伸,因此,可在不會影響電機組之性能的前提下,將電機定子排除於外殼之包覆範圍之外,以排除電機定子對外殼之內真空腔室的氣密性的影響,即電機定子之出線、或是冷卻液管的使用可無需再穿設外殼而影響整體系統的氣密性,不僅提高了飛輪能量儲存系統之品質,還可使電機定子的冷卻系統更容易地組裝。
以上之關於本發明揭露內容之說明及以下之實施方式之說明,係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者,瞭解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。
此外,以下將以圖式揭露本發明之實施例,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到的是,這些實務上的細節非用以限制本發明。另外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示,且圖式中將省略剖面線以保持圖面整潔,於此先聲明之。
另外,以下文中可能會使用「端」、「部」、「部分」、「區域」、「處」等術語來描述特定元件與結構或是其上或其之間的特定技術特徵,但這些元件與結構並不受這些術語所限制。在下文中,也可能使用「實質上」、「基本上」、「約」或「大約」等術語,其與尺寸、濃度、溫度或其他物理或化學性質或特性之範圍結合使用時,為意欲涵蓋可能存在於該等性質或特性之範圍之上限及/或下限中之偏差、或表示容許製造公差或分析過程中所造成的可接受偏離,但仍可達到所預期的效果。
再者,除非另有定義,本文所使用的所有詞彙,包括技術和科學術語等具有其通常的意涵,其意涵能夠被熟悉此技術領域者所理解。更進一步的說,上述之詞彙的定義,在本說明書中應被解讀為與本發明相關技術領域具有一致的意涵。除非有特別明確的定義,這些詞彙將不被解釋為過於理想化的或正式的意涵。並且,本文所使用的元件名稱依據描述上的需求有時會以較為簡潔的方式代稱之,應可為閱讀者所理解。
請參照圖1~4,圖1係為依據本發明之一實施例的飛輪能量儲存系統的側示圖,圖2係為圖1之飛輪能量儲存系統的上視圖,圖3係為圖1之飛輪能量儲存系統的局部放大圖,而圖4係為圖1之飛輪能量儲存系統的外殼的上視簡單示意圖。
本實施例提出一種飛輪能量儲存系統1a,於下文中也可簡稱為「系統」。飛輪能量儲存系統1a例如是一臥式的飛輪能量儲存系統,其包含一外殼10a、一轉軸(shaft)20、一飛輪(flywheel)30a以及二電機組40a。
外殼10a可以例如由鋁合金等剛性高但不導磁的材質所構成,但本發明並非以此為限。外殼10a上可視需求設置肋結構(如後圖4之肋結構160)以提高整體的結構強度。此外,外殼10a不限於是一體成型的結構、或可由多段結構組裝成一體。在外殼10a是以多段結構組裝成一體的情況中,各段結構可由螺栓(如圖所示之螺栓170)相接,且各段結構之銜接處可採用墊襯或塗上密封膠等方式達到氣密的效果。
於本實施例中,外殼10a圍繞出一內真空腔室S1,且其相對兩側的外表面上還分別具有外容置槽S2以及將外容置槽S2與內真空腔室S1區隔開的間隔結構100。具體來說,間隔結構100為與外殼10a相連成一體之結構,自外殼10a相對兩側上分別向內凹陷延伸,以分別圍繞出外容置槽S2。因此也可以說,間隔結構100阻隔於內真空腔室S1與外容置槽S2之間。於本實施例中,內真空腔室S1與外容置槽S2不相連通,且外容置槽S2之開口背向內真空腔室S1。此外,內真空腔室S1可透過如圖示之抽氣閥11抽真空。抽氣閥11可外接一抽真空裝置(未繪示),以將內真空腔室S1內的空氣抽出而使其形成一接近真空或實質上為真空的密閉空間。轉軸20與飛輪30a以及電機組40a之電機轉子410均位於內真空腔室S1內,當內真空腔室S1抽真空時,可降低轉軸20、飛輪30a以及電機組40a之電機轉子410於外殼10a內運轉時與空氣之間的摩擦,從而降低能量的耗損。
此外,外殼10a具有二軸承座110,該二軸承座110各設置有一或多個軸承120。轉軸20為一旋轉件,其相對兩端分別可樞轉地穿設軸承120並插設該二軸承座110,使得轉軸20得以相對以其中心軸線(central axis)C相對外殼10a轉動,從而可旋轉地容置於內真空腔室S1內。軸承120可例如是磁浮軸承(magnetic bearing),可大幅降低轉軸20轉動時的摩擦阻力,甚至使得轉軸20轉動時不與軸承座110產生摩擦阻力。並且,由於軸承120是位於轉軸20之外圍,因而不論是在水平或垂直的方位皆能將轉軸20保持在旋轉軸心上,從而讓系統正常運作,因此可使系統在任何的轉軸角度下工作,例如適合應用於機動車輛上。
進一步來看,於本實施例中,轉軸20的相對兩端分別具有圓錐形頭部21,圓錐形頭部21可以但不限於是額外嵌設於轉軸20的結構或是與轉軸20為一體成型之結構。該二圓錐形頭部21的尖端的連線實質上重疊於轉軸20之中心軸線C,而軸承座110各具有一圓錐孔111,該二圓錐孔111的形狀分別匹配圓錐形頭部21,且其尖端的連線實質上也重疊於轉軸20之中心軸線C,因而當轉軸20以圓錐形頭部21分別置入軸承座110的圓錐孔111中時可達到將轉軸20精準對位的效果,使得轉軸20可自動地被定位於所設定的位置上,一方面有利於轉軸20之定位,另一方面可避免並降低轉軸20產生的非預期搖晃。藉此,有助於提高飛輪能量儲存系統1a的機械精準度,避免任何旋轉件產生偏擺或與固定件產生機械摩擦的可能性。若機械精度不足,旋轉件則會產生偏擺而引發不必要的離心力,隨著轉速提高,非必要的離心力則會增大而增加轉軸整體的偏擺量,造成加劇振動的結果,這可能會對整體系統產生極大的破壞,嚴重者還會使結構破裂飛出而造成人員受傷等意外。
飛輪30a作為能量儲存的載體,其飛輪30a每單位重量或單位體積下能儲存的能量越高越好(即能量密度),為了達到這個目的,於本實施例或其他實施例中,飛輪30a的外型大致呈圓筒狀。如圖所示,飛輪30a包含一中樞部(hub)310與一環型體330a。轉軸20穿過環型體330a,且環型體330a經由中樞部310固定於轉軸20,使得飛輪30a得以與轉軸20同步樞轉。但提醒的是,本發明並非以中樞部310固定於轉軸20的方式為限。於本實施例中,飛輪30a與轉軸20均以轉軸20之中心軸線C為同心圓配置。
由於環型體330a大部分的質量遠離轉軸20(即遠離中心軸線C),從而有助於增大其旋轉力矩而提高旋轉位能之能量密度。詳細來說,由於環型體330a的幾何構型,飛輪30a大部分的質量往較高旋轉力矩的外圈部位移動,使得轉軸20重量大幅減少但又可同時讓旋轉慣量增加,即有助於提高慣量對重量之比。原因在於,飛輪30a的位能主要是由旋轉的慣量產生,該位能與慣量及轉速成正比,而慣量是與質量成正比且與力距的平方成正比,因此在飛輪30a的外環部位(即環型體330a),其遠離轉軸心(如中心軸線C),也就是位於可產生較大力距的區域,因而可產生較大的位能,故將飛輪30a的中間區域掏空(即指環型體330a內的區域)並不會降低太多的慣量值,但卻能大幅降低飛輪30a的總重量,也就是能大幅升高飛輪30a於單位重量的能量密度。
另一方面,飛輪30a的材料可使用結構強度高且密度高的非導磁材料、或電絕緣材料等材質所構成,例如使用碳鋼、或鑄鋼內灌鑄鉛塊等高比重之非導磁材料、或使用電絕緣且內含鉛顆粒的複合材料等材料所構成,以助於提高其單位體積之旋轉質量、以及避免因旋轉而產生巨大離心力時不慎破裂等問題,但本發明並非以此為限。
於本實施例中,環型體330a於中樞部310的相對兩側分別形成二開槽31,即飛輪30a中間掏空的區域。電機組40a分別容置於這兩個開槽31中,而前述外殼10a之間隔結構100也分別延伸進入這兩個開槽31中。具體來說,各電機組40a包含一第一電機轉子410、一第二電機轉子420及一電機定子430。第一電機轉子410與第二電機轉子420例如是由多片薄矽鋼片堆疊所組成,能避免導磁材料表面因磁場通過而形成渦電流。於本實施例中,第一電機轉子410與第二電機轉子420均位於開槽31中,可知,第一電機轉子410與第二電機轉子420也均位於內真空腔室S1中。進一步來看,第一電機轉子410固設於轉軸20上,第二電機轉子420固設於環型體330a之一環型內壁331上,在此情況下,第一電機轉子410與第二電機轉子420可分別受轉軸20及飛輪30a的帶動而同步旋轉,因此,這四者均可視為系統的動件且可同步作旋轉運動。
此外,第二電機轉子420與環型體330a之環型內壁331之間可以但不限於設置絕磁材料R,可於飛輪30a的材料存有導磁性時用以阻斷磁力線,以避免磁力線變化造成環型內壁331產生渦電流(Eddy current)的能量耗損,但本發明並非以絕磁材料R及其材質為限。
電機定子430包含定子鐵芯431及圈繞於定子鐵芯431的繞線433。一般來說,電機定子依其種類可以有多種可能之繞線與連結方式,也可能由多個定子繞線串聯或並聯連接而成,但本發明並非以此為限。電機定子430固定於外容置槽S2中。從側視圖的角度大致上來看,第一電機轉子410位於最內圈,間隔結構100伸入飛輪30a的開槽31內並圍繞第一電機轉子410(即外容置槽S2圍繞第一電機轉子410),電機定子430容置於外容置槽S2中而圍繞第一電機轉子410,至於第二電機轉子420則位於最外圈並圍繞電機定子430(即電機定子430介於第一電機轉子410與第二電機轉子420之間)。
進一步來看,定子鐵芯431貼附固定於間隔結構100而位於外容置槽S2中,定子鐵芯431可以但不限於是透過螺栓440鎖固於間隔結構100上。由前所述,間隔結構100位於飛輪30a的開槽31中,因此,位於間隔結構100之外容置槽S2中的電機定子430也處於飛輪30a的開槽31內的區域。但由於間隔結構100阻隔於電機定子430與第一電機轉子410以及第二電機轉子420之間,因此電機定子430雖然開槽31內的區域,仍還是被阻隔於內真空腔室S1之外,即被排除於外殼10a之外。
值得注意的是,於本實施例與其他實施例中,介於電機定子430與第一電機轉子410以及第二電機轉子420之間的間隔結構100的部分的材質含有導磁性材料CM,例如為鐵,但本發明並非以此為限。藉此,當電機定子430與間隔結構100接觸時,間隔結構100中至少部分的區域具有導磁性,可視為是電機定子430的延伸而不會影響磁力線的流通,因此即使電機定子430與第一電機轉子410及第二電機轉子420之間具有間隔結構100,仍然可具有良好的傳導磁通,而不至於減弱設定上的電機特性。
只要是在不影響效能的前提下透過間隔結構將電機定子與電機轉子區隔於不同的空間者,均屬於本發明所欲保護的範疇。因此,本發明並非以導磁性材料在前述間隔結構上介於電機轉子與電機定子之間的特定部分內的分佈方式或其製程為限,只要是可使得該特定部份具有讓磁場通過的能力的材質組成,均屬於本發明所欲保護的範疇。
另外,如圖所示,電機組40a的第一電機轉子420與電機定子430之一側的間隔結構100之間具有一第一間隙G1,而電機組40a的第二電機轉子420與電機定子430之另一側的間隔結構100之間具有一第二間隙G2,這些間隙可讓第一電機轉子410及第二電機轉子420相對電機定子430與間隔結構100之間產生磁力作用但不會產生機械干涉。在此配置下,設置於轉軸20上的第一電機轉子410以及固設於環型體330a之環型內壁331的第二電機轉子420均可與轉軸20同步地轉動,並相對於間隔結構100之外容置槽S2中而被排除於外殼10a之外的電機定子430轉動而產生交互感應。
此外,飛輪能量儲存系統1a還包含二定子側蓋12,可在電機定子430於外容置槽S2中組裝定位後覆蓋於外容置槽S2的開口,例如可以但不限於是透過螺栓180鎖固的方式固定於外容置槽S2的開口處,且可理解的是,組裝定子側蓋12以覆蓋外容置槽S2的步驟沒有真空密封之需求,因此可大幅簡化整體的組裝作業。而如圖1與圖4所示,電機定子430之繞線433連接有一電源線作為一出線端4331。若由外界經此出線端4331導入電力,則電流將從此流通進入電機定子430之繞線433,使得繞線433產生徑向迴路之電磁場。在此情況下,出線端4331可穿過定子側蓋12,另外,冷卻液管4332也可從定子側蓋12穿設,但出線端4331與冷卻液管4332處的穿設與組裝由於已被排除於外殼10a之外,即被排除於內真空腔室S1之外,因而也無需額外考量真空密封的需求,也就是說,將電機定子430設置於排除於外殼10a之外的配置方式,可排除傳統之飛輪能量儲存系統需要在外殼上穿設連通內部真空環境的定子出線孔以及冷卻液孔而降低真空氣密度的問題,還有助於降低電機定子之出線端與冷卻液管的組裝複雜度。
若由外界經出線端4331導入電力,則電流將從此流通進入電機定子430之繞線433,使得繞線433產生徑向迴路之電磁場,該電磁場的磁力線由電機定子430之導磁材料同時經過其內層與外層處的間隔結構100內之導磁性材料CM以及間隙(即第一間隙G1與第二間隙G2),以對電機定子430之內層處的第一電機轉子410與外層處的第二電機轉子420交互作用。
從側視圖的角度來看,由於電機組40a大致上還是處於飛輪30a所圍繞的開槽31的區域內,因而可充分利用飛輪30a的空間,有助於大幅縮小飛輪能量儲存系統1a的總體積,即提升了整個系統每單位體積的能量密度。由此得知,飛輪30a的幾何構型不僅可降低總重量、提升能量密度,還可用於容置電機組40a而達到有效利用空間的效果。
並且, 飛輪30a是以轉軸20之中心軸線C為對稱中心軸的方式配置,而這兩個電機組40a是以飛輪30a之中樞部310為對稱中心軸的方式配置,因此整體呈現對稱的雙電動組結構,有助於在前述這些旋轉件高速旋轉時獲得較好的動態平衡及機械動態應力分佈的效果,且有利於軸承之耐久使用而提升整體系統的穩定度。
另外,第一電機轉子410與第二電機轉子420中可裝設有永久磁石M,並可依其極數調整永久磁石M的數量,如此一來,第一電機轉子410與第二電機轉子420則可產生永久磁場以與電機定子430產生磁力作用。因此,第一電機轉子410與第二電機轉子420的永久磁場則分別會在電機定子430的外層與內層上形成各自獨立的磁迴路,亦即磁通路徑,並各自與電機定子430之繞線433作用。對於電機定子430之繞線433來說,可增加其作用之單位磁通量。但因磁力線是各自作用於電機定子430之內層與外層,因此內、外兩層的磁迴路的主要磁場部份(強磁區)並不會相疊加,所以雖然整體的磁通量大幅增加,仍不會提前造成電機定子430之導磁材料的磁飽和(Magnetic saturation)的不良現象。
由於磁通量大幅增強,當飛輪能量儲存系統1a執行馬達功能時,對飛輪能量儲存系統1a輸入同樣的電流量可產生更大的推力推動飛輪30a旋轉,即輸入功率增強;另一方面,當飛輪能量儲存系統1a執行發電機功能時,飛輪30a帶動第一電機轉子410與第二電機轉子420使磁力線切割電機定子430之繞線433時會產生更大的電動勢,也就是輸出功率增強。此時,第一電機轉子410與第二電機轉子420內可使用較薄的永久磁石M以降低成本,但仍能保持足夠的磁通量。
藉此,當外部提供電力進入此飛輪能量儲存系統1a,其則可以如馬達的模式開始運轉,電力通過電機定子430的繞線433會產生變動的電磁場,此電磁場能驅動第一電機轉子410與第二電機轉子420運動,即同時讓與第一電機轉子410與第二電機轉子420固接的轉軸20與飛輪30a一併轉動,飛輪30a因此可開始旋轉而儲存能量。只要電機組40a不斷地產生磁力來帶動飛輪30a轉動,飛輪30a之轉速則可以被不斷地被增加,使得飛輪能量儲存系統1a得以儲存能量,直到其內的導磁材料之磁力線飽和為止。
另一方面,當外部裝置需要電能時,此時將沒有從外部導入的電力,則電機定子430之繞線433被第一電機轉子410與第二電機轉子420中之永久磁場所產生的徑向迴路的磁力線所切割,且該永久磁場被持續旋轉的飛輪30a帶動,而持續對繞線433產生切割作用而讓繞線433產生電動勢,亦即電位能,此電位能能夠經由該出線端4331以對外提供電能,此時飛輪能量儲存系統1a成為電力來源,能釋放電能量給外界使用。
由上可知,電機定子430之內層與外層皆有電機轉子(即第一電機轉子410與第二電機轉子420)同步作用,不論是由飛輪30a轉動產生電能量的階段、或是輸入電能來帶動飛輪30a轉動的階段,繞線433都會被電機轉子(即第一電機轉子410與第二電機轉子420)的磁力線切割,磁力與電力相互作動時,電機定子430之內層區域與外層區域皆有永久磁石M之磁場相作用,其單位磁力線大幅增加但並不重疊,因而能大幅提升其功率密度,又能避免其內部之導磁材料產生磁飽和之不良的現象。
此外,於本實施例中,由於電機定子430是設置於第一電機轉子410的外圈,因而繞線433的繞線圈數可較多,從而有助於提升發電效應;以及,由於第二電機轉子420位於電機定子430之外圈,故能裝設較多的永久磁石M,其馬達效應較強,能較快速提升飛輪30a的轉速。
另外,於本實施例中,飛輪能量儲存系統1a還包含多個軸承60,分別設置於飛輪30a之環型體330a朝向外殼10a的相對兩端面332上,軸承60與前述的軸承120同樣為磁浮軸承,但軸承60的設置面積較軸承120大,因而可產生更大的磁浮力來降低旋轉件(指第一電機轉子410、第二電機轉子420、飛輪30a、轉軸20)的機械摩擦力以及增強對其的支撐力,進而使得整體系統的運動更為穩定。並且,由於前述轉軸20相對兩端具有相互搭配對位的圓錐形頭部21與圓錐孔111,因而有助於實現這些磁浮軸承(包含軸承60與軸承120)的精準對位需求。
於此,需聲明的是,本發明並非以前述實施例為限,於其他實施例中,飛輪能量儲存系統也可省略第二電機轉子420。例如請參閱圖5,係為依據本發明之又一實施例的飛輪能量儲存系統的側示圖。本實施例提出一種飛輪能量儲存系統1b,其與先前實施例的主要差異在於,本實施例之飛輪能量儲存系統1b之電機組40b僅包含一第一電機轉子410設置於內真空腔室S1中並固設於轉軸20,但沒有如前述實施例之第二電機轉子420固設於其飛輪30b之環型體330b上;在此情況下,僅在外容置槽S2中之電機組40b的電機定子430與在內真空腔室S1中之第一電機轉子410之間的間隔結構100的部分的材質含有導磁性材料CM。因此,同樣可達到前述實施例避免影響氣密性的技術功效。其中,飛輪能量儲存系統1b中於此未談及的其他元件及其設置方式、作動原理等實質上可參閱前述實施例而得知,於此將不再贅述。
另外,於其他實施例中,電機組的數量也可僅為一組。例如請參閱圖6,圖6係為依據本發明之再一實施例的飛輪能量儲存系統的側示圖。本實施例提出一種飛輪能量儲存系統1c,其與先前實施例的主要差異在於電機組的數量,而其他的元件在結構上可相應此差異而做適應性地調整。如圖所示,本實施例給出一種飛輪能量儲存系統1c,其飛輪30c之環型體330c僅在中樞部310其中一側形成開槽31’以容置單一個電機組40a之第一電機轉子410與第二電機轉子420,相應地,間隔結構100與其所圍繞形成之外容置槽S2的數量也只有一個,以用於容置電機定子430。由於間隔結構100中介於電機定子430與內真空腔室S1中之第一電機轉子410以及第二電機轉子420之間的部分具有導磁性材料CM,因而同樣可達到前述實施例避免影響氣密性的技術功效。其中,飛輪能量儲存系統1c中於此未談及的其他元件及其設置方式、作動原理等實質上可參閱前述實施例而得知,於此將不再贅述。
當然,此實施例之飛輪能量儲存系統1c也可仿效前述實施例將電機組40a改為僅包含一第一電機轉子與一電機定子;在此情況下,間隔結構僅介於第一電機轉子與電機定子的部分含有導磁性材料。
此外,還需補充的是,於本實施例中,開槽31’是位於飛輪30c之其中一側,但圖6僅是以開槽31’朝向下方作為實施例,本發明並沒有受限於開槽31’是位於飛輪30c之上側或下側。
另外,在此配置下,飛輪能量儲存系統1c之轉軸20可與地面呈垂直之直立式配置,即成為立式的飛輪能量儲存系統。由於此種配置方式可讓地面負擔承載元件的重量,因此可讓系統採用更大質量的飛輪。且由於是立式,因而較適用於整體系統的方向不會改變的應用中,並且,轉軸垂直地面,其重力場向下並以轉軸為樞軸,因此飛輪可以只在朝向下方的端面裝設磁浮軸承(如軸承60)即可,有助於降低成本。
綜上所述,由本發明前述之飛輪能量儲存系統,由於外殼被間隔結構區隔為用於容置轉軸、飛輪與電機轉子的內真空腔室與用於容置電機定子的外容置槽,且電機轉子與電機定子之間的間隔結構之材質包含導磁性材料從而可視為電機定子的延伸,因此,可在不會影響電機組之性能的前提下,將電機定子排除於外殼之包覆範圍之外,以排除電機定子對外殼之內真空腔室的氣密性的影響,即電機定子之出線、或是冷卻液管的使用可無需再穿設外殼而影響整體系統的氣密性,不僅提高了飛輪能量儲存系統之品質,還可使電機定子的冷卻系統更容易地組裝。
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。
1a~1c:飛輪能量儲存系統10a~10c:外殼11:抽氣閥12:定子側蓋20:轉軸21:圓錐形頭部30a~30c:飛輪100:間隔結構111:圓錐孔110:軸承座120:軸承31、31’:開槽40a~40b:電機組60:軸承140:支架150:螺栓160:肋結構170:螺栓180:螺栓310:中樞部330a~330c:環型體331:環型內壁332:端面410:第一電機轉子420:第二電機轉子430:電機定子431:定子鐵芯433:繞線440:螺栓4331:出線端4332:定子冷卻管C:中心軸線CM:導磁性材料G1:第一間隙G2:第二間隙R:絕磁材料M:永久磁石S1:內真空腔室S2:外容置槽
圖1係為依據本發明之一實施例的飛輪能量儲存系統的側示圖。 圖2係為圖1之飛輪能量儲存系統的上視圖。 圖3係為圖1之飛輪能量儲存系統的局部放大圖。 圖4係為圖1之飛輪能量儲存系統的外殼的上視簡單示意圖。 圖5係為依據本發明之又一實施例的飛輪能量儲存系統的側示圖。 圖6係為依據本發明之再一實施例的飛輪能量儲存系統的側示圖。
1a:飛輪能量儲存系統
10a:外殼
11:抽氣閥
12:定子側蓋
20:轉軸
21:圓錐形頭部
30a:飛輪
31:開槽
40a:電機組
60:軸承
100:間隔結構
110:軸承座
111:圓錐孔
120:軸承
170:螺栓
180:螺栓
310:中樞部
330a:環型體
331:環型內壁
410:第一電機轉子
420:第二電機轉子
430:電機定子
431:定子鐵芯
433:繞線
440:螺栓
4331:出線端
4332:冷卻液管
C:中心軸線
CM:導磁性材料
G1:第一間隙
G2:第二間隙
M:永久磁石
R:絕磁材料
S1:內真空腔室
S2:外容置槽

Claims (10)

  1. 一種飛輪能量儲存系統,包含:一外殼,具有一內真空腔室、至少一外容置槽以及區隔該內真空腔室與該至少一外容置槽的至少一間隔結構;一轉軸,可樞轉地設置於該內真空腔室中;一飛輪,位於該內真空腔室中且固定於該轉軸;以及至少一電機組,包含一第一電機轉子與一電機定子,該電機定子容置於該至少一外容置槽中並固定於該至少一間隔結構上,該第一電機轉子固設於該轉軸上且介於該轉軸與該電機定子之間,其中介於該第一電機轉子與該電機定子之間的該至少一間隔結構的部分之材質包含導磁性材料。
  2. 如請求項1所述之飛輪能量儲存系統,其中該內真空腔室與該至少一外容置槽不相連通。
  3. 如請求項1所述之飛輪能量儲存系統,其中該至少一外容置槽構圍繞該第一電機轉子。
  4. 如請求項1所述之飛輪能量儲存系統,更包含一定子側蓋,組裝於該外殼以覆蓋該至少一外容置槽的開口,該電機定子之一出線端穿設該定子側蓋。
  5. 如請求項1所述之飛輪能量儲存系統,更包含一定子側蓋與一冷卻液管,該定子側蓋組裝於該外殼以覆蓋該至少一外容置槽的開口,該冷卻液管穿設該定子側蓋。
  6. 如請求項1所述之飛輪能量儲存系統,其中該電機定子包含一定子鐵芯及圈繞於該定子鐵芯的繞線,該電機定子之該定子鐵芯貼附於該至少一間隔結構。
  7. 如請求項1所述之飛輪能量儲存系統,其中該飛輪包含一中樞部與一環型體,該轉軸穿過該環型體,該環型體經由該中樞部固定於該轉軸,且該環型體具有至少一開槽位於該中樞部之一側,該至少一間隔結構與該第一電機轉子均位於該至少一開槽中,且該至少一開槽與該至少一外容置槽不相連通。
  8. 如請求項7所述之飛輪能量儲存系統,該至少一電機組還包含一第二電機轉子,該第二電機轉子固設於該環型體之一環型內壁上而位於該至少一開槽中,其中介於該第二電機轉子與該電機定子之間的該至少一間隔結構的另一部分之材質包含導磁性材料。
  9. 如請求項8所述之飛輪能量儲存系統,其中該第二電機轉子環繞該至少一間隔結構。
  10. 如請求項7所述之飛輪能量儲存系統,其中該至少一開槽、該至少一電機組、該至少一外容置槽以及該至少一間隔結構的數量均為二,該些開槽分別位於該中樞部的相對兩側,該些電機組之該些第一電機轉子分別位於該些開槽中,該些間隔結構分別位於該些開槽中,且該些開槽與該些外容置槽不相連通。
TW107139438A 2018-11-07 2018-11-07 飛輪能量儲存系統 TWI687591B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107139438A TWI687591B (zh) 2018-11-07 2018-11-07 飛輪能量儲存系統
US16/230,041 US10778061B2 (en) 2018-11-07 2018-12-21 Flywheel energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107139438A TWI687591B (zh) 2018-11-07 2018-11-07 飛輪能量儲存系統

Publications (2)

Publication Number Publication Date
TWI687591B TWI687591B (zh) 2020-03-11
TW202018182A true TW202018182A (zh) 2020-05-16

Family

ID=70457923

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107139438A TWI687591B (zh) 2018-11-07 2018-11-07 飛輪能量儲存系統

Country Status (2)

Country Link
US (1) US10778061B2 (zh)
TW (1) TWI687591B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763610B (zh) * 2020-11-11 2022-05-01 財團法人工業技術研究院 飛輪能量儲存系統

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251511B2 (ja) * 2020-04-06 2023-04-04 トヨタ自動車株式会社 リターダ付回転電機
DE102020208153A1 (de) 2020-06-30 2021-12-30 Adaptive Balancing Power GmbH Integrierte Statorvorrichtung für eine elektrische Maschine eines Schwungmassenspeichers
WO2023148770A1 (en) * 2022-02-07 2023-08-10 Patil Dharmaraj Flywheel power generation device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159427A (en) 1975-12-23 1979-06-26 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Apparatus for utilizing natural energies
JPS6011746A (ja) 1983-06-30 1985-01-22 Toshiba Corp フライホイ−ル装置
US4700094A (en) 1984-12-17 1987-10-13 The Charles Stark Draper Laboratory, Inc. Magnetic suspension system
US5268608A (en) 1991-01-11 1993-12-07 American Flywheel Systems, Inc. Flywheel-based energy storage and apparatus
US5334897A (en) * 1993-05-24 1994-08-02 North American Philips Corporation Electric motor with encased housing
US5760506A (en) 1995-06-07 1998-06-02 The Boeing Company Flywheels for energy storage
US5708312A (en) * 1996-11-19 1998-01-13 Rosen Motors, L.P. Magnetic bearing system including a control system for a flywheel and method for operating same
AU2002326905A1 (en) 2001-09-13 2003-03-24 Beacon Power Corporation Crash management system for implementation in flywheel systems
JP2004229330A (ja) * 2003-01-17 2004-08-12 Mayekawa Mfg Co Ltd 電源装置
US7109622B2 (en) 2003-06-06 2006-09-19 Pentadyne Power Corporation Flywheel system with synchronous reluctance and permanent magnet generators
US8030787B2 (en) 2003-06-06 2011-10-04 Beaver Aerospace And Defense, Inc. Mbackup flywheel power supply
US8314527B2 (en) * 2007-06-20 2012-11-20 Beacon Power, Llc Advanced flywheel and method
CN101893038A (zh) 2010-08-04 2010-11-24 南京化工职业技术学院 永磁偏置轴向磁轴承
GB201019473D0 (en) 2010-11-17 2010-12-29 Ricardo Uk Ltd An improved coupler
JP5779947B2 (ja) * 2011-04-07 2015-09-16 コベルコ建機株式会社 ハイブリッド建設機械
EP2581251B1 (en) 2011-10-11 2018-03-28 Dana Limited Device and method for synchronizing a flywheel with a drivetrain
US9148037B2 (en) 2011-11-13 2015-09-29 Rotonix Hong Kong Limited Electromechanical flywheel
TWM433021U (en) * 2012-01-03 2012-07-01 Cai Chang-Cheng The energy storage flywheel device
JP5942714B2 (ja) * 2012-09-07 2016-06-29 株式会社デンソー 回転電機
EP3386080B1 (en) * 2015-11-30 2022-11-23 Limin Xu Homopolar direct current electromagnetic motor and application system thereof
EP3179611B1 (en) 2015-12-10 2018-06-27 Skf Magnetic Mechatronics Balancing method for balancing at high speed a rotor of a rotary machine
US10381886B2 (en) 2016-08-01 2019-08-13 Hamilton Sundstrand Corporation Motor-generator with radial-flux double-sided stator
TWM585447U (zh) * 2019-07-12 2019-10-21 奇鋐科技股份有限公司 飛輪儲能風扇

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763610B (zh) * 2020-11-11 2022-05-01 財團法人工業技術研究院 飛輪能量儲存系統

Also Published As

Publication number Publication date
US10778061B2 (en) 2020-09-15
TWI687591B (zh) 2020-03-11
US20200144886A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
TWI687591B (zh) 飛輪能量儲存系統
CN106655605B (zh) 夹心式电动汽车用磁悬浮飞轮电池及工作方法
CN103683779B (zh) 定子永磁偏置永磁型无轴承电机
TWI690655B (zh) 飛輪能量儲存系統
JP6194319B2 (ja) 電気機械式フライホイール格納システム
JP2017200435A (ja) 電気機械式フライホイール
JP2019522458A (ja) 回転アクチュエータ
WO2019019243A1 (zh) 一种车载飞轮电池用交直流五自由度双球面混合磁轴承
CN105186740A (zh) 一种惯性储能系统
CN106015331A (zh) 一种低功耗永磁偏置五自由度集成化磁轴承
CN106958531A (zh) 一种低损耗磁悬浮涡轮分子泵
CN106763186B (zh) 一种具有永磁卸载力的轴向混合磁轴承
JP6561047B2 (ja) ターボチャージャ用高速スイッチリラクタンスモータ
CN216812192U (zh) 基于氢燃料电池发动机的离心式空压机
CN109067024B (zh) 一种大转矩微振动磁悬浮开关磁阻电机
CN104154119A (zh) 一种永磁偏置轴向径向磁轴承
CN109962595A (zh) 超高速永磁电机
CN110165821B (zh) 一种卧式自抽真空室高集成度飞轮储能装置
CN209731028U (zh) 超高速永磁电机
WO2023100813A1 (ja) 真空ポンプ
CN216343036U (zh) 磁悬浮氢气循环泵
CN113556016B (zh) 电机与离心压缩机集成装置
CN108547868A (zh) 一种半自由度的径向充磁的混合型轴向磁轴承
JP2022529098A (ja) シャフトによる磁石の冷却回路を有する回転電気機械
JPH06233479A (ja) 電力貯蔵装置