TW202013469A - Method for manufacturing a field effect transistor, method for manufacturing a volatile semiconductor memory element, method for manufacturing a non-volatile semiconductor memory element, method for manufacturing a display element, method for manufacturing an image display device, and method for manufacturing a system - Google Patents

Method for manufacturing a field effect transistor, method for manufacturing a volatile semiconductor memory element, method for manufacturing a non-volatile semiconductor memory element, method for manufacturing a display element, method for manufacturing an image display device, and method for manufacturing a system Download PDF

Info

Publication number
TW202013469A
TW202013469A TW108142640A TW108142640A TW202013469A TW 202013469 A TW202013469 A TW 202013469A TW 108142640 A TW108142640 A TW 108142640A TW 108142640 A TW108142640 A TW 108142640A TW 202013469 A TW202013469 A TW 202013469A
Authority
TW
Taiwan
Prior art keywords
gate insulating
insulating layer
passivation layer
layer
oxide
Prior art date
Application number
TW108142640A
Other languages
Chinese (zh)
Other versions
TWI783191B (en
Inventor
曾根雄司
植田尚之
中村有希
安部由希子
松本真二
早乙女遼一
新江定憲
草柳嶺秀
Original Assignee
日商理光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商理光股份有限公司 filed Critical 日商理光股份有限公司
Publication of TW202013469A publication Critical patent/TW202013469A/en
Application granted granted Critical
Publication of TWI783191B publication Critical patent/TWI783191B/en

Links

Images

Abstract

A method for manufacturing a field effect transistor including a gate-insulating layer, an active layer, and a passivation layer. The method includes a first process of forming the gate- insulating layer; and a second process of forming the passivation layer. At least one of the first process and the second process includes: forming a first oxide containing an alkaline earth metal and at least one of gallium, scandium, yttrium, and a lanthanoid; and etching the first oxide by use of a first solution containing at least one of hydrochloric acid, oxalic acid, nitric acid, phosphoric acid, acetic acid, sulfuric acid, and hydrogen peroxide water.

Description

製造場效電晶體的方法、製造揮發性半導體記憶元件的方法、製造非揮發性半導體記憶元件的方法、製造顯示元件的方法、製造影像顯示裝置的方法及製造系統的方法 Method for manufacturing field effect transistor, method for manufacturing volatile semiconductor memory element, method for manufacturing non-volatile semiconductor memory element, method for manufacturing display element, method for manufacturing image display device and method for manufacturing system

本發明涉及一種製造場效電晶體(Field Effect Transistor,FET)的方法、製造揮發性半導體記憶元件的方法、製造非揮發性半導體記憶元件的方法、製造顯示元件的方法、製造影像顯示裝置的方法及製造系統的方法。 The present invention relates to a method of manufacturing a field effect transistor (FET), a method of manufacturing a volatile semiconductor memory element, a method of manufacturing a non-volatile semiconductor memory element, a method of manufacturing a display element, and a method of manufacturing an image display device And the method of manufacturing the system.

FET為一種半導體裝置類型,FET藉由施加電壓至閘極電極以依據通道的電場提供用於電子或電洞之流動的閘極,以控制源極電極與汲極電極之間的電流。 The FET is a type of semiconductor device. The FET applies a voltage to the gate electrode to provide a gate for the flow of electrons or holes according to the electric field of the channel to control the current between the source electrode and the drain electrode.

因為FET的特性,FET被用於開關元件以及放大元件。因為FET顯示小閘極電流以及具有平坦的外型,相對於雙極性電晶體,FET可輕易地被製造或者整合。因此,在用於電子裝置中之積體電路中,FET已經是無可取代的元件。 Because of the characteristics of FETs, FETs are used for switching elements and amplifying elements. Because FETs display small gate currents and have a flat appearance, FETs can be easily manufactured or integrated relative to bipolar transistors. Therefore, in integrated circuits used in electronic devices, FETs are already irreplaceable components.

傳統上,廣泛使用矽製絕緣層,以作為FET的閘極絕緣層。然而,近年來,在對於FET之更先進整合以及低能耗的需求增加下,已經 研究出一種形成閘極絕緣層的技術,該技術實施一種所謂的高k絕緣薄膜,該高k絕緣薄膜所具有的介電常數遠高於矽製絕緣層。例如,已經揭露一種FET以及一種半導體記憶體,其具有由包括鹼土金屬以及選自鎵(Ga)、鈧(Sc)、釔(Y)以及鑭系元素之元素的氧化物所形成的閘極絕緣層(請見,例如,日本待審專利公開第2011-151370號)。 Traditionally, silicon insulating layers are widely used as gate insulating layers for FETs. However, in recent years, with the increasing demand for more advanced integration of FETs and low energy consumption, a technique for forming a gate insulating layer has been developed which implements a so-called high-k insulating film, which has 'S dielectric constant is much higher than that of silicon insulating layer. For example, a FET and a semiconductor memory have been disclosed having a gate insulation formed by oxides including alkaline earth metals and elements selected from gallium (Ga), scandium (Sc), yttrium (Y), and lanthanides Layer (see, for example, Japanese Unexamined Patent Publication No. 2011-151370).

此外,包括鹼土金屬以及稀土元素(例如,Sc、Y、鑭系元素)的氧化物具有可靠的阻障表現。因此,已經揭露一種FET,其具有由包括鹼土金屬以及稀土元素之氧化物所形成的鈍化層(請見,例如,日本待審專利公開第2015-111653號)。 In addition, oxides including alkaline earth metals and rare earth elements (eg, Sc, Y, lanthanides) have reliable barrier performance. Therefore, there has been disclosed a FET having a passivation layer formed of oxides including alkaline earth metals and rare earth elements (see, for example, Japanese Unexamined Patent Publication No. 2015-111653).

本發明之一態樣提供一種製造FET的方法,該FET包括一閘極絕緣層、一主動層以及一鈍化層。該方法包括:一第一程序,用於形成該閘極絕緣層;以及一第二程序,用於形成該鈍化層。該第一程序以及該第二程序的至少其中之一包括:形成一第一氧化物,該第一氧化物包括一鹼土金屬以及鎵、鈧、釔及鑭系元素的至少其中之一;以及使用一第一溶液蝕刻該第一氧化物,該第一溶液包括鹽酸、草酸、硝酸、磷酸、乙酸、硫酸以及雙氧水的至少其中之一。 One aspect of the present invention provides a method of manufacturing an FET including a gate insulating layer, an active layer, and a passivation layer. The method includes: a first procedure for forming the gate insulating layer; and a second procedure for forming the passivation layer. At least one of the first procedure and the second procedure includes: forming a first oxide, the first oxide including an alkaline earth metal and at least one of gallium, scandium, yttrium, and lanthanide; and using A first solution etches the first oxide. The first solution includes at least one of hydrochloric acid, oxalic acid, nitric acid, phosphoric acid, acetic acid, sulfuric acid, and hydrogen peroxide.

10、10A、10B、10C、50、110、110A、110B、110C、110D、110E、110F、110G、120、810、820、840‧‧‧場效電晶體 10, 10A, 10B, 10C, 50, 110, 110A, 110B, 110C, 110D, 110E, 110F, 110G, 120, 810, 820, 840

11、21、51、61、71、91、121、321‧‧‧基板 11, 21, 51, 61, 71, 91, 121, 321‧‧‧ substrate

12、52、62、72、92、103、124、G‧‧‧閘極電極 12, 52, 62, 72, 92, 103, 124, G‧‧‧ gate electrode

13、23、53、63、73、123、351‧‧‧閘極絕緣層 13, 23, 53, 63, 73, 123, 351 ‧‧‧ gate insulating layer

14、58、64、96、125、S‧‧‧源極電極 14, 58, 64, 96, 125, S‧‧‧ source electrode

15、59、65、97、126、D‧‧‧汲極電極 15, 59, 65, 97, 126, D‧‧‧ Drain electrode

16、66、98、122‧‧‧主動層 16, 66, 98, 122 ‧‧‧ active layer

17、27A、111、112、113、114、115、128‧‧‧鈍化層 17, 27A, 111, 112, 113, 114, 115, 128 ‧‧‧ passivation layer

17a、27、41a、42a、170a‧‧‧第一鈍化層 17a, 27, 41a, 42a, 170a‧‧‧‧The first passivation layer

17b、37、41b、42b、170b‧‧‧第二鈍化層 17b, 37, 41b, 42b, 170b ‧‧‧ second passivation layer

20‧‧‧第一場效電晶體 20‧‧‧ First field effect transistor

22、322‧‧‧第一閘極電極 22, 322‧‧‧ First gate electrode

24、325‧‧‧第一源極電極 24、325‧‧‧First source electrode

25、327‧‧‧第一汲極電極 25、327‧‧‧First drain electrode

26、329‧‧‧第一主動層 26、329‧‧‧First active layer

30‧‧‧第二場效電晶體 30‧‧‧second field effect transistor

32、323‧‧‧第二閘極電極 32、323‧‧‧Second gate electrode

34、326‧‧‧第二源極電極 34、326‧‧‧Second source electrode

35、328‧‧‧第二汲極電極 35、328‧‧‧Second drain electrode

36、330‧‧‧第二主動層 36、330‧‧‧Second active layer

43、57、127‧‧‧層間絕緣薄膜 43, 57, 127‧‧‧ interlayer insulating film

45、712‧‧‧陰極 45、712‧‧‧Cathode

54‧‧‧閘極側壁絕緣薄膜 54‧‧‧Insulating film on the side wall of the gate

55、75、107、122a‧‧‧源極區域 55, 75, 107, 122a ‧‧‧ source region

56、76、108、122b‧‧‧汲極區域 56, 76, 108, 122b ‧‧‧ Drain area

60、70‧‧‧揮發性半導體記憶元件 60, 70‧‧‧ Volatile semiconductor memory device

67、82‧‧‧第一電容電極 67、82‧‧‧First capacitor electrode

68、81‧‧‧電容介電層 68, 81‧‧‧ capacitor dielectric layer

69、80‧‧‧第二電容電極 69、80‧‧‧Second capacitor electrode

74、106‧‧‧閘極側壁絕緣薄膜 74、106‧‧‧Insulating film of gate side wall

77‧‧‧第一層間絕緣薄膜 77‧‧‧ First interlayer insulating film

78‧‧‧位元線電極 78‧‧‧bit line electrode

79‧‧‧第二層間絕緣薄膜 79‧‧‧The second interlayer insulating film

90、100‧‧‧非揮發性半導體記憶元件 90、100‧‧‧Nonvolatile semiconductor memory device

13a、93、102、130a‧‧‧第一閘極絕緣層 13a, 93, 102, 130a ‧‧‧ first gate insulating layer

94、105‧‧‧浮動閘極電極 94, 105‧‧‧ floating gate electrode

13b、95、104、130b‧‧‧第二閘極絕緣層 13b, 95, 104, 130b ‧‧‧ second gate insulating layer

130、170‧‧‧絕緣層 130、170‧‧‧Insulation

150、150A、150B、150C、200、200A‧‧‧有機電致發光顯示元件 150, 150A, 150B, 150C, 200, 200A ‧‧‧ organic electroluminescence display element

210、320、730‧‧‧驅動電路 210, 320, 730‧‧‧ drive circuit

220‧‧‧層間絕緣薄膜 220‧‧‧Interlayer insulating film

220x、220y、220z‧‧‧穿孔 220x, 220y, 220z

230、350、750‧‧‧有機電致發光元件 230, 350, 750‧‧‧ organic electroluminescent element

231‧‧‧下部電極 231‧‧‧Lower electrode

232‧‧‧有機電致發光層 232‧‧‧ organic electroluminescent layer

233‧‧‧上部電極 233‧‧‧Upper electrode

240‧‧‧隔牆 240‧‧‧Partition wall

250‧‧‧密封層 250‧‧‧Sealing layer

260‧‧‧黏合層 260‧‧‧adhesive layer

270‧‧‧對向絕緣基板 270‧‧‧Insulated substrate

300、310‧‧‧遮罩 300, 310‧‧‧ mask

352‧‧‧有機電致發光層 352‧‧‧ organic electroluminescent layer

500‧‧‧電視裝置 500‧‧‧TV installation

501‧‧‧主控制裝置 501‧‧‧Main control device

503‧‧‧調諧器 503‧‧‧Tuner

504‧‧‧類比數位轉換器 504‧‧‧Analog to Digital Converter

505‧‧‧解調電路 505‧‧‧ Demodulation circuit

506‧‧‧傳輸流解碼器 506‧‧‧Transport stream decoder

511‧‧‧聲音解碼器 511‧‧‧Sound decoder

512‧‧‧數位類比轉換器 512‧‧‧Digital analog converter

513‧‧‧聲音輸出電路 513‧‧‧Sound output circuit

514‧‧‧揚聲器 514‧‧‧speaker

521‧‧‧影像解碼器 521‧‧‧Image decoder

522‧‧‧影像-螢幕上選項合成電路 522‧‧‧Image-Option synthesis circuit on the screen

523‧‧‧影像輸出電路 523‧‧‧Image output circuit

524‧‧‧影像顯示裝置 524‧‧‧Image display device

525‧‧‧螢幕上選項描繪電路 525‧‧‧ On-screen option drawing circuit

531‧‧‧記憶體 531‧‧‧Memory

532‧‧‧操作裝置 532‧‧‧Operation device

541‧‧‧驅動器介面 541‧‧‧ Driver interface

542‧‧‧硬碟裝置 542‧‧‧Hard disk device

543‧‧‧光碟裝置 543‧‧‧CD device

551‧‧‧紅外線光接收器 551‧‧‧Infrared light receiver

552‧‧‧通訊控制裝置 552‧‧‧Communication control device

610‧‧‧天線 610‧‧‧ Antenna

620‧‧‧遙控傳送機 620‧‧‧Remote control transmitter

700‧‧‧螢幕 700‧‧‧ screen

702、703‧‧‧顯示元件 702、703‧‧‧Display element

710‧‧‧顯示器 710‧‧‧Monitor

714‧‧‧陽極 714‧‧‧Anode

740‧‧‧有機電致發光薄膜層 740‧‧‧ organic electroluminescent film layer

742‧‧‧電子傳輸層 742‧‧‧Electronic transmission layer

744‧‧‧發光層 744‧‧‧luminous layer

746‧‧‧電洞傳輸層 746‧‧‧Electric tunnel transmission layer

760、830‧‧‧電容器 760、830‧‧‧Capacitor

762、772‧‧‧配對電極 762、772‧‧‧Paired electrode

770‧‧‧液晶元件 770‧‧‧Liquid crystal element

780‧‧‧顯示控制裝置 780‧‧‧Display control device

782‧‧‧影像資料處理電路 782‧‧‧Image data processing circuit

784‧‧‧掃描線驅動電路 784‧‧‧scan line drive circuit

786‧‧‧資料線驅動電路 786‧‧‧ data line drive circuit

X0、X1、X2、X3、...、Xn-2、Xn-1‧‧‧掃描線 X0, X1, X2, X3, ..., Xn-2, Xn-1 ‧‧‧ scan line

Y0、Y1、Y2、Y3、...、Ym-1‧‧‧資料線 Y0, Y1, Y2, Y3, ..., Ym-1‧‧‧ data line

Y0i、Y1i、Y2i、Y3i、...、Ym-1i‧‧‧電流供應線 Y0i, Y1i, Y2i, Y3i, ..., Ym-1i ‧‧‧ current supply line

第1圖為顯示依據第一實施例之FET的範例的剖面圖; FIG. 1 is a cross-sectional view showing an example of the FET according to the first embodiment;

第2A圖至第2D圖為顯示依據第一實施例之製造FET的步驟的範例的(第一)圖式; FIGS. 2A to 2D are (first) drawings showing an example of the steps of manufacturing the FET according to the first embodiment;

第3A圖至第3C圖為顯示依據第一實施例之製造FET的步驟的範例的(第二)圖式; FIGS. 3A to 3C are (second) drawings showing an example of the steps of manufacturing the FET according to the first embodiment;

第4A圖至第4C圖為顯示依據第一實施例之修飾製造FET的範例的剖面圖; 4A to 4C are cross-sectional views showing examples of modified manufacturing FETs according to the first embodiment;

第5圖為顯示依據第二實施例之FET的範例的剖面圖; FIG. 5 is a cross-sectional view showing an example of the FET according to the second embodiment;

第6圖為用於描述依據第三實施例之有機電致發光顯示元件的配置以及依據第三實施例之製造有機電致發光顯示元件的方法的剖面圖; FIG. 6 is a cross-sectional view for describing the configuration of an organic electroluminescence display element according to the third embodiment and a method of manufacturing an organic electroluminescence display element according to the third embodiment;

第7圖為用於描述依據第三實施例之修飾之有機電致發光顯示元件的配置以及依據第三實施例之修飾製造有機電致發光顯示元件的方法的剖面圖; FIG. 7 is a cross-sectional view for describing the configuration of a modified organic electroluminescent display element according to the third embodiment and the method of manufacturing an organic electroluminescent display element according to the modification of the third embodiment;

第8圖為用於描述依據第四實施例之FET的配置以及依據第四實施例之製造FET的方法的剖面圖; 8 is a cross-sectional view for describing the configuration of the FET according to the fourth embodiment and the method of manufacturing the FET according to the fourth embodiment;

第9圖為用於描述依據第五實施例之揮發性半導體記憶元件的配置以及依據第五實施例之製造揮發性半導體記憶元件的方法的剖面圖; 9 is a cross-sectional view for describing the configuration of the volatile semiconductor memory device according to the fifth embodiment and the method of manufacturing the volatile semiconductor memory device according to the fifth embodiment;

第10圖為用於描述依據第六實施例之揮發性半導體記憶元件的配置以及依據第六實施例之製造揮發性半導體記憶元件的方法的剖面圖; 10 is a cross-sectional view for describing the configuration of the volatile semiconductor memory device according to the sixth embodiment and the method of manufacturing the volatile semiconductor memory device according to the sixth embodiment;

第11圖為用於描述依據第七實施例之非揮發性半導體記憶元件的配置以及依據第七實施例之製造非揮發性半導體記憶元件的方法的剖面圖; 11 is a cross-sectional view for describing the configuration of the non-volatile semiconductor memory device according to the seventh embodiment and the method of manufacturing the non-volatile semiconductor memory device according to the seventh embodiment;

第12圖為用於描述依據第八實施例之非揮發性半導體記憶元件的配置以及依據第八實施例之製造非揮發性半導體記憶元件的方法的剖面圖; FIG. 12 is a cross-sectional view for describing the configuration of the non-volatile semiconductor memory device according to the eighth embodiment and the method of manufacturing the non-volatile semiconductor memory device according to the eighth embodiment;

第13圖為說明依據第九實施例之FET的剖面圖; FIG. 13 is a cross-sectional view illustrating an FET according to the ninth embodiment;

第14A圖及第14B圖為說明依據第九實施例之製造FET的步驟的範例的(第一)圖式; 14A and 14B are (first) drawings illustrating an example of the steps of manufacturing the FET according to the ninth embodiment;

第15A圖至第15C圖為說明依據第九實施例之製造FET的步驟的範例的(第二)圖式; 15A to 15C are (second) drawings illustrating an example of the steps of manufacturing the FET according to the ninth embodiment;

第16A圖至第16C圖為說明依據第九實施例之修飾之FET範例的剖面圖; 16A to 16C are cross-sectional views illustrating examples of modified FETs according to the ninth embodiment;

第17圖為說明依據第十實施例之FET範例的剖面圖; FIG. 17 is a cross-sectional view illustrating an example of the FET according to the tenth embodiment;

第18A圖至第18D圖為說明依據第十實施例之製造FET的步驟的範例的(第一)圖式; 18A to 18D are (first) drawings illustrating an example of the steps of manufacturing the FET according to the tenth embodiment;

第19A圖至第19C圖為說明依據第十實施例之製造FET的步驟的範例的(第二)圖式; FIGS. 19A to 19C are (second) drawings illustrating an example of the steps of manufacturing the FET according to the tenth embodiment;

第20A圖至第20C圖為說明依據第十實施例之修飾之FET範例的剖面圖; 20A to 20C are cross-sectional views illustrating examples of modified FETs according to the tenth embodiment;

第21A圖及第21B圖為說明依據第十一實施例之有機EL顯示元件的配置以及依據第十一實施例之製造有機EL顯示元件的方法的(第一)剖面圖; 21A and 21B are (first) cross-sectional views illustrating the configuration of the organic EL display element according to the eleventh embodiment and the method of manufacturing the organic EL display element according to the eleventh embodiment;

第22A圖及第22B圖為說明依據第十一實施例之有機EL顯示元件的配置以及依據第十一實施例之製造有機EL顯示元件的方法的(第二)剖面圖; 22A and 22B are (second) cross-sectional views illustrating the configuration of the organic EL display element according to the eleventh embodiment and the method of manufacturing the organic EL display element according to the eleventh embodiment;

第23圖為說明依據第十二實施例之電視裝置的配置的方塊圖; FIG. 23 is a block diagram illustrating the configuration of the television device according to the twelfth embodiment;

第24圖為描述依據第十二實施例之電視裝置的(第一)圖式; FIG. 24 is a (first) drawing describing the television device according to the twelfth embodiment;

第25圖為描述依據第十二實施例之電視裝置的(第二)圖式; FIG. 25 is a (second) drawing describing the television device according to the twelfth embodiment;

第26圖為描述依據第十二實施例之電視裝置的(第三)圖式; FIG. 26 is a (third) diagram for describing the television device according to the twelfth embodiment;

第27圖為描述依據第十二實施例之顯示元件的圖式; FIG. 27 is a diagram describing a display element according to the twelfth embodiment;

第28圖為描述依據第十二實施例之有機EL元件的圖式; FIG. 28 is a diagram describing an organic EL element according to a twelfth embodiment;

第29圖為描述依據第十二實施例之電視裝置的(第四)圖式; FIG. 29 is a (fourth) diagram describing the television device according to the twelfth embodiment;

第30圖為描述依據第十二實施例之另一顯示元件的(第一)圖式; FIG. 30 is a (first) drawing describing another display element according to the twelfth embodiment;

第31圖為描述依據第十二實施例之另一顯示元件的(第二)圖式; FIG. 31 is a (second) drawing describing another display element according to the twelfth embodiment;

第32圖為說明在偏壓溫度加壓(Bias Temperature Stress,BTS)測試前後之Vgs-Ids特性之改變的圖式;以及 Figure 32 is a diagram illustrating the change in Vgs-Ids characteristics before and after the Bias Temperature Stress (BTS) test; and

第33圖為說明臨界電壓的偏移(△Vth)與加壓時間的關係的圖式。 FIG. 33 is a diagram illustrating the relationship between the threshold voltage shift (ΔVth) and the pressurization time.

對於用於在包括鹼土金屬以及選自鎵(Ga)、鈧(Sc)、釔(Y)以及鑭系元素之元素的氧化物上執行圖案化的方法,已經在日本待審專利公開第2011-151370號中揭露一種乾式蝕刻的光刻程序。然而,乾式蝕刻在危險氣體的使用、對環境造成危害、所需裝置的成本等方面是較不佳的。因此,在圖案化執行方面,一種濕式蝕刻的光刻程序是較佳的。 For a method for performing patterning on oxides including alkaline earth metals and elements selected from gallium (Ga), scandium (Sc), yttrium (Y), and lanthanides, Japanese Patent Unexamined Publication No. 2011- No. 151370 discloses a dry etching lithography process. However, dry etching is not good in terms of the use of dangerous gases, harm to the environment, and cost of required equipment. Therefore, in terms of patterning execution, a wet etching lithography process is preferred.

此外,藉由氫氟酸製之蝕刻劑的使用,要在廣用為閘極絕緣層以及鈍化層的矽製絕緣層(例如,SiO2以及SiON)上執行濕式蝕刻是可能的。然而,並沒有任何關於成功地用於在包括鹼土金屬以及稀土金屬的氧化物上執行濕式蝕刻之溶液的報告。因此,在閘極絕緣層或者鈍化層是由包括鹼土金屬以及選自Ga、Sc、Y以及鑭系元素之元素的氧化物所形成的情形時,在光刻程序中以濕式蝕刻執行圖案化是困難的。 In addition, by using an etchant made of hydrofluoric acid, it is possible to perform wet etching on a silicon insulating layer (for example, SiO 2 and SiON) that is widely used as a gate insulating layer and a passivation layer. However, there are no reports of solutions successfully used to perform wet etching on oxides including alkaline earth metals and rare earth metals. Therefore, in the case where the gate insulating layer or the passivation layer is formed of oxides including alkaline earth metals and elements selected from Ga, Sc, Y, and lanthanides, patterning is performed by wet etching in the photolithography process it's difficult.

因此,在用於製造具有由包括鹼土金屬以及選自Ga、Sc、Y以及鑭系元素之元素的氧化物所形成的閘極絕緣層或者鈍化層的FET的 程序中,較佳的是閘極絕緣層或者鈍化層在光刻程序中以濕式蝕刻形成。 Therefore, in the process for manufacturing an FET having a gate insulating layer or a passivation layer formed of oxides including alkaline earth metals and elements selected from Ga, Sc, Y, and lanthanides, it is preferable that the gate The insulating layer or passivation layer is formed by wet etching in a photolithography process.

本發明的目的在於:在由包括鹼土金屬以及Ga、Sc、Y以及鑭系元素的至少其中之一的第一氧化物所形成的一層上,以製造具有由該第一氧化物所形成之閘極絕緣層以及/或者鈍化層之FET的方法,藉由濕式蝕刻的使用以執行圖案化。 An object of the present invention is to manufacture a gate having a first oxide formed on a layer formed by a first oxide including alkaline earth metals and at least one of Ga, Sc, Y, and lanthanides The FET method of the polar insulating layer and/or the passivation layer is patterned by the use of wet etching.

依據本發明所揭露的技術,在由包括鹼土金屬以及Ga、Sc、Y以及鑭系元素的至少其中之一的第一氧化物所形成的一層上,以製造具有由該第一氧化物所形成之閘極絕緣層以及/或者鈍化層之FET的方法,藉由濕式蝕刻的使用以執行圖案化是可能的。 According to the technique disclosed by the present invention, on a layer formed of a first oxide including alkaline earth metal and at least one of Ga, Sc, Y, and lanthanide elements, to produce a layer formed of the first oxide The method of the gate insulating layer and/or the FET of the passivation layer is possible to perform patterning through the use of wet etching.

以下之說明藉由參考所附圖式而描述本發明的實施例。在各個圖式中,相同的元件會使用相同的元件符號,以省略重複描述。 The following description describes embodiments of the present invention by referring to the accompanying drawings. In each drawing, the same element will use the same element symbol to omit repeated description.

本發明的發明人發現:藉由使第一溶液(該第一溶液包括鹽酸、草酸、硝酸、磷酸、乙酸、硫酸以及雙氧水的至少其中之一)接觸第一氧化物(該第一氧化物包括元素A(亦即,鹼土金屬)與元素B(亦即,Ga、Sc、Y以及鑭系元素的至少其中之一)),可以在第一氧化物上執行蝕刻。以下之各個實施例會使發明人之以上知識成立。 The inventors of the present invention found that by contacting the first solution (the first solution includes at least one of hydrochloric acid, oxalic acid, nitric acid, phosphoric acid, acetic acid, sulfuric acid, and hydrogen peroxide) with the first oxide (the first oxide includes Element A (that is, alkaline earth metal) and element B (that is, at least one of Ga, Sc, Y, and lanthanides)) may be etched on the first oxide. The following embodiments will establish the above knowledge of the inventor.

(第一實施例) (First embodiment)

[FET的配置] [Configuration of FET]

第1圖為顯示依據第一實施例之FET的範例的剖面圖。依據第1圖,FET 10為底部閘極/底部接觸FET,該FET 10包括:基板11;閘極電極12;閘極絕緣層13;源極電極14;汲極電極15;主動層16;以及鈍化層17。應注意的是,FET 10為依據本發明之半導體裝置的典型範例。 FIG. 1 is a cross-sectional view showing an example of the FET according to the first embodiment. According to FIG. 1, the FET 10 is a bottom gate/bottom contact FET. The FET 10 includes: a substrate 11; a gate electrode 12; a gate insulating layer 13; a source electrode 14; a drain electrode 15; an active layer 16; and Passivation layer 17. It should be noted that the FET 10 is a typical example of the semiconductor device according to the present invention.

此外,依據本發明的鈍化層為至少具有使主動層(例如,半導體層)隔離/免於環境中溼氣、氧氣、氫氣等之功能的一層。此外,不僅適用於主動層,鈍化層可具有保護FET之其他構件(例如,閘極絕緣層、源極電極、汲極電極、閘極電極等)之功能。依據本發明之鈍化層的其中一個功能在於保護FET(或者至少FET的一部分)免於形成在FET上複數層的材料或者在於保護FET(或者至少FET的一部分)免於形成該等層的程序。 In addition, the passivation layer according to the present invention is a layer having at least a function of isolating/protecting the active layer (eg, semiconductor layer) from moisture, oxygen, hydrogen, etc. in the environment. In addition, it is not only suitable for the active layer, but the passivation layer may have the function of protecting other components of the FET (eg, gate insulating layer, source electrode, drain electrode, gate electrode, etc.). One of the functions of the passivation layer according to the present invention is to protect the FET (or at least a part of the FET) from the materials forming a plurality of layers on the FET or to protect the FET (or at least a part of the FET) from the process of forming such layers.

此外,即使鈍化層在物理上與FET的其他構件藉由例如, 電致發光元件等而分離,不論鈍化層形成於何處,FET的鈍化層被視為FET的構件的其中之一。亦即,例如,在形成電致發光元件等之後所形成的鈍化層以及形成以鄰近於層間絕緣層等的鈍化層被視為FET的鈍化層。 In addition, even if the passivation layer is physically separated from other components of the FET by, for example, an electroluminescence element or the like, regardless of where the passivation layer is formed, the passivation layer of the FET is regarded as one of the components of the FET. That is, for example, the passivation layer formed after the formation of the electroluminescence element or the like and the passivation layer formed adjacent to the interlayer insulating layer or the like are regarded as the passivation layer of the FET.

此外,鈍化層可稱為保護層。 In addition, the passivation layer may be referred to as a protective layer.

FET 10包括:閘極電極12,形成在具有絕緣特性的基板11上;以及閘極絕緣層13,形成以覆蓋閘極電極12。此外,源極電極14及汲極電極15形成在閘極絕緣層13上,以及主動層16形成以部分地覆蓋源極電極14及汲極電極15。源極電極14及汲極電極15藉由主動層16而以預定距離形成,主動層16會作為通道區域。此外,鈍化層17形成在覆蓋閘極絕緣層13上,以覆蓋源極電極14、汲極電極15及主動層16。以下之說明進一步描述FET 10之各個構件。 The FET 10 includes: a gate electrode 12 formed on a substrate 11 having insulating properties; and a gate insulating layer 13 formed to cover the gate electrode 12. In addition, the source electrode 14 and the drain electrode 15 are formed on the gate insulating layer 13 and the active layer 16 is formed to partially cover the source electrode 14 and the drain electrode 15. The source electrode 14 and the drain electrode 15 are formed at a predetermined distance by the active layer 16, and the active layer 16 will serve as a channel region. In addition, a passivation layer 17 is formed on the gate insulating layer 13 to cover the source electrode 14, the drain electrode 15 and the active layer 16. The following description further describes the various components of the FET 10.

應注意的是,在第一實施例中,因為方便的緣故,鈍化層17所形成之FET 10的表面被稱為在頂側上或者在一側上,而基板11所形成之FET 10的表面被稱為在底側上或者在另一側上。此外,各元件之面對鈍化層17的表面被稱為頂部表面或者一表面,而各元件之面對基板11的表面被稱為底部表面或者另一表面。應注意的是,FET 10可以顛倒使用,或者可以以任意的預定角度設置。此外,平面視角為從基板11之頂部表面之法線方向的位置看向物體的視角。此外,平面形狀為從基板11之頂部表面之法線方向的位置看向物體的形狀。 It should be noted that in the first embodiment, for convenience, the surface of the FET 10 formed by the passivation layer 17 is referred to as being on the top side or on one side, and the surface of the FET 10 formed by the substrate 11 It is called on the bottom side or on the other side. In addition, the surface of each element facing the passivation layer 17 is called a top surface or one surface, and the surface of each element facing the substrate 11 is called a bottom surface or another surface. It should be noted that the FET 10 may be used upside down, or may be set at any predetermined angle. In addition, the planar viewing angle is the viewing angle from the position of the normal direction of the top surface of the substrate 11 to the object. In addition, the planar shape is a shape looking toward the object from a position in the normal direction of the top surface of the substrate 11.

對於基板11的形狀、配置及尺寸,並無特定限制,以及基板11的形狀、配置及尺寸可依據需求而被適當地選擇。對於基板11的材料,並無特定限制,以及基板11的材料可依據需求而被適當地選擇。例如,基板11的材料可為玻璃製材料、陶製材料、塑膠製材料、薄膜製材料等。 There is no specific limitation on the shape, arrangement and size of the substrate 11, and the shape, arrangement and size of the substrate 11 can be appropriately selected according to requirements. The material of the substrate 11 is not particularly limited, and the material of the substrate 11 can be appropriately selected according to requirements. For example, the material of the substrate 11 may be a glass material, a ceramic material, a plastic material, a film material, or the like.

對於玻璃製材料,並無特定限制,以及玻璃製材料可依據需求而被適當地選擇。例如,玻璃製材料可為無鹼玻璃、矽玻璃等。此外,對於塑膠製材料及薄膜製材料,並無特定限制,以及塑膠製材料及薄膜製材料可依據需求而被適當地選擇。例如,塑膠製材料及薄膜製材料可為聚碳酸酯(PC)、聚亞醯胺(PI)、聚對苯二甲酸乙二醇酯(PET)、聚對荼二甲酸乙二酯(PEN)等。 There is no specific limit to the material made of glass, and the material made of glass can be appropriately selected according to needs. For example, the glass material may be alkali-free glass, silica glass, or the like. In addition, there are no specific restrictions on plastic materials and film materials, and plastic materials and film materials can be appropriately selected according to needs. For example, plastic materials and film materials can be polycarbonate (PC), polyimide (PI), polyethylene terephthalate (PET), polyethylene terephthalate (PEN) Wait.

閘極電極12形成在基板11的預定區域上。閘極電極12為 施加有閘極電壓的電極。對於閘極電極12的材料,並無特定限制,以及閘極電極12的材料可依據需求而被適當地選擇。例如,閘極電極12的材料可為鋁(Al)、鉑(Pt)、鈀(Pd)、金(Au)、銀(Ag)、銅(Cu)、鋅(Zn)、鎳(Ni)、鉻(Cr)、鉭(Ta)、鉬(Mo)、鈦(Ti)等的金屬,或者可為以上金屬的合金或者包括以上金屬的混合材料等。此外,閘極電極12的材料可為導電氧化物,例如,氧化銦、氧化鋅、氧化錫、氧化鎵或者氧化鈮,以及可為以上導電氧化物的複合物或者包括以上導電氧化物的混合材料等。此外,閘極電極12的材料可為有機導體,例如,聚二氧乙基噻吩(PEDOT)、聚苯胺(PANI)等。對於閘極電極12的平均厚度,並無特定限制,以及閘極電極12的平均厚度可依據需求而被適當地選擇。然而,較佳的薄膜厚度是在大於10nm至小於1μm的範圍內,更佳的薄膜厚度是在大於50nm至小於300nm的範圍內。 The gate electrode 12 is formed on a predetermined area of the substrate 11. The gate electrode 12 is an electrode to which a gate voltage is applied. The material of the gate electrode 12 is not particularly limited, and the material of the gate electrode 12 can be appropriately selected according to requirements. For example, the material of the gate electrode 12 may be aluminum (Al), platinum (Pt), palladium (Pd), gold (Au), silver (Ag), copper (Cu), zinc (Zn), nickel (Ni), Metals such as chromium (Cr), tantalum (Ta), molybdenum (Mo), and titanium (Ti) may be alloys of the above metals or mixed materials including the above metals. In addition, the material of the gate electrode 12 may be a conductive oxide, such as indium oxide, zinc oxide, tin oxide, gallium oxide, or niobium oxide, and may be a composite of the above conductive oxides or a mixed material including the above conductive oxides Wait. In addition, the material of the gate electrode 12 may be an organic conductor, for example, polydioxyethylthiophene (PEDOT), polyaniline (PANI), or the like. There is no specific limit to the average thickness of the gate electrode 12, and the average thickness of the gate electrode 12 can be appropriately selected according to requirements. However, the preferred film thickness is in the range of greater than 10 nm to less than 1 μm, and the more preferred film thickness is in the range of greater than 50 nm to less than 300 nm.

閘極絕緣層13為設置在閘極電極12與主動層16之間的一層,以使閘極電極12絕緣於主動層16。對於閘極絕緣層13的平均厚度,並無特定限制,以及閘極絕緣層13的平均厚度可依據需求而被適當地選擇。然而,較佳的薄膜厚度是在大於50nm至小於3μm的範圍內,更佳的薄膜厚度是在大於100nm至小於1μm的範圍內。 The gate insulating layer 13 is a layer disposed between the gate electrode 12 and the active layer 16 to insulate the gate electrode 12 from the active layer 16. There is no specific limit to the average thickness of the gate insulating layer 13, and the average thickness of the gate insulating layer 13 can be appropriately selected according to requirements. However, the preferred film thickness is in the range of greater than 50 nm to less than 3 μm, and the more preferred film thickness is in the range of greater than 100 nm to less than 1 μm.

源極電極14及汲極電極15形成在閘極絕緣層13上。源極電極14及汲極電極15形成以分離預定距離。源極電極14及汲極電極15為用於使電流通過的電極,以響應於閘極電極12之閘極電壓的施加。應注意的是,將源極電極14及汲極電極15連接的導線可以與源極電極14及汲極電極15形成在相同層上。 The source electrode 14 and the drain electrode 15 are formed on the gate insulating layer 13. The source electrode 14 and the drain electrode 15 are formed to be separated by a predetermined distance. The source electrode 14 and the drain electrode 15 are electrodes for passing current in response to the application of the gate voltage of the gate electrode 12. It should be noted that the wires connecting the source electrode 14 and the drain electrode 15 may be formed on the same layer as the source electrode 14 and the drain electrode 15.

對於源極電極14及汲極電極15的材料,並無特定限制,以及源極電極14及汲極電極15的材料可依據需求而被適當地選擇。例如,源極電極14及汲極電極15的材料可為鋁(Al)、鉑(Pt)、鈀(Pd)、金(Au)、銀(Ag)、銅(Cu)、鋅(Zn)、鎳(Ni)、鉻(Cr)、鉭(Ta)、鉬(Mo)、鈦(Ti)等的金屬,或者可為以上金屬的合金或者包括以上金屬的混合材料等。 The materials of the source electrode 14 and the drain electrode 15 are not particularly limited, and the materials of the source electrode 14 and the drain electrode 15 can be appropriately selected according to requirements. For example, the material of the source electrode 14 and the drain electrode 15 may be aluminum (Al), platinum (Pt), palladium (Pd), gold (Au), silver (Ag), copper (Cu), zinc (Zn), Metals such as nickel (Ni), chromium (Cr), tantalum (Ta), molybdenum (Mo), and titanium (Ti) may be alloys of the above metals or mixed materials including the above metals.

此外,源極電極14及汲極電極15的材料可為導電氧化物,例如,氧化銦、氧化鋅、氧化錫、氧化鎵或者氧化鈮,以及可為以上導電 氧化物的複合物或者包括以上導電氧化物的混合材料等。此外,源極電極14及汲極電極15的材料可為有機導體,例如,聚二氧乙基噻吩(PEDOT)、聚苯胺(PANI)。對於源極電極14及汲極電極15的平均厚度,並無特定限制,以及源極電極14及汲極電極15的平均厚度可依據需求而被適當地選擇。然而,較佳的薄膜厚度是在大於10nm至小於1μm的範圍內,更佳的薄膜厚度是在大於50nm至小於300nm的範圍內。 In addition, the materials of the source electrode 14 and the drain electrode 15 may be conductive oxides, such as indium oxide, zinc oxide, tin oxide, gallium oxide, or niobium oxide, and may be a composite of the above conductive oxides or include the above conductive Oxide mixed materials, etc. In addition, the materials of the source electrode 14 and the drain electrode 15 may be organic conductors, such as polydioxyethylthiophene (PEDOT) and polyaniline (PANI). The average thickness of the source electrode 14 and the drain electrode 15 is not particularly limited, and the average thickness of the source electrode 14 and the drain electrode 15 can be appropriately selected according to requirements. However, the preferred film thickness is in the range of greater than 10 nm to less than 1 μm, and the more preferred film thickness is in the range of greater than 50 nm to less than 300 nm.

主動層16形成在閘極絕緣層13上,以部分地覆蓋源極電極14及汲極電極15。在源極電極14與汲極電極15之間的主動層16會作為通道區域。對於主動層16的平均厚度,並無特定限制,以及主動層16的平均厚度可依據需求而被適當地選擇。然而,較佳的薄膜厚度是在大於5nm至小於1μm的範圍內,更佳的薄膜厚度是在大於10nm至小於0.5μm的範圍內。 The active layer 16 is formed on the gate insulating layer 13 to partially cover the source electrode 14 and the drain electrode 15. The active layer 16 between the source electrode 14 and the drain electrode 15 serves as a channel region. There is no specific limit to the average thickness of the active layer 16, and the average thickness of the active layer 16 can be appropriately selected according to requirements. However, the preferred film thickness is in the range of greater than 5 nm to less than 1 μm, and the more preferred film thickness is in the range of greater than 10 nm to less than 0.5 μm.

對於主動層16的材料,並無特定限制,以及主動層16的材料可依據需求而被適當地選擇。例如,主動層16的材料可為氧化物半導體,例如,多晶矽(p-Si)、非晶矽(a-Si)或者In-Ga-Zn-O,以及可為有機半導體,例如,並五苯(pentacene)。在上述材料中,在閘極絕緣層13及第一鈍化層17的邊界的穩定性方面,較佳的是氧化物半導體。 There is no specific limitation on the material of the active layer 16, and the material of the active layer 16 can be appropriately selected according to requirements. For example, the material of the active layer 16 may be an oxide semiconductor, for example, polycrystalline silicon (p-Si), amorphous silicon (a-Si), or In-Ga-Zn-O, and may be an organic semiconductor, for example, pentacene (pentacene). Among the above materials, an oxide semiconductor is preferable in terms of the stability of the boundary between the gate insulating layer 13 and the first passivation layer 17.

鈍化層17形成在閘極絕緣層13上,以覆蓋源極電極14、汲極電極15及主動層16。對於鈍化層17的平均厚度,並無特定限制,以及鈍化層17的平均厚度可依據需求而被適當地選擇。然而,較佳的薄膜厚度是在大於50nm至小於3μm的範圍內,更佳的薄膜厚度是在大於100nm至小於1μm的範圍內。應注意的是,雖然在第1圖中鈍化層17的平面形狀對應至閘極絕緣層13的平面形狀,鈍化層17的平面形狀並不限於此。例如,鈍化層17的平面形狀可小於閘極絕緣層13之平面形狀。此外,鈍化層17的平面形狀可大於閘極絕緣層13的平面形狀,以使鈍化層17覆蓋閘極絕緣層13之側邊表面。 The passivation layer 17 is formed on the gate insulating layer 13 to cover the source electrode 14, the drain electrode 15 and the active layer 16. There is no specific limit to the average thickness of the passivation layer 17, and the average thickness of the passivation layer 17 can be appropriately selected according to requirements. However, the preferred film thickness is in the range of greater than 50 nm to less than 3 μm, and the more preferred film thickness is in the range of greater than 100 nm to less than 1 μm. It should be noted that although the planar shape of the passivation layer 17 corresponds to the planar shape of the gate insulating layer 13 in FIG. 1, the planar shape of the passivation layer 17 is not limited to this. For example, the planar shape of the passivation layer 17 may be smaller than the planar shape of the gate insulating layer 13. In addition, the planar shape of the passivation layer 17 may be larger than that of the gate insulating layer 13 so that the passivation layer 17 covers the side surface of the gate insulating layer 13.

閘極絕緣層13及鈍化層17的至少其中之一是由氧化物所形成的。以下實施例中所使用的氧化物(以下將稱為「第一氧化物」)包括A群組元素(亦即,鹼土金屬)以及B群組元素(亦即,Ga、Sc、Y以及鑭系元素的至少其中之一),以及如果需要的話可包括其他元素。包括於第 一氧化物中之鹼土金屬可為一種類型,以及可為兩種類型或者更多種類型。 At least one of the gate insulating layer 13 and the passivation layer 17 is formed of oxide. The oxides used in the following embodiments (hereinafter referred to as "first oxides") include group A elements (ie, alkaline earth metals) and group B elements (ie, Ga, Sc, Y, and lanthanides) At least one of the elements) and, if necessary, other elements. The alkaline earth metal included in the first oxide may be of one type, and may be of two types or more.

鹼土金屬可為鈹(Be)、鎂(Mg)、鈣(Ca)、鍶(Sr)、鋇(Ba)以及鐳(Ra)。 The alkaline earth metal may be beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).

鑭系元素可為鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)以及鎦(Lu)。 The lanthanides can be lanthanum (La), cerium (Ce), cerium (Pr), neodymium (Nd), ytterbium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), lanthanum (Tb), Dysprosium (Dy), 鈥 (Ho), erbium (Er), yin (Tm), ytterbium (Yb) and lutetium (Lu).

第一氧化物較佳為順電非晶氧化物。順電非晶氧化物在大氣中是穩定的,以及在大組成範圍中可平穩地形成非晶結構。然而,第一氧化物可部分地包括晶狀材料。 The first oxide is preferably a paraelectric amorphous oxide. The paraelectric amorphous oxide is stable in the atmosphere, and can form an amorphous structure smoothly in a large composition range. However, the first oxide may partially include a crystalline material.

對於增進電晶體的特性方面,閘極絕緣層13較佳由順電材料所形成,以在電晶體的轉移特性方面降低遲滯(hysteresis)。除了在特定的情形(例如,電晶體被使用為記憶體等),遲滯的存在通常對於具有開關特性之電晶體的裝置是不佳的。 For improving the characteristics of the transistor, the gate insulating layer 13 is preferably formed of a paraelectric material to reduce hysteresis in the transfer characteristics of the transistor. Except in certain situations (eg, transistors are used as memory, etc.), the presence of hysteresis is generally not good for devices with transistors that have switching characteristics.

順電材料是一種並非壓電材料、焦電材料或者鐵電材料的介電材料。換言之,順電材料是一種介電材料,其並非由壓力所偏極或者在外部電廠不存在下並非本質上偏極的。此外,為了外觀特性,壓電材料、焦電材料以及鐵電材料應該是晶狀的。亦即,由非晶材料所形成的閘極絕緣層13只能是順電的。 Paraelectric material is a dielectric material that is not piezoelectric material, pyroelectric material or ferroelectric material. In other words, the paraelectric material is a dielectric material that is not polarized by pressure or is not inherently polarized in the absence of an external power plant. In addition, for appearance characteristics, piezoelectric materials, pyroelectric materials, and ferroelectric materials should be crystalline. That is, the gate insulating layer 13 formed of an amorphous material can only be paraelectric.

鹼土金屬氧化物會輕易地環境中之溼氣、二氧化碳等反應,以及輕易地轉換為氫氧化物或者碳酸鹽。因此,鹼土金屬氧化物本身不適用於施加至電子裝置。此外,簡單的氧化物(例如,Ga、Sc、Y以及鑭系元素)輕易地結晶,這會產生洩漏電流方面的問題。然而,包括A群組元素(亦即,鹼土金屬)以及B群組元素(亦即,Ga、Sc、Y以及鑭系元素的至少其中之一)的第一氧化物可以在大組成範圍中於大氣中平穩地形成順電非晶薄膜,因此其適用於閘極絕緣層13。 Alkaline earth metal oxides can easily react with moisture and carbon dioxide in the environment, and can be easily converted into hydroxides or carbonates. Therefore, the alkaline earth metal oxide itself is not suitable for application to electronic devices. In addition, simple oxides (for example, Ga, Sc, Y, and lanthanides) easily crystallize, which can cause problems in leakage current. However, the first oxide including group A elements (that is, alkaline earth metals) and group B elements (that is, at least one of Ga, Sc, Y, and lanthanides) may be in a large composition range The paraelectric amorphous film is smoothly formed in the atmosphere, so it is suitable for the gate insulating layer 13.

Ce具有四之原子價,這在鑭系元素中是特別的,以及在與鹼土金屬結合時會形成具有鈣鈦礦(Perovskite)結構的晶體。因此,B群組元素最好不為Ce,用以獲得非晶相。 Ce has a valence of four, which is special among lanthanides, and when combined with alkaline earth metals, crystals with a perovskite structure are formed. Therefore, the group B element is preferably not Ce, to obtain an amorphous phase.

相較於鈣鈦礦結構的晶體,雖然在包括鹼土金屬以及Ga的 氧化物中可存在尖晶石(Spinel)結構等的晶相,但這樣的晶體僅在高溫(亦即,通常高於攝氏1000度)中沉積。此外,因為對於包括鹼土金屬以及Sc、Y或者鑭系元素之氧化物的穩定晶相的存在並沒有被發現,即使在高溫中執行後續步驟,來自非晶相的晶體沉積也幾乎不發生。此外,對於包括鹼土金屬以及Ga、Sc、Y或者鑭系元素的氧化物,當氧化物是由三種以上的金屬元素所構成時,非晶相會更穩定。 Compared to perovskite-structured crystals, although crystal phases such as spinel structures may exist in oxides including alkaline earth metals and Ga, such crystals are only at high temperatures (ie, generally higher than Celsius) 1000 degrees). In addition, because the existence of a stable crystalline phase including alkaline earth metals and oxides of Sc, Y, or lanthanides has not been found, even if the subsequent steps are performed at high temperatures, crystal deposition from the amorphous phase hardly occurs. In addition, for oxides including alkaline earth metals and Ga, Sc, Y, or lanthanoid elements, when the oxide is composed of three or more metal elements, the amorphous phase is more stable.

在產生高介電常數材料方面,例如Ba、Sr、Lu以及La的元素的組成比例較佳要增加。此外,因為第一氧化物具有對於環境中之溼氣、氧氣等可靠的阻障表現,第一氧化物可用作為鈍化層17的材料。 In terms of producing high dielectric constant materials, the composition ratio of elements such as Ba, Sr, Lu, and La is preferably increased. In addition, because the first oxide has a reliable barrier performance against moisture, oxygen, etc. in the environment, the first oxide can be used as the material of the passivation layer 17.

此外,第一氧化物較佳地包括C群組元素(亦即,第三元素),該C群組元素為鋁(Al)、鈦(Ti)、鋯(Zr)、鉿(Hf)、鈮(Nb)、鉭(Ta)的至少其中之一,以進一步地穩定非晶相以及改善熱穩定性、熱電阻以及稠密性。 In addition, the first oxide preferably includes a group C element (ie, a third element), and the group C element is aluminum (Al), titanium (Ti), zirconium (Zr), hafnium (Hf), niobium At least one of (Nb) and tantalum (Ta) to further stabilize the amorphous phase and improve thermal stability, thermal resistance, and denseness.

對於包括於第一氧化物中之A群組元素(亦即,鹼土金屬)以及B群組元素(亦即,Ga、Sc、Y以及鑭系元素的至少其中之一)的組成比例,並無特定限制,且可依據其需要而適當地選擇。然而,該組成比例較佳滿足以下的範圍。 For the composition ratio of group A elements (that is, alkaline earth metals) and group B elements (that is, at least one of Ga, Sc, Y, and lanthanides) included in the first oxide, there is no Specific restrictions, and can be appropriately selected according to their needs. However, the composition ratio preferably satisfies the following range.

由氧化物(例如,BeO、MgO、CaO、SrO、BaO、Ga2O3、Sc2O3、Y2O3、La2O3、Ce2O3、Pr2O3、Nd2O3、Pm2O3、Sm2O3、Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3以及Lu2O3)計算後,包括於第一氧化物中之A群組元素(亦即,鹼土金屬)以及B群組元素(亦即,Ga、Sc、Y以及鑭系元素的至少其中之一)的組成比例(A群組元素:B群組元素)較佳為10.0以上之莫耳百分比至67.0以下之莫耳百分比:33.0以上之莫耳百分比至90.0以下之莫耳百分比。 From oxides (eg, BeO, MgO, CaO, SrO, BaO, Ga 2 O 3 , Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , Ce 2 O 3 , Pr 2 O 3 , Nd 2 O 3 , Pm 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 And Lu 2 O 3 ), at least one of Group A elements (that is, alkaline earth metals) and Group B elements (that is, Ga, Sc, Y, and lanthanides) included in the first oxide A) The composition ratio (Group A element: Group B element) is preferably a molar percentage of 10.0 or more to a molar percentage of 67.0 or less: a molar percentage of 33.0 or more to a molar percentage of 90.0 or less.

對於包括於第一氧化物中之A群組元素(亦即,鹼土金屬)、B群組元素(亦即,Ga、Sc、Y以及鑭系元素的至少其中之一)以及C群組元素(亦即,Al、Ti、Zr、Hf、Nb以及Ta的至少其中之一)的組成比例,並無特定限制,且可依據其需要而適當地選擇。然而,該組成比例較佳滿足以下的範圍。 For group A elements (ie, alkaline earth metals), group B elements (ie, at least one of Ga, Sc, Y, and lanthanides) included in the first oxide, and group C elements ( That is, the composition ratio of at least one of Al, Ti, Zr, Hf, Nb, and Ta) is not particularly limited, and can be appropriately selected according to its needs. However, the composition ratio preferably satisfies the following range.

由氧化物(例如,BeO、MgO、CaO、SrO、BaO、Ga2O3、 Sc2O3、Y2O3、La2O3、Ce2O3、Pr2O3、Nd2O3、Pm2O3、Sm2O3、Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3、Al2O3、TiO2、ZrO2、HfO2、Nb2O5以及Ta2O5)計算後,包括於第一氧化物中之A群組元素(亦即,鹼土金屬)、B群組元素(亦即,Ga、Sc、Y以及鑭系元素的至少其中之一)以及C群組元素(亦即,Al、Ti、Zr、Hf、Nb以及Ta的至少其中之一)的組成比例(A群組元素:B群組元素:C群組元素)較佳為5.0以上之莫耳百分比至22.0以下之莫耳百分比:33.0以上之莫耳百分比至90.0以下之莫耳百分比:5.0以上之莫耳百分比至45.0以下之莫耳百分比。 From oxides (eg, BeO, MgO, CaO, SrO, BaO, Ga 2 O 3 , Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , Ce 2 O 3 , Pr 2 O 3 , Nd 2 O 3 , Pm 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , Al 2 O 3 , TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 5 and Ta 2 O 5 ) After calculation, the group A elements included in the first oxide (ie, alkaline earth Metal), group B elements (ie, at least one of Ga, Sc, Y, and lanthanides) and group C elements (ie, at least one of Al, Ti, Zr, Hf, Nb, and Ta) A) The composition ratio (A group element: B group element: C group element) is preferably a molar percentage of 5.0 or more to a molar percentage of 22.0 or less: a molar percentage of 33.0 or more to a molar ratio of 90.0 or less Percentage: The molar percentage above 5.0 to the molar percentage below 45.0.

構成第一氧化物之氧化物(例如,BeO、MgO、CaO、SrO、BaO、Ga2O3、Sc2O3、Y2O3、La2O3、Ce2O3、Pr2O3、Nd2O3、Pm2O3、Sm2O3、Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3、Al2O3、TiO2、ZrO2、HfO2、Nb2O5以及Ta2O5)的比例可藉由X光螢光分析、電子微探分析儀以及感應耦合電漿原子發射光譜分析儀等裝置而通過包括於氧化物中之陽離子元素的分析被計算出來。 Oxides that constitute the first oxide (for example, BeO, MgO, CaO, SrO, BaO, Ga 2 O 3 , Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , Ce 2 O 3 , Pr 2 O 3 , Nd 2 O 3 , Pm 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , Al 2 O 3 , TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 5 and Ta 2 O 5 ) can be analyzed by X-ray fluorescence analysis and electron microprobe The instrument and inductively coupled plasma atomic emission spectrometer and other devices are calculated by the analysis of the cationic elements included in the oxide.

在閘極絕緣層13是由第一氧化物所形成的情形中,對於鈍化層17的材料,並無特定限制。例如,可使用一無機氧化物薄膜,例如,SiO2、SiON或者SiN。同樣地,在鈍化層17是由第一氧化物所形成的情形中,對於閘極絕緣層13的材料,並無特定限制。例如,可使用一無機氧化物薄膜,例如,SiO2、SiON或者SiN。然而,第一氧化物可同時用於閘極絕緣層13及鈍化層17。而在這樣的情形中,閘極絕緣層13及第一鈍化層17的邊界會更穩定,因此,閘極絕緣層13及第一鈍化層17有機會具有更可靠之特性。 In the case where the gate insulating layer 13 is formed of the first oxide, the material of the passivation layer 17 is not particularly limited. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used. Similarly, in the case where the passivation layer 17 is formed of the first oxide, there is no specific limit to the material of the gate insulating layer 13. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used. However, the first oxide can be used for both the gate insulating layer 13 and the passivation layer 17. In this case, the boundary between the gate insulating layer 13 and the first passivation layer 17 will be more stable. Therefore, the gate insulating layer 13 and the first passivation layer 17 may have more reliable characteristics.

[製造FET的方法] [Method of manufacturing FET]

以下之說明描述用於製造第1圖中之FET的方法。第2A圖至第3C圖為顯示依據第一實施例之製造FET的步驟的範例的圖式。 The following description describes the method for manufacturing the FET in FIG. FIGS. 2A to 3C are diagrams showing an example of the steps of manufacturing the FET according to the first embodiment.

首先,在第2A圖所示的步驟中,準備基板11。接著,藉由真空氣相沉積等方法,在基板11上形成導電薄膜,以及然後,藉由光刻以及蝕刻等方法,在導電薄膜上執行圖案化,以用預定形狀形成閘極電極12。為了清洗表面以及增進基板11的接合性,在形成閘極電極12之前,最佳係執行預加工程序(例如,氧電漿清洗、紫外線臭氧清洗或者紫外線照射 清洗)。如上所述,基板11及閘極電極12的材料以及厚度可被適當地選擇。 First, in the step shown in FIG. 2A, the substrate 11 is prepared. Next, a conductive thin film is formed on the substrate 11 by a method such as vacuum vapor deposition, and then, a pattern is performed on the conductive thin film by a method such as photolithography and etching to form the gate electrode 12 in a predetermined shape. In order to clean the surface and improve the adhesion of the substrate 11, before forming the gate electrode 12, it is preferable to perform a pre-processing procedure (for example, oxygen plasma cleaning, ultraviolet ozone cleaning, or ultraviolet irradiation cleaning). As described above, the materials and thicknesses of the substrate 11 and the gate electrode 12 can be appropriately selected.

關於形成閘極電極12的方法,並無特定限制,該方法可依據其需要而適當地選擇。例如,可藉由濺鍍法、真空氣相沉積法、浸塗法、旋塗法、模塗(die-coating)法等方法而執行薄膜形成,以及接著,可藉由光刻法執行圖案化。作為另一範例,可藉由印刷程序的方法而執行薄膜形成,例如,噴墨印刷、奈米壓印或者凹版印刷。 The method of forming the gate electrode 12 is not particularly limited, and the method can be appropriately selected according to its needs. For example, thin film formation can be performed by sputtering, vacuum vapor deposition, dip coating, spin coating, die-coating, etc., and then, patterning can be performed by photolithography . As another example, thin film formation can be performed by a printing procedure, for example, inkjet printing, nanoimprinting, or gravure printing.

其次,在第2B圖所示的步驟中,絕緣層130(亦即,最終會形成閘極絕緣層13的一層)形成在基板11上,以覆蓋閘極電極12。關於形成絕緣層130的方法,並無特定限制,該方法可依據其需要而適當地選擇。例如,可藉由以下程序而執行薄膜形成,例如,濺鍍法、脈衝雷射沉積(PLD)法、化學氣相沉積(CVD)法以及原子層沉積(ALD)法等真空程序或者浸塗法、旋塗法、模塗法等溶液程序。作為另一範例,可藉由印刷程序的方法而執行薄膜形成,例如,噴墨印刷、奈米壓印或者凹版印刷。絕緣層130的厚度及材料是如在上述關於閘極絕緣層13之說明中所描述的。 Next, in the step shown in FIG. 2B, an insulating layer 130 (that is, a layer that will eventually form the gate insulating layer 13) is formed on the substrate 11 to cover the gate electrode 12. There is no specific limitation on the method of forming the insulating layer 130, and the method can be appropriately selected according to its needs. For example, the thin film formation can be performed by the following procedures, such as sputtering, pulsed laser deposition (PLD), chemical vapor deposition (CVD), and atomic layer deposition (ALD), etc. vacuum procedures or dip coating methods , Spin coating, die coating and other solution procedures. As another example, thin film formation can be performed by a printing procedure, for example, inkjet printing, nanoimprinting, or gravure printing. The thickness and material of the insulating layer 130 are as described in the above description about the gate insulating layer 13.

接著,在第2C圖所示的步驟中,藉由光刻以及濕式蝕刻的方法,在形成於基板11上的絕緣層130上執行圖案化,以用預定形狀形成閘極絕緣層13。具體地,首先,在絕緣層130上形成蝕刻遮罩。關於蝕刻遮罩,並無特定限制。例如,蝕刻遮罩通常可藉由在抵抗材料上執行旋塗、預烤(pre-baking)、曝光、顯影以及後烤(pre-baking)。作為另一範例,藉由光刻程序之方法所形成的金屬圖案或者氧化物圖案可用於遮罩。 Next, in the step shown in FIG. 2C, patterning is performed on the insulating layer 130 formed on the substrate 11 by photolithography and wet etching to form the gate insulating layer 13 in a predetermined shape. Specifically, first, an etching mask is formed on the insulating layer 130. There is no specific limitation on the etching mask. For example, the etching mask can usually be performed by performing spin coating, pre-baking, exposure, development, and pre-baking on the resist material. As another example, metal patterns or oxide patterns formed by a photolithography process can be used for masking.

在形成遮罩後,藉由在絕緣層130上執行蝕刻而形成閘極絕緣層13。藉由將一溶液(以下將稱為「第一溶液」)使氧化物接觸,可在構成閘極絕緣層13之第一氧化物上執行蝕刻,該第一溶液包括鹽酸、草酸、硝酸、磷酸、乙酸、硫酸以及雙氧水的至少其中之一。具體地,該蝕刻方法可為將第一氧化物浸泡在包括鹽酸、草酸、硝酸、磷酸、乙酸、硫酸以及雙氧水的至少其中之一的第一溶液中或者將包括草酸、硝酸、磷酸、乙酸、硫酸以及雙氧水的至少其中之一的第一溶液滴在第一氧化物上,接著,旋轉基板11等。 After forming the mask, the gate insulating layer 13 is formed by performing etching on the insulating layer 130. The etching can be performed on the first oxide constituting the gate insulating layer 13 by contacting the oxide with a solution (hereinafter referred to as "first solution"), the first solution including hydrochloric acid, oxalic acid, nitric acid, phosphoric acid , At least one of acetic acid, sulfuric acid and hydrogen peroxide. Specifically, the etching method may be immersing the first oxide in a first solution including at least one of hydrochloric acid, oxalic acid, nitric acid, phosphoric acid, acetic acid, sulfuric acid, and hydrogen peroxide or will include oxalic acid, nitric acid, phosphoric acid, acetic acid, The first solution of at least one of sulfuric acid and hydrogen peroxide is dropped on the first oxide, and then the substrate 11 and the like are rotated.

鹽酸的濃度較佳在0.001mol/L以上至6mol/L以下的範圍, 更佳在0.01mol/L以上至1mol/L以下的範圍。草酸的濃度較佳在0.1%以上至10%以下的範圍,更佳在1%以上至5%以下的範圍。硝酸的濃度較佳在0.1%以上至40%以下的範圍,更佳在1%以上至20%以下的範圍。磷酸的濃度較佳在1%以上至90%以下的範圍,更佳在10%以上至80%以下的範圍。乙酸的濃度較佳在0.1%以上至80%以下的範圍,更佳在1%以上至50%以下的範圍。硫酸的濃度較佳在0.1%以上至50%以下的範圍,更佳在1%以上至20%以下的範圍。雙氧水的濃度較佳在0.1%以上至20%以下的範圍,更佳在1%以上至10%以下的範圍。在以上之溶液成分中,因為對於第一氧化物之高溶解性,鹽酸以及包括磷酸及硝酸之混合溶液是較佳的。 The concentration of hydrochloric acid is preferably in the range of 0.001 mol/L or more and 6 mol/L or less, more preferably in the range of 0.01 mol/L or more and 1 mol/L or less. The concentration of oxalic acid is preferably in the range of 0.1% or more and 10% or less, and more preferably in the range of 1% or more and 5% or less. The concentration of nitric acid is preferably in the range of 0.1% or more and 40% or less, and more preferably in the range of 1% or more and 20% or less. The concentration of phosphoric acid is preferably in the range of 1% or more and 90% or less, and more preferably in the range of 10% or more and 80% or less. The concentration of acetic acid is preferably in the range of 0.1% or more and 80% or less, and more preferably in the range of 1% or more and 50% or less. The concentration of sulfuric acid is preferably in the range of 0.1% or more and 50% or less, and more preferably in the range of 1% or more and 20% or less. The concentration of hydrogen peroxide is preferably in the range of 0.1% or more and 20% or less, and more preferably in the range of 1% or more and 10% or less. Among the above solution components, hydrochloric acid and a mixed solution including phosphoric acid and nitric acid are preferred because of the high solubility for the first oxide.

在藉由蝕刻方法而使絕緣層130形成為閘極絕緣層13後,將遮罩移除。對於移除遮罩的步驟,並無特定限制。例如,可將遮罩浸泡在將遮罩溶解的溶液中,以將遮罩移除。 After the insulating layer 130 is formed as the gate insulating layer 13 by the etching method, the mask is removed. There are no specific restrictions on the steps to remove the mask. For example, the mask can be soaked in a solution that dissolves the mask to remove the mask.

接著,在第2D圖所示的步驟中,具有預定形狀的源極電極14及汲極電極15形成在閘極絕緣層13上。為了清洗表面以及增進閘極絕緣層13的接合性,在形成源極電極14及汲極電極15之前,最佳執行預加工程序(例如,氧電漿清洗、紫外線臭氧清洗或者紫外線照射清洗)。 Next, in the step shown in FIG. 2D, the source electrode 14 and the drain electrode 15 having a predetermined shape are formed on the gate insulating layer 13. In order to clean the surface and improve the adhesion of the gate insulating layer 13, before forming the source electrode 14 and the drain electrode 15, a pre-processing procedure (for example, oxygen plasma cleaning, ultraviolet ozone cleaning, or ultraviolet irradiation cleaning) is preferably performed.

關於形成源極電極14及汲極電極15的方法,並無特定限制,該方法可依據其需要而適當地選擇。例如,可藉由濺鍍法、真空氣相沉積法、浸塗法、旋塗法、模塗法等方法而執行薄膜形成,以及接著,可藉由光刻法執行圖案化。作為另一範例,可藉由印刷程序的方法而執行薄膜形成,以直接地形成所需的形狀,例如,噴墨印刷、奈米壓印或者凹版印刷。如上所述,源極電極14及汲極電極15的材料以及厚度可被適當地選擇。 The method of forming the source electrode 14 and the drain electrode 15 is not particularly limited, and the method can be appropriately selected according to its needs. For example, thin film formation can be performed by sputtering, vacuum vapor deposition, dip coating, spin coating, die coating, etc., and then, patterning can be performed by photolithography. As another example, thin film formation may be performed by a printing procedure to directly form a desired shape, for example, inkjet printing, nanoimprinting, or gravure printing. As described above, the materials and thicknesses of the source electrode 14 and the drain electrode 15 can be appropriately selected.

其次,在第3A圖所示的步驟中,具有預定形狀的主動層16形成在閘極絕緣層13上。關於形成主動層16的方法,並無特定限制,該方法可依據其需要而適當地選擇。例如,可藉由濺鍍法、真空氣相沉積法、浸塗法、旋塗法、模塗法等方法而執行薄膜形成,以及接著,可藉由光刻法執行圖案化。作為另一範例,可藉由印刷程序的方法而執行薄膜形成,以直接地形成所需的形狀,例如,噴墨印刷、奈米壓印或者凹版印刷。如上所述,主動層16的材料及厚度可被適當地選擇。 Next, in the step shown in FIG. 3A, an active layer 16 having a predetermined shape is formed on the gate insulating layer 13. There is no specific limitation on the method of forming the active layer 16, and the method can be appropriately selected according to its needs. For example, thin film formation can be performed by sputtering, vacuum vapor deposition, dip coating, spin coating, die coating, etc., and then, patterning can be performed by photolithography. As another example, thin film formation may be performed by a printing procedure to directly form a desired shape, for example, inkjet printing, nanoimprinting, or gravure printing. As described above, the material and thickness of the active layer 16 can be appropriately selected.

接著,在第3B圖所示的步驟中,絕緣層170(亦即,最終 會形成鈍化層17的一層)形成在基板11及閘極絕緣層13上,以覆蓋源極電極14、汲極電極15及主動層16。關於形成絕緣層170的方法,並無特定限制,該方法可依據其需要而適當地選擇。例如,可藉由以下程序而執行薄膜形成,例如,濺鍍法、脈衝雷射沉積法、化學氣相沉積法以及原子層沉積法等真空程序或者浸塗法、旋塗法、模塗法等溶液程序。作為另一範例,可藉由印刷程序的方法而執行薄膜形成,例如,噴墨印刷、奈米壓印或者凹版印刷。絕緣層170的厚度及材料是如在上述關於鈍化層17之說明中所描述的。 Next, in the step shown in FIG. 3B, an insulating layer 170 (that is, a layer that will eventually form the passivation layer 17) is formed on the substrate 11 and the gate insulating layer 13 to cover the source electrode 14 and the drain electrode 15 and active layer 16. There is no specific limitation on the method of forming the insulating layer 170, and the method can be appropriately selected according to its needs. For example, thin film formation can be performed by the following procedures, for example, vacuum procedures such as sputtering, pulsed laser deposition, chemical vapor deposition, and atomic layer deposition, or dip coating, spin coating, die coating, etc. Solution procedures. As another example, thin film formation can be performed by a printing procedure, for example, inkjet printing, nanoimprinting, or gravure printing. The thickness and material of the insulating layer 170 are as described in the above description about the passivation layer 17.

接著,在第3C圖所示的步驟中,藉由光刻以及濕式蝕刻的方法,在形成於基板11及閘極絕緣層13上的絕緣層170上執行圖案化,以用預定形狀形成鈍化層17。特定的方法與第2C圖所示之將絕緣層130形成為閘極絕緣層13的方法相同。 Next, in the step shown in FIG. 3C, patterning is performed on the insulating layer 170 formed on the substrate 11 and the gate insulating layer 13 by photolithography and wet etching to form a passivation with a predetermined shape Layer 17. The specific method is the same as the method of forming the insulating layer 130 as the gate insulating layer 13 shown in FIG. 2C.

通過以上的步驟,可製造底部閘極/底部接觸FET 10。 Through the above steps, the bottom gate/bottom contact FET 10 can be manufactured.

如上所述,依據第一實施例,藉由包括A群組元素(亦即,鹼土金屬)以及B群組元素(亦即,Ga、Sc、Y以及鑭系元素的至少其中之一)的第一氧化物而形成閘極絕緣層13以及鈍化層17的至少其中之一。此外,使用包括鹽酸、草酸、硝酸、磷酸、乙酸、硫酸以及雙氧水的至少其中之一的第一溶液而執行濕式蝕刻,以將第一氧化物圖案化為預定形狀。較佳地,藉由使用第一溶液之濕式蝕刻方法而形成閘極絕緣層13以及鈍化層17。在此,不需執行會產生各類問題的傳統乾式蝕刻,該等問題為危險氣體的使用、對環境的傷害、對所需裝置的成本等。 As described above, according to the first embodiment, by including the group A element (ie, alkaline earth metal) and the group B element (ie, at least one of Ga, Sc, Y, and lanthanides) At least one of the gate insulating layer 13 and the passivation layer 17 is formed by an oxide. In addition, wet etching is performed using a first solution including at least one of hydrochloric acid, oxalic acid, nitric acid, phosphoric acid, acetic acid, sulfuric acid, and hydrogen peroxide to pattern the first oxide into a predetermined shape. Preferably, the gate insulating layer 13 and the passivation layer 17 are formed by a wet etching method using the first solution. Here, there is no need to perform traditional dry etching that can cause various problems, such as the use of dangerous gases, damage to the environment, and cost to the required equipment.

此外,因為第一氧化物的介電常數在6至20的範圍,而這範圍高於SiO2薄膜,所以使用第一氧化物以作為閘極絕緣層13會使FET以低電壓(或低能耗)驅動。此外,因為第一氧化物具有高阻障表現,所以使用第一氧化物以作為鈍化層17會產生高可靠性的FET。 In addition, because the dielectric constant of the first oxide is in the range of 6 to 20, which is higher than the SiO 2 film, using the first oxide as the gate insulating layer 13 will cause the FET to operate at a low voltage (or low energy consumption )drive. In addition, because the first oxide has a high barrier performance, using the first oxide as the passivation layer 17 will produce a highly reliable FET.

亦即,使用第一氧化物以作為閘極絕緣層13及鈍化層17以及對第一氧化物使用濕式蝕刻會產生具有低成本、高安全性以及低環境傷害之高品質(亦即,低能耗以及高可靠性)FET。 That is, the use of the first oxide as the gate insulating layer 13 and the passivation layer 17 and the wet etching of the first oxide will produce high quality with low cost, high safety, and low environmental damage (that is, low energy Power consumption and high reliability) FET.

<第一實施例之修飾> <Modification of the first embodiment>

以下關於第一實施例之修飾的說明將相較於第一實施例而 描述具有不同層配置的FET範例。應注意的是,在第一實施例之修飾的說明中,將省略已經在上述說明中描述過之相同配置的說明。 The following description of modifications to the first embodiment will describe an example of FETs with different layer configurations compared to the first embodiment. It should be noted that in the modified description of the first embodiment, the description of the same configuration that has been described in the above description will be omitted.

第4A圖至第4C圖為顯示依據第一實施例之修飾製造FET的範例的剖面圖。第4A圖至第4C圖所顯示之FET為依據本發明之半導體裝置的典型範例。 FIGS. 4A to 4C are cross-sectional views showing examples of modified manufacturing FETs according to the first embodiment. The FETs shown in FIGS. 4A to 4C are typical examples of semiconductor devices according to the present invention.

第4A圖所示之FET 10A為底部閘極/頂部接觸FET。FET 10A包括:閘極電極12,形成在具有絕緣特性的基板11上;以及閘極絕緣層13,形成以覆蓋閘極電極12。此外,主動層16形成在閘極絕緣層13上,以及源極電極14及汲極電極15部分地藉由會作為通道區域之主動層16而以預定距離形成在主動層16上。此外,鈍化層17形成在覆蓋閘極絕緣層13上,以覆蓋源極電極14、汲極電極15及主動層16。 The FET 10A shown in FIG. 4A is a bottom gate/top contact FET. The FET 10A includes: a gate electrode 12 formed on a substrate 11 having insulating properties; and a gate insulating layer 13 formed to cover the gate electrode 12. In addition, the active layer 16 is formed on the gate insulating layer 13, and the source electrode 14 and the drain electrode 15 are partially formed on the active layer 16 at a predetermined distance by the active layer 16 that will serve as a channel region. In addition, a passivation layer 17 is formed on the gate insulating layer 13 to cover the source electrode 14, the drain electrode 15 and the active layer 16.

第4B圖所示之FET 10B為頂部閘極/底部接觸FET。FET 10B包括:源極電極14以及汲極電極15,形成在具有絕緣特性的基板11上;以及主動層16,形成以部分地覆蓋源極電極14及汲極電極15。此外,閘極絕緣層13形成以覆蓋源極電極14、汲極電極15及主動層16,以及閘極電極12形成在閘極絕緣層13上。此外,鈍化層17形成在閘極絕緣層13上,以覆蓋閘極電極12。 The FET 10B shown in FIG. 4B is a top gate/bottom contact FET. The FET 10B includes: a source electrode 14 and a drain electrode 15 formed on a substrate 11 having insulating properties; and an active layer 16 formed to partially cover the source electrode 14 and the drain electrode 15. In addition, the gate insulating layer 13 is formed to cover the source electrode 14, the drain electrode 15 and the active layer 16, and the gate electrode 12 is formed on the gate insulating layer 13. In addition, a passivation layer 17 is formed on the gate insulating layer 13 to cover the gate electrode 12.

第4C圖所示之FET 10C為頂部閘極/頂部接觸FET。FET 10C包括:主動層16,形成在具有絕緣特性的基板11上;以及源極電極14及汲極電極15,部分地藉由會作為通道區域之主動層16而以預定距離形成在主動層16上。此外,閘極絕緣層13形成以覆蓋源極電極14、汲極電極15及主動層16,以及閘極電極12形成在閘極絕緣層13上。此外,鈍化層17形成在閘極絕緣層13上,以覆蓋閘極電極12。 The FET 10C shown in FIG. 4C is a top gate/top contact FET. The FET 10C includes: an active layer 16 formed on a substrate 11 having insulating properties; and a source electrode 14 and a drain electrode 15 partially formed on the active layer 16 at a predetermined distance by the active layer 16 which will serve as a channel region on. In addition, the gate insulating layer 13 is formed to cover the source electrode 14, the drain electrode 15 and the active layer 16, and the gate electrode 12 is formed on the gate insulating layer 13. In addition, a passivation layer 17 is formed on the gate insulating layer 13 to cover the gate electrode 12.

如上所述,對於依據本發明之層配置,並無特定限制。可依據需求而在第1圖至第4C圖所示之配置中任意地選擇。在第4A圖至第4C圖所示之FET 10A、10B、10C中,閘極絕緣層13及鈍化層17的至少其中之一是由第一氧化物所形成,以及閘極絕緣層13及鈍化層17可藉由類似於FET 10所使用的方法來製造。因此,在FET 10A、10B、10C方面,本發明具有類似於FET 10所具有的優勢效果。 As described above, there is no specific limitation on the layer configuration according to the present invention. It can be arbitrarily selected in the configurations shown in FIGS. 1 to 4C according to requirements. In the FETs 10A, 10B, and 10C shown in FIGS. 4A to 4C, at least one of the gate insulating layer 13 and the passivation layer 17 is formed of the first oxide, and the gate insulating layer 13 and the passivation Layer 17 can be manufactured by a method similar to that used by FET 10. Therefore, the present invention has advantages similar to those of the FET 10 in terms of the FETs 10A, 10B, and 10C.

<第二實施例> <Second Embodiment>

以下關於第二實施例之說明將描述第5圖所示之FET製造方法。應注意的是,在第二實施例的說明中,將省略已經在上述說明中描述過之相同配置的說明。 The following description of the second embodiment will describe the FET manufacturing method shown in FIG. 5. It should be noted that in the description of the second embodiment, the description of the same configuration that has been described in the above description will be omitted.

第5圖為顯示依據第二實施例之FET的範例的剖面圖。第5圖所示之FET為依據本發明之半導體裝置的典型範例。 FIG. 5 is a cross-sectional view showing an example of the FET according to the second embodiment. The FET shown in FIG. 5 is a typical example of the semiconductor device according to the present invention.

第5圖所示之FET 120為頂部閘極/自我對準FET。FET 120包括:主動層122,形成在具有絕緣特性的基板121上;閘極絕緣層123,形成在主動層122上;以及閘極電極124,形成在閘極絕緣層123上。此外,FET 120包括:層間絕緣薄膜127,形成以覆蓋基板121、主動層122及閘極電極124。區域122a為源極區域,以及區域122b為汲極區域。此外,源極電極125及汲極電極126形成在層間絕緣薄膜127上。源極電極125及汲極電極126藉由形成在層間絕緣薄膜127上之穿孔與主動層122連接。此外,鈍化層128形成以覆蓋層間絕緣薄膜127、源極電極125及汲極電極126。 The FET 120 shown in FIG. 5 is a top gate/self-aligned FET. The FET 120 includes: an active layer 122 formed on a substrate 121 having insulating properties; a gate insulating layer 123 formed on the active layer 122; and a gate electrode 124 formed on the gate insulating layer 123. In addition, the FET 120 includes an interlayer insulating film 127 formed to cover the substrate 121, the active layer 122, and the gate electrode 124. Region 122a is a source region, and region 122b is a drain region. In addition, the source electrode 125 and the drain electrode 126 are formed on the interlayer insulating film 127. The source electrode 125 and the drain electrode 126 are connected to the active layer 122 through a through hole formed on the interlayer insulating film 127. In addition, a passivation layer 128 is formed to cover the interlayer insulating film 127, the source electrode 125, and the drain electrode 126.

以頂部閘極/自我對準FET 120來說,因為缺少了閘極電極124與源極電極125及汲極電極12重疊的區域(亦即,重疊區域),所以要比第1圖、第4A圖、第4B圖、第4C圖更多地降低寄生電容是可能的。因此,FET 120可執行更快速的操作。 For the top gate/self-aligned FET 120, since the area where the gate electrode 124 overlaps the source electrode 125 and the drain electrode 12 (that is, the overlapping area) is missing, it is better than that in FIGS. 1 and 4A. It is possible to reduce the parasitic capacitance more in Figures 4B and 4C. Therefore, the FET 120 can perform a faster operation.

在第一實施例中用於閘極絕緣層13及鈍化層17的至少其中之一的相同氧化物可用於閘極絕緣層123及鈍化層128的至少其中之一。 In the first embodiment, the same oxide used for at least one of the gate insulating layer 13 and the passivation layer 17 may be used for at least one of the gate insulating layer 123 and the passivation layer 128.

在第一氧化物用於閘極絕緣層123的情形中,對於鈍化層128的材料,並無特定限制。例如,可使用無機氧化物薄膜,例如,SiO2、SiON或者SiN。 In the case where the first oxide is used for the gate insulating layer 123, there is no specific limit to the material of the passivation layer 128. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used.

類似地,在第一氧化物用於鈍化層128的情形中,對於閘極絕緣層123的材料,並無特定限制。例如,可使用無機氧化物薄膜,例如,SiO2、SiON或者SiN。然而,第一氧化物可同時用於閘極絕緣層123及鈍化層128。而在這樣的情形中,閘極絕緣層123及鈍化層128的邊界會更穩定,因此,閘極絕緣層13及第一鈍化層17有機會具有更可靠的特性。 Similarly, in the case where the first oxide is used for the passivation layer 128, there is no specific limit to the material of the gate insulating layer 123. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used. However, the first oxide can be used for both the gate insulating layer 123 and the passivation layer 128. In such a case, the boundary between the gate insulating layer 123 and the passivation layer 128 will be more stable. Therefore, the gate insulating layer 13 and the first passivation layer 17 may have more reliable characteristics.

基板121、主動層122、閘極電極124、源極電極125及汲極電極126例如可以由與分別用於基板11、主動層16、閘極電極12、源極電極14及汲極電極15之相同的材料來形成。 The substrate 121, the active layer 122, the gate electrode 124, the source electrode 125, and the drain electrode 126 can be used, for example, for the substrate 11, the active layer 16, the gate electrode 12, the source electrode 14, and the drain electrode 15 respectively. The same material is formed.

此外,關於層間絕緣薄膜127的材料,並無特定限制。例如,可使用無機氧化物薄膜,例如,SiO2、SiON或者SiN。 In addition, the material of the interlayer insulating film 127 is not particularly limited. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used.

[製造FET的方法] [Method of manufacturing FET]

接下來,以下說明將描述製造FET 120的方法。雖然以下之說明將描述製造具有皆由第一氧化物所形成的閘極絕緣層123及鈍化層128的FET的方法,但FET 120不侷限於此。 Next, the following description will describe the method of manufacturing the FET 120. Although the following description will describe a method of manufacturing the FET having the gate insulating layer 123 and the passivation layer 128 each formed of the first oxide, the FET 120 is not limited thereto.

首先,在基板121上形成主動層122、閘極絕緣層123以及閘極電極124。例如,以下為形成步驟:在基板121上執行主動層122之薄膜形成;然後,執行閘極絕緣層123之薄膜形成;接著,執行閘極電極124之薄膜形成;以及接著,藉由光刻法而順序地對閘極電極124及閘極絕緣層123執行蝕刻。 First, the active layer 122, the gate insulating layer 123, and the gate electrode 124 are formed on the substrate 121. For example, the following are the forming steps: performing thin film formation of the active layer 122 on the substrate 121; then, performing thin film formation of the gate insulating layer 123; then, performing thin film formation of the gate electrode 124; and then, by photolithography The gate electrode 124 and the gate insulating layer 123 are sequentially etched.

與第一實施例相同的程序可用於閘極絕緣層123及閘極電極124的薄膜形成。在閘極電極124之蝕刻程序所使用的遮罩可用於在閘極絕緣層123之蝕刻程序所使用的遮罩,或者閘極電極124之本身的圖案可用作為遮罩。 The same procedure as the first embodiment can be used for the film formation of the gate insulating layer 123 and the gate electrode 124. The mask used in the etching process of the gate electrode 124 can be used for the mask used in the etching process of the gate insulating layer 123, or the pattern of the gate electrode 124 itself can be used as a mask.

此外,在閘極電極124是由適用於使用鹽酸、草酸、硝酸、磷酸、乙酸、硫酸以及雙氧水的至少其中之一的第一溶液而濕式蝕刻之材料所形成的情形中,該程序可以藉由同時執行閘極絕緣層123及閘極電極124之蝕刻的方法來簡化。例如,在閘極電極124是由Al、Al合金、Mo、Mo合金所形成的單一層或者在閘極電極124是由Al、Al合金、Mo、Mo合金所形成的疊積(laminate)層以及在使用包括硝酸、磷酸、乙酸之混合溶液作為蝕刻劑的情形中,可同時在閘極絕緣層123及閘極電極124上執行蝕刻。 In addition, in the case where the gate electrode 124 is formed of a material suitable for wet etching using a first solution of at least one of hydrochloric acid, oxalic acid, nitric acid, phosphoric acid, acetic acid, sulfuric acid, and hydrogen peroxide, this procedure can be borrowed It is simplified by the method of simultaneously performing the etching of the gate insulating layer 123 and the gate electrode 124. For example, the gate electrode 124 is a single layer formed of Al, Al alloy, Mo, Mo alloy, or the gate electrode 124 is a laminate layer formed of Al, Al alloy, Mo, Mo alloy, and In the case of using a mixed solution including nitric acid, phosphoric acid, and acetic acid as an etchant, etching may be performed on the gate insulating layer 123 and the gate electrode 124 at the same time.

此外,在閘極絕緣層123在基板121上執行薄膜形成以及圖案化之後,可執行閘極電極124的薄膜形成以及圖案化。 In addition, after the gate insulating layer 123 performs thin film formation and patterning on the substrate 121, thin film formation and patterning of the gate electrode 124 may be performed.

接著,形成層間絕緣薄膜127。關於其材料及程序,並無特定限制。例如,形成層間絕緣薄膜127的材料可為絕緣材料,例如,SiON或者SiO2,以及形成層間絕緣薄膜127的程序可為真空沉積法,例如,化學氣相沉積法或者濺鍍法。關於圖案化的方法,也無特定限制。例如,可藉由光刻法等方法而獲得所需圖案,以及形成所需要的穿孔。 Next, an interlayer insulating film 127 is formed. There are no specific restrictions on its materials and procedures. For example, the material for forming the interlayer insulating film 127 may be an insulating material, for example, SiON or SiO 2 , and the procedure for forming the interlayer insulating film 127 may be a vacuum deposition method, for example, a chemical vapor deposition method or a sputtering method. There are no specific restrictions on the patterning method. For example, the desired pattern can be obtained by photolithography and other methods, and the required perforations can be formed.

如第5圖所示,在形成層間絕緣薄膜127之前,可執行氬(Ar)電漿處理等,以降低源極區域122a及汲極區域122b的電阻性。 As shown in FIG. 5, before forming the interlayer insulating film 127, argon (Ar) plasma treatment or the like may be performed to reduce the resistance of the source region 122a and the drain region 122b.

接著,形成源極電極125及汲極電極126。源極電極125及汲極電極126形成在設置在層間絕緣薄膜127上的穿孔上,以及連接至主動層122(亦即,源極區域122a以及汲極區域122b)。 Next, the source electrode 125 and the drain electrode 126 are formed. The source electrode 125 and the drain electrode 126 are formed on the through hole provided on the interlayer insulating film 127 and connected to the active layer 122 (that is, the source region 122a and the drain region 122b).

與第一實施例相同的程序可被用於形成源極電極125以及汲極電極126的程序。 The same procedure as the first embodiment can be used for the procedure of forming the source electrode 125 and the drain electrode 126.

最後,形成鈍化層128。其材料及程序與依據第一實施例之閘極絕緣層13的材料及程序相同。藉由以上步驟,製造FET 120。 Finally, a passivation layer 128 is formed. The materials and procedures are the same as those of the gate insulating layer 13 according to the first embodiment. Through the above steps, the FET 120 is manufactured.

如上所述,類似於第一實施例,使用第一氧化物以作為閘極絕緣層123及鈍化層128的至少其中之一以及對第一氧化物使用執行濕式蝕刻之低成本圖案化程序來產生高品質(亦即,低能耗以及高可靠性)FET。 As described above, similar to the first embodiment, the first oxide is used as at least one of the gate insulating layer 123 and the passivation layer 128 and a low-cost patterning process that performs wet etching on the first oxide is used to High-quality (ie, low energy consumption and high reliability) FETs are produced.

<第三實施例> <Third Embodiment>

以下關於第三實施例之說明將描述有機電致發光顯示元件的範例。應注意的是,在第三實施例的說明中,將省略已經在上述說明中描述過之相同配置的說明。 The following description of the third embodiment will describe an example of an organic electroluminescence display element. It should be noted that in the description of the third embodiment, the description of the same configuration that has been described in the above description will be omitted.

[有機電致發光顯示元件] [Organic electroluminescence display element]

第6圖為用於描述依據第三實施例之有機電致發光顯示元件200的配置以及依據第三實施例之製造有機電致發光顯示元件200的方法的剖面圖。依據第6圖,有機電致發光顯示元件200包括:驅動電路210;層間絕緣薄膜220;有機電致發光元件230;隔牆240;密封層250;黏合層260;以及對向絕緣基板270。 FIG. 6 is a cross-sectional view for describing the configuration of the organic electroluminescence display element 200 according to the third embodiment and the method of manufacturing the organic electroluminescence display element 200 according to the third embodiment. According to FIG. 6, the organic electroluminescent display element 200 includes: a driving circuit 210; an interlayer insulating film 220; an organic electroluminescent element 230; a partition wall 240; a sealing layer 250; an adhesive layer 260; and an opposite insulating substrate 270.

驅動電路210是由第一FET 20及第二FET 30所構成。第一FET 20包括:第一閘極電極22,形成在具有絕緣特性的基板21上;閘極絕緣層23;第一源極電極24;第一汲極電極25;第一主動層26;以及第一鈍化層27。此外,第二FET 30包括:第二閘極電極32,形成在具有絕緣特性的基板21上;閘極絕緣層23;第二源極電極34;第二汲極電極35;第二主動層36;以及第二鈍化層37。對於閘極絕緣層23、第一鈍化層27及第二鈍化層37的至少其中之一,可與第一實施例之閘極絕緣層13及鈍化層17的至少其中之一使用相同的第一氧化物。 The drive circuit 210 is composed of the first FET 20 and the second FET 30. The first FET 20 includes: a first gate electrode 22 formed on a substrate 21 having insulating properties; a gate insulating layer 23; a first source electrode 24; a first drain electrode 25; a first active layer 26; and First passivation layer 27. In addition, the second FET 30 includes: a second gate electrode 32 formed on the substrate 21 having insulating properties; a gate insulating layer 23; a second source electrode 34; a second drain electrode 35; and a second active layer 36 ;; And the second passivation layer 37. For at least one of the gate insulating layer 23, the first passivation layer 27, and the second passivation layer 37, the same first can be used as at least one of the gate insulating layer 13 and the passivation layer 17 of the first embodiment Oxide.

驅動電路210具有一兩個電晶體/一個電容結構,在該結構中,設置在第一FET 20上之第一汲極電極25與設置在第二FET 30上之第二閘極電極32藉由形成在閘極絕緣層23的穿孔而連接。應注意的是,在第6圖中,雖然對於電容形成之處並無特定限制,一電容形成在第二閘極電極32與第二源極電極34之間。亦即,如果需要的話,可形成具有適當尺寸及配置的電容。 The driving circuit 210 has one or two transistors/one capacitor structure in which the first drain electrode 25 provided on the first FET 20 and the second gate electrode 32 provided on the second FET 30 are The through holes formed in the gate insulating layer 23 are connected. It should be noted that, in FIG. 6, although there is no particular limitation on where the capacitor is formed, a capacitor is formed between the second gate electrode 32 and the second source electrode 34. That is, if necessary, a capacitor having an appropriate size and configuration can be formed.

層間絕緣薄膜220形成以覆蓋設置在驅動電路210上之第一FET 20以及第二FET 30。在層間絕緣薄膜220上,形成有機電致發光元件230及隔牆240。 The interlayer insulating film 220 is formed to cover the first FET 20 and the second FET 30 provided on the driving circuit 210. On the interlayer insulating film 220, an organic electroluminescent element 230 and a partition wall 240 are formed.

有機電致發光元件230為光控制元件,其包括下部電極231、有機電致發光層232以及上部電極233。有機電致發光元件230之下部電極231藉由形成在層間絕緣薄膜220上之穿孔220x而連接至第二FET 30之第二汲極電極35。 The organic electroluminescent element 230 is a light control element, which includes a lower electrode 231, an organic electroluminescent layer 232, and an upper electrode 233. The lower electrode 231 of the organic electroluminescent element 230 is connected to the second drain electrode 35 of the second FET 30 through a through hole 220x formed on the interlayer insulating film 220.

應注意的是,如第7圖之有機電致發光顯示元件200A所示,第一鈍化層27及第二鈍化層37可被一體地形成,以成為鈍化層27A。在該情形中,有機電致發光元件230的下部電極231藉由分別形成在層間絕緣薄膜220及鈍化層27A上的穿孔220y、220z連接至第二FET 30的第二汲極電極35。 It should be noted that, as shown in the organic electroluminescence display element 200A of FIG. 7, the first passivation layer 27 and the second passivation layer 37 may be integrally formed to become the passivation layer 27A. In this case, the lower electrode 231 of the organic electroluminescent element 230 is connected to the second drain electrode 35 of the second FET 30 through the through holes 220y, 220z formed on the interlayer insulating film 220 and the passivation layer 27A, respectively.

關於有機電致發光元件230的下部電極231,可使用導電氧化物,例如ITO、In2O3、SnO2、ZnO、Ag-Nd合金等。關於上部電極233,可使用Al-Mg-Ag合金、Al-Li合金、ITO等。 Regarding the lower electrode 231 of the organic electroluminescence element 230, a conductive oxide such as ITO, In 2 O 3 , SnO 2 , ZnO, Ag-Nd alloy, or the like can be used. For the upper electrode 233, Al-Mg-Ag alloy, Al-Li alloy, ITO, or the like can be used.

有機電致發光層232包括電子傳輸層、發光層以及電洞傳輸層。此外,上部電極233係連接至電子傳輸層,以及下部電極231係連接至電洞傳輸層。當在下部電極231與上部電極233之間施加預定電壓量時,從下部電極231以及上部電極233所注入的電子及電洞會在有機電致發光層232重新結合,以致使發光層因為所產生的能量而發光。換言之,當第一FET 20及第二FET 30開啟時,有機電致發光元件230會發光。 The organic electroluminescent layer 232 includes an electron transport layer, a light emitting layer, and a hole transport layer. In addition, the upper electrode 233 is connected to the electron transport layer, and the lower electrode 231 is connected to the hole transport layer. When a predetermined voltage is applied between the lower electrode 231 and the upper electrode 233, the electrons and holes injected from the lower electrode 231 and the upper electrode 233 are recombined in the organic electroluminescent layer 232, so that the light emitting layer is generated due to Energy. In other words, when the first FET 20 and the second FET 30 are turned on, the organic electroluminescent element 230 emits light.

有機電致發光元件230是以下列的順序而疊積:密封層250;黏合層260;以及對向絕緣基板270。 The organic electroluminescent elements 230 are stacked in the following order: the sealing layer 250; the adhesive layer 260; and the opposite insulating substrate 270.

[製造有機電致發光顯示元件的方法] [Method of manufacturing organic electroluminescence display element]

接著,以下的說明將描述製造有機電致發光顯示元件200的方法。第一FET 20及第二FET 30可藉由與依據第一實施例之FET 10至10C所使用之相同材料及程序來製造。 Next, the following description will describe a method of manufacturing the organic electroluminescence display element 200. The first FET 20 and the second FET 30 can be manufactured by the same materials and procedures as those used for the FETs 10 to 10C according to the first embodiment.

應注意的是,為了形成第7圖所示之使用第一氧化物的鈍化層27A的穿孔220z,在形成鈍化層27A之後以及在形成層間絕緣薄膜220之前,可以設置遮罩,該遮罩具有對應至形成在穿孔220z中之鈍化層27A的一部分的開口。接著,可以藉由使用包括鹽酸、草酸、硝酸、磷酸、乙酸、硫酸以及雙氧水的至少其中之一的第一溶液而通過該遮罩在鈍化層27A上執行蝕刻。 It should be noted that in order to form the through hole 220z of the passivation layer 27A using the first oxide shown in FIG. 7, after forming the passivation layer 27A and before forming the interlayer insulating film 220, a mask may be provided, the mask having An opening corresponding to a part of the passivation layer 27A formed in the through hole 220z. Next, etching may be performed on the passivation layer 27A through the mask by using a first solution including at least one of hydrochloric acid, oxalic acid, nitric acid, phosphoric acid, acetic acid, sulfuric acid, and hydrogen peroxide.

或者,可連續地執行鈍化層27A及層間絕緣薄膜220的薄膜形成,接著在層間絕緣薄膜220上形成穿孔220y。接著,可使用具有穿孔220y的層間絕緣薄膜220以作為遮罩,以在鈍化層27A上形成穿孔220z。 Alternatively, the film formation of the passivation layer 27A and the interlayer insulating film 220 may be continuously performed, and then the through hole 220y is formed on the interlayer insulating film 220. Next, the interlayer insulating film 220 having the through hole 220y may be used as a mask to form the through hole 220z on the passivation layer 27A.

關於層間絕緣薄膜220及隔牆240,可使用各種材料及程序。例如,層間絕緣薄膜220及隔牆240的材料可為無機氧化物(例如,SiO2、SiON或者SiNx)或者絕緣材料(例如,壓克力、聚亞醯胺等)。關於形成層間絕緣薄膜220及隔牆240的程序,可以以濺鍍法或者旋塗法執行薄膜形成,接著藉由光刻法執行圖案化,或者可藉由印刷程序的方法而執行薄膜形成,例如,噴墨印刷、奈米壓印或者凹版印刷,以執行地形成所需形狀。 For the interlayer insulating film 220 and the partition wall 240, various materials and procedures can be used. For example, the materials of the interlayer insulating film 220 and the partition wall 240 may be inorganic oxides (eg, SiO 2 , SiON, or SiNx) or insulating materials (eg, acrylic, polyimide, etc.). Regarding the process of forming the interlayer insulating film 220 and the partition wall 240, film formation may be performed by sputtering or spin coating, followed by patterning by photolithography, or film formation may be performed by a printing process, for example , Inkjet printing, nano-imprinting or gravure printing to perform the desired shape.

關於製造有機電致發光元件230的方法,並無特定限制,可使用各種習知的技術。例如,可使用真空沉積法(例如,真空氣相沉積法或者濺鍍法)或者溶液程序(例如,噴墨法或者噴嘴塗佈法)。 The method of manufacturing the organic electroluminescent element 230 is not particularly limited, and various conventional techniques can be used. For example, a vacuum deposition method (eg, vacuum vapor deposition method or sputtering method) or a solution procedure (eg, inkjet method or nozzle coating method) may be used.

關於密封層250,可使用各種材料以及程序。例如,密封層250的材料可為無機氧化物(例如,SiO2、SiON、SiNx等)。例如,形成密封層250可為真空沉積法,例如,化學氣相沉積法或者濺鍍法。 For the sealing layer 250, various materials and procedures can be used. For example, the material of the sealing layer 250 may be an inorganic oxide (eg, SiO 2 , SiON, SiNx, etc.). For example, forming the sealing layer 250 may be a vacuum deposition method, for example, a chemical vapor deposition method or a sputtering method.

在形成密封層250之後,藉由例如環氧樹脂或者壓克力樹脂的材料,通過黏合層260而貼附對向絕緣基板270,以將形成有機電致發光顯示元件200完成。 After the sealing layer 250 is formed, the opposing insulating substrate 270 is attached through the adhesive layer 260 with a material such as epoxy resin or acrylic resin, to complete the formation of the organic electroluminescent display device 200.

如上所述,使用第一氧化物以作為閘極絕緣層13及鈍化層 17的至少其中之一以及對第一氧化物使用執行濕式蝕刻之低成本圖案化程序來產生高品質(亦即,低能耗以及高可靠性)FET。 As described above, using the first oxide as at least one of the gate insulating layer 13 and the passivation layer 17 and using a low-cost patterning process that performs wet etching on the first oxide to produce high quality (ie, Low energy consumption and high reliability) FET.

應注意的是,依據第二實施例的顯示元件至少包括該光控制元件以及用於驅動該光控制元件的驅動電路,且如需要的話,可進一步包括其他元件。關於光控制元件,並無特定限制,只要其為可依據驅動信號控制光的輸出的元件,該光控制元件可依據其需要而適當地選擇。雖然具有有機電致發光元件的顯示元件被使用作為上述說明的範例,但可產生具有液晶元件、電致變色元件、電泳元件、電濕元件等的顯示元件,以取代該有機電致發光元件。 It should be noted that the display element according to the second embodiment includes at least the light control element and a driving circuit for driving the light control element, and may further include other elements if necessary. Regarding the light control element, there is no specific limitation, as long as it is an element that can control the output of light according to the driving signal, the light control element can be appropriately selected according to its needs. Although a display element having an organic electroluminescence element is used as an example of the above description, a display element having a liquid crystal element, an electrochromic element, an electrophoresis element, an electrowetting element, etc. can be produced instead of the organic electroluminescence element.

對於驅動電路,並無特定限制,只要其具有依據第一實施例的FET,驅動電路可依據其需要而適當地選擇。關於其他元件,並無特定限制,其他元件可依據其需要而適當地選擇。 There is no specific limit to the driving circuit, as long as it has the FET according to the first embodiment, the driving circuit can be appropriately selected according to its needs. Regarding other elements, there is no specific limitation, and other elements may be appropriately selected according to their needs.

<第四實施例> <Fourth embodiment>

以下關於第四實施例之說明將描述FET的另一範例。應注意的是,在第四實施例的說明中,將省略已經在上述說明中描述過之相同配置的說明。 The following description of the fourth embodiment will describe another example of the FET. It should be noted that in the description of the fourth embodiment, the description of the same configuration that has been described in the above description will be omitted.

[FET的配置] [Configuration of FET]

第8圖為用於描述依據第四實施例之FET的配置以及依據第四實施例之製造FET的方法的剖面圖。依據第8圖,FET 50包括:基板51;閘極電極52;閘極絕緣層53;閘極側壁絕緣薄膜54;源極區域55;汲極區域56;層間絕緣薄膜57;源極電極58;汲極電極59;以及鈍化層111。應注意的是,FET 50為依據本發明之半導體裝置的典型範例。 8 is a cross-sectional view for describing the configuration of the FET according to the fourth embodiment and the method of manufacturing the FET according to the fourth embodiment. According to FIG. 8, the FET 50 includes: a substrate 51; a gate electrode 52; a gate insulating layer 53; a gate sidewall insulating film 54; a source region 55; a drain region 56; an interlayer insulating film 57; a source electrode 58; Drain electrode 59; and passivation layer 111. It should be noted that the FET 50 is a typical example of the semiconductor device according to the present invention.

在第一實施例中用於閘極絕緣層13及鈍化層17的至少其中之一的相同氧化物可使用於閘極絕緣層53及鈍化層111的至少其中之一。 In the first embodiment, the same oxide used for at least one of the gate insulating layer 13 and the passivation layer 17 can be used for at least one of the gate insulating layer 53 and the passivation layer 111.

在第一氧化物用於閘極絕緣層53的情形中,對於鈍化層111的材料,並無特定限制。例如,可使用無機氧化物薄膜,例如,SiO2、SiON或者SiN。 In the case where the first oxide is used for the gate insulating layer 53, there is no specific limit to the material of the passivation layer 111. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used.

類似地,在第一氧化物用於鈍化層111的情形中,對於閘極絕緣層53的材料,並無特定限制。例如,可使用無機氧化物薄膜,例如,SiO2、SiON或者SiN。然而,第一氧化物可同時用於閘極絕緣層53及鈍化 層111。而在這樣的情形中,閘極絕緣層53及鈍化層111的邊界會更穩定,因此,閘極絕緣層53及鈍化層111有機會具有更可靠之特性。 Similarly, in the case where the first oxide is used for the passivation layer 111, there is no specific limit to the material of the gate insulating layer 53. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used. However, the first oxide can be used for both the gate insulating layer 53 and the passivation layer 111. In this case, the boundary between the gate insulating layer 53 and the passivation layer 111 will be more stable. Therefore, the gate insulating layer 53 and the passivation layer 111 may have more reliable characteristics.

[製造FET的方法] [Method of manufacturing FET]

接著,以下之說明描述用於製造FET 50的方法。雖然以下之說明描述用於製造具有皆由第一氧化物形成之閘極絕緣層53及鈍化層111之FET的方法,但FET 50不侷限於此。 Next, the following description describes a method for manufacturing the FET 50. Although the following description describes a method for manufacturing the FET having the gate insulating layer 53 and the passivation layer 111 both formed of the first oxide, the FET 50 is not limited to this.

關於製造FET 50,首先,預備為半導體基板的基板51。關於基板51的材料,並無特定限制,只要其為半導體材料。基板51的材料可適當地選自Si、鍺(Ge)等,如所需的話,可加入雜質。 Regarding the manufacture of the FET 50, first, the substrate 51 which is a semiconductor substrate is prepared. With regard to the material of the substrate 51, there is no particular limitation as long as it is a semiconductor material. The material of the substrate 51 may be appropriately selected from Si, germanium (Ge), etc., and impurities may be added if necessary.

接著,閘極絕緣層53形成在基板51上。關於程序,並無特定限制,可以以真空沉積法執行薄膜形成,例如化學氣相沉積、原子層沉積或者濺鍍法,接著,以光刻法等方法而形成所需圖案。以上述之任何薄膜形成方式,閘極絕緣層53可形成為非晶薄膜。 Next, the gate insulating layer 53 is formed on the substrate 51. Regarding the procedure, there is no specific limitation, and thin film formation can be performed by a vacuum deposition method, such as chemical vapor deposition, atomic layer deposition, or sputtering method, and then, a desired pattern is formed by a photolithography method or the like. The gate insulating layer 53 may be formed as an amorphous thin film in any of the thin film forming methods described above.

接著,形成閘極電極52。關於材料及程序,並無特定限制。例如,閘極電極52的材料可為多晶矽、例如Al的金屬材料或者由多晶矽、金屬材料以及例如TiN或者TaN之阻障金屬形成的疊積層。例如,形成閘極電極52的程序可為真空沉積法,例如,化學氣相沉積法或者濺鍍法。此外,關於降低電阻性,可在閘極電極52的表面上形成矽化物(例如,Ni、Co或Ti)層。 Next, the gate electrode 52 is formed. There are no specific restrictions on materials and procedures. For example, the material of the gate electrode 52 may be polysilicon, a metal material such as Al, or a stacked layer formed of polysilicon, a metal material, and a barrier metal such as TiN or TaN. For example, the procedure for forming the gate electrode 52 may be a vacuum deposition method, for example, a chemical vapor deposition method or a sputtering method. In addition, with regard to lowering the resistance, a silicide (for example, Ni, Co, or Ti) layer may be formed on the surface of the gate electrode 52.

關於閘極電極52的圖案化方法,並無特定限制。例如,可使用光阻劑形成遮罩,接著執行光刻,以移除在濕式蝕刻法中並非由遮罩所覆蓋之閘極絕緣層53或者閘極電極52的一部分。 The patterning method of the gate electrode 52 is not particularly limited. For example, a mask may be formed using a photoresist, and then photolithography is performed to remove a part of the gate insulating layer 53 or the gate electrode 52 that is not covered by the mask in the wet etching method.

形成閘極絕緣層53的程序可與第一實施例之形成閘極絕緣層13的程序相同。關於用於在閘極絕緣層53上執行濕式蝕刻之遮罩的材料,並無特定限制。例如,閘極電極52的圖案可用於作為遮罩。 The procedure of forming the gate insulating layer 53 may be the same as the procedure of forming the gate insulating layer 13 of the first embodiment. There is no particular limitation on the material of the mask used to perform wet etching on the gate insulating layer 53. For example, the pattern of the gate electrode 52 can be used as a mask.

接著,閘極側壁絕緣薄膜54形成在閘極絕緣層53或者閘極電極52的側邊。關於材料及程序,並無特定限制。例如,閘極側壁絕緣薄膜54的材料可為絕緣材料,例如,SiON或者SiO2,以及形成閘極側壁絕緣薄膜54的程序可為真空沉積法,例如,化學氣相沉積法或者濺鍍法。關於圖案化的方法,也無特定限制。例如,可使用閘極側壁絕緣薄膜54的材 料在基板51上執行薄膜形成,接著,以乾式蝕刻法在全部表面上執行回蝕(etch-back)。 Next, the gate sidewall insulating film 54 is formed on the side of the gate insulating layer 53 or the gate electrode 52. There are no specific restrictions on materials and procedures. For example, the material of the gate sidewall insulating film 54 may be an insulating material, such as SiON or SiO 2 , and the procedure for forming the gate sidewall insulating film 54 may be a vacuum deposition method, such as a chemical vapor deposition method or a sputtering method. There are no specific restrictions on the patterning method. For example, thin film formation can be performed on the substrate 51 using the material of the gate side wall insulating film 54 and then, etch-back can be performed on the entire surface by dry etching.

接著,選擇性地在基板51上執行離子佈植,以形成源極區域55及汲極區域56。關於降低電阻性,可在源極區域55及汲極區域56的表面上形成矽化物(例如,Ni、Co或Ti)層。 Next, ion implantation is selectively performed on the substrate 51 to form the source region 55 and the drain region 56. Regarding the reduction of electrical resistance, a silicide (for example, Ni, Co, or Ti) layer may be formed on the surfaces of the source region 55 and the drain region 56.

接著,形成層間絕緣薄膜57。關於材料及程序,並無特定限制。例如,層間絕緣薄膜57的材料可為絕緣材料,例如,SiON或者SiO2,以及形成層間絕緣薄膜57的程序可為真空沉積法,例如,化學氣相沉積法或者濺鍍法。此外,關於圖案化的方法,也無特定限制,可以光刻法等方法而形成所需圖案,以及如果需要的話,可形成穿孔。 Next, an interlayer insulating film 57 is formed. There are no specific restrictions on materials and procedures. For example, the material of the interlayer insulating film 57 may be an insulating material, for example, SiON or SiO 2 , and the procedure for forming the interlayer insulating film 57 may be a vacuum deposition method, for example, a chemical vapor deposition method or a sputtering method. In addition, the method of patterning is also not particularly limited, and a desired pattern can be formed by a method such as photolithography, and if necessary, a through hole can be formed.

接著,形成源極電極58及汲極電極59。源極電極58及汲極電極59係形成以分別與源極區域55及汲極區域56接觸,以填補形成在層間絕緣薄膜57上的穿孔。 Next, the source electrode 58 and the drain electrode 59 are formed. The source electrode 58 and the drain electrode 59 are formed to be in contact with the source region 55 and the drain region 56 respectively to fill the through holes formed on the interlayer insulating film 57.

關於形成源極電極58及汲極電極59的材料及程序,並無特定限制。例如,源極電極58及汲極電極59的材料可為金屬材料,例如,Al或者Cu。關於形成源極電極58以及汲極電極59的程序,例如,可以真空沉積法填補穿孔,例如,濺鍍法,接著,以光刻法執行圖案化。此外,可以化學氣相沉積法或者電鍍法填補穿孔,接著以化學機械研磨法等執行平坦化。此外,如需要的話,可使用疊積層,其具有層阻障金屬,例如TiN或者TaN。此外,可使用鎢栓(W-Plug),可以以化學氣相沉積法使用鎢填補穿孔。 There are no specific restrictions on the materials and procedures for forming the source electrode 58 and the drain electrode 59. For example, the materials of the source electrode 58 and the drain electrode 59 may be metallic materials, such as Al or Cu. Regarding the procedure for forming the source electrode 58 and the drain electrode 59, for example, a vacuum deposition method can be used to fill the perforation, for example, a sputtering method, and then, patterning is performed by a photolithography method. In addition, a chemical vapor deposition method or an electroplating method may be used to fill the perforation, and then planarization may be performed by a chemical mechanical polishing method or the like. In addition, if necessary, a stacked layer may be used, which has a layer barrier metal, such as TiN or TaN. In addition, a tungsten plug (W-Plug) can be used, and tungsten can be used to fill the perforations by chemical vapor deposition.

最後,形成鈍化層111。其程序及材料可與依據第一實施例之閘極絕緣層13的程序及材料相同。藉由以上步驟,製造FET。 Finally, the passivation layer 111 is formed. The procedures and materials thereof may be the same as those of the gate insulating layer 13 according to the first embodiment. Through the above steps, the FET is manufactured.

應注意的是,關於FET 50,基板51係作為主動層,以在源極區域55與汲極區域56之間形成通道。此外,在閘極絕緣層53與由Si所形成的基板51之間,可形成由SiGe等所形成的主動層。此外,雖然第8圖所示為頂部閘極結構,但前述之閘極絕緣層53可用於所謂的雙閘極結構以及FinFET。 It should be noted that regarding the FET 50, the substrate 51 serves as an active layer to form a channel between the source region 55 and the drain region 56. In addition, between the gate insulating layer 53 and the substrate 51 formed of Si, an active layer formed of SiGe or the like may be formed. In addition, although FIG. 8 shows a top gate structure, the aforementioned gate insulating layer 53 can be used for a so-called double gate structure and FinFET.

如上所述,類似於第一實施例,使用第一氧化物以作為閘極絕緣層及鈍化層的至少其中之一以及對第一氧化物使用濕式蝕刻之低成本 圖案化程序來產生高品質(亦即,低能耗以及高可靠性)FET。 As described above, similar to the first embodiment, the first oxide is used as at least one of the gate insulating layer and the passivation layer and a low-cost patterning process using wet etching on the first oxide to produce high quality (That is, low energy consumption and high reliability) FET.

<第五實施例> <Fifth Embodiment>

以下關於第五實施例之說明描述揮發性半導體記憶元件的範例。應注意的是,在第五實施例的說明中,將省略已經在上述說明中描述過之相同配置的說明。 The following description of the fifth embodiment describes an example of a volatile semiconductor memory device. It should be noted that in the description of the fifth embodiment, the description of the same configuration that has been described in the above description will be omitted.

[揮發性半導體記憶元件之配置] [Configuration of volatile semiconductor memory devices]

第9圖為描述依據第五實施例之揮發性半導體記憶元件的配置以及依據第五實施例之製造揮發性半導體記憶元件的方法的剖面圖。依據第9圖,揮發性半導體記憶元件60包括:基板61,其為絕緣基板;閘極電極62;閘極絕緣層63;源極電極64;汲極電極65;主動層66;第一電容電極67;電容介電層68;第二電容電極69;以及鈍化層112。應注意的是,揮發性半導體記憶元件60為依據本發明之半導體裝置的典型範例。 9 is a cross-sectional view describing the configuration of the volatile semiconductor memory device according to the fifth embodiment and the method of manufacturing the volatile semiconductor memory device according to the fifth embodiment. According to FIG. 9, the volatile semiconductor memory device 60 includes: a substrate 61 which is an insulating substrate; a gate electrode 62; a gate insulating layer 63; a source electrode 64; a drain electrode 65; an active layer 66; a first capacitor electrode 67; capacitive dielectric layer 68; second capacitive electrode 69; and passivation layer 112. It should be noted that the volatile semiconductor memory device 60 is a typical example of the semiconductor device according to the present invention.

在第一實施例中用於閘極絕緣層13及鈍化層17的至少其中之一的相同氧化物可使用於閘極絕緣層63及鈍化層112的至少其中之一。 In the first embodiment, the same oxide used for at least one of the gate insulating layer 13 and the passivation layer 17 can be used for at least one of the gate insulating layer 63 and the passivation layer 112.

在閘極絕緣層63以第一氧化物形成的情形中,關於鈍化層112的材料,並無特定限制。例如,可使用一無機氧化物薄膜,例如,SiO2、SiON或者SiN。 In the case where the gate insulating layer 63 is formed with the first oxide, there is no specific limitation regarding the material of the passivation layer 112. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used.

類似地,在鈍化層112以第一氧化物形成的情形中,關於閘極絕緣層63的材料,並無特定限制。例如,可使用無機氧化物薄膜,例如,SiO2、SiON或者SiN。然而,第一氧化物可同時用於閘極絕緣層63及鈍化層112。而在這樣的情形中,閘極絕緣層63及鈍化層112的邊界會更穩定,因此,閘極絕緣層63及鈍化層112有機會具有更可靠的特性。 Similarly, in the case where the passivation layer 112 is formed with the first oxide, there is no specific limitation regarding the material of the gate insulating layer 63. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used. However, the first oxide can be used for both the gate insulating layer 63 and the passivation layer 112. In this case, the boundary between the gate insulating layer 63 and the passivation layer 112 will be more stable. Therefore, the gate insulating layer 63 and the passivation layer 112 may have more reliable characteristics.

較佳地,電容介電層68也是由第一氧化物所形成。 Preferably, the capacitor dielectric layer 68 is also formed by the first oxide.

[製造揮發性半導體記憶元件的方法] [Method of manufacturing volatile semiconductor memory device]

接著,以下之說明描述製造揮發性半導體記憶元件60的方法。雖然以下之說明描述用於製造具有皆由第一氧化物形成的閘極絕緣層63及鈍化層112之揮發性半導體記憶元件的方法,但揮發性半導體記憶元件60不侷限於此。 Next, the following description describes a method of manufacturing the volatile semiconductor memory device 60. Although the following description describes a method for manufacturing a volatile semiconductor memory device having a gate insulating layer 63 and a passivation layer 112 each formed of a first oxide, the volatile semiconductor memory device 60 is not limited to this.

關於製造揮發性半導體記憶元件60,首先,預備基板61。基板61的材料可與用於依據第一實施例之基板11的材料相同。接著,閘 極電極62形成在基板61上。形成閘極電極62之程序及材料可與用於依據第一實施例之形成閘極電極12的程序及材料相同。 Regarding the manufacture of the volatile semiconductor memory element 60, first, the substrate 61 is prepared. The material of the substrate 61 may be the same as the material used for the substrate 11 according to the first embodiment. Next, a gate electrode 62 is formed on the substrate 61. The procedure and material for forming the gate electrode 62 may be the same as the procedure and material for forming the gate electrode 12 according to the first embodiment.

接著,形成第二電容電極69。關於第二電容電極69的形成,可用各種材料及程序。例如,第二電容電極69之材料可為金屬(例如,Mo、Al、Cu或釕(Ru))、以上金屬的合金、透明導電氧化物(例如,ITO或ATO)、有機導體(例如,PEDOT、PANI)等。關於形成第二電容電極69的程序,例如,可以以濺鍍法、旋塗法、模塗法等方法而執行薄膜形成,以及接著,可藉由光刻法執行圖案化。此外,可執行印刷程序的方法,以直接地形成所需形狀,例如,噴墨印刷、奈米壓印或者凹版印刷。 Next, the second capacitor electrode 69 is formed. Regarding the formation of the second capacitive electrode 69, various materials and procedures can be used. For example, the material of the second capacitor electrode 69 may be a metal (for example, Mo, Al, Cu, or ruthenium (Ru)), an alloy of the above metals, a transparent conductive oxide (for example, ITO or ATO), an organic conductor (for example, PEDOT , PANI), etc. Regarding the procedure for forming the second capacitor electrode 69, for example, thin film formation can be performed by sputtering, spin coating, die coating, or the like, and then, patterning can be performed by photolithography. In addition, a method of a printing program can be performed to directly form a desired shape, for example, inkjet printing, nanoimprinting, or gravure printing.

應注意的是,在形成閘極電極62及第二電容電極69之材料及程序相同的情形中,可同時形成閘極電極62及第二電容電極69。 It should be noted that, in the case where the materials and procedures for forming the gate electrode 62 and the second capacitor electrode 69 are the same, the gate electrode 62 and the second capacitor electrode 69 can be simultaneously formed.

接著,以第一氧化物形成閘極絕緣層63。形成閘極絕緣層63的程序可與用於依據第一實施例之閘極絕緣層13的程序相同。 Next, the gate insulating layer 63 is formed with the first oxide. The procedure for forming the gate insulating layer 63 may be the same as the procedure for the gate insulating layer 13 according to the first embodiment.

接著,在第二電容電極69上形成電容介電層68。關於電容介電層68的材料,並無特定限制。例如,電容介電層68的材料可為包含Hf氧化物、Ta氧化物、La氧化物等之高介電常數氧化物材料,或者可為鐵電材料,例如,鋯鈦酸鉛(PZT)、鉭酸鍶鉍(SBT)等。在上述材料中,較佳地使用第一氧化物以形成電容介電層68。 Next, a capacitor dielectric layer 68 is formed on the second capacitor electrode 69. Regarding the material of the capacitor dielectric layer 68, there is no specific limitation. For example, the material of the capacitor dielectric layer 68 may be a high dielectric constant oxide material including Hf oxide, Ta oxide, La oxide, etc., or may be a ferroelectric material, such as lead zirconate titanate (PZT), Strontium bismuth tantalate (SBT), etc. Among the above materials, the first oxide is preferably used to form the capacitor dielectric layer 68.

關於程序,並無特定限制。例如,可以以真空沉積法執行薄膜形成,例如化學氣相沉積、原子層沉積或者濺鍍法,接著,以光刻法等方法而形成所需圖案。以上述之任何薄膜形成方式,可形成為非晶薄膜。 Regarding procedures, there are no specific restrictions. For example, thin film formation can be performed by a vacuum deposition method, such as chemical vapor deposition, atomic layer deposition, or sputtering method, and then, a desired pattern can be formed by a photolithography method or the like. It can be formed into an amorphous thin film by any of the above thin film forming methods.

應注意的是,在形成閘極絕緣層63及電容介電層68之材料及程序相同的情形中,可同時形成閘極絕緣層63及電容介電層68。 It should be noted that, in the case where the materials and procedures for forming the gate insulating layer 63 and the capacitor dielectric layer 68 are the same, the gate insulating layer 63 and the capacitor dielectric layer 68 can be simultaneously formed.

接著,形成源極電極64及汲極電極65。形成源極電極64及汲極電極65的材料及程序可與用於依據第一實施例之源極電極14及汲極電極15的材料及程序相同。 Next, the source electrode 64 and the drain electrode 65 are formed. The materials and procedures for forming the source electrode 64 and the drain electrode 65 may be the same as those used for the source electrode 14 and the drain electrode 15 according to the first embodiment.

接著,形成第一電容電極67。關於第一電容電極67的形成,可使用各種材料及程序。例如,第一電容電極67的材料可為金屬(例如,Mo、Al、Cu或Ru)、以上金屬的合金、透明導電氧化物(例如,ITO或ATO)、有機導體(例如,PEDOT、PANI)等。關於形成第一電容電極67 的程序,例如,可以以濺鍍法、旋塗法、模塗法等方法而執行薄膜形成,以及接著,可藉由光刻法執行圖案化。此外,可執行印刷程序的方法,以直接地形成所需形狀,例如,噴墨印刷、奈米壓印或者凹版印刷。 Next, the first capacitor electrode 67 is formed. For the formation of the first capacitor electrode 67, various materials and procedures can be used. For example, the material of the first capacitor electrode 67 may be a metal (eg, Mo, Al, Cu, or Ru), an alloy of the above metals, a transparent conductive oxide (eg, ITO or ATO), an organic conductor (eg, PEDOT, PANI) Wait. Regarding the procedure for forming the first capacitor electrode 67, for example, thin film formation can be performed by sputtering, spin coating, die coating, or the like, and then, patterning can be performed by photolithography. In addition, a method of a printing program can be performed to directly form a desired shape, for example, inkjet printing, nanoimprinting, or gravure printing.

應注意的是,在形成源極電極64、汲極電極65及第一電容電極67之材料及程序相同的情形中,可同時形成源極電極64、汲極電極65及第一電容電極67。 It should be noted that in the case where the materials and procedures for forming the source electrode 64, the drain electrode 65, and the first capacitor electrode 67 are the same, the source electrode 64, the drain electrode 65, and the first capacitor electrode 67 can be simultaneously formed.

接著,形成主動層66。關於主動層66的材料,並無特定限制。例如,主動層66的材料可為氧化物半導體,例如,多晶矽(p-Si)、非晶矽(a-Si)或者In-Ga-Zn-O,以及可為有機半導體,例如,並五苯(pentacene)。在上述材料中,在閘極絕緣層63至主動層66的邊界的穩定性方面,較佳的是氧化物半導體。關於形成主動層66的程序,並無特定限制。例如,可藉由以下程序而執行薄膜形成,例如,濺鍍法、脈衝雷射沉積法、化學氣相沉積法以及原子層沉積法等真空程序或者浸塗法、旋塗法、模塗法等溶液程序。或者,可藉由印刷程序的方法而直接地形成所需形狀,例如,噴墨印刷、奈米壓印或者凹版印刷。 Next, the active layer 66 is formed. Regarding the material of the active layer 66, there is no specific limit. For example, the material of the active layer 66 may be an oxide semiconductor, for example, polycrystalline silicon (p-Si), amorphous silicon (a-Si), or In-Ga-Zn-O, and may be an organic semiconductor, for example, pentacene (pentacene). Among the above materials, in terms of the stability of the boundary of the gate insulating layer 63 to the active layer 66, an oxide semiconductor is preferable. There are no specific restrictions on the procedure for forming the active layer 66. For example, thin film formation can be performed by the following procedures, for example, vacuum procedures such as sputtering, pulsed laser deposition, chemical vapor deposition, and atomic layer deposition, or dip coating, spin coating, die coating, etc. Solution procedures. Alternatively, the desired shape can be directly formed by a printing procedure, for example, inkjet printing, nanoimprinting, or gravure printing.

最後,形成鈍化層112。形成鈍化層112的程序及材料可與依據第一實施例之閘極絕緣層13的程序及材料相同。藉由以上步驟,製造揮發性半導體記憶元件60。 Finally, the passivation layer 112 is formed. The procedure and material for forming the passivation layer 112 may be the same as those of the gate insulating layer 13 according to the first embodiment. Through the above steps, the volatile semiconductor memory device 60 is manufactured.

在此,以閘極電極62、閘極絕緣層63、源極電極64、汲極電極65及主動層66的相對位置來看,揮發性半導體記憶元件60具有所謂的底部閘極/底部接觸配置。然而,依據第五實施例的揮發性半導體記憶元件並不限於此,可具有例如底部閘極/頂部接觸、頂部閘極/底部接觸或頂部閘極/頂部接觸的配置。 Here, considering the relative positions of the gate electrode 62, the gate insulating layer 63, the source electrode 64, the drain electrode 65, and the active layer 66, the volatile semiconductor memory device 60 has a so-called bottom gate/bottom contact configuration . However, the volatile semiconductor memory device according to the fifth embodiment is not limited thereto, and may have a configuration such as bottom gate/top contact, top gate/bottom contact, or top gate/top contact.

此外,這樣的揮發性半導體記憶元件60的第一電容電極67、電容介電層68、第二電容電極69的平面結構可形成三維結構等,以增加電容的電容性。 In addition, the planar structure of the first capacitor electrode 67, the capacitor dielectric layer 68, and the second capacitor electrode 69 of such a volatile semiconductor memory element 60 may form a three-dimensional structure, etc., to increase the capacitance of the capacitor.

如上所述,使用第一氧化物以作為閘極絕緣層及鈍化層以及對第一氧化物使用濕式蝕刻之低成本圖案化程序會產生高品質(亦即,低能耗以及高可靠性)FET。此外,除了在閘極絕緣層上以外,在電容介電層使用第一氧化物會較佳地產生具有更低能耗的FET。 As described above, a low-cost patterning process using the first oxide as the gate insulating layer and passivation layer and using wet etching on the first oxide will produce a high-quality (ie, low energy consumption and high reliability) FET . In addition, in addition to being on the gate insulating layer, using the first oxide in the capacitor dielectric layer will preferably produce FETs with lower power consumption.

<第六實施例> <Sixth Embodiment>

以下關於第六實施例之說明係描述揮發性半導體記憶元件的另一範例。應注意的是,在關於第六實施例的說明中,將省略已經在上述說明中描述過之相同配置的說明。 The following description of the sixth embodiment describes another example of a volatile semiconductor memory device. It should be noted that in the description about the sixth embodiment, the description of the same configuration that has been described in the above description will be omitted.

[揮發性半導體記憶元件之配置] [Configuration of volatile semiconductor memory devices]

第10圖為用於描述依據第六實施例之揮發性半導體記憶元件的配置以及依據第六實施例之製造揮發性半導體記憶元件的方法的剖面圖。依據第10圖,揮發性半導體記憶元件70包括:基板71,其為一絕緣基板;閘極電極72;閘極絕緣層73;閘極側壁絕緣薄膜74;源極區域75;汲極區域76;第一層間絕緣薄膜77;位元線電極78;第二層間絕緣薄膜79;第二電容電極80;電容介電層81;第一電容電極82;以及鈍化層113。應注意的是,揮發性半導體記憶元件70為依據本發明之半導體裝置的典型範例。 10 is a cross-sectional view for describing the configuration of the volatile semiconductor memory device according to the sixth embodiment and the method of manufacturing the volatile semiconductor memory device according to the sixth embodiment. According to FIG. 10, the volatile semiconductor memory device 70 includes: a substrate 71, which is an insulating substrate; a gate electrode 72; a gate insulating layer 73; a gate sidewall insulating film 74; a source region 75; a drain region 76; First interlayer insulating film 77; bit line electrode 78; second interlayer insulating film 79; second capacitor electrode 80; capacitor dielectric layer 81; first capacitor electrode 82; and passivation layer 113. It should be noted that the volatile semiconductor memory device 70 is a typical example of the semiconductor device according to the present invention.

在第一實施例中用於閘極絕緣層13及鈍化層17的至少其中之一的相同氧化物可使用於閘極絕緣層73及鈍化層113的至少其中之一。 In the first embodiment, the same oxide used for at least one of the gate insulating layer 13 and the passivation layer 17 can be used for at least one of the gate insulating layer 73 and the passivation layer 113.

在閘極絕緣層73以第一氧化物形成的情形中,關於鈍化層113的材料,並無特定限制。例如,可使用一無機氧化物薄膜,例如,SiO2、SiON或者SiN。 In the case where the gate insulating layer 73 is formed with the first oxide, there is no specific limitation regarding the material of the passivation layer 113. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used.

類似地,在鈍化層113以第一氧化物形成的情形中,關於閘極絕緣層73的材料,並無特定限制。例如,可使用一無機氧化物薄膜,例如,SiO2、SiON或者SiN。然而,第一氧化物可同時用於閘極絕緣層73及鈍化層113。而在這樣的情形中,閘極絕緣層73及鈍化層113的邊界會更穩定,因此,閘極絕緣層73以及鈍化層113有機會具有更可靠的特性。 Similarly, in the case where the passivation layer 113 is formed with the first oxide, there is no specific limitation regarding the material of the gate insulating layer 73. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used. However, the first oxide can be used for both the gate insulating layer 73 and the passivation layer 113. In such a case, the boundary between the gate insulating layer 73 and the passivation layer 113 will be more stable. Therefore, the gate insulating layer 73 and the passivation layer 113 may have more reliable characteristics.

較佳地,電容介電層81也是由第一氧化物所形成。 Preferably, the capacitor dielectric layer 81 is also formed by the first oxide.

[製造揮發性半導體記憶元件的方法] [Method of manufacturing volatile semiconductor memory device]

接著,以下之說明描述製造揮發性半導體記憶元件70的方法。雖然以下之說明描述用於製造具有皆由第一氧化物形成之閘極絕緣層73及鈍化層113之揮發性半導體記憶元件的方法,但揮發性半導體記憶元件70不侷限於此。 Next, the following description describes a method of manufacturing the volatile semiconductor memory element 70. Although the following description describes a method for manufacturing a volatile semiconductor memory device having a gate insulating layer 73 and a passivation layer 113 each formed of a first oxide, the volatile semiconductor memory device 70 is not limited to this.

關於揮發性半導體記憶元件70、基板71、閘極電極72、閘 極絕緣層73、閘極側壁絕緣薄膜74、源極區域75、汲極區域76以及第一層間絕緣薄膜77,其材料及程序可與依據第四實施例之基板51、閘極電極52、閘極絕緣層53、閘極側壁絕緣薄膜54、源極區域55、汲極區域56以及層間絕緣薄膜57相同。 The materials and materials of the volatile semiconductor memory device 70, the substrate 71, the gate electrode 72, the gate insulating layer 73, the gate sidewall insulating film 74, the source region 75, the drain region 76, and the first interlayer insulating film 77 The procedure can be the same as the substrate 51, the gate electrode 52, the gate insulating layer 53, the gate sidewall insulating film 54, the source region 55, the drain region 56 and the interlayer insulating film 57 according to the fourth embodiment.

在閘極絕緣層73、閘極電極72、閘極側壁絕緣薄膜74、源極區域75、汲極區域76以及第一層間絕緣薄膜77形成在基板71上之後,形成位元線電極78。關於材料及程序,並無特定限制。例如,位元線電極78的材料可為Al、Cu等。關於形成位元線電極78的程序,例如,可以真空沉積法填補穿孔,例如,濺鍍法或者化學氣相沉積法,接著,以光刻法執行圖案化。此外,可以化學氣相沉積法或者電鍍法填補穿孔,接著以化學機械研磨法等執行平坦化。此外,如需要的話,可使用疊積層,其具有層阻障金屬,例如TiN或者TaN。此外,可使用鎢栓(W-Plug),可以以化學氣相沉積法使用鎢填補穿孔。 After the gate insulating layer 73, the gate electrode 72, the gate sidewall insulating film 74, the source region 75, the drain region 76, and the first interlayer insulating film 77 are formed on the substrate 71, a bit line electrode 78 is formed. There are no specific restrictions on materials and procedures. For example, the material of the bit line electrode 78 may be Al, Cu, or the like. Regarding the procedure for forming the bit line electrode 78, for example, the perforation can be filled by a vacuum deposition method, for example, a sputtering method or a chemical vapor deposition method, and then, patterning is performed by a photolithography method. In addition, a chemical vapor deposition method or an electroplating method may be used to fill the perforation, and then planarization may be performed by a chemical mechanical polishing method or the like. In addition, if necessary, a stacked layer may be used, which has a layer barrier metal, such as TiN or TaN. In addition, a tungsten plug (W-Plug) can be used, and tungsten can be used to fill the perforations by chemical vapor deposition.

接著,形成第二層間絕緣薄膜79。形成第二層間絕緣薄膜79之材料及程序可與依據第四實施例之層間絕緣薄膜57相同。 Next, a second interlayer insulating film 79 is formed. The materials and procedures for forming the second interlayer insulating film 79 may be the same as the interlayer insulating film 57 according to the fourth embodiment.

接著,形成第二電容電極80。關於其材料及程序,並無特定限制。例如,第二電容電極80的材料可為金屬(例如,Al、Cu或Ru)、多晶矽等。關於形成第二電容電極80的程序,例如,可以真空沉積法填補穿孔,例如,濺鍍法或者化學氣相沉積法,接著,以光刻法執行圖案化。此外,可以化學氣相沉積法或者電鍍法填補穿孔,接著以化學機械研磨法等執行平坦化。此外,如需要的話,可使用疊積層,其具有層阻障金屬,例如TiN或者TaN。此外,可使用鎢栓(W-Plug),可以以化學氣相沉積法使用鎢填補穿孔。 Next, the second capacitor electrode 80 is formed. There are no specific restrictions on its materials and procedures. For example, the material of the second capacitor electrode 80 may be metal (for example, Al, Cu, or Ru), polysilicon, or the like. Regarding the procedure for forming the second capacitor electrode 80, for example, a vacuum deposition method can be used to fill the perforation, for example, a sputtering method or a chemical vapor deposition method, and then, patterning is performed by a photolithography method. In addition, a chemical vapor deposition method or an electroplating method may be used to fill the perforation, and then planarization may be performed by a chemical mechanical polishing method or the like. In addition, if necessary, a stacked layer may be used, which has a layer barrier metal, such as TiN or TaN. In addition, a tungsten plug (W-Plug) can be used, and tungsten can be used to fill the perforations by chemical vapor deposition.

接著,形成電容介電層81。關於電容介電層81之材料,並無特定限制。例如,關於電容介電層81的材料,並無特定限制。例如,電容介電層81的材料可為包含Hf氧化物、Ta氧化物、La氧化物等之高介電常數氧化物材料,或者可為鐵電材料,例如,鋯鈦酸鉛(PZT)、鉭酸鍶鉍(SBT)等。在上述材料中,較佳地使用第一氧化物以形成電容介電層81。 Next, the capacitor dielectric layer 81 is formed. There is no specific limitation on the material of the capacitor dielectric layer 81. For example, there is no specific limitation on the material of the capacitor dielectric layer 81. For example, the material of the capacitor dielectric layer 81 may be a high dielectric constant oxide material including Hf oxide, Ta oxide, La oxide, etc., or may be a ferroelectric material, such as lead zirconate titanate (PZT), Strontium bismuth tantalate (SBT), etc. Among the above materials, the first oxide is preferably used to form the capacitor dielectric layer 81.

關於形成電容介電層81的程序,並無特定限制。例如,可以以真空沉積法執行薄膜形成,例如化學氣相沉積、原子層沉積或者濺鍍 法,接著,以光刻法等方法而形成所需圖案。以上述之任何薄膜形成方式,可形成為非晶薄膜。在電容介電層81是由第一氧化物所形成的情形中,可使用依據第一實施例之閘極絕緣層13之相同程序。 There is no specific limitation on the procedure for forming the capacitor dielectric layer 81. For example, thin film formation can be performed by a vacuum deposition method, such as chemical vapor deposition, atomic layer deposition, or sputtering method, and then, a desired pattern can be formed by a photolithography method or the like. It can be formed into an amorphous thin film by any of the above thin film forming methods. In the case where the capacitor dielectric layer 81 is formed of the first oxide, the same procedure as the gate insulating layer 13 according to the first embodiment can be used.

接著,形成第一電容電極82。關於第一電容電極82的形成,可使用各種材料及程序。例如,第一電容電極82的材料可為金屬(例如,Al、Cu或Ru)、多晶矽等。關於形成第一電容電極82的程序,例如,可以以真空沉積法執行薄膜形成,例如,化學氣相沉積法或者濺鍍法,接著,可藉由光刻法等方法執行圖案化。此外,如需要的話,可使用疊積層,其具有層阻障金屬,例如TiN或者TaN。 Next, the first capacitor electrode 82 is formed. For the formation of the first capacitive electrode 82, various materials and procedures can be used. For example, the material of the first capacitor electrode 82 may be metal (for example, Al, Cu, or Ru), polysilicon, or the like. Regarding the procedure for forming the first capacitor electrode 82, for example, thin film formation may be performed by a vacuum deposition method, for example, chemical vapor deposition method or sputtering method, and then, patterning may be performed by a method such as photolithography. In addition, if necessary, a stacked layer may be used, which has a layer barrier metal, such as TiN or TaN.

最後,形成鈍化層113。形成鈍化層113的材料及程序與依據第一實施例之閘極絕緣層13的材料及程序相同。藉由以上步驟,製造揮發性半導體記憶元件70。 Finally, the passivation layer 113 is formed. The materials and procedures for forming the passivation layer 113 are the same as those of the gate insulating layer 13 according to the first embodiment. Through the above steps, the volatile semiconductor memory device 70 is manufactured.

應注意的是,雖然關於揮發性半導體記憶元件70之說明描述具有電容設置在FET上之疊積結構的揮發性半導體記憶元件,但揮發性半導體記憶元件70不限於此。例如,揮發性半導體記憶元件70可為具有溝槽結構之揮發性半導體記憶元件,在該溝槽結構中,電容設置在FET下方之形成在半導體基板上的溝槽中。 It should be noted that although the description about the volatile semiconductor memory element 70 describes a volatile semiconductor memory element having a stacked structure with a capacitor disposed on the FET, the volatile semiconductor memory element 70 is not limited to this. For example, the volatile semiconductor memory element 70 may be a volatile semiconductor memory element having a trench structure in which the capacitor is disposed in a trench formed on the semiconductor substrate under the FET.

此外,這樣的揮發性半導體記憶元件70的第二電容電極80、電容介電層81、第一電容電極82的平面結構可形成三維結構等,以增加電容之的容性。 In addition, the planar structure of the second capacitor electrode 80, the capacitor dielectric layer 81, and the first capacitor electrode 82 of such a volatile semiconductor memory element 70 may form a three-dimensional structure, etc., to increase the capacitance of the capacitor.

如上所述,使用第一氧化物以作為閘極絕緣層及鈍化層之至少其中之一以及對第一氧化物使用濕式蝕刻之低成本圖案化程序來產生高品質(亦即,低能耗以及高可靠性)揮發性半導體記憶元件。此外,除了在閘極絕緣層上以外,在電容介電層使用第一氧化物會較佳地產生具有更低能耗的揮發性半導體記憶元件。 As described above, using the first oxide as at least one of the gate insulating layer and the passivation layer and the low-cost patterning process using wet etching on the first oxide to produce high quality (ie, low energy consumption and High reliability) volatile semiconductor memory device. In addition, in addition to being on the gate insulating layer, using the first oxide in the capacitor dielectric layer will preferably produce a volatile semiconductor memory device with lower energy consumption.

<第七實施例> <Seventh Embodiment>

以下關於第七實施例之說明描述非揮發性半導體記憶元件的範例。應注意的是,在第七實施例的說明中,將省略已經在上述說明中描述過之相同配置的說明。 The following description of the seventh embodiment describes an example of a non-volatile semiconductor memory device. It should be noted that in the description of the seventh embodiment, the description of the same configuration that has been described in the above description will be omitted.

[非揮發性半導體記憶元件之配置] [Configuration of non-volatile semiconductor memory devices]

第11圖為用於描述依據第七實施例之非揮發性半導體記憶元件的配置以及依據第七實施例之製造非揮發性半導體記憶元件的方法的剖面圖。依據第11圖,非揮發性半導體記憶元件90包括:基板91,其為一絕緣基板;閘極電極92;第一閘極絕緣層93;浮動閘極電極94;第二閘極絕緣層95;源極電極96;汲極電極97;主動層98;以及鈍化層114。應注意的是,非揮發性半導體記憶元件90為依據本發明之半導體裝置的典型範例。 11 is a cross-sectional view for describing the configuration of the non-volatile semiconductor memory device according to the seventh embodiment and the method of manufacturing the non-volatile semiconductor memory device according to the seventh embodiment. According to FIG. 11, the non-volatile semiconductor memory device 90 includes: a substrate 91, which is an insulating substrate; a gate electrode 92; a first gate insulating layer 93; a floating gate electrode 94; a second gate insulating layer 95; Source electrode 96; drain electrode 97; active layer 98; and passivation layer 114. It should be noted that the non-volatile semiconductor memory device 90 is a typical example of the semiconductor device according to the present invention.

在第一實施例中用於閘極絕緣層13及鈍化層17的至少其中之一的相同氧化物可使用於閘極絕緣層93及鈍化層114的至少其中之一。 In the first embodiment, the same oxide used for at least one of the gate insulating layer 13 and the passivation layer 17 can be used for at least one of the gate insulating layer 93 and the passivation layer 114.

在閘極絕緣層93以第一氧化物形成之情形中,關於鈍化層114的材料,並無特定限制。例如,可使用無機氧化物薄膜,例如,SiO2、SiON或者SiN。 In the case where the gate insulating layer 93 is formed with the first oxide, there is no specific limitation regarding the material of the passivation layer 114. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used.

類似地,在鈍化層114以第一氧化物形成的情形中,關於閘極絕緣層93的材料,並無特定限制。例如,可使用無機氧化物薄膜,例如,SiO2、SiON或者SiN。然而,第一氧化物可同時用於閘極絕緣層93及鈍化層114。而在這樣的情形中,閘極絕緣層93及鈍化層114的邊界會更穩定,因此,閘極絕緣層93及鈍化層114有機會具有更可靠的特性。 Similarly, in the case where the passivation layer 114 is formed with the first oxide, there is no specific limitation regarding the material of the gate insulating layer 93. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used. However, the first oxide can be used for both the gate insulating layer 93 and the passivation layer 114. In such a case, the boundary between the gate insulating layer 93 and the passivation layer 114 will be more stable. Therefore, the gate insulating layer 93 and the passivation layer 114 may have more reliable characteristics.

閘極絕緣層93是所謂的閘極電極絕緣層。第二閘極絕緣層95是所謂的通道絕緣層。閘極電極92是所謂的控制閘極電極。藉由控制對源極電極96、汲極電極97及閘極電極92之電壓施加的狀態,因為通道效應,電子被允許穿過作為通道絕緣層的第二閘極絕緣層95,以進出浮動閘極電極94。以此方式,達到記憶體的功能。 The gate insulating layer 93 is a so-called gate electrode insulating layer. The second gate insulating layer 95 is a so-called channel insulating layer. The gate electrode 92 is a so-called control gate electrode. By controlling the state of the voltage applied to the source electrode 96, the drain electrode 97, and the gate electrode 92, electrons are allowed to pass through the second gate insulating layer 95 as a channel insulating layer to enter and exit the floating gate due to the channel effect极 electrode 94. In this way, the function of memory is achieved.

[製造非揮發性半導體記憶元件的方法] [Method of manufacturing non-volatile semiconductor memory device]

接著,以下之說明描述製造非揮發性半導體記憶元件90的方法。雖然以下之說明描述用於製造具有皆由第一氧化物形成之閘極絕緣層93及鈍化層114之非揮發性半導體記憶元件的方法,但非揮發性半導體記憶元件90不侷限於此。 Next, the following description describes a method of manufacturing the non-volatile semiconductor memory device 90. Although the following description describes a method for manufacturing a non-volatile semiconductor memory device having a gate insulating layer 93 and a passivation layer 114 each formed of a first oxide, the non-volatile semiconductor memory device 90 is not limited to this.

關於製造非揮發性半導體記憶元件90,首先,預備基板91。基板91的材料可與用於依據第一實施例之基板11的材料相同。 Regarding the manufacture of the non-volatile semiconductor memory element 90, first, the substrate 91 is prepared. The material of the substrate 91 may be the same as the material used for the substrate 11 according to the first embodiment.

接著,閘極電極92形成在基板91上。形成閘極電極92的 程序及材料可與用於依據第一實施例之形成閘極電極12的程序及材料相同。 Next, the gate electrode 92 is formed on the substrate 91. The procedure and material for forming the gate electrode 92 may be the same as the procedure and material for forming the gate electrode 12 according to the first embodiment.

接著,以第一氧化物形成閘極絕緣層93,以覆蓋閘極電極92。形成閘極絕緣層93的程序可與用於依據第一實施例之形成閘極絕緣層13的程序相同。 Next, the gate insulating layer 93 is formed with the first oxide to cover the gate electrode 92. The procedure for forming the gate insulating layer 93 may be the same as the procedure for forming the gate insulating layer 13 according to the first embodiment.

接著,在閘極絕緣層93上形成浮動閘極電極94。關於浮動閘極電極94的形成,可使用各種材料及程序。例如,浮動閘極電極94的材料可為金屬(例如,Mo、Al、Cu)、以上金屬的合金、透明導電氧化物(例如,ITO或ATO)、有機導體(例如,PEDOT、PANI)等。關於形成浮動閘極電極94的程序,例如,可以以濺鍍法、旋塗法、模塗法等方法而執行薄膜形成,接著,可藉由光刻法執行圖案化。此外,可執行印刷程序的方法,以直接地形成所需形狀,例如,噴墨印刷、奈米壓印或者凹版印刷。 Next, a floating gate electrode 94 is formed on the gate insulating layer 93. Regarding the formation of the floating gate electrode 94, various materials and procedures can be used. For example, the material of the floating gate electrode 94 may be a metal (eg, Mo, Al, Cu), an alloy of the above metals, a transparent conductive oxide (eg, ITO or ATO), an organic conductor (eg, PEDOT, PANI), or the like. Regarding the procedure for forming the floating gate electrode 94, for example, thin film formation can be performed by a sputtering method, spin coating method, die coating method, or the like, and then, patterning can be performed by photolithography. In addition, a method of a printing program can be performed to directly form a desired shape, for example, inkjet printing, nanoimprinting, or gravure printing.

接著,形成第二閘極絕緣層95,以覆蓋浮動閘極電極94。關於其材料,並無特定限制,可依據需要而適當地選擇。在材料中,較佳為低介電常數絕緣材料,例如,SiO2或者含氟聚合物,以增進耦合比。關於形成第二閘極絕緣層95的程序,並無特定限制。例如,可使用真空程序(例如,濺鍍法、化學氣相沉積法以及原子層沉積法等)、或者溶液程序(例如,旋塗法、模塗法或者噴嘴塗佈法)或者(藉由使用包括金屬醇氧化物、金屬複合物等或者如果需要的話包括聚合物的)噴墨印刷。此外,可使用光刻法或者印刷方法,以直接地形成所需的形狀。 Next, a second gate insulating layer 95 is formed to cover the floating gate electrode 94. There is no specific restriction on the material, and it can be appropriately selected according to needs. Among the materials, low dielectric constant insulating materials such as SiO 2 or fluoropolymers are preferred to improve the coupling ratio. Regarding the procedure for forming the second gate insulating layer 95, there is no specific limitation. For example, a vacuum process (for example, sputtering, chemical vapor deposition, atomic layer deposition, etc.), or a solution process (for example, spin coating, die coating, or nozzle coating) or (by using Including metal alkoxides, metal composites, etc. or, if necessary, polymers) inkjet printing. In addition, a photolithography method or a printing method may be used to directly form a desired shape.

接著,在第二閘極絕緣層95上形成源極電極96及汲極電極97。形成源極電極96及汲極電極97的材料及程序可與用於依據第一實施例之源極電極14及汲極電極15的材料及程序相同。 Next, the source electrode 96 and the drain electrode 97 are formed on the second gate insulating layer 95. The materials and procedures for forming the source electrode 96 and the drain electrode 97 may be the same as those used for the source electrode 14 and the drain electrode 15 according to the first embodiment.

接著,形成主動層98。關於主動層98的材料,並無特定限制。例如,主動層98的材料可為氧化物半導體,例如,多晶矽(p-Si)、非晶矽(a-Si)或者In-Ga-Zn-O,以及可為有機半導體,例如,並五苯(pentacene)。在上述材料中,較佳的是氧化物半導體。關於形成主動層98的程序,並無特定限制。例如,可藉由以下程序而執行薄膜形成,例如,濺鍍法、脈衝雷射沉積法、化學氣相沉積法以及原子層沉積法等真空程序 或者浸塗法、旋塗法等溶液程序。或者,可藉由印刷程序的方法而直接地形成所需形狀,例如,噴墨印刷、奈米壓印或者凹版印刷。 Next, the active layer 98 is formed. Regarding the material of the active layer 98, there is no specific limit. For example, the material of the active layer 98 may be an oxide semiconductor, for example, polycrystalline silicon (p-Si), amorphous silicon (a-Si), or In-Ga-Zn-O, and may be an organic semiconductor, for example, pentacene (pentacene). Among the above materials, oxide semiconductors are preferred. There are no specific restrictions on the procedure for forming the active layer 98. For example, thin film formation can be performed by the following procedures, for example, vacuum procedures such as sputtering, pulsed laser deposition, chemical vapor deposition, and atomic layer deposition, or solution procedures such as dip coating and spin coating. Alternatively, the desired shape can be directly formed by a printing procedure, for example, inkjet printing, nanoimprinting, or gravure printing.

最後,形成鈍化層114。形成鈍化層114的程序及材料可與依據第一實施例之閘極絕緣層13的程序及材料相同。藉由以上步驟,製造非揮發性半導體記憶元件90。 Finally, the passivation layer 114 is formed. The procedure and material for forming the passivation layer 114 may be the same as those of the gate insulating layer 13 according to the first embodiment. Through the above steps, the non-volatile semiconductor memory device 90 is manufactured.

在此,以閘極電極92、源極電極96、汲極電極97以及主動層98的相對位置來看,非揮發性半導體記憶元件90具有所謂的底部閘極/底部接觸配置。然而,依據第七實施例之非揮發性半導體記憶元件90並不限於此,例如,非揮發性半導體記憶元件90可具有例如底部閘極/頂部接觸、頂部閘極/底部接觸或頂部閘極/頂部接觸之配置。 Here, in view of the relative positions of the gate electrode 92, the source electrode 96, the drain electrode 97, and the active layer 98, the non-volatile semiconductor memory element 90 has a so-called bottom gate/bottom contact configuration. However, the non-volatile semiconductor memory device 90 according to the seventh embodiment is not limited thereto. For example, the non-volatile semiconductor memory device 90 may have, for example, bottom gate/top contact, top gate/bottom contact, or top gate/ Top contact configuration.

此外,這樣的非揮發性半導體記憶元件90的閘極電極92、閘極絕緣層93以及浮動閘極電極94的平面結構可形成三維結構等,以增加電容的電容性。 In addition, the planar structure of the gate electrode 92, the gate insulating layer 93, and the floating gate electrode 94 of such a nonvolatile semiconductor memory device 90 may form a three-dimensional structure, etc., to increase the capacitance of the capacitor.

如上所述,使用第一氧化物以作為閘極絕緣層及鈍化層的至少其中之一以及對第一氧化物使用濕式蝕刻之低成本圖案化程序來產生高品質(亦即,低能耗以及高可靠性)非揮發性半導體記憶元件。亦即,可以縮減用於寫入/刪除的電壓,以降低洩漏電流以及增進元件的耐用性。 As described above, using the first oxide as at least one of the gate insulating layer and the passivation layer and the low-cost patterning process using wet etching on the first oxide to produce high quality (i.e., low energy consumption and High reliability) Non-volatile semiconductor memory device. That is, the voltage used for writing/erasing can be reduced to reduce the leakage current and improve the durability of the device.

<第八實施例> <Eighth Embodiment>

以下關於第八實施例之說明描述非揮發性半導體記憶元件的另一範例。應注意的是,在第八實施例的說明中,將省略已經在上述說明中描述過之相同配置的說明。 The following description of the eighth embodiment describes another example of a non-volatile semiconductor memory device. It should be noted that in the description of the eighth embodiment, the description of the same configuration that has been described in the above description will be omitted.

[非揮發性半導體記憶元件的配置] [Configuration of non-volatile semiconductor memory devices]

第12圖為用於描述依據第八實施例之非揮發性半導體記憶元件的配置以及依據第八實施例之製造非揮發性半導體記憶元件的方法的剖面圖。依據第12圖,非揮發性半導體記憶元件100包括:基板101,其為絕緣基板;第一閘極絕緣層102;閘極電極103;第二閘極絕緣層104;浮動閘極電極105;閘極側壁絕緣薄膜106;源極區域107;汲極區域108;以及鈍化層115。應注意的是,非揮發性半導體記憶元件100為依據本發明之半導體裝置的典型範例。 12 is a cross-sectional view for describing the configuration of the non-volatile semiconductor memory device according to the eighth embodiment and the method of manufacturing the non-volatile semiconductor memory device according to the eighth embodiment. According to FIG. 12, the non-volatile semiconductor memory device 100 includes: a substrate 101, which is an insulating substrate; a first gate insulating layer 102; a gate electrode 103; a second gate insulating layer 104; a floating gate electrode 105; a gate The polar sidewall insulating film 106; the source region 107; the drain region 108; and the passivation layer 115. It should be noted that the non-volatile semiconductor memory device 100 is a typical example of the semiconductor device according to the present invention.

在第一實施例中用於閘極絕緣層13及鈍化層17的至少其中 之一的相同氧化物可使用於第一閘極絕緣層102及鈍化層115的至少其中之一。 The same oxide used for at least one of the gate insulating layer 13 and the passivation layer 17 in the first embodiment can be used for at least one of the first gate insulating layer 102 and the passivation layer 115.

在第一閘極絕緣層102以第一氧化物形成之情形中,關於鈍化層115的材料,並無特定限制。例如,可使用一無機氧化物薄膜,例如,SiO2、SiON或者SiN。 In the case where the first gate insulating layer 102 is formed with the first oxide, there is no specific limitation regarding the material of the passivation layer 115. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used.

類似地,在鈍化層115以第一氧化物形成的情形中,關於第一閘極絕緣層102的材料,並無特定限制。例如,可使用一無機氧化物薄膜,例如,SiO2、SiON或者SiN。然而,第一氧化物可同時用於第一閘極絕緣層102及鈍化層115。而在這樣的情形中,第一閘極絕緣層102及鈍化層115的邊界會更穩定,因此,第一閘極絕緣層102及鈍化層115有機會具有更可靠的特性。 Similarly, in the case where the passivation layer 115 is formed with the first oxide, there is no specific limitation regarding the material of the first gate insulating layer 102. For example, an inorganic oxide film such as SiO 2 , SiON, or SiN can be used. However, the first oxide can be used for both the first gate insulating layer 102 and the passivation layer 115. In such a case, the boundary between the first gate insulating layer 102 and the passivation layer 115 will be more stable. Therefore, the first gate insulating layer 102 and the passivation layer 115 may have more reliable characteristics.

第一閘極絕緣層102是所謂的閘極電極絕緣層。第二閘極絕緣層104是所謂的通道絕緣層。閘極電極103是所謂的控制閘極電極。藉由控制對源極區域107、汲極區域108以及閘極電極103的電壓施加的狀態,因為通道效應,電子被允許穿過作為通道絕緣層的第二閘極絕緣層104,以進出浮動閘極電極105。以此方式,達到記憶體的功能。 The first gate insulating layer 102 is a so-called gate electrode insulating layer. The second gate insulating layer 104 is a so-called channel insulating layer. The gate electrode 103 is a so-called control gate electrode. By controlling the state of voltage application to the source region 107, the drain region 108, and the gate electrode 103, electrons are allowed to pass through the second gate insulating layer 104 as a channel insulating layer to enter and exit the floating gate due to the channel effect极 electrode105. In this way, the function of memory is achieved.

[製造非揮發性半導體記憶元件的方法] [Method of manufacturing non-volatile semiconductor memory device]

接著,以下之說明描述製造非揮發性半導體記憶元件100的方法。雖然以下之說明描述用於製造具有皆由第一氧化物形成的第一閘極絕緣層102及鈍化層115的非揮發性半導體記憶元件的方法,但非揮發性半導體記憶元件100不侷限於此。 Next, the following description describes a method of manufacturing the non-volatile semiconductor memory device 100. Although the following description describes a method for manufacturing a non-volatile semiconductor memory device having a first gate insulating layer 102 and a passivation layer 115 each formed of a first oxide, the non-volatile semiconductor memory device 100 is not limited to this .

關於製造非揮發性半導體記憶元件100,首先,預備基板101。基板101的材料可與用於依據第四實施例之基板51的材料相同。 Regarding the manufacture of the non-volatile semiconductor memory element 100, first, the substrate 101 is prepared. The material of the substrate 101 may be the same as the material used for the substrate 51 according to the fourth embodiment.

接著,形成第二閘極絕緣層104。關於第二閘極絕緣層104的材料,並無特定限制,雖然,例如,較佳地為低介電常數絕緣材料,例如,SiO2。關於形成第二閘極絕緣層104的程序,並無特定限制。例如,可使用真空沉積法,例如,熱能氧化法、濺鍍法、化學氣相沉積法或者原子層沉積法。 Next, the second gate insulating layer 104 is formed. Regarding the material of the second gate insulating layer 104, there is no particular limitation, although, for example, it is preferably a low dielectric constant insulating material, such as SiO 2 . There is no specific limitation on the procedure for forming the second gate insulating layer 104. For example, a vacuum deposition method, for example, thermal energy oxidation method, sputtering method, chemical vapor deposition method, or atomic layer deposition method may be used.

接著,形成浮動閘極電極105。關於形成浮動閘極電極105的材料及程序,並無特定限制。例如,浮動閘極電極105之材料可為多晶 矽、例如Al的金屬材料或者由多晶矽、金屬材料以及例如TiN或者TaN之阻障金屬形成的疊積層。例如,形成浮動閘極電極105的程序可為真空沉積法,例如,化學氣相沉積法或者濺鍍法。 Next, the floating gate electrode 105 is formed. There are no specific restrictions on the materials and procedures for forming the floating gate electrode 105. For example, the material of the floating gate electrode 105 may be polysilicon, a metal material such as Al, or a stacked layer formed of polysilicon, a metal material, and a barrier metal such as TiN or TaN. For example, the procedure for forming the floating gate electrode 105 may be a vacuum deposition method, for example, a chemical vapor deposition method or a sputtering method.

接著,以第一氧化物形成第一閘極絕緣層102。形成第一閘極絕緣層102的程序及材料可與用於依據第一實施例之形成閘極絕緣層13的程序及材料相同。 Next, the first gate insulating layer 102 is formed with the first oxide. The procedure and material for forming the first gate insulating layer 102 may be the same as the procedure and material for forming the gate insulating layer 13 according to the first embodiment.

接著,形成閘極電極103。形成閘極電極103的材料及程序可與用於依據第四實施例之形成閘極絕緣層53的材料及程序相同。 Next, the gate electrode 103 is formed. The materials and procedures for forming the gate electrode 103 may be the same as those for forming the gate insulating layer 53 according to the fourth embodiment.

關於第一閘極絕緣層102、閘極電極103、第二閘極絕緣層104以及浮動閘極電極105的圖案化,並無特定限制。例如,可使用光刻法形成所需圖案。 There is no specific limitation on the patterning of the first gate insulating layer 102, the gate electrode 103, the second gate insulating layer 104, and the floating gate electrode 105. For example, photolithography can be used to form the desired pattern.

接著,形成閘極側壁絕緣薄膜106。形成閘極側壁絕緣薄膜106的材料及程序可與用於依據第四實施例之形成閘極側壁絕緣薄膜54之材料及程序相同。接著,選擇性地在基板101上執行離子佈植,以形成源極區域107及汲極區域108。關於降低電阻性,可在源極區域107及汲極區域108之表面上形成矽化物(例如,Ni、Co或Ti)層。 Next, the gate sidewall insulating film 106 is formed. The materials and procedures for forming the gate sidewall insulating film 106 may be the same as those used for forming the gate sidewall insulating film 54 according to the fourth embodiment. Next, ion implantation is selectively performed on the substrate 101 to form the source region 107 and the drain region 108. Regarding the reduction of resistance, a silicide (for example, Ni, Co, or Ti) layer may be formed on the surfaces of the source region 107 and the drain region 108.

最後,形成鈍化層115。形成鈍化層115之程序及材料可與依據第一實施例之閘極絕緣層13之程序及材料相同。藉由以上步驟,製造非揮發性半導體記憶元件100。 Finally, the passivation layer 115 is formed. The procedure and material for forming the passivation layer 115 may be the same as those of the gate insulating layer 13 according to the first embodiment. Through the above steps, the non-volatile semiconductor memory device 100 is manufactured.

這樣的非揮發性半導體記憶元件100的第一閘極絕緣層102、閘極電極103以及浮動閘極電極105的平面結構可形成三維結構等,以增加電容的電容性。 The planar structure of the first gate insulating layer 102, the gate electrode 103, and the floating gate electrode 105 of such a nonvolatile semiconductor memory device 100 may form a three-dimensional structure, etc., to increase the capacitance of the capacitor.

如上所述,使用第一氧化物以作為第一閘極絕緣層及鈍化層的至少其中之一以及對第一氧化物使用濕式蝕刻之低成本圖案化程序來產生高品質(亦即,低能耗以及高可靠性)非揮發性半導體記憶元件。也就是說,可以縮減用於寫入/刪除的電壓,以降低洩漏電流以及增進元件的耐用性。 As described above, using the first oxide as at least one of the first gate insulating layer and the passivation layer and a low-cost patterning process using wet etching on the first oxide to produce high quality (ie, low energy Consumption and high reliability) non-volatile semiconductor memory devices. In other words, the voltage used for writing/erasing can be reduced to reduce leakage current and improve the durability of the device.

<第九實施例> <Ninth Embodiment>

下面關於第九實施例的敘述說明了具有多層鈍化層之FET的範例。注意,在關於第九實施例的敘述中,對上面實施例中已說明的相 同配置將予以省略。 The following description of the ninth embodiment illustrates an example of an FET having multiple passivation layers. Note that in the description of the ninth embodiment, the same configuration as that explained in the above embodiment will be omitted.

[FET的配置] [Configuration of FET]

第13圖為說明依據第九實施例之FET的剖面圖。依據第13圖,FET 110為底部閘極/底部接觸FET,其包括基板11、閘極電極12、閘極絕緣層13、源極電極14、汲極電極15、主動層16、第一鈍化層17a以及第二鈍化層17b。注意,FET 110為本發明半導體元件的典型範例。 FIG. 13 is a cross-sectional view illustrating the FET according to the ninth embodiment. According to FIG. 13, the FET 110 is a bottom gate/bottom contact FET, which includes a substrate 11, a gate electrode 12, a gate insulating layer 13, a source electrode 14, a drain electrode 15, an active layer 16, and a first passivation layer 17a and the second passivation layer 17b. Note that the FET 110 is a typical example of the semiconductor device of the present invention.

FET 110包括在基板11上形成的閘極電極12,在閘極電極12上覆蓋有具有絕緣性質的閘極絕緣層13。其次,在閘極絕緣層13上形成源極電極14及汲極電極15,且形成部分覆蓋源極電極14及汲極電極15的主動層16。源極電極14及汲極電極15經由主動層16以預定距離形成,而該主動層16會作為通道區域。此外,在閘極絕緣層13上形成第一鈍化層17a,以覆蓋源極電極14、汲極電極15及主動層16,並且在第一鈍化層17a上形成第二鈍化層17b。 The FET 110 includes a gate electrode 12 formed on a substrate 11, and the gate electrode 12 is covered with a gate insulating layer 13 having insulating properties. Next, the source electrode 14 and the drain electrode 15 are formed on the gate insulating layer 13, and the active layer 16 partially covering the source electrode 14 and the drain electrode 15 is formed. The source electrode 14 and the drain electrode 15 are formed at a predetermined distance through the active layer 16, and the active layer 16 serves as a channel region. In addition, a first passivation layer 17a is formed on the gate insulating layer 13 to cover the source electrode 14, the drain electrode 15 and the active layer 16, and a second passivation layer 17b is formed on the first passivation layer 17a.

在實用上,鈍化層係形成而成為基板11的上層。該鈍化層包括第一鈍化層17a以及與該第一鈍化層接觸的第二鈍化層17b。在第13圖的範例中,在閘極絕緣層13上形成第一鈍化層17a,且第一鈍化層17a覆蓋源極電極14、汲極電極15及主動層16。 In practice, the passivation layer is formed as the upper layer of the substrate 11. The passivation layer includes a first passivation layer 17a and a second passivation layer 17b in contact with the first passivation layer. In the example of FIG. 13, a first passivation layer 17a is formed on the gate insulating layer 13, and the first passivation layer 17a covers the source electrode 14, the drain electrode 15, and the active layer 16.

關於鈍化層,對第一鈍化層17a及第二鈍化層17b的配置並無特別限制,該配置可根據意欲目的而作適當地選擇。如第13圖所示,第一鈍化層17a可配置成比第二鈍化層17b更接近主動層16。相反地,第二鈍化層17b可配置成比第一鈍化層17a更接近主動層16。此外,第二鈍化層17b可配置成覆蓋第一鈍化層17a的頂部表面與側邊表面。相反地,第一鈍化層17a可配置成覆蓋第二鈍化層17b的頂部表面與側邊表面。 Regarding the passivation layer, the configurations of the first passivation layer 17a and the second passivation layer 17b are not particularly limited, and the configuration can be appropriately selected according to the intended purpose. As shown in FIG. 13, the first passivation layer 17a may be configured to be closer to the active layer 16 than the second passivation layer 17b. Conversely, the second passivation layer 17b may be configured to be closer to the active layer 16 than the first passivation layer 17a. In addition, the second passivation layer 17b may be configured to cover the top surface and the side surface of the first passivation layer 17a. Conversely, the first passivation layer 17a may be configured to cover the top and side surfaces of the second passivation layer 17b.

(第一鈍化層17a) (First passivation layer 17a)

第一鈍化層17a較佳為第二氧化物。 The first passivation layer 17a is preferably a second oxide.

(第二氧化物) (Second oxide)

該第二氧化物含有矽(Si)及鹼土金屬,較佳更含有鋁(Al)及硼(B)中之至少一者。此外,視需要可進一步地含有其他元素。 The second oxide contains silicon (Si) and alkaline earth metal, and more preferably at least one of aluminum (Al) and boron (B). In addition, other elements may be further contained as needed.

關於第二氧化物,由Si所構成的SiO2具有非晶結構。此外,該鹼土金屬具有切斷Si-O鍵的功能。因此,第二氧化物的介電常數及線性 膨脹係數可依據Si及鹼土金屬的組成比例來控制。 Regarding the second oxide, SiO 2 composed of Si has an amorphous structure. In addition, the alkaline earth metal has a function of cutting Si—O bonds. Therefore, the dielectric constant and linear expansion coefficient of the second oxide can be controlled according to the composition ratio of Si and alkaline earth metal.

該第二氧化物較佳含有Al及B中之至少一者。由Al所構成的Al2O3、以及由B所構成的B2O3皆形成類似於SiO2的非晶結構。因此,含有Al及/或B之該第二氧化物具有更穩定的非晶結構,因而能形成具有更高均勻性的絕緣層。此外,當鹼土金屬依據組成比例來改變Al及B的配位結構時,可控制該第二氧化物的介電常數及線性膨脹係數。 The second oxide preferably contains at least one of Al and B. Both Al 2 O 3 composed of Al and B 2 O 3 composed of B form an amorphous structure similar to SiO 2 . Therefore, the second oxide containing Al and/or B has a more stable amorphous structure, and thus can form an insulating layer with higher uniformity. In addition, when the alkaline earth metal changes the coordination structure of Al and B according to the composition ratio, the dielectric constant and linear expansion coefficient of the second oxide can be controlled.

該第二氧化物中之鹼土金屬的範例可為鈹(Be)、鎂(Mg)、鈣(Ca)、鍶(Sr)、鋇(Ba)等。鹼土金屬可由一個上述元素或是由二個或二個以上之上述元素所構成。 Examples of the alkaline earth metal in the second oxide may be beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc. The alkaline earth metal may be composed of one of the above elements or two or more of the above elements.

對該第二氧化物中包含之Si及鹼土金屬的組成比例並無特別限制,該組成比例可根據意欲目的而作適當地選擇。但較佳的組成比例係在下列的範圍內。 The composition ratio of Si and alkaline earth metal contained in the second oxide is not particularly limited, and the composition ratio can be appropriately selected according to the intended purpose. However, the preferred composition ratio is within the following range.

該第二氧化物中包含之Si以及鹼土金屬(Si:鹼土金屬)的組成比例,由氧化物(SiO2、BeO、MgO、CaO、SrO、BaO)計算後,較佳在50.0mol%至90.0mol%:10mol%至50mol%。 The composition ratio of Si and alkaline earth metal (Si: alkaline earth metal) contained in the second oxide, calculated from oxides (SiO 2 , BeO, MgO, CaO, SrO, BaO), is preferably 50.0 mol% to 90.0 mol%: 10mol% to 50mol%.

對該第二氧化物中包含之Si、鹼土金屬以及Al及B中之至少一者的組成比例並無特別限制,該組成比例可根據意欲目的而作適當地選擇。但較佳的組成比例係在下列的範圍內。 The composition ratio of Si, alkaline earth metal, and at least one of Al and B contained in the second oxide is not particularly limited, and the composition ratio can be appropriately selected according to the intended purpose. However, the preferred composition ratio is within the following range.

該第二氧化物中包含之Si、鹼土金屬、以及Al及B中之至少一者(Si:鹼土金屬:Al及B中之至少一者)的組成比例,由氧化物(SiO2、BeO、MgO、CaO、SrO、BaO、Al2O3、B2O3)計算後,較佳在50.0mol%至90.0mol%:5.0mol%至20.0mol%:5.0mol%至30.0mol%。 The composition ratio of Si, alkaline earth metal, and at least one of Al and B (Si: alkaline earth metal: at least one of Al and B) contained in the second oxide is composed of oxides (SiO 2 , BeO, MgO, CaO, SrO, BaO, Al 2 O 3 , B 2 O 3 ) after calculation, preferably 50.0mol% to 90.0mol%: 5.0mol% to 20.0mol%: 5.0mol% to 30.0mol%.

藉由X光螢光光譜分析、電子探針微分析(electron probe microanalysis,EPMA)、感應耦合電漿原子發射光譜分析(inductively coupled plasma atomic emission spectroscopy,ICP-AES)等來分析該氧化物中的陽離子元素,該第二氧化物中包含之氧化物(例如SiO2、BeO、MgO、CaO、SrO、BaO、Al2O3、B2O3)的比例可被計算出。 X-ray fluorescence spectroscopy, electron probe microanalysis (EPMA), inductively coupled plasma atomic emission spectroscopy (ICP-AES), etc. For the cationic element, the ratio of oxides contained in the second oxide (eg, SiO 2 , BeO, MgO, CaO, SrO, BaO, Al 2 O 3 , B 2 O 3 ) can be calculated.

對第一鈍化層17a的介電常數並無特別限制,該介電常數可根據意欲目的而作適當地選擇。 The dielectric constant of the first passivation layer 17a is not particularly limited, and the dielectric constant can be appropriately selected according to the intended purpose.

為了測量第一鈍化層17a的介電常數,可製作由疊積下部電 極、介電層(亦即該第一鈍化層17a)、及上部電極而形成的電容器,然後使用阻抗測試計(LCR meter)來測量該介電常數。 In order to measure the dielectric constant of the first passivation layer 17a, a capacitor formed by stacking a lower electrode, a dielectric layer (that is, the first passivation layer 17a), and an upper electrode can be fabricated, and then an impedance tester (LCR meter) is used ) To measure the dielectric constant.

對第一鈍化層17a的線性膨脹係數並無特別限制,該線性膨脹係數可根據意欲目的而作適當地選擇。 The linear expansion coefficient of the first passivation layer 17a is not particularly limited, and the linear expansion coefficient can be appropriately selected according to the intended purpose.

第一鈍化層17a的線性膨脹係數可利用例如熱機械分析裝置測量出。在測量線性膨脹係數的方法中,可製作與第一鈍化層17a相同組成的測量用樣品而不需製作FET。 The linear expansion coefficient of the first passivation layer 17a can be measured using, for example, a thermomechanical analysis device. In the method of measuring the linear expansion coefficient, a sample for measurement having the same composition as the first passivation layer 17a can be produced without making an FET.

(第二鈍化層17b) (Second passivation layer 17b)

第二鈍化層17b含有第一氧化物。該第一氧化物可為與第一實施例中列舉的閘極絕緣層13或鈍化層17用之材料相同的氧化物。換言之,第一氧化物至少含有元素A(亦即鹼土金屬)及元素B(亦即鎵(Ga)、鈧(Sc)、釔(Y)及鑭系元素中之至少一者)。此外,視需要可進一步地含有其他元素。 The second passivation layer 17b contains the first oxide. The first oxide may be the same material as that used for the gate insulating layer 13 or the passivation layer 17 listed in the first embodiment. In other words, the first oxide contains at least element A (that is, alkaline earth metal) and element B (that is, at least one of gallium (Ga), scandium (Sc), yttrium (Y), and lanthanide). In addition, other elements may be further contained as needed.

對第二鈍化層17b的介電常數並無特別限制,該介電常數可根據意欲目的而作適當地選擇。可利用例如與測量第一鈍化層17a的介電常數用的相同方法來測量第二鈍化層17b的介電常數。 The dielectric constant of the second passivation layer 17b is not particularly limited, and the dielectric constant can be appropriately selected according to the intended purpose. The dielectric constant of the second passivation layer 17b can be measured using, for example, the same method as that used to measure the dielectric constant of the first passivation layer 17a.

對第二鈍化層17b的線性膨脹係數並無特別限制,該線性膨脹係數可根據意欲目的而作適當地選擇。可利用例如與測量第一鈍化層17a的線性膨脹係數用的相同方法來測量第二鈍化層17b的線性膨脹係數。 The linear expansion coefficient of the second passivation layer 17b is not particularly limited, and the linear expansion coefficient can be appropriately selected according to the intended purpose. The linear expansion coefficient of the second passivation layer 17b can be measured using, for example, the same method as that used to measure the linear expansion coefficient of the first passivation layer 17a.

發明人發現由第一鈍化層17a及第二鈍化層17b的疊積結構所形成的鈍化層在環境中展現出抗濕氣、氧氣、以及氮氣等的優異阻障性能。第一鈍化層17a含有包括矽(Si)及鹼土金屬的第二氧化物,而第二鈍化層17b含有包括元素A(亦即鹼土金屬)及元素B(亦即鎵(Ga)、鈧(Sc)、釔(Y)及鑭系元素中之至少一者)的第一氧化物(例如順電性非晶相氧化物)。如此的鈍化層能製造出高可靠性的FET,且在偏壓溫度加壓(Bias Temperature Stress,BTS)測試中臨界電壓變異小。 The inventor found that the passivation layer formed by the stacked structure of the first passivation layer 17a and the second passivation layer 17b exhibits excellent barrier performance against moisture, oxygen, nitrogen, etc. in the environment. The first passivation layer 17a contains a second oxide including silicon (Si) and alkaline earth metals, and the second passivation layer 17b contains an element A (that is, alkaline earth metals) and element B (that is, gallium (Ga), scandium (Sc ), at least one of yttrium (Y) and lanthanides) (such as paraelectric amorphous phase oxide). Such a passivation layer can produce a high-reliability FET, and the threshold voltage variation during the Bias Temperature Stress (BTS) test is small.

[FET的製造方法] [Method of manufacturing FET]

下面敘述說明了如第13圖所示之製造FET 110的方法。第14A圖至第15C圖為說明第九實施例之製造FET 110的步驟的範例的圖式。 The following description explains the method of manufacturing the FET 110 as shown in FIG. 14A to 15C are diagrams illustrating an example of steps of manufacturing the FET 110 of the ninth embodiment.

首先,進行與第一實施例中第2A圖至第3A圖所說明的相同步驟。在第14A圖所說明的步驟中,在整個基板11及閘極絕緣層13上形成第一鈍化層170a(亦即在蝕刻製程中欲形成第一鈍化層17a的層),且第一鈍化層170a覆蓋源極電極14、汲極電極15及主動層16。然後在整個第一鈍化層170a上形成第二鈍化層170b(亦即在蝕刻製程中欲形成第二鈍化層17b的層)。 First, the same steps as those explained in FIGS. 2A to 3A in the first embodiment are performed. In the step illustrated in FIG. 14A, a first passivation layer 170a (that is, a layer where the first passivation layer 17a is to be formed during the etching process) is formed on the entire substrate 11 and the gate insulating layer 13, and the first passivation layer 170a covers the source electrode 14, the drain electrode 15, and the active layer 16. Then, a second passivation layer 170b (that is, a layer where the second passivation layer 17b is to be formed during the etching process) is formed on the entire first passivation layer 170a.

對第一鈍化層170a及第二鈍化層170b的形成方法並無特別限制,該方法可根據意欲目的而作適當地選擇。例如,可利用真空製程(例如濺鍍法、脈衝雷射沉積法、化學氣相沉積法以及原子層沉積法)來形成薄膜。 The method for forming the first passivation layer 170a and the second passivation layer 170b is not particularly limited, and the method can be appropriately selected according to the intended purpose. For example, a vacuum process (such as sputtering, pulsed laser deposition, chemical vapor deposition, and atomic layer deposition) can be used to form the thin film.

此外,為了形成第一鈍化層170a,可製備含有第二氧化物之前驅物的塗佈液(亦即形成第一鈍化層用的塗佈液),然後施敷或印刷該塗佈液在施加目標物上,然後在適當條件下烘烤該施加目標物。同樣地,為了形成第二鈍化層170b,可製備含有第一氧化物之前驅物的塗佈液(亦即形成第二鈍化層用的塗佈液),然後施敷或印刷該塗佈液在施加目標物上,然後在適當條件下烘烤該施加目標物。 In addition, in order to form the first passivation layer 170a, a coating liquid containing the precursor of the second oxide (that is, a coating liquid for forming the first passivation layer) may be prepared, and then the coating liquid may be applied or printed. The target object is then baked under appropriate conditions. Similarly, in order to form the second passivation layer 170b, a coating liquid containing the precursor of the first oxide (that is, a coating liquid for forming the second passivation layer) may be prepared, and then the coating liquid may be applied or printed on Apply to the target, then bake the target under appropriate conditions.

第一鈍化層170a的平均薄膜厚度,較佳在10nm至1000nm,且更佳在20nm至500nm。第二鈍化層170b的平均薄膜厚度,較佳在10nm至1000nm,且更佳在20nm至500nm。 The average film thickness of the first passivation layer 170a is preferably 10 nm to 1000 nm, and more preferably 20 nm to 500 nm. The average film thickness of the second passivation layer 170b is preferably 10 nm to 1000 nm, and more preferably 20 nm to 500 nm.

--形成第一鈍化層用的塗佈液-- --Coating liquid for forming the first passivation layer--

形成第一鈍化層用的塗佈液至少含有含矽化合物、鹼土金屬化合物、以及溶劑,較佳更含有含鋁化合物及含硼化合物中之至少一者。此外,視需要形成第一鈍化層用的塗佈液可進一步地含有其他元素。 The coating solution for forming the first passivation layer contains at least a silicon-containing compound, an alkaline earth metal compound, and a solvent, and preferably further contains at least one of an aluminum-containing compound and a boron-containing compound. In addition, if necessary, the coating solution for forming the first passivation layer may further contain other elements.

--含矽化合物-- --Silicon compounds--

含矽化合物可例如為無機矽化合物、有機矽化合物等。 The silicon-containing compound may be, for example, an inorganic silicon compound, an organic silicon compound, or the like.

無機矽化合物可例如為四氯矽烷、四溴矽烷、四碘矽烷等。 The inorganic silicon compound may be, for example, tetrachlorosilane, tetrabromosilane, tetraiodosilane, or the like.

對有機矽化合物並無特別限制,只要是含有矽及有機基團的化合物即可。該有機矽化合物可根據意欲目的而作適當地選擇。矽及有機基團可經由例如離子鍵、共價鍵、配位鍵等而鍵結在一起。 There is no particular restriction on the organic silicon compound, as long as it is a compound containing silicon and organic groups. The organosilicon compound can be appropriately selected according to the intended purpose. Silicon and organic groups can be bonded together through, for example, ionic bonds, covalent bonds, coordination bonds, and the like.

對有機基團並無特別限制,該有機基團可根據意欲目的而作 適當地選擇。有機基團可例如為可包括取代基的烷基、可包括取代基的烷氧基、可包括取代基的醯氧基、可包括取代基的苯基等。烷基可例如為具有碳原子數為1至6的烷基等。烷氧基可例如為具有碳原子數為1至6的烷氧基等。醯氧基可例如為具有碳原子數為1至10的醯氧基等。 There is no particular restriction on the organic group, and the organic group can be appropriately selected according to the intended purpose. The organic group may be, for example, an alkyl group that may include a substituent, an alkoxy group that may include a substituent, an oxy group that may include a substituent, a phenyl group that may include a substituent, and the like. The alkyl group may be, for example, an alkyl group having 1 to 6 carbon atoms and the like. The alkoxy group may be, for example, an alkoxy group having 1 to 6 carbon atoms and the like. The acyloxy group may be, for example, an acyloxy group having 1 to 10 carbon atoms.

有機矽化合物可例如為四甲氧矽烷、四乙氧矽烷、四異丙氧矽烷、四丁氧矽烷、1,1,1,3,3,3-六甲基二矽氮烷(HMDS,TOKYO OHKA KOGYO有限公司的產品)、雙三甲矽基乙炔、三苯基矽烷、2-乙基己酸矽、四乙醯氧矽烷等。 The organosilicon compound may be, for example, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, 1,1,1,3,3,3-hexamethyldisilazane (HMDS, TOKYO Products of OHKA KOGYO Co., Ltd.), bistrimethylsilylacetylene, triphenylsilane, 2-ethylhexanoic acid silicon, tetraethoxysilane, etc.

對形成第一鈍化層用的塗佈液中之含矽化合物的含量並無特別限制,該含矽化合物的含量可根據意欲目的而作適當地選擇。 The content of the silicon-containing compound in the coating solution for forming the first passivation layer is not particularly limited, and the content of the silicon-containing compound can be appropriately selected according to the intended purpose.

--含鹼土金屬化合物-- --Alkaline earth metal compounds--

含鹼土金屬化合物可例如為無機鹼土金屬化合物、有機鹼土金屬化合物等。含鹼土金屬化合物中之鹼土金屬可例如為鈹(Be)、鎂(Mg)、鈣(Ca)、鍶(Sr)、鋇(Ba)等。 The alkaline earth metal-containing compound may be, for example, an inorganic alkaline earth metal compound, an organic alkaline earth metal compound, or the like. The alkaline earth metal in the alkaline earth metal-containing compound may be, for example, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), or the like.

無機鹼土金屬化合物可例如為鹼土金屬硝酸鹽、鹼土金屬硫酸鹽、鹼土金屬氯化物、鹼土金屬氟化物、鹼土金屬溴化物、鹼土金屬碘化物等。 The inorganic alkaline earth metal compound may be, for example, alkaline earth metal nitrate, alkaline earth metal sulfate, alkaline earth metal chloride, alkaline earth metal fluoride, alkaline earth metal bromide, alkaline earth metal iodide, or the like.

鹼土金屬硝酸鹽可例如為硝酸鎂、硝酸鈣、硝酸鍶、硝酸鋇等。 The alkaline earth metal nitrate may be, for example, magnesium nitrate, calcium nitrate, strontium nitrate, barium nitrate, or the like.

鹼土金屬硫酸鹽可例如為硫酸鎂、硫酸鈣、硫酸鍶、硫酸鋇等。 The alkaline earth metal sulfate may be, for example, magnesium sulfate, calcium sulfate, strontium sulfate, barium sulfate, or the like.

鹼土金屬氟化物可例如為氟化鎂、氟化鈣、氟化鍶、氟化鋇等。 The alkaline earth metal fluoride may be, for example, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, or the like.

鹼土金屬氯化物可例如為氯化鎂、氯化鈣、氯化鍶、氯化鋇等。 The alkaline earth metal chloride may be, for example, magnesium chloride, calcium chloride, strontium chloride, barium chloride, or the like.

鹼上金屬溴化物可例如為溴化鎂、溴化鈣、溴化鍶、溴化鋇等。 The metal bromide on the base may be, for example, magnesium bromide, calcium bromide, strontium bromide, barium bromide, or the like.

鹼土金屬碘化物可例如為碘化鎂、碘化鈣、碘化鍶、碘化鋇等。 The alkaline earth metal iodide may be, for example, magnesium iodide, calcium iodide, strontium iodide, barium iodide, or the like.

對有機鹼土金屬化合物並無特別限制,只要是含有鹼土金屬 及有機基團的化合物即可。該有機鹼土金屬化合物可根據意欲目的而作適當地選擇。鹼土金屬及有機基團可經由例如離子鍵、共價鍵、配位鍵等而鍵結在一起。 The organic alkaline earth metal compound is not particularly limited as long as it contains an alkaline earth metal and an organic group. The organic alkaline earth metal compound can be appropriately selected according to the intended purpose. Alkaline earth metal and organic groups can be bonded together via, for example, ionic bonds, covalent bonds, coordination bonds, and the like.

對有機基團並無特別限制,該有機基團可根據意欲目的而作適當地選擇。有機基團可例如為可包括取代基的烷基、可包括取代基的烷氧基、可包括取代基的醯氧基、可包括取代基的苯基、可包括取代基的乙醯丙酮基、可包括取代基的硫酸基等。烷基可例如為具有碳原子數為1至6的烷基等。烷氧基可例如為具有碳原子數為1至6的烷氧基等。醯氧基可例如為具有碳原子數為1至10的醯氧基;部分由苯環所取代的醯氧基,例如苯甲酸;部分由羥基所取代的醯氧基,例如乳酸;以及具有二個或二個以上的羰基的醯氧基,例如草酸及檸檬酸等。 There is no particular restriction on the organic group, and the organic group can be appropriately selected according to the intended purpose. The organic group may be, for example, an alkyl group that may include a substituent, an alkoxy group that may include a substituent, an oxy group that may include a substituent, a phenyl group that may include a substituent, an acetone group that may include a substituent, The sulfuric acid group of the substituent may be included. The alkyl group may be, for example, an alkyl group having 1 to 6 carbon atoms and the like. The alkoxy group may be, for example, an alkoxy group having 1 to 6 carbon atoms and the like. The acyloxy group may be, for example, an acyloxy group having 1 to 10 carbon atoms; an acyloxy group partially substituted with a benzene ring, such as benzoic acid; an acyloxy group partially substituted with a hydroxyl group, such as lactic acid; and Acyloxy groups of two or more carbonyl groups, such as oxalic acid and citric acid.

有機鹼土金屬化合物可例如為含甲氧化鎂、乙氧化鎂、二乙基鎂、乙酸鎂、甲酸鎂、乙醯丙酮鎂、2-乙基己酸鎂、乳酸鎂、環烷酸鎂、檸檬酸鎂、柳酸鎂、苯甲酸鎂、草酸鎂、三氟甲基磺酸鎂、甲氧化鈣、乙氧化鈣、乙酸鈣、甲酸鈣、乙醯丙酮鈣、雙(三甲基乙醯)甲烷鈣、2-乙基己酸鈣、乳酸鈣、環烷酸鈣、檸檬酸鈣、柳酸鈣、新癸酸鈣、苯甲酸鈣、草酸鈣、異丙氧化鍶、乙酸鍶、甲酸鍶、乙醯丙酮鍶、2-乙基己酸鍶、乳酸鍶、環烷酸鍶、柳酸鍶、草酸鍶、乙氧化鋇、異丙氧化鋇、乙酸鋇、甲酸鋇、乙醯丙酮鋇、2-乙基己酸鋇、乳酸鋇、環烷酸鋇、新癸酸鋇、草酸鋇、苯甲酸鋇、三氟甲基磺酸鋇、乙醯丙酮鈹等。 The organic alkaline earth metal compound may, for example, contain magnesium methoxide, magnesium ethoxide, diethylmagnesium, magnesium acetate, magnesium formate, magnesium acetone, magnesium 2-ethylhexanoate, magnesium lactate, magnesium naphthenate, citric acid Magnesium, magnesium salicylate, magnesium benzoate, magnesium oxalate, magnesium trifluoromethanesulfonate, calcium formate, calcium ethoxide, calcium acetate, calcium formate, calcium acetone, calcium bis(trimethylacetate) methane , Calcium 2-ethylhexanoate, calcium lactate, calcium naphthenate, calcium citrate, calcium salicylate, calcium neodecanoate, calcium benzoate, calcium oxalate, strontium isopropoxide, strontium acetate, strontium formate, acetyl Strontium acetone, strontium 2-ethylhexanoate, strontium lactate, strontium naphthenate, strontium salicylate, strontium oxalate, barium ethoxide, barium isopropoxide, barium acetate, barium formate, barium acetone, 2-ethyl Barium hexanoate, barium lactate, barium naphthenate, barium neodecanoate, barium oxalate, barium benzoate, barium trifluoromethanesulfonate, acetone beryllium, etc.

對形成第一鈍化層用的塗佈液中之含鹼土金屬化合物的含量並無特別限制,該含鹼土金屬化合物的含量可根據意欲目的而作適當地選擇。 The content of the alkaline earth metal-containing compound in the coating solution for forming the first passivation layer is not particularly limited, and the content of the alkaline earth metal-containing compound can be appropriately selected according to the intended purpose.

--含鋁化合物- --Aluminum compounds-

含鋁化合物可例如為無機鋁化合物、有機鋁化合物等。 The aluminum-containing compound may be, for example, an inorganic aluminum compound, an organic aluminum compound, or the like.

無機鋁化合物可例如為氯化鋁、硝酸鋁、溴化鋁、氫氧化鋁、硼酸鋁、三氟化鋁、碘化鋁、硫酸鋁、磷酸鋁、硫酸鋁銨等。 The inorganic aluminum compound may be, for example, aluminum chloride, aluminum nitrate, aluminum bromide, aluminum hydroxide, aluminum borate, aluminum trifluoride, aluminum iodide, aluminum sulfate, aluminum phosphate, aluminum ammonium sulfate, or the like.

對有機鋁化合物並無特別限制,只要是含有鋁(Al)及有機基團的化合物即可。該有機鋁化合物可根據意欲目的而作適當地選擇。鋁(Al)及有機基團可經由例如離子鍵、共價鍵、配位鍵等而鍵結在一起。 There is no particular limitation on the organoaluminum compound, as long as it is a compound containing aluminum (Al) and an organic group. The organoaluminum compound can be appropriately selected according to the intended purpose. Aluminum (Al) and organic groups can be bonded together via, for example, ionic bonds, covalent bonds, coordination bonds, and the like.

對有機基團並無特別限制,該有機基團可根據意欲目的而作適當地選擇。有機基團可例如為可包括取代基的烷基、可包括取代基的烷氧基、可包括取代基的醯氧基、可包括取代基的乙醯丙酮基、可包括取代基的硫酸基等。烷基可例如為具有碳原子數為1至6的烷基等。烷氧基可例如為具有碳原子數為1至6的烷氧基等。醯氧基可例如為具有碳原子數為1至10的醯氧基;部分由苯環所取代的醯氧基,例如苯甲酸;部分由羥基所取代的醯氧基,例如乳酸;以及具有二個或二個以上的羰基的醯氧基,例如草酸及檸檬酸等。 There is no particular restriction on the organic group, and the organic group can be appropriately selected according to the intended purpose. The organic group may be, for example, an alkyl group that may include a substituent, an alkoxy group that may include a substituent, an oxy group that may include a substituent, an acetone group that may include a substituent, a sulfate group that may include a substituent, etc. . The alkyl group may be, for example, an alkyl group having 1 to 6 carbon atoms and the like. The alkoxy group may be, for example, an alkoxy group having 1 to 6 carbon atoms and the like. The acyloxy group may be, for example, an acyloxy group having 1 to 10 carbon atoms; an acyloxy group partially substituted with a benzene ring, such as benzoic acid; an acyloxy group partially substituted with a hydroxyl group, such as lactic acid; and Acyloxy groups of two or more carbonyl groups, such as oxalic acid and citric acid.

該有機鋁化合物可例如為異丙氧化鋁、二級丁氧化鋁、三乙基鋁、乙氧基二乙基鋁、乙酸鋁、乙醯丙酮鋁、六氟乙醯丙酮鋁、2-乙基己酸鋁、乳酸鋁、苯甲酸鋁、雙二級丁氧基乙醯乙酸鋁螯合物、以及三氟甲基磺酸鋁。 The organoaluminum compound may be, for example, isopropyl aluminum oxide, secondary butyl aluminum oxide, triethyl aluminum, ethoxy diethyl aluminum, aluminum acetate, aluminum acetone, aluminum hexafluoroacetate, 2-ethyl Aluminum hexanoate, aluminum lactate, aluminum benzoate, bis-secondary butoxyacetate aluminum chelate, and aluminum trifluoromethanesulfonate.

對形成第一鈍化層用的塗佈液中之含鋁化合物的含量並無特別限制,該含鋁化合物的含量可根據意欲目的而作適當地選擇。 The content of the aluminum-containing compound in the coating solution for forming the first passivation layer is not particularly limited, and the content of the aluminum-containing compound can be appropriately selected according to the intended purpose.

--含硼化合物- --Boron-containing compounds-

含硼化合物可例如為無機硼化合物、有機硼化合物等。 The boron-containing compound may be, for example, an inorganic boron compound, an organic boron compound, or the like.

無機硼化合物可例如為正硼酸、氧化硼、三溴化硼、四氟硼酸、硼酸鋁、硼酸鎂等。該氧化硼可例如為二氧化二硼、三氧化二硼、三氧化四硼、五氧化四硼等。 The inorganic boron compound may be, for example, orthoboric acid, boron oxide, boron tribromide, tetrafluoroboric acid, aluminum borate, magnesium borate, and the like. The boron oxide may be, for example, diboron dioxide, diboron trioxide, tetraboron trioxide, tetraboron pentoxide, or the like.

對有機硼化合物並無特別限制,只要是含有硼(B)及有機基團的化合物即可。該有機硼化合物可根據意欲目的而作適當地選擇。硼(B)及有機基團可經由例如離子鍵、共價鍵、配位鍵等而鍵結在一起。 The organic boron compound is not particularly limited as long as it contains boron (B) and an organic group. The organoboron compound can be appropriately selected according to the intended purpose. Boron (B) and organic groups can be bonded together via, for example, ionic bonds, covalent bonds, coordination bonds, and the like.

對有機基團並無特別限制,該有機基團可根據意欲目的而作適當地選擇。有機基團可例如為可包括取代基的烷基、可包括取代基的烷氧基、可包括取代基的醯氧基、可包括取代基的苯基、可包括取代基的硫酸基、可包括取代基的噻吩基等。烷基可例如為具有碳原子數為1至6的烷基等。烷氧基可例如為具有碳原子數為1至6的烷氧基等。該烷氧基的範例包括具有二個或二個以上的氧原子的有機基團,而其中之二個氧原子鍵結至硼以與該硼共同形成環狀結構。此外,該烷氧基的範例包括其中之烷基被有機矽烷取代的烷氧基。醯氧基可例如為具有碳原子數為1至10的 醯氧基等。 There is no particular restriction on the organic group, and the organic group can be appropriately selected according to the intended purpose. The organic group may be, for example, an alkyl group that may include a substituent, an alkoxy group that may include a substituent, an oxy group that may include a substituent, a phenyl group that may include a substituent, a sulfate group that may include a substituent, may include Thienyl and the like of the substituent. The alkyl group may be, for example, an alkyl group having 1 to 6 carbon atoms and the like. The alkoxy group may be, for example, an alkoxy group having 1 to 6 carbon atoms and the like. Examples of the alkoxy group include an organic group having two or more oxygen atoms, and two of the oxygen atoms are bonded to boron to form a ring structure with the boron. In addition, examples of the alkoxy group include an alkoxy group in which the alkyl group is substituted with organosilane. The acyloxy group may be, for example, an acyloxy group having 1 to 10 carbon atoms.

該有機硼化合物可例如為(R)-5,5-二苯基-2-甲基-3,4-丙醇-1,3,2-噁唑硼烷、三異丙基硼、2-異丙氧基-4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷、雙(己烯基甘醇酸)二硼、4-(4,4,5,5-四甲基-1,3,2,-二氧雜環戊硼-2-基)-1H-吡唑、(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)苯、三級丁基-N-[4-(4,4,5,5-四甲基-1,2,3,-二氧雜環戊硼烷-2-基)苯基]胺甲酸酯、苯基硼酸、3-乙醯苯基硼酸、三氟化硼乙酸錯合物、四氟化硼環丁碸錯合物、2-噻吩硼酸、三(三甲基矽烷)硼酸酯等。 The organoboron compound can be, for example, (R)-5,5-diphenyl-2-methyl-3,4-propanol-1,3,2-oxazolylborane, triisopropylboron, 2- Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, bis(hexenylglycolic acid) diboron, 4-(4,4, 5,5-tetramethyl-1,3,2,-dioxaborol-2-yl)-1H-pyrazole, (4,4,5,5-tetramethyl-1,3,2 -Dioxolane-2-yl)benzene, tertiary butyl-N-(4-(4,4,5,5-tetramethyl-1,2,3,-dioxolane Borane-2-yl)phenyl]carbamate, phenylboronic acid, 3-acetoxyphenylboronic acid, boron trifluoride acetic acid complex, boron tetrafluoride cyclobutane complex, 2-thiophene Boric acid, tris(trimethylsilane) borate, etc.

對形成第一鈍化層用的塗佈液中之含硼化合物的含量並無特別限制,該含硼化合物的含量可根據意欲目的而作適當地選擇。 The content of the boron-containing compound in the coating solution for forming the first passivation layer is not particularly limited, and the content of the boron-containing compound can be appropriately selected according to the intended purpose.

---溶劑--- ---Solvent---

對溶劑並無特別限制,只要是能夠穩定地溶解及分散化合物的溶劑即可。該溶劑可根據意欲目的而作適當地選擇。該溶劑可例如為甲苯、二甲苯、均三甲苯、異丙基甲苯、戊苯、十二基苯、聯環己烷、環己苯、癸烷、十一烷、十二烷、十三烷、十四烷、十五烷、四氫萘、十氫萘、異丙醇、苯甲酸乙酯、N,N-二甲基甲醯胺、碳酸丙醯酯、2-乙基己酸、礦油精、二甲基丙烯基脲、4-丁內酯、2-甲氧基乙醇、丙二醇、水等。 The solvent is not particularly limited, as long as it can stably dissolve and disperse the compound. The solvent can be appropriately selected according to the intended purpose. The solvent can be, for example, toluene, xylene, mesitylene, cumene, pentylbenzene, dodecylbenzene, bicyclohexane, cyclohexylbenzene, decane, undecane, dodecane, tridecane , Tetradecane, pentadecane, tetrahydronaphthalene, decahydronaphthalene, isopropanol, ethyl benzoate, N,N-dimethylformamide, propylene carbonate, 2-ethylhexanoic acid, ore Olein, dimethylpropenyl urea, 4-butyrolactone, 2-methoxyethanol, propylene glycol, water, etc.

對形成第一鈍化層用的塗佈液中之溶劑的含量並無特別限制,該溶劑的含量可根據意欲目的而作適當地選擇。 The content of the solvent in the coating solution for forming the first passivation layer is not particularly limited, and the content of the solvent can be appropriately selected according to the intended purpose.

對形成第一鈍化層用的塗佈液中之含矽化合物及含鹼土金屬化合物的組成比例(含矽化合物:含鹼土金屬化合物)並無特別限制,該組成比例可根據意欲目的而作適當地選擇。但是該組成比例較佳在下列的範圍內。 The composition ratio of the silicon-containing compound and the alkaline earth metal-containing compound in the coating solution for forming the first passivation layer (silicon-containing compound: alkaline earth metal-containing compound) is not particularly limited, and the composition ratio can be appropriately determined according to the intended purpose select. However, the composition ratio is preferably within the following range.

在形成第一鈍化層用的塗佈液中,矽(Si)以及鹼土金屬的組成比例(矽:鹼土金屬),由氧化物(例如SiO2、BeO、MgO、CaO、SrO、BaO)計算後,較佳在50.0mol%至90.0mol%:10.0mol%至50.0mol%的範圍內。 In the coating solution for forming the first passivation layer, the composition ratio of silicon (Si) and alkaline earth metal (silicon: alkaline earth metal) is calculated from oxides (such as SiO 2 , BeO, MgO, CaO, SrO, BaO) It is preferably in the range of 50.0 mol% to 90.0 mol%: 10.0 mol% to 50.0 mol%.

對形成第一鈍化層用的塗佈液中之含矽化合物、含鹼土金屬化合物、以及含鋁化合物和含硼化合物中之至少一者的組成比例(含矽化合物:含鹼土金屬化合物:含鋁化合物和含硼化合物中之至少一者)並無特別限制,該組成比例可根據意欲目的而作適當地選擇。但是該組成比例較佳 在下列的範圍內。 Composition ratio of at least one of silicon-containing compound, alkaline earth metal-containing compound, aluminum-containing compound, and boron-containing compound in the coating solution for forming the first passivation layer (silicon-containing compound: alkaline-earth metal-containing compound: aluminum-containing At least one of the compound and the boron-containing compound) is not particularly limited, and the composition ratio can be appropriately selected according to the intended purpose. However, the composition ratio is preferably within the following range.

在形成第一鈍化層用的塗佈液中,矽、鹼土金屬、以及含鋁化合物和含硼化合物中之至少一者的組成比例(矽:鹼土金屬:鋁和硼中之至少一者),由氧化物(SiO2、BeO、MgO、CaO、SrO、BaO、Al2O3、B2O3)計算後,較佳在50.0mol%至90.0mol%:5.0mol%至20.0mol%:5.0mol%至30.0mol%的範圍內。 In the coating solution for forming the first passivation layer, the composition ratio of silicon, alkaline earth metal, and at least one of the aluminum-containing compound and the boron-containing compound (silicon: alkaline earth metal: at least one of aluminum and boron), Calculated from oxides (SiO 2 , BeO, MgO, CaO, SrO, BaO, Al 2 O 3 , B 2 O 3 ), preferably from 50.0mol% to 90.0mol%: 5.0mol% to 20.0mol%: 5.0 mol% to 30.0mol%.

--形成第二鈍化層用的塗佈液-- --Coating liquid for forming the second passivation layer--

形成第二鈍化層用的塗佈液至少含有含鹼土金屬化合物(亦即,含元素A化合物)、含元素B化合物、以及一溶劑。此外,形成第二鈍化層用的塗佈液較佳更至少含有含元素C化合物中之一者。此外,視需要形成第二鈍化層用的塗佈液可進一步地含有其他元素。 The coating solution for forming the second passivation layer contains at least an alkaline earth metal-containing compound (that is, an element A-containing compound), an element B-containing compound, and a solvent. In addition, the coating solution for forming the second passivation layer preferably further contains at least one of the element C-containing compounds. In addition, if necessary, the coating solution for forming the second passivation layer may further contain other elements.

---含鹼土金屬化合物(含元素A化合物)--- ---Alkaline earth metal compounds (compounds containing element A) ---

含鹼土金屬化合物可例如為無機鹼土金屬化合物,有機鹼土金屬化合物等,在含鹼土金屬化合物中之鹼土金屬可例如為包含鈹(Be)、鎂(Mg)、鈣(Ca)、鍶(Sr)、鋇(Ba)等。 The alkaline earth metal-containing compound may be, for example, an inorganic alkaline earth metal compound, an organic alkaline earth metal compound, etc. The alkaline earth metal in the alkaline earth metal compound may, for example, include beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr) , Barium (Ba), etc.

該無機鹼土金屬化合物可例如為鹼土金屬硝酸鹽、鹼土金屬硫酸鹽、鹼土金屬氯化物、鹼土金屬氟化物、鹼土金屬溴化物、鹼土金屬碘化物等。 The inorganic alkaline earth metal compound may be, for example, alkaline earth metal nitrate, alkaline earth metal sulfate, alkaline earth metal chloride, alkaline earth metal fluoride, alkaline earth metal bromide, alkaline earth metal iodide, or the like.

該鹼土金屬硝酸鹽可例如為硝酸鎂、硝酸鈣、硝酸鍶、硝酸鋇等。 The alkaline earth metal nitrate may be, for example, magnesium nitrate, calcium nitrate, strontium nitrate, barium nitrate, or the like.

該鹼土金屬硫酸鹽可例如為硫酸鎂、硫酸鈣、硫酸鍶、硫酸鋇等。 The alkaline earth metal sulfate may be, for example, magnesium sulfate, calcium sulfate, strontium sulfate, barium sulfate, or the like.

該鹼土金屬氯化物可例如為氯化鎂、氯化鈣、氯化鍶、氯化鋇等。 The alkaline earth metal chloride may be, for example, magnesium chloride, calcium chloride, strontium chloride, barium chloride, or the like.

該鹼土金屬氟化物可例如為氟化鎂、氟化鈣、氟化鍶、氟化鋇等。 The alkaline earth metal fluoride may be, for example, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, or the like.

該鹼土金屬溴化物可例如為溴化鎂、溴化鈣、溴化鍶、溴化鋇等。 The alkaline earth metal bromide may be, for example, magnesium bromide, calcium bromide, strontium bromide, barium bromide, or the like.

該鹼土金屬碘化物可例如為碘化鎂、碘化鈣、碘化鍶、碘化鋇等。 The alkaline earth metal iodide may be, for example, magnesium iodide, calcium iodide, strontium iodide, barium iodide, or the like.

對有機鹼土金屬化合物並無特別限制,只要是含有鹼土金屬及有機基團的化合物即可。該有機鹼土金屬化合物可根據意欲目的而作適當地選擇。鹼土金屬及有機基團可經由例如離子鍵、共價鍵、配位鍵等而鍵結在一起。 The organic alkaline earth metal compound is not particularly limited as long as it contains an alkaline earth metal and an organic group. The organic alkaline earth metal compound can be appropriately selected according to the intended purpose. Alkaline earth metal and organic groups can be bonded together via, for example, ionic bonds, covalent bonds, coordination bonds, and the like.

對有機基團並無特別限制,該有機基團可根據意欲目的而作適當地選擇。有機基團可例如為可包括取代基的烷基、可包括取代基的烷氧基、可包括取代基的醯氧基、可包括取代基的苯基、可包括取代基的乙醯丙酮基、可包括取代基的硫酸基等。烷基可例如為具有碳原子數為1至6的烷基等。烷氧基可例如為具有碳原子數為1至6的烷氧基等。醯氧基可例如為具有碳原子數為1至10的醯氧基;部分由苯環所取代的醯氧基,例如苯甲酸;部分由羥基所取代的醯氧基,例如乳酸;以及具有二個或二個以上的羰基的醯氧基,例如草酸及檸檬酸等。 There is no particular restriction on the organic group, and the organic group can be appropriately selected according to the intended purpose. The organic group may be, for example, an alkyl group that may include a substituent, an alkoxy group that may include a substituent, an oxy group that may include a substituent, a phenyl group that may include a substituent, an acetone group that may include a substituent, The sulfuric acid group of the substituent may be included. The alkyl group may be, for example, an alkyl group having 1 to 6 carbon atoms and the like. The alkoxy group may be, for example, an alkoxy group having 1 to 6 carbon atoms and the like. The acyloxy group may be, for example, an acyloxy group having 1 to 10 carbon atoms; an acyloxy group partially substituted with a benzene ring, such as benzoic acid; an acyloxy group partially substituted with a hydroxyl group, such as lactic acid; and Acyloxy groups of two or more carbonyl groups, such as oxalic acid and citric acid.

有機鹼土金屬化合物可例如為甲氧化鎂、乙氧化鎂、二乙基鎂、乙酸鎂、甲酸鎂、乙醯丙酮鎂、2-乙基己酸鎂、乳酸鎂、環烷酸鎂、檸檬酸鎂、柳酸鎂、苯甲酸鎂、草酸鎂、三氟甲基磺酸鎂、甲氧化鈣、乙氧化鈣、乙酸鈣、甲酸鈣、乙醯丙酮鈣、雙(三甲基乙醯)甲烷鈣、2-乙基己酸鈣、乳酸鈣、環烷酸鈣、檸檬酸鈣、柳酸鈣、新癸酸鈣、苯甲酸鈣、草酸鈣、異丙氧化鍶、乙酸鍶、甲酸鍶、乙醯丙酮鍶、2-乙基己酸鍶、乳酸鍶、環烷酸鍶、柳酸鍶、草酸鍶、乙氧化鋇、異丙氧化鋇、乙酸鋇、甲酸鋇、乙醯丙酮鋇、2-乙基己酸鋇、乳酸鋇、環烷酸鋇、新癸酸鋇、草酸鋇、苯甲酸鋇、三氟甲基磺酸鋇、雙(乙醯丙酮)鈹等。 The organic alkaline earth metal compound may be, for example, magnesium methoxide, magnesium ethoxide, diethyl magnesium, magnesium acetate, magnesium formate, magnesium acetone, magnesium 2-ethylhexanoate, magnesium lactate, magnesium naphthenate, magnesium citrate , Magnesium salicylate, magnesium benzoate, magnesium oxalate, magnesium trifluoromethanesulfonate, calcium formate, calcium ethoxide, calcium acetate, calcium formate, calcium acetone acetone, calcium bis(trimethylacetate) methane, Calcium 2-ethylhexanoate, calcium lactate, calcium naphthenate, calcium citrate, calcium salicylate, calcium neodecanoate, calcium benzoate, calcium oxalate, strontium isopropoxide, strontium acetate, strontium formate, acetone acetone Strontium, Strontium 2-ethylhexanoate, Strontium lactate, Strontium naphthenate, Strontium salicylate, Strontium oxalate, Barium ethoxide, Barium isopropoxide, Barium acetate, Barium formate, Barium acetone, 2-ethylhexyl Barium acid, barium lactate, barium naphthenate, barium neodecanoate, barium oxalate, barium benzoate, barium trifluoromethanesulfonate, bis(acetylacetone) beryllium, etc.

對形成第二鈍化層用的塗佈液中之含鹼土金屬化合物的含量並無特別限制,該含鹼土金屬化合物的含量可根據意欲目的而作適當地選擇。 The content of the alkaline earth metal-containing compound in the coating solution for forming the second passivation layer is not particularly limited, and the content of the alkaline earth metal-containing compound can be appropriately selected according to the intended purpose.

(含元素B化合物) (Compounds containing element B)

含元素B化合物中的稀土元素可例如為鎵(Ga)、鈧(Sc)、釔(Y)、鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鎦(Lu)等。 The rare earth element in the element B-containing compound may be, for example, gallium (Ga), scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), palladium (Pr), neodymium (Nd), or praseodymium (Pm) , Sm, Eu, Gd, Tb, Dy, Ho, Er, Er, Yb, and Lu Wait.

該含元素B化合物可例如為無機含元素B化合物、有機含元素B化合物等。 The element-containing B compound may be, for example, an inorganic element-containing B compound, an organic element-containing B compound, or the like.

該無機含元素B化合物可例如為元素B硝酸鹽、元素B硫酸鹽、元素B氟化物、元素B氯化物、元素B溴化物、元素B碘化物等。 The inorganic element-containing B compound may be, for example, element B nitrate, element B sulfate, element B fluoride, element B chloride, element B bromide, element B iodide, or the like.

元素B硝酸鹽可例如為硝酸鎵、硝酸鈧、硝酸釔、硝酸鑭、硝酸鈰、硝酸鐠、硝酸釹、硝酸釤、硝酸銪、硝酸釓、硝酸鋱、硝酸鏑、硝酸鈥、硝酸鉺、硝酸銩、硝酸鐿、硝酸鎦等。 The element B nitrate may be, for example, gallium nitrate, scandium nitrate, yttrium nitrate, lanthanum nitrate, cerium nitrate, gallium nitrate, neodymium nitrate, samarium nitrate, europium nitrate, gadolinium nitrate, yttrium nitrate, dysprosium nitrate, berthium nitrate, erbium nitrate, nitric acid Qin, ytterbium nitrate, ytterbium nitrate, etc.

元素B硫酸鹽可例如為硫酸鎵、硫酸鈧、硫酸釔、硫酸鑭、硫酸鈰、硫酸鐠、硫酸釹、硫酸釤、硫酸銪、硫酸釓、硫酸鋱、硫酸鏑、硫酸鈥、硫酸鉺、硫酸銩、硫酸鐿、硫酸鎦等。 The element B sulfate may be, for example, gallium sulfate, scandium sulfate, yttrium sulfate, lanthanum sulfate, cerium sulfate, gallium sulfate, neodymium sulfate, samarium sulfate, europium sulfate, gadolinium sulfate, yttrium sulfate, dysprosium sulfate, purium sulfate, erbium sulfate, sulfuric acid Qin, ytterbium sulfate, ytterbium sulfate, etc.

元素B氟化物可例如為氟化鎵、氟化鈧、氟化釔、氟化鑭、氟化鈰、氟化鐠、氟化釹、氟化釤、氟化銪、氟化釓、氟化鋱、氟化鏑、氟化鈥、氟化鉺、氟化銩、氟化鐿、氟化鎦等。 The element B fluoride may be, for example, gallium fluoride, scandium fluoride, yttrium fluoride, lanthanum fluoride, cerium fluoride, gallium fluoride, neodymium fluoride, samarium fluoride, europium fluoride, gadolinium fluoride, yttrium fluoride , Dysprosium fluoride, fluorinated fluorinated, erbium fluoride, fluorinated fluoride, ytterbium fluoride, lutetium fluoride, etc.

元素B氯化物可例如為氯化鎵、氯化鈧、氯化釔、氯化鑭、氯化鈰、氯化鐠、氯化釹、氯化釤、氯化銪、氯化釓、氯化鋱、氯化鏑、氯化鈥、氯化鉺、氯化銩、氯化鐿、氯化鎦等。 The element B chloride may be, for example, gallium chloride, scandium chloride, yttrium chloride, lanthanum chloride, cerium chloride, gallium chloride, neodymium chloride, samarium chloride, europium chloride, gadolinium chloride, arsenic chloride , Dysprosium chloride, 鈥 chloride, erbium chloride, squalene chloride, ytterbium chloride, lutetium chloride, etc.

元素B溴化物可例如為溴化鎵、溴化鈧、溴化釔、溴化鑭、溴化鈰、溴化鐠、溴化釹、溴化釤、溴化銪、溴化釓、溴化鋱、溴化鏑、溴化鈥、溴化鉺、溴化銩、溴化鐿、溴化鎦等。 The element B bromide may be, for example, gallium bromide, scandium bromide, yttrium bromide, lanthanum bromide, cerium bromide, bromide bromide, neodymium bromide, samarium bromide, europium bromide, gallium bromide, bromobromide , Dysprosium bromide, berthium bromide, erbium bromide, bromide, ytterbium bromide, ytterbium bromide, etc.

元素B碘化物可例如為碘化鎵、碘化鈧、碘化釔、碘化鑭、碘化鈰、碘化鐠、碘化釹、碘化釤、碘化銪、碘化釓、碘化鋱、碘化鏑、碘化鈥、碘化鉺、碘化銩、碘化鐿、碘化鎦等。 The element B iodide may be, for example, gallium iodide, scandium iodide, yttrium iodide, lanthanum iodide, cerium iodide, gallium iodide, neodymium iodide, samarium iodide, europium iodide, gadolinium iodide, iodine iodide , Dysprosium iodide, iodine iodide, erbium iodide, iodine iodide, ytterbium iodide, ytterbium iodide, etc.

對有機元素B化合物並無特別限制,只要是含有元素B及有機基團的化合物即可。該有機元素B化合物可根據意欲目的而作適當地選擇。元素B及有機基團可經由例如離子鍵、共價鍵、配位鍵等而鍵結在一起。 The organic element B compound is not particularly limited, as long as it is a compound containing element B and an organic group. The organic element B compound can be appropriately selected according to the intended purpose. The element B and the organic group may be bonded together through, for example, ionic bonds, covalent bonds, coordination bonds, and the like.

對有機基團並無特別限制,該有機基團可根據意欲目的而作適當地選擇。有機基團可例如為可包括取代基的烷基、可包括取代基的烷氧基、可包括取代基的醯氧基、可包括取代基的乙醯丙酮基、可包括取代基的環戊二烯基等。烷基可例如為具有碳原子數為1至6的烷基等。烷氧基可例如為具有碳原子數為1至6的烷氧基等。醯氧基可例如為具有碳原子數為1至10的醯氧基等。 There is no particular restriction on the organic group, and the organic group can be appropriately selected according to the intended purpose. The organic group may be, for example, an alkyl group that may include a substituent, an alkoxy group that may include a substituent, an oxy group that may include a substituent, an acetone group that may include a substituent, and a cyclopentane that may include a substituent Alkenyl and so on. The alkyl group may be, for example, an alkyl group having 1 to 6 carbon atoms and the like. The alkoxy group may be, for example, an alkoxy group having 1 to 6 carbon atoms and the like. The acyloxy group may be, for example, an acyloxy group having 1 to 10 carbon atoms.

該有機元素B化合物可例如為三(環戊二烯基)鎵、異丙氧化鈧、乙酸鈧、三(環戊二烯基)鈧、異丙氧化釔、2-乙基己酸釔、三(乙醯丙酮)釔、三(環戊二烯基)釔、異丙氧化鑭、2-乙基己酸鑭、三(乙醯丙酮)鑭、三(環戊二烯基)鑭、2-乙基己酸鈰、三(乙醯丙酮)鈰、三(環戊二烯基)鈰、異丙氧化鐠、草酸鐠、三(乙醯丙酮)鐠、三(環戊二烯基)鐠、異丙氧化釹、2-乙基己酸釹、三氟乙醯丙酮釹、三(異丙基環戊二烯基)釹、三(乙基環戊二烯基)鉕、異丙氧化釤、2-乙基己酸釤、三(乙醯丙酮)釤、三(環戊二烯基)釤、2-乙基己酸銪、三(乙醯丙酮)銪、三(乙基環戊二烯基)銪、異丙氧化釓、2-乙基己酸釓、三(乙醯丙酮)釓、三(環戊二烯基基)釓、乙酸鋱、三(乙醯丙酮)鋱、三(環戊二烯基)鋱、異丙氧化鏑、乙酸鏑、三(乙醯丙酮)鏑、三(乙基環戊二烯基)鏑、異丙氧化鈥、乙酸鈥、三(環戊二烯基)鈥、異丙氧化鉺、乙酸鉺、三(乙醯丙酮)鉺、三(環戊二烯基)鉺、乙酸銩、三(乙醯丙酮)銩、三(環戊二烯基)銩、異丙氧化鐿、乙酸鐿、三(乙醯丙酮)鐿、三(環戊二烯基)鐿、草酸鎦、三(乙基環戊二烯基)鎦等。 The organic element B compound may be, for example, tris(cyclopentadienyl) gallium, isopropyl scandium oxide, scandium acetate, tris(cyclopentadienyl) scandium, yttrium isopropyl oxide, yttrium 2-ethylhexanoate, tris (Acetylacetone) yttrium, tri(cyclopentadienyl)yttrium, isopropyl lanthanum oxide, 2-ethylhexanoic acid lanthanum, tri(acetylacetone) lanthanum, tri(cyclopentadienyl)lanthanum, 2- Cerium ethylhexanoate, tris(acetoacetone)cerium, tris(cyclopentadienyl)cerium, isopropyl oxide, oxalate, tris(acetoacetone) oxide, tris(cyclopentadienyl) oxide, Neodymium isopropoxide, neodymium 2-ethylhexanoate, neodymium trifluoroacetoacetate, neodymium tris(isopropylcyclopentadienyl), sternium tris(ethylcyclopentadienyl), samarium isopropoxide, Samarium 2-ethylhexanoate, tris(acetylacetone) samarium, tris(cyclopentadienyl) samarium, europium 2-ethylhexanoate, tri(acetylacetone) europium, tri(ethylcyclopentadiene Yl) europium, isopropyl gadolinium oxide, 2-ethylhexanoic acid gadolinium, tris(acetoacetone) gadolinium, tris(cyclopentadienyl) gadolinium, yttrium acetate, tris(acetoacetone) yttrium, tris(cyclo (Pentadienyl) ytterbium, isopropyl dysprosium oxide, dysprosium acetate, dysprosium tris(acetone), dysprosium tris(ethylcyclopentadienyl), dysprosium isopropoxide, urs isopropoxide, urs acetate, tris(cyclopentadienyl acetate) )', erbium isopropoxide, erbium acetate, erbium tris(acetylacetone), erbium tris(cyclopentadienyl), erbium triacetate, squalene acetate, squalene tris(acetone), strium tris(cyclopentadienyl), Ytterbium isopropoxide, ytterbium acetate, ytterbium tris(acetone), ytterbium tris(cyclopentadienyl), ytterbium oxalate, ytterbium oxalate, tris(ethylcyclopentadienyl) lutetium, etc.

對形成第二鈍化層用的塗佈液中之含元素B化合物的含量並無特別限制,該含元素B化合物的含量可根據意欲目的而作適當地選擇。 The content of the element B-containing compound in the coating solution for forming the second passivation layer is not particularly limited, and the content of the element B-containing compound can be appropriately selected according to the intended purpose.

---含元素C化合物--- ---Elemental C Compounds ---

含元素C化合物可例如為鋁(Al)、鈦(Ti)、鋯(Zr)、鉿(Hf)、鈮(Nb)、鉭(Ta)等。 The element C-containing compound may be, for example, aluminum (Al), titanium (Ti), zirconium (Zr), hafnium (Hf), niobium (Nb), tantalum (Ta), or the like.

該含元素C化合物可例如為無機含元素C化合物、有機含元素C化合物等。 The element-containing C compound may be, for example, an inorganic element-containing C compound, an organic element-containing C compound, or the like.

該無機含元素C化合物可例如為元素C硝酸鹽、元素C硫酸鹽、元素C氟化物、元素C氯化物、元素C溴化物、元素C碘化物等。 The inorganic element-containing C compound may be, for example, element C nitrate, element C sulfate, element C fluoride, element C chloride, element C bromide, element C iodide, or the like.

該無機含元素C化合物可例如為硝酸鋁、硫酸鋁、氟化鋁、氯化鋁、溴化鋁、碘化鋁、氫氧化鋁、磷酸鋁、硫酸鋁銨、二硫化鈦、氟化鈦、氯化鈦、溴化鈦、碘化鈦、硫酸鋯、碳酸鋯、氟化鋯、氯化鋯、溴化鋯、碘化鋯、硫酸鉿、氟化鉿、氯化鉿、溴化鉿、碘化鉿、氟化鈮、氯化鈮、溴化鈮、氟化鉭、氯化鉭、溴化鉭等。 The inorganic element-containing C compound may be, for example, aluminum nitrate, aluminum sulfate, aluminum fluoride, aluminum chloride, aluminum bromide, aluminum iodide, aluminum hydroxide, aluminum phosphate, aluminum ammonium sulfate, titanium disulfide, titanium fluoride, Titanium chloride, titanium bromide, titanium iodide, zirconium sulfate, zirconium carbonate, zirconium fluoride, zirconium chloride, zirconium bromide, zirconium iodide, hafnium sulfate, hafnium fluoride, hafnium chloride, hafnium bromide, iodine Hafnium, niobium fluoride, niobium chloride, niobium bromide, tantalum fluoride, tantalum chloride, tantalum bromide, etc.

對有機含元素C化合物並無特別限制,只要是含有元素C及有機基團的化合物即可。該有機含元素C化合物可根據意欲目的而作適 當地選擇。元素C及有機基團可經由例如離子鍵、共價鍵、配位鍵等而鍵結在一起。 The organic element-containing C compound is not particularly limited as long as it contains the element C and an organic group. The organic element-containing C compound can be appropriately selected according to the intended purpose. The element C and the organic group may be bonded together through, for example, ionic bonds, covalent bonds, coordination bonds, and the like.

對有機基團並無特別限制,該有機基團可根據意欲目的而作適當地選擇。有機基團可例如為可包括取代基的烷基、可包括取代基的烷氧基、可包括取代基的醯氧基、可包括取代基的乙醯丙酮基、可包括取代基的環戊二烯基等。烷基可例如為具有碳原子數為1至6的烷基等。烷氧基可例如為具有碳原子數為1至6的烷氧基等。醯氧基可例如為具有碳原子數為1至10的醯氧基等。 There is no particular restriction on the organic group, and the organic group can be appropriately selected according to the intended purpose. The organic group may be, for example, an alkyl group that may include a substituent, an alkoxy group that may include a substituent, an oxy group that may include a substituent, an acetone group that may include a substituent, and a cyclopentane that may include a substituent Alkenyl and so on. The alkyl group may be, for example, an alkyl group having 1 to 6 carbon atoms and the like. The alkoxy group may be, for example, an alkoxy group having 1 to 6 carbon atoms and the like. The acyloxy group may be, for example, an acyloxy group having 1 to 10 carbon atoms.

該有機元素C化合物可例如為異丙氧化鋁、二級丁氧化鋁、三乙基鋁、乙氧基二乙基鋁、乙酸鋁、乙醯丙酮鋁、六氟乙醯丙酮鋁、2-乙基己酸鋁、乳酸鋁、苯甲酸鋁、雙二級丁氧基乙醯乙酸鋁螯合物、、三氟甲基磺酸鋁、異丙氧化鈦、氯化二(環戊二烯基)鈦、丁氧化鋯、異丙氧化鋯、氧化二(2-乙基己酸)鋯、二(正丁氧基)二乙醯丙酮鋯、四(乙醯丙酮)鋯、四(環戊二烯基)鋯、丁氧化鉿、異丙氧化鉿、四(2-乙基己酸)鉿、二(正丁氧基)二乙醯丙酮鉿、四(乙醯丙酮)鉿、二(環戊二烯基)二甲基鉿、乙氧化鈮、2-乙基己酸鈮、氯化二(環戊二烯基)鈮、乙氧化鉭、四乙氧基乙醯丙酮鉭等。 The organic element C compound may be, for example, isopropylaluminum oxide, secondary butylaluminum oxide, triethylaluminum, ethoxydiethylaluminum, aluminum acetate, aluminum acetone, aluminum hexafluoroacetone, 2-ethyl Aluminum hexanoate, aluminum lactate, aluminum benzoate, bi-secondary butoxyacetyl acetate acetate chelate, aluminum trifluoromethanesulfonate, titanium isopropoxide, chlorinated di(cyclopentadienyl) Titanium, zirconium butyrate, isopropyl zirconium oxide, zirconium bis(2-ethylhexanoate), zirconium bis(n-butoxy)diacetone, zirconium tetra(acetone) zirconium, tetrakis(cyclopentadiene) Base) zirconium, hafnium butoxide, hafnium isopropoxide, hafnium tetrakis(2-ethylhexanoate), hafnium di(n-butoxy)diacetone, hafnium diacetone, hafnium tetra(acetone), di(cyclopentane) Alkenyl) dimethyl hafnium, niobium ethoxide, niobium 2-ethylhexanoate, di(cyclopentadienyl) niobium chloride, tantalum ethoxide, tantalum tetraethoxyacetone tantalum, etc.

對形成第二鈍化層用的塗佈液中之含元素C化合物的含量並無特別限制,該含元素C化合物的含量可根據意欲目的而作適當地選擇。 The content of the element C-containing compound in the coating solution for forming the second passivation layer is not particularly limited, and the content of the element C-containing compound can be appropriately selected according to the intended purpose.

---溶劑--- ---Solvent---

對溶劑並無特別限制,只要是能夠穩定地溶解及分散化合物的溶劑即可。該溶劑可根據意欲目的而作適當地選擇。該溶劑可例如為甲苯、二甲苯、均三甲苯、異丙基甲苯、戊苯、十二基苯、聯環己烷、環己苯、癸烷、十一烷、十二烷、十三烷、十四烷、十五烷、四氫萘、十氫萘、異丙醇、苯甲酸乙酯、N,N-二甲基甲醯胺、碳酸丙醯酯、2-乙基己酸、礦油精、二甲基丙烯基脲、4-丁內酯、2-甲氧基乙醇、丙二醇、水等。 The solvent is not particularly limited, as long as it can stably dissolve and disperse the compound. The solvent can be appropriately selected according to the intended purpose. The solvent can be, for example, toluene, xylene, mesitylene, cumene, pentylbenzene, dodecylbenzene, bicyclohexane, cyclohexylbenzene, decane, undecane, dodecane, tridecane , Tetradecane, pentadecane, tetrahydronaphthalene, decahydronaphthalene, isopropanol, ethyl benzoate, N,N-dimethylformamide, propylene carbonate, 2-ethylhexanoic acid, ore Olein, dimethylpropenyl urea, 4-butyrolactone, 2-methoxyethanol, propylene glycol, water, etc.

對形成第二鈍化層用的塗佈液中之溶劑的含量並無特別限制,該溶劑的含量可根據意欲目的而作適當地選擇。 The content of the solvent in the coating solution for forming the second passivation layer is not particularly limited, and the content of the solvent can be appropriately selected according to the intended purpose.

對形成第二鈍化層用的塗佈液中之含鹼土金屬化合物(亦即含元素A化合物)及含元素B化合物的組成比例(含鹼土金屬化合物:含元素B化合物)並無特別限制,該組成比例可根據意欲目的而作適當地選擇。 但是該組成比例較佳在下列的範圍內。 There is no particular limitation on the composition ratio of the alkaline earth metal-containing compound (that is, the element-containing compound A) and the element B-containing compound in the coating solution for forming the second passivation layer (alkaline earth metal-containing compound: element-containing B compound), the The composition ratio can be appropriately selected according to the intended purpose. However, the composition ratio is preferably within the following range.

在形成第二鈍化層用的塗佈液中,元素A(亦即鹼土金屬)以及元素B(亦即鎵(Ga)、鈧(Sc)、釔(Y)及鑭系元素中之至少一者)的組成比例(元素A:元素B),由氧化物(例如BeO、MgO、CaO、SrO、BaO、Ga2O3、Sc2O3、Y2O3、La2O3、Ce2O3、Pr2O3、Nd2O3、Pm2O3、Sm2O3、Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3)計算後,較佳在10.0mol%至67.0mol%:33.0mol%至90.0mol%的範圍內。 In the coating solution for forming the second passivation layer, at least one of element A (that is, alkaline earth metal) and element B (that is, gallium (Ga), scandium (Sc), yttrium (Y), and lanthanide) ) Composition ratio (element A: element B), composed of oxides (such as BeO, MgO, CaO, SrO, BaO, Ga 2 O 3 , Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , Ce 2 O 3 , Pr 2 O 3 , Nd 2 O 3 , Pm 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3. After calculation, Tm 2 O 3 , Yb 2 O 3 , and Lu 2 O 3 ) are preferably in the range of 10.0 mol% to 67.0 mol%: 33.0 mol% to 90.0 mol%.

對形成第二鈍化層用的塗佈液中之含鹼土金屬化合物(亦即含元素A化合物)、含元素B化合物、以及含元素C化合物中的至少一者的組成比例(含鹼土金屬化合物:含元素B化合物:含元素B化合物:含元素C化合物)並無特別限制,該組成比例可根據意欲目的而作適當地選擇。但是該組成比例較佳在下列的範圍內。 The composition ratio of at least one of the alkaline earth metal-containing compound (that is, the element-containing compound A), the element B-containing compound, and the element C-containing compound in the coating solution for forming the second passivation layer (alkaline earth metal-containing compound: Element-containing B compound: element-containing B compound: element-containing C compound) is not particularly limited, and the composition ratio can be appropriately selected according to the intended purpose. However, the composition ratio is preferably within the following range.

在形成第二鈍化層用的塗佈液中,元素A(亦即鹼土金屬)、元素B(亦即鎵(Ga)、鈧(Sc)、釔(Y)及鑭系元素中的至少一者)以及元素C(亦即鋁(Al)、鈦(Ti)、鋯(Zr)、鉿(Hf)、鈮(Nb)及鉭(Ta)中的至少一者)的組成比例(元素A:元素B:元素C),由氧化物(例如BeO、MgO、CaO、SrO、BaO、Ga2O3、Sc2O3、Y2O3、La2O3、Ce2O3、Pr2O3、Nd2O3、Pm2O3、Sm2O3、Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3、Al2O3、TiO2、ZrO2、HfO2、Nb2O5、Ta2O5)計算後,較佳在5.0mol%至22.0mol%:33.0mol%至90.0mol%:5.0mol%至45.0mol%的範圍內。 In the coating solution for forming the second passivation layer, at least one of element A (that is, alkaline earth metal), element B (that is, gallium (Ga), scandium (Sc), yttrium (Y), and lanthanide) ) And the composition ratio of element C (that is, at least one of aluminum (Al), titanium (Ti), zirconium (Zr), hafnium (Hf), niobium (Nb), and tantalum (Ta)) (element A: element B: Element C), composed of oxides (eg BeO, MgO, CaO, SrO, BaO, Ga 2 O 3 , Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , Ce 2 O 3 , Pr 2 O 3 , Nd 2 O 3 , Pm 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , Al 2 O 3 , TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 5 , Ta 2 O 5 ) after calculation, preferably in 5.0mol% to 22.0mol%: 33.0 mol% to 90.0mol%: in the range of 5.0mol% to 45.0mol%.

---形成第一鈍化層及第二鈍化層的方法--- ---Method of forming first passivation layer and second passivation layer---

下面的敘述說明了使用形成第一鈍化層用的塗佈液而形成第一鈍化層170a的方法,以及使用形成第二鈍化層用的塗佈液而形成第二鈍化層170b的方法的範例。形成第一鈍化層170a及第二鈍化層170b的方法包括塗佈步驟以及熱處理步驟,且視需要可更進一步地包括其他步驟。 The following description explains an example of a method of forming the first passivation layer 170a using the coating liquid for forming the first passivation layer, and a method of forming the second passivation layer 170b using the coating liquid for forming the second passivation layer. The method for forming the first passivation layer 170a and the second passivation layer 170b includes a coating step and a heat treatment step, and may further include other steps as needed.

對塗佈步驟的細節並無特別限制,只要是施用形成第一鈍化層用的塗佈液或形成第二鈍化層用的塗佈液在欲塗佈的目標物上的步驟即可。塗佈步驟的細節可根據意欲目的而作適當地選擇。對塗佈的方法並無特別限制,塗佈的方法可根據意欲目的而作適當地選擇。例如,可進行溶液製程而形成薄膜,接著利用光微影法進行圖案化。此外,可利用例如噴 墨印刷、奈米壓印以及凹版印刷等印刷製程,直接形成具有預定形狀的薄膜。至於溶液製程,可使用浸塗法、旋塗法、模塗佈法、噴嘴印刷法等。 The details of the coating step are not particularly limited, as long as it is a step of applying the coating liquid for forming the first passivation layer or the coating liquid for forming the second passivation layer on the object to be coated. The details of the coating step can be appropriately selected according to the intended purpose. The coating method is not particularly limited, and the coating method can be appropriately selected according to the intended purpose. For example, a solution process can be performed to form a thin film, which is then patterned using photolithography. In addition, printing processes such as inkjet printing, nanoimprinting, and gravure printing can be used to directly form a thin film having a predetermined shape. As for the solution process, dip coating, spin coating, die coating, nozzle printing, etc. can be used.

對熱處理步驟的細節並無特別限制,只要是對形成第一鈍化層用的塗佈液或形成第二鈍化層用的塗佈液(該塗佈液將施用在欲塗佈的目標物上)進行熱處理的步驟即可。熱處理步驟的細節可根據意欲目的而作適當地選擇。應注意的是,當進行熱處理步驟時,施用在欲塗佈的目標物上之形成第一鈍化層用的塗佈液以及形成第二鈍化層用的塗佈液可讓其自然乾燥。在熱處理步驟中,進行溶劑乾燥以及氧化物(亦即第一氧化物或第二氧化物)生成的步驟。 The details of the heat treatment step are not particularly limited, as long as it is the coating liquid for forming the first passivation layer or the coating liquid for forming the second passivation layer (the coating liquid will be applied to the target to be coated) The step of heat treatment is sufficient. The details of the heat treatment step can be appropriately selected according to the intended purpose. It should be noted that when the heat treatment step is performed, the coating liquid for forming the first passivation layer and the coating liquid for forming the second passivation layer applied on the object to be coated can be allowed to dry naturally. In the heat treatment step, steps of solvent drying and formation of oxide (ie, first oxide or second oxide) are performed.

在熱處理步驟中,溶劑的乾燥(下文稱為「乾燥程序」),以及第一氧化物或第二氧化物的生成(下文稱為「生成程序」)較佳在不同的溫度下進行。換言之,較佳在乾燥該溶劑之後,升溫以生成第一氧化物或第二氧化物。第二氧化物的生成包括該含矽化合物、該含鹼土金屬化合物、該含鋁化合物及該含硼化合物等中之至少一者發生分解。第一氧化物的生成包括該含鹼土金屬化合物(亦即該含元素A化合物)、該含元素B化合物、該含元素C化合物等中之至少一者發生分解。 In the heat treatment step, the drying of the solvent (hereinafter referred to as "drying procedure") and the formation of the first oxide or the second oxide (hereinafter referred to as "generation procedure") are preferably performed at different temperatures. In other words, it is preferable to raise the temperature after drying the solvent to generate the first oxide or the second oxide. The formation of the second oxide includes decomposition of at least one of the silicon-containing compound, the alkaline earth metal-containing compound, the aluminum-containing compound, the boron-containing compound, and the like. The formation of the first oxide includes decomposition of at least one of the alkaline earth metal-containing compound (that is, the element-containing compound A), the element-containing B compound, the element-containing C compound, and the like.

對乾燥程序的溫度並無特別限制,溫度可根據所含的溶劑而作適當地選擇。例如,溫度可在80℃至180℃的範圍內。至於乾燥程序,使用真空乾燥爐等可有效地在較低溫度下進行乾燥。對乾燥程序的時間並無特別限制,處理的時間可根據意欲目的而作適當地選擇。例如,處理的時間可在1分鐘至1小時的範圍內。 The temperature of the drying procedure is not particularly limited, and the temperature can be appropriately selected according to the solvent contained. For example, the temperature may be in the range of 80°C to 180°C. As for the drying procedure, using a vacuum drying furnace or the like can effectively perform drying at a lower temperature. There is no particular limitation on the duration of the drying procedure, and the processing time can be appropriately selected according to the intended purpose. For example, the treatment time may be in the range of 1 minute to 1 hour.

雖然生成程序的溫度較佳在100℃至550℃的範圍內,更佳在200℃至500℃的範圍內,但是對生成程序的溫度並無特別限制,處理的溫度可根據意欲目的而作任意決定。對生成程序的時間並無特別限制,處理的時間可根據意欲目的而作任意決定。例如,處理的時間可在1小時至5小時的範圍內。 Although the temperature of the generation process is preferably in the range of 100°C to 550°C, more preferably in the range of 200°C to 500°C, the temperature of the generation process is not particularly limited, and the treatment temperature can be arbitrary according to the intended purpose Decide. There is no particular limitation on the time for generating the program, and the processing time can be arbitrarily determined according to the intended purpose. For example, the treatment time may be in the range of 1 hour to 5 hours.

應注意的是,在熱處理步驟中,乾燥程序及生成程序可連續地進行,或可以分開多個步驟進行。 It should be noted that in the heat treatment step, the drying procedure and the generating procedure may be performed continuously, or may be performed in multiple steps.

對熱處理的方法並無特別限制,熱處理的方法可根據意欲目的而作適當地選擇。例如,可對欲塗佈的目標物進行加熱。雖然氧氣環境 為較佳,但是對熱處理的環境並無特別限制,熱處理的環境可根據意欲目的而作適當地選擇。當熱處理在氧氣環境下進行時,分解產物可平穩地由系統釋放排出,而可使第一氧化物或第二氧化物加速生成。 The method of heat treatment is not particularly limited, and the method of heat treatment can be appropriately selected according to the intended purpose. For example, the target to be coated can be heated. Although an oxygen environment is preferred, the environment for heat treatment is not particularly limited, and the environment for heat treatment can be appropriately selected according to the intended purpose. When the heat treatment is performed in an oxygen environment, the decomposition products can be smoothly released and discharged from the system, and the first oxide or the second oxide can be accelerated.

在熱處理步驟中,為了加速該生成程序中的反應,在乾燥程序之後,以波長為400nm或更短的紫外光照射乾燥後的目標物則效果顯著。藉由以波長為400nm或更短的紫外光照射,可切斷乾燥後的目標物中所含之有機材料的化學鍵,進而分解該有機材料,因此可使第一氧化物或第二氧化物有效地形成。對波長為400nm或更短的紫外光並無特別限制,紫外光可根據意欲目的而作適當地選擇。例如,可使用由準分子燈放射出之波長為222nm的紫外光。另外,較佳施用臭氧取代紫外光照射,或與紫外光照射一起使用。對乾燥後的目標物施用臭氧,可加速氧化物的生成。 In the heat treatment step, in order to accelerate the reaction in the production process, after the drying process, the target object after drying is irradiated with ultraviolet light having a wavelength of 400 nm or shorter, which has a remarkable effect. By irradiating with ultraviolet light with a wavelength of 400 nm or shorter, the chemical bond of the organic material contained in the dried target can be cut, and the organic material can be decomposed, so that the first oxide or the second oxide can be made effective To form. There is no particular limitation on the ultraviolet light having a wavelength of 400 nm or shorter, and the ultraviolet light may be appropriately selected according to the intended purpose. For example, ultraviolet light with a wavelength of 222 nm emitted by an excimer lamp can be used. In addition, it is preferable to apply ozone instead of ultraviolet irradiation, or to use it together with ultraviolet irradiation. Applying ozone to the dried target can accelerate the formation of oxides.

於第14B圖說明的步驟中,在該第二鈍化層的預定區域上形成遮罩300。對遮罩300的材料並無特別限制,只要是在第一鈍化層170a及第二鈍化層170b進行蝕刻步驟中作為保護膜的材料即可,該材料可根據意欲目的而作適當地選擇。對遮罩300材料的類型並無特別限制,該材料的類型可根據意欲目的而作適當地選擇。例如,可使用正光阻及負光阻。 In the step illustrated in FIG. 14B, a mask 300 is formed on a predetermined area of the second passivation layer. The material of the mask 300 is not particularly limited as long as it is a material used as a protective film during the etching step of the first passivation layer 170a and the second passivation layer 170b, and the material can be appropriately selected according to the intended purpose. There is no particular limitation on the type of the material of the mask 300, and the type of the material can be appropriately selected according to the intended purpose. For example, positive photoresist and negative photoresist can be used.

接著,於第15A圖說明的步驟中,對第二鈍化層170b進行蝕刻以形成具有預定形狀的第二鈍化層17b。可使用含有氫氯酸、草酸、硝酸、磷酸、乙酸、硫酸及過氧化氫水溶液中之至少一者的第一溶液,對第二鈍化層170b進行蝕刻。蝕刻的方法例如為將第二鈍化層170b浸入第一溶液中之浸塗法;以第一溶液噴覆第二鈍化層170b之噴塗法;以及在包括第二鈍化層170b之基板11旋轉時以第一溶液滴覆第二鈍化層170b之旋塗法。 Next, in the step illustrated in FIG. 15A, the second passivation layer 170b is etched to form the second passivation layer 17b having a predetermined shape. The second passivation layer 170b may be etched using a first solution containing at least one of hydrochloric acid, oxalic acid, nitric acid, phosphoric acid, acetic acid, sulfuric acid, and hydrogen peroxide aqueous solution. The etching method is, for example, a dipping method of immersing the second passivation layer 170b in the first solution; a spraying method of spraying the second passivation layer 170b with the first solution; and when the substrate 11 including the second passivation layer 170b is rotated The spin coating method in which the first solution drops over the second passivation layer 170b.

第一溶液中之氫氯酸的濃度較佳在0.04wt%至40wt%的範圍內。第一溶液中之草酸的濃度較佳在0.1wt%至10wt%的範圍內。第一溶液中之硝酸的濃度較佳在0.1wt%至40wt%的範圍內。第一溶液中之磷酸的濃度較佳在0.1wt%至85wt%的範圍內。第一溶液中之乙酸的濃度較佳在1wt%至50wt%的範圍內。第一溶液中之硫酸的濃度較佳在1wt%至20wt%的範圍內。第一溶液中之過氧化氫水溶液的濃度較佳在1wt%至10wt%的範圍內。較佳係使用含有氫氯酸、磷酸及硝酸的混合溶液,或是含有磷酸、 硝酸及乙酸的混合溶液作為第一溶液。 The concentration of hydrochloric acid in the first solution is preferably in the range of 0.04 wt% to 40 wt%. The concentration of oxalic acid in the first solution is preferably in the range of 0.1 wt% to 10 wt%. The concentration of nitric acid in the first solution is preferably in the range of 0.1 wt% to 40 wt%. The concentration of phosphoric acid in the first solution is preferably in the range of 0.1 wt% to 85 wt%. The concentration of acetic acid in the first solution is preferably in the range of 1 wt% to 50 wt%. The concentration of sulfuric acid in the first solution is preferably in the range of 1 wt% to 20 wt%. The concentration of the hydrogen peroxide aqueous solution in the first solution is preferably in the range of 1wt% to 10wt%. It is preferable to use a mixed solution containing hydrochloric acid, phosphoric acid and nitric acid, or a mixed solution containing phosphoric acid, nitric acid and acetic acid as the first solution.

接著,於第15B圖說明的步驟中,對第一鈍化層170a進行蝕刻以形成具有預定形狀的第一鈍化層17a。可使用含有氫氟酸、氟化銨、氟化氫銨及有機鹼中之至少一者的第二溶液(下文稱為「第二溶液」),對第一鈍化層170a進行蝕刻。蝕刻的方法例如為將第一鈍化層170a浸入第二溶液中之浸塗法;以第二溶液噴覆第一鈍化層170a之噴塗法;以及在包括第一鈍化層170a之基板11旋轉時以第二溶液滴覆第一鈍化層170a之旋塗法。 Next, in the step illustrated in FIG. 15B, the first passivation layer 170a is etched to form the first passivation layer 17a having a predetermined shape. The first passivation layer 170a may be etched using a second solution (hereinafter referred to as "second solution") containing at least one of hydrofluoric acid, ammonium fluoride, ammonium bifluoride, and an organic base. The etching method is, for example, a dipping method of immersing the first passivation layer 170a in the second solution; a spraying method of spraying the first passivation layer 170a with the second solution; and when the substrate 11 including the first passivation layer 170a rotates The spin coating method in which the second solution drops over the first passivation layer 170a.

於第九實施例中,如第15A圖所說明,對第二鈍化層170b進行蝕刻,然後如第15B圖所說明,繼續地對第一鈍化層170a進行蝕刻。如此,對第二鈍化層170b及第一鈍化層170a而言,不需要形成遮罩300,其意指就步驟次數而言,可將鈍化層的圖案化製程簡化。因此,可以高生產率來形成具有預定形狀的鈍化層。 In the ninth embodiment, as illustrated in FIG. 15A, the second passivation layer 170b is etched, and then as described in FIG. 15B, the first passivation layer 170a is continuously etched. As such, for the second passivation layer 170b and the first passivation layer 170a, it is not necessary to form the mask 300, which means that in terms of the number of steps, the patterning process of the passivation layer can be simplified. Therefore, a passivation layer having a predetermined shape can be formed with high productivity.

第二溶液中之氫氟酸的濃度較佳在0.1wt%至10wt%的範圍內。第二溶液中之氟化銨的濃度較佳在5wt%至25wt%的範圍內。第二溶液中之氟化氫銨的濃度較佳在1wt%至25wt%的範圍內。第二溶液中之有機鹼的濃度較佳在1wt%至15wt%的範圍內。較佳係使用含有氫氟酸、氟化銨及氟化氫銨的混合溶液作為第二溶液。 The concentration of hydrofluoric acid in the second solution is preferably in the range of 0.1 wt% to 10 wt%. The concentration of ammonium fluoride in the second solution is preferably in the range of 5wt% to 25wt%. The concentration of ammonium bifluoride in the second solution is preferably in the range of 1wt% to 25wt%. The concentration of the organic base in the second solution is preferably in the range of 1wt% to 15wt%. It is preferable to use a mixed solution containing hydrofluoric acid, ammonium fluoride, and ammonium bifluoride as the second solution.

接著,於第15C圖說明的步驟中,移除遮罩300。對移除遮罩300的方法並無特別限制,該方法可根據意欲目的而作適當地選擇。例如,在使用光阻作為遮罩300的情形下,藉由使用例如光阻剝離劑的溶液可將遮罩300溶解而移除。此外,移除遮罩300的方法較佳為不會損傷鈍化層的方法。經由上述諸步驟,可製造底部閘極/底部接觸FET 110。 Next, in the step illustrated in FIG. 15C, the mask 300 is removed. The method of removing the mask 300 is not particularly limited, and the method can be appropriately selected according to the intended purpose. For example, in the case of using a photoresist as the mask 300, the mask 300 may be dissolved and removed by using a solution such as a photoresist stripping agent. In addition, the method of removing the mask 300 is preferably a method that does not damage the passivation layer. Through the above steps, the bottom gate/bottom contact FET 110 can be manufactured.

如上所述,依據第九實施例的FET 110包括配置成彼此接觸的第一鈍化層及第二鈍化層作為鈍化層。第一鈍化層係由含有矽(Si)及鹼土金屬之第二氧化物所構成,而第二鈍化層係由含有元素A(鹼土金屬)及元素B(鎵(Ga)、鈧(Sc)、釔(Y)及鑭系元素中之至少一者)之第一氧化物所構成。 As described above, the FET 110 according to the ninth embodiment includes the first passivation layer and the second passivation layer configured to contact each other as the passivation layer. The first passivation layer is composed of a second oxide containing silicon (Si) and alkaline earth metal, and the second passivation layer is composed of containing element A (alkaline earth metal) and element B (gallium (Ga), scandium (Sc), At least one of yttrium (Y) and lanthanide elements) is composed of the first oxide.

此外,依據第九實施例之製造FET 110的方法包括使第一鈍化層170a與含有氫氟酸、氟化銨、氟化氫銨及有機鹼中之至少一者的第二 溶液接觸,以進行濕式蝕刻,且包括使第二鈍化層170b與含有氫氯酸、草酸、硝酸、磷酸、乙酸、硫酸及過氧化氫水溶液中之至少一者的第一溶液接觸,以進行濕式蝕刻。 In addition, the method of manufacturing the FET 110 according to the ninth embodiment includes contacting the first passivation layer 170a with a second solution containing at least one of hydrofluoric acid, ammonium fluoride, ammonium bifluoride, and an organic base to perform a wet method Etching, and includes contacting the second passivation layer 170b with a first solution containing at least one of hydrochloric acid, oxalic acid, nitric acid, phosphoric acid, acetic acid, sulfuric acid, and hydrogen peroxide aqueous solution to perform wet etching.

較佳分別使用如上所述之針對第一鈍化層170a的溶液及針對第二鈍化層170b的溶液對第一鈍化層170a及第二鈍化層170b進行濕式蝕刻。在此,不需要進行包括使用危險氣體,使環境受損,所需儀器的費用等之習知乾式蝕刻。 Preferably, the first passivation layer 170a and the second passivation layer 170b are wet-etched using the solution for the first passivation layer 170a and the solution for the second passivation layer 170b, respectively, as described above. Here, there is no need to perform conventional dry etching including the use of hazardous gases, damage to the environment, and the cost of equipment required.

此外,由該第二氧化物及該第一氧化物的疊層結構所形成的鈍化層展現出優異的阻障性能,因而能製造出高可靠性的FET(例如在BTS測試中臨界電壓變異小)。 In addition, the passivation layer formed by the stacked structure of the second oxide and the first oxide exhibits excellent barrier performance, so that a highly reliable FET can be manufactured (for example, the critical voltage variation is small in the BTS test ).

亦即,藉由使用如上所述之針對第一鈍化層170a的溶液及針對第二鈍化層170b的溶液進行濕式蝕刻,可在低成本,高安全性,對環境的損害極少的條件下製造出高品質的FET(具有低能耗及高可靠性)。 That is, by performing wet etching using the solution for the first passivation layer 170a and the solution for the second passivation layer 170b as described above, it can be manufactured under the conditions of low cost, high safety, and minimal damage to the environment High-quality FET (with low energy consumption and high reliability).

<第九實施例的修飾> <Modification of the ninth embodiment>

關於第九實施例的修飾的敘述說明了與第九實施例相較,具有不同層配置之FET的範例。應注意的是,在第九實施例修飾的敘述中,對上面敘述中已說明的相同配置將予以省略。 The description about the modification of the ninth embodiment illustrates an example of FETs having different layer configurations compared to the ninth embodiment. It should be noted that, in the modified description of the ninth embodiment, the same configuration that has been explained in the above description will be omitted.

第16A圖至第16C圖為說明依據第九實施例之修飾的FET範例的剖面圖。依據第16A圖至第16C圖所說明之FET為本發明半導體元件的典型範例。 16A to 16C are cross-sectional views illustrating examples of modified FETs according to the ninth embodiment. The FET described with reference to FIGS. 16A to 16C is a typical example of the semiconductor device of the present invention.

依據第16A圖,FET 110A為底部閘極/頂部接觸FET,FET 110A包括在具有絕緣性質的基板11上形成的閘極電極12,以及包括在閘極電極12上覆蓋的閘極絕緣層13。此外,在閘極絕緣層13上形成主動層16,而在部分主動層16上形成源極電極14和汲極電極15,且源極電極14和汲極電極15經由主動層16以預定距離分開,該主動層16作為通道區域。此外,在閘極絕緣層13上形成第一鈍化層17a,以覆蓋源極電極14、汲極電極15及主動層16,並且在第一鈍化層17a上形成第二鈍化層17b。 According to FIG. 16A, the FET 110A is a bottom gate/top contact FET. The FET 110A includes a gate electrode 12 formed on a substrate 11 having insulating properties, and includes a gate insulating layer 13 covered on the gate electrode 12. In addition, an active layer 16 is formed on the gate insulating layer 13, and a source electrode 14 and a drain electrode 15 are formed on part of the active layer 16, and the source electrode 14 and the drain electrode 15 are separated by a predetermined distance via the active layer 16 The active layer 16 serves as a channel area. In addition, a first passivation layer 17a is formed on the gate insulating layer 13 to cover the source electrode 14, the drain electrode 15 and the active layer 16, and a second passivation layer 17b is formed on the first passivation layer 17a.

依據第16B圖,FET 110B為頂部閘極/底部接觸FET,FET 110B包括在具有絕緣性質的基板11上形成的源極電極14及汲極電極15,以及包括形成部分覆蓋源極電極14及汲極電極15的主動層16。此外,形 成閘極絕緣層13,以覆蓋源極電極14、汲極電極15及主動層16,且在閘極絕緣層13上形成閘極電極12。此外,在閘極絕緣層13上形成第一鈍化層17a,以覆蓋閘極電極12,並且在第一鈍化層17a上形成第二鈍化層17b。 According to FIG. 16B, the FET 110B is a top gate/bottom contact FET. The FET 110B includes a source electrode 14 and a drain electrode 15 formed on a substrate 11 with insulating properties, and includes a portion that covers the source electrode 14 and the drain electrode. The active layer 16 of the polar electrode 15. In addition, a gate insulating layer 13 is formed to cover the source electrode 14, the drain electrode 15, and the active layer 16, and the gate electrode 12 is formed on the gate insulating layer 13. In addition, a first passivation layer 17a is formed on the gate insulating layer 13 to cover the gate electrode 12, and a second passivation layer 17b is formed on the first passivation layer 17a.

依據第16C圖,FET 110C為頂部閘極/頂部接觸FET,FET 110C包括在具有絕緣性質的基板11上形成的主動層16,及包括在部分主動層16上形成的源極電極14和汲極電極15,且源極電極14和汲極電極15經由主動層16以預定距離分開,主動層16作為通道區域。此外,形成閘極絕緣層13,以覆蓋源極電極14、汲極電極15和主動層16,且在閘極絕緣層13上形成閘極電極12。此外,在閘極絕緣層13上形成第一鈍化層17a,以覆蓋閘極電極12,並且在第一鈍化層17a上形成第二鈍化層17b。 According to FIG. 16C, the FET 110C is a top gate/top contact FET. The FET 110C includes an active layer 16 formed on a substrate 11 having insulating properties, and includes a source electrode 14 and a drain formed on a portion of the active layer 16 The electrode 15 and the source electrode 14 and the drain electrode 15 are separated by a predetermined distance via an active layer 16, which serves as a channel region. In addition, a gate insulating layer 13 is formed to cover the source electrode 14, the drain electrode 15 and the active layer 16, and the gate electrode 12 is formed on the gate insulating layer 13. In addition, a first passivation layer 17a is formed on the gate insulating layer 13 to cover the gate electrode 12, and a second passivation layer 17b is formed on the first passivation layer 17a.

如上所述,本發明對FET的薄膜配置並無特別限制,如第13圖至第16C圖各所示之配置可根據意欲目的而作適當地選擇。形成在第16A圖至第16C圖所示之FET 110A、FET 110B、FET 110C上之第一鈍化層17a上及第二鈍化層17b可利用與FET 110相同的方法來製造。因此,本發明的FET 110A、FET 110B、FET 110C可產生與FET 110相同的有利效果。 As described above, the present invention does not particularly limit the thin film configuration of the FET, and the configurations shown in FIGS. 13 to 16C can be appropriately selected according to the intended purpose. The first passivation layer 17a and the second passivation layer 17b formed on the FET 110A, FET 110B, and FET 110C shown in FIGS. 16A to 16C can be manufactured by the same method as the FET 110. Therefore, the FET 110A, FET 110B, and FET 110C of the present invention can produce the same advantageous effects as the FET 110.

應注意的是,與第16A圖至第16C圖所示相反地,第二鈍化層17b可配置成比第一鈍化層17a更接近主動層16。此外,第二鈍化層17b可配置成覆蓋第一鈍化層17a的頂部表面與側邊表面。另外,第一鈍化層17a可配置成覆蓋第二鈍化層17b的頂部表面與側邊表面。 It should be noted that, contrary to that shown in FIGS. 16A to 16C, the second passivation layer 17b may be configured to be closer to the active layer 16 than the first passivation layer 17a. In addition, the second passivation layer 17b may be configured to cover the top surface and the side surface of the first passivation layer 17a. In addition, the first passivation layer 17a may be configured to cover the top surface and the side surface of the second passivation layer 17b.

<第十實施例> <Tenth Embodiment>

下面關於第十實施例的敘述說明了具有二層結構之閘極絕緣層之FET的範例。應注意的是,在第十實施例的敘述中,對上面實施例中已說明的相同配置將予以省略。 The following description of the tenth embodiment illustrates an example of a FET having a gate insulating layer with a two-layer structure. It should be noted that, in the description of the tenth embodiment, the same configuration that has been explained in the above embodiment will be omitted.

[FET的配置] [Configuration of FET]

第17圖為說明依據第十實施例之FET的剖面圖。依據第17圖,FET 110D為底部閘極/底部接觸FET,其包括基板11、閘極電極12、第一閘極絕緣層13a、第二閘極絕緣層13b、源極電極14、汲極電極15、主動層16以及第一鈍化層17a。應注意的是,FET 110D為本發明半導體元件的典型範例。 FIG. 17 is a cross-sectional view illustrating the FET according to the tenth embodiment. According to FIG. 17, the FET 110D is a bottom gate/bottom contact FET, which includes a substrate 11, a gate electrode 12, a first gate insulating layer 13a, a second gate insulating layer 13b, a source electrode 14, and a drain electrode 15. The active layer 16 and the first passivation layer 17a. It should be noted that the FET 110D is a typical example of the semiconductor device of the present invention.

就具有二層結構之閘極絕緣層(亦即第一閘極絕緣層13a及第二閘極絕緣層13b)而言,以及就僅由第一鈍化層17a構成之鈍化層而言,FET 110D與FET 110(請參見第13圖)不同。應注意的是,鈍化層可僅由第二鈍化層17b構成,且可由與FET 110相似之二層結構的第一鈍化層17a及第二鈍化層17b構成。 For the gate insulating layer having a two-layer structure (that is, the first gate insulating layer 13a and the second gate insulating layer 13b), and for the passivation layer composed only of the first passivation layer 17a, the FET 110D Unlike FET 110 (see Figure 13). It should be noted that the passivation layer may be composed of only the second passivation layer 17b, and may be composed of the first passivation layer 17a and the second passivation layer 17b having a two-layer structure similar to the FET 110.

對第一閘極絕緣層13a及第二閘極絕緣層13b的配置並無特別限制,該配置可根據意欲目的而作適當地選擇。如第17圖所示,第一閘極絕緣層13a可配置成比第二閘極絕緣層13b更接近閘極電極12。相反地,第二閘極絕緣層13b可配置成比第一閘極絕緣層13a更接近閘極電極12。此外,第二閘極絕緣層13b可配置成覆蓋第一閘極絕緣層13a的頂部表面與側邊表面。相反地,第一閘極絕緣層13a可配置成覆蓋第二閘極絕緣層13b的頂部表面與側邊表面。 The configuration of the first gate insulating layer 13a and the second gate insulating layer 13b is not particularly limited, and the configuration can be appropriately selected according to the intended purpose. As shown in FIG. 17, the first gate insulating layer 13 a may be arranged closer to the gate electrode 12 than the second gate insulating layer 13 b. Conversely, the second gate insulating layer 13b may be configured to be closer to the gate electrode 12 than the first gate insulating layer 13a. In addition, the second gate insulating layer 13b may be configured to cover the top surface and the side surface of the first gate insulating layer 13a. Conversely, the first gate insulating layer 13a may be configured to cover the top and side surfaces of the second gate insulating layer 13b.

可使用與第一鈍化層17a相同的材料來形成第一閘極絕緣層13a。可使用與第二鈍化層17b相同的材料來形成第二閘極絕緣層13b。 The first gate insulating layer 13a may be formed using the same material as the first passivation layer 17a. The second gate insulating layer 13b may be formed using the same material as the second passivation layer 17b.

[製造FET的方法] [Method of manufacturing FET]

下面敘述說明了如第17圖所示之製造FET 110D的方法。第18A圖至第19C圖為說明依據第十實施例之製造FET 110D的步驟的範例的圖式。 The following description explains the method of manufacturing the FET 110D as shown in FIG. 18A to 19C are diagrams illustrating an example of the steps of manufacturing the FET 110D according to the tenth embodiment.

首先,在如第18A圖所說明的步驟中,在基板11上形成具有預定形狀的閘極電極12,其與如第2A圖說明的步驟相似。 First, in the step illustrated in FIG. 18A, a gate electrode 12 having a predetermined shape is formed on the substrate 11, which is similar to the step illustrated in FIG. 2A.

接著,在如第18B圖所說明的步驟中,在整個基板11上形成第一閘極絕緣層130a(亦即,在蝕刻製程中欲形成為第一閘極絕緣層13a的一層),以覆蓋閘極電極12。然後在整個第一閘極絕緣層130a上形成為第二閘極絕緣層130b(亦即,在蝕刻製程中欲形成第二閘極絕緣層13b的一層)。 Next, in the step illustrated in FIG. 18B, a first gate insulating layer 130a (that is, a layer to be formed as the first gate insulating layer 13a in the etching process) is formed on the entire substrate 11 to cover Gate electrode 12. Then, a second gate insulating layer 130b is formed on the entire first gate insulating layer 130a (that is, one layer of the second gate insulating layer 13b is to be formed during the etching process).

可使用與第一鈍化層170a相同的材料來形成第一閘極絕緣層130a。可使用與第二鈍化層170b相同的材料來形成第二閘極絕緣層130b。此外,對第一閘極絕緣層130a的形成方法並無特別限制,該方法可根據意欲目的而從如上所述之第一鈍化層170a的形成方法中作適當地選擇。相似地,對第二閘極絕緣層130b的形成方法並無特別限制,該方法可根據意欲 目的而從如上所述之第二鈍化層170b的形成方法中作適當地選擇。 The first gate insulating layer 130a may be formed using the same material as the first passivation layer 170a. The second gate insulating layer 130b may be formed using the same material as the second passivation layer 170b. In addition, the method for forming the first gate insulating layer 130a is not particularly limited, and the method can be appropriately selected from the methods for forming the first passivation layer 170a as described above according to the intended purpose. Similarly, the method for forming the second gate insulating layer 130b is not particularly limited, and the method can be appropriately selected from the methods for forming the second passivation layer 170b as described above according to the intended purpose.

接著,於第18C圖說明的步驟中,在第二閘極絕緣層130b的預定區域上形成遮罩310,其與如第14B圖說明的步驟相似。然後於第18D圖說明的步驟中,對第二閘極絕緣層130b進行蝕刻以形成具有預定形狀的第二閘極絕緣層13b,其與如第15A圖說明的步驟相似。 Next, in the step illustrated in FIG. 18C, a mask 310 is formed on a predetermined area of the second gate insulating layer 130b, which is similar to the step illustrated in FIG. 14B. Then, in the step illustrated in FIG. 18D, the second gate insulating layer 130b is etched to form a second gate insulating layer 13b having a predetermined shape, which is similar to the step illustrated in FIG. 15A.

接著,於第19A圖說明的步驟中,對第一閘極絕緣層130a進行蝕刻以形成具有預定形狀的第一閘極絕緣層13a,其與如第15B圖說明的步驟相似。然後於第19B圖說明的步驟中,將遮罩310移除,其與如第15C圖說明的步驟相似。 Next, in the step illustrated in FIG. 19A, the first gate insulating layer 130a is etched to form a first gate insulating layer 13a having a predetermined shape, which is similar to the step illustrated in FIG. 15B. Then, in the step illustrated in FIG. 19B, the mask 310 is removed, which is similar to the step illustrated in FIG. 15C.

接著,在如第19C圖說明的步驟中,進行依據第一實施例之第2D圖至第3C圖所說明的相同步驟,以製造底部閘極/底部接觸FET 110D。應注意的是,視需要,鈍化層可僅由第一鈍化層17a構成,且可僅由第二鈍化層17b構成。此外,鈍化層可由與FET 110相似之二層結構的第一鈍化層17a及第二鈍化層17b構成。 Next, in the steps as illustrated in FIG. 19C, the same steps as described in FIGS. 2D to 3C of the first embodiment are performed to manufacture the bottom gate/bottom contact FET 110D. It should be noted that, if necessary, the passivation layer may be composed of only the first passivation layer 17a, and may be composed of only the second passivation layer 17b. In addition, the passivation layer may be composed of a first passivation layer 17a and a second passivation layer 17b having a two-layer structure similar to the FET 110.

如上所述,依據第十實施例的FET 110D包括配置成彼此接觸之第一閘極絕緣層13a及第二閘極絕緣層13b作為鈍化層。第一閘極絕緣層13a係由含有矽(Si)及鹼土金屬之第二氧化物所構成,而第二閘極絕緣層13b係由含有元素A(鹼土金屬)及元素B(鎵(Ga)、鈧(Sc)、釔(Y)及鑭系元素中之至少一者)之第一氧化物所構成。 As described above, the FET 110D according to the tenth embodiment includes the first gate insulating layer 13a and the second gate insulating layer 13b configured to contact each other as a passivation layer. The first gate insulating layer 13a is composed of a second oxide containing silicon (Si) and alkaline earth metal, and the second gate insulating layer 13b is composed of containing element A (alkaline earth metal) and element B (gallium (Ga) , Scandium (Sc), yttrium (Y) and at least one of the lanthanides) composed of the first oxide.

此外,依據第十實施例之製造FET 110D的方法包括使第一閘極絕緣層130a與含有氫氟酸、氟化銨、氟化氫銨及有機鹼中之至少一者的第二溶液接觸,以進行濕式蝕刻的步驟,且包括使第二閘極絕緣層130b與含有氫氯酸、草酸、硝酸、磷酸、乙酸、硫酸及過氧化氫水溶液中之至少一者的第一溶液接觸,以進行濕式蝕刻的步驟。 In addition, the method of manufacturing the FET 110D according to the tenth embodiment includes contacting the first gate insulating layer 130a with a second solution containing at least one of hydrofluoric acid, ammonium fluoride, ammonium bifluoride, and an organic base to perform The step of wet etching, which includes contacting the second gate insulating layer 130b with a first solution containing at least one of hydrochloric acid, oxalic acid, nitric acid, phosphoric acid, acetic acid, sulfuric acid, and hydrogen peroxide aqueous solution to perform wet Etched steps.

較佳分別使用如上所述之針對第一閘極絕緣層130a的溶液及針對第二閘極絕緣層130b的溶液對第一閘極絕緣層130a及第二閘極絕緣層130b進行濕式蝕刻。本發明不需要進行涉及使用危險氣體,使環境受損,需要儀器的費用等問題之習知乾式蝕刻。 It is preferable to wet-etch the first gate insulating layer 130a and the second gate insulating layer 130b using the solution for the first gate insulating layer 130a and the solution for the second gate insulating layer 130b as described above. The present invention does not require conventional dry etching that involves the use of hazardous gases, damage to the environment, and the cost of equipment.

此外,當第一氧化物的介電常數在6至20的範圍內(比SiO2膜的介電常數高)時,使用第一氧化物作為閘極絕緣層,能以低電壓來驅 動FET(或低能耗)。 In addition, when the dielectric constant of the first oxide is in the range of 6 to 20 (higher than the dielectric constant of the SiO 2 film), using the first oxide as the gate insulating layer can drive the FET at a low voltage ( Or low energy consumption).

亦即,使用如上所述之針對第一閘極絕緣層130a的溶液及針對第二閘極絕緣層130b的溶液進行濕式蝕刻,可在低成本,高安全性,對環境的損害極少的條件下製造出高品質的FET(具有低能耗及高可靠性)。 That is, wet etching using the solution for the first gate insulating layer 130a and the solution for the second gate insulating layer 130b as described above can be performed at low cost, high safety, and minimal environmental damage Manufacture of high-quality FETs (with low energy consumption and high reliability).

<第十實施例之修飾> <Modification of Tenth Embodiment>

關於第十實施例之修飾的敘述說明了與第十實施例相較,具有不同層配置之FET的範例。應注意的是,在第十實施例之修飾的敘述中,對上面敘述中已說明的相同配置將予以省略。 The description about the modification of the tenth embodiment illustrates an example of FETs with different layer configurations compared to the tenth embodiment. It should be noted that, in the modified description of the tenth embodiment, the same configuration that has been explained in the above description will be omitted.

第20A圖至第20C圖為說明依據第十實施例之修飾的FET範例的剖面圖。依據第20A圖至第20C圖所說明之FET為本發明半導體元件的典型範例。 20A to 20C are cross-sectional views illustrating examples of modified FETs according to the tenth embodiment. The FET described with reference to FIGS. 20A to 20C is a typical example of the semiconductor device of the present invention.

依據第20A圖,FET 110E為底部閘極/頂部接觸FET,FET 110E包括在具有絕緣性質的基板11上形成的閘極電極12。此外,形成第一閘極絕緣層13a以覆蓋該閘極電極12,並且在第一閘極絕緣層13a上形成第二閘極絕緣層13b。 According to FIG. 20A, the FET 110E is a bottom gate/top contact FET. The FET 110E includes a gate electrode 12 formed on a substrate 11 having insulating properties. In addition, a first gate insulating layer 13a is formed to cover the gate electrode 12, and a second gate insulating layer 13b is formed on the first gate insulating layer 13a.

此外,在第二閘極絕緣層13b上形成主動層16,而在部分主動層16上形成源極電極14和汲極電極15,且源極電極14和汲極電極15經由主動層16以預定距離分開,該主動層16作為通道區域。此外,在第二閘極絕緣層13b上形成第一鈍化層17a,以覆蓋源極電極14、汲極電極15以及主動層16。 In addition, an active layer 16 is formed on the second gate insulating layer 13b, and a source electrode 14 and a drain electrode 15 are formed on a portion of the active layer 16, and the source electrode 14 and the drain electrode 15 are predetermined via the active layer 16 The distance is separated, and the active layer 16 serves as a channel area. In addition, a first passivation layer 17 a is formed on the second gate insulating layer 13 b to cover the source electrode 14, the drain electrode 15 and the active layer 16.

依據第20B圖,FET 110F為頂部閘極/底部接觸FET,FET 110F包括在具有絕緣性質的基板11上形成的源極電極14和汲極電極15,以及包括形成部分覆蓋源極電極14和汲極電極15的主動層16。此外,形成第一閘極絕緣層13a,以覆蓋源極電極14、汲極電極15和主動層16。此外,在第一閘極絕緣層13a上形成第二閘極絕緣層13b,且在第二閘極絕緣層13b上形成閘極電極12。此外,在第二閘極絕緣層13b上形成第一鈍化層17a,以覆蓋閘極電極12。 According to FIG. 20B, the FET 110F is a top gate/bottom contact FET. The FET 110F includes a source electrode 14 and a drain electrode 15 formed on a substrate 11 having insulating properties, and includes a portion that covers the source electrode 14 and the drain electrode. The active layer 16 of the polar electrode 15. In addition, a first gate insulating layer 13a is formed to cover the source electrode 14, the drain electrode 15, and the active layer 16. In addition, a second gate insulating layer 13b is formed on the first gate insulating layer 13a, and a gate electrode 12 is formed on the second gate insulating layer 13b. In addition, a first passivation layer 17a is formed on the second gate insulating layer 13b to cover the gate electrode 12.

依據第20C圖,FET 110G為頂部閘極/頂部接觸FET,FET 110G包括在具有絕緣性質的基板11上形成的主動層16,以及包括在部分 主動層16上形成的源極電極14及汲極電極15,且源極電極14及汲極電極15經由主動層16以預定距離分開,該主動層16作為通道區域。此外,形成第一閘極絕緣層13a,以覆蓋源極電極14、汲極電極15及主動層16。此外,在第一閘極絕緣層13a上形成第二閘極絕緣層13b,且在第二閘極絕緣層13b上形成閘極電極12。此外,在第二閘極絕緣層13b上形成第一鈍化層17a,以覆蓋閘極電極12。 According to FIG. 20C, the FET 110G is a top gate/top contact FET. The FET 110G includes an active layer 16 formed on a substrate 11 having insulating properties, and includes a source electrode 14 and a drain formed on a portion of the active layer 16 The electrode 15 and the source electrode 14 and the drain electrode 15 are separated by a predetermined distance via an active layer 16 which serves as a channel region. In addition, a first gate insulating layer 13a is formed to cover the source electrode 14, the drain electrode 15, and the active layer 16. In addition, a second gate insulating layer 13b is formed on the first gate insulating layer 13a, and a gate electrode 12 is formed on the second gate insulating layer 13b. In addition, a first passivation layer 17a is formed on the second gate insulating layer 13b to cover the gate electrode 12.

如上所述,本發明對FET的薄膜配置並無特別限制,如第17圖至第20C圖各所示之配置可根據意欲目的而作適當地選擇。形成在第20A圖至第20C圖所示之FET 110E、FET 110F、FET 110G上的第一閘極絕緣層13及第二閘極絕緣層13b可利用與FET 110D相同的方法來製造。因此,本發明的FET 110E、FET 110F、FET 110G可產生與FET 110D相同的有利效果。 As described above, the present invention does not particularly limit the thin film configuration of the FET, and the configurations shown in FIGS. 17 to 20C can be appropriately selected according to the intended purpose. The first gate insulating layer 13 and the second gate insulating layer 13b formed on the FET 110E, FET 110F, and FET 110G shown in FIGS. 20A to 20C can be manufactured by the same method as the FET 110D. Therefore, the FET 110E, FET 110F, and FET 110G of the present invention can produce the same advantageous effects as the FET 110D.

在此,與第20A圖至第20C圖所示的相反,第二閘極絕緣層13b可配置成比第一閘極絕緣層13a更接近主動層16。此外,第二閘極絕緣層13b可配置成覆蓋第一閘極絕緣層13a的頂部表面與側邊表面。另外,第一閘極絕緣層13a可配置成覆蓋第二閘極絕緣層13b的頂部表面與側邊表面。應注意的是,鈍化層可僅由第二鈍化層17b構成,且可由與FET 110相似之二層結構的第一鈍化層17a及第二鈍化層17b構成。 Here, contrary to what is shown in FIGS. 20A to 20C, the second gate insulating layer 13b may be disposed closer to the active layer 16 than the first gate insulating layer 13a. In addition, the second gate insulating layer 13b may be configured to cover the top surface and the side surface of the first gate insulating layer 13a. In addition, the first gate insulating layer 13a may be configured to cover the top surface and the side surface of the second gate insulating layer 13b. It should be noted that the passivation layer may be composed of only the second passivation layer 17b, and may be composed of the first passivation layer 17a and the second passivation layer 17b having a two-layer structure similar to the FET 110.

<第十一實施例> <Eleventh embodiment>

下面關於第十一實施例的敘述說明了有機EL顯示元件的範例。應注意的是,在第十一實施例的敘述中,對上面實施例中已說明的相同配置將予以省略。 The following description of the eleventh embodiment illustrates an example of an organic EL display element. It should be noted that, in the description of the eleventh embodiment, the same configuration that has been explained in the above embodiment will be omitted.

第21A圖至第22B圖為說明依據第十一實施例之有機EL顯示元件的配置的剖面圖以及依據第十一實施例之製造有機EL顯示元件的方法。 21A to 22B are cross-sectional views illustrating the configuration of the organic EL display element according to the eleventh embodiment and the method of manufacturing the organic EL display element according to the eleventh embodiment.

在如第21A圖所示之有機EL顯示元件150為包括結合在一起之有機EL元件350及驅動電路320的顯示元件。此外,該有機EL顯示元件150具有底部接觸/頂部閘極FET。 The organic EL display element 150 shown in FIG. 21A is a display element including an organic EL element 350 and a drive circuit 320 which are combined together. In addition, the organic EL display element 150 has a bottom contact/top gate FET.

在如第21B圖所示之有機EL顯示元件150A為包括結合在一起之有機EL元件350及驅動電路320的顯示元件。此外,該有機EL顯 示元件150A具有頂部接觸/頂部閘極FET。 The organic EL display element 150A shown in FIG. 21B is a display element including the organic EL element 350 and the drive circuit 320 bonded together. In addition, the organic EL display element 150A has a top contact/top gate FET.

有機EL顯示元件150及150A包括基板321、第一閘極電極322、第二閘極電極323、閘極絕緣層351、第一源極電極325、第二源極電極326、第一汲極電極327、第二汲極電極328、第一主動層329、第二主動層330、第一鈍化層41a、第二鈍化層41b、層間絕緣薄膜43、有機EL層352以及陰極45。 The organic EL display elements 150 and 150A include a substrate 321, a first gate electrode 322, a second gate electrode 323, a gate insulating layer 351, a first source electrode 325, a second source electrode 326, and a first drain electrode 327, second drain electrode 328, first active layer 329, second active layer 330, first passivation layer 41a, second passivation layer 41b, interlayer insulating film 43, organic EL layer 352, and cathode 45.

第一汲極電極327及第二閘極電極323係經由形成在閘極絕緣層351上之穿孔連接。第二汲極電極328係用作有機EL元件350的陽極。 The first drain electrode 327 and the second gate electrode 323 are connected through a through hole formed on the gate insulating layer 351. The second drain electrode 328 serves as an anode of the organic EL element 350.

應注意的是,在第21A圖及第21B圖中,在第二閘極電極323與第二汲極電極328之間形成電容器。對何處形成電容器並無特別限制。亦即,視需要,形成具有適當大小與配置的電容器。 It should be noted that in FIGS. 21A and 21B, a capacitor is formed between the second gate electrode 323 and the second drain electrode 328. There is no particular restriction on where to form the capacitor. That is, if necessary, a capacitor having an appropriate size and configuration is formed.

可使用依據第九實施例在關於FET的說明中的材料、製程等來形成基板321、第一閘極電極322、第二閘極電極323、閘極絕緣層351、第一源極電極325、第二源極電極326、第一汲極電極327、第二汲極電極328、第一主動層329、第二主動層330、第一鈍化層41a、第二鈍化層41b。 The substrate 321, the first gate electrode 322, the second gate electrode 323, the gate insulating layer 351, the first source electrode 325 may be formed using materials, processes, etc. in the description about the FET according to the ninth embodiment. The second source electrode 326, the first drain electrode 327, the second drain electrode 328, the first active layer 329, the second active layer 330, the first passivation layer 41a, and the second passivation layer 41b.

應注意的是,第一鈍化層41a及第二鈍化層41b分別對應於FET 110等中之第一鈍化層17a及第二鈍化層17b。此外,與第九實施例相似,對第一鈍化層41a及第二鈍化層41b的鈍化層配置並無特別限制,該配置可根據意欲目的而作適當地選擇。此外,第二鈍化層41b可配置成覆蓋第一鈍化層41a的頂部表面與側邊表面,而第一鈍化層41a可配置成覆蓋第二鈍化層41b的頂部表面與側邊表面。 It should be noted that the first passivation layer 41a and the second passivation layer 41b correspond to the first passivation layer 17a and the second passivation layer 17b in the FET 110 or the like, respectively. In addition, similar to the ninth embodiment, the configuration of the passivation layers of the first passivation layer 41a and the second passivation layer 41b is not particularly limited, and the configuration can be appropriately selected according to the intended purpose. In addition, the second passivation layer 41b may be configured to cover the top surface and the side surface of the first passivation layer 41a, and the first passivation layer 41a may be configured to cover the top surface and the side surface of the second passivation layer 41b.

對層間絕緣薄膜43(或平面化膜)的材料類型並無特別限制,該材料類型可根據意欲目的而作適當地選擇。該材料類型可例如為有機材料、無機材料、有機-無機複合材料等。 The material type of the interlayer insulating film 43 (or planarization film) is not particularly limited, and the material type can be appropriately selected according to the intended purpose. The material type may be, for example, organic materials, inorganic materials, organic-inorganic composite materials, and the like.

該有機材料可例如為樹脂,該樹脂可例如為聚醯亞胺、丙烯酸樹脂、氟樹脂、非氟樹脂、烯烴樹脂或矽氧樹脂,以及可使用上述樹脂所構成的感光樹脂。 The organic material may be, for example, a resin, and the resin may be, for example, polyimide, acrylic resin, fluororesin, non-fluororesin, olefin resin, or silicone resin, and a photosensitive resin composed of the above resin.

該無機材料可例如為旋塗式玻璃(SOG)材料,該旋塗式玻璃材料例如為由AZ電子材料(AZ Electronic Materials)所生產的AQUAMICA。 The inorganic material may be, for example, a spin-on glass (SOG) material, such as AQUAMICA produced by AZ Electronic Materials.

該有機-無機複合材料可例如為由在日本待審專利公開第2007-158146號中揭露的矽烷化合物所構成的有機-無機複合化合物。 The organic-inorganic composite material may be, for example, an organic-inorganic composite compound composed of a silane compound disclosed in Japanese Unexamined Patent Publication No. 2007-158146.

層間絕緣薄膜43較佳具有阻絕環境中的濕氣、氧氣、氫氣等的阻障性能。 The interlayer insulating film 43 preferably has barrier performance against moisture, oxygen, hydrogen, etc. in the environment.

對層間絕緣薄膜43的形成方法並無特別限制,該形成方法可根據意欲目的而作適當地選擇。例如,可經由旋塗法、噴墨印刷法、狹縫塗佈法、噴嘴印刷法、凹版印刷法、浸塗法等直接形成具有預定形狀的薄膜的方法。此外,可在使用感光材料的情形下,利用光微影法進行圖案化。 The formation method of the interlayer insulating film 43 is not particularly limited, and the formation method can be appropriately selected according to the intended purpose. For example, a method of directly forming a thin film having a predetermined shape via a spin coating method, an inkjet printing method, a slit coating method, a nozzle printing method, a gravure printing method, a dip coating method, and the like can be directly formed. In addition, in the case of using a photosensitive material, patterning can be performed by photolithography.

此外,在形成層間絕緣薄膜43之後,經由進行作為後處理的熱處理,可有效地穩定構成顯示元件的FET的特性。 In addition, after forming the interlayer insulating film 43, by performing heat treatment as a post-treatment, the characteristics of the FET constituting the display element can be effectively stabilized.

對有機EL層352及陰極45的製造方法並無特別限制,該製造方法可根據意欲目的而作適當地選擇。有機EL層352及陰極45的製造方法可例如為真空沉積法(例如真空氣相沉積法及濺鍍法),以及可例如為溶液製程(例如噴墨印刷法、噴嘴塗佈法等)。 The method for manufacturing the organic EL layer 352 and the cathode 45 is not particularly limited, and the method can be appropriately selected according to the intended purpose. The manufacturing method of the organic EL layer 352 and the cathode 45 may be, for example, a vacuum deposition method (for example, vacuum vapor deposition method and sputtering method), and may be, for example, a solution process (for example, inkjet printing method, nozzle coating method, etc.).

如上所述之方法,可製造所謂放出通過基板321所發出的光之底部發光型有機EL顯示元件150及150A。此處,基板321、閘極絕緣層351以及第二汲極電極(亦即陽極)328需為透明。 As described above, it is possible to manufacture so-called bottom-emission organic EL display elements 150 and 150A that emit light emitted through the substrate 321. Here, the substrate 321, the gate insulating layer 351, and the second drain electrode (ie, anode) 328 need to be transparent.

在如第22A圖所示之有機EL顯示元件150B為包括結合在一起之有機EL元件350及驅動電路320的顯示元件。此外,該有機EL顯示元件150B具有底部接觸/底部閘極FET。 The organic EL display element 150B shown in FIG. 22A is a display element including an organic EL element 350 and a drive circuit 320 which are combined together. In addition, the organic EL display element 150B has a bottom contact/bottom gate FET.

在如第22B圖所示之有機EL顯示元件150C為包括結合在一起之有機EL元件350及驅動電路320的顯示元件。此外,該有機EL顯示元件150C具有頂部接觸/底部閘極FET。 The organic EL display element 150C shown in FIG. 22B is a display element including the organic EL element 350 and the drive circuit 320 bonded together. In addition, the organic EL display element 150C has a top contact/bottom gate FET.

與有機EL顯示元件150及150A不同,有機EL顯示元件150B及150C除了包括第一鈍化層41a以及第二鈍化層41b之外,還包括第一鈍化層42a以及第二鈍化層42b。可使用依據第九實施例在關於FET的說明中的材料、製程等來形成第一鈍化層42a及第二鈍化層42b。 Unlike the organic EL display elements 150 and 150A, the organic EL display elements 150B and 150C include a first passivation layer 42a and a second passivation layer 42b in addition to the first passivation layer 41a and the second passivation layer 41b. The first passivation layer 42a and the second passivation layer 42b may be formed using materials, processes, etc. in the description about the FET according to the ninth embodiment.

應注意的是,第一鈍化層42a及第二鈍化層42b分別對應於FET 110等中之第一鈍化層17a及第二鈍化層17b。此外,與第九實施例相 似,對第一鈍化層42a及第二鈍化層42b的鈍化層配置並無特別限制,該配置可根據意欲目的而作適當地選擇。此外,第二鈍化層42b可配置成覆蓋第一鈍化層42a的頂部表面與側邊表面,而第一鈍化層42a可配置成覆蓋第二鈍化層42b的頂部表面與側邊表面。 It should be noted that the first passivation layer 42a and the second passivation layer 42b correspond to the first passivation layer 17a and the second passivation layer 17b in the FET 110 or the like, respectively. In addition, similar to the ninth embodiment, the configuration of the passivation layers of the first passivation layer 42a and the second passivation layer 42b is not particularly limited, and the configuration can be appropriately selected according to the intended purpose. In addition, the second passivation layer 42b may be configured to cover the top surface and the side surface of the first passivation layer 42a, and the first passivation layer 42a may be configured to cover the top surface and the side surface of the second passivation layer 42b.

應注意的是,第21A圖至第22B圖係說明有機EL元件350配置在驅動電路320旁邊,但是有機EL元件350可配置在驅動電路320的上方。此處,顯示元件仍為底部發光型,即為放出通過基板321所發出的光,因而驅動電路320需為透明。至於源極電極、汲極電極以及陽極,較佳使用的是導電透明氧化物,例如ITO、氧化銦(In2O3)、二氧化錫(SnO2)、氧化鋅(ZnO)或鎵(Ga)添加的氧化鋅(ZnO)、鋁(Al)添加的氧化鋅(ZnO)以及銻(Sb)添加的二氧化錫(SnO2)。 It should be noted that FIGS. 21A to 22B illustrate that the organic EL element 350 is arranged beside the drive circuit 320, but the organic EL element 350 may be arranged above the drive circuit 320. Here, the display element is still a bottom-emission type, that is, to emit the light emitted through the substrate 321, so the driving circuit 320 needs to be transparent. As for the source electrode, the drain electrode, and the anode, conductive transparent oxides such as ITO, indium oxide (In 2 O 3 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), or gallium (Ga ) Added zinc oxide (ZnO), aluminum (Al) added zinc oxide (ZnO), and antimony (Sb) added tin dioxide (SnO 2 ).

<第十二實施例> <Twelfth Embodiment>

第十二實施例的敘述說明了使用依據第一實施例之FET的影像顯示裝置以及系統的範例。應注意的是,在第十二實施例的敘述中,對上面實施例中已說明的相同配置將予以省略。 The description of the twelfth embodiment illustrates an example of an image display device and system using the FET according to the first embodiment. It should be noted that, in the description of the twelfth embodiment, the same configuration that has been explained in the above embodiment will be omitted.

於第23圖中,依據第十二實施例的電視裝置500的示意配置圖係作為系統。在此,第23圖中所示之連接線係用以指出代表訊號及資訊流的途徑,而未說明方塊之間所有連接關係。 In FIG. 23, the schematic configuration diagram of the television device 500 according to the twelfth embodiment is taken as a system. Here, the connecting lines shown in Figure 23 are used to indicate the paths representing signals and information flows, and do not describe all the connection relationships between the blocks.

依據第十二實施例的電視裝置500包括主控制裝置501、調諧器503、類比數位轉換器(analog-digital converter,ADC)504,解調電路505、傳輸流(transport stream,TS)解碼器506、聲音解碼器511、數位類比轉換器(digital-analog converter,DAC)512、聲音輸出電路513、揚聲器514、影像解碼器521、影像-螢幕上選項(on-screen display,OSD)合成電路522、影像輸出電路523、影像顯示裝置524、OSD描繪電路525、記憶體531、操作裝置532、驅動器介面(Interface,IF)541、紅外線光接收器551、通訊控制裝置552等。 The television device 500 according to the twelfth embodiment includes a main control device 501, a tuner 503, an analog-digital converter (ADC) 504, a demodulation circuit 505, and a transport stream (TS) decoder 506 , Audio decoder 511, digital-analog converter (DAC) 512, audio output circuit 513, speaker 514, video decoder 521, video-on-screen display (OSD) synthesis circuit 522, The image output circuit 523, the image display device 524, the OSD drawing circuit 525, the memory 531, the operating device 532, the driver interface (IF) 541, the infrared light receiver 551, the communication control device 552, and the like.

主控制裝置501係由中央處理單元(CPU)、快閃唯讀記憶體(ROM),動態隨機存取記憶體(RAM)等所構成,該主控制裝置501執行整個電視裝置500的控制。快閃ROM儲存以編碼寫入之由CPU可讀的電腦程式以及用於CPU處理的各種資料。此外,RAM係作為工作區域的記憶體。 The main control device 501 is composed of a central processing unit (CPU), flash read-only memory (ROM), dynamic random access memory (RAM), etc. The main control device 501 performs control of the entire television device 500. The flash ROM stores computer programs readable by the CPU written in code and various data for processing by the CPU. In addition, RAM is used as the memory of the working area.

調諧器503從經由天線610接收的廣播波長中基於預定頻道而選擇廣播。ADC504將來自調諧器503的輸出信號(亦即類比資訊)轉換為數位資訊。解調電路505將由ADC 504輸出的數位資訊解調變。 The tuner 503 selects a broadcast based on a predetermined channel from broadcast wavelengths received via the antenna 610. The ADC 504 converts the output signal (ie, analog information) from the tuner 503 into digital information. The demodulation circuit 505 demodulates the digital information output from the ADC 504.

TS解碼器506將來自解調電路505的輸出信號進行TS解碼,然後分離出聲音資訊和視訊資訊。聲音解碼器511將來自TS解碼器506的聲音資訊解碼。類比數位轉換器(DAC)512將來自聲音解碼器511的輸出信號轉換為類比信號。 The TS decoder 506 performs TS decoding on the output signal from the demodulation circuit 505, and then separates audio information and video information. The sound decoder 511 decodes the sound information from the TS decoder 506. An analog-to-digital converter (DAC) 512 converts the output signal from the sound decoder 511 into an analog signal.

聲音輸出電路513將來自數位類比轉換器(DAC)512的輸出信號輸出至揚聲器514。影像解碼器521將來自TS解碼器506的的影像資訊解碼。影像-OSD合成電路522合成來自影像解碼器521的輸出信號及來自OSD描繪電路525的輸出信號。 The sound output circuit 513 outputs the output signal from the digital-to-analog converter (DAC) 512 to the speaker 514. The video decoder 521 decodes the video information from the TS decoder 506. The video-OSD synthesis circuit 522 synthesizes the output signal from the video decoder 521 and the output signal from the OSD rendering circuit 525.

影像輸出電路523將來自影像-OSD合成電路522的輸出信號輸出至影像顯示裝置524。OSD描繪電路525包括用於在影像顯示裝置524上顯示字元和圖形等的字元產生器,該OSD描繪電路525基於來自操作裝置532或IR光接收器551的指令產生包括顯示資訊的信號。 The video output circuit 523 outputs the output signal from the video-OSD synthesis circuit 522 to the video display device 524. The OSD rendering circuit 525 includes a character generator for displaying characters and graphics on the image display device 524. The OSD rendering circuit 525 generates a signal including display information based on an instruction from the operating device 532 or the IR light receiver 551.

記憶體531暫時累積聲音-視覺(AV)資料等。設置有輸入媒體(未顯示於第23圖)例如控制面板的操作裝置532將由使用者輸入的各種資訊項傳遞至主控制裝置501。驅動器介面541為互動通訊介面,並符合ATAPI(AT Attachment Packet Interface)或其他等規格。 The memory 531 temporarily accumulates audio-visual (AV) data and the like. The operation device 532 provided with an input medium (not shown in FIG. 23) such as a control panel transmits various information items input by the user to the main control device 501. The driver interface 541 is an interactive communication interface and conforms to ATAPI (AT Attachment Packet Interface) or other specifications.

硬碟裝置542由硬碟和用於驅動該硬碟的驅動裝置等構成。該驅動裝置將資料儲存在硬碟中,並從硬碟中撷取所儲存的資料。光碟裝置543將資料儲存在光碟中(例如DVD),並撷取光碟中所儲存的資料。 The hard disk device 542 is composed of a hard disk, a drive device for driving the hard disk, and the like. The drive device stores data in the hard disk and retrieves the stored data from the hard disk. The optical disc device 543 stores the data in an optical disc (such as a DVD) and extracts the data stored in the optical disc.

IR光接收器551接收來自遙控傳送機620的光學信號,並將該光學信號傳遞至主控制裝置501。通訊控制裝置552控制與網際網路的通訊,且通訊控制裝置552能經由網際網路獲得各種資訊。 The IR light receiver 551 receives the optical signal from the remote control transmitter 620 and transmits the optical signal to the main control device 501. The communication control device 552 controls communication with the Internet, and the communication control device 552 can obtain various information through the Internet.

影像顯示裝置524包括如第24圖所示的螢幕700以及顯示控制裝置780。如第25圖所示,螢幕700包括由複數個(n x m個)排列為矩陣之顯示元件702所構成的顯示器710。 The image display device 524 includes a screen 700 as shown in FIG. 24 and a display control device 780. As shown in FIG. 25, the screen 700 includes a display 710 composed of a plurality of (n x m) display elements 702 arranged in a matrix.

此外,如第26圖所示之範例,顯示器710包括沿著X軸方向以等距排列的n條掃描線(亦即,X0、X1、X2、X3、...、Xn-2、Xn-1)、 沿著Y軸方向以等距排列的m條資料線(Y0、Y1、Y2、Y3、...、Ym-1)以及沿著Y軸方向以等距排列的m條電流供應線(Y0i、Y1i、Y2i、Y3i、...、Ym-1i)。此外,根據掃描線及資料線,可識別每個顯示元件702。 In addition, as in the example shown in FIG. 26, the display 710 includes n scanning lines arranged at equal intervals along the X-axis direction (that is, X0, X1, X2, X3, ..., Xn-2, Xn- 1), m data lines (Y0, Y1, Y2, Y3, ..., Ym-1) arranged at equal intervals along the Y-axis direction and m current supply lines arranged at equal intervals along the Y-axis direction (Y0i, Y1i, Y2i, Y3i, ..., Ym-1i). In addition, each display element 702 can be identified based on the scan line and the data line.

如第27圖所示之範例,每個顯示元件702包括有機EL元件750以及用於引發有機EL元件750發光的驅動電路720。亦即,顯示器710為所謂的主動矩陣型有機EL顯示器。此外,顯示器710為32英寸彩色顯示器,然而對顯示器710的大小並無特別限制。 As in the example shown in FIG. 27, each display element 702 includes an organic EL element 750 and a driving circuit 720 for causing the organic EL element 750 to emit light. That is, the display 710 is a so-called active matrix type organic EL display. In addition, the display 710 is a 32-inch color display, however, the size of the display 710 is not particularly limited.

如第28圖所示之範例,有機EL元件750包括有機EL薄膜層740、陰極712以及陽極714。 As in the example shown in FIG. 28, the organic EL element 750 includes an organic EL thin film layer 740, a cathode 712, and an anode 714.

有機EL元件750可配置在例如FET的旁邊。在此情形下,有機EL元件750及FET可形成在同一基板上。然而對有機EL元件750的配置並無特別限制。例如,有機EL元件750可配置在FET的上方。在此情形下,閘極電極需為透明。因此,較佳使用例如ITO、氧化銦(In2O3)、二氧化錫(SnO2)、氧化鋅(ZnO)或鎵(Ga)添加的氧化鋅(ZnO)、鋁(Al)添加的氧化鋅(ZnO)以及銻(Sb)添加的二氧化錫(SnO2)等導電透明氧化物作為該閘極電極。 The organic EL element 750 may be arranged beside the FET, for example. In this case, the organic EL element 750 and the FET can be formed on the same substrate. However, the configuration of the organic EL element 750 is not particularly limited. For example, the organic EL element 750 may be arranged above the FET. In this case, the gate electrode needs to be transparent. Therefore, it is preferable to use, for example, ITO, indium oxide (In 2 O 3 ), tin dioxide (SnO 2 ), zinc oxide (ZnO) or gallium (Ga) added zinc oxide (ZnO), aluminum (Al) added oxide A conductive transparent oxide such as tin dioxide (SnO 2 ) added with zinc (ZnO) and antimony (Sb) is used as the gate electrode.

使用鋁(Al)作為提供在有機EL元件750上的陰極712。應注意的是,也可使用鎂(Mg)-銀(Ag)合金、鋁(Al)-鋰(Li)合金以及氧化銦錫(ITO)作為陰極712。使用ITO作為陽極714。應注意的是,也可使用例如氧化銦(In2O3)、二氧化錫(SnO2)或氧化鋅(ZnO)之導電氧化物、以及銀(Ag)-釹(Nd)合金等作為陽極714。 Aluminum (Al) is used as the cathode 712 provided on the organic EL element 750. It should be noted that magnesium (Mg)-silver (Ag) alloy, aluminum (Al)-lithium (Li) alloy, and indium tin oxide (ITO) may also be used as the cathode 712. As the anode 714, ITO was used. It should be noted that conductive oxides such as indium oxide (In 2 O 3 ), tin dioxide (SnO 2 ) or zinc oxide (ZnO), and silver (Ag)-neodymium (Nd) alloys, etc. can also be used as anodes 714.

有機EL薄膜層740包括電子傳輸層742、發光層744以及電洞傳輸層746。此外,陰極712連接至電子傳輸層742,而陽極714連接至電洞傳輸層746。藉由將預定電壓施加在陽極714與陰極712之間而使發光層744發光。 The organic EL thin film layer 740 includes an electron transport layer 742, a light emitting layer 744, and a hole transport layer 746. In addition, the cathode 712 is connected to the electron transport layer 742, and the anode 714 is connected to the hole transport layer 746. The light-emitting layer 744 emits light by applying a predetermined voltage between the anode 714 and the cathode 712.

此外,如第27圖所示,驅動電路720包括兩個FET 810和820以及一個電容器(condenser)830。FET 810用作為開關元件。閘極電極G連接至預定掃描線,而源極電極S連接至預定資料線。此外,汲極電極D連接至電容器830的一端。 In addition, as shown in FIG. 27, the driving circuit 720 includes two FETs 810 and 820 and a condenser 830. The FET 810 is used as a switching element. The gate electrode G is connected to a predetermined scan line, and the source electrode S is connected to a predetermined data line. In addition, the drain electrode D is connected to one end of the capacitor 830.

設置電容器830,用以儲存FET 810的狀態,換言之,係用 以儲存資料。電容器830的另一端連接至預定的電流供應線。 The capacitor 830 is provided to store the state of the FET 810, in other words, to store data. The other end of the capacitor 830 is connected to a predetermined current supply line.

設置FET 820,用以將大量電流供給至有機EL元件750。閘極電極G連接至FET 810的汲極電極D。此外,汲極電極D連接至有機EL元件750的陽極714,而源極電極S連接至預定電流供應線。 The FET 820 is provided to supply a large amount of current to the organic EL element 750. The gate electrode G is connected to the drain electrode D of the FET 810. In addition, the drain electrode D is connected to the anode 714 of the organic EL element 750, and the source electrode S is connected to a predetermined current supply line.

在此,當FET 810轉為“ON”狀態時,FET 820驅動有機EL元件750 Here, when the FET 810 turns to the "ON" state, the FET 820 drives the organic EL element 750

如第29圖所示之範例,顯示控制裝置780包括影像資料處理電路782、掃描線驅動電路784以及資料線驅動電路786。 As in the example shown in FIG. 29, the display control device 780 includes an image data processing circuit 782, a scanning line drive circuit 784, and a data line drive circuit 786.

影像資料處理電路782根據來自影像輸出電路523的輸出信號,決定顯示器710的多個顯示元件702的亮度。掃描線驅動電路784根據來自影像資料處理電路782的指令,將電壓施加至特定的n條掃描線。資料線驅動電路786根據來自影像資料處理電路782的指令,將電壓施加至特定的m條資料線。 The video data processing circuit 782 determines the brightness of the plurality of display elements 702 of the display 710 based on the output signal from the video output circuit 523. The scanning line driving circuit 784 applies voltage to specific n scanning lines according to instructions from the image data processing circuit 782. The data line drive circuit 786 applies a voltage to specific m data lines according to instructions from the image data processing circuit 782.

如上所說明,依據第十二實施例的電視裝置500具有影像資料產生單元,該影像資料產生單元係由影像解碼器521、影像-OSD合成電路522、影像輸出電路523以及OSD描繪電路525所構成。 As explained above, the television device 500 according to the twelfth embodiment has an image data generation unit composed of an image decoder 521, an image-OSD synthesis circuit 522, an image output circuit 523, and an OSD rendering circuit 525 .

此外,在上述範例中,說明了光學控制元件為有機EL元件,然而,對光學控制元件並無特別限制。光學控制元件可例如為液晶元件、電致變色元件、電泳元件或電濕潤元件。 In addition, in the above example, it is explained that the optical control element is an organic EL element, however, the optical control element is not particularly limited. The optical control element may be, for example, a liquid crystal element, an electrochromic element, an electrophoretic element, or an electrowetting element.

例如,在光學控制元件為液晶元件的情形下,液晶顯示器用作為顯示器710。在此情形下,如第30圖所示,顯示元件703不需要電流供應線。 For example, in the case where the optical control element is a liquid crystal element, a liquid crystal display is used as the display 710. In this case, as shown in FIG. 30, the display element 703 does not require a current supply line.

此外,如第20圖所示之範例,驅動電路730可僅由一個FET 840所構成,而FET 840與如第27圖所示之FET810和FET820相似。FET 840具有閘極電極G以及源極電極S,其中該閘極電極G連接至預定的掃描線,而源極電極S連接至預定的資料線。此外,汲極電極D連接至液晶元件770的像素電極及電容器760。第31圖中之元件符號762及772分別表示電容器760及液晶元件770的配對電極(亦即共用電極)。 In addition, as in the example shown in FIG. 20, the driving circuit 730 may be composed of only one FET 840, and the FET 840 is similar to the FET 810 and FET 820 shown in FIG. 27. The FET 840 has a gate electrode G and a source electrode S, where the gate electrode G is connected to a predetermined scan line, and the source electrode S is connected to a predetermined data line. In addition, the drain electrode D is connected to the pixel electrode of the liquid crystal element 770 and the capacitor 760. The element symbols 762 and 772 in FIG. 31 indicate the paired electrodes (that is, common electrodes) of the capacitor 760 and the liquid crystal element 770, respectively.

此外,在上述範例中,說明了系統為電視裝置,然而,對系統並無特別限制。亦即,該系統僅需包括上述影像顯示裝置524作為顯示 影像和資訊的裝置。例如,該系統可為電腦系統,其中電腦(例如個人電腦)與影像顯示裝置524彼此連接。 In addition, in the above example, it is explained that the system is a television device, however, the system is not particularly limited. That is, the system only needs to include the above-mentioned image display device 524 as a device for displaying images and information. For example, the system may be a computer system in which a computer (such as a personal computer) and the image display device 524 are connected to each other.

此外,影像顯示裝置524可用於移動資訊裝置(例如,行動電話、行動音樂播放器、行動視訊播放器、電子書以及個人數位助理(PDA))中的顯示單元;亦可用於影像擷取裝置(例如數位相機或攝錄影機)中的顯示單元。此外,影像顯示裝置524可用於運輸系統(例如車輛、飛機、火車和輪船)所裝設之顯示各種資訊用的顯示單元。另外,影像顯示裝置524可用於測量裝置、分析裝置、醫藥裝置、廣告媒體等所裝設的顯示各種資訊用的顯示單元。 In addition, the image display device 524 can be used as a display unit in mobile information devices (eg, mobile phones, mobile music players, mobile video players, e-books, and personal digital assistants (PDAs)); it can also be used in image capture devices ( (Such as digital cameras or camcorders). In addition, the image display device 524 can be used for a display unit installed in a transportation system (such as vehicles, airplanes, trains, and ships) for displaying various information. In addition, the image display device 524 can be used for a display unit for displaying various information installed in a measuring device, an analyzing device, a medical device, an advertising medium, or the like.

[實例1] [Example 1]

在實例1中,製造如第1圖所示的底部閘極/底部接觸的FET 10。 In Example 1, the bottom gate/bottom contact FET 10 as shown in FIG. 1 is manufactured.

(形成閘極電極) (Formation of gate electrode)

首先,在基板11上形成閘極電極12。具體地,透過直流(direct-current,DC)濺鍍法的方式在由玻璃製成的基板11上形成導電的Mo薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻材料塗佈閘極電極12,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於閘極電極12的光阻圖案。然後,透過反應性離子蝕刻(reactive ion eatching,RIE)的方式移除Mo薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成閘極電極12。 First, the gate electrode 12 is formed on the substrate 11. Specifically, a conductive Mo film is formed on the substrate 11 made of glass by direct-current (DC) sputtering method, so that the average film thickness is about 100 nm. Subsequently, the gate electrode 12 is coated with a photoresist material, and then pre-baked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the gate electrode 12. Then, the part of the Mo film not covered by the photoresist pattern is removed by reactive ion eating (RIE). Then, the photoresist pattern is also removed to form the gate electrode 12.

(形成閘極絕緣層) (Formation of gate insulating layer)

下一步,形成閘極絕緣層13。首先,製備用於形成閘極絕緣層的塗佈液。具體地,透過混合1.2mL的環己基苯、1.95mL的2-乙基己酸鑭甲苯溶液(7% La;Wako 122-03371;WAKO CHEMICAL,LTD.的產品)、0.57mL的2-乙基己酸鍶甲苯溶液(2% Sr;Wako 195-09561;WAKO CHEMICAL,LTD.的產品)以及0.09mL的2-乙基己酸鋯氧化物礦油精溶液(12% Zr;Wako 269-01116;WAKO CHEMICAL,LTD.的產品),製備用於形成閘極絕緣層的塗佈液。 Next, the gate insulating layer 13 is formed. First, a coating liquid for forming a gate insulating layer is prepared. Specifically, by mixing 1.2 mL of cyclohexylbenzene, 1.95 mL of 2-ethylhexanoic acid lanthanum toluene solution (7% La; Wako 122-03371; product of WAKO CHEMICAL, LTD.), 0.57 mL of 2-ethyl Strontium hexanoate toluene solution (2% Sr; Wako 195-09561; product of WAKO CHEMICAL, LTD.) and 0.09 mL of 2-ethylhexanoic acid zirconium oxide mineral spirit solution (12% Zr; Wako 269-01116; WAKO CHEMICAL, LTD. product), to prepare a coating solution for forming the gate insulating layer.

下一步,用於形成閘極絕緣層的塗佈液滴在基板11及閘極電極12上,然後在預定的條件下進行旋塗程序。然後,在120℃的環境下 進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到順電且非晶的Sr-La-Zr氧化物(具有135nm的薄膜厚度)。隨後,用光阻(TSMR-8800BE;TOKYO OHKA KOGYO Co.,Ltd.的產品)塗佈Mo/Al/Mo層積薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的閘極絕緣層13的光阻圖案。 Next, a coating droplet for forming the gate insulating layer is deposited on the substrate 11 and the gate electrode 12, and then a spin coating process is performed under predetermined conditions. Then, after performing a drying program for 1 hour in an environment of 120°C, a burning program was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a paraelectric and amorphous Sr-La-Zr oxide ( With a film thickness of 135nm). Subsequently, the Mo/Al/Mo laminated film was coated with a photoresist (TSMR-8800BE; a product of TOKYO OHKA KOGYO Co., Ltd.), and then prebaked, exposed through an exposure device, and developed to form a material having The photoresist pattern of the formed gate insulating layer 13.

下一步,透過浸泡在0.1mol/L的鹽酸(Wako 083-01115;Wako Pure Chemical Industries,Ltd.的產品)中30秒來蝕刻Sr-La-Zr氧化物未被光阻圖案覆蓋的部分,然後也透過浸泡在光阻剝離劑(即,STRIPPER 104;TOKYO OHKA KOGYO Co.,Ltd.的產品)中2分鐘來移除光阻圖案,以形成閘極絕緣層13。在此,移除部分的Sr-La-Zr氧化物以露出部分的閘極電極12,使電壓可施加在閘極電極12。 Next, the portion of the Sr-La-Zr oxide not covered by the photoresist pattern is etched by soaking in 0.1 mol/L hydrochloric acid (Wako 083-01115; product of Wako Pure Chemical Industries, Ltd.) for 30 seconds, and then The photoresist pattern was also removed by soaking in a photoresist stripper (ie, STRIPPER 104; a product of TOKYO OHKA KOGYO Co., Ltd.) for 2 minutes to form the gate insulating layer 13. Here, part of the Sr-La-Zr oxide is removed to expose part of the gate electrode 12 so that a voltage can be applied to the gate electrode 12.

(形成源極電極及汲極電極) (Formation of source electrode and drain electrode)

下一步,形成源極電極14及汲極電極15。具體地,透過DC濺鍍法的方式在閘極絕緣層13上形成導電的Mo薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Mo薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於源極電極14及汲極電極15的光阻圖案。然後,透過RIE的方式移除Mo薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成源極電極14及汲極電極15。 Next, the source electrode 14 and the drain electrode 15 are formed. Specifically, a conductive Mo film is formed on the gate insulating layer 13 by the DC sputtering method, so that the average film thickness is about 100 nm. Subsequently, the Mo film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the source electrode 14 and the drain electrode 15. Then, the part of the Mo film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the source electrode 14 and the drain electrode 15.

(形成主動層) (Form active layer)

下一步,形成主動層16。具體地,透過DC濺鍍法的方式形成Mg-In基氧化物(In2MgO4)薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Mg-In基氧化物薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於主動層16的光阻圖案。然後,透過RIE的方式移除Mg-In基氧化物薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成主動層16。經由上述步驟,得到主動層16,以形成介於源極電極14與汲極電極15之間的通道。 Next, the active layer 16 is formed. Specifically, the Mg-In-based oxide (In 2 MgO 4 ) thin film is formed by the DC sputtering method so that the average thin film thickness is about 100 nm. Subsequently, an Mg-In-based oxide film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the active layer 16. Then, the part of the Mg-In-based oxide film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the active layer 16. Through the above steps, the active layer 16 is obtained to form a channel between the source electrode 14 and the drain electrode 15.

(形成鈍化層) (Formation of passivation layer)

下一步,形成鈍化層17。具體地,透過電漿CVD法的方式形成SiON薄膜,使平均的薄膜厚度約為300nm。隨後,用光阻塗佈SiON薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於鈍化 層17的光阻圖案。然後,透過RIE的方式移除SiON薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成鈍化層17。 Next, a passivation layer 17 is formed. Specifically, the SiON film is formed by the plasma CVD method so that the average film thickness is about 300 nm. Subsequently, the SiON film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern having a passivation layer 17. Then, the part of the SiON film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the passivation layer 17.

經由上述步驟,製造底部閘極/底部接觸的FET 10。 Through the above steps, the bottom gate/bottom contact FET 10 is manufactured.

[實例2] [Example 2]

以完全相同於實例1所使用的方法製造FET 10,除了在對應於實例1「(形成閘極絕緣層)」的步驟中,用於Sr-La-Zr的蝕刻劑為5%草酸以外。 The FET 10 was manufactured in exactly the same manner as used in Example 1, except that in the step corresponding to Example 1 "(Formation of Gate Insulation Layer)", the etchant used for Sr-La-Zr was 5% oxalic acid.

[實例3] [Example 3]

以完全相同於實例1所使用的方法製造FET 10,除了在對應於實例1「(形成閘極絕緣層)」的步驟中,用於Sr-La-Zr的蝕刻劑為20%硝酸以外。 The FET 10 was manufactured in exactly the same manner as used in Example 1, except that in the step corresponding to Example 1 "(Formation of Gate Insulation Layer)", the etchant used for Sr-La-Zr was 20% nitric acid.

[實例4] [Example 4]

以完全相同於實例1所使用的方法製造FET 10,除了在對應於實例1「(形成閘極絕緣層)」的步驟中,用於Sr-La-Zr的蝕刻劑為50%磷酸以外。 The FET 10 was manufactured in exactly the same manner as used in Example 1, except that in the step corresponding to Example 1 "(Gate Insulation Formation)", the etchant for Sr-La-Zr was 50% phosphoric acid.

[實例5] [Example 5]

以完全相同於實例1所使用的方法製造FET 10,除了在對應於實例1「(形成閘極絕緣層)」的步驟中,用於Sr-La-Zr的蝕刻劑為5%乙酸並且浸泡於蝕刻劑的時間為6分鐘以外。 The FET 10 was manufactured in exactly the same manner as used in Example 1, except that in the step corresponding to Example 1 "(Formation of Gate Insulation Layer)", the etchant for Sr-La-Zr was 5% acetic acid and soaked in The time of the etchant is other than 6 minutes.

[實例6] [Example 6]

以完全相同於實例1所使用的方法製造FET 10,除了在對應於實例1「(形成閘極絕緣層)」的步驟中,用於Sr-La-Zr的蝕刻劑為10%硫酸以外。 The FET 10 was manufactured in exactly the same manner as used in Example 1, except that in the step corresponding to Example 1 "(Gate Insulation Formation)", the etchant used for Sr-La-Zr was 10% sulfuric acid.

[實例7] [Example 7]

以完全相同於實例1所使用的方法製造FET 10,除了在對應於實例1「(形成閘極絕緣層)」的步驟中,用於Sr-La-Zr的蝕刻劑為含有20%的硝酸、60%的磷酸及2.0%的水的混合溶液以外。 The FET 10 is manufactured in exactly the same manner as used in Example 1, except that in the step corresponding to Example 1 "(Formation of Gate Insulation Layer)", the etchant for Sr-La-Zr is 20% nitric acid, Other than the mixed solution of 60% phosphoric acid and 2.0% water.

[實例8] [Example 8]

以完全相同於實例1所使用的方法製造FET 10,除了在對應於實例1「(形成閘極絕緣層)」的步驟中,用於Sr-La-Zr的蝕刻劑為含有 5%的硝酸、80%的磷酸、10%的乙酸及5.0%的水的混合溶液以外。 The FET 10 is manufactured in exactly the same manner as used in Example 1, except that in the step corresponding to Example 1 "(Formation of Gate Insulation Layer)", the etchant for Sr-La-Zr contains 5% nitric acid, Other than the mixed solution of 80% phosphoric acid, 10% acetic acid and 5.0% water.

[實例9] [Example 9]

以完全相同於實例1所使用的方法製造FET 10,除了在對應於實例1「(形成閘極絕緣層)」的步驟中,用於Sr-La-Zr的蝕刻劑為5%雙氧水以外。 The FET 10 was manufactured in exactly the same manner as used in Example 1, except that in the step corresponding to Example 1 "(Formation of Gate Insulation Layer)", the etchant used for Sr-La-Zr was 5% hydrogen peroxide.

[實例10] [Example 10]

在實例10中,製造如第5圖所示的頂部閘極/自我對準FET 120。 In Example 10, the top gate/self-aligned FET 120 as shown in FIG. 5 was manufactured.

(形成主動層) (Form active layer)

首先,在基板121上形成主動層122。具體地,透過DC濺鍍法的方式在由玻璃製成的基板121上形成Mg-In基氧化物(In2MgO4)薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Mg-In基氧化物薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於主動層122的光阻圖案。然後,透過RIE的方式移除Mg-In基氧化物薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成主動層122。 First, the active layer 122 is formed on the substrate 121. Specifically, an Mg-In-based oxide (In 2 MgO 4 ) thin film is formed on the substrate 121 made of glass by the DC sputtering method, so that the average thin film thickness is about 100 nm. Subsequently, the Mg-In-based oxide film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the active layer 122. Then, the part of the Mg-In-based oxide film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the active layer 122.

(形成閘極絕緣層及閘極電極) (Formation of gate insulating layer and gate electrode)

下一步,形成閘極絕緣層123。將相同於實例1所採用之用於形成閘極絕緣層的塗佈液滴在基板121及主動層122上,然後在預定的條件下進行旋塗程序。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到順電且非晶的Sr-La-Zr氧化物(具有135nm的薄膜厚度)。然後,透過DC濺鍍法的方式形成導電的Mo/Al/Mo層積薄膜,使平均的薄膜厚度約為300nm(即,50nm/200nm/50nm)。隨後,用光阻塗佈Mo/Al/Mo層積薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於閘極電極124的光阻圖案。然後,將Mo/Al/Mo層積薄膜及Sr-La-Zr氧化物浸泡在含有5%的硝酸、80%的磷酸、10%的乙酸及5%的水的混合溶液中30秒,以移除Mo/Al/Mo層積薄膜及Sr-La-Zr氧化物未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成閘極絕緣層123及閘極電極124。 Next, the gate insulating layer 123 is formed. On the substrate 121 and the active layer 122, the same coating droplets used for forming the gate insulating layer as used in Example 1 were applied on the substrate 121 and the active layer 122, and then a spin coating process was performed under predetermined conditions. Then, after performing a drying program for 1 hour in an environment of 120°C, a burning program was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a paraelectric and amorphous Sr-La-Zr oxide ( With a film thickness of 135nm). Then, a conductive Mo/Al/Mo laminated film is formed by the DC sputtering method so that the average film thickness is about 300 nm (that is, 50 nm/200 nm/50 nm). Subsequently, the Mo/Al/Mo laminated film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the gate electrode 124. Then, the Mo/Al/Mo laminated film and Sr-La-Zr oxide were immersed in a mixed solution containing 5% nitric acid, 80% phosphoric acid, 10% acetic acid, and 5% water for 30 seconds to move Except for the parts of the Mo/Al/Mo laminated film and Sr-La-Zr oxide that are not covered by the photoresist pattern. Then, the photoresist pattern is also removed to form the gate insulating layer 123 and the gate electrode 124.

(形成層間絕緣層) (Forming an interlayer insulating layer)

下一步,形成層間絕緣層127。具體地,透過電漿CVD法 的方式形成SiON薄膜,使平均的薄膜厚度約為300nm。隨後,用光阻塗佈SiON薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於層間絕緣層127的光阻圖案。然後,透過RIE的方式移除SiON薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成層間絕緣層127。 Next, an interlayer insulating layer 127 is formed. Specifically, the SiON film is formed by the plasma CVD method so that the average film thickness is about 300 nm. Subsequently, the SiON film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern having an interlayer insulating layer 127. Then, the part of the SiON film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the interlayer insulating layer 127.

(形成源極電極及汲極電極) (Formation of source electrode and drain electrode)

下一步,形成源極電極125及汲極電極126。具體地,透過DC濺鍍法的方式在層間絕緣層127上形成導電的Mo/Al/Mo層積薄膜,使平均的薄膜厚度約為300nm(即,50nm/200nm/50nm)。隨後,用光阻塗佈Mo/Al/Mo層積薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於源極電極125及汲極電極126的光阻圖案。然後,透過RIE的方式移除Mo/Al/Mo層積薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以得到由Mo/Al/Mo層積薄膜形成源極電極125及汲極電極126。 Next, the source electrode 125 and the drain electrode 126 are formed. Specifically, a conductive Mo/Al/Mo laminated film is formed on the interlayer insulating layer 127 by the DC sputtering method so that the average film thickness is about 300 nm (that is, 50 nm/200 nm/50 nm). Subsequently, the Mo/Al/Mo laminated film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the source electrode 125 and the drain electrode 126. Then, the part of the Mo/Al/Mo laminated film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to obtain a source electrode 125 and a drain electrode 126 formed of a Mo/Al/Mo laminated film.

(形成鈍化層) (Formation of passivation layer)

下一步,形成鈍化層128。具體地,透過電漿CVD法的方式形成SiON薄膜,使平均的薄膜厚度約為300nm。隨後,用光阻塗佈SiON薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於鈍化層128的光阻圖案。然後,透過RIE的方式移除SiON薄膜未被光阻圖案覆蓋的部分。接著,也移除光阻圖案,以形成鈍化層128。經由上述步驟,製造頂部閘極/自我對準的FET 120。 Next, a passivation layer 128 is formed. Specifically, the SiON film is formed by the plasma CVD method so that the average film thickness is about 300 nm. Subsequently, the SiON film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the passivation layer 128. Then, the part of the SiON film not covered by the photoresist pattern is removed by RIE. Next, the photoresist pattern is also removed to form the passivation layer 128. Through the above steps, the top gate/self-aligned FET 120 is manufactured.

(評價電晶體特性) (Evaluate transistor characteristics)

對實例1至實例10中所製造的每一個FET進行電晶體特性的評價。電晶體特性的評價是基於當源極電極14與汲極電極15之間的電壓(Vds)為+10V時,閘極電極12與源極電極14之間的電壓(Vgs)及源極電極14與汲極電極15之間的電流(Ids)的關係(Vgs-Ids)的量測。 The transistor characteristics of each of the FETs manufactured in Examples 1 to 10 were evaluated. The evaluation of transistor characteristics is based on the voltage (Vgs) between the gate electrode 12 and the source electrode 14 and the source electrode 14 when the voltage (Vds) between the source electrode 14 and the drain electrode 15 is +10V Measurement of the relationship (Vgs-Ids) with the current (Ids) of the drain electrode 15.

再者,基於電晶體特性(Vgs-Ids)的評價結果,計算飽和區中的場效遷移率。進一步,計算S數值,作為因施加Vgs而響應的Ids上升銳度(rise-sharpness)的指標。進一步,計算電晶體由Ids在「接通」狀態(例如,Vgs=+10V)至「斷路」狀態(例如,Vgs=-10V)的比率(即,開/關比)。進一步,計算臨界電壓(Vth),其為對應於因施加Vgs而響應的Ids上升的電壓值。 Furthermore, based on the evaluation result of the transistor characteristics (Vgs-Ids), the field-effect mobility in the saturation region is calculated. Further, the S value is calculated as an indicator of the rise-sharpness of Ids that responds to the application of Vgs. Further, the ratio (ie, on/off ratio) of the transistor from Ids in the "on" state (for example, Vgs=+10V) to the "off" state (for example, Vgs=-10V) is calculated. Further, a threshold voltage (Vth) is calculated, which is a voltage value corresponding to an increase in Ids in response to the application of Vgs.

關於電晶體特性的結果,較佳的電晶體特性為:高遷移率;高開/關比;低S數值;且Vth在0V附近。具體地,較佳的電晶體特性為:遷移率在3cm2/Vs以上;開/關比在1.0 x 108以上;S數值在0.7以下;且Vth在±5V的範圍。 Regarding the results of the transistor characteristics, the preferred transistor characteristics are: high mobility; high on/off ratio; low S value; and Vth around 0V. In particular, preferred transistor characteristics: mobility 3cm 2 / Vs or more; on / off ratio of more than 1.0 x 10 8; S values below 0.7; and Vth is a range of ± 5V.

再者,同時也量測閘極絕緣層的電容,以計算介電常數。當閘極絕緣層具有6以上的介電常數時,能耗被認為是低的。 Furthermore, the capacitance of the gate insulating layer is also measured to calculate the dielectric constant. When the gate insulating layer has a dielectric constant of 6 or more, the energy consumption is considered to be low.

實例1至實例10中所製造的FET,其電晶體特性的評價結果顯示在表1。注意的是實例1至實例10中所製造的所有FET皆具有較佳的電晶體特性。再者,根據實例1至實例10的閘極絕緣層的介電常數皆約為13,因而FET的能耗被認為是低的。 The evaluation results of the transistor characteristics of the FETs manufactured in Examples 1 to 10 are shown in Table 1. Note that all the FETs manufactured in Examples 1 to 10 have better transistor characteristics. Furthermore, the dielectric constants of the gate insulating layers according to Examples 1 to 10 are all about 13, so the power consumption of the FET is considered to be low.

如上所述,其證實了利用用於閘極絕緣層的第一氧化物以及利用在第一氧化物上進行濕式蝕刻的低成本圖案化程序,能夠生產高品質的FET。 As described above, it is confirmed that high-quality FETs can be produced using the first oxide for the gate insulating layer and the low-cost patterning process using wet etching on the first oxide.

[表1]

Figure 108142640-A0101-12-0069-1
[Table 1]
Figure 108142640-A0101-12-0069-1

[實例11] [Example 11]

在實例11中,製造如第1圖所示的底部閘極/底部接觸FET 10。 In Example 11, the bottom gate/bottom contact FET 10 as shown in FIG. 1 was manufactured.

(形成閘極電極) (Formation of gate electrode)

首先,以與實例1相同的方法在基板11上形成閘極電極12。 First, the gate electrode 12 was formed on the substrate 11 in the same manner as in Example 1.

(形成閘極絕緣層) (Formation of gate insulating layer)

下一步,形成閘極絕緣層13。具體地,透過電漿CVD法的方式形成SiON薄膜,使平均的薄膜厚度約為300nm。隨後,用光阻塗佈SiON薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於閘極絕緣層13的光阻圖案。然後,透過RIE的方式移除SiON薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成閘極絕緣層13。 Next, the gate insulating layer 13 is formed. Specifically, the SiON film is formed by the plasma CVD method so that the average film thickness is about 300 nm. Subsequently, the SiON film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern having a gate insulating layer 13. Then, the part of the SiON film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the gate insulating layer 13.

(形成源極電極及汲極電極) (Formation of source electrode and drain electrode)

下一步,以與實例1相同的方法在基板11上形成源極電極14及汲極電極15。 Next, the source electrode 14 and the drain electrode 15 are formed on the substrate 11 in the same manner as in Example 1.

(形成主動層) (Form active layer)

下一步,以與實例1相同的方法形成主動層16。 Next, the active layer 16 is formed in the same manner as in Example 1.

(形成鈍化層) (Formation of passivation layer)

下一步,形成鈍化層17。首先,製備用於形成鈍化層的塗佈液。具體地,透過混合1.2mL的環己基苯、1.95mL的2-乙基己酸鑭甲苯溶液(即,Wako 122-03371)、0.57mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-09561)以及0.09mL的2-乙基己酸鋯氧化物礦油精溶液(即,Wako 269-01116),製備用於形成鈍化層的塗佈液。 Next, a passivation layer 17 is formed. First, a coating liquid for forming a passivation layer is prepared. Specifically, by mixing 1.2 mL of cyclohexylbenzene, 1.95 mL of 2-ethylhexanoic acid lanthanum toluene solution (ie, Wako 122-03371), and 0.57 mL of 2-ethylhexanoic acid strontium toluene solution (ie, Wako 195 -09561) and 0.09 mL of 2-ethylhexanoic acid zirconium oxide mineral spirit solution (ie, Wako 269-01116) to prepare a coating liquid for forming a passivation layer.

下一步,用於形成鈍化層的塗佈液滴在基板11、閘極電極12、閘極絕緣層13、源極電極14、汲極電極15及主動層16上,然後在預定的條件下進行旋塗程序。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到順電且非晶的Sr-La-Zr氧化物(具有135nm的薄膜厚度)。隨後,用光阻(即,TSMR8800-BE)塗佈Sr-La-Zr氧化物,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的鈍化層17的光阻圖案。 Next, the coating droplets used to form the passivation layer are on the substrate 11, the gate electrode 12, the gate insulating layer 13, the source electrode 14, the drain electrode 15 and the active layer 16, and then proceed under predetermined conditions Spin coating procedure. Then, after performing a drying program for 1 hour in an environment of 120°C, a burning program was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a paraelectric and amorphous Sr-La-Zr oxide ( With a film thickness of 135nm). Subsequently, the Sr-La-Zr oxide is coated with a photoresist (ie, TSMR8800-BE), and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern having a passivation layer 17 corresponding to the formation.

下一步,透過浸泡在0.1mol/L的鹽酸(即,Wako 083-01115) 中30秒來蝕刻Sr-La-Zr氧化物未被光阻圖案覆蓋的部分,然後也透過浸泡在光阻剝離劑(即,STRIPPER 104;TOKYO OHKA KOGYO Co.,Ltd.的產品)中2分鐘來移除光阻圖案,以形成鈍化層17。在此,移除部分的Sr-La-Zr氧化物以露出部分的閘極電極12、源極電極14及汲極電極15,使電壓可施加在閘極電極12、源極電極14及汲極電極15。 Next, etch the part of Sr-La-Zr oxide not covered by the photoresist pattern by immersing in 0.1 mol/L hydrochloric acid (ie, Wako 083-01115) for 30 seconds, and then immerse in the photoresist stripper (Ie, STRIPPER 104; product of TOKYO OHKA KOGYO Co., Ltd.) for 2 minutes to remove the photoresist pattern to form the passivation layer 17. Here, part of the Sr-La-Zr oxide is removed to expose part of the gate electrode 12, source electrode 14 and drain electrode 15, so that voltage can be applied to the gate electrode 12, source electrode 14 and drain electrode Electrode 15.

[實例12] [Example 12]

以完全相同於實例11所採用的方法製造FET 10,除了在對應於實例11「(形成鈍化層)」的步驟中,用於Sr-La-Zr的蝕刻劑為5%草酸以外。 The FET 10 was manufactured in exactly the same method as used in Example 11, except that in the step corresponding to Example 11 "(Formation of Passivation Layer)", the etchant used for Sr-La-Zr was 5% oxalic acid.

[實例13] [Example 13]

以完全相同於實例11所採用的方法製造FET 10,除了在對應於實例11「(形成鈍化層)」的步驟中,用於Sr-La-Zr的蝕刻劑為20%硝酸以外。 The FET 10 was manufactured in exactly the same manner as used in Example 11, except that in the step corresponding to Example 11 "(Formation of Passivation Layer)", the etchant used for Sr-La-Zr was 20% nitric acid.

[實例14] [Example 14]

以完全相同於實例11所採用的方法製造FET 10,除了在對應於實例11「(形成鈍化層)」的步驟中,用於Sr-La-Zr的蝕刻劑為50%磷酸以外。 The FET 10 was manufactured in exactly the same manner as used in Example 11, except that in the step corresponding to Example 11 "(Formation of Passivation Layer)", the etchant used for Sr-La-Zr was 50% phosphoric acid.

[實例15] [Example 15]

以完全相同於實例11所採用的方法製造FET 10,除了在對應於實例11「(形成鈍化層)」的步驟中,用於Sr-La-Zr的蝕刻劑為5%乙酸並且浸泡於蝕刻劑的時間為6分鐘以外。 The FET 10 was manufactured in exactly the same manner as used in Example 11, except that in the step corresponding to Example 11 "(Formation of Passivation Layer)", the etchant used for Sr-La-Zr was 5% acetic acid and soaked in the etchant The time is 6 minutes away.

[實例16] [Example 16]

以完全相同於實例11所採用的方法製造FET 10,除了在對應於實例11「(形成鈍化層)」的步驟中,用於Sr-La-Zr的蝕刻劑為10%硫酸以外。 The FET 10 was manufactured in exactly the same manner as used in Example 11, except that in the step corresponding to Example 11 "(Formation of Passivation Layer)", the etchant used for Sr-La-Zr was 10% sulfuric acid.

[實例17] [Example 17]

以完全相同於實例11所採用的方法製造FET 10,除了在對應於實例11「(形成鈍化層)」的步驟中,用於Sr-La-Zr的蝕刻劑為含有20%的硝酸、60%的磷酸及20%的水的混合溶液以外。 The FET 10 was manufactured in exactly the same manner as used in Example 11, except that in the step corresponding to Example 11 "(Formation of Passivation Layer)", the etchant used for Sr-La-Zr was 20% nitric acid, 60% Other than a mixed solution of phosphoric acid and 20% water.

[實例18] [Example 18]

以完全相同於實例11所採用的方法製造FET 10,除了在對應於實例11「(形成鈍化層)」的步驟中,用於Sr-La-Zr的蝕刻劑為含有5%的硝酸、80%的磷酸、10%的乙酸及5.0%的水的混合溶液以外。 The FET 10 is manufactured in exactly the same manner as used in Example 11, except that in the step corresponding to Example 11 "(Formation of Passivation Layer)", the etchant used for Sr-La-Zr contains 5% nitric acid, 80% Other than a mixed solution of phosphoric acid, 10% acetic acid and 5.0% water.

[實例19] [Example 19]

以完全相同於實例11所採用的方法製造FET 10,除了在對應於實例11「(形成鈍化層)」的步驟中,用於Sr-La-Zr的蝕刻劑為5%雙氧水以外。 The FET 10 was manufactured in exactly the same manner as used in Example 11, except that in the step corresponding to Example 11 "(Formation of Passivation Layer)", the etchant used for Sr-La-Zr was 5% hydrogen peroxide.

(評價電晶體特性) (Evaluate transistor characteristics)

以相同於實例1至實例實例10所採用的方法,對實例11至實例19中所製造的每一個FET計算遷移率、開/關比、S數值及臨界電壓(Vth)。再者,對實例11至實例19中所製造的每一個FET,在此環境下(溫度:50℃;相對溼度:50%)進行100小時長的BTS測試。 In the same manner as that employed in Example 1 to Example 10, the mobility, on/off ratio, S value, and critical voltage (Vth) were calculated for each FET manufactured in Example 11 to Example 19. Furthermore, for each FET manufactured in Examples 11 to 19, a BTS test of 100 hours in this environment (temperature: 50°C; relative humidity: 50%) was performed.

提供以下4種條件作為壓力條件: Provide the following 4 conditions as pressure conditions:

(1)Vgs=+10V,且Vds=0V (1) Vgs=+10V, and Vds=0V

(2)Vgs=+10V,且Vds=+10V (2) Vgs=+10V, and Vds=+10V

(3)Vgs=-10V,且Vds=0V (3) Vgs=-10V, and Vds=0V

(4)Vgs=-10V,且Vds=+10V (4) Vgs=-10V, and Vds=+10V

在BTS測試中每當經過預定長度的時間,量測在Vds=+10V條件下的Vgs與Ids的關係(Vgs-Ids),以評價在100小時加壓時間的臨界電壓的偏移(△Vth)。當在100小時加壓時間的臨界電壓的偏移(△Vth)為3V以下時,FET被認為是可靠的。 In the BTS test, whenever a predetermined length of time passes, measure the relationship between Vgs and Ids under Vds=+10V (Vgs-Ids) to evaluate the deviation of the critical voltage (△Vth ). When the shift of the critical voltage (ΔVth) at a pressurization time of 100 hours is 3V or less, the FET is considered to be reliable.

實例11至實例19中所製造的FET,其電晶體特性的評價結果顯示在表2。注意的是實例11至實例19中所製造的所有FET皆具有較佳的電晶體特性。再者,注意的是對每一個結果,臨界電壓的偏移(△Vth)皆小於1V,因而FET被認為是具有高可靠性。 The evaluation results of the transistor characteristics of the FETs manufactured in Examples 11 to 19 are shown in Table 2. Note that all the FETs manufactured in Examples 11 to 19 have better transistor characteristics. Also, note that for each result, the threshold voltage shift (ΔVth) is less than 1V, so the FET is considered to have high reliability.

如上所述,其證實了利用用於鈍化層的第一氧化物以及利用在第一氧化物上進行濕式蝕刻的低成本圖案化程序,能夠生產高品質的FET。 As described above, it is confirmed that high-quality FETs can be produced using the first oxide used for the passivation layer and the low-cost patterning process using wet etching on the first oxide.

[表2]

Figure 108142640-A0101-12-0073-2
[Table 2]
Figure 108142640-A0101-12-0073-2

[實例20] [Example 20]

在實例20中,製造如第6圖所示的有機EL顯示元件200。首先,在基板21上形成第一閘極電極22及第二閘極電極32。具體地,透過DC濺鍍法的方式在由無鹼玻璃製成的基板21上形成Mo薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Mo薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有欲形成的光阻圖案。然後,透過RIE 的方式移除Mo薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成第一閘極電極22及第二閘極電極32。 In Example 20, the organic EL display element 200 shown in FIG. 6 was manufactured. First, the first gate electrode 22 and the second gate electrode 32 are formed on the substrate 21. Specifically, a Mo thin film is formed on the substrate 21 made of alkali-free glass by a DC sputtering method so that the average thin film thickness is about 100 nm. Subsequently, the Mo film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern to be formed. Then, the part of the Mo film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the first gate electrode 22 and the second gate electrode 32.

下一步,在基板21、第一閘極電極22及第二閘極電極32上形成閘極絕緣層23。首先,製備用於形成閘極絕緣層的塗佈液1L,該閘極絕緣層具有與實例1相同的組成。 Next, a gate insulating layer 23 is formed on the substrate 21, the first gate electrode 22, and the second gate electrode 32. First, a coating liquid 1L for forming a gate insulating layer having the same composition as Example 1 was prepared.

下一步,透過狹縫塗佈法的方式,用於形成閘極絕緣層的塗佈液施加在基板21、第一閘極電極22及第二閘極電極32。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到順電且非晶的Sr-La-Zr氧化物(具有135nm的薄膜厚度)。 Next, the coating solution for forming the gate insulating layer is applied to the substrate 21, the first gate electrode 22, and the second gate electrode 32 by a slit coating method. Then, after performing a drying program for 1 hour in an environment of 120°C, a burning program was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a paraelectric and amorphous Sr-La-Zr oxide ( With a film thickness of 135nm).

然後,用光阻(即,TSMR8800-BE)塗佈Sr-La-Zr氧化物,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的閘極絕緣層23的光阻圖案。 Then, Sr-La-Zr oxide is coated with a photoresist (ie, TSMR8800-BE), and then pre-baked, exposed through an exposure device, and developed to form a photoresist having a gate insulating layer 23 corresponding to the formation pattern.

下一步,透過浸泡在0.1mol/L的鹽酸(Wako 083-01115)中30秒來蝕刻Sr-La-Zr氧化物未被光阻圖案覆蓋的部分,然後也透過浸泡在光阻剝離劑(即,STRIPPER 104;TOKYO OHKA KOGYO Co.,Ltd.的產品)中2分鐘來移除光阻圖案,以形成在第二閘極電極32上具有穿孔的閘極絕緣層23。 Next, etch the part of Sr-La-Zr oxide that is not covered by the photoresist pattern by immersing in 0.1mol/L hydrochloric acid (Wako 083-01115) for 30 seconds, and then immerse in the photoresist stripper (ie , STRIPPER 104; product of TOKYO OHKA KOGYO Co., Ltd.) for 2 minutes to remove the photoresist pattern to form a gate insulating layer 23 having a through hole on the second gate electrode 32.

然後,形成第一源極電極24、第二源極電極34、第一汲極電極25及第二汲極電極35。具體地,透過DC濺鍍法的方式在閘極絕緣層23上形成透明且導電的ITO薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈ITO薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有欲形成的光阻圖案。 Then, the first source electrode 24, the second source electrode 34, the first drain electrode 25, and the second drain electrode 35 are formed. Specifically, a transparent and conductive ITO thin film is formed on the gate insulating layer 23 by the DC sputtering method, so that the average film thickness is about 100 nm. Subsequently, the ITO film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern to be formed.

再者,透過RIE的方式移除ITO薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成第一源極電極24、第二源極電極34、第一汲極電極25及第二汲極電極35。以這樣的方式,第一汲極電極25及第二閘極電極32藉由形成在閘極絕緣層23上的穿孔進行連接。 Furthermore, the part of the ITO film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the first source electrode 24, the second source electrode 34, the first drain electrode 25, and the second drain electrode 35. In this way, the first drain electrode 25 and the second gate electrode 32 are connected by the through hole formed in the gate insulating layer 23.

下一步,形成第一主動層26及第二主動層36。具體地,透過DC濺鍍法的方式形成Mg-In基氧化物薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Mg-In基氧化物薄膜,然後預烤、透過曝光設備曝 光、並且顯影,以形成具有欲形成的光阻圖案。然後,透過RIE的方式移除Mg-In基氧化物薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成第一主動層26及第二主動層36。 Next, the first active layer 26 and the second active layer 36 are formed. Specifically, the Mg-In-based oxide thin film is formed by the DC sputtering method so that the average thin film thickness is about 100 nm. Subsequently, the Mg-In-based oxide film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern to be formed. Then, the part of the Mg-In-based oxide film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the first active layer 26 and the second active layer 36.

以這樣的方式,形成第一主動層26,使通道形成在第一源極電極24與第一汲極電極25之間。再者,形成第二主動層36,使通道形成在第二源極電極34與第二汲極電極35之間。 In this way, the first active layer 26 is formed so that the channel is formed between the first source electrode 24 and the first drain electrode 25. Furthermore, the second active layer 36 is formed so that the channel is formed between the second source electrode 34 and the second drain electrode 35.

下一步,形成第一鈍化層27及第二鈍化層37。首先,製備用於形成鈍化層的塗佈液。具體地,透過混合1.2mL的環己基苯、1.95mL的2-乙基己酸鑭甲苯溶液(即,Wako 122-03371)、0.57mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-09561)以及0.09mL的2-乙基己酸鋯氧化物礦油精溶液(即,Wako 269-01116),製備用於形成鈍化層的塗佈液。 Next, the first passivation layer 27 and the second passivation layer 37 are formed. First, a coating liquid for forming a passivation layer is prepared. Specifically, by mixing 1.2 mL of cyclohexylbenzene, 1.95 mL of 2-ethylhexanoic acid lanthanum toluene solution (ie, Wako 122-03371), and 0.57 mL of 2-ethylhexanoic acid strontium toluene solution (ie, Wako 195 -09561) and 0.09 mL of 2-ethylhexanoic acid zirconium oxide mineral spirit solution (ie, Wako 269-01116) to prepare a coating liquid for forming a passivation layer.

下一步,將用於形成閘極絕緣層的塗佈液滴在基板21、第一閘極電極22、第二閘極電極32、閘極絕緣層23、第一源極電極24、第一汲極電極25、第二源極電極34、第二汲極電極35、第一主動層26及第二主動層36上,然後在預定的條件下進行旋塗程序。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到順電且非晶的Sr-La-Zr氧化物(具有135nm的薄膜厚度)。然後,用光阻(即,TSMR8800-BE)塗佈Sr-La-Zr氧化物,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的第一鈍化層27及第二鈍化層37的光阻圖案。 Next, apply the coating droplets used to form the gate insulating layer on the substrate 21, the first gate electrode 22, the second gate electrode 32, the gate insulating layer 23, the first source electrode 24, the first drain On the electrode 25, the second source electrode 34, the second drain electrode 35, the first active layer 26, and the second active layer 36, a spin coating process is then performed under predetermined conditions. Then, after performing a drying program for 1 hour in an environment of 120°C, a burning program was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a paraelectric and amorphous Sr-La-Zr oxide ( With a film thickness of 135nm). Then, the Sr-La-Zr oxide is coated with a photoresist (ie, TSMR8800-BE), and then pre-baked, exposed through an exposure device, and developed to form the first passivation layer 27 and the second corresponding to the desired formation The photoresist pattern of the passivation layer 37.

下一步,透過浸泡在0.1mol/L的鹽酸(Wako 083-01115)中30秒來蝕刻Sr-La-Zr氧化物未被光阻圖案覆蓋的部分,然後也透過浸泡在光阻剝離劑(即,STRIPPER 104)中2分鐘來移除光阻圖案,以形成第一鈍化層27及第二鈍化層37。經由上述步驟,製造雙電晶體/單電容器的驅動電路基板321。 Next, etch the part of Sr-La-Zr oxide that is not covered by the photoresist pattern by immersing in 0.1mol/L hydrochloric acid (Wako 083-01115) for 30 seconds, and then immerse in the photoresist stripper (ie , STRIPPER 104) for 2 minutes to remove the photoresist pattern to form the first passivation layer 27 and the second passivation layer 37. Through the above steps, the drive circuit substrate 321 of the double transistor/single capacitor is manufactured.

下一步,在驅動電路210上形成層間絕緣薄膜220(即,偏光薄膜)。具體地,透過旋塗法的方式施加正型感光有機材料(SUMIRESIN EXCEL®CRC系列;Sumitomo Bakelite Co.,Ltd.的產品),然後預烤、透過曝光設備曝光、並且顯影,以形成所需的圖案。然後,在320℃的溫度下進行後烤程序30分鐘,以形成在第二汲極電極35上設有穿孔220x的層間 絕緣薄膜220。以這樣的方式形成的層間絕緣薄膜220之平均的薄薄膜厚度約為3μm。 Next, an interlayer insulating film 220 (ie, a polarizing film) is formed on the driving circuit 210. Specifically, a positive photosensitive organic material (SUMIRESIN EXCEL® CRC series; a product of Sumitomo Bakelite Co., Ltd.) is applied by spin coating, and then pre-baked, exposed through an exposure device, and developed to form a desired pattern. Then, a post-baking process was performed at a temperature of 320°C for 30 minutes to form an interlayer insulating film 220 provided with perforations 220x on the second drain electrode 35. The average thin film thickness of the interlayer insulating film 220 formed in this way is about 3 μm.

下一步,形成為像素電極的下部電極231。具體地,透過DC濺鍍法的方式連續形成Ag-Pd-Cu薄膜及ITO薄膜,使每一層平均的薄膜厚度約為100nm。隨後,用光阻塗佈Ag-Pd-Cu薄膜及ITO薄膜,然後預烤、透過曝光設備曝光、並且顯影,以得到所需的光阻圖案。然後,透過RIE的方式依序移除ITO薄膜及Ag-Pd-Cu薄膜。然後,也移除光阻圖案,以形成下部電極231。 Next, a lower electrode 231 formed as a pixel electrode. Specifically, the Ag-Pd-Cu thin film and the ITO thin film are continuously formed by the DC sputtering method, so that the average film thickness of each layer is about 100 nm. Subsequently, the Ag-Pd-Cu film and the ITO film are coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to obtain a desired photoresist pattern. Then, the ITO film and the Ag-Pd-Cu film are sequentially removed by RIE. Then, the photoresist pattern is also removed to form the lower electrode 231.

下一步,形成隔牆240。具體地,透過旋塗法的方式施加正型感光聚醯亞胺樹脂(DL-1000;Toray Industries,Inc.的產品),然後預烤、透過曝光設備曝光、並且顯影,以形成所需的圖案。然後,在230℃的溫度下進行後烤程序30分鐘,以形成隔牆240。 Next, the partition 240 is formed. Specifically, a positive photosensitive polyimide resin (DL-1000; a product of Toray Industries, Inc.) is applied by spin coating, then pre-baked, exposed through an exposure device, and developed to form a desired pattern . Then, the post-baking process is performed at a temperature of 230° C. for 30 minutes to form the partition wall 240.

然後,透過噴墨裝備的方式,在下部電極231上利用高分子量的有機發光材料形成有機EL層232。 Then, by means of inkjet equipment, an organic EL layer 232 is formed on the lower electrode 231 using a high molecular weight organic light emitting material.

接著,形成上部電極233。具體地,透過真空沉積MgAg的方式在有機EL層232及隔牆240上形成上部電極233。 Next, the upper electrode 233 is formed. Specifically, the upper electrode 233 is formed on the organic EL layer 232 and the partition wall 240 by vacuum deposition of MgAg.

其次,形成密封層250。具體地,透過電漿CVD法的方式進行SiN薄膜的形成,使平均的薄膜厚度約為2μm,以在上部電極233上形成密封層250。 Next, the sealing layer 250 is formed. Specifically, the SiN thin film is formed by the plasma CVD method so that the average thin film thickness is about 2 μm to form the sealing layer 250 on the upper electrode 233.

然後,進行對向絕緣基板270的貼附。具體地,在密封層250上形成黏合層260,然後貼附為無鹼玻璃基板的對向絕緣基板270。 Then, attachment to the insulating substrate 270 is performed. Specifically, an adhesive layer 260 is formed on the sealing layer 250 and then attached to the opposite insulating substrate 270 as an alkali-free glass substrate.

經由上述步驟所製造的有機EL顯示元件200顯示出低能耗及高可靠性的品質。 The organic EL display element 200 manufactured through the above steps shows a quality with low power consumption and high reliability.

如上所述,利用用於第一絕緣層及鈍化層的第一氧化物以及利用在第一氧化物上進行濕式蝕刻的低成本圖案化程序,能夠生產高品質的有機EL顯示元件。 As described above, high-quality organic EL display elements can be produced using the first oxide for the first insulating layer and the passivation layer and the low-cost patterning process using wet etching on the first oxide.

[實例21] [Example 21]

在實例21中,製造如第7圖所示的有機EL顯示元件200A。具體地,以完全相同於實例20採用的方法製造有機EL顯示元件200A,除了將實例20中的第一鈍化層27及第二鈍化層37(見第6圖)改為積體鈍化層 27A。 In Example 21, the organic EL display element 200A shown in FIG. 7 was manufactured. Specifically, the organic EL display element 200A was manufactured in exactly the same manner as in Example 20, except that the first passivation layer 27 and the second passivation layer 37 (see FIG. 6) in Example 20 were changed to the integrated passivation layer 27A.

所製造的有機EL顯示元件200A顯示出低能耗及高可靠性的品質。 The manufactured organic EL display element 200A shows a quality with low energy consumption and high reliability.

如上所述,利用用於閘極絕緣層及鈍化層的第一氧化物以及利用在第一氧化物上進行濕式蝕刻的低成本圖案化程序,能夠生產高品質的有機EL顯示元件。 As described above, using the first oxide for the gate insulating layer and the passivation layer and the low-cost patterning process using wet etching on the first oxide can produce a high-quality organic EL display element.

[實例22] [Example 22]

在實例22中,製造如第8圖所示的FET 50(即,MOS-FET)。首先,製備用於形成閘極絕緣層的塗佈液,以在含有p型Si的基板51(8英吋)上形成閘極絕緣層53。具體地,透過混合4.0mL的環己基苯、1.95mL的2-乙基己酸鑭甲苯溶液(即,Wako 122-03371)、0.57mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-09561)以及0.09mL的2-乙基己酸鋯氧化物礦油精溶液(即,Wako 269-01116),製備用於形成鈍化層的塗佈液。 In Example 22, the FET 50 (ie, MOS-FET) as shown in FIG. 8 is manufactured. First, a coating liquid for forming a gate insulating layer is prepared to form a gate insulating layer 53 on a substrate 51 (8 inches) containing p-type Si. Specifically, by mixing 4.0 mL of cyclohexylbenzene, 1.95 mL of 2-ethylhexanoic acid lanthanum toluene solution (ie, Wako 122-03371), and 0.57 mL of 2-ethylhexanoic acid strontium toluene solution (ie, Wako 195 -09561) and 0.09 mL of 2-ethylhexanoic acid zirconium oxide mineral spirit solution (ie, Wako 269-01116) to prepare a coating solution for forming a passivation layer.

下一步,將用於形成閘極絕緣層的塗佈液滴在基板51上,然後在預定的條件下進行旋塗程序。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到順電且非晶的Sr-La-Zr氧化物(具有10nm的薄膜厚度)。 Next, a coating droplet for forming a gate insulating layer is deposited on the substrate 51, and then a spin coating process is performed under predetermined conditions. Then, after performing a drying program for 1 hour in an environment of 120°C, a burning program was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a paraelectric and amorphous Sr-La-Zr oxide ( With a film thickness of 10 nm).

下一步,透過CVD法的方式形成多晶矽薄膜,然後透過光微影的方式在多晶矽薄膜上進行圖案化,以形成閘極電極52。然後,利用閘極電極52作為遮罩,透過浸泡在0.1mol/L的鹽酸(Wako 083-01115)中5秒來蝕刻Sr-La-Zr氧化物未被閘極電極52覆蓋的部分,以形成閘極絕緣層53。 Next, a polysilicon film is formed by CVD, and then patterned on the polysilicon film by photolithography to form the gate electrode 52. Then, using the gate electrode 52 as a mask, the portion of the Sr-La-Zr oxide not covered by the gate electrode 52 is etched by soaking in 0.1 mol/L hydrochloric acid (Wako 083-01115) for 5 seconds to form Gate insulation layer 53.

下一步,透過CVD法的方式沉積SiON,然後在整個基板上進行乾式蝕刻,以形成閘極側壁絕緣薄膜54。然後,利用閘極電極52及閘極側壁絕緣層54作為自我對準遮罩,在基板51上進行磷離子佈值以達到離子擴散的目的,以形成源極區域55及汲極區域56。 Next, SiON is deposited by CVD, and then dry etching is performed on the entire substrate to form the gate sidewall insulating film 54. Then, using the gate electrode 52 and the gate sidewall insulation layer 54 as a self-alignment mask, phosphorus ion distribution is performed on the substrate 51 to achieve the purpose of ion diffusion, so as to form the source region 55 and the drain region 56.

下一步,透過CVD法的方式沉積SiO2,然後進行光微影以形成具有如穿孔的開口的層間絕緣薄膜57。最後,透過濺鍍法的方式沉積Al層以填補穿孔,然後透過光微影進行圖案化,以形成源極電極58及汲極電極59。 Next, SiO 2 is deposited by CVD, and then photolithography is performed to form an interlayer insulating film 57 having an opening such as a through hole. Finally, an Al layer is deposited by sputtering to fill the through holes, and then patterned by photolithography to form the source electrode 58 and the drain electrode 59.

最後,形成鈍化層111。具體地,透過電漿CVD法的方式形成SiON薄膜,使平均的薄膜厚度約為300nm。隨後,用光阻塗佈SiON薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的鈍化層111的光阻圖案。然後,透過RIE的方式移除SiON薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成鈍化層111。經由上述步驟,製造FET 50, Finally, the passivation layer 111 is formed. Specifically, the SiON film is formed by the plasma CVD method so that the average film thickness is about 300 nm. Subsequently, a SiON film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern having a passivation layer 111 to be formed. Then, the part of the SiON film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the passivation layer 111. Through the above steps, the FET 50 is manufactured,

實例22中所製造的FET 50顯示出低能耗的品質。再者,閘極絕緣層53的介電常數為13.3,因而FET的能源消耗被認為是低的。 The FET 50 manufactured in Example 22 showed low energy consumption quality. Furthermore, the dielectric constant of the gate insulating layer 53 is 13.3, so the energy consumption of the FET is considered to be low.

如上所述,利用用於閘極絕緣層的第一氧化物以及利用在第一氧化物上進行濕式蝕刻的低成本圖案化程序,能夠生產高品質的FET。 As described above, high-quality FETs can be produced using the first oxide for the gate insulating layer and the low-cost patterning process using wet etching on the first oxide.

[實例23] [Example 23]

在實例23中,製造如第9圖所示的揮發性半導體記憶元件60。首先,在由無鹼玻璃製成的基板61上形成閘極電極62及第二電容電極69。具體地,透過DC濺鍍法的方式在基板61上形成Mo薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Mo薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的閘極電極62及第二電容電極69的光阻圖案。然後,透過RIE的方式移除Mo薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成閘極電極62及第二電容電極69。 In Example 23, a volatile semiconductor memory element 60 as shown in FIG. 9 was manufactured. First, a gate electrode 62 and a second capacitor electrode 69 are formed on a substrate 61 made of alkali-free glass. Specifically, the Mo thin film is formed on the substrate 61 by the DC sputtering method so that the average thin film thickness is about 100 nm. Subsequently, a Mo film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the gate electrode 62 and the second capacitor electrode 69 to be formed. Then, the part of the Mo film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the gate electrode 62 and the second capacitor electrode 69.

下一步,形成閘極絕緣層63。首先,製備用於形成閘極絕緣層的塗佈液。具體地,透過混合1.2mL的環己基苯、1.95mL的2-乙基己酸鑭甲苯溶液(即,Wako 122-03371)、0.57mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-09561)以及0.09mL的2-乙基己酸鋯氧化物礦油精溶液(即,Wako 269-01116),製備用於形成閘極絕緣層的塗佈液。 Next, the gate insulating layer 63 is formed. First, a coating liquid for forming a gate insulating layer is prepared. Specifically, by mixing 1.2 mL of cyclohexylbenzene, 1.95 mL of 2-ethylhexanoic acid lanthanum toluene solution (ie, Wako 122-03371), and 0.57 mL of 2-ethylhexanoic acid strontium toluene solution (ie, Wako 195 -09561) and 0.09 mL of 2-ethylhexanoic acid zirconium oxide mineral spirit solution (ie, Wako 269-01116) to prepare a coating liquid for forming a gate insulating layer.

下一步,將用於形成閘極絕緣層的塗佈液滴在基板61、閘極電極62及第二電容電極69上,然後在預定的條件下進行旋塗程序。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到順電且非晶的Sr-La-Zr氧化物(具有135nm的薄膜厚度)。然後,用光阻(即,TSMR8800-BE)塗佈Sr-La-Zr氧化物,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲 形成的閘極絕緣層63的光阻圖案。 Next, the coating droplet for forming the gate insulating layer is deposited on the substrate 61, the gate electrode 62, and the second capacitor electrode 69, and then a spin coating process is performed under predetermined conditions. Then, after performing a drying program for 1 hour in an environment of 120°C, a burning program was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a paraelectric and amorphous Sr-La-Zr oxide ( With a film thickness of 135nm). Then, Sr-La-Zr oxide is coated with a photoresist (ie, TSMR8800-BE), and then pre-baked, exposed through an exposure device, and developed to form a photoresist having a gate insulating layer 63 corresponding to the formation pattern.

下一步,透過浸泡在0.1mol/L的鹽酸(Wako 083-01115)中30秒來蝕刻Sr-La-Zr氧化物未被光阻圖案覆蓋的部分,然後也透過浸泡在光阻剝離劑(即,STRIPPER 104)中2分鐘來移除光阻圖案,以形成閘極絕緣層63。 Next, etch the part of Sr-La-Zr oxide that is not covered by the photoresist pattern by immersing in 0.1mol/L hydrochloric acid (Wako 083-01115) for 30 seconds, and then immerse in the photoresist stripper (ie , STRIPPER 104) for 2 minutes to remove the photoresist pattern to form the gate insulating layer 63.

下一步,形成電容介電層68。上述用於形成閘極絕緣層的塗佈液滴在基板61、閘極電極62、第二電容電極69及閘極絕緣層63上,然後在預定的條件下進行旋塗程序。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到順電且非晶的Sr-La-Zr氧化物(具有30nm的薄膜厚度)。然後,用光阻(即,TSMR8800-BE)塗佈Sr-La-Zr氧化物,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的電容介電層68的光阻圖案。 Next, a capacitor dielectric layer 68 is formed. The coating droplets for forming the gate insulating layer described above are deposited on the substrate 61, the gate electrode 62, the second capacitor electrode 69, and the gate insulating layer 63, and then the spin coating process is performed under predetermined conditions. Then, after performing a drying program for 1 hour in an environment of 120°C, a burning program was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a paraelectric and amorphous Sr-La-Zr oxide ( With a film thickness of 30nm). Then, Sr-La-Zr oxide is coated with a photoresist (ie, TSMR8800-BE), and then pre-baked, exposed through an exposure device, and developed to form a photoresist having a capacitance dielectric layer 68 corresponding to the to-be-formed pattern.

下一步,透過浸泡在0.1mol/L的鹽酸(Wako 083-01115)中5秒來蝕刻Sr-La-Zr氧化物未被光阻圖案覆蓋的部分,然後也透過浸泡在光阻剝離劑(即,STRIPPER 104)中2分鐘來移除光阻圖案,以形成電容介電層68。 Next, etch the part of Sr-La-Zr oxide that is not covered by the photoresist pattern by immersing in 0.1mol/L hydrochloric acid (Wako 083-01115) for 5 seconds, and then immerse in the photoresist stripper (ie , STRIPPER 104) for 2 minutes to remove the photoresist pattern to form the capacitor dielectric layer 68.

下一步,形成源極電極64及汲極電極65,在實例23中,源極電極65與電容介電層68及第二電容電極69一同構成電容。 Next, the source electrode 64 and the drain electrode 65 are formed. In Example 23, the source electrode 65 forms a capacitor together with the capacitor dielectric layer 68 and the second capacitor electrode 69.

具體地,透過DC濺鍍法的方式在閘極絕緣層63及電容介電層68上形成透明且導電的ITO薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈ITO薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的源極電極64及汲極電極65的光阻圖案。然後,透過RIE的方式移除ITO薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成源極電極64及汲極電極65。 Specifically, a transparent and conductive ITO film is formed on the gate insulating layer 63 and the capacitor dielectric layer 68 by the DC sputtering method, so that the average film thickness is about 100 nm. Subsequently, the ITO film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the source electrode 64 and the drain electrode 65 to be formed. Then, the part of the ITO film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the source electrode 64 and the drain electrode 65.

下一步,形成主動層66。具體地,透過DC濺鍍法的方式形成Mg-In基氧化物薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Mg-In基氧化物薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的主動層66的光阻圖案。然後,透過RIE的方式移除Mg-In基氧化物薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成主動層66。以這樣的方式,形成主動層66,使通道形成在源極電極 64與汲極電極65之間。 Next, the active layer 66 is formed. Specifically, the Mg-In-based oxide thin film is formed by the DC sputtering method so that the average thin film thickness is about 100 nm. Subsequently, the Mg-In-based oxide film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the active layer 66 to be formed. Then, the part of the Mg-In-based oxide film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the active layer 66. In this way, the active layer 66 is formed so that the channel is formed between the source electrode 64 and the drain electrode 65.

最後,形成鈍化層112。具體地,透過電漿CVD法的方式形成SiON薄膜,使平均的薄膜厚度約為300nm。隨後,用光阻塗佈SiON薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的鈍化層112的光阻圖案。然後,透過RIE的方式移除SiON薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成鈍化層112。經由上述步驟,製造揮發性半導體記憶元件60。 Finally, the passivation layer 112 is formed. Specifically, the SiON film is formed by the plasma CVD method so that the average film thickness is about 300 nm. Subsequently, the SiON film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the passivation layer 112 to be formed. Then, the part of the SiON film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the passivation layer 112. Through the above steps, the volatile semiconductor memory device 60 is manufactured.

以上述步驟所製造的揮發性半導體記憶元件60顯示出低能耗的品質。 The volatile semiconductor memory device 60 manufactured in the above steps shows the quality of low energy consumption.

如上所述,利用用於閘極絕緣層及電容介電層的第一氧化物以及利用在第一氧化物上進行濕式蝕刻的低成本圖案化程序,能夠生產高品質的揮發性半導體記憶元件。 As described above, high-quality volatile semiconductor memory devices can be produced using the first oxide for the gate insulating layer and the capacitor dielectric layer and using a low-cost patterning process that performs wet etching on the first oxide .

[實例24] [Example 24]

在實例24中,製造如第10圖所示的揮發性半導體記憶元件70。首先,製備用於形成閘極絕緣層的塗佈液,以在含有p型Si的基板71(8英吋)上形成閘極絕緣層73。具體地,透過混合4.0mL的環己基苯、1.95mL的2-乙基己酸鑭甲苯溶液(即,Wako 122-03371)、0.57mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-09561)以及0.09mL的2-乙基己酸鋯氧化物礦油精溶液(即,Wako 269-01116),製備用於形成閘極絕緣層的塗佈液。 In Example 24, the volatile semiconductor memory element 70 shown in FIG. 10 was manufactured. First, a coating liquid for forming a gate insulating layer is prepared to form a gate insulating layer 73 on a substrate 71 (8 inches) containing p-type Si. Specifically, by mixing 4.0 mL of cyclohexylbenzene, 1.95 mL of 2-ethylhexanoic acid lanthanum toluene solution (ie, Wako 122-03371), and 0.57 mL of 2-ethylhexanoic acid strontium toluene solution (ie, Wako 195 -09561) and 0.09 mL of 2-ethylhexanoic acid zirconium oxide mineral spirit solution (ie, Wako 269-01116) to prepare a coating liquid for forming a gate insulating layer.

下一步,將用於形成閘極絕緣層的塗佈液滴在基板71上,然後在預定的條件下進行旋塗程序。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到順電且非晶的Sr-La-Zr氧化物(具有10nm的薄膜厚度)。 Next, a coating droplet for forming a gate insulating layer is deposited on the substrate 71, and then a spin coating process is performed under predetermined conditions. Then, after performing a drying program for 1 hour in an environment of 120°C, a burning program was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a paraelectric and amorphous Sr-La-Zr oxide ( With a film thickness of 10 nm).

下一步,透過CVD法的方式形成多晶矽薄膜,然後透過光微影的方式在多晶矽薄膜上進行圖案化,以形成閘極電極72。然後,利用閘極電極72作為遮罩,透過浸泡在0.1mol/L的鹽酸(Wako 083-01115)中5秒來蝕刻Sr-La-Zr氧化物未被閘極電極72覆蓋的部分,以形成閘極絕緣層73。 Next, a polysilicon film is formed by CVD, and then patterned on the polysilicon film by photolithography to form a gate electrode 72. Then, using the gate electrode 72 as a mask, the portion of the Sr-La-Zr oxide not covered by the gate electrode 72 is etched by soaking in 0.1 mol/L hydrochloric acid (Wako 083-01115) for 5 seconds to form Gate insulation layer 73.

下一步,透過CVD法的方式沉積SiON,然後在整個基板上進行乾式蝕刻,以形成閘極側壁絕緣薄膜74。然後,利用閘極電極72及 閘極側壁絕緣層74作為自我對準遮罩,在基板71上進行磷離子佈值以達到離子擴散的目的,以形成源極區域75及汲極區域76。 Next, SiON is deposited by CVD, and then dry etching is performed on the entire substrate to form the gate sidewall insulating film 74. Then, using the gate electrode 72 and the gate sidewall insulating layer 74 as a self-alignment mask, the phosphor ion distribution is performed on the substrate 71 to achieve the purpose of ion diffusion, so as to form the source region 75 and the drain region 76.

下一步,透過CVD法的方式沉積SiO2,然後進行光微影以形成具有如穿孔的開口的層間絕緣薄膜77。然後,透過CVD的方式沉積多晶矽薄膜,以填補穿孔,並且透過光微影的方式形成位元線電極78。 Next, SiO 2 is deposited by CVD, and then photolithography is performed to form an interlayer insulating film 77 having openings such as through holes. Then, a polysilicon film is deposited by CVD to fill the through holes, and a bit line electrode 78 is formed by photolithography.

下一步,透過CVD法的方式沉積SiO2,然後進行光微影用於形成在汲極區域上具有如穿孔的開口的第二層間絕緣薄膜79。然後,透過CVD的方式形成多晶矽薄膜,並且透過光微影的方式形成第二電容電極80。 Next, SiO 2 is deposited by a CVD method, and then photolithography is performed to form a second interlayer insulating film 79 having an opening such as a hole in the drain region. Then, a polysilicon film is formed by CVD, and a second capacitor electrode 80 is formed by photolithography.

下一步,形成電容介電層81。將用於形成閘極絕緣層的塗佈液滴在第二層間絕緣薄膜79及第二電容電極80上,然後在預定的條件下進行旋塗程序。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到順電且非晶的Sr-La-Zr氧化物(具有30nm的薄膜厚度)。然後,用光阻(即,TSMR8800-BE)塗佈Sr-La-Zr氧化物,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的閘電容介電層81的光阻圖案。 Next, a capacitor dielectric layer 81 is formed. The coating droplets for forming the gate insulating layer are deposited on the second interlayer insulating film 79 and the second capacitor electrode 80, and then a spin coating process is performed under predetermined conditions. Then, after performing a drying program for 1 hour in an environment of 120°C, a burning program was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a paraelectric and amorphous Sr-La-Zr oxide ( With a film thickness of 30nm). Then, Sr-La-Zr oxide is coated with a photoresist (ie, TSMR8800-BE), and then pre-baked, exposed through an exposure device, and developed to form light having a dielectric layer 81 corresponding to the gate capacitor to be formed Resistance pattern.

下一步,透過浸泡在0.1mol/L的鹽酸(Wako 083-01115)中5秒來蝕刻Sr-La-Zr氧化物未被光阻圖案覆蓋的部分,然後也透過浸泡在光阻剝離劑(即,STRIPPER 104)中2分鐘來移除光阻圖案,以形成電容介電層81。 Next, etch the part of Sr-La-Zr oxide that is not covered by the photoresist pattern by immersing in 0.1mol/L hydrochloric acid (Wako 083-01115) for 5 seconds, and then immerse in the photoresist stripper (ie , STRIPPER 104) for 2 minutes to remove the photoresist pattern to form the capacitor dielectric layer 81.

然後,透過CVD的方式形成多晶矽薄膜,並且透過光微影的方式形成第一電容電極82。最後,形成鈍化層113。具體地,透過電漿CVD法的方式形成SiON薄膜,使平均的薄膜厚度約為300nm。隨後,用光阻塗佈SiON薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的鈍化層113的光阻圖案。然後,透過RIE的方式移除SiON薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成鈍化層113。經由上述步驟,製造揮發性半導體記憶元件70。 Then, a polysilicon film is formed by CVD, and a first capacitor electrode 82 is formed by photolithography. Finally, the passivation layer 113 is formed. Specifically, the SiON film is formed by the plasma CVD method so that the average film thickness is about 300 nm. Subsequently, the SiON film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern having a passivation layer 113 to be formed. Then, the part of the SiON film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the passivation layer 113. Through the above steps, the volatile semiconductor memory element 70 is manufactured.

以上述步驟所製造的揮發性半導體記憶元件70顯示出低能耗的品質。 The volatile semiconductor memory device 70 manufactured in the above steps shows a low energy consumption quality.

如上所述,利用用於閘極絕緣層及電容介電層的第一氧化物 以及利用在第一氧化物上進行濕式蝕刻的低成本圖案化程序,能夠生產高品質的揮發性半導體記憶元件。 As described above, the use of the first oxide for the gate insulating layer and the capacitor dielectric layer and the low-cost patterning process using wet etching on the first oxide can produce high-quality volatile semiconductor memory devices .

[實例25] [Example 25]

在實例25中,製造如第11圖所示的非揮發性半導體記憶元件90。首先,在由無鹼玻璃製成的基板91上形成閘極電極92。具體地,透過DC濺鍍法的方式在基板91上形成Mo薄膜,使平均的薄膜厚度約為30nm。隨後,用光阻塗佈Mo薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的閘極電極92的光阻圖案。然後,透過RIE的方式移除Mo薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成閘極電極92。 In Example 25, a non-volatile semiconductor memory element 90 as shown in FIG. 11 was manufactured. First, a gate electrode 92 is formed on a substrate 91 made of alkali-free glass. Specifically, the Mo thin film is formed on the substrate 91 by the DC sputtering method so that the average thin film thickness is about 30 nm. Subsequently, a Mo film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the gate electrode 92 to be formed. Then, the part of the Mo film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the gate electrode 92.

下一步,形成第一閘極絕緣層93。首先,製備用於形成閘極絕緣層的塗佈液。具體地,透過混合1.2mL的環己基苯、1.95mL的2-乙基己酸鑭甲苯溶液(即,Wako 122-03371)、0.57mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-09561)以及0.09mL的2-乙基己酸鋯氧化物礦油精溶液(即,Wako 269-01116),製備用於形成閘極絕緣層的塗佈液。 Next, the first gate insulating layer 93 is formed. First, a coating liquid for forming a gate insulating layer is prepared. Specifically, by mixing 1.2 mL of cyclohexylbenzene, 1.95 mL of 2-ethylhexanoic acid lanthanum toluene solution (ie, Wako 122-03371), and 0.57 mL of 2-ethylhexanoic acid strontium toluene solution (ie, Wako 195 -09561) and 0.09 mL of 2-ethylhexanoic acid zirconium oxide mineral spirit solution (ie, Wako 269-01116) to prepare a coating liquid for forming a gate insulating layer.

下一步,將用於形成閘極絕緣層的塗佈液滴在基板91及閘極電極92上,然後在預定的條件下進行旋塗程序。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到順電且非晶的Sr-La-Zr氧化物(具有135nm的薄膜厚度)。然後,用光阻(即,TSMR8800-BE)塗佈Sr-La-Zr氧化物,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的閘極絕緣層93的光阻圖案。 Next, the coating droplet for forming the gate insulating layer is deposited on the substrate 91 and the gate electrode 92, and then a spin coating process is performed under predetermined conditions. Then, after performing a drying program for 1 hour in an environment of 120°C, a burning program was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a paraelectric and amorphous Sr-La-Zr oxide ( With a film thickness of 135nm). Then, Sr-La-Zr oxide is coated with a photoresist (ie, TSMR8800-BE), and then prebaked, exposed through an exposure device, and developed to form a photoresist having a gate insulating layer 93 corresponding to the formation pattern.

下一步,透過浸泡在0.1mol/L的鹽酸(Wako 083-01115)中30秒來蝕刻Sr-La-Zr氧化物未被光阻圖案覆蓋的部分,然後也透過浸泡在光阻剝離劑(即,STRIPPER 104)中2分鐘來移除光阻圖案,以形成第一閘極絕緣層93。 Next, etch the part of Sr-La-Zr oxide that is not covered by the photoresist pattern by immersing in 0.1mol/L hydrochloric acid (Wako 083-01115) for 30 seconds, and then immerse in the photoresist stripper (ie , STRIPPER 104) for 2 minutes to remove the photoresist pattern to form the first gate insulating layer 93.

下一步,形成浮動閘極電極94。具體地,透過DC濺鍍法的方式在第一閘極絕緣層93上形成Mo薄膜,使平均的薄膜厚度約為15nm。隨後,用光阻塗佈Mo薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的浮動閘極電極94的光阻圖案。然後,透過RIE的 方式移除Mo薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成浮動閘極電極94。 Next, a floating gate electrode 94 is formed. Specifically, a Mo film is formed on the first gate insulating layer 93 by the DC sputtering method so that the average film thickness is about 15 nm. Subsequently, a Mo film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern having a floating gate electrode 94 to be formed. Then, the part of the Mo film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the floating gate electrode 94.

下一步,形成第二閘極絕緣層95。具體地,透過CVD法的方式在第一閘極絕緣層93及浮動閘極電極94上形成SiO2薄膜,使平均的薄膜厚度約為50nm。隨後,用光阻塗佈SiO2薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的第二閘極絕緣層95的光阻圖案。然後,透過RIE的方式移除SiO2薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成第二閘極絕緣層95。 Next, a second gate insulating layer 95 is formed. Specifically, an SiO 2 film is formed on the first gate insulating layer 93 and the floating gate electrode 94 by CVD, so that the average film thickness is about 50 nm. Subsequently, the SiO 2 film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the second gate insulating layer 95 to be formed. Then, the part of the SiO 2 film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the second gate insulating layer 95.

下一步,形成源極電極96及汲極電極97。具體地,透過DC濺鍍法的方式在第二閘極絕緣層95上形成透明且導電的ITO薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈ITO薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於源極電極96及汲極電極97的光阻圖案。然後,透過RIE的方式移除ITO薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以由ITO薄膜形成源極電極96及汲極電極97。 Next, the source electrode 96 and the drain electrode 97 are formed. Specifically, a transparent and conductive ITO film is formed on the second gate insulating layer 95 by the DC sputtering method, so that the average film thickness is about 100 nm. Subsequently, an ITO thin film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the source electrode 96 and the drain electrode 97. Then, the part of the ITO film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the source electrode 96 and the drain electrode 97 from the ITO film.

然後,形成主動層98。具體地,透過DC濺鍍法的方式形成Mg-In基氧化物薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Mg-In基氧化物薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的主動層98的光阻圖案。然後,透過RIE的方式移除Mg-In基氧化物薄膜未被光阻圖案覆蓋的部分。接著,也移除光阻圖案,以形成主動層98。 Then, the active layer 98 is formed. Specifically, the Mg-In-based oxide thin film is formed by the DC sputtering method so that the average thin film thickness is about 100 nm. Subsequently, an Mg-In-based oxide film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern corresponding to the active layer 98 to be formed. Then, the part of the Mg-In-based oxide film not covered by the photoresist pattern is removed by RIE. Next, the photoresist pattern is also removed to form the active layer 98.

以這樣的方式,形成主動層98,使通道形成在源極電極96與汲極電極97之間。 In this way, the active layer 98 is formed so that the channel is formed between the source electrode 96 and the drain electrode 97.

最後,形成鈍化層114。具體地,透過電漿CVD法的方式形成SiON薄膜,使平均的薄膜厚度約為300nm。隨後,用光阻塗佈SiON薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的鈍化層114的光阻圖案。然後,透過RIE的方式移除SiON薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成鈍化層114。經由上述步驟,製造非揮發性半導體記憶元件90。 Finally, the passivation layer 114 is formed. Specifically, the SiON film is formed by the plasma CVD method so that the average film thickness is about 300 nm. Subsequently, the SiON film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern having a passivation layer 114 to be formed. Then, the part of the SiON film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the passivation layer 114. Through the above steps, the non-volatile semiconductor memory device 90 is manufactured.

以上述步驟所製造的非揮發性半導體記憶元件90顯示出低能耗的品質。 The non-volatile semiconductor memory device 90 manufactured in the above steps shows the quality of low energy consumption.

如上所述,利用用於第一閘極絕緣層的第一氧化物以及利用在第一氧化物上進行濕式蝕刻的低成本圖案化程序,能夠生產高品質的非揮發性半導體記憶元件。 As described above, high-quality non-volatile semiconductor memory devices can be produced by using the first oxide for the first gate insulating layer and the low-cost patterning process using wet etching on the first oxide.

[實例26] [Example 26]

在實例26中,製造如第12圖所示的非揮發性半導體記憶元件100。首先,在含有p型Si的基板101的表面上進行熱能氧化,以形成薄薄膜厚度為5nm的SiO2薄膜,其最終成為第二閘極絕緣層104。然後,透過CVD法的方式形成最終成為浮動閘極電極105的多晶矽薄膜。 In Example 26, the nonvolatile semiconductor memory device 100 shown in FIG. 12 was manufactured. First, thermal energy oxidation is performed on the surface of the substrate 101 containing p-type Si to form a SiO 2 thin film with a thin film thickness of 5 nm, which eventually becomes the second gate insulating layer 104. Then, a polysilicon thin film which eventually becomes the floating gate electrode 105 is formed by the CVD method.

下一步,製備用於形成閘極絕緣層的塗佈液,以形成第一閘極絕緣層102。具體地,透過混合4.0mL的環己基苯、1.95mL的2-乙基己酸鑭甲苯溶液(即,Wako 122-03371)、0.57mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-09561)以及0.09mL的2-乙基己酸鋯氧化物礦油精溶液(即,Wako 269-01116),製備用於形成閘極絕緣層的塗佈液。 Next, a coating liquid for forming the gate insulating layer is prepared to form the first gate insulating layer 102. Specifically, by mixing 4.0 mL of cyclohexylbenzene, 1.95 mL of 2-ethylhexanoic acid lanthanum toluene solution (ie, Wako 122-03371), and 0.57 mL of 2-ethylhexanoic acid strontium toluene solution (ie, Wako 195 -09561) and 0.09 mL of 2-ethylhexanoic acid zirconium oxide mineral spirit solution (ie, Wako 269-01116) to prepare a coating liquid for forming a gate insulating layer.

下一步,用於形成鈍化層的塗佈液滴在基板101上,然後在預定的條件下進行旋塗程序。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到順電且非晶的Sr-La-Zr氧化物(具有10nm的薄膜厚度)。 Next, a coating droplet for forming a passivation layer is deposited on the substrate 101, and then a spin coating process is performed under predetermined conditions. Then, after performing a drying program for 1 hour in an environment of 120°C, a burning program was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a paraelectric and amorphous Sr-La-Zr oxide ( With a film thickness of 10 nm).

下一步,透過CVD法的方式形成多晶矽薄膜,然後透過光微影的方式在多晶矽薄膜上進行圖案化,以形成閘極電極103。然後,利用閘極電極103作為遮罩,透過浸泡在0.1mol/L的鹽酸(Wako 083-01115)中5秒來蝕刻Sr-La-Zr氧化物未被閘極電極103覆蓋的部分,以形成第一閘極絕緣層102。再者,透過乾式蝕刻依序蝕刻第一閘極絕緣層102下的多晶矽薄膜及SiO2薄膜,以形成浮動閘極電極105及第二閘極絕緣層104(即,通道絕緣層)。 Next, a polysilicon film is formed by CVD, and then patterned on the polysilicon film by photolithography to form the gate electrode 103. Then, using the gate electrode 103 as a mask, the portion of the Sr-La-Zr oxide not covered by the gate electrode 103 is etched by soaking in 0.1 mol/L hydrochloric acid (Wako 083-01115) for 5 seconds to form First gate insulating layer 102. Furthermore, the polysilicon film and the SiO 2 film under the first gate insulating layer 102 are sequentially etched by dry etching to form a floating gate electrode 105 and a second gate insulating layer 104 (ie, channel insulating layer).

下一步,透過CVD法的方式沉積SiON,然後在整個基板上進行乾式蝕刻,以形成閘極側壁絕緣薄膜106。然後,利用閘極電極103及閘極側壁絕緣層106作為自我對準遮罩,在基板101上進行磷離子佈值以達到離子擴散的目的,以形成源極區域107及汲極區域108。 Next, SiON is deposited by CVD, and then dry etching is performed on the entire substrate to form the gate sidewall insulating film 106. Then, using the gate electrode 103 and the gate sidewall insulating layer 106 as a self-alignment mask, phosphorus ion distribution is performed on the substrate 101 to achieve the purpose of ion diffusion, so as to form the source region 107 and the drain region 108.

最後,形成鈍化層115。具體地,透過電漿CVD法的方式形成SiON薄膜,使平均的薄膜厚度約為300nm。隨後,用光阻塗佈SiON 薄膜,然後預烤、透過曝光設備曝光、並且顯影,以形成具有對應於欲形成的鈍化層115的光阻圖案。然後,透過RIE的方式移除SiON薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以形成鈍化層115。經由上述步驟,製造非揮發性半導體記憶元件100。 Finally, the passivation layer 115 is formed. Specifically, the SiON film is formed by the plasma CVD method so that the average film thickness is about 300 nm. Subsequently, the SiON film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to form a photoresist pattern having a passivation layer 115 to be formed. Then, the part of the SiON film not covered by the photoresist pattern is removed by RIE. Then, the photoresist pattern is also removed to form the passivation layer 115. Through the above steps, the non-volatile semiconductor memory device 100 is manufactured.

以上述步驟所製造的非揮發性半導體記憶元件100顯示出低能耗的品質。 The non-volatile semiconductor memory device 100 manufactured in the above steps shows the quality of low energy consumption.

如上所述,利用用於閘極絕緣層的第一氧化物以及利用在第一氧化物上進行濕式蝕刻的低成本圖案化程序,能夠生產高品質的非揮發性半導體記憶元件。 As described above, using the first oxide for the gate insulating layer and the low-cost patterning process using wet etching on the first oxide, a high-quality non-volatile semiconductor memory device can be produced.

[實例27] [Example 27]

<製造FET> <manufacturing FET>

-製備用於形成第一鈍化層的塗佈液- -Preparation of coating liquid for forming the first passivation layer-

透過混合1mL的甲苯、0.14mL的HMDS以及0.37mL的2-乙基己酸鈣2-乙基己酸溶液(3至8% Ca;Alfa36657;Alfa Aesar的產品),製備用於形成第一鈍化層的塗佈液。利用用於形成第一鈍化層的塗佈液所形成的第二氧化物的組成顯示於表3。 By mixing 1 mL of toluene, 0.14 mL of HMDS, and 0.37 mL of 2-ethylhexanoic acid calcium 2-ethylhexanoic acid solution (3 to 8% Ca; Alfa 36657; product of Alfa Aesar), prepared for the formation of the first passivation Layer of coating liquid. The composition of the second oxide formed using the coating liquid for forming the first passivation layer is shown in Table 3.

-製備用於形成第二鈍化層的塗佈液- -Preparation of coating liquid for forming the second passivation layer-

透過混合1.2mL的環己基苯、2.17mL的2-乙基己酸鑭甲苯溶液(即,Wako 122-03371)以及0.63mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-09561),製備用於形成鈍化層的塗佈液。利用用於形成第二鈍化層的塗佈液所形成的第一氧化物的組成顯示於表3。 By mixing 1.2 mL of cyclohexylbenzene, 2.17 mL of 2-ethylhexanoic acid lanthanum toluene solution (ie, Wako 122-03371) and 0.63 mL of 2-ethylhexanoic acid strontium toluene solution (ie, Wako 195-09561) To prepare a coating solution for forming a passivation layer. The composition of the first oxide formed using the coating liquid for forming the second passivation layer is shown in Table 3.

[表3]

Figure 108142640-A0101-12-0086-3
[table 3]
Figure 108142640-A0101-12-0086-3

然後,製造如第16B圖所示的底部接觸/頂部閘極FET的一例。 Then, an example of the bottom contact/top gate FET shown in FIG. 16B is manufactured.

-形成源極電極及汲極電極- -Formation of source electrode and drain electrode-

首先,在由玻璃製成的基板11上形成閘極電極14及汲極電極15。具體地,透過DC濺鍍法的方式在基板11上形成Al合金薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Al合金薄膜,然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的源極電極14及汲極電極15相同的光阻圖案。然後,以蝕刻程序移除Al薄膜未被光阻圖案覆 蓋的部分。然後,也移除光阻圖案,以得到由Al合金薄膜形成的源極電極14及汲極電極15。 First, the gate electrode 14 and the drain electrode 15 are formed on the substrate 11 made of glass. Specifically, an Al alloy thin film is formed on the substrate 11 by the DC sputtering method so that the average thin film thickness is about 100 nm. Subsequently, the Al alloy film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to produce a photoresist pattern having the same source electrode 14 and drain electrode 15 to be formed. Then, the portion of the Al film not covered by the photoresist pattern is removed in an etching procedure. Then, the photoresist pattern is also removed to obtain the source electrode 14 and the drain electrode 15 formed of the Al alloy thin film.

-形成主動層- -Form active layer-

下一步,形成主動層16。具體地,透過DC濺鍍法的方式形成Mg-In基氧化物(In2MgO4)薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Mg-In基氧化物薄膜,然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的主動層16相同的光阻圖案。然後,透過蝕刻程序的方式移除Mg-In基氧化物薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以得到主動層,來形成介於源極電極14與汲極電極15之間的通道。 Next, the active layer 16 is formed. Specifically, the Mg-In-based oxide (In 2 MgO 4 ) thin film is formed by the DC sputtering method so that the average thin film thickness is about 100 nm. Subsequently, an Mg-In-based oxide film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to produce a photoresist pattern having the same active layer 16 to be formed. Then, the part of the Mg-In-based oxide film not covered by the photoresist pattern is removed through an etching process. Then, the photoresist pattern is also removed to obtain an active layer to form a channel between the source electrode 14 and the drain electrode 15.

-形成閘極絕緣層- -Formation of gate insulating layer-

下一步,在基板11、源極電極14、汲極電極15及主動層16上形成閘極絕緣層13。具體地,透過射頻(radio-frequency,RF)濺鍍法的方式在基板11、源極電極14、汲極電極15及主動層16上形成Al2O3薄膜,使平均的薄膜厚度約為300nm。 Next, a gate insulating layer 13 is formed on the substrate 11, the source electrode 14, the drain electrode 15 and the active layer 16. Specifically, an Al 2 O 3 film is formed on the substrate 11, the source electrode 14, the drain electrode 15 and the active layer 16 by radio-frequency (RF) sputtering method, so that the average film thickness is about 300 nm .

-形成閘極電極- -Formation of gate electrode-

下一步,在閘極絕緣層13上形成閘極電極12。具體地,透過DC濺鍍法的方式在閘極絕緣層13上形成Mo薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Mo薄膜,然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的閘極電極12相同的光阻圖案。然後,以蝕刻程序移除Mo薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以得到由Mo薄膜形成的閘極電極12。 Next, the gate electrode 12 is formed on the gate insulating layer 13. Specifically, a Mo film is formed on the gate insulating layer 13 by the DC sputtering method so that the average film thickness is about 100 nm. Subsequently, a Mo film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to produce a photoresist pattern having the same gate electrode 12 to be formed. Then, the part of the Mo film not covered by the photoresist pattern is removed in an etching procedure. Then, the photoresist pattern is also removed to obtain the gate electrode 12 formed of the Mo film.

-形成第一鈍化層170a- -Forming a first passivation layer 170a-

下一步,將0.4mL之用於形成第一鈍化層的塗佈液滴在閘極絕緣層13及閘極電極12上,然後在預定的條件下進行旋塗程序:以3000rmp的速度進行旋轉20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第一鈍化層170a的第二氧化物薄膜。在此,第一鈍化層170a的平均的薄膜厚度約為25nm。 Next, apply 0.4 mL of the coating droplets used to form the first passivation layer on the gate insulating layer 13 and the gate electrode 12, and then perform the spin coating procedure under predetermined conditions: spin at a speed of 3000 rmp 20 Seconds, then reduce the speed to 0 rpm in 5 seconds and stop spinning. Then, after the drying procedure was performed for 1 hour in an environment of 120°C, the burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a second oxide thin film used as the first passivation layer 170a. Here, the average film thickness of the first passivation layer 170a is about 25 nm.

-形成第二鈍化層170b- -Forming a second passivation layer 170b-

下一步,將0.6mL之用於形成第二鈍化層的塗佈液滴在第一鈍化層170a上,然後在預定的條件下進行旋塗程序:以500rpm的速度進行旋轉5秒,然後以3000rmp的速度進行20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第二鈍化層170b的第一氧化物薄膜。在此,第二鈍化層170b的平均的薄膜厚度約為135nm。 Next, place 0.6 mL of the coating droplets used to form the second passivation layer on the first passivation layer 170a, and then perform the spin coating procedure under predetermined conditions: spin at 500 rpm for 5 seconds, and then at 3000 rpm For 20 seconds, then reduce the speed to 0 rpm in 5 seconds and stop spinning. Then, after a drying procedure was performed for 1 hour in an environment of 120°C, a burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a first oxide thin film used as the second passivation layer 170b. Here, the average film thickness of the second passivation layer 170b is about 135 nm.

-形成遮罩- -Form a mask-

下一步,用光阻(即,TSMR-8800BE)塗佈第二鈍化層170b(即,第一氧化物薄膜),然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的第二鈍化層17b相同的光阻圖案。 Next, the second passivation layer 170b (ie, the first oxide film) is coated with a photoresist (ie, TSMR-8800BE), and then prebaked, exposed through an exposure device, and developed to produce a The photoresist pattern of the two passivation layers 17b is the same.

-用於第二鈍化層170b的蝕刻程序- -Etching procedure for the second passivation layer 170b-

下一步,將第二鈍化層170b浸泡於0.36wt%鹽酸(即,Wako 083-01115)中20秒作為蝕刻程序,以移除第一氧化物薄膜未被光阻圖案覆蓋的部分,來得到第二鈍化層17b。 Next, the second passivation layer 170b is immersed in 0.36wt% hydrochloric acid (ie, Wako 083-01115) for 20 seconds as an etching procedure to remove the portion of the first oxide film that is not covered by the photoresist pattern to obtain the first二passivation layer 17b.

-用於第一鈍化層170a的蝕刻程序- -Etching procedure for the first passivation layer 170a-

下一步,將第一鈍化層170a浸泡於2.5wt%鹽酸中15秒作為蝕刻程序,以移除第二氧化物薄膜未被光阻圖案覆蓋的部分,以得到第一鈍化層17a。 Next, the first passivation layer 170a is immersed in 2.5wt% hydrochloric acid for 15 seconds as an etching procedure to remove the portion of the second oxide film not covered by the photoresist pattern to obtain the first passivation layer 17a.

-移除遮罩- -Remove mask-

下一步,也透過浸泡在光阻剝離劑(即,STRIPPER 104;TOKYO OHKA KOGYO Co.,Ltd.的產品)中2分鐘來移除光阻圖案。 Next, the photoresist pattern was also removed by soaking in a photoresist stripper (ie, STRIPPER 104; product of TOKYO OHKA KOGYO Co., Ltd.) for 2 minutes.

[實例28] [Example 28]

<製造FET> <manufacturing FET>

-製備用於形成第一鈍化層的塗佈液- -Preparation of coating liquid for forming the first passivation layer-

透過混合1mL的甲苯、0.13mL的HMDS、0.32mL的2-乙基己酸鎂甲苯溶液(3% Mg;Strem 12-1260;Strem Chemicals Inc.的產品)以及0.40mL的2-乙基己酸鋇甲苯溶液(8% Ba;Wako 021-09471;WAKO CHEMICAL,LTD.的產品),製備用於形成第一鈍化層的塗佈液。利用用於形成第一鈍化層的塗佈液所形成的第二氧化物的組成顯示於表3。 By mixing 1 mL of toluene, 0.13 mL of HMDS, 0.32 mL of 2-ethylhexanoic acid magnesium toluene solution (3% Mg; Strem 12-1260; product of Strem Chemicals Inc.) and 0.40 mL of 2-ethylhexanoic acid A barium toluene solution (8% Ba; Wako 021-09471; product of WAKO CHEMICAL, LTD.) prepares a coating solution for forming the first passivation layer. The composition of the second oxide formed using the coating liquid for forming the first passivation layer is shown in Table 3.

-製備用於形成第二鈍化層的塗佈液- -Preparation of coating liquid for forming the second passivation layer-

透過混合1.2mL的環己基苯、0.54g的三(2,2,6,6-四甲基-3,5-庚二酮酸)鈧(III)水合物(SIGMA-ALDRICH 517607;Sigma-Aldrich Co.LLC的產品)、0.12mL的2-乙基己酸鎂甲苯溶液(即,Strem 12-1260)以及0.08mL的2-乙基己酸鈣2-乙基己酸溶液(即,Alfa36657),製備用於形成第二鈍化層的塗佈液。利用用於形成第二鈍化層的塗佈液所形成的第一氧化物的組成顯示於表3。 By mixing 1.2 mL of cyclohexylbenzene, 0.54 g of tris(2,2,6,6-tetramethyl-3,5-heptanedione acid) scandium(III) hydrate (SIGMA-ALDRICH 517607; Sigma-Aldrich Co. LLC product), 0.12 mL of 2-ethylhexanoic acid magnesium toluene solution (ie, Strem 12-1260) and 0.08 mL of 2-ethylhexanoic acid calcium 2-ethylhexanoic acid solution (ie, Alfa36657) To prepare a coating solution for forming the second passivation layer. The composition of the first oxide formed using the coating liquid for forming the second passivation layer is shown in Table 3.

下一步,製造如實例27所述的底部接觸/頂部閘極FET。然而,相較於實例27,第一鈍化層17a及第二鈍化層17b的疊積順序為顛倒。 Next, the bottom contact/top gate FET as described in Example 27 was fabricated. However, compared to Example 27, the stacking order of the first passivation layer 17a and the second passivation layer 17b is reversed.

-形成源極電極及汲極電極- -Formation of source electrode and drain electrode-

首先,在由玻璃製成的基板11上形成閘極電極14及汲極電極15。具體地,透過DC濺鍍法的方式在基板11上形成Al合金薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Al合金薄膜,然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的源極電極14及汲極電極15相同的光阻圖案。然後,以蝕刻程序移除Al薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以得到由Al合金薄膜形成的源極電極14及汲極電極15。 First, the gate electrode 14 and the drain electrode 15 are formed on the substrate 11 made of glass. Specifically, an Al alloy thin film is formed on the substrate 11 by the DC sputtering method so that the average thin film thickness is about 100 nm. Subsequently, the Al alloy film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to produce a photoresist pattern having the same source electrode 14 and drain electrode 15 to be formed. Then, the part of the Al film not covered by the photoresist pattern is removed in an etching procedure. Then, the photoresist pattern is also removed to obtain the source electrode 14 and the drain electrode 15 formed of the Al alloy thin film.

-形成主動層- -Form active layer-

下一步,形成主動層16。具體地,透過DC濺鍍法的方式形成Mg-In基氧化物(In2MgO4)薄膜,使平均的薄膜厚度約為100nm。隨後,用光阻塗佈Mg-In基氧化物薄膜,然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的主動層16相同的光阻圖案。然後,以蝕刻程序移除Mg-In基氧化物薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以得到主動層,使通道形成於源極電極14與汲極電極15之間。 Next, the active layer 16 is formed. Specifically, the Mg-In-based oxide (In 2 MgO 4 ) thin film is formed by the DC sputtering method so that the average thin film thickness is about 100 nm. Subsequently, an Mg-In-based oxide film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to produce a photoresist pattern having the same active layer 16 to be formed. Then, the portion of the Mg-In-based oxide film not covered by the photoresist pattern is removed in an etching procedure. Then, the photoresist pattern is also removed to obtain an active layer, so that a channel is formed between the source electrode 14 and the drain electrode 15.

-形成閘極絕緣層- -Formation of gate insulating layer-

下一步,在基板11、源極電極14、汲極電極15及主動層16上形成閘極絕緣層13。具體地,透過RF濺鍍法的方式在基板11、源極電極14、汲極電極15及主動層16上形成Al2O3薄膜,使平均的薄膜厚度約為300nm。 Next, a gate insulating layer 13 is formed on the substrate 11, the source electrode 14, the drain electrode 15 and the active layer 16. Specifically, an Al 2 O 3 thin film is formed on the substrate 11, the source electrode 14, the drain electrode 15 and the active layer 16 by RF sputtering, so that the average film thickness is about 300 nm.

-形成閘極電極- -Formation of gate electrode-

下一步,在閘極絕緣層13上形成閘極電極12。具體地,透過DC濺鍍法的方式在閘極絕緣層13上形成Mo薄膜,使平均的薄膜厚度約為100nm。 Next, the gate electrode 12 is formed on the gate insulating layer 13. Specifically, a Mo film is formed on the gate insulating layer 13 by the DC sputtering method so that the average film thickness is about 100 nm.

隨後,用光阻塗佈Mo薄膜,然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的閘極電極12相同的光阻圖案。然後,以蝕刻程序移除Mo薄膜未被光阻圖案覆蓋的部分。然後,也移除光阻圖案,以得到由Mo薄膜形成的閘極電極12。 Subsequently, a Mo film is coated with a photoresist, and then prebaked, exposed through an exposure device, and developed to produce a photoresist pattern having the same gate electrode 12 to be formed. Then, the part of the Mo film not covered by the photoresist pattern is removed in an etching procedure. Then, the photoresist pattern is also removed to obtain the gate electrode 12 formed of the Mo film.

-形成第二鈍化層170b- -Forming a second passivation layer 170b-

下一步,將0.6mL之用於形成第二鈍化層的塗佈液滴在閘極絕緣層13及閘極電極12上,然後在預定的條件下進行旋塗程序:以500rpm的速度進行旋轉5秒,然後以3000rmp的速度進行20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第二鈍化層170b的第一氧化物薄膜。在此,第二鈍化層170b的平均的薄膜厚度約為135nm。 Next, place 0.6 mL of the coating droplets used to form the second passivation layer on the gate insulating layer 13 and the gate electrode 12, and then perform the spin coating procedure under predetermined conditions: spin at a speed of 500 rpm 5 Seconds, then at 3000 rpm for 20 seconds, then use 5 seconds to reduce the speed to 0 rpm and stop spinning. Then, after a drying procedure was performed for 1 hour in an environment of 120°C, a burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a first oxide thin film used as the second passivation layer 170b. Here, the average film thickness of the second passivation layer 170b is about 135 nm.

-形成第一鈍化層170a- -Forming a first passivation layer 170a-

下一步,將0.4mL之用於形成第一鈍化層的塗佈液滴在第二鈍化層170b上,然後在預定的條件下進行旋塗程序:以3000rmp的速度進行旋轉20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第一鈍化層170a的第二氧化物薄膜。在此,第一鈍化層170a的平均的薄膜厚度約為25nm。 Next, place 0.4 mL of the coating droplet used to form the first passivation layer on the second passivation layer 170b, and then perform the spin-coating procedure under predetermined conditions: spin at 3000 rpm for 20 seconds, and then use 5 Seconds to reduce the speed to 0 rpm and stop spinning. Then, after the drying procedure was performed for 1 hour in an environment of 120°C, the burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a second oxide thin film used as the first passivation layer 170a. Here, the average film thickness of the first passivation layer 170a is about 25 nm.

下一步,用光阻(即,TSMR-8800BE)塗佈第一鈍化層170a(即,第一氧化物薄膜),然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的第一鈍化層17a相同的光阻圖案。 Next, the first passivation layer 170a (ie, the first oxide film) is coated with a photoresist (ie, TSMR-8800BE), and then pre-baked, exposed through an exposure device, and developed to produce a A passivation layer 17a has the same photoresist pattern.

-用於第一鈍化層170a的蝕刻程序- -Etching procedure for the first passivation layer 170a-

下一步,將第一鈍化層170a浸泡於含有19wt%的氟化銨及18wt%的氟化氫銨的混合溶液中15秒作為蝕刻程序,以移除第二氧化物薄膜未被光阻圖案覆蓋的部分,來得到第一鈍化層17a。 Next, the first passivation layer 170a is immersed in a mixed solution containing 19wt% ammonium fluoride and 18wt% ammonium bifluoride for 15 seconds as an etching process to remove the portion of the second oxide film not covered by the photoresist pattern To obtain the first passivation layer 17a.

-用於第二鈍化層170b的蝕刻程序- -Etching procedure for the second passivation layer 170b-

下一步,將第二鈍化層170b浸泡於加熱至30℃的5wt%的草酸中4分鐘作為蝕刻程序,以移除第一氧化物薄膜未被光阻圖案覆蓋的部分,來得到第二鈍化層17b。 Next, the second passivation layer 170b is immersed in 5wt% oxalic acid heated to 30°C for 4 minutes as an etching procedure to remove the portion of the first oxide film not covered by the photoresist pattern to obtain the second passivation layer 17b.

-移除遮罩- -Remove mask-

下一步,也透過浸泡在光阻剝離劑(即,STRIPPER 104)中2分鐘來移除光阻圖案。 Next, the photoresist pattern was also removed by soaking in a photoresist stripper (ie, STRIPPER 104) for 2 minutes.

[實例29] [Example 29]

<製造FET> <manufacturing FET>

-製備用於形成第一鈍化層的塗佈液- -Preparation of coating liquid for forming the first passivation layer-

透過混合1mL的甲苯、0.11mL的HMDS、0.13mL的鋁二(異丁氧基)乙醯乙酸酯螯合物(8.4% Al;Alfa89349;Alfa Aesar的產品)以及2.02mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-09561),製備用於形成第一鈍化層的塗佈液。利用用於形成第一鈍化層的塗佈液所形成的第二氧化物的組成顯示於表3。 By mixing 1 mL of toluene, 0.11 mL of HMDS, 0.13 mL of aluminum bis (isobutoxy) acetoacetate chelate (8.4% Al; Alfa 89349; product of Alfa Aesar) and 2.02 mL of 2-ethyl A strontium hexanoate toluene solution (ie, Wako 195-09561) prepares a coating solution for forming the first passivation layer. The composition of the second oxide formed using the coating liquid for forming the first passivation layer is shown in Table 3.

-製備用於形成第二鈍化層的塗佈液- -Preparation of coating liquid for forming the second passivation layer-

透過混合1.2mL的環己基苯、0.19g的乙醯丙酮釤三水合物(Strem 93-6226;Strem Chemicals,Inc.的產品)、0.27mL的2-乙基己酸釓甲苯溶液(25% Gd;Strem 64-3500;Strem Chemicals Inc.的產品)以及0.49mL的2-乙基己酸鋇甲苯溶液(即,Wako 021-09471),製備用於形成第二鈍化層的塗佈液。利用用於形成第二鈍化層的塗佈液所形成的第一氧化物的組成顯示於表3。 By mixing 1.2 mL of cyclohexylbenzene, 0.19 g of acetoacetone-samarium trihydrate (Strem 93-6226; a product of Strem Chemicals, Inc.), 0.27 mL of a 2-ethylhexanoic acid toluene solution (25% Gd ; Strem 64-3500; a product of Strem Chemicals Inc.) and 0.49 mL of 2-ethylhexanoic acid barium toluene solution (ie, Wako 021-09471) to prepare a coating liquid for forming the second passivation layer. The composition of the first oxide formed using the coating liquid for forming the second passivation layer is shown in Table 3.

然後,製造如第16B圖所示的底部接觸/頂部閘極FET。以與實例27相同的方法形成源極電極14、汲極電極15、主動層16、閘極絕緣層13及閘極電極12。 Then, a bottom contact/top gate FET as shown in FIG. 16B is manufactured. The source electrode 14, the drain electrode 15, the active layer 16, the gate insulating layer 13, and the gate electrode 12 were formed in the same manner as in Example 27.

-形成第一鈍化層170a- -Forming a first passivation layer 170a-

然後,將0.4mL之用於形成第一鈍化層的塗佈液滴在閘極絕緣層13及閘極電極12上,然後在預定的條件下進行旋塗程序:以3000rmp的速度進行旋轉20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第一鈍化層170a的第二氧化 物薄膜。在此,第一鈍化層170a的平均的薄膜厚度約為25nm。 Then, 0.4 mL of the coating droplet used to form the first passivation layer was deposited on the gate insulating layer 13 and the gate electrode 12, and then a spin-coating procedure was performed under predetermined conditions: spin at 3000 rpm for 20 seconds , Then reduce the speed to 0 rpm in 5 seconds and stop the rotation. Then, after the drying procedure was performed for 1 hour in an environment of 120°C, the burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a second oxide thin film used as the first passivation layer 170a. Here, the average film thickness of the first passivation layer 170a is about 25 nm.

-形成第二鈍化層170b- -Forming a second passivation layer 170b-

然後,將0.6mL之用於形成第二鈍化層的塗佈液滴在第一鈍化層170a上,然後在預定的條件下進行旋塗程序:以500rpm的速度進行旋轉5秒,然後以3000rmp的速度進行20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第二鈍化層170b的第一氧化物薄膜。在此,第二鈍化層170b的平均的薄膜厚度約為135nm。 Then, 0.6 mL of the coating droplet for forming the second passivation layer was placed on the first passivation layer 170a, and then a spin coating procedure was performed under predetermined conditions: rotation at 500 rpm for 5 seconds, and then at 3000 rmp Speed for 20 seconds, then reduce the speed to 0 rpm in 5 seconds and stop spinning. Then, after a drying procedure was performed for 1 hour in an environment of 120°C, a burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a first oxide thin film used as the second passivation layer 170b. Here, the average film thickness of the second passivation layer 170b is about 135 nm.

-形成遮罩- -Form a mask-

然後,用光阻(即,TSMR-8800BE)塗佈第二鈍化層170b(即,第一氧化物薄膜),然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的第二鈍化層17b相同的光阻圖案。 Then, the second passivation layer 170b (ie, the first oxide film) is coated with a photoresist (ie, TSMR-8800BE), and then pre-baked, exposed through an exposure device, and developed to produce a second film with the desired The passivation layer 17b has the same photoresist pattern.

-用於第二鈍化層170b的蝕刻程序- -Etching procedure for the second passivation layer 170b-

然後,將第二鈍化層170b浸泡於含有57.9wt%的磷酸及21.1wt%的硝酸的混合溶液中30秒作為蝕刻程序,以移除第一氧化物薄膜未被光阻圖案覆蓋的部分,來得到第二鈍化層17b。 Then, the second passivation layer 170b is immersed in a mixed solution containing 57.9wt% phosphoric acid and 21.1wt% nitric acid for 30 seconds as an etching procedure to remove the portion of the first oxide film not covered by the photoresist pattern, The second passivation layer 17b is obtained.

-用於第一鈍化層170a的蝕刻程序- -Etching procedure for the first passivation layer 170a-

然後,將第一鈍化層170a浸泡於4wt%氫氧化四甲銨(tetramethylammonium hydroxide,TMAH)中1分鐘作為蝕刻程序,以移除第二氧化物未被光阻圖案覆蓋的部分,來得到第一鈍化層17a。 Then, the first passivation layer 170a is immersed in 4wt% tetramethylammonium hydroxide (TMAH) for 1 minute as an etching process to remove the portion of the second oxide not covered by the photoresist pattern to obtain the first Passivation layer 17a.

-移除遮罩- -Remove mask-

然後,也透過浸泡在光阻剝離劑(即,STRIPPER 104)中2分鐘來移除光阻圖案。 Then, the photoresist pattern was also removed by soaking in a photoresist stripper (ie, STRIPPER 104) for 2 minutes.

[實例30] [Example 30]

<製造FET> <manufacturing FET>

-製備用於形成第一鈍化層的塗佈液- -Preparation of coating liquid for forming the first passivation layer-

透過混合1mL的甲苯、0.11mL的HMDS、0.08g的(4,4,5,5-四甲基-1,3,2--二氧雜硼烷-2-基)苯(Wako 325-59912;WAKO CHMICAL,LTD.的產品)以及0.37mL的2-乙基己酸鎂甲苯溶液(即,Strem 12-1260), 製備用於形成第一鈍化層的塗佈液。利用用於形成第一鈍化層的塗佈液所形成的第二氧化物的組成顯示於表3。 By mixing 1 mL of toluene, 0.11 mL of HMDS, 0.08 g of (4,4,5,5-tetramethyl-1,3,2-dioxaborol-2-yl)benzene (Wako 325-59912 ; A product of WAKO CHMICAL, LTD.) and 0.37 mL of a 2-ethylhexanoic acid magnesium toluene solution (ie, Strem 12-1260) to prepare a coating liquid for forming the first passivation layer. The composition of the second oxide formed using the coating liquid for forming the first passivation layer is shown in Table 3.

-製備用於形成第二鈍化層的塗佈液- -Preparation of coating liquid for forming the second passivation layer-

透過混合1.2mL的環己基苯、0.57mL的2-乙基己酸釹2-乙基己酸溶液(12% Nd;Strem 60-2400;Strem Chemicals Inc.的產品)、0.28g的2-乙基己酸銪(Strem 93-6311;Strem Chemicals Inc.的產品)以及0.12mL的2-乙基己酸鎂甲苯溶液(即,Strem 12-1260),製備用於形成第二鈍化層的塗佈液。利用用於形成第二鈍化層的塗佈液所形成的第一氧化物的組成顯示於表3。 By mixing 1.2 mL of cyclohexylbenzene, 0.57 mL of 2-ethylhexanoic acid neodymium 2-ethylhexanoic acid solution (12% Nd; Strem 60-2400; product of Strem Chemicals Inc.), 0.28 g of 2-ethyl Europium hexanoate (Strem 93-6311; product of Strem Chemicals Inc.) and 0.12 mL of 2-ethylhexanoic acid magnesium toluene solution (ie, Strem 12-1260) to prepare a coating for forming the second passivation layer liquid. The composition of the first oxide formed using the coating liquid for forming the second passivation layer is shown in Table 3.

然後,製造如實例28所述的底部接觸/頂部閘極FET。然而,相較於實例27,第一鈍化層17a及第二鈍化層17b的疊積順序為顛倒。 Then, a bottom contact/top gate FET as described in Example 28 was fabricated. However, compared to Example 27, the stacking order of the first passivation layer 17a and the second passivation layer 17b is reversed.

-形成第二鈍化層170b- -Forming a second passivation layer 170b-

然後,將0.6mL之用於形成第二鈍化層的塗佈液滴在閘極絕緣層13及閘極電極12上,然後在預定的條件下進行旋塗程序:以500rpm的速度進行旋轉5秒,然後以3000rmp的速度進行20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第二鈍化層170b的第一氧化物薄膜。在此,第二鈍化層170b的平均的薄膜厚度約為135nm。 Then, 0.6 mL of the coating droplet for forming the second passivation layer was applied on the gate insulating layer 13 and the gate electrode 12, and then a spin coating procedure was performed under predetermined conditions: spin at 500 rpm for 5 seconds , Then at a speed of 3000rmp for 20 seconds, then use 5 seconds to reduce the speed to 0rpm and stop rotating. Then, after a drying procedure was performed for 1 hour in an environment of 120°C, a burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a first oxide thin film used as the second passivation layer 170b. Here, the average film thickness of the second passivation layer 170b is about 135 nm.

-形成第一鈍化層170a- -Forming a first passivation layer 170a-

然後,將0.4mL之用於形成第一鈍化層的塗佈液滴在第二鈍化層170b上,然後在預定的條件下進行旋塗程序:以3000rmp的速度進行旋轉20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第一鈍化層170a的第二氧化物薄膜。在此,第一鈍化層170a的平均的薄膜厚度約為25nm。 Then, 0.4 mL of the coating droplet for forming the first passivation layer was placed on the second passivation layer 170b, and then the spin-coating procedure was performed under predetermined conditions: spin at 3000 rpm for 20 seconds, and then use 5 seconds Reduce the speed to 0 rpm and stop spinning. Then, after the drying procedure was performed for 1 hour in an environment of 120°C, the burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a second oxide thin film used as the first passivation layer 170a. Here, the average film thickness of the first passivation layer 170a is about 25 nm.

-形成遮罩- -Form a mask-

然後,用光阻(即,TSMR-8800BE)塗佈第一鈍化層170a(即,第一氧化物薄膜),然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的第一鈍化層17a相同的光阻圖案。 Then, the first passivation layer 170a (ie, the first oxide film) is coated with a photoresist (ie, TSMR-8800BE), and then pre-baked, exposed through an exposure device, and developed to produce the first The passivation layer 17a has the same photoresist pattern.

-用於第一鈍化層的蝕刻程序- -Etching procedure for the first passivation layer-

然後,將第一鈍化層170a浸泡於含有14wt%的氟化銨及12wt%的氟化氫銨的混合溶液中15秒作為蝕刻程序,以移除第二氧化物薄膜未被光阻圖案覆蓋的部分,以得到第一鈍化層17a。 Then, the first passivation layer 170a is immersed in a mixed solution containing 14wt% ammonium fluoride and 12wt% ammonium bifluoride for 15 seconds as an etching process to remove the portion of the second oxide film not covered by the photoresist pattern, To obtain the first passivation layer 17a.

-用於第二鈍化層的蝕刻程序- -Etching procedure for the second passivation layer-

然後,將第二鈍化層170b浸泡於6wt%的雙氧水中2分鐘作為蝕刻程序,以移除第一氧化物薄膜未被光阻圖案覆蓋的部分,來得到第二鈍化層17b。 Then, the second passivation layer 170b is immersed in 6wt% hydrogen peroxide water for 2 minutes as an etching procedure to remove the portion of the first oxide film not covered by the photoresist pattern to obtain the second passivation layer 17b.

-移除遮罩- -Remove mask-

然後,也透過浸泡在光阻剝離劑(即,STRIPPER 104)中2分鐘來移除光阻圖案。 Then, the photoresist pattern was also removed by soaking in a photoresist stripper (ie, STRIPPER 104) for 2 minutes.

[實例31] [Example 31]

<製造FET> <manufacturing FET>

-製備用於形成第一鈍化層的塗佈液- -Preparation of coating liquid for forming the first passivation layer-

透過混合1mL的甲苯、0.17mL的HMDS、0.47mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-09561)以及0.21mL的2-乙基己酸鋇甲苯溶液(即,Wako 021-09471),製備用於形成第一鈍化層的塗佈液。利用用於形成第一鈍化層的塗佈液所形成的第二氧化物的組成顯示於表4。 By mixing 1 mL of toluene, 0.17 mL of HMDS, 0.47 mL of 2-ethylhexanoic acid strontium toluene solution (ie, Wako 195-09561) and 0.21 mL of 2-ethylhexanoic acid barium toluene solution (ie, Wako 021- 09471), preparing a coating solution for forming the first passivation layer. The composition of the second oxide formed using the coating liquid for forming the first passivation layer is shown in Table 4.

-製備用於形成第二鈍化層的塗佈液- -Preparation of coating liquid for forming the second passivation layer-

透過混合1.2mL的環己基苯、0.16g的三(2,2,6,6-四甲基-3,5-庚二酮酸)鈧(III)水合物(即,SIGMA-ALDRICH 517607)、1.46mL的2-乙基己酸鑭甲苯溶液(即,Wako 122-03371)、0.03mL的2-乙基己酸鈣2-乙基己酸溶液(即,Alfa36657)、0.34mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-09561)以及0.07mL的2-乙基己酸鋯氧化物礦油精溶液(即,Wako 269-01116),製備用於形成第二鈍化層的塗佈液。利用用於形成第二鈍化層的塗佈液所形成的第一氧化物的組成顯示於表4。 By mixing 1.2 mL of cyclohexylbenzene, 0.16 g of tris(2,2,6,6-tetramethyl-3,5-heptanedione acid) scandium(III) hydrate (ie, SIGMA-ALDRICH 517607), 1.46mL of 2-ethylhexanoic acid lanthanum toluene solution (ie, Wako 122-03371), 0.03mL of 2-ethylhexanoic acid calcium 2-ethylhexanoic acid solution (ie, Alfa36657), 0.34mL of 2-ethyl Strontium hexanoate toluene solution (ie, Wako 195-09561) and 0.07 mL of 2-ethylhexanoic acid zirconium oxide mineral spirit solution (ie, Wako 269-01116) to prepare the coating for forming the second passivation layer Cloth liquid. The composition of the first oxide formed using the coating liquid for forming the second passivation layer is shown in Table 4.

[表4]

Figure 108142640-A0101-12-0095-4
[Table 4]
Figure 108142640-A0101-12-0095-4

然後,製造如第16B圖所示的底部接觸/頂部閘極FET。以與實例27相同的方法形成源極電極14、汲極電極15、主動層16、閘極絕緣層13及閘極電極12。 Then, a bottom contact/top gate FET as shown in FIG. 16B is manufactured. The source electrode 14, the drain electrode 15, the active layer 16, the gate insulating layer 13, and the gate electrode 12 were formed in the same manner as in Example 27.

-形成第一鈍化層1708- -Forming a first passivation layer 1708-

然後,將0.4mL之用於形成第一鈍化層的塗佈液滴在閘極絕緣層13及閘極電極12上,然後在預定的條件下進行旋塗程序:以3000rmp的速度進行旋轉20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後, 在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第一鈍化層170a的第二氧化物薄膜。在此,第一鈍化層170a的平均的薄膜厚度約為25nm。 Then, 0.4 mL of the coating droplet used to form the first passivation layer was deposited on the gate insulating layer 13 and the gate electrode 12, and then a spin-coating procedure was performed under predetermined conditions: spin at 3000 rpm for 20 seconds , Then reduce the speed to 0 rpm in 5 seconds and stop the rotation. Then, after a drying procedure was performed for 1 hour in an environment of 120°C, a burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a second oxide thin film used as the first passivation layer 170a. Here, the average film thickness of the first passivation layer 170a is about 25 nm.

-形成第二鈍化層170b- -Forming a second passivation layer 170b-

然後,將0.6mL之用於形成第二鈍化層的塗佈液滴在第一鈍化層170a上,然後在預定的條件下進行旋塗程序:以500rpm的速度進行旋轉5秒,然後以3000rmp的速度進行20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第二鈍化層170b的第一氧化物薄膜。在此,第二鈍化層170b的平均的薄膜厚度約為135nm。 Then, 0.6 mL of the coating droplet for forming the second passivation layer was placed on the first passivation layer 170a, and then a spin coating procedure was performed under predetermined conditions: rotation at 500 rpm for 5 seconds, and then at 3000 rmp Speed for 20 seconds, then reduce the speed to 0 rpm in 5 seconds and stop spinning. Then, after a drying procedure was performed for 1 hour in an environment of 120°C, a burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a first oxide thin film used as the second passivation layer 170b. Here, the average film thickness of the second passivation layer 170b is about 135 nm.

-形成遮罩- -Form a mask-

然後,用光阻(即,TSMR-8800BE)塗佈第二鈍化層170b(即,第一氧化物薄膜),然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的第二鈍化層17b相同的光阻圖案。 Then, the second passivation layer 170b (ie, the first oxide film) is coated with a photoresist (ie, TSMR-8800BE), and then pre-baked, exposed through an exposure device, and developed to produce a second film with the desired The passivation layer 17b has the same photoresist pattern.

-用於第二鈍化層170b的蝕刻程序- -Etching procedure for the second passivation layer 170b-

然後,將第二鈍化層170b浸泡於0.36wt%鹽酸中20秒作為蝕刻程序,以移除第一氧化物薄膜未被光阻圖案覆蓋的部分,來得到第二鈍化層17b。 Then, the second passivation layer 170b is immersed in 0.36wt% hydrochloric acid for 20 seconds as an etching procedure to remove the portion of the first oxide film not covered by the photoresist pattern to obtain the second passivation layer 17b.

-用於第一鈍化層170a的蝕刻程序- -Etching procedure for the first passivation layer 170a-

然後,將第一鈍化層170a浸泡於含有14wt%的氟化銨及3.2wt%的氟化氫銨的混合溶液中1分鐘作為蝕刻程序,以移除第二氧化物薄膜未被光阻圖案覆蓋的部分,來得到第一鈍化層17a。 Then, the first passivation layer 170a is immersed in a mixed solution containing 14wt% ammonium fluoride and 3.2wt% ammonium bifluoride for 1 minute as an etching procedure to remove the portion of the second oxide film not covered by the photoresist pattern To obtain the first passivation layer 17a.

-移除遮罩- -Remove mask-

然後,也透過浸泡在光阻剝離劑(即,STRIPPER 104)中2分鐘來移除光阻圖案。 Then, the photoresist pattern was also removed by soaking in a photoresist stripper (ie, STRIPPER 104) for 2 minutes.

[實例32] [Example 32]

<製造FET> <manufacturing FET>

-製備用於形成第一鈍化層的塗佈液- -Preparation of coating liquid for forming the first passivation layer-

透過混合1mL的甲苯、0.15mL的HMDS以及0.31mL的 2-乙基己酸鈣2-乙基己酸溶液(即,Alfa36657),製備用於形成第一鈍化層的塗佈液。利用用於形成第一鈍化層的塗佈液所形成的第二氧化物的組成顯示於表4。 By mixing 1 mL of toluene, 0.15 mL of HMDS, and 0.31 mL of 2-ethylhexanoic acid calcium 2-ethylhexanoic acid solution (that is, Alfa 36657), a coating liquid for forming the first passivation layer was prepared. The composition of the second oxide formed using the coating liquid for forming the first passivation layer is shown in Table 4.

-製備用於形成第二鈍化層的塗佈液- -Preparation of coating liquid for forming the second passivation layer-

透過混合1.2mL的環己基苯、0.13g的乙醯丙酮鏑三水合物(Strem 66-2002;Strem Chemicals Inc.的產品)、0.27g的乙醯丙酮鐿三水合物(Strem 70-2202;Strem Chemicals Inc.的產品)、0.12mL的2-乙基己酸鎂甲苯溶液(即,Strem 12-1260)以及0.10mL的2-乙基己酸鉿2-乙基己酸溶液(Gelest AKH332;Gelest,Inc.的產品),製備用於第二鈍化層的塗佈液。利用用於形成第二鈍化層的塗佈液所形成的第一氧化物的組成顯示於表4。 By mixing 1.2 mL of cyclohexylbenzene, 0.13 g of acetone dysprosium triacetate trihydrate (Strem 66-2002; a product of Strem Chemicals Inc.), 0.27 g of ytterbium acetone acetone trihydrate (Strem 70-2202; Strem Chemicals Inc. product), 0.12 mL of 2-ethylhexanoic acid magnesium toluene solution (ie, Strem 12-1260) and 0.10 mL of 2-ethylhexanoic hafnium 2-ethylhexanoic acid solution (Gelest AKH332; Gelest , Inc. product), preparing a coating solution for the second passivation layer. The composition of the first oxide formed using the coating liquid for forming the second passivation layer is shown in Table 4.

然後,製造如第16B圖所示的底部接觸/頂部閘極FET。以與實例27相同的方法形成源極電極14、汲極電極15、主動層16、閘極絕緣層13及閘極電極12。 Then, a bottom contact/top gate FET as shown in FIG. 16B is manufactured. The source electrode 14, the drain electrode 15, the active layer 16, the gate insulating layer 13, and the gate electrode 12 were formed in the same manner as in Example 27.

-形成第一鈍化層170a- -Forming a first passivation layer 170a-

然後,將0.4mL之用於形成第一鈍化層的塗佈液滴在閘極絕緣層13及閘極電極12上,然後在預定的條件下進行旋塗程序:以3000rmp的速度進行旋轉20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第一鈍化層170a的第二氧化物薄膜。在此,第一鈍化層170a的平均的薄膜厚度約為25nm。 Then, 0.4 mL of the coating droplet used to form the first passivation layer was deposited on the gate insulating layer 13 and the gate electrode 12, and then a spin-coating procedure was performed under predetermined conditions: spin at 3000 rpm for 20 seconds , Then reduce the speed to 0 rpm in 5 seconds and stop the rotation. Then, after the drying procedure was performed for 1 hour in an environment of 120°C, the burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a second oxide thin film used as the first passivation layer 170a. Here, the average film thickness of the first passivation layer 170a is about 25 nm.

-形成第二鈍化層170b- -Forming a second passivation layer 170b-

然後,將0.6mL之用於形成第二鈍化層的塗佈液滴在第一鈍化層170a上,然後在預定的條件下進行旋塗程序:以500rpm的速度進行旋轉5秒,然後以3000rmp的速度進行20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第二鈍化層170b的第一氧化物薄膜。在此,第二鈍化層170b的平均的薄膜厚度約為135nm。 Then, 0.6 mL of the coating droplet for forming the second passivation layer was placed on the first passivation layer 170a, and then a spin coating procedure was performed under predetermined conditions: rotation at 500 rpm for 5 seconds, and then at 3000 rmp Speed for 20 seconds, then reduce the speed to 0 rpm in 5 seconds and stop spinning. Then, after a drying procedure was performed for 1 hour in an environment of 120°C, a burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a first oxide thin film used as the second passivation layer 170b. Here, the average film thickness of the second passivation layer 170b is about 135 nm.

-形成遮罩- -Form a mask-

然後,用光阻(即,TSMR-8800BE)塗佈第二鈍化層170b(即, 第一氧化物薄膜),然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的第二鈍化層17b相同的光阻圖案。 Then, the second passivation layer 170b (ie, the first oxide film) is coated with a photoresist (ie, TSMR-8800BE), and then pre-baked, exposed through an exposure device, and developed to produce a second layer with the desired The passivation layer 17b has the same photoresist pattern.

-用於第二鈍化層170b的蝕刻程序- -Etching procedure for the second passivation layer 170b-

然後,將第二鈍化層170b浸泡於含有55wt%的磷酸、30wt%的乙酸及5wt%的硝酸的混合溶液中30秒作為蝕刻程序,以移除第一氧化物薄膜未被光阻圖案覆蓋的部分,來得到第二鈍化層17b。 Then, the second passivation layer 170b is immersed in a mixed solution containing 55wt% phosphoric acid, 30wt% acetic acid, and 5wt% nitric acid for 30 seconds as an etching process to remove the first oxide film not covered by the photoresist pattern In part, the second passivation layer 17b is obtained.

-用於第一鈍化層170a的蝕刻程序- -Etching procedure for the first passivation layer 170a-

然後,將第一鈍化層170a浸泡於6wt% TMAH中1分鐘作為蝕刻程序,以移除第二氧化物薄膜未被光阻圖案覆蓋的部分,來得到第一鈍化層17a。 Then, the first passivation layer 170a is immersed in 6wt% TMAH for 1 minute as an etching procedure to remove the portion of the second oxide film not covered by the photoresist pattern to obtain the first passivation layer 17a.

-移除遮罩- -Remove mask-

然後,也透過浸泡在光阻剝離劑(即,STRIPPER 104)中2分鐘來移除光阻圖案。 Then, the photoresist pattern was also removed by soaking in a photoresist stripper (ie, STRIPPER 104) for 2 minutes.

[實例33] [Example 33]

<製造FET> <manufacturing FET>

-製備用於形成第一鈍化層的塗佈液- -Preparation of coating liquid for forming the first passivation layer-

透過混合1mL的甲苯、0.09mL的HMDS、0.18mL的二(異丁氧基)乙醯乙酸酯鋁螯合物(即,Alfa89349)以及0.69mL的2-乙基己酸鋇甲苯溶液(即,Wako 021-09471),製備用於形成第一鈍化層的塗佈液。利用用於形成第一鈍化層的塗佈液所形成的第二氧化物的組成顯示於表4。 By mixing 1 mL of toluene, 0.09 mL of HMDS, 0.18 mL of bis(isobutoxy) acetoacetate aluminum chelate (ie, Alfa89349) and 0.69 mL of 2-ethylhexanoic acid barium toluene solution (ie , Wako 021-09471), preparing a coating solution for forming the first passivation layer. The composition of the second oxide formed using the coating liquid for forming the first passivation layer is shown in Table 4.

-製備用於形成第二鈍化層的塗佈液- -Preparation of coating liquid for forming the second passivation layer-

透過混合1.2mL的環己基苯、0.51g的2-乙基己酸釔(Strem 39-2400;Strem Chemicals Inc.的產品)、0.06mL的2-乙基己酸鎂甲苯溶液(即,Strem 12-1260)以及0.07mL的2-乙基己酸鉿2-乙基己酸溶液(即,Gelest AKH332;Gelest,Inc.的產品),製備用於形成第二鈍化層的塗佈液。利用用於形成第二鈍化層的塗佈液所形成的第一氧化物的組成顯示於表4。 By mixing 1.2 mL of cyclohexylbenzene, 0.51 g of yttrium 2-ethylhexanoate (Strem 39-2400; a product of Strem Chemicals Inc.), 0.06 mL of magnesium 2-ethylhexanoate in toluene solution (ie, Strem 12 -1260) and 0.07 mL of 2-ethylhexanoic hafnium 2-ethylhexanoic acid solution (ie, Gelest AKH332; a product of Gelest, Inc.) to prepare a coating liquid for forming the second passivation layer. The composition of the first oxide formed using the coating liquid for forming the second passivation layer is shown in Table 4.

然後,製造如實例28所述的底部接觸/頂部閘極FET。然而,相較於實例27,第一鈍化層17a及第二鈍化層17b的疊積順序為顛倒。 Then, a bottom contact/top gate FET as described in Example 28 was fabricated. However, compared to Example 27, the stacking order of the first passivation layer 17a and the second passivation layer 17b is reversed.

-形成第二鈍化層170b- -Forming a second passivation layer 170b-

然後,將0.6mL之用於形成第二鈍化層的塗佈液滴在閘極 絕緣層13及閘極電極12上,然後在預定的條件下進行旋塗程序:以500rpm的速度進行旋轉5秒,然後以3000rmp的速度進行20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第二鈍化層170b的第一氧化物薄膜。在此,第二鈍化層170b的平均的薄膜厚度約為135nm。 Then, 0.6 mL of the coating droplet for forming the second passivation layer was applied on the gate insulating layer 13 and the gate electrode 12, and then a spin coating procedure was performed under predetermined conditions: spin at 500 rpm for 5 seconds , Then at a speed of 3000rmp for 20 seconds, then use 5 seconds to reduce the speed to 0rpm and stop rotating. Then, after a drying procedure was performed for 1 hour in an environment of 120°C, a burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a first oxide thin film used as the second passivation layer 170b. Here, the average film thickness of the second passivation layer 170b is about 135 nm.

-形成第一鈍化層170a- -Forming a first passivation layer 170a-

然後,將0.4mL之用於形成第一鈍化層的塗佈液滴在第二鈍化層170b上,然後在預定的條件下進行旋塗程序:以3000rmp的速度進行旋轉20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第一鈍化層170a的第二氧化物薄膜。在此,第一鈍化層170a的平均的薄膜厚度約為25nm。 Then, 0.4 mL of the coating droplet for forming the first passivation layer was placed on the second passivation layer 170b, and then the spin-coating procedure was performed under predetermined conditions: spin at 3000 rpm for 20 seconds, and then use 5 seconds Reduce the speed to 0 rpm and stop spinning. Then, after the drying procedure was performed for 1 hour in an environment of 120°C, the burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a second oxide thin film used as the first passivation layer 170a. Here, the average film thickness of the first passivation layer 170a is about 25 nm.

-形成遮罩- -Form a mask-

然後,用光阻(即,TSMR-8800BE)塗佈第一鈍化層170a(即,第一氧化物薄膜),然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的第一鈍化層17a相同的光阻圖案。 Then, the first passivation layer 170a (ie, the first oxide film) is coated with a photoresist (ie, TSMR-8800BE), and then pre-baked, exposed through an exposure device, and developed to produce the first The passivation layer 17a has the same photoresist pattern.

-用於第一鈍化層170a的蝕刻程序- -Etching procedure for the first passivation layer 170a-

然後,將第一鈍化層170a浸泡於5wt%氫氟酸中15秒作為蝕刻程序,以移除第二氧化物薄膜未被光阻圖案覆蓋的部分,來得到第一鈍化層17a。 Then, the first passivation layer 170a is immersed in 5wt% hydrofluoric acid for 15 seconds as an etching procedure to remove the portion of the second oxide film not covered by the photoresist pattern to obtain the first passivation layer 17a.

-用於第二鈍化層170b的蝕刻程序- -Etching procedure for the second passivation layer 170b-

然後,將第二鈍化層170b浸泡於含有80wt%的磷酸、10wt%的乙酸及5wt%的硝酸的混合溶液中30秒作為蝕刻程序,以移除第一氧化物薄膜未被光阻圖案覆蓋的部分,來得到第二鈍化層17b。 Then, the second passivation layer 170b is immersed in a mixed solution containing 80wt% phosphoric acid, 10wt% acetic acid, and 5wt% nitric acid for 30 seconds as an etching procedure to remove the first oxide film not covered by the photoresist pattern In part, the second passivation layer 17b is obtained.

-移除遮罩- -Remove mask-

然後,也透過浸泡在光阻剝離劑(即,STRIPPER 104)中2分鐘來移除光阻圖案。 Then, the photoresist pattern was also removed by soaking in a photoresist stripper (ie, STRIPPER 104) for 2 minutes.

[實例34] [Example 34]

<製造FET> <manufacturing FET>

-製備用於形成第一鈍化層的塗佈液- -Preparation of coating liquid for forming the first passivation layer-

透過混合1mL的甲苯、0.11mL的HMDS、0.10mL的二(異丁氧基)乙醯乙酸酯鋁螯合物(即,Alfa89349)、0.07g的(4,4,5,5-四甲基-1,3,2-二氧雜硼烷-2-基)苯(即,Wako 325-59912)、0.09mL的2-乙基己酸鈣2-乙基己酸溶液(即,Alfa36657)以及0.19mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-9561),製備用於形成第一鈍化層的塗佈液。利用用於形成第一鈍化層的塗佈液所形成的第二氧化物的組成顯示於表4。 By mixing 1 mL of toluene, 0.11 mL of HMDS, 0.10 mL of bis(isobutoxy) acetoacetate aluminum chelate (ie, Alfa89349), 0.07 g of (4,4,5,5-tetramethyl -1,3,2-dioxaborolan-2-yl)benzene (ie Wako 325-59912), 0.09 mL of calcium 2-ethylhexanoate solution in 2-ethylhexanoic acid (ie Alfa36657) And 0.19 mL of a 2-ethylhexanoic acid strontium toluene solution (ie, Wako 195-9561) to prepare a coating liquid for forming the first passivation layer. The composition of the second oxide formed using the coating liquid for forming the first passivation layer is shown in Table 4.

-製備用於形成第二鈍化層的塗佈液- -Preparation of coating liquid for forming the second passivation layer-

透過混合1.2mL的環己基苯、1.95mL的2-乙基己酸鑭甲苯溶液(即,Wako 122-03371)、0.57mL的2-乙基己酸鍶甲苯溶液(即,Wako 195-09561)以及0.09mL的2-乙基己酸鋯氧化物礦油精溶液(即,Wako 269-01116),製備用於形成第二鈍化層的塗佈液。利用用於形成第二鈍化層的塗佈液所形成的第一氧化物的組成顯示於表4。 Through mixing 1.2mL of cyclohexylbenzene, 1.95mL of 2-ethylhexanoic acid lanthanum toluene solution (ie, Wako 122-03371), 0.57mL of 2-ethylhexanoic acid strontium toluene solution (ie, Wako 195-09561) And 0.09 mL of a 2-ethylhexanoic acid zirconium oxide mineral spirit solution (ie, Wako 269-01116) to prepare a coating liquid for forming a second passivation layer. The composition of the first oxide formed using the coating liquid for forming the second passivation layer is shown in Table 4.

然後,製造如第16B圖所示的底部接觸/頂部閘極FET。以與實例27相同的方法形成源極電極14、汲極電極15、主動層16、閘極絕緣層13及閘極電極12。 Then, a bottom contact/top gate FET as shown in FIG. 16B is manufactured. The source electrode 14, the drain electrode 15, the active layer 16, the gate insulating layer 13, and the gate electrode 12 were formed in the same manner as in Example 27.

-形成第一鈍化層170a- -Forming a first passivation layer 170a-

然後,將0.4mL之用於形成第一鈍化層的塗佈液滴在閘極絕緣層13及閘極電極12上,然後在預定的條件下進行旋塗程序:以3000rmp的速度進行旋轉20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第一鈍化層170a的第二氧化物薄膜。在此,第一鈍化層170a的平均的薄膜厚度約為25nm。 Then, 0.4 mL of the coating droplet used to form the first passivation layer was deposited on the gate insulating layer 13 and the gate electrode 12, and then a spin-coating procedure was performed under predetermined conditions: spin at 3000 rpm for 20 seconds , Then reduce the speed to 0 rpm in 5 seconds and stop the rotation. Then, after the drying procedure was performed for 1 hour in an environment of 120°C, the burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a second oxide thin film used as the first passivation layer 170a. Here, the average film thickness of the first passivation layer 170a is about 25 nm.

-形成第二鈍化層170b- -Forming a second passivation layer 170b-

然後,將0.6mL之用於形成第二鈍化層的塗佈液滴在第一鈍化層170a上,然後在預定的條件下進行旋塗程序:以500rpm的速度進行旋轉5秒,然後以3000rmp的速度進行20秒,然後用5秒將速度降至0rpm並且停止旋轉。然後,在120℃的環境下進行乾燥程序1小時之後,在充滿O2的環境且在400℃的溫度下進行燃燒程序3小時,以得到用作為第二鈍化層170b的第一氧化物薄膜。在此,第二鈍化層170b的平均的薄膜 厚度約為135nm。 Then, 0.6 mL of the coating droplet for forming the second passivation layer was placed on the first passivation layer 170a, and then a spin coating procedure was performed under predetermined conditions: rotation at 500 rpm for 5 seconds, and then at 3000 rmp Speed for 20 seconds, then reduce the speed to 0 rpm in 5 seconds and stop spinning. Then, after a drying procedure was performed for 1 hour in an environment of 120°C, a burning procedure was performed for 3 hours at a temperature of 400°C in an environment filled with O 2 to obtain a first oxide thin film used as the second passivation layer 170b. Here, the average film thickness of the second passivation layer 170b is about 135 nm.

-形成遮罩- -Form a mask-

然後,用光阻(即,TSMR-8800BE)塗佈第二鈍化層170b(即,第一氧化物薄膜),然後預烤、透過曝光設備曝光、並且顯影,以產生具有與欲形成的第二鈍化層17b相同的光阻圖案。 Then, the second passivation layer 170b (ie, the first oxide film) is coated with a photoresist (ie, TSMR-8800BE), and then pre-baked, exposed through an exposure device, and developed to produce a second film with the desired The passivation layer 17b has the same photoresist pattern.

-用於第二鈍化層170b的蝕刻程序- -Etching procedure for the second passivation layer 170b-

然後,將第二鈍化層170b浸泡於0.36wt%鹽酸(即,Wako 083-01115)中20秒作為蝕刻程序,以移除第一氧化物薄膜未被光阻圖案覆蓋的部分,來得到第二鈍化層17b。 Then, the second passivation layer 170b is immersed in 0.36wt% hydrochloric acid (ie, Wako 083-01115) for 20 seconds as an etching procedure to remove the portion of the first oxide film not covered by the photoresist pattern to obtain the second Passivation layer 17b.

-用於第一鈍化層170a的蝕刻程序- -Etching procedure for the first passivation layer 170a-

然後,將第一鈍化層170a浸泡於含有14wt%的氟化銨及12wt%的氟化氫銨的混合溶液中15秒作為蝕刻程序,以移除第二氧化物薄膜未被光阻圖案覆蓋的部分,來得到第一鈍化層17a。 Then, the first passivation layer 170a is immersed in a mixed solution containing 14wt% ammonium fluoride and 12wt% ammonium bifluoride for 15 seconds as an etching process to remove the portion of the second oxide film not covered by the photoresist pattern, To obtain the first passivation layer 17a.

-移除遮罩- -Remove mask-

然後,也透過浸泡在光阻剝離劑(即,STRIPPER 104)中2分鐘來移除光阻圖案。 Then, the photoresist pattern was also removed by soaking in a photoresist stripper (ie, STRIPPER 104) for 2 minutes.

(評價電晶體特性) (Evaluate transistor characteristics)

對實例27至實例34中所製造的每一個FET進行電晶體特性的評價。根據實例27至實例34的每一個電晶體特性的評價是基於當源極電極14與汲極電極15之間的電壓(Vds)為+10V時,閘極電極12與源極電極14之間的電壓(Vgs)及源極電極14與汲極電極15之間的電流(Ids)的關係(Vgs-Ids)的量測。 The transistor characteristics of each of the FETs manufactured in Examples 27 to 34 were evaluated. The evaluation of the characteristics of each transistor according to Examples 27 to 34 is based on the difference between the gate electrode 12 and the source electrode 14 when the voltage (Vds) between the source electrode 14 and the drain electrode 15 is +10V Measurement of voltage (Vgs) and current (Ids) relationship between source electrode 14 and drain electrode 15 (Vgs-Ids).

再者,基於電晶體特性(Vgs-Ids)的評價結果,計算飽和區中的場效遷移率。進一步,計算電晶體由Ids在「接通」狀態(例如,Vgs=+10V)至Ids在「斷路」狀態(例如,Vgs=-10V)的比率(即,開/關比)。進一步,計算S數值,作為因施加Vgs而反應的Ids上升銳度的指標。進一步,計算臨界電壓(Vth),其為對應於因施加Vgs而反應的Ids上升的電壓值。 Furthermore, based on the evaluation result of the transistor characteristics (Vgs-Ids), the field-effect mobility in the saturation region is calculated. Further, the ratio (ie, on/off ratio) of the transistor from Ids in the "on" state (for example, Vgs=+10V) to Ids in the "off" state (for example, Vgs=-10V) is calculated. Furthermore, the value of S is calculated as an indicator of the sharpness of the rise in Ids reflected by the application of Vgs. Further, a threshold voltage (Vth) is calculated, which is a voltage value corresponding to an increase in Ids reflected by the application of Vgs.

由實例27至實例34所製造的FET的電晶體特性計算的遷移率、開/關比、S數值及Vth顯示於表5。在以下的說明,關於電晶體特性的結果,較佳的電晶體特性為:高遷移率;高開/關比;低S數值;且Vth 在0V附近。具體地,較佳的電晶體特性為:遷移率在3cm2/Vs以上;開/關比在1.0 x 108以上;S數值在0.7以下;且Vth在±5V的範圍。 The mobility, on/off ratio, S value, and Vth calculated from the transistor characteristics of the FETs manufactured from Examples 27 to 34 are shown in Table 5. In the following description, regarding the results of transistor characteristics, the preferred transistor characteristics are: high mobility; high on/off ratio; low S value; and Vth around 0V. In particular, preferred transistor characteristics: mobility 3cm 2 / Vs or more; on / off ratio of more than 1.0 x 10 8; S values below 0.7; and Vth is a range of ± 5V.

如第5圖所示,其證實了實例27至實例34所製造的FET具有較佳的電晶體特性,即具有高遷移率、高開/關比、低S數值及Vth在0V附近。 As shown in FIG. 5, it is confirmed that the FETs manufactured in Examples 27 to 34 have better transistor characteristics, that is, have high mobility, high on/off ratio, low S value, and Vth around 0V.

[表5]

Figure 108142640-A0101-12-0102-5
[table 5]
Figure 108142640-A0101-12-0102-5

(評價電晶體特性) (Evaluate transistor characteristics)

對實例27至實例34中所製造的FET,在此環境下(溫度:50℃;相對溼度:50%)進行100小時長的BTS測試。 The FETs manufactured in Examples 27 to 34 were subjected to a 100-hour BTS test under this environment (temperature: 50°C; relative humidity: 50%).

提供以下4種條件作為壓力條件: Provide the following 4 conditions as pressure conditions:

(1)Vgs=+10V,且Vds=0V (1) Vgs=+10V, and Vds=0V

(2)Vgs=+10V,且Vds=+10V (2) Vgs=+10V, and Vds=+10V

(3)Vgs=-10V,且Vds=0V (3) Vgs=-10V, and Vds=0V

(4)Vgs=-10V,且Vds=+10V (4) Vgs=-10V, and Vds=+10V

再者,在BTS測試中每當經過預定長度的時間,量測在Vds=+10V條件下的Vgs與Ids的關係(Vgs-Ids)。 Moreover, in the BTS test, whenever a predetermined length of time passes, the relationship between Vgs and Ids under the condition of Vds=+10V (Vgs-Ids) is measured.

對實例34所製造的FET,BTS測試中在Vgs=+10V且Vds=0V的壓力條件下的Vgs-Ids的結果繪示於第32圖。再者,對實例34所製造的FET,在Vgs=+10V且Vds=0V的壓力條件下,臨界電壓相對於加壓時間的偏移(△Vth)繪示於第33圖。 For the FET fabricated in Example 34, the results of Vgs-Ids under the pressure conditions of Vgs=+10V and Vds=0V in the BTS test are shown in FIG. 32. Furthermore, for the FET manufactured in Example 34, under the pressure conditions of Vgs=+10V and Vds=0V, the shift of the critical voltage with respect to the pressurization time (ΔVth) is shown in FIG. 33.

再者,對實例27至實例34所製造的FET,BTS測試中在100小時的加壓時間下的△Vth的數值顯示於表6。在此,△Vth為Vth由加壓時間0至任意時間的偏移。 In addition, for the FETs manufactured in Examples 27 to 34, the value of ΔVth at 100 hours of pressurization time in the BTS test is shown in Table 6. Here, ΔVth is the deviation of Vth from the pressurization time 0 to any time.

依據第32圖、第33圖及表6,實例34所製造的FET對BTS測試是較佳可靠的,即具有低的△Vth偏移。根據表6,實例27至實例33所製造的FET對BTS測試是較佳可靠的,即具有低的△Vth偏移。 According to Figure 32, Figure 33, and Table 6, the FET manufactured in Example 34 is more reliable for BTS testing, that is, has a low ΔVth offset. According to Table 6, the FETs manufactured in Examples 27 to 33 are more reliable for BTS testing, that is, have a low ΔVth offset.

[表6]

Figure 108142640-A0101-12-0103-6
[Table 6]
Figure 108142640-A0101-12-0103-6

進一步,本發明不侷限於這些實施例,且在不背離本發明的範疇下可進行各種的變化及修飾。 Further, the present invention is not limited to these embodiments, and various changes and modifications can be made without departing from the scope of the present invention.

10‧‧‧場效電晶體 10‧‧‧Field effect transistor

11‧‧‧基板 11‧‧‧ substrate

12‧‧‧閘極電極 12‧‧‧Gate electrode

13‧‧‧閘極絕緣層 13‧‧‧Gate insulation

14‧‧‧源極電極 14‧‧‧Source electrode

15‧‧‧汲極電極 15‧‧‧ Drain electrode

16‧‧‧主動層 16‧‧‧Active layer

17‧‧‧鈍化層 17‧‧‧passivation layer

Claims (20)

一種製造場效電晶體的方法,該場效電晶體包括一閘極絕緣層、一主動層以及一鈍化層,該方法包括: A method of manufacturing a field effect transistor, the field effect transistor includes a gate insulating layer, an active layer and a passivation layer, the method includes: 一第一程序,用於形成該閘極絕緣層;以及 A first procedure for forming the gate insulating layer; and 一第二程序,用於形成該鈍化層, A second procedure for forming the passivation layer, 其中,該第一程序以及該第二程序的至少其中之一包括: Wherein, at least one of the first program and the second program includes: 形成一第一氧化物,該第一氧化物包括一鹼土金屬以及鎵、鈧、釔及鑭系元素的至少其中之一;以及 Forming a first oxide including an alkaline earth metal and at least one of gallium, scandium, yttrium, and lanthanide; and 使用一第一溶液蝕刻該第一氧化物,該第一溶液包括鹽酸、草酸、硝酸、磷酸、乙酸、硫酸以及雙氧水的至少其中之一。 The first oxide is etched using a first solution. The first solution includes at least one of hydrochloric acid, oxalic acid, nitric acid, phosphoric acid, acetic acid, sulfuric acid, and hydrogen peroxide. 依據申請專利範圍第1項所述之製造場效電晶體的方法,其中,該鈍化層包括一第一鈍化層以及一第二鈍化層,以及其中,該第二程序包括: The method for manufacturing a field effect transistor according to item 1 of the patent application scope, wherein the passivation layer includes a first passivation layer and a second passivation layer, and wherein the second procedure includes: 形成包括一第二氧化物之該第一鈍化層,該第二氧化物包括矽以及一鹼土金屬; Forming the first passivation layer including a second oxide, the second oxide including silicon and an alkaline earth metal; 形成包括該第一氧化物之該第二鈍化層,該第二鈍化層被配置以與該第一鈍化層接觸; Forming the second passivation layer including the first oxide, the second passivation layer being configured to contact the first passivation layer; 使該第一鈍化層與一第二溶液接觸以蝕刻該第一鈍化層,該第二溶液包括氫氟酸、氟化銨、氟化氫銨以及有機鹼的至少其中之一;以及 Contacting the first passivation layer with a second solution to etch the first passivation layer, the second solution including at least one of hydrofluoric acid, ammonium fluoride, ammonium bifluoride, and an organic base; and 使該第二鈍化層與該第一溶液接觸以蝕刻該第二鈍化層。 The second passivation layer is brought into contact with the first solution to etch the second passivation layer. 依據申請專利範圍第2項所述之製造場效電晶體的方法,其中,該第二程序包括: According to the method of manufacturing field effect transistors described in item 2 of the patent application scope, the second procedure includes: 在該第二鈍化層上形成該第一鈍化層; Forming the first passivation layer on the second passivation layer; 在該第一鈍化層上形成一遮罩; Forming a mask on the first passivation layer; 在形成該遮罩後,使該第一鈍化層與該第二溶液接觸以蝕刻該第一鈍化層; After forming the mask, contacting the first passivation layer with the second solution to etch the first passivation layer; 在蝕刻該第一鈍化層後,使該第二鈍化層與該第一溶液接觸以蝕刻該第二鈍化層;以及 After etching the first passivation layer, contacting the second passivation layer with the first solution to etch the second passivation layer; and 移除該遮罩。 Remove the mask. 依據申請專利範圍第2項所述之製造場效電晶體的方法,其中,該第二程序包括: According to the method of manufacturing field effect transistors described in item 2 of the patent application scope, the second procedure includes: 在該第一鈍化層上形成該第二鈍化層; Forming the second passivation layer on the first passivation layer; 在該第二鈍化層上形成一遮罩; Forming a mask on the second passivation layer; 在形成該遮罩後,使該第二鈍化層與該第一溶液接觸以蝕刻該第二鈍化層; After forming the mask, contacting the second passivation layer with the first solution to etch the second passivation layer; 在蝕刻該第二鈍化層後,使該第一鈍化層與該第二溶液接觸以蝕刻該第一鈍化層;以及 After etching the second passivation layer, contacting the first passivation layer with the second solution to etch the first passivation layer; and 移除該遮罩。 Remove the mask. 依據申請專利範圍第1項所述之製造場效電晶體的方法,其中,該閘極絕緣層包括一第一閘極絕緣層以及一第二閘極絕緣層,以及 The method of manufacturing a field effect transistor according to item 1 of the patent application scope, wherein the gate insulating layer includes a first gate insulating layer and a second gate insulating layer, and 其中,該第一程序包括: Among them, the first procedure includes: 形成包括一第二氧化物之該第一閘極絕緣層,該第二氧化物包括矽以及一鹼土金屬; Forming the first gate insulating layer including a second oxide, the second oxide including silicon and an alkaline earth metal; 形成包括該第一氧化物之該第二閘極絕緣層,該第二閘極絕緣層被配置以與該第一閘極絕緣層接觸; Forming the second gate insulating layer including the first oxide, the second gate insulating layer being configured to contact the first gate insulating layer; 使該第一閘極絕緣層與一第二溶液接觸以蝕刻該第一閘極絕緣層,該第二溶液包括氫氟酸、氟化銨、氟化氫銨以及有機鹼的至少其中之一;以及 Contacting the first gate insulating layer with a second solution to etch the first gate insulating layer, the second solution including at least one of hydrofluoric acid, ammonium fluoride, ammonium bifluoride, and an organic base; and 使該第二閘極絕緣層與該第一溶液接觸以蝕刻該第二閘極絕緣層。 The second gate insulating layer is brought into contact with the first solution to etch the second gate insulating layer. 依據申請專利範圍第5項所述之製造場效電晶體的方法,其中,該第一程序包括: The method for manufacturing field effect transistors according to item 5 of the patent application scope, wherein the first procedure includes: 在該第二閘極絕緣層上形成該第一閘極絕緣層; Forming the first gate insulating layer on the second gate insulating layer; 在該第一閘極絕緣層上形成一遮罩; Forming a mask on the first gate insulating layer; 在形成該遮罩後,使該第一閘極絕緣層與該第二溶液接觸以蝕刻該第一閘極絕緣層; After the mask is formed, the first gate insulating layer is brought into contact with the second solution to etch the first gate insulating layer; 在蝕刻該第一閘極絕緣層後,使該第二閘極絕緣層與該第一溶液接觸以蝕刻該第二閘極絕緣層;以及 After etching the first gate insulating layer, contacting the second gate insulating layer with the first solution to etch the second gate insulating layer; and 移除該遮罩。 Remove the mask. 依據申請專利範圍第5項所述之製造該場效電晶體的方法,其中,該第一程序包括: According to the method for manufacturing the field effect transistor described in item 5 of the patent application scope, the first procedure includes: 在該第一閘極絕緣層上形成該第二閘極絕緣層; Forming the second gate insulating layer on the first gate insulating layer; 在該第二閘極絕緣層上形成一遮罩; Forming a mask on the second gate insulating layer; 在形成該遮罩後,使該第二閘極絕緣層與該第一溶液接觸以蝕刻該第二閘極絕緣層; After the mask is formed, the second gate insulating layer is brought into contact with the first solution to etch the second gate insulating layer; 在蝕刻該第二閘極絕緣層後,使該第一閘極絕緣層與該第二溶液接觸以蝕刻該第一閘極絕緣層;以及 After etching the second gate insulating layer, contacting the first gate insulating layer with the second solution to etch the first gate insulating layer; and 移除該遮罩。 Remove the mask. 依據申請專利範圍第2項或第5項所述之製造場效電晶體的方法,其中,該第二氧化物包括鋁以及硼的至少其中之一。 According to the method of manufacturing a field effect transistor described in item 2 or 5 of the patent application scope, wherein the second oxide includes at least one of aluminum and boron. 依據申請專利範圍第1項所述之製造該場效電晶體的方法,其中,該第一氧化物為一順電非晶氧化物。 According to the method of manufacturing the field effect transistor described in item 1 of the patent application scope, wherein the first oxide is a paraelectric amorphous oxide. 依據申請專利範圍第1項所述之製造場效電晶體的方法,其中,該第一氧化物包括鋁、鈦、鋯、鉿、鈮以及鉭的至少其中之一。 According to the method of manufacturing a field effect transistor described in item 1 of the patent scope, wherein the first oxide includes at least one of aluminum, titanium, zirconium, hafnium, niobium, and tantalum. 依據申請專利範圍第1項所述之製造場效電晶體的方法,其中,該主動層是由一氧化物半導體所製成。 According to the method for manufacturing a field effect transistor described in item 1 of the patent scope, the active layer is made of an oxide semiconductor. 依據申請專利範圍第1項所述之製造場效電晶體的方法,其中,該閘極絕緣層、該主動層以及該鈍化層形成在一絕緣基板上。 The method for manufacturing a field effect transistor according to item 1 of the scope of the patent application, wherein the gate insulating layer, the active layer and the passivation layer are formed on an insulating substrate. 依據申請專利範圍第1項所述之製造場效電晶體的方法,其中,該主動層為一半導體基板,以及其中,該閘極絕緣層以及該鈍化層形成在該半導體基板上。 According to the method of manufacturing a field effect transistor described in item 1 of the patent scope, wherein the active layer is a semiconductor substrate, and wherein the gate insulating layer and the passivation layer are formed on the semiconductor substrate. 一種製造揮發性半導體記憶元件的方法,該方法包括: A method for manufacturing a volatile semiconductor memory element, the method includes: a)依據申請專利範圍第1項所述之方法形成一場效電晶體; a) Form a field effect transistor according to the method described in item 1 of the patent application scope; b)形成與該場效電晶體之一汲極電極連接之一第一電容電極; b) forming a first capacitor electrode connected to a drain electrode of the field effect transistor; c)形成一第二電容電極;以及 c) forming a second capacitor electrode; and d)在該第一電容電極與該第二電容電極之間形成一電容介電層。 d) A capacitive dielectric layer is formed between the first capacitive electrode and the second capacitive electrode. 依據申請專利範圍第14項所述之製造揮發性半導體記憶元件的方法,其中,形成該電容介電層的步驟d)包括: The method for manufacturing a volatile semiconductor memory device according to item 14 of the patent application scope, wherein the step d) of forming the capacitor dielectric layer includes: 形成該第一氧化物;以及 Forming the first oxide; and 使該第一氧化物與該第一溶液接觸以蝕刻該第一氧化物。 The first oxide is brought into contact with the first solution to etch the first oxide. 一種製造非揮發性半導體記憶元件的方法,該方法包括: A method for manufacturing a non-volatile semiconductor memory element, the method includes: 依據申請專利範圍第1項所述之方法形成一場效電晶體;以及 Form a field effect transistor according to the method described in item 1 of the patent application scope; and 在該主動層與該閘極絕緣層之間形成一第二閘極絕緣層以及一浮動閘極電極。 A second gate insulating layer and a floating gate electrode are formed between the active layer and the gate insulating layer. 一種製造顯示元件的方法,該方法包括: A method of manufacturing a display element, the method comprising: a)形成包括一場效電晶體之一驅動電路;以及 a) forming a driver circuit including a field effect transistor; and b)形成一光控制元件,以依據從該驅動電路所獲得之一驅動信號控制光的輸出, b) forming a light control element to control the light output according to a drive signal obtained from the drive circuit, 其中,形成該驅動電路的步驟a)包括依據申請專利範圍第1項所述之方法形成該場效電晶體。 Wherein, the step a) of forming the driving circuit includes forming the field effect transistor according to the method described in item 1 of the patent application scope. 依據申請專利範圍第17項所述之製造顯示元件的方法,其中,該光控制元件為一電致發光元件、一電致變色元件、一液晶元件、一電泳元件或者一電濕潤元件的任意其中之一。 The method of manufacturing a display element according to item 17 of the patent application scope, wherein the light control element is any of an electroluminescent element, an electrochromic element, a liquid crystal element, an electrophoretic element or an electrowetting element one. 一種製造影像顯示裝置的方法,該影像顯示裝置包括一螢幕以及一顯示控制裝置,該螢幕包括以一矩陣配置之複數個顯示元件,該顯示控制裝置被配置以具體地控制該等顯示元件中的每一個,該方法包括: A method of manufacturing an image display device including a screen and a display control device, the screen including a plurality of display elements arranged in a matrix, the display control device being configured to specifically control among the display elements For each, the method includes: 形成該等顯示元件的程序, The procedure for forming such display elements, 其中,形成該等顯示元件的該程序包括依據申請專利範圍第17項或第18項所述之方法形成一顯示元件。 Wherein, the procedure for forming the display elements includes forming a display element according to the method described in Item 17 or Item 18 of the patent application. 一種製造系統的方法,該系統包括一影像顯示裝置以及一影像資料產生單元,該影像資料產生單元被配置以提供影像資料至該影像顯示裝置,該方法包括: A method of manufacturing a system. The system includes an image display device and an image data generation unit configured to provide image data to the image display device. The method includes: 形成該影像顯示裝置的程序, The program that forms the image display device, 其中,形成該影像顯示裝置的該程序包括依據申請專利範圍第19項所述之方法形成該影像顯示裝置。 Wherein, the procedure for forming the image display device includes forming the image display device according to the method described in item 19 of the patent application scope.
TW108142640A 2016-03-18 2017-03-14 Method for manufacturing a field effect transistor, method for manufacturing a volatile semiconductor memory element, method for manufacturing a non-volatile semiconductor memory element, method for manufacturing a display element, method for manufacturing an image display device, and method for manufacturing a system TWI783191B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016055243 2016-03-18
JP2016-055243 2016-03-18
JP2016-055244 2016-03-18
JP2016055244 2016-03-18
JP2017-044427 2017-03-08
JP2017044427A JP6855848B2 (en) 2016-03-18 2017-03-08 Field-effect transistor manufacturing method, volatile semiconductor memory device manufacturing method, non-volatile semiconductor memory device manufacturing method, display element manufacturing method, image display device manufacturing method, system manufacturing method

Publications (2)

Publication Number Publication Date
TW202013469A true TW202013469A (en) 2020-04-01
TWI783191B TWI783191B (en) 2022-11-11

Family

ID=59973918

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108142640A TWI783191B (en) 2016-03-18 2017-03-14 Method for manufacturing a field effect transistor, method for manufacturing a volatile semiconductor memory element, method for manufacturing a non-volatile semiconductor memory element, method for manufacturing a display element, method for manufacturing an image display device, and method for manufacturing a system
TW106108357A TWI681446B (en) 2016-03-18 2017-03-14 Method for manufacturing a field effect transistor, method for manufacturing a volatile semiconductor memory element, method for manufacturing a non-volatile semiconductor memory element, method for manufacturing a display element, method for manufacturing an image display device, and method for manufacturing a system

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW106108357A TWI681446B (en) 2016-03-18 2017-03-14 Method for manufacturing a field effect transistor, method for manufacturing a volatile semiconductor memory element, method for manufacturing a non-volatile semiconductor memory element, method for manufacturing a display element, method for manufacturing an image display device, and method for manufacturing a system

Country Status (2)

Country Link
JP (1) JP6855848B2 (en)
TW (2) TWI783191B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251223B2 (en) * 2018-03-19 2023-04-04 株式会社リコー Coating liquid for oxide insulator film formation
US11152442B2 (en) 2018-03-28 2021-10-19 Sakai Display Products Corporation Organic electroluminescent (EL) display device with comb-shaped source and drain electrodes and manufacturing method therefor
JP2019179861A (en) * 2018-03-30 2019-10-17 株式会社リコー Field-effect transistor, display device, image display unit, and system
US10818770B2 (en) 2018-07-23 2020-10-27 Ricoh Company, Ltd. Metal oxide, field-effect transistor, and method for producing the same
TWI724472B (en) * 2018-07-23 2021-04-11 日商理光股份有限公司 Metal oxide, field-effect transistor, and method for producing the same
JP7092977B2 (en) * 2018-09-28 2022-06-29 株式会社リコー A coating liquid for forming an oxide insulating film, a method for manufacturing an oxide insulating film, and a method for manufacturing a field-effect transistor.
JP2020088300A (en) * 2018-11-30 2020-06-04 株式会社リコー Coating liquid for forming oxide, manufacturing method of oxide film, and manufacturing method of field effect transistor
CN114280864A (en) * 2021-12-17 2022-04-05 Tcl华星光电技术有限公司 Array substrate and liquid crystal display panel

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW407309B (en) * 1999-01-29 2000-10-01 Nat Science Council MOSFET manufacturing process
KR100577527B1 (en) * 2003-12-29 2006-05-10 매그나칩 반도체 유한회사 Radio frequency integrated circuits and method of manufacturing the same
KR101112541B1 (en) * 2004-11-16 2012-03-13 삼성전자주식회사 Thin film transistor array panel using organic semiconductor and manufacturing method thereof
JP2009510720A (en) * 2005-09-28 2009-03-12 エヌエックスピー ビー ヴィ Nonvolatile memory device based on fin-type FET
JP2009046354A (en) * 2007-08-21 2009-03-05 Nec Tokin Corp Piezoelectric single crystal composition
JP5899615B2 (en) * 2010-03-18 2016-04-06 株式会社リコー Insulating film manufacturing method and semiconductor device manufacturing method
KR101393265B1 (en) * 2009-12-25 2014-05-08 가부시키가이샤 리코 Field-effect transistor, semiconductor memory, display element, image display device, and system
JP5633346B2 (en) * 2009-12-25 2014-12-03 株式会社リコー Field effect transistor, semiconductor memory, display element, image display apparatus and system
US8916866B2 (en) * 2010-11-03 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9761666B2 (en) * 2011-06-16 2017-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel field effect transistor
US9401363B2 (en) * 2011-08-23 2016-07-26 Micron Technology, Inc. Vertical transistor devices, memory arrays, and methods of forming vertical transistor devices
US8709893B2 (en) * 2011-08-23 2014-04-29 Alpha & Omega Semiconductor, Inc. Method of making a low-Rdson vertical power MOSFET device
JP6394171B2 (en) * 2013-10-30 2018-09-26 株式会社リコー Field effect transistor, display element, image display device, and system
US20150187714A1 (en) * 2013-12-26 2015-07-02 Globalfoundries Singapore Pte. Ltd. Integrated circuits including copper pillar structures and methods for fabricating the same
GB2523788B (en) * 2014-03-05 2020-04-22 Ams Sensors Uk Ltd Method of fabrication of CMOS-based Semiconductor Devices comprising CMOS-incompatible metals
JP2016036016A (en) * 2014-06-23 2016-03-17 住友電気工業株式会社 Support substrate, composite substrate, and manufacturing method of semiconductor wafer

Also Published As

Publication number Publication date
TWI783191B (en) 2022-11-11
TW201810390A (en) 2018-03-16
JP2017175125A (en) 2017-09-28
JP6855848B2 (en) 2021-04-07
TWI681446B (en) 2020-01-01

Similar Documents

Publication Publication Date Title
CN107204291B (en) Method for manufacturing field effect transistor, memory element, display device, and system
TWI681446B (en) Method for manufacturing a field effect transistor, method for manufacturing a volatile semiconductor memory element, method for manufacturing a non-volatile semiconductor memory element, method for manufacturing a display element, method for manufacturing an image display device, and method for manufacturing a system
JP6394171B2 (en) Field effect transistor, display element, image display device, and system
JP6607013B2 (en) Field effect transistor, display element, image display device, and system
CN108807427B (en) Field effect transistor, display element, image display device, and system
JP2017163118A (en) Field-effect transistor, display element, image display device, and system
US10269293B2 (en) Field-effect transistor (FET) having gate oxide insulating layer including SI and alkaline earth elements, and display element, image display and system including FET
JP6426177B2 (en) Method of manufacturing metal oxide semiconductor thin film transistor
KR20200011025A (en) Metal oxide, field-effect transistor, and method for producing the same
JP6451875B2 (en) Field effect transistor, display element, image display device, and system
JP2018156963A (en) Field-effect transistor, display element, display device, system, and method of manufacturing them
JP6794706B2 (en) Field effect transistors, display elements, image display devices, and systems
JP2019054284A (en) Field effect transistor, display element, image display device, and system
TWI724472B (en) Metal oxide, field-effect transistor, and method for producing the same
JP6642657B2 (en) Field effect transistor, display element, image display device, and system
JP6269768B2 (en) Coating liquid for insulating film formation
JP2018148145A (en) Field effect transistor, display element, display device, and system