TW202005308A - 用於利用波束成形通訊的無線網路的定位方法 - Google Patents

用於利用波束成形通訊的無線網路的定位方法 Download PDF

Info

Publication number
TW202005308A
TW202005308A TW108118924A TW108118924A TW202005308A TW 202005308 A TW202005308 A TW 202005308A TW 108118924 A TW108118924 A TW 108118924A TW 108118924 A TW108118924 A TW 108118924A TW 202005308 A TW202005308 A TW 202005308A
Authority
TW
Taiwan
Prior art keywords
beams
base station
reference signal
positioning
processor
Prior art date
Application number
TW108118924A
Other languages
English (en)
Other versions
TWI799591B (zh
Inventor
索尼 阿卡拉力南
濤 駱
奧茲格 柯曼
南宇碩
山缪 賽萊比
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202005308A publication Critical patent/TW202005308A/zh
Application granted granted Critical
Publication of TWI799591B publication Critical patent/TWI799591B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • G01S1/0428Signal details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/20Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0218Multipath in signal reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

揭示適用於在利用波束成形通訊的無線網路中使用的定位方法。在一個態樣中,用於報告參考信號定時差(RSTD)的範圍及/或細微性可以根據一或多個波束參數(例如,重複因數、波束形狀、頻帶、次載波間隔數位方案、循環字首等)來配置。在另一態樣中,發送節點可以發送與用於發送定位參考信號的波束相關聯的一或多個參數(例如,發射角、發射頂點、波束寬度等)。根據另一態樣,發送節點經由一或多個波束發送的定位參考信號的循環字首長度可以被配置為增加接收節點可見的相鄰細胞的數量。

Description

用於利用波束成形通訊的無線網路的定位方法
本專利申請案主張享有於2018年5月31日提出申請的、標題為「ENHANCED POSITIONING METHODS FOR WIRELESS NETWORKS THAT UTILIZE BEAMFORMED COMMUNICATION」的美國臨時專利申請案第62/679,006號以及於2019年5月30日提出申請的、標題為「POSITIONING METHODS FOR WIRELESS NETWORKS THAT UTILIZE BEAMFORMED COMMUNICATION」的美國非臨時專利申請案第16/426,952號的權益,這兩份專利申請案均被轉讓給本案的受讓人,並且經由引用的方式將其全部內容明確地併入本文。
概括地說,本文描述的各個態樣係關於無線通訊系統,更具體地,本文描述的各個態樣係關於適用於在利用波束成形通訊的無線網路中使用的增強型定位方法。
無線通訊系統已經過了數代的發展,包括第一代類比無線電話服務(1G)、第二代(2G)數位無線電話服務(包括臨時的2.5G和2.75G網路)、第三代(3G)高速資料、具有網際網路能力的無線服務、以及第四代(4G)服務(例如,長期進化(LTE)或WiMax)。目前在使用的有許多不同類型的無線通訊系統,包括蜂巢以及個人通訊服務(PCS)系統。已知的蜂巢式系統的實例包括蜂巢類比高級行動電話系統(AMPS)、以及基於分碼多工存取(CDMA)、分頻多工存取(FDMA)、分時多工存取(TDMA)、TDMA的全球行動存取系統(GSM)變形的數位蜂巢式系統等。
第五代(5G)行動服務標準需要較高的資料傳送速度、較大數量的連接和較好的覆蓋以及其他改進。根據下一代行動網路聯盟,5G標準被設計為向成千上萬的使用者之每一者使用者提供每秒幾十兆位元的資料速率,向在辦公室樓層中的數十個工作人員提供每秒1千兆位元。應當支援幾十萬個同時連接,以便支援大型感測器部署。因此,與當前的4G標準相比,應當顯著地增強5G行動通訊的頻譜效率。此外,與當前的標準相比,應當增強訊號傳遞效率,以及應當大幅度地減小時延。
一些無線通訊網路(諸如5G)支援在非常高以及甚至極高頻(EHF)頻帶(諸如毫米波(mmW)頻帶(通常,1 mm到10 mm的波長,或者30到300 GHz))處的操作。這些極高的頻率可以支援非常高的輸送量,諸如高達六千兆位元每秒(Gbps)。然而,針對在非常高或極高的頻率處的無線通訊的挑戰之一是可能由於高頻率而發生顯著的傳播損耗。隨著頻率增加,波長可以減小,以及傳播損耗亦可以增加。在mmW頻帶處,傳播損耗可能是嚴重的。例如,該傳播損耗相對於在2.4 GHz或5 GHz頻帶中觀察到的傳播損耗可以是22到27 dB的量級。
傳播損耗在任何頻帶中的多輸入多輸出(MIMO)和大規模MIMO系統中也是一個問題。如本文中使用的術語MIMO通常是指MIMO和大規模MIMO兩者。MIMO是用於經由使用多個發送和接收天線以利用多徑傳播來使無線電鏈路的容量成倍地增加的方法,其中由於如下原因而發生多徑傳播:射頻(RF)信號不僅經由在發射器和接收器之間的最短路徑(其可以是視線(LOS)路徑)來行進,亦在多個其他路徑上行進,這是因為它們在其去往接收器的路上從發射器展開並且在諸如山、大樓、水等的其他物件上反射。在MIMO系統中的發射器包括多個天線,以及經由指導這些天線各自在相同的無線電通道上向接收器發送相同的RF信號來利用多徑傳播。接收器亦被配備有被調諧至能夠偵測到由發射器所發送的RF信號的無線電通道的多個天線。當RF信號到達接收器時(一些RF信號可能由於多徑傳播而被延遲),接收器可以將其合併成單個RF信號。由於發射器以與將發送單個RF信號相比較低的功率位準來發送每個RF信號,因此傳播損耗在MIMO系統中也是一個問題。
為了解決在mmW頻帶系統和MIMO系統中的傳播損耗問題,發射器可以使用波束成形來擴展RF信號覆蓋。具體而言,發送波束成形是用於在特定方向上發射RF信號的技術,而接收波束成形是用於增加針對沿著特定方向到達接收器的RF信號的接收靈敏度。發送波束成形和接收波束成形可以彼此結合或者單獨地使用,以及以下對「波束成形」的引用可以是指發送波束成形、接收波束成形、或這兩者。傳統地,當發射器廣播RF信號時,其在經由固定天線模式或天線的輻射模式來決定的幾乎所有方向上廣播RF信號。在波束成形的情況下,發射器決定給定接收器相對於該發射器位於何處,以及在該特定方向上投影較強的下行鏈路RF信號,從而為接收器提供較快(在資料速率態樣)且較強的RF信號。為了在發送時改變RF信號的方向性,發射器可以控制經由每個天線廣播的RF信號的相位和相對幅度。例如,發射器可以使用建立RF波形的波束的天線的陣列(亦被稱為「相控陣列」或「天線陣列」),其中可以「控制」該波束指向不同的方向,而不需要實際地移動天線。具體而言,利用正確的相位關係將RF電流饋送至各個天線,使得來自單獨天線的無線電波加在一起以增加在所期望的方向上的輻射,同時消除來自單獨天線的無線電波以抑制在不期望的方向上的輻射。
為了支援在陸地無線網路中的位置估計,行動設備可以被配置為:量測和報告觀察到達時間差(OTDOA)或在從兩個或更多個網路節點(例如,不同的基地台或屬於同一基地台的不同的傳輸點(例如,天線))接收的參考RF信號之間的參考信號定時差(RSTD)。然而,mmW通訊系統面臨的嚴重路徑損耗的獨特挑戰需要新技術,例如混合波束成形,即數位和類比聯合波束成形,這在第三代(3G)及/或第四代(4G)無線通訊系統中是不存在的。因此,可能需要增強在無線網路中傳統地使用的定位方法,以考慮波束成形通訊可能出現的獨特挑戰。
例如,在發射器使用波束成形來發送RF信號的情況下,用於在發射器與接收器之間的資料通訊的感興趣波束將是攜帶具有最高接收信號強度(或者例如在存在定向干擾信號的情況下,具有最高接收信號與雜訊加干擾比(SINR))的RF信號的波束。然而,當接收器依靠具有最高接收信號強度的波束時,接收器的執行某些任務的能力可能受到損害。例如,在其中具有最高接收信號強度的波束在比最短路徑(亦即,LOS路徑或最短的非LOS(NLOS)路徑)長的NLOS路徑上行進的場景中,由於傳播延遲,RF信號可能比在最短路徑上接收的RF信號更晚地到達。相應地,若接收器正在執行要求精決定時量測的任務,以及若具有最高接收信號強度的波束受較長傳播延遲影響,則具有最高接收信號強度的波束對於手頭的任務而言可能不是最優的。
下文提供了與本文揭示的一或多個態樣及/或實施例相關的簡化概述。因此,以下概述不應當被認為是與所有預期態樣及/或實施例相關的詳盡綜述,而且以下概述既不應當被認為標識與所有預期態樣及/或實施例相關的關鍵或重要元素,亦不應當被認為圖示與任何特定態樣及/或實施例相關聯的範疇。相應地,以下概述的唯一目的是以簡化的形式提供與涉及本文揭示的機制的一或多個態樣及/或實施例相關的某些概念,作為下文提供的詳細描述的前序。
根據各個態樣,本文揭示適用於在利用波束成形通訊的無線網路中使用的增強型定位方法的技術。更具體地,在一個態樣中,用於量測及/或報告參考信號定時差(RSTD)的範圍及/或細微性可以根據一或多個波束參數(例如,重複因數、波束形狀、頻帶、次載波間隔數位方案、循環字首等)是可配置的。在另一態樣中,發送節點可以發送與用於發送定位參考信號的波束相關聯的一或多個參數(例如,發射角、發射頂點、波束寬度等)。根據另一態樣,發送節點經由一或多個波束發送的定位參考信號的循環字首長度可以被配置為增加接收節點可見的相鄰細胞的數量。在另一態樣中,回應於偵測到位置上的變化(例如,緯度-經度上的變化或方向上的變化),行動基地台可以決定與其相關聯的當前位置,並且經由無線網路發信號通知當前位置。在另外的態樣中,基地台可以根據從UE接收的操作條件來配置一或多個定位方案。在又一態樣中,遠端無線電頭端(RRH)/分散式天線系統(DAS)可以在與同步信號塊相同的波束中發送定位參考信號,這可以包括在數位域中將定位參考信號與同步信號塊分頻多工。
根據各個態樣,一種用於波束成形通訊中的定位的方法可以包括:接收多個波束,每個波束包括定位參考信號;決定與多個波束之每一者波束相關聯的一或多個參數;及根據一或多個參數來配置用於量測及/或報告參考信號定時差(RSTD)的範圍或細微性中的一項或多項。
根據各個態樣,一種裝置可以包括:接收器,其被配置為接收多個波束,其中多個波束均包括定位參考信號;及至少一個處理器,其被配置為:決定與多個波束之每一者波束相關聯的一或多個參數;及根據一或多個參數來配置用於量測及/或報告RSTD的範圍或細微性中的一項或多項。
根據各個態樣,一種裝置可以包括:用於接收多個波束的單元,其中多個波束均包括定位參考信號;用於決定與多個波束之每一者波束相關聯的一或多個參數的單元;及用於根據一或多個參數來配置用於量測及/或報告RSTD的範圍或細微性中的一項或多項的單元。
根據各個態樣,一種電腦可讀取媒體可以具有儲存在其上的用於裝置的處理器的電腦可執行指令,其中電腦可執行指令可以包括儲存在其上的用於裝置的處理器的一或多個指令。指令可以包括:使得該處理器接收多個波束的一或多個指令,每個波束包括定位參考信號;使得處理器決定與多個波束之每一者波束相關聯的一或多個參數的一或多個指令;及使得處理器根據一或多個參數來配置用於量測及/或報告RSTD的範圍或細微性中的一項或多項的一或多個指令。
根據各個態樣,一種用於波束成形通訊中的定位的方法可以包括:在發送節點處決定與用於發送定位參考信號的波束相關聯的一或多個參數;由發送節點在無線網路上發送與波束相關聯的一或多個參數;及根據與波束相關聯的一或多個發送的參數經由波束發送定位參考信號。
根據各個態樣,一種裝置可以包括:至少一個處理器,其被配置為:決定與用於發送定位參考信號的波束相關聯的一或多個參數,一或多個參數包括發射角、發射頂點、波束寬度或其任意組合;及發射器,其被配置為:將與波束相關聯的一或多個參數發送到網路實體或使用者設備中的一者或多者;及根據與波束相關聯的一或多個發送的參數經由波束發送定位參考信號。
根據各個態樣,一種裝置可以包括:用於決定與用於發送定位參考信號的波束相關聯的一或多個參數的單元,一或多個參數包括發射角、發射頂點、波束寬度或其任意組合;用於在無線網路上發送與波束相關聯的一或多個參數的單元;及用於根據與波束相關聯的一或多個發送的參數經由波束發送定位參考信號的單元。
根據各個態樣,一種電腦可讀取媒體可以具有儲存在其上的用於裝置的處理器的電腦可執行指令。電腦可執行指令可以包括:使得處理器決定與用於發送定位參考信號的波束相關聯的一或多個參數的一或多個指令;使得處理器在無線網路上發送與波束相關聯的一或多個參數的一或多個指令;及使得處理器根據與波束相關聯的一或多個發送的參數經由波束發送定位參考信號的一或多個指令。
根據各個態樣,一種用於波束成形通訊中的定位的方法可以包括:配置用於定位參考信號的循環字首長度,以增加接收節點可見的相鄰細胞的數量;及使得一或多個發送節點根據所配置的循環字首長度經由一或多個波束發送定位參考信號。
根據各個態樣,一種裝置可以包括:記憶體和耦合到該記憶體的至少一個處理器,記憶體和至少一個處理器被配置為:選擇用於定位參考信號的循環字首長度,以增加接收節點可見的相鄰細胞的數量;及使得一或多個發送節點根據所配置的循環字首長度經由一或多個波束發送定位參考信號。
根據各個態樣,一種裝置可以包括:用於配置用於定位參考信號的循環字首長度以增加接收節點可見的相鄰細胞的數量的單元;及用於使得一或多個發送節點根據所配置的循環字首長度經由一或多個波束發送定位參考信號的單元。
根據各個態樣,一種電腦可讀取媒體可以具有儲存在其上的用於裝置的處理器的電腦可執行指令。電腦可執行指令包括:使得處理器配置用於定位參考信號的循環字首長度以增加接收節點可見的相鄰細胞的數量的一或多個指令;及使得處理器使得一或多個發送節點根據所配置的循環字首長度經由一或多個波束發送定位參考信號的一或多個指令。
根據各個態樣,一種用於波束成形通訊中的定位的方法可以包括:在行動基地台處偵測行動基地台的位置的變化;回應於偵測到行動基地台的位置的變化,在行動基地台處決定行動基地台的當前位置;及經由無線網路發信號通知行動基地台的當前位置。
根據各個態樣,一種行動基地台可以包括至少一個處理器,其被配置為回應於行動基地台的位置的變化來決定行動基地台的當前位置;及發射器,其被配置為經由無線網路發信號通知行動基地台的當前位置。
根據各個態樣,一種行動基地台可以包括:用於偵測行動基地台的位置的變化的單元;用於回應於偵測到行動基地台的位置的變化來決定行動基地台的當前位置的單元;及用於經由無線網路發信號通知行動基地台的當前位置的單元。
根據各個態樣,一種電腦可讀取媒體可以具有儲存在其上的用於裝置的處理器的電腦可執行指令。電腦可執行指令可以包括:使得處理器偵測裝置的位置的變化的一或多個指令;使得處理器進行以下操作的一或多個指令:回應於偵測到裝置的位置的變化來決定裝置的當前位置;及經由無線網路發信號通知裝置的當前位置。
根據各個態樣,一種用於波束成形通訊中的定位的方法可以包括:由基地台向UE發送針對報告UE處的操作條件的請求;從UE接收所請求的操作條件;及根據從UE接收的操作條件來配置一或多個定位方案。
根據各個態樣,一種裝置可以包括:發射器,其被配置為向UE發送針對報告UE處的操作條件的請求;接收器,其被配置為從UE接收所請求的操作條件;及至少一個處理器,其被配置為根據從UE接收的操作條件來配置一或多個定位方案。
根據各個態樣,一種裝置可以包括:用於向UE發送針對報告UE處的操作條件的請求的單元;用於從UE接收所請求的操作條件的單元;及用於根據從UE接收的操作條件來配置一或多個定位方案的單元。
根據各個態樣,一種電腦可讀取媒體可以具有儲存在其上的用於裝置的處理器的電腦可執行指令。電腦可執行指令可以包括:使得處理器向UE發送針對報告UE處的操作條件的請求的一或多個指令;使得處理器從UE接收所請求的操作條件的一或多個指令;及使得處理器根據從UE接收的操作條件來配置一或多個定位方案的一或多個指令。
根據各個態樣,一種用於波束成形通訊中的定位的方法可以包括:在遠端無線電頭端(RRH)/分散式天線系統(DAS)處將定位參考信號配置為在與同步信號塊相同的波束中被發送,使得定位參考信號和同步信號塊具有基本相同的空間特性;及經由RRH/DAS在與同步信號塊相同的波束中發送定位參考信號。
根據各個態樣,一種裝置可以包括:至少一個處理器,其被配置為將定位參考信號配置為在與同步信號塊相同的波束中被發送,使得定位參考信號和同步信號塊具有基本相同的空間特性;及發射器,其被配置為在與同步信號塊相同的波束中發送定位參考信號。
根據各個態樣,一種裝置可以包括:用於將定位參考信號配置為在與同步信號塊相同的波束中被發送,使得定位參考信號和同步信號塊具有基本相同的空間特性的單元;及用於在與同步信號塊相同的波束中發送定位參考信號的單元。
根據各個態樣,一種電腦可讀取媒體可以具有儲存在其上的用於RRH/DAS的處理器的電腦可執行指令。電腦可執行指令可以包括:使得處理器將定位參考信號配置為在與同步信號塊相同的波束中被發送,使得定位參考信號和同步信號塊具有基本相同的空間特性的一或多個指令;及使得處理器在與同步信號塊相同的波束中發送定位參考信號的一或多個指令。
基於附圖和具體描述,與本文揭示的各態樣和實施例相關聯的其他目標和優點對於本發明所屬領域中具有通常知識者將是顯而易見的。
在以下描述和相關附圖中揭示各種態樣和實施例,以示出與示例性態樣和實施例相關的具體實例。在閱讀本案內容之後,替代的各態樣和實施例對於相關領域具有通常知識者而言將是顯而易見的,以及可以在不脫離本案內容的範疇或精神的情況下,構建和實踐替代的各態樣和實施例。另外地,將不詳細地描述或者可以省略公知的元素,以避免使本文揭示的各態樣和實施例的相關細節模糊不清。
本文使用「示例性的」一詞來意指「充當實例、例子或說明」。本文中被描述為「示例性」的任何態樣或實施例不必被解釋為相對於其他各態樣或實施例優選或具有優勢。同樣,術語「各態樣」和「實施例」不要求所有各態樣或實施例都包括所論述的特徵、優勢或操作模式。
本文使用的術語僅描述了特定各態樣,以及不應當被解釋為限制本文所揭示的任何態樣。如本文所使用的,除非上下文明確地指示,否則單數形式的「一(a)」、「一個(an)」和「該(the)」意欲亦包括複數形式。本發明所屬領域中具有通常知識者亦將理解的是,如在本文中使用的術語「包含」、「由...組成」、「包括」及/或「含有」指定該等特徵、整數、步驟、操作、元素及/或部件的存在,而不排除一或多個其他特徵、整數、步驟、操作、元素、部件及/或其群組的存在或添加。
此外,可以按照要由例如計算設備的元素執行的動作的序列來描述各個態樣。本發明所屬領域中具有通常知識者將認識到的是,本文描述的各個動作可以由特定電路(例如,特殊應用積體電路(ASIC))、由一或多個處理器執行的程式指令、或者由兩者的組合來執行。另外,本文描述的這些動作的序列可以被認為是完全體現在任何形式的非暫時性電腦可讀取媒體中,該非暫時性電腦可讀取媒體具有儲存在其上的相應的電腦指令的集合,該電腦指令的集合在被執行時將使得相關聯的處理器執行本文描述的功能。因此,本文揭示的各個態樣可以在多種不同的形式中體現,所有這些形式被預期在所要求保護的主題的範疇內。另外,對於本文描述的各態樣之每一者態樣,任何此類態樣的相應形式在本文中可以被描述為例如「被配置為……的邏輯」及/或被配置為執行所描述的動作的其他結構化部件。
如本文使用的,術語「使用者設備」(或「UE」)、「使用者裝置」、「使用者終端」、「客戶端設備」、「通訊設備」、「無線設備」、「無線通訊設備」、「手持設備」、「行動設備」、「行動終端」、「行動站」、「手機」、「存取終端」、「用戶設備」、「用戶終端」、「用戶站」、「終端」和其變形可以互換地代表能夠接收無線通訊及/或導航信號的任何適當的移動或固定設備。這些術語亦意欲包括如下的設備:其諸如經由短距離無線、紅外、有線連接或其他連接與能夠接收無線通訊及/或導航信號的另一設備進行通訊,無論在該設備處或者在另一設備處是否發生衛星信號接收、輔助資料接收及/或與位置相關的處理。另外,這些術語意欲包括能夠經由無線電存取網路(RAN)與核心網路進行通訊的所有設備(包括無線和有線通訊設備),以及經由核心網路能夠將UE與諸如網際網路的外部網路以及與其他UE連接。當然,對於UE而言,連接到核心網路及/或網際網路的其他機制也是可能的,諸如在有線存取網路、無線區域網(WLAN)(例如,基於IEEE 802.11等)上等等。UE可以由多種類型的設備中的任何設備來體現,包括但不限於:印刷電路(PC)卡、緊湊式快閃記憶體設備、外部或內接式數據機、無線或有線電話、智慧型電話、平板設備、追蹤設備、資產標籤、智慧手錶和其他可穿戴設備、伺服器、路由器、運載工具中實現的電子設備(例如,汽車、自行車、摩托車等)等等。UE可以經由其來向RAN發送信號的通訊鏈路被稱為上行鏈路通道(例如,反向傳輸量通道、反向控制通道、存取通道等)。RAN可以經由其來向UE發送信號的通訊鏈路被稱為下行鏈路或前向鏈路通道(例如,傳呼通道、控制通道、廣播通道、前向傳輸量通道等)。如本文中使用的,術語傳輸量通道(TCH)可以代表上行鏈路/反向傳輸量通道或者下行鏈路/前向傳輸量通道。
根據各個態樣,圖1圖示示例性無線通訊系統100。無線通訊系統100(其亦可以被稱為無線廣域網(WWAN))可以包括各種基地台102和各種UE 104。基地台102可以包括巨集細胞(高功率蜂巢基地台)及/或小型細胞(低功率蜂巢基地台)。巨集細胞可以包括進化型節點B(eNB)(其中無線通訊系統100對應於LTE網路)、gNodeB(gNB)(其中無線通訊系統100對應於5G網路)及/或其組合,以及小型細胞可以包括毫微微細胞、微微細胞、微細胞等。
基地台102可以共同地形成無線電存取網路(RAN)並且經由回載鏈路與進化封包核心(EPC)或下一代核心(NGC)以介面方式連接。除了其他功能之外,基地台102亦可以執行與以下各項中的一項或多項相關的功能:使用者資料的傳送、無線電通道加密和解密、完整性保護、標頭壓縮、行動性控制功能(例如,切換、雙重連接)、細胞間干擾協調、連接建立和釋放、負載平衡、針對非存取層(NAS)訊息的分發、NAS節點選擇、同步、RAN共享、多媒體廣播多播服務(MBMS)、用戶和設備追蹤、RAN資訊管理(RIM)、傳呼、定位、以及警告訊息的傳送。基地台102可以經由回載鏈路134(其可以是有線的或無線的)來直接或間接地(例如,經由EPC /NGC)相互通訊。
基地台102可以與UE 104無線地進行通訊。基地台102之每一者基地台102可以為各自的地理覆蓋區域110提供通訊覆蓋。在一態樣中,儘管沒有在圖1中示出,地理覆蓋區域110可以被細分成複數個細胞(例如,三個)或扇區,每個細胞與基地台102的單個天線或天線陣列相對應。如本文中使用的,術語「細胞」或「扇區」可以與基地台102的複數個細胞中的一個細胞或者與基地台102本身相對應,這取決於上下文。
儘管相鄰的巨集細胞地理覆蓋區域110可以部分地重疊(例如,在切換區域中),但是地理覆蓋區域110中的一些地理覆蓋區域110可以與較大的地理覆蓋區域110大幅度地重疊。例如,小型細胞基地台102’可以具有與一或多個巨集細胞基地台102的地理覆蓋區域110大幅度地重疊的地理覆蓋區域110’。包括小型細胞和巨集細胞兩者的網路可以被稱為異質網路。異質網路亦可以包括家庭eNB(HeNB),其可以向被稱為封閉用戶群組(CSG)的受限群組提供服務。在基地台102和UE 104之間的通訊鏈路120可以包括從UE 104到基地台102的上行鏈路(UL)(亦被稱為反向鏈路)傳輸及/或從基地台102到UE 104的下行鏈路(DL)(亦被稱為前向鏈路)傳輸。通訊鏈路120可以使用MIMO天線技術,其包括空間多工、波束成形及/或發射分集。通訊鏈路可以是經由一或多個載波的。對載波的分配可以關於DL和UL是不對稱的(例如,與針對UL相比,可以針對DL分配更多或更少的載波)。
無線通訊系統100亦可以包括無線區域網路(WLAN)存取點(AP)150,其在免許可頻譜(例如,5GHz)中經由通訊鏈路154來與WLAN站(STA)152相通訊。當在免許可頻譜中進行通訊時,WLAN STA 152及/或WLAN AP 150可以在進行通訊之前執行閒置通道評估(CCA),以便決定通道是否是可用的。
小型細胞基地台102’可以在經許可及/或免許可頻譜中進行操作。當在免許可頻譜中進行操作時,小型細胞基地台102’可以採用LTE或5G技術並且使用與由WLAN AP 150所使用的5 GHz免許可頻譜相同的5 GHz免許可頻譜。採用在免許可頻譜中的LTE/5G的小型細胞基地台102’可以提升對存取網路的覆蓋及/或增加存取網路的容量。在免許可頻譜中的LTE可以被稱為LTE免許可(LTE-U)、許可輔助存取(LAA)或MulteFire。
無線通訊系統100亦可以包括與UE 182相通訊的mmW基地台180,mmW基地台180可以在mmW頻率及/或近mmW頻率中操作。極高頻(EHF)是RF在電磁頻譜中的一部分。EHF具有30 GHz到300 GHz的範圍並且具有在1毫米和10毫米之間的波長。在該頻帶中的無線電波可以被稱為毫米波。近mmW可以向下擴展到3 GHz的頻率,具有100毫米的波長。超高頻(SHF)頻帶在3 GHz和30 GHz之間擴展,亦被稱為釐米波。使用mmW/近mmW射頻頻帶的通訊具有高路徑損耗和相對短的距離。mmW基地台180可以利用與UE 182的波束成形184來補償極高的路徑損耗和短距離。此外,將瞭解到的是,在替代配置中,一或多個基地台102亦可以使用mmW或近mmW和波束成形來進行發送。相應地,將瞭解到的是,前述說明僅是實例並且不應當被解釋為限制本文所揭示的各個態樣。
無線通訊系統100亦可以包括經由一或多個設備到設備(D2D)對等(P2P)鏈路間接地連接到一或多個通訊網路的一或多個UE(諸如UE 190)。在圖1的實施例中,UE 190具有與連接到基地台102中的一個基地台102的UE 104中的一個UE 104的D2D P2P鏈路192(例如,經由D2D P2P鏈路192,UE 190可以間接地獲得蜂巢連線性)和與連接到WLAN AP 150的WLAN STA 152的D2D P2P鏈路194(經由D2D P2P鏈路194,UE 190可以間接地獲得基於WLAN的網際網路連線性)。在一實例中,可以利用任何公知的D2D無線電存取技術(RAT)(諸如LTE直連(LTE-D)、WiFi直連(WiFi-D)、藍芽等等)來支援D2D P2P鏈路192-194。
根據各個態樣,圖2A圖示實例無線網路結構200。例如,可以在功能上將下一代核心(NGC)210視為控制平面功能單元214(例如,UE註冊、認證、網路存取、閘道選擇等)和使用者平面功能單元212(例如,UE閘道功能、對資料網路的存取、IP路由等),控制平面功能單元214和使用者平面功能單元212合作地操作以形成核心網路。使用者平面介面(NG-U)213和控制平面介面(NG-C)215將gNB 222連接到NGC 210,以及具體地而言,連接到控制平面功能單元214和使用者平面功能單元212。在另外的配置中,亦可以經由到控制平面功能單元214的NG-C 215和到使用者平面功能單元212的NG-U 213將eNB 224連接到NGC 210。此外,eNB 224可以經由回載連接223直接與gNB 222進行通訊。相應地,在一些配置中,新RAN 220可以僅具有一或多個gNB 222,而其他配置包括eNB 224和gNB 222兩者中的一者或多者。gNB 222或eNB 224可以與UE 240(例如,在圖1中圖示的UE中的任何UE,諸如UE 104、UE 182、UE 190等)進行通訊。另一個可選態樣可以包括位置伺服器230,其可以與NGC 210相通訊以為UE 240提供位置幫助。位置伺服器230可以被實現為複數個在結構上分離的伺服器,或者替代地,可以各自對應於單個伺服器。位置伺服器230可以被配置為支援針對可以經由核心網路、NGC 210及/或經由網際網路(未圖示)連接到位置伺服器230的UE 240的一或多個位置服務。此外,位置伺服器230可以整合到核心網路的部件中,或者替代地,可以在核心網路外部。
根據各個態樣,圖2B圖示另一實例無線網路結構250。例如,NGC 260可以在功能上被視為控制平面功能單元、存取和行動性管理功能單元(AMF)264和使用者平面功能單元、以及通信期管理功能單元(SMF)262,它們協同操作以形成核心網路。使用者平面介面263和控制平面介面265將eNB 224連接到NGC 260,並且具體地連接到AMF 264和SMF 262。在另外的配置中,gNB 222亦可以經由控制平面介面265連接到AMF 264,並且經由使用者平面介面263連接到SMF 262。此外,eNB 224可以經由回載連接223直接與gNB 222通訊,無論gNB是否有到NGC 260的直接連接。因此,在一些配置中,新RAN 220可以僅具有一或多個gNB 222,而其他配置包括eNB 224和gNB 222中的一項或多項。gNB 222或eNB 224可以與UE 204(例如,圖1中圖示的任何UE,諸如UE 104、UE 182、UE 190等)通訊。另一可選態樣可以包括位置管理功能單元(LMF)270,其可以與NGC 260通訊,以向UE 204提供位置幫助。LMF 270能夠實現為複數個分離的伺服器(例如,在實體上分離的伺服器、單個伺服器上的不同軟體模組、分佈在多個實體伺服器上的不同軟體模組等),或者替代地,可以各自對應於單個伺服器。LMF 270能夠被配置為支援用於UE 204的一或多個位置服務,UE 240可以經由核心網路、NGC 260及/或經由網際網路(未圖示)連接到LMF 270。
根據各個態樣,圖3圖示在無線網路中示例性基地台310(例如,eNB、gNB、小型細胞AP、WLAN AP等)和示例性UE 350相通訊。在DL中,可以將來自核心網路(NGC 210/EPC 260)的IP封包提供給控制器/處理器375。控制器/處理器375實現針對無線電資源控制(RRC)層、封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層和媒體存取控制(MAC)層的功能。控制器/處理器375提供:與以下各項相關聯的RRC層功能:對系統資訊(例如,MIB、SIB)的廣播、RRC連接控制(例如,RRC連接傳呼、RRC連接建立、RRC連接修改、以及RRC連接釋放)、RAT間行動性、以及用於UE量測報告的量測配置;與以下各項相關聯的PDCP層功能:標頭壓縮/解壓、安全性(加密、解密、完整性保護、完整性驗證)、以及切換支援功能;與以下各項相關聯的RLC層功能:對上層封包資料單元(PDU)的傳送、經由ARQ的糾錯、對RLC服務資料單元(SDU)的串接、分段和重組、對RLC資料PDU的重新分段、以及對RLC資料PDU的重新排序;及與以下各項相關聯的MAC層功能:在邏輯通道和傳輸通道之間的映射、排程資訊報告、糾錯、優先順序處置、以及邏輯通道優先化。
發送(TX)處理器316和接收(RX)處理器370實現與各種信號處理功能相關聯的層1功能。層1(其包括實體(PHY)層)可以包括在傳輸通道上的錯誤偵測、傳輸通道的前向糾錯(FEC)編碼/解碼,交錯、速率匹配、映射到實體通道上、實體通道的調制/解調、以及MIMO天線處理。TX處理器316處理基於各種調制方案(例如,二進位移相鍵控(BPSK)、正交移相鍵控(QPSK)、M-移相鍵控(M-PSK)、M-正交振幅調制(M-QAM))的到信號群集的映射。經編碼且經調制的符號隨後可以被拆分成並行的串流。每個串流隨後可以被映射到OFDM次載波,與在時域及/或頻域中的參考信號(例如,引導頻)多工,以及隨後使用快速傅裡葉逆變換(IFFT)組合到一起,以產生用於攜帶時域OFDM符號串流的實體通道。OFDM串流被空間預編碼以產生多個空間串流。來自通道估計器374的通道估計可以用於決定編碼和調制方案,以及用於空間處理。可以根據由UE 350發送的參考信號及/或通道狀況回饋推導通道估計。可以隨後經由單獨的發射器318a將每一個空間串流提供給一或多個不同的天線320。每個發射器318a可以利用各自的空間串流來對RF載波進行調制以用於傳輸。
在UE 350處,每個接收器354a經由其各自的天線352接收信號。每個接收器354a恢復出被調制到RF載波上的資訊,以及將該資訊提供給RX處理器356。TX處理器368和RX處理器356實現與各種信號處理功能相關聯的層1功能。RX處理器356可以執行對該資訊的空間處理以恢復出以UE 350為目的地的任何空間串流。若多個空間串流以UE 350為目的地,則可以由RX處理器356將它們合併成單個OFDM符號串流。RX處理器356隨後使用快速傅裡葉變換(FFT)將該OFDM符號串流從時域變換到頻域。頻域信號包括針對該OFDM信號的每一個次載波的單獨的OFDM符號串流。經由決定由基地台310發送的最有可能的信號群集點來對在每個次載波上的符號和參考信號進行恢復和解調。這些軟決策可以基於由通道估計器358計算的通道估計。該軟決策隨後被解碼和解交錯以恢復出由基地台310最初在實體通道上發送的資料和控制信號。隨後將該資料和控制信號提供給控制器/處理器359,控制器/處理器359實現層3和層2功能。
控制器/處理器359可以與儲存程式碼和資料的記憶體360相關聯。記憶體360可以被稱為電腦可讀取媒體。在UL中,控制器/處理器359提供在傳輸通道和邏輯通道之間的解多工、封包重組、解密、標頭解壓縮、以及控制信號處理,以恢復出來自核心網路的IP封包。控制器/處理器359亦負責錯誤偵測。
與結合由基地台310進行的DL傳輸所描述的功能類似,控制器/處理器359提供:與以下各項相關聯的RRC層功能:系統資訊(例如,MIB、SIB)擷取、RRC連接、以及量測報告;與以下各項相關聯的PDCP層功能:標頭壓縮/解壓縮、以及安全性(加密、解密、完整性保護、完整性驗證);與以下各項相關聯的RLC層功能:對上層PDU的傳送、經由ARQ的糾錯、對RLC SDU的串接、分段和重組、對RLC資料PDU的重新分段、以及對RLC資料PDU的重新排序;及與以下各項相關聯的MAC層功能:在邏輯通道和傳輸通道之間的映射、MAC SDU到TB上的多工、MAC SDU從TB的解多工、排程資訊報告、經由HARQ的糾錯、優先順序處置、以及邏輯通道優先化。
TX處理器368可以使用由通道估計器358根據由基地台310發送的參考信號或回饋來推導出的通道估計來選擇適當的編碼和調制方案,並且促進空間處理。可以經由單獨的發射器354b將由TX處理器368產生的空間串流提供給不同的天線352。每個發射器354b可以利用各自的空間串流來對RF載波進行調制,以用於傳輸。
在基地台310處,以與結合在UE 350處的接收器功能所描述的方式相類似的方式來處理UL傳輸。每個接收器318b經由其各自的天線320接收信號。每個接收器318b恢復出被調制到RF載波上的資訊並且將該資訊提供給RX處理器370。
控制器/處理器375可以與儲存程式碼和資料的記憶體376相關聯。記憶體376可以被稱為電腦可讀取媒體。在UL中,控制器/處理器375提供在傳輸通道和邏輯通道之間的解多工、封包重組、解密、標頭解壓縮、控制信號處理,以恢復出來自UE 350的IP封包。可以將來自控制器/處理器375的IP封包提供給核心網路。控制器/處理器375亦負責錯誤偵測。
圖4圖示根據本案內容的各個態樣的示例性無線通訊系統400。在圖4的實例中,UE 404(其可以對應於以上關於圖1描述的任何UE(例如,UE 104、UE 182、UE 190等)正在嘗試計算其位置的估計或者輔助另一實體(例如,基地台或核心網路部件、另一UE、位置伺服器、第三方應用等)計算其位置的估計。UE 404可以使用RF信號和用於對RF信號的調制和資訊封包的交換的標準化協定來與複數個基地台402a-d(統稱為基地台402)(其可以對應於圖1中的基地台102或180及/或WLAN AP 150的任何組合)進行無線通訊。經由從經交換的RF信號中提取不同類型的資訊以及利用無線通訊系統400的佈局(亦即,基地台的位置、幾何結構等),UE 404可以在預定義的參考座標系統中決定其位置或者輔助對其位置的決定。在一態樣中,UE 404可以使用二維座標系統來指定其位置;然而,本文所揭示的各態樣不限於此,以及亦可以適用於決定使用三維座標系統的位置(若期望額外維度的話)。另外,儘管圖4圖示一個UE 404和四個基地台402,但是如將瞭解到的是,可以存在更多的UE 404以及更多或更少的基地台402。
為了支援位置估計,基地台402可以被配置為向其覆蓋區域中的UE 404廣播參考RF信號(例如,定位參考信號(PRS)、特定於細胞的參考信號(CRS)、通道狀態資訊參考信號(CSI-RS)、同步信號塊(SSB)、定時參考信號(TRS)等),以使UE 404能夠量測成對網路節點之間的參考RF信號定時差(例如,OTDOA或RSTD),及/或辨識最優地激發UE 404和發送基地台402之間的LOS或最短無線電路徑的波束。感興趣的是辨識LOS/最短路徑波束,不僅因為這些波束隨後可以用於一對基地台402之間的OTDOA量測,亦因為辨識這些波束能夠基於波束方向直接提供一些定位資訊。此外,這些波束隨後能夠用於需要精確ToA的其他位置估計方法,例如基於往返時間估計的方法。
如本文所使用的,「網路節點」可以是基地台402、基地台402的細胞、遠端無線電頭端、基地台402的天線(其中基地台402的天線的位置不同於基地台402本身的位置)、或者能夠發送參考信號的任何其他網路實體。此外,如本文所使用的,「節點」可以代表網路節點或UE。
位置伺服器(例如,位置伺服器230)可以向UE 404發送輔助資料,該輔助資料包括對基地台402的一或多個鄰點細胞的標識和針對由每個鄰點細胞所發送的參考RF信號的配置資訊。位置管理功能單元(LMF)是5G中的位置伺服器和LTE中的增強型服務行動位置中心(e-SMLC)的實例。替代地,輔助資料可以直接源自基地台402本身(例如,在週期性地廣播的管理負擔訊息等中)。替代地,UE 404可以在不使用輔助資料的情況下自己偵測基地台402的鄰點細胞。UE 404(例如,若提供了輔助資料,則部分地基於輔助資料)可以量測並且(可選地)報告來自各個網路節點的OTDOA及/或在從網路節點對接收的參考RF信號之間的RSTD。使用這些量測結果和被量測的網路節點(亦即,基地台402或者發送UE 404所量測的參考RF信號的天線)的已知位置,UE 404或位置伺服器可以決定在UE 404與被量測的網路節點之間的距離,以及由此計算UE 404的位置。
術語「位置估計」在本文中用於代表對UE 404的位置的估計,其可以是在地理上的(例如,可以包括緯度、經度以及可能包括高度)或者是在城市上的(例如,可以包括街道位址、大樓名稱、在大樓或街道位址內或附近的精確點或區域(諸如大樓的特定入口、在大樓中的特定房間或套房)或地標(諸如城市廣場))。位置估計亦可以被稱為「位置(location)」、「位置(position)」、「決定(fix)」、「位置決定(position fix)」、「位置決定(location fix)」、「位置估計(location estimate)」、「決定估計(fix estimate)」或經由某種其他術語來引用。用於獲得位置估計的手段可以被一般性地稱為「定位(positioning)」、「定位(locating)」或「位置決定(position fixing)」。用於獲得位置估計的特定解決方案可以被稱為「位置解決方案」。作為位置解決方案的一部分的、用於獲得位置估計的特定方法可以被稱為「位置方法」或被稱為「定位方法」。
術語「基地台」可以代表單個實體傳輸點或者代表可以是共置的或可以不是共置的多個實體傳輸點。例如,在術語「基地台」代表單個實體傳輸點的情況下,實體傳輸點可以是基地台(例如,基地台402)的、與該基地台的細胞相對應的天線。在術語「基地台」代表多個共置的實體傳輸點的情況下,實體傳輸點可以是基地台的天線的陣列(例如,如在MIMO系統中或者在基地台採用波束成形的情況下)。在術語「基地台」代表多個非共置的實體傳輸點的情況下,實體傳輸點可以是分散式天線系統(DAS)(經由傳輸媒體連接到公共源的在空間上分離的天線的網路)或遠端無線電頭端(RRH)(連接到服務基地台的遠端基地台)。替代地,非共置的實體傳輸點可以是從UE(例如,UE 404)接收量測報告的服務基地台以及UE正在對其參考RF信號進行量測的鄰點基地台。因此,圖4圖示在其中基地台402a和402b形成DAS/RRH 420的各態樣。例如,基地台402a可以是UE 404的服務基地台,以及基地台402b可以是UE 404的鄰點基地台。因此,基地台402b可以是基地台402a的RRH。基地台402a和402b可以在有線或無線鏈路422上與彼此進行通訊。
為了使用從成對網路節點接收的RF信號之間的OTDOA及/或RSTD來精確地決定UE 404的位置,UE 404需要量測在UE 404和網路節點(例如,基地台402、天線)之間的LOS路徑(或在LOS路徑不可用的情況下的最短NLOS路徑)上接收的參考RF信號。然而,RF信號不僅經由在發射器和接收器之間的LOS/最短路徑來行進,亦在多個其他路徑上行進,這是因為RF信號在其去往接收器的路上從發射器展開並且在諸如山、大樓、水等的其他物件上反射。圖4圖示在基地台402與UE 404之間的多條LOS路徑410和多條NLOS路徑412。具體而言,圖4圖示基地台402a在LOS路徑410a和NLOS路徑412a上進行發送,基地台402b在LOS路徑410b和兩條NLOS路徑412b上進行發送,基地台402c在LOS路徑410c和NLOS路徑412c上進行發送,以及基地台402d在兩條NLOS路徑412d上進行發送。如在圖4中所示出的,每條NLOS路徑412在某個物件430(例如,大樓)上反射。如將瞭解到的是,基地台402所發送的每條LOS路徑410和NLOS路徑412可以是經由基地台402的不同天線發送的(例如,如在MIMO系統中),或者可以是經由基地台402的同一天線發送的(由此示出對RF信號的傳播)。此外,如本文所使用的,術語「LOS路徑」代表在發射器與接收器之間的最短路徑,以及可能不是實際的LOS路徑,而是最短NLOS路徑。
在一態樣中,基地台402中的一或多個基地台可以被配置為使用波束成形來發送RF信號。在這種情況下,可用波束中的一些波束可以沿著LOS路徑410來聚焦所發送的RF信號(例如,這些波束沿著LOS路徑產生最高天線增益),而其他可用波束可以沿著NLOS路徑412來聚焦所發送的RF信號。沿著某一路徑具有高增益並且因此沿著該路徑來聚焦RF信號的波束可能仍然具有沿著其他路徑進行傳播的某個RF信號;該RF信號的強度自然地取決於沿著那些其他路徑的波束增益。「RF信號」包括經由在發射器和接收器之間的空間來傳送資訊的電磁波。如本文所使用的,發射器可以向接收器發送單個「RF信號」或多個「RF信號」。然而,如下文進一步描述的,由於RF信號經由多徑通道的傳播特性,接收器可以接收與每個發送的RF信號相對應的多個「RF信號」。
在基地台402使用波束成形來發送RF信號的情況下,用於在基地台402與UE 404之間的資料通訊的感興趣波束將是用於攜帶在UE 404處到達的具有最高信號強度(如由例如參考信號接收功率(RSRP)或者在存在定向干擾信號的情況下由SINR指示的)的RF信號的波束,而用於位置估計的感興趣波束將是用於攜帶激發最短路徑或LOS路徑(例如,LOS路徑410)的RF信號的波束。在一些頻帶中以及針對通常使用的天線系統,這些波束將是相同的波束。然而,在諸如mmW的其他頻帶中(其中通常可以使用大量的天線單元來建立窄發射波束),它們可能不是相同的波束。如下文參照圖5描述的,在一些情況下,在LOS路徑410上的RF信號的信號強度可能比在NLOS路徑412上的RF信號的信號強度弱(例如,由於障礙物),其中在NLOS路徑412上,RF信號由於傳播延遲而較晚地到達。
圖5圖示根據本案內容的各個態樣的示例性無線通訊系統500。在圖5的實例中,UE 504(其可以對應於圖4中的UE 404)正在嘗試計算其位置的估計或者輔助另一實體(例如,基地台或核心網路部件、另一UE、位置伺服器、第三方應用等)計算其位置的估計。UE 504可以使用RF信號和用於對RF信號的調制和資訊封包的交換的標準化協定來與基地台502(其可以對應於圖4中的基地台402中的一個基地台402)進行無線通訊。
如在圖5中所示出的,基地台502正在利用波束成形來發送RF信號的複數個波束511-515。可以經由基地台502的天線的陣列來形成和發送每個波束511-515。儘管圖5圖示基地台502正在發送五個波束,但是如將瞭解到的是,可以存在多於或少於五個波束,波束形狀(諸如峰值增益、寬度和旁瓣增益)在所發送的各波束之間可以是不同的,以及各波束中的一些波束可以由不同的基地台發送。
出於將關聯於一個波束的RF信號與關聯於另一波束的RF信號區分開的目的,可以向複數個波束511-515之每一者波束指派波束索引。此外,與複數個波束511-515中的特定波束相關聯的RF信號可以攜帶波束索引指示符。亦可以根據RF信號的傳輸的時間(例如,訊框、時槽及/或OFDM符號編號)來推導波束索引。波束索引指示符可以是例如用於唯一地對多達八個波束進行區分的三位元欄位。若接收到具有不同波束索引的兩個不同的RF信號,則這將指示各RF信號是使用不同的波束發送的。若兩個不同的RF信號共享共用波束索引,則這將指示上述不同的RF信號是使用相同波束發送的。用於描述兩個RF信號是使用相同波束發送的另一種方式是稱用於發送第一RF信號的天線埠與用於發送第二RF信號的天線埠在空間上是准共置的。
在圖5的實例中,UE 504接收在波束513上發送的RF信號的NLOS資料串流523和在波束514上發送的RF信號的LOS資料串流524。儘管圖5將NLOS資料串流523和LOS資料串流524示為單條線(分別為虛線和實線),但是如將瞭解到的是,由於例如RF信號經由多徑通道的傳播特性,NLOS資料串流523和LOS資料串流524在其到達UE 504時可能各自包括多條射線(亦即,「集群」)。例如,當電磁波被物件的多個表面反射並且這些反射從大致相同的角度到達接收器(例如,UE 504)(其中每個反射比其他反射多行進或少行進幾個波長(例如,釐米))時,形成RF信號的集群。接收到的RF信號的「集群」通常對應於單個所發送的RF信號。
在圖5的實例中,NLOS資料串流523最初不是被引導去往UE 504的,但是如將瞭解到的是,其可以是作為在圖4中的NLOS路徑412上的RF信號。然而,其被反射體540(例如,大樓)反射並且無障礙地到達UE 504,以及因此,其可以仍然是相對強的RF信號。相反,LOS資料串流524是被引導去往UE 504的,但是經由障礙物530(例如,植被、大樓、山、諸如雲或煙的破壞性環境等),障礙物530可以使RF信號顯著地降級。如將瞭解到的是,儘管LOS資料串流524比NLOS資料串流523弱,但是LOS資料串流524將在NLOS資料串流523之前到達UE 504,因為其沿著從基地台502到UE 504的較短路徑。
如上文提及的,用於在基地台(例如,基地台502)與UE(例如,UE 504)之間的資料通訊的感興趣波束是用於攜帶在UE到達的、具有最高信號強度(例如,最高RSRP或SINR)的RF信號的波束,而用於位置估計的感興趣波束是用於攜帶激發LOS路徑並且在所有其他波束當中沿著LOS路徑具有最高增益的RF信號的波束(例如,波束514)。亦即,即使波束513(NLOS波束)將微弱地激發LOS路徑(由於RF信號的傳播特性,即使沒有沿著LOS路徑被聚焦),波束513的LOS路徑的弱信號(若存在)可能不是一樣可靠地可偵測的(與來自波束514的信號相比),因此在執行定位量測時導致更大的誤差。
儘管對於一些頻帶而言,用於資料通訊的感興趣波束和用於位置估計的感興趣波束可以是相同的波束,但是對於諸如mmW的其他頻帶而言,它們可以不是相同的波束。因此,參照圖5,在UE 504參與與基地台502的資料通訊通信期(例如,在基地台502是UE 504的服務基地台的情況下)並且不是僅嘗試量測由基地台502所發送的參考RF信號的情況下,用於資料通訊通信期的感興趣波束可以是波束513,這是因為其攜帶未被阻礙的NLOS資料串流523。然而,用於位置估計的感興趣波束將是波束514,這是因為儘管被阻礙,但是其攜帶最強的LOS資料串流524。
圖6A是圖示根據本案內容的各個態樣的接收器(例如,UE 504)處的RF通道回應隨時間變化的曲線圖600A。在圖6A中所示的通道下,接收器在時間T1處在通道分接點上接收兩個RF信號的第一集群,在時間T2處在通道分接點上接收五個RF信號的第二集群,在時間T3處在通道分接點上接收五個RF信號的第三集群,以及在時間T4處在通道分接點上接收四個RF信號的第四集群。在圖6A的實例中,因為RF信號的第一集群在時間T1處首先到達,所以假定其是LOS資料串流(亦即,在LOS或最短路徑上到達的資料串流),並且可以對應於LOS資料串流524。在時間T3處的第三集群由最強的RF信號組成,並且可以對應於NLOS資料串流523。從發射器的角度來看,每個接收到的RF信號的集群可以包括以不同角度發送的RF信號的一部分,並且因此可以稱每個集群具有從發射器的不同的發射角(AoD)。圖6B是示出AoD中集群的這種分離的圖600B。在AoD範圍602a中發送的RF信號可以對應於圖6A中的一個集群(例如,「集群1」),並且在AoD範圍602b中發送的RF信號可以對應於圖6A中的不同集群(例如,「集群3」)。注意的是,儘管圖6B中圖示的兩個集群的AoD範圍在空間上是隔離的,但是即使集群在時間上是分離的,一些集群的AoD範圍亦可以部分地重疊。例如,當在從發射器的相同AoD處的兩個分離的大樓朝著接收器反射信號時,可能產生這種情況。注意的是,儘管圖6A圖示兩到五個通道分接點的集群,但是如將會理解的,這些集群可以具有多於或少於示出的通道分接點數量。
與在圖5中的實例一樣,基地台可以利用波束成形來發送RF信號的複數個波束,使得各波束中的一個波束(例如,波束514)被引導在RF信號的第一集群的AoD範圍602a處,以及不同的波束(例如,波束513)被引導在RF信號的第三集群的AoD範圍602b處。將經由沿著集群的AoD的波束增益來對波束成形後通道回應(亦即,當發送的RF信號被波束成形而不是全向時的通道回應)中的集群的信號強度進行縮放。在這種情況下,用於定位的感興趣波束將是被引導在RF信號的第一集群的AoD處的波束,這是因為它們首先到達,而用於資料通訊的感興趣波束可以是被引導在RF信號的第三集群的AoD處的波束,這是因為它們是最強的。
通常,當發送RF信號時,發射器不知道RF信號將沿著什麼路徑去往接收器(例如,UE 504)或者RF信號將在什麼時間到達接收器,以及因此,利用相等數量的能量來在不同的天線埠上發送RF信號。替代地,發射器可以對在多個傳輸時機上的不同方向上的RF信號進行波束成形,以及從接收器獲得量測回饋以明確地或隱含地決定無線電路徑。
要注意的是,儘管本文所揭示的技術通常是按照從基地台到UE的傳輸來描述的,但是如將瞭解到的是,它們在UE能夠進行MIMO操作及/或波束成形的情況下同等地適用於從UE到基地台的傳輸。此外,儘管上文通常是在發射波束成形的上下文中描述波束成形,但是在某些實施例中,亦可以結合發送波束成形來使用接收波束成形。
根據各個態樣,如從前面的描述中顯而易見的,波束成形通訊(包括發射波束成形、接收波束成形及/或其組合)預計將在許多無線網路部署中變得越來越廣泛,包括但不限於工作在低於6 GHz頻帶和mmW頻帶的無線網路。在前面的描述中,描述了特定技術來辨識和報告適合於位置估計的一或多個感興趣波束,使得節點可以接收足夠數量的最短路徑波束,這些波束可以被精確量測以計算或幫助計算與該節點相關聯的位置估計。在各種使用情況下,這可能涉及量測和報告來自各個網路節點的OTDOA及/或從成對網路節點(例如,不同基地台或屬於相同基地台的不同天線或傳輸點)接收的參考RF信號之間的RSTD。因此,由於mmW通訊系統和其他利用波束成形通訊的無線網路面臨的嚴重路徑損耗的獨特挑戰,下面的描述提供了各種增強的方法來支援利用波束成形通訊的無線網路中的定位。
更具體地,如前述,基於OTDOA的定位方法通常基於參考信號時間差(RSTD)量測,該量測被定義為在UE處量測的兩個不同網路節點之間的相對時間差。通常,因為RSTD量測被定義為兩個網路節點之間的時間差,所以RSTD量測可以考慮兩個網路節點之間的發送時間偏移,稱為真實時間差(RTD),其代表兩個網路節點之間的相對同步差。例如,若第一網路節點在時間t0處發送信號,而第二網路節點在時間t1處發送信號,則第一網路節點和第二網路節點之間的RTD是t1 - t0。若兩個網路節點完全同時進行發送,則網路完全同步,並且因此在這種情況下,RTD等於零。此外,在利用波束成形通訊的無線網路中,兩個網路節點發送的參考信號可以沿著不同的路徑,並且經受不同的傳播時間。因此,在各種實施例中,利用波束成形通訊的無線網路中的RTD可以進一步考慮傳播時間差,由此RTD可以等於兩個網路節點發送信號的時間之間的「真實」差加上兩個信號之間的傳播時間差。
此外,根據各個態樣,利用波束成形通訊的無線網路中的RSTD量測可以以每波束為基礎來執行,以考慮不同的可能的特定於波束的參數。例如,如上面進一步詳細論述的,不同的波束可以從空間分離的不同面板被發送,以提高定位精度。在其他實例中,一些波束可以具有窄波束寬度,而其他波束可以具有寬波束寬度。一般來說,窄波束可能更集中,並且因此具有高波束成形增益。另一態樣,相對較寬的波束可以覆蓋較寬的角度區域,代價是波束成形增益降低。因此,更寬的波束可以具有更大的重複因數,以增加接收設備能夠聽到和對其中攜帶的信號進行解碼的可能性。根據各個態樣,因為不同的波束可以具有不同的參數,這些參數可以包括不同的重複因數,所以執行每波束RSTD量測的接收設備(例如,UE)可以因此計算其中攜帶的信號的多個觀察值的平均每波束RSTD。在各種實施例中,接收設備亦可以決定與波束相關聯的一或多個參數是否被重新配置(例如,波束形狀參數,例如波束的准共址(QCL)關係)。若已經重新配置了與波束相關聯的一或多個參數,則接收設備可以重新設置RSTD量測的平均值,以確保所報告的值不是基於舊的或過時的配置。
根據各個態樣,對在採用波束成形通訊的無線網路中使用的定位方法的另一種可能的增強可以是根據在網路中使用的特定通訊參數來配置RSTD範圍和細微性。更具體地,在各種無線網路(例如上面更詳細描述的無線網路)中,實體層可以是高度可配置的,並且與用於定位的參考信號相關聯的次載波間隔(例如,正交分頻多工(OFDM)波形)可以變化。例如,在圖2A-2B中所示的無線網路結構200、250中,用於定位的參考信號的次載波間隔可以從15 KHz到240 KHz變化,並且參考信號可以在各種頻寬上進行發送(例如,從幾百KHz到一百MHz到拼接在一起的幾百MHz定位信標)。因此,用於估計位置的RSTD量測的精度可以取決於這些及/或其他信號參數。因此,RSTD量測的範圍和細微性(例如,定時解析度或步長)可以取決於特定網路配置或信號參數。
例如,作為背景,在LTE網路中,RSTD量測的報告範圍被定義為從[-NxTs到NxTs],以kxTs為步長,其中N是具有等於15391的值的常數,k是常數,若RSTD量測的絕對值小於或等於4096Ts,則k等於一(1),或若RSTD量測的絕對值大於4096Ts,則k等於五(5),以及Ts是基本時間單位,其被定義為Ts = 1/(15000 x 2048)秒,接近32奈秒,繼而對應於大約9.8米。在5G中,例如在mmW和其他利用波束形成通訊的網路中,可以根據在網路中使用的特定配置來定義N和k。例如,mmW網路可以使用更小的細胞,導致更小的傳播距離,以及因此更小的範圍「N」可能就足夠了,這可以允許對於相同量的RSTD報告管理負擔具有更小的細微性「k」。替代地,可以用足夠的重複因數來設計PRS信號,以使得即使在這樣更小的細胞中,亦可以在更大的距離上聽到PRS,在這種情況下,可能需要相對較大的範圍「N」。因此,N、k可以是可配置的,並且可以基於諸如PRS重複因數的其他參數來選擇。在另一個實例中,N和k可以取決於用於通訊的頻帶(例如,低於6 GHz、mmW等),數位方案、循環字首(CP)等。特別地,如對於本發明所屬領域中具有通常知識者來說將顯而易見的是,數位方案通常可以是指次載波間隔,該次載波間隔可以從15 KHz配置到240 KHz(例如,2N×15 KHz),並且因此在不同的細胞中可能是不同的。例如,若次載波間隔加倍,則OFDM符號持續時間可以減半,由此更短的符號持續時間可以導致更精細的細微性。在各種實施例中,因為數位方案可以在不同的細胞中變化,所以執行RSTD量測的設備可以被配置為以各種方式選擇用於決定RSTD範圍和細微性參數N、K、Ts的數位方案,其中不同的細胞使用不同的數位方案(例如,最大次載波間隔、最小次載波間隔、預配置的次載波間隔、在服務細胞中使用的次載波間隔等)。
根據各個態樣,圖7圖示示例性無線通訊系統700,其可以實現各種增強型定位方法來支援波束成形通訊。更具體地說,在圖7中,三個網路節點710-1、710-2、710-3各自發送參考信號(例如,定位參考信號(PRS)、特定於細胞的參考信號(CRS)、通道狀態資訊參考信號(CSI-RS)、同步信號塊(SSB)、定時參考信號等(TRS))來幫助經由用於覆蓋某個地理區域的若干單獨的波束(例如,在所示出的實例中,三個單獨的波束712、714、716,儘管本發明所屬領域中具有通常知識者將會理解的是,每個網路節點710實際上可以發送更多或更少的波束)來決定UE 750的位置。特別地,不是以可能導致嚴重傳播損耗的方式全向地發送參考信號,而是根據掃瞄模式經由較窄的波束發送參考信號,以提高每個方向上的波束成形增益。
在圖7中,從UE 750的角度來看,波束714-1是如在UE 750處看到的來自網路節點710-1的波束712-1、714-1、716-1中的最強波束,波束714-2是如在UE 750處看到的來自網路節點710-2的波束712-2、714-2、716-2中的最強波束,以及波束714-3是如在UE 750處看到的來自網路節點710-3的波束712-3、714-3、716-3中的最強波束。因此,知道與如在UE 750處看到的最強波束714-1、714-2、714-3相關聯的各種參數可以產生足夠的資訊來計算UE 750的粗略位置估計760,該粗略位置估計760在圖7中被圖示為圍繞UE 750的圓圈。在各種實施例中,網路節點710-1、710-2、710-3因此可以通告或以其他方式發送與由此發送的波束712-716相關聯的參數。例如,在各種實施例中,這些參數可以包括發射角(AoD)、發射頂點(ZoD)、波束寬度及/或其他合適的波束參數,這些參數可以單獨向UE 750提供相關參數,以計算粗略位置估計760,而不管到達時間如何(注意的是,位置估計760的精度可以隨著UE 750從其接收參考信號的網路節點710的數量增加而增加)。替代地,若粗略位置估計760由網路計算,則UE 750可以簡單地報告來自每個網路節點710的最強波束714(例如,作為波束索引),並且網路可以基於發送的波束參數來計算粗略位置估計760。從這個意義上說,波束參數(例如,AoD、ZoD、波束寬度等)因此可以被認為是除緯度-經度等之外的關於網路節點710的位置的另外的資訊。此外,如前述,來自相同的細胞的波束可以從不同的空間分離位置被發送(例如,在遠端無線電頭端(RRH)或分散式天線系統(DAS)場景中)。在各種實施例中,發送波束參數可以是可選的,並且事實上在某些場景中是不可能的。例如,在一或多個網路節點710是行動的(例如,可以四處移動的小型細胞或家庭基地台)的情況下,波束參數可能不準確地反映發送節點710的位置。
在各種實施例中,網路節點710可以經由一或多個系統資訊區塊(SIB)向UE 750並且使用上層介面向網路實體(例如,增強型服務行動定位中心(e-SMLC))發送上述波束參數。對於專用/單播或多播參考信號,參數可以是參考信號配置的一部分。例如,可以在無線電資源控制(RRC)訊號傳遞中配置可能參數值的表(例如,經由SIB或單播),並且RRC/MAC-CE/DCI可以指示該表中的索引。在各種實施例中,該表可以是半靜態的,並且指示網路節點710的實體天線配置和支援的天線編碼簿。
根據各個態樣,另一種增強型定位方法可以考慮大的循環字首(CP),以便處理更大的傳播延遲,其中CP被添加到每個OFDM符號的開頭,以允許頻域均衡。因此,為了避免從一個OFDM符號到下一OFDM符號的干擾,CP長度通常必須至少與延遲擴展(亦即,第一路徑和最後一個路徑之間的最大延遲差)一樣長。因此,隨著數字方案的放大和次載波間隔的增加,OFDM符號持續時間縮短,但是傳播通道可能不會相應地改變(例如,延遲擴展可能不會成比例地縮小)。在使用波束成形的各種使用情況(例如mmW系統、小型細胞等)下,窄波束被操控在特定方向上,因此在特定接收設備處根本看不到這些波束。此外,發送窄波束可以減少多徑傳播。因此,由於波束成形的使用,可以使用更小的符號持續時間,並且因此使用更低的循環字首。儘管這對於資料通訊可能是可行的,但是在用於定位的參考信號的情況下,可能希望設計用於深度覆蓋的參考信號(例如,經由重複),以增加可見的相鄰細胞的數量,並且從而提高定位精度。因此,對於資料通訊而言是足夠的相對較低的CP對於用於定位目的的參考信號而言可能是不足的。
因此,一個選項可以是重複OFDM符號,由此在第一參考信號中使用的OFDM符號可以成為下一或多個參考信號的循環字首。替代地或補充,單獨的波形或循環字首可以用於定位參考信號。例如,定位參考信號可以具有與OFDM數位方案不同的數位方案,在這種情況下,可以使用保護頻帶來避免與相鄰資源區塊(RB)的干擾。對於單播(例如,特定於UE的)定位參考信號而言,網路亦可以調整RTD,以使得UE仍然可以在循環字首內從遠端細胞接收定位參考信號,其中該調整通常可以取決於對發送細胞和UE之間的距離的粗略估計(亦即,需要對UE位置的粗略估計)。例如,在調整RTD時,網路可以延遲從一個網路節點相對於另一個網路節點的傳輸,使得可應用的參考信號大約同時到達UE。
此外,上述概念可以擴展到上行鏈路到達時間差(UT-DOA),其是一種對UE透明的定位方案,其中網路量測在各種基地台處接收的UE上行鏈路傳輸的到達時間延遲。這在諸如3G和4G網路之類的一些網路中可能是可行的,因為UE發射天線方向模式可以是全向的,尤其是對於根據其來量測上行鏈路定時的參考信號。來自UE的這些參考信號傳輸可以在多個非共置的基地台處被接收。然而,在波束成形通訊系統(例如,mmW通訊系統)中,由於上行鏈路波束成形的使用,參考信號傳輸可以被一個基地台(例如,波束成形信號方向上的基地台)可靠地聽到。例如,為了確保覆蓋,可以啟用高於3GPP Rel-15規範的探測參考信號(SRS)重複因數,或者可以替代地使用無爭用實體隨機存取通道(PRACH)以實現更大的範圍。在後一種情況下,不同的序列長度及/或重複因數可以用於針對不同的網路節點(例如,不同的gNB)。
根據各個態樣,適用於波束成形通訊系統的另一種增強型定位方法可以適用於偶爾從一個位置移動到另一個位置的行動基地台(例如,小型細胞或家庭gNB)。特別地,在每次此類移動之後,可能需要自動重新配置與行動基地台相關聯的緯度和經度。例如,在各種實施例中,行動基地台可以被配置為執行基於UE的定位方法,由此行動基地台週期性地喚醒並且對其自身進行定位(例如,使用GPS接收器、基於OTDOA的定位、UT-DOA定位等)。這在行動基地台需要出於其他目的(例如,用於整合存取回載(IAB))執行此類功能的部署中尤其可行。在各種實施例中,配置訊號傳遞可以被啟用,以允許此類行動基地台經由RRC訊號傳遞/SIB向計算其自身位置的UE標識它們自己到網路塊(例如,e-SMLC),而不是簡單地向計算UE位置的網路報告RSTD等。然而,若行動基地台能夠偵測到其已經被足夠快地重新定位,則特殊的標識可能是不必要的,因為行動基地台可以根據需要簡單地用新的緯度-經度來執行SIB/RRC更新。此外,在上面提到增強的上下文中(其中網路節點可以發送每波束AoD、ZoD、波束寬度等),行動基地台發送這些波束參數的能力可能取決於行動基地台偵測方位變化和位置變化的能力。例如,行動基地台可以包括羅盤、陀螺儀、加速計及/或允許行動基地台決定方位變化以及位置變化的其他合適的感測器。替代地或補充地,行動基地台可以具有執行可用於基於在行動基地台處接收的最強波束來估計方位變化的UE功能的能力。在此類情況下(其中行動基地台可以可靠地偵測方位變化和位置變化),行動基地台可以被配置為發送一或多個波束參數(例如,AoD、ZoD等),以輔助基於在此類波束中發送的參考信號的定位方法。
根據各個態樣,適用於波束成形通訊系統的另一增強型定位方法可適用於無人機(例如,無人駕駛飛行器(UAV)或無人駕駛航空系統(UAS))。特別是,目前正在推動無人機在商業無線網路和未來網路(包括5G)上操作。目標是在法規允許的情況下,實現未來的無人機操作(例如視距外(BVLOS))。飛行超出操作員視野範圍的能力可以實現成功交付、遠端檢查和探索等。無線技術可以給無人機帶來許多優勢,例如無處不在的覆蓋、高速移動支援、強大的安全性、高可靠性和服務品質(QoS)。然而,與地面設備相比,無人機可能在不同的無線電條件下工作,因為在較高高度的干擾條件不同於地面的干擾條件。例如,由於空氣中存在的自由空間傳播條件,空氣中的信號強度相對於地面上的信號強度可能顯著地更強。此外,由於相對於在地面上經歷反射、多徑傳播、陰影和雜波的信號,具有自由空間傳播的信號的穩定性增加,因此切換效能在空中可能顯著地優越。
在波束成形的背景下,由於視線及/或自由空間傳播,飛行中的無人機可能會看到若干細胞。此外,在許多情況下,地面基地台可以包括一或多個天線,這些天線被佈置為操縱或以其他方式發射向下傾斜的一或多個波束,以更好地服務位於地面上的UE。因此,向下傾斜的天線波束可能具有指向向上方向的「後瓣」,這可能被一或多個飛行中的無人機偵測到。在LTE網路中,後瓣可能具有足夠的強度來服務於飛行中的無人機。然而,在mmW通訊系統中,由於mmW通訊系統中出現的嚴重傳播路徑損耗,後瓣可能沒有強到足以服務於飛行中的無人機。因此,在各種實施例中,一或多個基地台可以被配置為有意地將一或多個波束指向向上的方向,以更好地服務於空中的無人機。此外,因為與上面進一步詳細論述的NLOS場景相反,在LOS場景中定位精度顯著提高,所以一或多個無人機可以被配置為決定何時存在LOS場景,以減少由於反射路徑引起的定時不決定度。例如,當一或多個波束在到達接收器之前從表面反射時,反射波束可能看起來比其他波束更強,即使反射波束是NLOS波束。若接收器假設此類NLOS波束是LOS波束(由於與其相關聯的信號強度),則這可能導致基於該(不正確的)假設的位置估計的誤差或不決定度。然而,當無人機在空中時,可以反射波束的表面更少,其中可以更精確地執行基於LOS的定位方法。此外,在更高的高度上,沒有反射表面的可能性可能更大,但是本發明所屬領域中具有通常知識者將理解的是,是否存在任何反射表面可以根據無人機工作的特定環境而變化(例如,在可能有非常高的摩天大樓的城市中可能有更多的高海拔反射表面,而在農村地區可能有更少或沒有高海拔反射表面)。儘管已經在無人機UE的背景下論述了LOS相對於NLOS條件在定位估計態樣的一些優勢,但是本發明所屬領域中具有通常知識者將容易認識到的是,這適用於所有的UE,其中無人機UE僅僅是LOS條件的概率可能取決於無人機UE高度的具體實例。
因此,在各種實施例中,基地台(例如,gNB)可以被配置為請求UE報告通道/UE狀況以説明定位功能。例如,除了報告RSRP量測之外,無人機UE亦可以被要求報告估計的功率延遲簡檔以及基於UE的感測器資料(例如,來自氣壓計讀數的高度資訊)。如前述,若無人機足夠高,則從高樓、樹木或其他表面反射的可能性會降低。因此,基地台可以請求無人機UE報告通道/UE狀況,以更有信心地決定無人機是否處於(或可能處於)LOS場景中。此外,UE可以報告不同定位方案中的電池壽命和功耗的估計,這可以説明基地台配置用於定位的下行鏈路參考信號(或用於UT-DOA的SRS)的週期,特別是關於依須求發送的單播參考信號。具體而言,若無人機UE的電池電量低,則基地台可以不太頻繁地發送下行鏈路參考信號,使得無人機UE不必消耗功率來監聽此類信號或不太頻繁地排程SRS,使得無人機UE不必消耗功率來發送SRS。
根據各個態樣,另一增強型定位方法可適用於部署場景,該部署場景涉及遠端無線電頭端(RRH)(其代表連接到服務基地台的遠端基地台)及/或分散式天線系統(DAS)(其代表經由傳輸媒體連接到公共源的空間上分離的天線的網路)。在此類情況下,因為每個RRH/DAS與相同的基地台相關聯,所以細胞辨識符可能是相同,但是PRS序列可能是不同的,因為每個RRH/DAS部署在不同的位置。不同的PRS序列可以與各自的RRH/DAS位置相關聯,這可能有助於提高位置決定的精度。在mmW通訊系統中,每個RRH/DAS亦可以與同步信號塊(SSB)相關聯,SSB是根據波束掃瞄模式發送的,因為全向地發送SSB將沒有足夠的波束成形增益。因此,因為SSB和PRS都是經由波束成形通訊發送的,所以PRS可以與從相同的RRH/DAS發送的SSB准共址(亦即,PRS和SSB具有相同的空間特性,因為使用相同的波束來發送兩個信號)。此外,在各種實施例中,SSB可以在至少一些情況下與PRS分頻多工。具體而言,可能需要比PRS更頻繁地發送SSB(例如,每20毫秒),使得UE在喚醒或以其他方式試圖存取通訊系統之後不必等待很長時間來獲得SSB。然而,為了定位的目的,可能不需要像為了使UE能夠存取通訊系統所需要的一樣頻繁地發送SSB,由此SSB的子集可以與PRS分頻多工。例如,每個SSB可以具有四(4)個OFDM符號,這對於PRS而言也是足夠的,在這種情況下,相同的波束成形可以用於發送PRS和SSB(亦即,PRS和SSB可以共享相同的模擬波束成形,其中分頻多工在數字域中完成)。然而,若PRS需要四個以上的OFDM符號,則PRS可能無法適配在現有SSB的持續時間中。在此類情況下,可以針對四個OFDM符號將PRS與SSB進行分頻多工,並且可以針對額外的OFDM符號執行另外的SSB重複。例如,在mmW通訊系統中,每個RRH/DAS可以允許多達六十四(64)個SSB,但是網路自由地指示正在使用64個不同的波束(即使某些波束可能是相同的)。因此,在各種實施例中,RRH/DAS可以將64個允許的SSB的子集配置為相同的,並且向UE指示在此類波束中PRS將與SSB進行分頻多工,這亦可以幫助SSB相關的量測(例如,UE可以將來自被配置為攜帶此類信號的多個波束的PRS及/或SSB進行組合)。
圖8圖示由UE(例如,UE 350、750)執行的用於波束成形通訊中的定位的示例性方法800。在方塊810處,UE可以從多個網路節點(例如,網路節點710-1、710-2、710-3)(例如,基地台)接收多個波束(例如,波束712、714、716)。在一個態樣中,用於執行方塊810的單元可以包括圖3所示的UE 350的接收器354a、RX處理器356及/或控制器/處理器359中的一項或多項。
在方塊820處,UE可以決定與多個波束中的每一個波束相關聯的一或多個參數。在一個態樣中,用於執行方塊820的單元可以包括圖3所示的UE 350的RX處理器356及/或控制器/處理器359中的一項或多項。所決定的一或多個參數可以包括至少一個特定於波束的參數和至少一個在多個波束中的兩個或更多個波束之間共享的公共參數。所決定的一或多個參數可以包括重複因數、波束形狀、頻帶、次載波間隔數位方案、循環字首或其任意組合。
在方塊830處,UE可以根據一或多個參數來配置用於量測及/或報告參考信號定時差(RSTD)的範圍或細微性中的一項或多項。在一個態樣中,用於執行方塊830的單元可以包括圖3所示的UE 350的RX處理器356及/或控制器/處理器359中的一項或多項。用於報告RSTD的範圍或細微性可以用於多個波束之每一者波束。此外,用於報告RSTD的範圍或細微性可以是至少一個特定於波束的參數和至少一個公共參數的函數。
在一個態樣中,記憶體360可以是電腦可讀取媒體的實例,其儲存用於UE 350的TX處理器368、控制器/處理器358及/或RX處理器356中的一項或多項的電腦可執行指令,以執行方法800。
圖9圖示由網路節點(例如,網路節點310、710)執行的用於波束成形通訊中的定位的示例性方法900。在方塊910處,網路節點可以決定與用於發送定位參考信號的波束相關聯的一或多個參數。在一個態樣中,用於執行方塊910的單元可以包括圖3所示的網路節點310的控制器/處理器375及/或TX處理器316中的一項或多項。一或多個參數包括發射角(AoD)、發射頂點(ZoD)、波束寬度或其任意組合。此外,一或多個參數可以在系統資訊區塊(SIB)中被發送給UE(例如,UE 350、750)。替代地或除此之外,可以使用一或多個上層介面將一或多個參數發送到網路實體(例如,位置伺服器)。
在方塊920處,網路節點可以在無線網路上發送與多個波束之每一者波束相關聯的一或多個參數。在一個態樣中,用於執行方塊920的單元可以包括圖3所示的網路節點310的控制器/處理器375及/或TX處理器316中的一項或多項。
在方塊930處,網路節點可以根據與波束相關聯的一或多個參數經由波束發送定位參考信號。在一個態樣中,用於執行方塊930的單元可以包括圖3所示的網路節點310的控制器/處理器375及/或TX處理器316中的一項或多項。
在一個態樣中,記憶體376可以是電腦可讀取媒體的實例,其儲存用於網路節點310的TX處理器316、控制器/處理器375及/或RX處理器370中的一項或多項的電腦可執行指令,以執行方法900。
圖10圖示由網路節點(例如,網路節點310、710)執行的用於波束成形通訊中的定位的示例性方法1000。在方塊1010處,網路可以配置用於定位參考信號的循環字首長度,以增加接收節點(例如,UE)可見的相鄰細胞的數量。在一個態樣中,用於執行方塊1010的單元可以包括圖3所示的網路節點310的控制器/處理器375及/或TX處理器316中的一項或多項。
在方塊1020處,網路節點可以使得一或多個發送節點根據所配置的循環字首長度經由一或多個波束發送定位參考信號。在一個態樣中,用於執行方塊1020的單元可以包括圖3所示的網路節點310的控制器/處理器375及/或TX處理器316中的一項或多項。
在一個態樣中,記憶體376可以是電腦可讀取媒體的實例,其儲存用於網路節點310的TX處理器316、控制器/處理器375及/或RX處理器370中的一項或多項的電腦可執行指令,以執行方法1000。
圖11圖示由網路節點(例如,網路節點310、710)執行的用於波束成形通訊中的定位的示例性方法1100。特別地,方法1100可以由行動基地台執行。在方塊1110處,行動基地台可以偵測行動基地台的位置的變化。在一個態樣中,用於執行方塊1100的單元可以包括圖3所示的行動基地台310的控制器/處理器375。行動基地台的位置的變化包括緯度-經度的變化、方向的變化或二者。
在方塊1120處,行動基地台可以回應於偵測到行動基地台的位置的變化來決定行動基地台的當前位置。在一個態樣中,用於執行方塊1120的單元可以包括圖3所示的行動基地台310的控制器/處理器375中的一或多個控制器/處理器。
在方塊1130處,行動基地台可以經由無線網路發信號通知行動基地台的當前位置。在一個態樣中,用於執行方塊1130的單元可以包括圖3所示的網路節點310的控制器/處理器375及/或TX處理器316中的一項或多項。
在一個態樣中,記憶體376可以是電腦可讀取媒體的實例,其儲存用於網路節點310的TX處理器316、控制器/處理器375及/或RX處理器370中的一項或多項的電腦可執行指令,以執行方法1100。
圖12圖示由網路節點(例如,網路節點310、710)執行的用於波束成形通訊中的定位的示例性方法1200。特別地,方法1200可以由基地台執行。在方塊1210處,基地台可以向UE發送針對報告UE處的操作條件的請求。在一個態樣中,用於執行方塊1210的單元可以包括圖3所示的網路節點310的控制器/處理器375及/或TX處理器316中的一項或多項。所請求的操作條件可以包括高度、可用的電池壽命、在一或多個定位方案中消耗的功率、基於配置的參考信號估計的UE的功率延遲簡檔或其任意組合。
在方塊1220處,基地台可以從UE接收所請求的操作條件。在一個態樣中,用於執行方塊1220的單元可以包括圖3所示的網路節點310的控制器/處理器375及/或RX處理器370中的一項或多項。
在方塊1230處,基地台可以根據從UE接收的操作條件來配置一或多個定位方案。在一個態樣中,用於執行方塊1230的單元可以包括圖3所示的網路節點310的控制器/處理器375及/或TX處理器316中的一項或多項。
在一個態樣中,記憶體376可以是電腦可讀取媒體的實例,其儲存用於網路節點310的TX處理器316、控制器/處理器375及/或RX處理器370中的一項或多項的電腦可執行指令,以執行方法1200。
圖13圖示由RRH/DAS(例如,網路節點310、710)執行的用於波束成形通訊中的定位的示例性方法1300。在方塊1310處,RRH/DAS可以將定位參考信號配置為在與同步信號塊相同的波束中被發送,使得定位參考信號和同步信號塊具有基本相同的空間特性。在一個態樣中,用於執行方塊1310的單元可以包括圖3所示的網路節點310的控制器/處理器375及/或TX處理器316中的一項或多項。
在方塊1320處,RRH/DAS可以在與同步信號塊相同的波束中發送定位參考信號。在一個態樣中,用於執行方塊1320的單元可以包括圖3所示的網路節點310的控制器/處理器375及/或TX處理器316中的一項或多項。在與同步信號塊相同的波束中發送定位參考信號可以包括在數位域中將定位參考信號與同步信號塊分頻多工。
在一個態樣中,記憶體376可以是電腦可讀取媒體的實例,其儲存用於網路節點310的TX處理器316、控制器/處理器375及/或RX處理器370中的一項或多項的電腦可執行指令,以執行方法1300。
本發明所屬領域中具有通常知識者將瞭解的是,資訊和信號可以使用多種不同的技術和方法中的任何技術和方法來表示。例如,遍及以上描述所提及的資料、指令、命令、資訊、信號、位元、符號和碼片可以由電壓、電流、電磁波、磁場或粒子、光場或粒子或者其任意組合來表示。
此外,本發明所屬領域中具有通常知識者將瞭解到的是,結合本文所揭示的各態樣描述的各種說明性的邏輯區塊、模組、電路和演算法步驟可以實現為電子硬體、電腦軟體或二者的組合。為了清楚地說明硬體和軟體的這種可互換性,上文圍繞各種說明性的部件、方塊、模組、電路和步驟的功能,已經對它們進行了一般性描述。至於此類功能是被實現為硬體還是軟體,取決於特定的應用以及施加在整個系統上的設計約束。本發明所屬領域中具有通常知識者可以針對各特定的應用,以變通的方式來實現所描述的功能,但是此類實現方式決策不應當被解釋為脫離本文描述的各個態樣的範疇。
結合本文揭示的各態樣所描述的各種說明性的邏輯區塊、模組和電路可以利用被設計成執行本文所描述的功能的通用處理器、數位訊號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)或其他可程式設計邏輯裝置、個別閘門或電晶體邏輯、個別硬體部件、或者其任意組合來實現或執行。通用處理器可以是微處理器,但在替代方案中,處理器可以是任何習知處理器、控制器、微控制器或狀態機。處理器亦可以實現為計算設備的組合(例如,DSP與微處理器的組合、複數個微處理器、與DSP核心相結合的一或多個微處理器、或其他此類配置)。
結合本文揭示的各態樣描述的方法、序列及/或演算法可以直接地體現在硬體中、由處理器執行的軟體模組中,或者二者的組合中。軟體模組可以存在於隨機存取記憶體(RAM)、快閃記憶體、唯讀記憶體(ROM)、可抹除可程式設計ROM(EPROM)、電子可抹除可程式設計ROM(EEPROM)、暫存器、硬碟、可移除磁碟、CD-ROM或者本領域已知的任何其他形式的非暫時性電腦可讀取媒體中。將示例性的非暫時性電腦可讀取媒體耦合到處理器,以使處理器可以從非暫時性電腦可讀取媒體讀取資訊,以及向非暫時性電腦可讀取媒體寫入資訊。在替代的方式中,非暫時性電腦可讀取媒體可以被整合到處理器中。處理器和非暫時性電腦可讀取媒體可以存在於ASIC中。ASIC可以存在於使用者設備(例如,UE)或基地台中。在替代的方式中,處理器和非暫時性電腦可讀取媒體可以是在使用者設備或基地台中的個別部件。
在一或多個示例性態樣中,本文描述的功能可以在硬體、軟體、韌體或其任意組合中實現。若在軟體中實現,則該等功能可以作為在非暫時性電腦可讀取媒體中一或多個指令或代碼來儲存或者發送。電腦可讀取媒體可以包括儲存媒體及/或通訊媒體,該通訊媒體包括促進將電腦程式從一個地方傳送到另一個地方的任何非暫時性媒體。儲存媒體可以是由電腦可存取的任何可用的媒體。經由舉例而非限制性的方式,此類電腦可讀取媒體可以包括RAM、ROM、EEPROM、CD-ROM或其他光碟儲存、磁碟儲存或其他磁存放裝置、或者可以用於以指令或資料結構的形式攜帶或儲存所期望的程式碼以及可以由電腦來存取的任何其他的媒體。此外,任何連接被適當地稱為電腦可讀取媒體。例如,若使用同軸電纜、光纖光纜、雙絞線、DSL或無線技術(諸如紅外線、無線電和微波)從網站、伺服器或其他遠端源反射軟體,則同軸電纜、光纖光纜、雙絞線、DSL或無線技術(諸如紅外線、無線電和微波)包括在媒體的定義中。術語磁碟和光碟(其可以在本文中可互換地使用)包括壓縮光碟(CD)、鐳射光碟、光碟、數位視訊光碟(DVD)、軟碟和藍光光碟,其通常磁性地及/或利用鐳射來光學地複製資料。上述的組合亦應當包括在電腦可讀取媒體的範疇內。
儘管前面的揭示內容圖示說明性的各態樣,但是本發明所屬領域中具有通常知識者將瞭解到的是,在不脫離經由所附的申請專利範圍所定義的本案內容的範疇的情況下,可以在本文中進行各種改變和修改。此外,根據本文描述的各個說明性的態樣,本發明所屬領域中具有通常知識者將瞭解到的是,在上文描述的任何方法及/或在所附的任何方法請求項中記載的功能、步驟及/或動作不需要以任何特定次序來執行。此外,就任何元素是以單數形式在上文進行描述或者在所附的請求項中進行記載來說,本發明所屬領域中具有通常知識者將瞭解到的是,除非明確聲明限制為單數形式,否則單數形式也預期複數。
100‧‧‧無線通訊系統 102‧‧‧基地台 102'‧‧‧小型細胞基地台 104‧‧‧UE 110‧‧‧地理覆蓋區域 110'‧‧‧地理覆蓋區域 120‧‧‧通訊鏈路 134‧‧‧回載鏈路 150‧‧‧無線區域網路(WLAN)存取點(AP) 152‧‧‧WLAN站(STA) 154‧‧‧通訊鏈路 180‧‧‧mmW基地台 182‧‧‧UE 184‧‧‧波束成形 190‧‧‧UE 192‧‧‧D2D P2P鏈路 194‧‧‧D2D P2P鏈路 200‧‧‧無線網路結構 210‧‧‧下一代核心(NGC) 212‧‧‧使用者平面功能單元 213‧‧‧NG-U 214‧‧‧控制平面功能單元 215‧‧‧控制平面介面(NG-C) 220‧‧‧新RAN 222‧‧‧gNB 223‧‧‧回載連接 224‧‧‧eNB 230‧‧‧位置伺服器 240‧‧‧UE 250‧‧‧無線網路結構 260‧‧‧NGC 262‧‧‧通信期管理功能單元(SMF) 263‧‧‧使用者平面介面 264‧‧‧AMF 265‧‧‧控制平面介面 270‧‧‧位置管理功能單元(LMF) 310‧‧‧基地台 316‧‧‧發送(TX)處理器 318a‧‧‧發射器 318b‧‧‧接收器 320‧‧‧天線 350‧‧‧UE 352‧‧‧天線 354a‧‧‧接收器 354b‧‧‧接收器 356‧‧‧RX處理器 358‧‧‧通道估計器 359‧‧‧控制器/處理器 360‧‧‧記憶體 368‧‧‧TX處理器 370‧‧‧RX處理器 374‧‧‧通道估計器 375‧‧‧控制器/處理器 376‧‧‧記憶體 400‧‧‧無線通訊系統 402a‧‧‧基地台 402b‧‧‧基地台 402c‧‧‧基地台 402d‧‧‧基地台 404‧‧‧UE 410a‧‧‧LOS路徑 410b‧‧‧LOS路徑 410c‧‧‧LOS路徑 412a‧‧‧NLOS路徑 412b‧‧‧NLOS路徑 412c‧‧‧NLOS路徑 412d‧‧‧NLOS路徑 420‧‧‧DAS/RRH 422‧‧‧有線或無線鏈路 430‧‧‧物件 500‧‧‧無線通訊系統 502‧‧‧基地台 504‧‧‧UE 511‧‧‧波束 512‧‧‧波束 513‧‧‧波束 514‧‧‧波束 515‧‧‧波束 523‧‧‧NLOS資料串流 524‧‧‧LOS資料串流 530‧‧‧障礙物 540‧‧‧反射體 600A‧‧‧曲線圖 600B‧‧‧圖 602a‧‧‧AoD範圍 602b‧‧‧AoD範圍 700‧‧‧無線通訊系統 710-1‧‧‧網路節點 710-2‧‧‧網路節點 710-3‧‧‧網路節點 712-1‧‧‧波束 712-2‧‧‧波束 712-3‧‧‧波束 714-1‧‧‧波束 714-2‧‧‧波束 714-3‧‧‧波束 716-1‧‧‧波束 716-2‧‧‧波束 716-3‧‧‧波束 750‧‧‧UE 760‧‧‧粗略位置估計 800‧‧‧方法 810‧‧‧方塊 820‧‧‧方塊 830‧‧‧方塊 900‧‧‧方法 910‧‧‧方塊 920‧‧‧方塊 930‧‧‧方塊 1000‧‧‧方法 1010‧‧‧方塊 1020‧‧‧方塊 1100‧‧‧方法 1110‧‧‧方塊 1120‧‧‧方塊 1130‧‧‧方塊 1200‧‧‧方法 1210‧‧‧方塊 1220‧‧‧方塊 1230‧‧‧方塊 1300‧‧‧方法 1310‧‧‧方塊 1320‧‧‧方塊
經由參考下文的具體描述,在結合附圖考慮時,將容易地獲得並且更好地理解對本文描述的各個態樣和實施例和許多其伴隨的優勢的更完整的理解,其中提供附圖僅是為了說明而不是進行限制,以及在附圖中:
圖1圖示根據本案內容的各個態樣的示例性無線通訊系統。
圖2A和2B圖示根據本案內容的各個態樣的實例無線網路結構。
圖3圖示根據本案內容的各個態樣的存取網路中的示例性基地台和示例性UE。
圖4圖示根據本案內容的各個態樣的示例性無線通訊系統。
圖5圖示根據本案內容的各個態樣的示例性無線通訊系統。
圖6A是圖示根據本案內容的各個態樣的在UE處的RF通道回應隨時間變化的曲線圖。
圖6B圖示根據本案內容的各個態樣的發射角(AoD)中集群的示例性分離。
圖7圖示根據各個態樣的示例性無線通訊系統,其可以實現各種增強型定位方法來支援波束成形通訊。
圖8圖示由UE執行的用於波束成形通訊中的定位的示例性方法的流程圖。
圖9圖示由諸如基地台的網路節點執行的用於波束成形通訊中的定位的示例性方法的流程圖。
圖10圖示由諸如基地台的網路節點執行的用於波束成形通訊中的定位的示例性方法的流程圖。
圖11圖示由諸如行動基地台的網路節點執行的用於波束成形通訊中的定位的示例性方法的流程圖。
圖12圖示由諸如基地台的網路節點執行的用於波束成形通訊中的定位的示例性方法的流程圖。
圖13圖示由諸如遠端無線電頭端(RRH)及/或分散式天線系統(DAS)的網路節點執行的用於波束成形通訊中的定位的示例性方法的流程圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
700‧‧‧無線通訊系統
710-1‧‧‧網路節點
710-2‧‧‧網路節點
710-3‧‧‧網路節點
712-1‧‧‧波束
712-2‧‧‧波束
712-3‧‧‧波束
714-1‧‧‧波束
714-2‧‧‧波束
714-3‧‧‧波束
716-1‧‧‧波束
716-2‧‧‧波束
716-3‧‧‧波束
750‧‧‧UE
760‧‧‧粗略位置估計

Claims (26)

  1. 一種用於波束成形通訊中的定位的方法,包括以下步驟: 接收多個波束,每個波束包括一定位參考信號; 決定與該多個波束之每一者波束相關聯的一或多個參數;及 根據該一或多個參數來配置用於量測及/或報告一參考信號定時差(RSTD)的一範圍或一細微性中的一項或多項。
  2. 根據請求項1之方法,其中該一或多個參數包括一重複因數、一波束形狀、一頻帶、一次載波間隔數位方案、一循環字首、或其任意組合。
  3. 根據請求項1之方法,其中該所決定的參數包括至少一個特定於波束的參數和至少一個在該多個波束中的兩個或更多個波束之間共享的公共參數。
  4. 根據請求項3之方法,其中用於報告該RSTD的該範圍或該細微性是該至少一個特定於波束的參數和該至少一個公共參數的一函數。
  5. 根據請求項1之方法,其中用於報告該RSTD的該範圍或該細微性是用於該多個波束之每一者波束的。
  6. 一種裝置,包括: 一接收器,其被配置為接收多個波束,其中該多個波束均包括一定位參考信號;及 至少一個處理器,其被配置為:決定與該多個波束之每一者波束相關聯的一或多個參數;及根據該一或多個參數來配置用於量測及/或報告一參考信號定時差(RSTD)的一範圍或一細微性中的一項或多項。
  7. 根據請求項6之裝置,其中該一或多個參數包括一重複因數、一波束形狀、一頻帶、一次載波間隔數位方案、一循環字首、或其任意組合。
  8. 根據請求項6之裝置,其中該所決定的參數包括至少一個特定於波束的參數和至少一個在該多個波束中的兩個或更多個波束之間共享的公共參數。
  9. 根據請求項8之裝置,其中用於報告該RSTD的該範圍或該細微性是該至少一個特定於波束的參數和該至少一個公共參數的一函數。
  10. 根據請求項6之裝置,其中用於報告該RSTD的該範圍或該細微性是用於該多個波束之每一者波束的。
  11. 一種裝置,包括: 用於接收多個波束的單元,其中該多個波束均包括一定位參考信號; 用於決定與該多個波束之每一者波束相關聯的一或多個參數的單元;及 用於根據該一或多個參數來配置用於量測及/或報告一參考信號定時差(RSTD)的一範圍或一細微性中的一項或多項的單元。
  12. 根據請求項11之裝置,其中該一或多個參數包括一重複因數、一波束形狀、一頻帶、一次載波間隔數位方案、一循環字首、或其任意組合。
  13. 根據請求項11之裝置,其中該所決定的參數包括至少一個特定於波束的參數和至少一個在該多個波束中的兩個或更多個波束之間共享的公共參數。
  14. 根據請求項13之裝置,其中用於報告該RSTD的該範圍或該細微性是該至少一個特定於波束的參數和該至少一個公共參數的一函數。
  15. 根據請求項11之裝置,其中用於報告該RSTD的該範圍或該細微性是用於該多個波束之每一者波束的。
  16. 一種非暫時性電腦可讀取媒體,該非暫時性電腦可讀取媒體具有儲存在其上的用於裝置的一處理器的一或多個電腦可執行指令,該等指令包括: 使得該處理器接收多個波束的一或多個指令,每個波束包括一定位參考信號; 使得該處理器決定與該多個波束之每一者波束相關聯的一或多個參數的一或多個指令;及 使得該處理器根據該一或多個參數來配置用於量測及/或報告一參考信號定時差(RSTD)的一範圍或一細微性中的一項或多項的一或多個指令。
  17. 根據請求項16之電腦可讀取媒體,其中該一或多個參數包括一重複因數、一波束形狀、一頻帶、一次載波間隔數位方案、一循環字首、或其任意組合。
  18. 根據請求項16之電腦可讀取媒體,其中該所決定的參數包括至少一個特定於波束的參數和至少一個在該多個波束中的兩個或更多個波束之間共享的公共參數。
  19. 根據請求項18之電腦可讀取媒體,其中用於報告該RSTD的該範圍或該細微性是該至少一個特定於波束的參數和該至少一個公共參數的一函數。
  20. 根據請求項16之電腦可讀取媒體,其中用於報告該RSTD的該範圍或該細微性是用於該多個波束之每一者波束的。
  21. 一種用於波束成形通訊中的定位的方法,包括以下步驟: 在一發送節點處決定與用於發送一定位參考信號的一波束相關聯的一或多個參數; 由該發送節點在一無線網路上發送與該波束相關聯的該一或多個參數;及 根據與該波束相關聯的該一或多個參數經由該波束發送該定位參考信號。
  22. 根據請求項21之方法,其中該一或多個參數包括一發射角(AoD)、一發射頂點(ZoD)、一波束寬度、或其任意組合。
  23. 一種用於波束成形通訊中的定位的方法,包括以下步驟: 在一行動基地台處偵測該行動基地台的一位置的一變化; 回應於偵測到該行動基地台的該位置的該變化,在該行動基地台處決定該行動基地台的一當前位置;及 經由一無線網路發信號通知該行動基地台的該當前位置。
  24. 根據請求項23之方法,其中該行動基地台的該位置的該變化包括緯度-經度的一變化、方向的一變化、或兩者。
  25. 一種用於波束成形通訊中的定位的方法,包括以下步驟: 在一遠端無線電頭端(RRH)/分散式天線系統(DAS)處將一定位參考信號配置為在與一同步信號塊相同的波束中被發送,使得該定位參考信號和該同步信號塊具有基本相同的空間特性;及 由該RRH/DAS在與該同步信號塊相同的波束中發送該定位參考信號。
  26. 根據請求項25之方法,其中在與該同步信號塊相同的波束中發送該定位參考信號包括:在一數位域中將該定位參考信號與該同步信號塊分頻多工。
TW108118924A 2018-05-31 2019-05-31 用於利用波束成形通訊的無線網路的定位方法 TWI799591B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862679006P 2018-05-31 2018-05-31
US62/679,006 2018-05-31
US16/426,952 US11442135B2 (en) 2018-05-31 2019-05-30 Positioning methods for wireless networks that utilize beamformed communication
US16/426,952 2019-05-30

Publications (2)

Publication Number Publication Date
TW202005308A true TW202005308A (zh) 2020-01-16
TWI799591B TWI799591B (zh) 2023-04-21

Family

ID=68692904

Family Applications (2)

Application Number Title Priority Date Filing Date
TW112110812A TW202333468A (zh) 2018-05-31 2019-05-31 用於利用波束成形通訊的無線網路的定位方法
TW108118924A TWI799591B (zh) 2018-05-31 2019-05-31 用於利用波束成形通訊的無線網路的定位方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW112110812A TW202333468A (zh) 2018-05-31 2019-05-31 用於利用波束成形通訊的無線網路的定位方法

Country Status (6)

Country Link
US (2) US11442135B2 (zh)
EP (1) EP3804426A1 (zh)
KR (1) KR20210014683A (zh)
CN (1) CN112205040B (zh)
TW (2) TW202333468A (zh)
WO (1) WO2019232456A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11686805B1 (en) 2016-07-10 2023-06-27 ZaiNar, Inc. Method and system for radiofrequency localization of transmitting devices via a mesh network
US10627474B1 (en) * 2016-07-10 2020-04-21 ZaiNar, Inc. Method and system for radiofrequency localization of transmitting devices via a mesh network
US10652826B2 (en) 2018-03-23 2020-05-12 Samsung Electronics Co., Ltd. Method and apparatus for power saving signal design in NR
US10911211B1 (en) 2018-09-28 2021-02-02 ZaiNar, Inc. Frequency and gain calibration for time synchronization in a network
US10833840B2 (en) 2018-05-07 2020-11-10 ZaiNar, Inc. Methods for nanosecond-scale time synchronization over a network
US11658798B1 (en) 2018-05-07 2023-05-23 ZaiNar, Inc. Methods for time synchronization and localization in a mesh network
US11442135B2 (en) 2018-05-31 2022-09-13 Qualcomm Incorporated Positioning methods for wireless networks that utilize beamformed communication
CN110690950B (zh) * 2018-07-06 2020-08-11 维沃移动通信有限公司 定位参考信号配置、接收方法和设备
KR20210054016A (ko) * 2018-09-28 2021-05-12 삼성전자주식회사 통신 시스템에서 각도기반 포지셔닝 및 측정과 관련된 개선안
US11412400B2 (en) * 2018-10-01 2022-08-09 Nokia Technologies Oy Method for positioning reference design
US10972172B2 (en) * 2018-10-05 2021-04-06 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for fast beam sweeping and device discovery in 5G millimeter wave and upper centimeter-wave systems
CN111082907B (zh) * 2018-10-22 2021-06-01 成都华为技术有限公司 一种确定参考信号的测量值的方法及装置
GB2583691B (en) 2019-02-15 2021-11-03 Samsung Electronics Co Ltd Methods, apparatus, and systems for transmitting and receiving positioning reference signals in 5G new radio networks
US11510215B2 (en) * 2019-03-28 2022-11-22 Mediatek Inc. Electronic device and method for radio resource management (RRM) measurement relaxation
DE102019206466A1 (de) * 2019-05-06 2020-11-12 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines drahtlosen Kommunikationsnetzwerks
US11234245B1 (en) * 2019-08-21 2022-01-25 T-Mobile Innovations Llc Beamforming in massive MIMO networks
US11350293B2 (en) * 2019-11-26 2022-05-31 Huawei Technologies Co., Ltd. Systems and methods for estimating locations of signal shadowing obstructions and signal reflectors in a wireless communications network
US11637610B2 (en) * 2019-12-13 2023-04-25 Qualcomm Incorporated Techniques for spatial relation indication based on beam orientation
WO2021128233A1 (en) * 2019-12-27 2021-07-01 Qualcomm Incorporated Directional synchronization and system information acquisition
US20220179033A1 (en) * 2020-02-12 2022-06-09 Apple Inc. RSTD Measurement Report Mapping for NR Positioning
EP4104639A1 (en) * 2020-02-13 2022-12-21 Nokia Solutions and Networks Oy Processing rules for resource elements
CN115428391A (zh) * 2020-04-27 2022-12-02 Lg 电子株式会社 无线通信系统中借助于波束成形的信号执行定位的方法和设备
US11622270B2 (en) * 2020-05-20 2023-04-04 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Method and apparatus for millimeter-wave physical layer authentication
US11792666B2 (en) * 2020-06-04 2023-10-17 Qualcomm Incorporated Location assistance data for wideband positioning
US11653400B2 (en) * 2020-06-16 2023-05-16 Blu Wireless Technology Limited Wireless communication for vehicle based node
US11953578B2 (en) 2020-07-23 2024-04-09 Qualcomm Incorporated Single sided beam management for bistatic air interface based radio frequency sensing in millimeter wave systems
US20220026550A1 (en) * 2020-07-23 2022-01-27 Qualcomm Incorporated Beam management for bistatic air interface based radio frequency sensing in millimeter wave systems
EP4169294A4 (en) * 2020-08-13 2023-07-19 Apple Inc. COORDINATED CELLULAR COVERAGE BY MOBILE BASE STATIONS
US11172019B1 (en) * 2020-08-28 2021-11-09 Tencent America LLC Systems and methods for unmanned aerial system communication
WO2022077267A1 (en) * 2020-10-14 2022-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for communication management
US11411612B2 (en) * 2020-11-16 2022-08-09 Ultralogic 6G, Llc Location-based beamforming for rapid 5G and 6G directional messaging
CN114828205A (zh) * 2021-01-18 2022-07-29 大唐移动通信设备有限公司 终端定位方法及设备
US20230379666A1 (en) 2022-04-20 2023-11-23 ZaiNar, Inc. System and methods for asset tracking, asset grouping, and error recovery

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1753550A (zh) 2004-09-20 2006-03-29 北京三星通信技术研究有限公司 利用波束成形增强定位信号发送的方法及设备
JP4730565B2 (ja) 2008-07-17 2011-07-20 日本電気株式会社 無線通信システム、管理サーバ、および移動基地局制御方法
EP2673892A4 (en) 2011-02-07 2016-09-14 Intel Corp COPHASING EMISSIONS FROM MULTIPLE INFRASTRUCTURE N UDS
CN103621159A (zh) 2011-06-21 2014-03-05 瑞典爱立信有限公司 用于小区更改信息的记帐的方法和设备
WO2013125993A1 (en) 2012-02-22 2013-08-29 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for determining a beam parameter of an antenna in a wireless communications system
US9859972B2 (en) 2014-02-17 2018-01-02 Ubiqomm Llc Broadband access to mobile platforms using drone/UAV background
US10557919B2 (en) 2014-03-28 2020-02-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Observed time difference of arrival angle of arrival discriminator
EP2938117B1 (en) 2014-04-24 2017-12-27 Alcatel Lucent Adjusting geographical position of a drone base station
KR20170048314A (ko) 2014-08-27 2017-05-08 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
US10004057B2 (en) 2014-08-29 2018-06-19 Lg Electronics Inc. Method for performing OTDOA-related operation in wireless communication system
US9913095B2 (en) * 2014-11-19 2018-03-06 Parallel Wireless, Inc. Enhanced mobile base station
WO2016086144A1 (en) * 2014-11-26 2016-06-02 Interdigital Patent Holdings, Inc. Initial access in high frequency wireless systems
US10033449B2 (en) 2014-12-16 2018-07-24 Lg Electronics Inc. Method for receiving reference signal in wireless communication system, and apparatus therefor
CN106664591B (zh) * 2015-03-26 2020-06-30 Lg 电子株式会社 在无线通信系统中报告用于确定位置的测量结果的方法及其设备
WO2016155810A1 (en) 2015-03-31 2016-10-06 Sony Corporation Method and apparatus for positioning a mobile terminal in a radio network
WO2016162779A1 (en) 2015-04-07 2016-10-13 Telefonaktiebolaget L M Ericsson (Publ) Transmitting positioning reference signals
US20180049149A1 (en) 2015-04-08 2018-02-15 Lg Electronics Inc. Method for determining location or measuring reference signal for determining location in wireless communication system and device for same
WO2016164085A1 (en) * 2015-04-08 2016-10-13 Intel IP Corporation Positioning reference system (prs) design enhancement
US10390324B2 (en) 2015-05-25 2019-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive measurement report mapping for UE positioning
CN105207708B (zh) 2015-09-06 2018-12-18 北京北方烽火科技有限公司 一种波束赋形权向量的生成方法及装置
US9571978B1 (en) * 2016-03-16 2017-02-14 Google Inc. User equipment positioning utilizing motion of high altitude platform
WO2017164925A1 (en) 2016-03-24 2017-09-28 Intel Corporation Method of positioning for 5g systems
US10021667B2 (en) 2016-06-23 2018-07-10 Qualcomm Incorporated Positioning in beamformed communications
EP3306337A1 (en) 2016-10-10 2018-04-11 Fraunhofer Gesellschaft zur Förderung der Angewand User equipment localization in a mobile communication network
CN108064056B (zh) 2016-11-08 2020-12-29 上海朗帛通信技术有限公司 一种ue、基站和服务中心的用于定位的方法和设备
US9836049B1 (en) 2017-05-05 2017-12-05 Pinnacle Vista, LLC Relay drone system
KR102392079B1 (ko) 2018-05-04 2022-05-02 주식회사 케이티 차세대 무선망에서 포지셔닝을 수행하는 방법 및 장치
US11442135B2 (en) 2018-05-31 2022-09-13 Qualcomm Incorporated Positioning methods for wireless networks that utilize beamformed communication

Also Published As

Publication number Publication date
US20220349981A1 (en) 2022-11-03
US11885896B2 (en) 2024-01-30
KR20210014683A (ko) 2021-02-09
TWI799591B (zh) 2023-04-21
US11442135B2 (en) 2022-09-13
WO2019232456A1 (en) 2019-12-05
EP3804426A1 (en) 2021-04-14
TW202333468A (zh) 2023-08-16
US20190369201A1 (en) 2019-12-05
CN112205040A (zh) 2021-01-08
CN112205040B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US11885896B2 (en) Positioning methods for wireless networks that utilize beamformed communication
US11510090B2 (en) Using channel state information (CSI) report framework to support positioning measurements
EP3804160B1 (en) Determining transmission timing of a positioning beacon from a time of reception of a reference signal
US11317414B2 (en) Exchanging location information of a base station that is associated with a plurality of different transmission point locations
US10917184B2 (en) Computing and reporting a relevance metric for a positioning beacon beam
EP3804384B1 (en) Identifying beams of interest for position estimation
WO2019226655A1 (en) Identifying and reporting beams of interest for position estimation
US11031992B2 (en) Receive beam selection for measuring a reference signal
US11683138B2 (en) Positioning reference signal transmission with controlled transmission power and bandwidth
CN112771396A (zh) 用于定位目的的简化蜂窝小区位置信息共享
EP3804166B1 (en) Node-specific permutation of the order of transmission of positioning beacon beams