TW201939299A - 通用序列匯流排功率遞送中的可程式vbus放電 - Google Patents

通用序列匯流排功率遞送中的可程式vbus放電 Download PDF

Info

Publication number
TW201939299A
TW201939299A TW108105293A TW108105293A TW201939299A TW 201939299 A TW201939299 A TW 201939299A TW 108105293 A TW108105293 A TW 108105293A TW 108105293 A TW108105293 A TW 108105293A TW 201939299 A TW201939299 A TW 201939299A
Authority
TW
Taiwan
Prior art keywords
discharge
voltage
power
vbus
usb
Prior art date
Application number
TW108105293A
Other languages
English (en)
Other versions
TWI767107B (zh
Inventor
達爾文W 曼塔斯
古德溫 蓋羅德 阿魯拉潘
斯伊德 貝拔爾 拉札
安納普K 那亞克
桑迷特 故普達
凡凱特 曼達古雷瑟
Original Assignee
美商賽普拉斯半導體公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商賽普拉斯半導體公司 filed Critical 美商賽普拉斯半導體公司
Publication of TW201939299A publication Critical patent/TW201939299A/zh
Application granted granted Critical
Publication of TWI767107B publication Critical patent/TWI767107B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/382Information transfer, e.g. on bus using universal interface adapter
    • G06F13/385Information transfer, e.g. on bus using universal interface adapter for adaptation of a particular data processing system to different peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling
    • G06F13/4081Live connection to bus, e.g. hot-plugging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0042Universal serial bus [USB]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Sources (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electronic Switches (AREA)

Abstract

本發明描述用於自一USB功率遞送(USB-PD)的VBUS線之電壓放電的技術。在一例示具體實例中,一積體電路包含一放電控制邏輯,其耦接至一第一放電電路且耦接至一第二放電電路。該第一放電電路經組態以耦接至該VBUS線上之一電源節點。該第二放電電路經組態以耦接至該VBUS線上之一輸出節點。該放電控制邏輯經組態以獨立地控制該第一放電電路及該第二放電電路來使該VBUS線上之電壓放電。

Description

通用序列匯流排功率遞送中的可程式VBUS放電
本發明係關於控制至電子裝置之功率遞送的積體電路。

優先權
本申請案主張2018年3月12日申請的美國臨時申請案第62/641,894號之優先權及權益,其以全文引用之方式併入本文中。
各種電子裝置(例如智慧型電話、平板(tablet)、筆記型電腦、膝上型電腦、集線器、充電器、適配器等)經組態以經由通用序列匯流排(Universal Serial Bus;USB)連接件,根據USB功率遞送(USB-PD)規格之各種修訂版中所定義的USB功率遞送協定來傳送功率。舉例而言,在一些應用中,電子裝置可經組態為功率消耗者,其經由USB連接件接收功率(例如用於電池充電),而在其他應用中,電子裝置可經組態為功率提供者,其為經由USB連接件連接至其的另一裝置提供功率。然而,USB-PD規格允許功率提供者與功率消耗者動態地協商所提供電壓及電流之位準。因此,在某些功率遞送狀況下,所提供之電壓/電流可能需要快速釋放,但此情形可能使控制所述電壓/電流之供應的積體電路裝置經受發熱及閂鎖效應(latch-up)。
本發明一個態樣在於一種用於控制一通用序列匯流排(USB)電壓(VBUS)線上之功率傳送的積體電路(IC),該IC包含:一USB功率遞送(USB-PD)子系統,其中該USB-PD子系統包含:一第一放電電路,其經組態以耦接至該VBUS線上之一電源節點;一第二放電電路,其經組態以耦接至該VBUS線上之一輸出節點;以及一放電控制邏輯,其耦接至該第一放電電路且耦接至該第二放電電路,該放電控制邏輯經組態以獨立地控制該第一放電電路及該第二放電電路來使該VBUS線上之電壓放電。
本發明另一個態樣在於一種設備,其包含:一通用序列匯流排(USB)Type-C連接件,該USB Type-C連接件包含一電壓(VBUS)線;以及一積體電路(IC),其經耦接以控制該VBUS線上之功率傳送,該IC包含:一第一放電電路,其耦接至該VBUS線上之一電源節點;一第二放電電路,其耦接至該VBUS線上之輸出節點;以及一放電控制邏輯,其耦接至該第一放電電路且耦接至該第二放電電路,該放電控制邏輯經組態以獨立地控制該第一放電電路及該第二放電電路來使該VBUS線上之電壓放電。
以下描述闡述眾多特定細節,諸如特定系統、組件、方法等之實例,以提供對本文中針對USB VBUS線之電壓放電所描述的技術之各種具體實例之良好理解。然而,所屬技術領域中具有知識者將顯而易見,至少一些具體實例可在無此等特定細節之情況下實踐。在其他情況下,並未詳細描述或以簡單方塊圖格式呈現熟知的組件、元件或方法以免不必要地混淆本文中所描述之技術。因此,下文所闡述之特定細節僅係例示性的。特定實施方案可不同於此等例示性細節且仍涵蓋在本發明之精神及範圍內。
本說明書中對「一具體實例」、「一個具體實例」、「一例示具體實例」、「一些具體實例」及「各種具體實例」之提及意謂結合該(等)具體實例所描述之特定特徵、結構、步驟、操作或特性包括於本發明之至少一個具體實例中。另外,在描述中各處出現片語「一具體實例」、「一個具體實例」、「一例示具體實例」、「一些具體實例」及「各種具體實例」未必皆指代相同具體實例。
描述內容包括對隨附圖式之參考,該等隨附圖式形成[實施方式]的一部分。圖式示出根據例示性具體實例之圖示。充分詳細地描述亦可在本文中被稱作「實例」之此等具體實例以使所屬領域中具有知識者能夠實踐本文中所描述之所主張主題的具體實例。在不脫離所主張主題之範圍及精神的情況下,可組合該等具體實例,可利用其他具體實例,或可進行結構、邏輯及電改變。應理解,本文中所描述之具體實例並不意欲限制主題之範圍,而是使所屬領域中具有知識者能夠實踐、進行及/或使用主題。
本文中描述用於電子裝置中之USB VBUS線之電壓放電之技術的各種具體實例。此類電子裝置之實例包括(但不限於)個人電腦(例如,膝上型電腦、筆記型電腦等)、行動計算裝置(例如,平板、平板電腦、電子閱讀器裝置等)、行動通信裝置(例如,智慧型電話、手機、個人數位助理、傳訊裝置、口袋型PC等)、連接及充電裝置(例如,集線器、擴充座(docking station)、適配器、充電器等)、音訊/視訊/資料記錄及/或播放裝置(例如,攝影機、語音記錄器、手持型掃描器、監視器等)以及可使用USB連接件(介面)來進行通信、電池充電及/或功率遞送的其他類似電子裝置。
具USB功能之電子裝置或系統可遵守通用序列匯流排(USB)規格的至少一個發佈版本。此類USB規格之實例包括(但不限於)USB規格修訂版2.0、USB 3.0規格、USB 3.1規格及/或其各種補充(例如On-The-Go或OTG)、版本及勘誤。USB規格通常定義差動序列匯流排之特性(例如,屬性、協定定義、事務類型、匯流排管理、程式化介面等),需要該等特性來設計及建構標準通訊系統及周邊設備。舉例而言,具USB功能之周邊裝置經由具USB功能之主機裝置的USB埠連接至該主機裝置,以形成具USB功能之系統。USB 2.0埠包括5 V的功率電壓線(標示為VBUS)、差動資料線對(標示為D+或DP及D-或DN)以及用於功率返回的接地線(標示為GND)。USB 3.0埠亦提供VBUS、D+、D-及GND線以與USB 2.0回溯相容。另外,為了支援更快速的差動匯流排(USB超高速(SuperSpeed)匯流排),USB 3.0埠亦提供差動傳輸器資料線對(標示為SSTX+及SSTX-)、差動接收器資料線對(標示為SSRX+及SSRX-)、用於供電的功率線(標示為DPWR)以及用於功率返回的接地線(標示為DGND)。USB 3.1埠提供與USB 3.0埠相同的線以與USB 2.0及USB 3.0通信回溯相容,但藉由被稱為增強型超高速(Enhanced SuperSpeed)的特徵集合來擴展超高速匯流排之效能。
關於USB連接件的被稱為USB Type-C的較新技術定義於USB Type-C規格之各種發佈版本及/或版本(例如日期為2014年8月11日的發佈版本1.0、日期為2015年4月3日的發佈版本1.1等)中。USB Type-C規格定義Type-C插座、Type-C插頭及Type-C電纜,其可支援USB通信以及經由USB-PD規格之各種修訂版/版本中定義的較新USB功率遞送協定的功率遞送。USB Type-C功能及需求之實例可包括(但不限於)根據USB 2.0及USB 3.0/3.1之資料及其他通信、Type-C電纜之機電定義及效能需求、Type-C插座之機電定義及效能需求、Type-C插頭之機電定義及效能需求、Type-C對傳統電纜總成及適配器之需求、基於Type-C之裝置偵測及介面組態之需求、Type-C連接件之最佳化功率遞送之需求等等。根據USB Type-C規格,Type-C埠提供VBUS、D+、D-、GND、SSTX+、SSTX-、SSRX+及SSRX-線以及其他。另外,Type-C埠亦提供用於傳信邊帶功能性的邊帶使用(標示為SBU)線,以及用於探索、組態及管理Type-C電纜上之連接件的組態通道(標示為CC)線。Type-C埠可與Type-C插頭及/或Type-C插座相關。為了易於使用,Type-C插頭及Type-C插座經設計為獨立於插頭-插座定向而進行操作的可逆對。因此,以標準Type-C插頭或插座之形式設置的標準USB Type-C連接件提供用於四個VBUS線、四個接地返回(GND)線、兩個D+線(DP1及DP2)、兩個D-線(DN1及DN2)、兩個SSTX+線(SSTXP1及SSTXP2)、兩個SSTX-線(SSTXN1及SSTXN2)、兩個SSRX+線(SSRXP1及SSRXP2)、兩個SSRX-線(SSRXN1及SSRXN2)、兩個CC線(CC1及CC2)及兩個SBU線(SBU1及SBU2)以及其他的接腳。
一些具USB功能之電子裝置可與USB-PD規格之特定修訂版及/或版本(例如2012年7月5日發佈的修訂版1.0、2014年8月11日發佈的修訂版2.0等、或其後續修訂版/版本)相容。USB-PD規格定義如下標準協定,其經設計以藉由經由USB Type-C埠在單一USB Type-C電纜上提供更靈活的功率遞送及資料通信而致能具USB功能之裝置的最大功能性。USB-PD規格亦描述管理經由高達100 W功率之USB Type-C電纜之功率遞送所需的架構、協定、電源性能、參數及佈線。根據USB-PD規格,具有USB Type-C埠之裝置(例如具USB功能之裝置)可協商確定經由USB Type-C電纜之相比於舊版USB規格(例如,USB 2.0規格、USB 3.1規格、USB電池充電規格修訂版1.1/1.2等)而更大的電流及/或更高或更低的電壓。舉例而言,USB-PD規格定義可在一對具USB功能之裝置之間協商的功率遞送協議(PD協議)之需求。PD協議可指定兩個裝置可適應的功率位準及功率傳送方向,且可在由任一裝置請求之後及/或回應於各種事件及狀況(諸如功率角色交換、資料角色交換、硬重置、電源故障等)動態地重新協商。
根據USB-PD規格,電子裝置典型地經組態以經由在USB VBUS線上組態的功率路徑將功率遞送至另一裝置。提供功率的裝置典型地被稱為(或包括)「提供者」(或電源),且消耗功率的裝置典型地被稱為(或包括)「消耗者」(或功率耗散器(power sink))。功率路徑典型地包括電源開關,其同軸耦接在VBUS線上且經組態以開啟及斷開功率遞送。
USB-PD電源可經組態以自AC電源適配器或自另一AC源獲得功率。由此,作為AC至DC轉換的部分,一些實施方案在VBUS線之電源側使用大容量電容器,以移除功率信號之AC分量。此類大容量電容器可相當大(例如,1mF至6mF),且可在VBUS線上引起極高的電流,從而具有發熱及IC控制器閂鎖之風險。出於此原因,在某些狀況下,USB-PD電源需要使(電源側的)大容量電容器以及VBUS線的功率耗散器側的電壓極快速地放電。然而,鑒於VBUS線可在高達20 V下承載高達5 A之電流,總計高達100 W之功率,因此藉由使用IC控制器使VBUS線上之電壓快速放電並非小事。
舉例而言,一些當前的實施方案經組態以經由外部組件(例如超大型電阻器)使VBUS電壓僅在VBUS線之輸出(功率耗散器)側放電。因此,此等實施方案具有較高的材料清單(bill-of-material;BOM)成本,且未防止VBUS線上帶電電源(live supply)之可能放電(例如,由電源驅動但未施加至負載或負載未消耗的大量電流)。此外,此類實施方案典型地使VBUS電壓一直放電至降至實質上0 V,此情形會導致較大電流在顯著較長時間段內流動至接地(從而引起過度發熱)且導致用以操作USB控制器晶片的功率損失。
為了解決當前USB-PD VBUS電壓放電實施方案之此等及其他缺點,本文所描述之技術提供一種IC控制器,其具有多個經組態以使電壓自VBUS線放電的獨立受控的晶粒上放電電路。在VBUS線上之某些事件及/或狀況下,如VBUS交換事件、斷開狀況及故障狀況(例如,過電流、短路、過電壓、反向電流等),USB-PD控制器需要使其電源及功率耗散節點上之電壓快速放電。根據本文所描述之技術,IC控制器偵測此等事件/狀況,且經由晶粒上放電電路中之一或多者以可程式放電速率將電流自VBUS線驅動至USB接地線而使VBUS電壓放電。以此方式,本文所描述之技術允許使VBUS線上之電壓放電至多個可程式電壓位準中之任一者,其防止高電流及帶電電源放電,且不需要任何外部/晶片外放電組件。
在本文所描述技術之例示具體實例中,IC控制器包括兩個內部的晶粒上放電電路,其經組態以耦接至VBUS線且在VBUS線上之負電壓轉變期間降低其上之電壓。放電電路中之一者用於使VBUS電壓自VBUS線之電源側處之節點放電,且另一放電電路用於使VBUS電壓自VBUS線之功率耗散器處之節點放電。兩個放電電路亦可經組態以使VBUS電壓放電,以滿足USB-PD針對斷開狀況指定的時序。電源側之放電電路亦可用於使VBUS電壓加快緩降至功率耗散器側處之預設值5 V,而不使VBUS電壓一直降至實質上0 V。就動態重新協商的PD協議而言,本文所描述之技術允許監測VBUS線上之電壓且僅將該電壓下拉至所要非零電壓位準(例如,自12 V降至9 V)。
如本文中所使用,「邏輯(logic)」係指具有一或多個電路的硬體區塊,該一或多個電路包括經組態以處理類比及/或數位信號且回應於控制信號執行一或多個操作的各種電子組件。此類電子組件之實例包括(但不限於)電晶體、二極體、電阻器、電容器、電感器、邏輯閘及其各種電路。「USB-PD子系統」係指一或多個邏輯區塊及其他類比/數位硬體電路,其可由積體電路(IC)控制器中之韌體控制,並且經組態且可操作以執行功能且滿足USB-PD規格之至少一個發佈版本中指定的需求。
在例示具體實例中,IC包含設置於單片(例如,單一)半導體晶粒中之USB-PD子系統。USB-PD子系統包括放電控制邏輯,其經耦接以控制至少兩個晶粒上放電電路。第一放電電路經組態以耦接至VBUS線上之電源節點,且第二放電電路經組態以耦接至VBUS線上之輸出節點。放電控制邏輯經組態以獨立地控制第一放電電路及第二放電電路來使VBUS線上之電壓放電。在一個實例態樣中,電源節點設置在VBUS線上之電源開關之一側上,且輸出節點設置在VBUS線上之電源開關之另一側上。在一個態樣中,IC進一步包含:第一輸入接腳,其耦接至第一放電電路;第二輸入接腳,其耦接至第二放電電路;以及一或多個接地輸出接腳,其耦接至第一放電電路及第二放電電路。在另一態樣中,IC進一步包含經組態以耦接至VBUS線上之電源節點的電源接腳,其中USB-PD子系統經組態以由該電源接腳供電。在一個態樣中,IC進一步包含韌體指令,其用以控制由放電控制邏輯應用於第一放電電路及第二放電電路中之至少一者的驅動強度排程。在一實例態樣中,USB-PD子系統進一步包含電壓臨限值偵測器,其耦接至放電控制邏輯且經組態以相對於多個電壓位準來監測VBUS線上電源節點及輸出節點處之電壓。在一實例態樣中,USB-PD子系統進一步包含保護邏輯,其耦接至放電控制邏輯且經組態以監測VBUS線上電壓之放電速率且防止使帶電電源電壓放電。在一個態樣中,放電控制邏輯經組態以產生應用於第一放電電路及第二放電電路的多位元控制信號,其中該等多位元控制信號以步進方式控制自VBUS線釋放的電流的量。在另一態樣中,第一放電電路及第二放電電路中之每一者包含一或多個能夠承受較高(例如約30 V)汲極至源極電壓的汲極延伸式場效電晶體(drain-extended field-effect transistor;DEFET)。在一實例態樣中,放電控制邏輯經組態以控制第一放電電路以使VBUS線上之電壓以第一放電速率放電,且控制第二放電電路以使VBUS線上之電壓以第二放電速率放電。在一個態樣中,放電控制邏輯經組態以在非零電壓位準處停止VBUS線上之電壓之放電。在另一態樣中,USB-PD子系統進一步包含:電壓臨限值偵測器,其經組態以監測VBUS線上之電壓;電流感測偵測器,其經組態以監測USB接地線上返回的電流;及故障偵測器,其耦接至電流感測偵測器及電壓臨限值偵測器,且經組態以偵測VBUS線上之一或多個故障事件。
在另一例示具體實例中,一種設備/系統包含:USB Type-C連接件;及IC,其耦接至該連接件以控制該連接件之VBUS線上之功率傳送。IC包含:第一放電電路,其耦接至VBUS線上之電源節點;第二放電電路,其耦接至VBUS線上之輸出節點;及放電控制邏輯,其耦接至第一放電電路及第二放電電路,且經組態以獨立地控制第一放電電路及第二放電電路來使VBUS線上之電壓放電。在一實例態樣中,該設備進一步包含同軸耦接在VBUS線上之電源開關,其中電源節點設置在電源開關的一側上,且輸出節點設置在電源開關的另一側上。在一個態樣中,IC包含:第一輸入接腳,其將第一放電電路耦接至電源節點;第二輸入接腳,其將第二放電電路耦接至輸出節點;及一或多個接地輸出接腳,其將第一放電電路及第二放電電路耦接至局部接地端。在另一態樣中,IC經組態以根據USB-PD規格來控制經由VBUS線之功率傳送。在一個態樣中,IC經組態以控制VBUS線上之電壓的放電速率,且在另一態樣中,IC經組態以相對於多個電壓位準來監測VBUS線上之電壓。在各個態樣中,該設備可為PC電源適配器、行動電話充電器、壁式插座、車載充電器或行動電源。
在另一例示具體實例中,一種藉由設置於IC控制器中之放電控制邏輯來控制VBUS線上之功率傳送的方法包含:控制第一放電電路以使電壓自VBUS線上之電源節點放電;及藉由放電控制邏輯控制第二放電電路以使電壓自VBUS線上之輸出節點放電;其中第一放電電路及第二放電電路彼此獨立地受控。在一個態樣中,電源節點設置在VBUS線上之電源開關的一側上,且輸出節點設置在VBUS線上之電源開關的另一側上。在一實例態樣中,該方法進一步包含:在IC控制器之第一輸入接腳處接收來自VBUS線的第一電流,該第一輸入接腳耦接至第一放電電路;在IC控制器之第二輸入接腳處接收第二電流,該第二輸入接腳耦接至第二放電電路;以及使第一電流及第二電流放電至IC控制器之一或多個接地輸出接腳,該一或多個接地輸出接腳耦接至第一放電電路及第二放電電路。在另一態樣中,該方法進一步包含經由電源接腳汲取功率以用於IC控制器,該電源接腳耦接至VBUS線上之電源節點。在一個態樣中,該方法進一步包含相對於多個電壓位準來監測VBUS線上之電源節點及輸出節點之電壓。在一實例態樣中,該方法進一步包含監測VBUS線上之電壓的放電速率。在一態樣中,該方法進一步包含保護IC控制器以防止使VBUS線上之帶電電源電壓放電,且在另一態樣中,該方法進一步包含產生多位元控制信號且將該等多位元控制信號應用於第一放電電路及第二放電電路。在一實例態樣中,該方法進一步包含控制第一放電電路以使VBUS線上之電壓以第一放電速率放電,且控制第二放電電路以使VBUS線上之電壓以第二放電速率放電。在一個態樣中,該方法進一步包含在非零電壓位準處停止使VBUS線上之電壓放電。在另一態樣中,該方法進一步包含監測返回到USB接地線的電流以及偵測VBUS線上之一或多個故障事件。
圖1A繪示根據本文所描述之VBUS電壓放電技術組態的實例半導體裝置。在圖1A中所繪示的具體實例中,裝置100為在半導體晶粒上製造的IC控制器。舉例而言,IC控制器100可為由Cypress Semiconductor公司, San Jose, California開發的CCGx USB控制器系列中的單晶片IC裝置。在另一實例中,IC控制器100可為製造為系統單晶片(SoC)的單晶片IC。在其他具體實例中,IC控制器可為囊封於單一半導體封裝中之多晶片模組。IC控制器100包括CPU子系統102、周邊互連件114、系統資源116、各種輸入/輸出(I/O)區塊118(例如118a至118c)及USB-PD子系統120以及其他組件。
CPU子系統102包括耦接至系統互連件112的一或多個中央處理單元(CPU)104、快閃記憶體106、靜態隨機存取記憶體(SRAM)108及唯讀記憶體(ROM)110。CPU 104為可在IC或SoC裝置中操作的適合處理器。在一些具體實例中,CPU可藉由大量時脈閘控最佳化以用於低功率操作,且可包括允許CPU以各種功率狀態操作的各種內部控制器電路。舉例而言,CPU可包括經組態以將CPU自休眠狀態喚醒的喚醒中斷控制器,從而允許在IC晶片處於休眠狀態時斷開電源。快閃記憶體106為非揮發性記憶體(例如,NAND快閃、NOR快閃等),其經組態以用於儲存資料、程式及/或其他韌體指令。快閃記憶體106緊密耦接在CPU子系統102內以改良存取時間。SRAM 108為揮發性記憶體,其經組態以用於儲存由CPU 104存取的資料及韌體指令。ROM 110為唯讀記憶體(或其他適合的存儲媒體),其經組態以用於儲存開機常式、組態參數與其他韌體參數及設置。系統互連件112為系統匯流排(例如單層級或多層級進階高效能匯流排或AHB),其經組態為將CPU子系統102之各種組件彼此耦接的介面以及CPU子系統之各種組件與周邊互連件114之間的資料及控制介面。
周邊互連件114為周邊匯流排(例如單層級或多層級AHB),其提供CPU子系統102與其周邊設備及其他資源(諸如系統資源116、I/O區塊118及USB-PD子系統120)之間的主要資料及控制介面。周邊互連件114可包括各種控制器電路(例如直接記憶體存取或DMA控制器),其可經程式化以在周邊區塊之間傳送資料而不使CPU子系統102負擔。在各種具體實例中,CPU子系統之組件及周邊互連件中之每一者就CPU、系統匯流排及/或周邊匯流排之每一選擇或類型而言可不同。
系統資源116包括支援IC控制器100以其各種狀態及模式操作的各種電子電路。舉例而言,系統資源116可包括功率子系統,其提供每一控制器狀態/模式所需的功率資源,該等控制器狀態/模式諸如電壓及/或電流參考、喚醒中斷控制器(WIC)、功率開啟重置(power-on-reset;POR)等。在一些具體實例中,功率子系統亦可包括允許IC控制器100自具有若干不同電壓及/或電流位準的外部源汲取功率及/或向該等外部源提供功率且支援若干功率狀態(例如休眠狀態及作用中狀態)之控制器操作的電路。系統資源116亦可包括提供由IC控制器100使用之各種時脈的時脈子系統以及實施各種控制器功能(諸如外重置)的電路。
在各種具體實例及實施方案中,諸如IC控制器100之IC控制器可包括各種不同類型的I/O區塊及子系統。舉例而言,在圖1A中所繪示的具體實例中,IC控制器100包括通用輸入輸出(general purpose input output;GPIO)區塊118a、計時器/計數器/脈寬調變(timer/counter/pulse-width-modulation;TCPWM)區塊118b、序列通信區塊(serial communication block;SCB)118c及USB-PD子系統120。GPIO 118a包括經組態以實施各種功能的電路,該等功能諸如上拉、下拉、輸入臨限值選擇、輸入及輸出緩衝器啟用/停用、多路複用連接至各種I/O接腳的信號等等。TCPWM 118b包括經組態以實施計時器、計數器、脈寬調變器、解碼器及經組態以對輸入/輸出信號進行操作的各種其他類比/混合信號元件的電路。SCB 118c包括經組態以實施各種序列通信介面的電路,該等介面諸如I2 C、序列周邊介面(serial peripheral interface;SPI)、通用非同步接收器/傳輸器(universal asynchronous receiver/transmitter;UART)、控制器區域網路(Controller Area Network;CAN)介面、時脈擴展周邊介面(Clock eXtension Peripheral Interface;CXPI)等等。
USB-PD子系統120為USB Type-C埠提供介面,且經組態以支援USB通信以及其他USB功能性,諸如功率遞送及電池充電。USB-PD子系統120包括Type-C埠上所需要的靜電放電(ESD)保護電路。USB-PD子系統120亦包括Type-C收發器及實體層邏輯(PHY),其經組態為積體基頻PHY電路以執行涉及實體層傳輸的各種數位編碼/解碼功能(例如雙相標示代碼(Biphase Mark Code;BMC)編碼/解碼、循環冗餘核對(CRC)等)及類比信號處理功能。USB-PD子系統120亦提供如USB-PD規格所要求的終端電阻器(RP 及R D )及其開關,以實施Type-C電纜上之連接偵測、插頭定向偵測及功率遞送角色。IC控制器100(及/或其USB-PD子系統120)亦可經組態以回應於USB-PD規格中所定義的通信,諸如SOP、SOP'及SOP''傳訊。
USB-PD子系統120可進一步包括:類比/數位轉換器(ADC),其用於將各種類比信號轉換成數位信號;誤差放大器(ERROR AMP),其用於控制根據PD協議施加至VBUS線之電源電壓;高電壓調整器(HV REG),其用於將電源電壓轉換成用於對IC控制器100供電所需的精確電壓(例如3至5 V);電流感測放大器(current sense amplifier;CSA)及過電壓保護(over-voltage protection;OVP)電路,其藉由可組態的臨限值及回應時間對VBUS線提供過電流及過電壓保護;一或多個閘極驅動器(GATE DRV),其用於控制開啟及斷開VBUS線上之功率提供的電源開關;及通信通道PHY(CC BB PHY)邏輯,其用於支援Type-C通信通道(CC)線上之通信;以及其他電路。
根據本文所述技術,USB-PD子系統120包括放電控制邏輯,其經耦接以控制可使VBUS線電壓放電至一系列電壓位準的至少兩個晶粒上放電(VBUS DISCH)電路。第一放電電路經組態以耦接至VBUS線上之電源節點,且第二放電電路經組態以耦接至VBUS線上之輸出(功率耗散器)節點。放電控制邏輯經組態以獨立地控制第一放電電路及第二放電電路來使VBUS線上之電壓放電至所要電壓位準(例如,如PD協議中所協商之電壓位準)。
圖1B繪示可實施所描述的VBUS電壓放電技術的實例應用情境。在此等應用情境中之每一者中,IC控制器(諸如圖1A之IC控制器100)可設置且組態於電子裝置(例如具USB功能之裝置)中以根據本文所描述之技術執行操作。在一例示具體實例中,IC控制器100a可設置且組態於用於膝上型電腦、筆記型電腦等之個人電腦(PC)電源適配器130中。在另一例示具體實例中,IC控制器100b可設置且組態於用於行動電子裝置(例如智慧型電話、平板等)之電源適配器(例如壁式充電器)140中。在另一例示具體實例中,IC控制器100c可設置且組態於壁式插座150中,其經組態以經由USB Type-A及/或Type-C埠提供功率。在另一例示具體實例中,IC控制器100d可設置且組態於車載充電器160中,其經組態以經由USB Type-A及/或Type-C埠提供功率。在另一例示具體實例中,IC控制器100e可設置且組態於可接受充電且隨後經由USB Type-A或Type-C埠向另一電子裝置提供功率的行動電源170中。在其他具體實例中,經組態具有本文所描述之VBUS放電電路的IC控制器可設置於各種其他具USB功能之電子裝置或機電裝置中。
應理解,IC控制器(諸如圖1A之IC控制器100)可設置於不同應用中,該等應用就所使用的電源類型及遞送功率的方向而言可不同。舉例而言,在車載充電器160的情況下,電源為提供DC電源的汽車電池,而在行動電源適配器140的情況下,電源為AC壁式插座。此外,在PC電源適配器130的情況下,功率遞送之流動係自提供者裝置至消耗者裝置,而在行動電源170的情況下,功率遞送之流動可取決於行動電源係用作功率提供者(例如為另一裝置供電)抑或功率消耗者(例如其自身接受充電)而在兩個方向上進行。出於此等原因,圖1B中所繪示各種IC控制器應用應被視為說明性而非限制性意義。
圖2繪示根據本文所描述之VBUS電壓放電技術的IC控制器(例如圖1A中之IC控制器100)之示意圖。IC控制器200耦接至VBUS線201且經組態以在VBUS線201上之負電壓轉變期間控制VBUS電壓之放電。VBUS線201包括電源開關203,其經組態為受IC控制器200中之閘極驅動器控制的接通/斷開(on/off)開關裝置。在電源開關203的一側,VBUS線上之電源節點205(例如大容量電容器節點)耦接至電源,諸如電源適配器(圖中未示)。電源節點205耦接至IC控制器200之輸入接腳215。在電源開關203的另一側,VBUS線上之輸出節點207(例如耗散器節點或消耗者節點)耦接至USB Type-C插座或插頭(圖中未示)。輸出節點207耦接至IC控制器200之輸入接腳217。
電源開關203包括一或多個功率場效電晶體(功率FET)。功率FET可為N通道或P通道電晶體。功率FET在一些重要特徵方面不同於用於其他非功率傳送應用的FET及其他類型電晶體開關裝置。作為離散半導體開關裝置,功率FET需要在其接通時承載其源極與汲極之間的大量電流,在其斷開時自其源極至汲極具有極低電阻,且在其斷開時承受其源極至汲極之高電壓。在一些具體實例中,視經由VBUS線201耦接在外部功率路徑上的電源開關類型而定,同一IC控制器200可經組態以控制具有N通道功率FET之電源開關或具有P通道功率FET之電源開關。
除了其他組件,IC控制器200還包括CPU 202,其經由一或多個匯流排212耦接至電流感測偵測器222,故障偵測器224,保護邏輯226,一或多個可程式臨限值偵測器228-1及228-2,以及放電邏輯232。根據本文所描述之技術,CPU 202經組態以執行可儲存在非揮發性記憶體中之韌體及/或軟體指令,且該等指令在經執行時再組態及/或再程式化電流感測偵測器222,故障偵測器224,保護邏輯226,臨限值偵測器228-1及228-2,以及可程式放電邏輯232。在各種實施方案及具體實例中,韌體指令存取/使用的組態資料可儲存在任何適合的揮發性及/或非揮發性儲存器中,可包括(但不限於)儲存元件陣列、可再程式快閃記憶體、可再程式或單次可程式(one-time programmable;OTP)暫存器、RAM陣列及資料觸發器(data flop)陣列。在一些具體實例中,韌體指令及其資料可儲存在晶片上,而在其他具體實例中,韌體指令及其資料中之一些(或所有)可儲存在外部記憶體(例如序列EEPROM)中,且可原位經執行或可在執行之前或在特定操作事件(例如通電或重置)下經讀取且加載至IC控制器200之揮發性記憶體中。
應理解,各種具體實例可提供各種機制以促進根據本文所描述之VBUS電壓放電技術操作的IC控制器(及其各種組件)之可再組態性及/或可再程式化性。舉例而言,一些具體實例可將組態及/或程式資料儲存在邏輯電路中,該等邏輯電路藉由使用在製造IC控制器時微調的基於電阻器之熔絲來啟用/停用。此類熔絲之實例包括雷射熔絲、電熔絲及具有一些熔絲特性及一些非揮發性記憶體特性的非揮發性鎖存器。在一些具體實例中,接腳搭接(pin-strapping)可用於促進IC控制器之可程式化性。接腳搭接機制可涉及(例如經由跨接線或PCB跡線)將多個控制器接腳/端子連接至電源或接地端,以使每一輸入端向IC控制器提供二進位值,其中所提供輸入值之集合使用組態資料來組態或程式化控制器之一或多個組件。在一些具體實例中,用於程式化IC控制器之組態資料可以電阻器組態儲存器之形式儲存。舉例而言,一組電阻器可連接在IC控制器之一組接腳/端子與電源或接地端之間以產生電壓或電流,ADC可量測該電壓或電流以產生用於組態控制器之一或多個參數的二進位值。在其他具體實例中,用於程式化IC控制器之組態資料可以遮罩ROM或金屬遮罩之形式提供。舉例而言,晶片製造商可藉由使用單個微影遮罩來改變「1」與「0」之間的預定義內部節點之連接,而訂製特定批次的IC控制器晶片,該單個微影遮罩特定於該訂製組態而其他遮罩與其他批次保持相同,從而提供該特定批次之控制器的訂製組態參數。
應理解,各種具體實例可為根據本文所描述之VBUS電壓放電技術操作的IC控制器(及其組件)提供各種類型的可程式化性。舉例而言,一些具體實例(諸如圖2中所繪示的具體實例)可提供動態可程式化性,其中組態改變在IC控制器之正常操作過程中,通常(但不一定總是)回應於一或多個操作條件之改變或外部命令且基於先前程式化至控制器中之資料而再程式化,其他具體實例可使用系統內可程式化性,其中組態改變在IC控制器之正常操作過程中回應於外部命令且基於下載至控制器中與該命令有關的新組態資料而再程式化。在一些具體實例中,作為IC控制器之製造的一部分或作為最終產品(例如電源適配器、壁式插座、車載充電器、行動電源等)之製造的一部分,IC控制器可經工廠程式化。舉例而言,IC控制器可在製造期間藉由使用各種機制而程式化,該等機制諸如儲存在非揮發性記憶體中之韌體指令、接腳搭接、電阻器程式化、雷射微調熔絲、NV鎖存器或OTP暫存器。
在圖2之具體實例中,電流感測偵測器222經由匯流排212耦接至CPU 202,且耦接至IC控制器200之輸出接腳(圖中未示),該輸出接腳連接至USB接地線。電流感測偵測器222包括過電流保護邏輯,其在操作期間感測遞送通過VBUS線201或返回通過USB接地線的電流,且在感測電流超過組態臨限值時將控制信號應用於故障偵測器224。CPU 202可在IC控制器200之操作期間再程式化或選擇電流感測偵測器222之一或多個組態參數(例如電流偵測臨限值)。舉例而言,CPU 202可回應於一或多個操作條件之改變或命令且基於外部資料及/或基於先前程式化之資料來執行韌體指令。
故障偵測器224包括故障偵測邏輯且經由匯流排212耦接至CPU 202。故障偵測器224經組態以自電流感測偵測器222,保護邏輯226及電壓臨限值偵測器228-1/228-2接收資料及/或控制信號,且亦經耦接以將資料及/或控制信號提供至放電控制邏輯232。回應於CPU 202所執行的韌體指令及/或基於所接收信號,故障偵測器224判定VBUS線201上(或IC控制器200中之其他處)是否出現故障狀況,且將適當的資料/控制信號提供至放電控制邏輯232。在IC控制器200之操作期間,CPU 202可例如藉由回應於操作條件改變或命令且基於外部資料及/或基於先前程式化之資料,來執行韌體指令而再程式化故障偵測器224之一或多個組態參數。故障偵測器224可偵測的VBUS線201上之故障狀況之實例包括(但不限於)過電流狀況、短路狀況、過電壓狀況、反向電流狀況及其他狀況。故障偵測器224亦可偵測VBUS線201上之VBUS交換事件。
USB-PD規格中被稱為快速角色交換(Fast Role Swap;FRS)的VBUS交換係允許USB-PD系統中之電源與功率耗散器之角色互換的機制。舉例而言,電子裝置(例如行動電源)中之同一Type-C埠可在連接至提供者裝置時為功率耗散器,或在連接至消耗者裝置時為電源。根據USB-PD規格中定義的FRS,Type-C埠的此等角色可在某些條件下動態(例如無需拔出)地切換而不損耗所連接裝置之功率。亦即,FRS相容埠必須能夠足夠快速地(亦即在150 ps內)自耗散功率切換至供應功率以避免任何功率中斷。根據本文所描述之技術,故障偵測器224亦經組態以偵測VBUS線201上之VBUS交換事件且將對應的觸發信號提供至保護邏輯226,以滿足USB-PD規格之FRS需求。
保護邏輯226經由匯流排212耦接至CPU 202,且耦接至放電控制邏輯232。保護邏輯226包括用以接收指示故障偵測邏輯224所偵測到的故障狀況的控制信號且將對應的中斷信號提供至CPU 202的硬體電路。保護邏輯226亦包括計數器及可程式臨限值偵測器,其經組態以持續監測藉由放電控制邏輯232啟用的VBUS 201電壓放電之實際速率。當滿足經程式化臨限值時或當實際放電速率與預測/預期速率實質上不同時,保護邏輯226將適當控制信號提供至放電控制邏輯232以停止放電。此情形允許放電控制邏輯232使VBUS電壓保持放電直至滿足經程式化臨限值,同時一直監測電壓放電之速率且與給定放電設定檔或狀態之預期速率進行比較。在IC控制器200之操作期間,計數器及保護邏輯226之臨限值參數可由CPU 202例如藉由執行適當韌體指令而再程式化。
電壓臨限值偵測器228-1耦接至輸入接腳215且耦接至放電電路230-1,且經組態以監測VBUS線201之電源節點205上的電壓。電壓臨限值偵測器228-2耦接至輸入接腳217且耦接至放電電路230-2,且經組態以監測VBUS 201之輸出節點207上的電壓。每一電壓臨限值偵測器228-1/228-2亦經由匯流排212耦接至CPU 202。以此方式,圖2中之具體實例為VBUS線201之電源節點及輸出節點提供單獨的電壓臨限值偵測器。然而,應理解,在一些具體實例中,同一電壓臨限值偵測器區塊可經組態以監測VBUS線上的電源電壓及輸出電壓兩者。由此,圖2中繪示兩個單獨電壓臨限值偵測器的具體實例應被視為說明性的而非限制性意義。
電壓臨限值偵測器228-1及228-2包括分別監測VBUS線201上電源開關203兩側的電壓位準且將資料及/或控制信號提供至故障偵測器224及放電控制邏輯232的邏輯。每一電壓臨限值偵測器228-1/228-2中之邏輯包括電阻分壓器及電壓參考產生器,其經由適當的連接電路(例如匯流排、MUX)耦接至一組比較器。電阻分壓器提供按比例縮減在VBUS線201上偵測到的電壓的多個分接點。藉由比較器比較來自分接點的經比例縮放電壓輸出(例如10%、20%等)與參考電壓產生器所產生的參考電壓。當經比例縮放電壓達到比較器之參考電壓時,比較器跳閘且產生輸出信號,該輸出信號指示VBUS線201上對應節點處之量測電壓已達到由參考電壓信號表示之電壓位準。輸出信號經提供至故障偵測器224,該故障偵測器繼而在匯流排212上產生中斷以向CPU 202指示所偵測之電壓位準(或其改變)。以此方式,電壓臨限值偵測器228-1/228-2中之每一者可相對於多個電壓位準來監測其VBUS線201之對應節點處的電壓位準,且可偵測VBUS電壓。
在IC控制器200之操作期間,CPU 202可單獨且彼此獨立地再程式化每一電壓臨限值偵測器228-1及228-2之參考臨限電壓、至各分接點之連接佈線及其他組態參數。舉例而言,藉由執行適當的韌體指令,CPU 202可獨立於電壓臨限值偵測器228-2所監測的電壓臨限值,而降低或增加電壓臨限值偵測器228-1所監測的臨限電壓位準。例如在控制器僅由VBUS線201之電源側供電的應用中,此類可程式臨限值控制避免至IC控制器200之功率之損失。此外,對電壓臨限值偵測器228-1及228-2之單獨及獨立可程式控制允許IC控制器200實施PD協議(或其部分),其在USB-PD規格所要求的時間限制內需要VBUS線201上之任何負電壓轉變。
在IC控制器200內,放電電路230-1耦接在輸入接腳215與接地輸出接腳211之間,以將電流自VBUS線201之電源節點205驅動至接地端,從而降低電源節點處之VBUS電壓。類似地,放電電路230-2耦接在輸入接腳217與接地輸出接腳211之間,以將電流自VBUS線201之輸出節點207驅動至接地端,從而降低輸出節點處之VBUS電壓。應注意,圖2中之具體實例針對放電電路230-1及230-2兩者所釋放之電流提供單一接地輸出接腳211。然而,應理解,在一些具體實例中,每一放電電路可耦接至其IC控制器之自身接地輸出接腳,而在其他具體實例中,任何放電電路可耦接至控制器之多個接地輸出接腳。由此,圖2中繪示單一接地輸出接腳以用於兩個放電電路的具體實例應被視為說明性而非限制性意義。
放電電路230-1及230-2經組態以藉由驅動電流自VBUS線經由IC控制器200至USB接地端/返回線(及/或驅動至另一系統接地端),而降低VBUS線201上之電壓。放電控制邏輯232經組態以單獨且彼此獨立地控制每一放電電路230-1及230-2之操作。舉例而言,放電控制邏輯232可單獨且獨立於其應用於放電電路230-2之控制信號而應用控制信號,來啟用及停用放電電路230-1,其中該等控制信號經由IC控制器200調整每一放電電路所傳導的電流之時序、持續時間及量。
圖3繪示根據本文所描述之VBUS電壓放電技術的實例放電電路230。類似於圖2之放電電路230-1/230-2,圖3中之放電電路230經組態以將電流自VBUS線之節點驅動至接地端。放電電路230設置在IC控制器(例如圖2之IC控制器200)之半導體晶粒上,且耦接在控制器之輸入接腳215或217與接地輸出接腳211之間。IC控制器之輸入接腳215/217經組態以自VBUS線之節點接收高電壓VBUS信號(「vbus_shv」),且接地輸出接腳211經組態以將返回信號(「vgnd_io」)提供至USB GND線(或提供至其他系統接地端)。
放電電路230包括耦接至電晶體裝置230b之邏輯閘極230a,且經組態以接收多位元控制信號230c(「dischg_ds[n:0]」)、啟用信號230d(放電啟用信號「dischg_en」及高電壓啟用信號「enable_hv」)及電源信號230e(低電壓信號「vpwr_lv」及高電壓信號「vpwr_hv」)。放電電路230耦接至其自身接地接腳230f以確保其電子元件不受接地輸出接腳211之地彈(ground bounce)影響。邏輯閘極230a經組態以接收來自放電控制邏輯之啟用信號230d作為輸入,且產生應用於電晶體裝置230b之閘極的高電壓N閘極啟用信號(「ng」)作為輸出。電晶體裝置230b由多個獨立受控組的DEFET電晶體構成,該等組的DEFET彼此並聯耦接在輸入接腳215/217與接地輸出接腳211之間。每一組DEFET之閘極經耦接以自邏輯閘極230a接收高電壓N閘極啟用信號,且每一DEFET電晶體經組態以承受其汲極與源極之間的高電壓(例如約30 V)。在電晶體裝置230b與接腳215/217及211之間在晶粒上使用具有適合電阻率特性的金屬佈線,以避免發熱或熔化之風險或至少將該風險降至最低。舉例而言,在一些具體實例中,此類金屬佈線可經建構以承受880 mA(22V/25Q)之最大電流,其遠高於放電電路230在USB-PD電流放電要求下預期傳導的最大值。
多位元控制信號230c由放電控制邏輯(例如圖2中之放電控制邏輯232)提供,且經組態以控制以可程式驅動強度驅動通過電晶體裝置230b的電流的量。舉例而言,若可在一個DEFET電晶體之汲極與源極之間驅動的電流表示為「X」,則具有一個DEFET的一組將具有1X之驅動強度,具有兩個DEFET的一組將具有2X之驅動強度,具有四個DEFET的一組將具有4X之驅動強度,等等。由此,表示為多位元信號的數位字組可藉由使用「1」與「0」的正確組合,來接通/斷開對應組的DEFET電晶體而用於控制所釋放電流的量。在一例示具體實例中,電晶體裝置230b包括經組態用於1X、2X、4X、8X、16X及32X之驅動強度的六組DEFET。每一組DEFET獨立地由6位元控制信號230c中之一個位元控制,此情形允許放電控制邏輯將電晶體裝置230b之驅動強度控制在1X與63X之間的任何位準處。在操作期間,放電控制邏輯使用6位元控制信號之位元步進地接通該等組的DEFET,以確保驅動通過電晶體裝置230b的電流逐漸增加,從而不在接地輸出接腳211處產生地彈。此驅動強度排程之時序可係基於IC控制器之操作特性,且可基於特定USB-PD應用而程式化。
返回參看圖2,放電控制邏輯232經由匯流排212耦接至CPU 202。放電控制邏輯232經組態以接收來自保護邏輯226及電壓臨限值偵測器228-1/228-2的資料及/或控制信號,且亦經耦接以將控制信號提供至放電電路230-1及230-2。回應於CPU 202所執行的韌體指令及/或基於所接收信號,放電控制邏輯232可彼此獨立地控制放電電路230-1及230-2,且可使得每一放電電路使其VBUS線201上之對應節點的電壓以可程式放電速率放電。在IC控制器200之操作期間,CPU 202可例如藉由回應於操作條件改變或命令且基於外部資料及/或先前程式化之資料執行韌體指令,而再程式化放電控制邏輯232之時序、持續時間、驅動強度及其他組態參數。
放電控制邏輯232經組態以彼此獨立地驅動放電電路230-1及230-2,此情形消除對外部(晶片外)限流高瓦數電阻器之需求。此外,放電控制電路232經組態以回應於韌體指令或回應於來自電壓臨限值偵測器228-1/228-2之信號,而停止使電流經由放電電路放電。舉例而言,放電控制邏輯232可在VBUS線201上之電壓達到某一非零電壓位準(例如12 V、9 V、6 V等)時停止放電。非零電壓位準可經由電壓臨限值偵測器228-1/228-2之組態參數而程式化,或可係基於對VBUS電壓已跨過對應臨限值之偵測。此情形允許放電控制邏輯232控制VBUS線201之節點205及207中之任一者的VBUS電壓放電速率。
在一些具體實例中,放電控制邏輯232亦可經組態以例如回應於來自保護邏輯226之信號,而自動斷開放電電路230-1/230/2。舉例而言,此自動斷開功能可在偵測到VBUS線201上之電壓達至低於5.5 V時激活,以確保VBUS電壓決不低於5 V的USB預設值。此情形繼而確保斷開VBUS線201的任何系統組件不會損失功率。
在一些具體實例中,放電控制邏輯232亦可經組態以防止IC控制器200使VBUS線201之帶電電源放電。舉例而言,當在某一時間段內,電源節點205處之VBUS電壓即使在接通放電電路230-1的情況下亦不下降時,如此可指示帶電電源電流正放電通過IC控制器200。回應於偵測到此狀況(例如藉由使用來自可程式計數器的輸出信號),電壓臨限值偵測器228-1向放電控制邏輯232產生對應的信號,且放電控制邏輯關閉放電電路230-1及/或230-2以保護IC控制器200。
在一些具體實例中,放電控制邏輯232亦可經組態以使VBUS節點205及207上之電壓以相同或不同速率放電。放電速率可基於IC控制器200所接收到的外部命令及/或基於操作條件改變(例如基於來自控制器之其他組件之信號偵測到的操作條件改變)而動態地再程式化。舉例而言,放電控制邏輯232可產生單獨的脈寬調變(PWM)啟用信號(例如圖3中之「dischg_en」信號230d)且將其應用於每一放電電路230-1及230-2。此情形允許每一放電電路以其自身時序接通及斷開,從而允許獨立地控制其放電速率。
在一些具體實例中,放電控制邏輯232亦可經由可程式驅動強度排程來控制每一放電電路230-1/230-2之放電速率。舉例而言,在操作期間,放電控制邏輯232可產生單獨的多位元控制信號(例如圖3中之信號230c)且將其應用於每一放電電路230-1及230-2。此情形允許每一放電電路以其自身驅動強度經驅動,從而允許獨立地控制其放電速率。在一些具體實例中,每一放電電路230-1/230-2之多位元控制信號可用於步進式接通。舉例而言,放電控制邏輯232可藉由在某一時間段(例如10 ms)內逐漸地增加驅動強度而開始,隨後在某一時間段(例如20 ms)內保持電流放電位準,且之後繼續逐漸地增加驅動電流通過放電電路,直至達到所要放電位準。驅動強度增加可一次進行一個步進,步進之間的最小值為1 ms。如此機制允許放電控制邏輯232防止接地輸出接腳211處之地彈。地彈係在接地電壓突然實質上上升超過0 V時出現的狀況。此狀況可在將大量電流下拉通過晶片之接地接腳時(例如在放電電路以其完全驅動強度立即接通時)出現。
放電控制邏輯232可回應於反映每一放電電路之驅動強度排程的韌體指令,而驅動放電電路230-1/230-2中任一者或兩者。在一些具體實例及實施方案中,放電控制邏輯232可在所有情況下及/或針對兩個放電電路使用相同的驅動強度排程。此機制當在高VBUS電壓位準下可容許較長時間延遲及高電流時可適用。在其他具體實例及實施方案中,放電控制邏輯232可使用針對預定義使用條件按比例調整的驅動強度排程。此機制在已知VBUS線201上之初始VBUS電壓及電容負載時可適用。在其他具體實例及實施方案中,放電控制邏輯232可使用驅動強度排程,其利用基於VBUS電壓之條件更新。舉例而言,當前判定的VBUS電壓位準可用作針對快閃記憶體中所儲存資料之查找值,以判定使用哪一驅動強度(若存在)。此機制不需要知曉VBUS線201上之電容負載,且自動地對VBUS電壓位準作出反應。
在一些具體實例中,放電控制邏輯可在不使用可程式韌體或可再組態硬體的情況下控制IC控制器中之放電電路。舉例而言,邏輯引擎可經設計具有排程器、計數器及經組態以固定時序排程啟動放電電路的其他固定硬體元件(例如設計為可綜合RTL)。放電控制邏輯亦可使用硬接線的固定電流放電設定檔及多個預設驅動強度排程來對有限數目個操作條件或情境提供支援。
圖4繪示在不具有驅動強度排程的操作情境中,例如在IC控制器之放電電路以完全驅動強度接通時,VBUS線之電流放電的圖式400。在不同電阻狀態下針對同一IC控制器晶片,隨時間推移繪製在時間I(t)時通過放電電路的電流的速率。電阻狀態反映放電電路之操作參數(例如溫度及VBUS電壓)且表徵其放電能力。舉例而言,曲線402繪示在相對較高電阻狀態期間(例如在較高操作溫度及/或VBUS電壓下)的放電電流。如曲線402所繪示,在不使用驅動強度排程的情況下,在高電阻狀態期間放電的電流可達到約130 mA。曲線404繪示在相對較低電阻狀態期間(例如在較低操作溫度及/或VBUS電壓下)的放電電流。如曲線404所繪示,在不使用驅動強度排程的情況下,在低電阻狀態期間放電的電流可達到約250 mA。曲線406繪示在典型電阻狀態期間(例如在正常/室內操作溫度及/或典型VBUS電壓下)的放電電流。如曲線406所繪示,在不使用驅動強度排程的情況下,在典型電阻狀態期間放電的電流可達到約200 mA。
圖5繪示在使用驅動強度排程的操作情境中,例如在放電控制邏輯使用如本文所描述之可程式驅動強度排程時,VBUS線之電流放電的圖式500。在較高、較低及典型電阻狀態下針對同一IC控制器晶片,隨時間推移繪製在時間I(t)時通過放電電路的電流的速率。對於每一電阻狀態,圖式500繪示經驅動通過放電電路之電流之初始步進式增加,接著為放電位準不再增加的保持時期,且隨後為經驅動電流之另一步進式增加。
舉例而言,曲線502繪示相對較高電阻狀態期間的放電電流。如曲線502所繪示,在高電阻狀態期間放電的電流峰值為約125 mA,其低於在不使用驅動強度排程的情況下在高電阻狀態下的130 mA(例如圖4中之曲線402所繪示)。曲線504繪示相對較低電阻狀態期間的放電電流。如曲線504所繪示,在低電阻狀態期間放電的電流峰值為約200 mA,其低於在不使用驅動強度排程的情況下在低電阻狀態下的250 mA(例如圖4中之曲線404所繪示)。曲線506繪示典型電阻狀態期間的放電電流。如曲線506所繪示,在典型電阻狀態期間放電的電流峰值為約175 mA,其低於在不使用驅動強度排程的情況下在典型電阻狀態下的200 mA(例如圖4中之曲線406所繪示)。總體而言,圖5說明在與不使用驅動強度排程之驅動方案相比時,使用如本文所描述之可程式驅動強度排程可降低放電電流的峰值量值。
本文所描述之VBUS電壓放電技術可體現於若干不同類型的USB-PD應用中。一個實例為供應(sourcing)應用,其中電源經組態為提供者裝置以經由USB Type-C埠向消耗者裝置提供功率。另一實例為雙角色功率(Dual-Role-Power;DRP)應用,其中USB Type-C埠經組態以用作電源或功率耗散器中之任一者,或可藉由使用USB-PD功率角色交換而在此兩個角色之間動態地交替。
圖6繪示根據一例示具體實例的具有光隔離器反饋的PC USB-PD電源適配器。IC控制器600可設置於晶片封裝中,且包括根據本文所描述之VBUS電壓放電技術組態的USB-PD子系統。IC控制器600經組態以與連接至USB Type-C埠640之消耗者裝置(圖中未示)協商PD協議,且經由輸出接腳(「CATH/COMP」)控制自功率轉換器650輸出的所需VBUS電壓。典型地,USB Type-C埠640與Type-C插頭相關聯,但應理解,在各種具體實例中,USB Type-C埠可替代地與Type-C插座相關聯。功率轉換器650為AC電源且耦接至補償網路660,該補償網路為功率轉換器之設計專有的電阻器-電容器(RC)電路且經耦接以自IC控制器600之輸出接腳(「FB」)接收反饋信號。
IC控制器600耦接至VBUS線601且經組態以在VBUS線601上之負電壓轉變期間控制VBUS電壓之放電。VBUS線601包括電源開關603,其經組態為受來自IC控制器600中之閘極驅動器之輸出接腳(「VBUS_P_CTRL」)的信號控制的接通/斷開開關裝置。在電源開關603的一側上,VBUS線上之電源節點605耦接至功率轉換器650,該功率轉換器包括經組態以移除功率信號之AC分量的大容量電容器。電源節點605耦接至IC控制器600之輸入接腳(「VBUS_IN_DIS」)。「VBUS_IN_DIS」接腳耦接至晶粒上放電電路,該晶粒上放電電路經組態以自電源節點605下拉電流,從而降低其VBUS電壓。在電源開關603的另一側上,VBUS線上之輸出節點607耦接至USB Type-C埠640。輸出節點607耦接至IC控制器600之另一輸入接腳(「VBUS_C_DIS」)。「VBUS_C_DIS」接腳耦接至另一晶粒上放電電路,該晶粒上放電電路經組態以自輸出節點607下拉電流,從而降低其VBUS電壓。經由IC控制器600之晶粒上放電電路下拉的電流經驅動至IC控制器600之輸出接腳(「GND」)611。接地接腳611耦接至USB Type-C埠640之接地GND線。IC控制器600中之放電控制邏輯經組態以藉由使用啟用及控制信號來單獨且彼此獨立地控制每一放電電路之操作,該等啟用及控制信號經由IC控制器調整每一放電電路傳導的電流的時序、持續時間及量。
在操作中,VBUS線601上之功率流動方向為自功率轉換器650至連接至USB Type-C埠640之消耗者裝置,諸如膝上型電腦(圖中未示)。當協商好與消耗者裝置之PD協議時,IC控制器600接通電源開關603以所協商之電壓及/或電流位準向消耗者裝置提供功率。在動態地重新協商PD協議以降低VBUS電壓及/或電流時,例如在消耗者裝置之電池已完成充電且現在僅需要功率進行操作時,可能需要VBUS線601上之負電壓轉變。根據本文所描述之技術,作為回應,IC控制器600中之放電控制邏輯接通晶粒上放電電路,以降低節點605及/或607處之VBUS電壓。在VBUS線601上之電壓達到新PD協議要求的較低電壓位準時,放電控制邏輯斷開放電電路且停止放電。
圖7繪示根據各種具體實例的USB-PD電源適配器(例如用於行動電話之壁式適配器或壁式插座)。IC控制器700可設置於晶片封裝中,且包括根據本文所描述之VBUS電壓放電技術組態的USB-PD子系統。IC控制器700經組態以與連接至USB Type-C埠740之消耗者裝置(圖中未示)協商PD協議。在各種具體實例中,USB Type-C埠740可與Type-C插頭或Type-C插座相關聯。功率轉換器750為AC電源,且包括經組態以將提供至VBUS線701上之功率信號之AC分量移除的大容量電容器。功率轉換器750耦接至控制器760,該控制器經組態以基於來自IC控制器700之輸出接腳(「FB」)的反饋信號來控制功率轉換器所提供的電壓。IC控制器700支援兩種操作模式,恆定電壓模式及恆定電流模式(亦稱為直接充電模式)。在經由USB Type-C埠740與消耗者裝置恰當磋商之後,IC控制器700在其兩種操作模式之間切換,且在其輸出接腳「FB」上提供適當的反饋信號以控制控制器760之操作。
IC控制器700耦接至VBUS線701且經組態以在VBUS線701上之負電壓轉變期間控制VBUS電壓之放電。VBUS線701包括電源開關703,其經組態為接通/斷開開關裝置,其受來自IC控制器700中之閘極驅動器之輸出接腳(「VBUS_P_CTRL」)的信號控制。在電源開關703的一側上,VBUS線上之電源節點705耦接至功率轉換器750。電源節點705耦接至IC控制器700之輸入接腳(「VBUS_IN_DIS」)。「VBUS_IN_DIS」接腳耦接至晶粒上放電電路,該晶粒上放電電路經組態以自電源節點705下拉電流,從而降低其VBUS電壓。在電源開關703的另一側上,VBUS線上之輸出節點707耦接至USB Type-C埠740。輸出節點707耦接至IC控制器700之另一輸入接腳(「VBUS_C_DIS」)。「VBUS_C_DIS」接腳耦接至另一晶粒上放電電路,該晶粒上放電電路經組態以自輸出節點707下拉電流,從而降低其VBUS電壓。經由IC控制器700之晶粒上放電電路下拉的電流經驅動至IC控制器700之輸出接腳(「GND」)711。接地接腳711耦接至USB Type-C埠740之接地GND線。IC控制器700中之放電控制邏輯經組態以藉由使用啟用及控制信號來單獨且彼此獨立地控制每一放電電路之操作,該等啟用及控制信號經由IC控制器調整每一放電電路傳導的電流的時序、持續時間及量。
在操作中,VBUS線701上之功率流動方向為自功率轉換器750至連接至USB Type-C埠740之消耗者裝置,諸如行動電話(圖中未示)。當協商好與消耗者裝置之PD協議時,IC控制器700接通電源開關703以所協商之電壓及/或電流位準向消耗者裝置提供功率。在動態地重新協商PD協議以降低VBUS電壓及/或電流時,例如在消耗者裝置之電池已完成充電時,可能需要VBUS線701上之負電壓轉變。根據本文所描述之技術,作為回應,IC控制器700中之放電控制邏輯接通晶粒上放電電路以降低節點705及/或707處之VBUS電壓。在VBUS線701上之電壓達到新PD協議要求的較低電壓位準時,放電控制邏輯斷開放電電路且停止放電。
圖8繪示根據一例示具體實例的實例雙埠USB Type-A/Type-C車載充電器。IC控制器800可設置於晶片封裝中,且包括根據本文所描述之VBUS電壓放電技術組態的USB-PD子系統。IC控制器800經組態以與連接至USB Type-C埠840之消耗者裝置(圖中未示)協商PD協議。典型地,USB Type-C埠840與Type-C插座相關聯,但應理解,在各種具體實例中,USB Type-C埠可替代地與Type-C插頭相關聯。電池850為DC電源,例如汽車電池。電池850耦接至調整器860,該調整器經組態以基於來自IC控制器800之輸出接腳的啟用及反饋信號,來控制VBUS線801上電池所提供的電壓。電池850亦耦接至調整器865,該調整器經組態以控制VBUS線上電池提供至USB Type-A埠845之電壓。基於來自IC控制器800之輸出接腳的啟用及電壓選擇信號來控制調整器865,以提供根據舊版USB規格(例如USB 2.0規格、USB電池充電規格修訂版1.1/1.2等)之VBUS電壓及電流以經由USB Type-A埠對具USB功能之裝置充電。在一些具體實例中,IC控制器800可組態有用於USB Type-A埠845之充電偵測區塊,且可提供啟用或停用USB Type-A充電之選項。
IC控制器800耦接至VBUS線801且經組態以在VBUS線801上之負電壓轉變期間控制VBUS電壓之放電。VBUS線801包括電源開關803,其經組態為接通/斷開開關裝置,其受來自IC控制器800中之閘極驅動器之輸出接腳(「VBUS_P_CTRL」)的信號控制。在電源開關803的一側上,VBUS線上之電源節點805耦接至電池850。電源節點805耦接至IC控制器800之輸入接腳(「VBUS_C_DIS」)。「VBUS_C_DIS」接腳耦接至晶粒上放電電路,該晶粒上放電電路經組態以自電源節點805下拉電流,從而降低其VBUS電壓。在電源開關803的另一側上,VBUS線上之輸出節點807耦接至USB Type-C埠840。輸出節點807耦接至IC控制器800之另一輸入接腳(「VBUS_IN_DIS」)。「VBUS_IN_DIS」接腳耦接至另一晶粒上放電電路,該晶粒上放電電路經組態以自輸出節點807下拉電流,從而降低其VBUS電壓。經由IC控制器800之晶粒上放電電路下拉的電流經驅動至IC控制器800之輸出接腳(「GND」)811。接地接腳811耦接至USB Type-C埠840之接地GND線。IC控制器800中之放電控制邏輯經組態以藉由使用啟用及控制信號來單獨且彼此獨立地控制每一放電電路之操作,該等啟用及控制信號經由IC控制器調整每一放電電路傳導的電流的時序、持續時間及量。
在操作中,VBUS線801上之功率流動方向為自電池850至連接至USB Type-C埠840之消耗者裝置,諸如行動電話(圖中未示)。當協商好與消耗者裝置之PD協議時,IC控制器800接通電源開關803以所協商之電壓及/或電流位準向消耗者裝置提供功率。在動態地重新協商PD協議以降低VBUS電壓及/或電流時,例如在消耗者裝置之電池已完成充電時,可能需要VBUS線801上之負電壓轉變。根據本文所描述之技術,作為回應,IC控制器800中之放電控制邏輯接通晶粒上放電電路以降低節點805及/或807處之VBUS電壓。在VBUS線801上之電壓達到新PD協議要求的較低電壓位準時,放電控制邏輯斷開放電電路且停止放電。
圖9繪示根據一個具體實例的實例USB-PD DRP應用。圖9中所繪示之系統可為雙埠USB Type-A/Type-C行動電源,其經組態以用作電源或功率耗散器中之任一者或可藉由使用USB-PD功率角色交換而在此兩個角色之間動態地交替。IC控制器900可設置於晶片封裝中,且包括根據本文所描述之VBUS電壓放電技術組態的USB-PD子系統。當以電源角色操作時,IC控制器900經組態以與連接至USB Type-C埠940之消耗者裝置(圖中未示)協商PD協議。當以功率耗散器角色操作時,IC控制器900經組態以控制經由USB Type-C埠940對電池950之充電。典型地,USB Type-C埠940與Type-C插座相關聯,但應理解,在各種具體實例中,USB Type-C埠可替代地與Type-C插頭相關聯。
電池950為DC電源,其可為單個電池或具有多個串聯耦接的電池的電池組。電池950耦接至調整器960。當IC控制器900以電源角色操作時,調整器960經組態以基於來自IC控制器之輸出接腳的啟用及反饋信號來控制VBUS線901上所提供的電壓。電池950亦耦接至調整器965。當IC控制器900以電源角色操作時,調整器965經組態以控制VBUS線上電池提供至USB Type-A埠945之電壓。基於來自IC控制器900之輸出接腳的啟用及電壓選擇信號來控制調整器965,以提供根據舊版USB規格(例如USB 2.0規格、USB電池充電規格修訂版1.1/1.2等)之VBUS電壓及電流而經由USB Type-A埠對具USB功能之裝置充電。電池950亦耦接至電池充電器970。當IC控制器900以功率耗散器角色操作時,電池充電器970經組態以基於來自IC控制器之輸出接腳的啟用信號來控制VBUS線901上提供至充電電池950的電壓。在電池為多電池組(例如膝上型電腦電池組)的具體實例中,低壓差(low drop out;LDO)調整器980可耦接在電池950與IC控制器900之輸入接腳(「VDDD」)之間,其以向IC控制器提供操作功率。
IC控制器900耦接至VBUS線901且經組態以在VBUS線901上之負電壓轉變期間控制VBUS電壓之放電。VBUS線901包括電源開關903,其經組態為接通/斷開開關裝置,其受來自IC控制器900中之閘極驅動器之輸出接腳(「VBUS_P_CTRL」)的信號控制。在電源開關903的一側上,VBUS線上之電源節點905耦接至調整器960,該調整器又耦接至電池950。電源節點905耦接至IC控制器900之輸入接腳(「VBUS_C_DIS」)。「VBUS_C_DIS」接腳耦接至晶粒上放電電路,該晶粒上放電電路經組態以自電源節點905下拉電流,從而降低其VBUS電壓。在電源開關903的另一側上,VBUS線上之輸出節點907耦接至USB Type-C埠940。輸出節點907耦接至IC控制器900之另一輸入接腳(「VBUS_IN_DIS」)。「VBUS_IN_DIS」接腳耦接至另一晶粒上放電電路,該晶粒上放電電路經組態以自輸出節點907下拉電流,從而降低其VBUS電壓。經由IC控制器900之晶粒上放電電路下拉的電流經驅動至IC控制器900之輸出接腳(「GND」)911。接地接腳911耦接至USB Type-C埠940之接地GND線。IC控制器900中之放電控制邏輯經組態以藉由使用啟用及控制信號來單獨且彼此獨立地控制每一放電電路之操作,該等啟用及控制信號經由IC控制器調整每一放電電路傳導的電流的時序、持續時間及量。
當IC控制器900以電源角色操作時,VBUS線901上之功率流動方向為自電池950至連接至USB Type-C埠940之消耗者裝置,諸如行動電話(圖中未示)。當協商好與消耗者裝置之PD協議時,IC控制器900接通電源開關903且斷開電源開關909,且以所協商之電壓及/或電流位準向消耗者裝置提供功率。在動態地重新協商PD協議以降低VBUS電壓及/或電流時,例如在消耗者裝置之電池已完成充電時,可能需要VBUS線901上之負電壓轉變。根據本文所描述之技術,作為回應,IC控制器900中之放電控制邏輯接通晶粒上放電電路以降低節點905及/或907處之VBUS電壓。在VBUS線901上之電壓達到新PD協議要求的較低電壓位準時,放電控制邏輯斷開放電電路且停止放電。
當IC控制器900以功率耗散器角色操作時,其亦耦接至電源開關909以控制經由USB Type-C埠940對電池950之充電。電源開關909耦接在USB Type-C埠940與電池充電器970之間的VBUS線901上,且經組態為接通/斷開開關裝置,其受來自IC控制器900中之閘極驅動器之輸出接腳(「VBUS_C_CTRL」)的信號控制。
當IC控制器900以功率耗散器角色操作時,VBUS線901上之功率流動方向為自連接至USB Type-C埠940之電源適配器(例如壁式充電器)至電池950。IC控制器900接通電源開關909,斷開電源開關903,且允許電池充電器970對電池950進行充電。隨後功率在VBUS線901上以電池充電器970設定的電壓及電流而自USB Type-C埠940流動至電池950。以此方式,在各種具體實例中,IC控制器900可交替其操作角色以實施USB-PD DRP應用。
本文所描述之技術允許使VBUS線電壓放電至多個可程式電壓位準中之任一者,其防止高電流及帶電電源放電,且不需要任何外部組件,諸如限流高瓦數電阻器。此外,在各種具體實例中,本文所描述之技術提供用以降低晶粒上放電電流之電路,從而限制地彈、晶粒上電壓降及焦耳發熱(Joule heating)風險。
本文所描述之VBUS電壓放電技術之各種具體實例可包括各種操作。此等操作可由硬體組件、數位硬體及/或韌體及/或其組合來執行及/或控制。如本文所用,術語「耦接至」可意謂直接地或經由一或多個介入組件間接地連接。經由各種晶粒上匯流排提供之信號中之任一者可與其他信號分時多工,且經由一或多個共同晶粒上匯流排提供。另外,可將電路組件或區塊之間的互連展示為匯流排或單個信號線。匯流排中之每一者可替代地為一或多個單個信號線且單個信號線中之每一者可替代地為匯流排。
某些具體實例可經實施為電腦程式產品,該電腦程式產品可包括儲存於非暫時性電腦可讀取媒體(例如揮發性記憶體及/或非揮發性記憶體)上之指令。此等指令可用於程式化包括一或多個通用或專用處理器(例如CPU)或其等效物(例如處理核心、處理引擎、微控制器及其類似者)的一或多個裝置,使得該等指令在由處理器或其等效物執行時使得裝置執行針對本文所描述之VBUS電壓放電所描述的操作。電腦可讀取媒體亦可包括用於儲存或傳輸呈機器(例如裝置或電腦)可讀取形式(例如軟體、處理應用程序等)之資訊的一或多個機構。非暫時性電腦可讀取儲存媒體可包括(但不限於)電磁儲存媒體(例如軟碟、硬碟及其類似者)、光學儲存媒體(例如CD-ROM)、磁光儲存媒體、唯讀記憶體(ROM)、隨機存取記憶體(RAM)、可抹除可程式記憶體(例如EPROM及EEPROM)、快閃記憶體或適合於儲存資訊的另一現在已知或後期開發的非暫時類型媒體。
儘管本文中之電路及區塊之操作以特定次序示出及描述,但在一些具體實例中,每一電路/區塊之操作的次序可改變,使得某些操作可以相反次序執行或使得某些操作可至少部分地與其他操作同時及/或並行地執行。在其他具體實例中,指令或不同操作之子操作可以間斷及/或交替之方式執行。
在前述說明書中,已參考本發明之特定例示性具體實例描述了本發明。然而,將顯而易見的係,可在不脫離如隨附申請專利範圍中所闡述的本發明之更廣泛精神及範圍的情況下對本發明做出各種修改及改變。因此,應在說明性意義上而非限制性意義上看待說明書及圖式。
100、100a、100b、100c、100d、100e‧‧‧IC控制器
102‧‧‧CPU子系統
104‧‧‧中央處理單元
106‧‧‧快閃記憶體
108‧‧‧靜態隨機存取記憶體(SRAM)
110‧‧‧唯讀記憶體(ROM)
112‧‧‧系統互連件
114‧‧‧周邊互連件
116‧‧‧系統資源
118‧‧‧輸入/輸出區塊
118a‧‧‧通用輸入輸出區塊(GPIO)
118b‧‧‧計時器/計數器/脈寬調變區塊(TCPWM)
118c‧‧‧序列通信區塊(SCB)
120‧‧‧USB-PD子系統
130‧‧‧電源適配器
140‧‧‧電源適配器
150‧‧‧壁式插座
160‧‧‧車載充電器
170‧‧‧行動電源
200‧‧‧IC控制器
201‧‧‧VBUS線
202‧‧‧CPU
203‧‧‧電源開關
205‧‧‧電源節點
207‧‧‧輸出節點
211‧‧‧接地輸出接腳
212‧‧‧匯流排
215‧‧‧輸入接腳
217‧‧‧輸入接腳
222‧‧‧電流感測偵測器
224‧‧‧故障偵測器
226‧‧‧保護邏輯
228-1、228-2‧‧‧可程式臨限值偵測器
230、230-1‧‧‧放電電路
230a‧‧‧邏輯閘極
230b‧‧‧電晶體裝置
230c‧‧‧多位元控制信號
230d‧‧‧啟用信號
230e‧‧‧電源信號
230f‧‧‧接地接腳
232‧‧‧放電邏輯
400‧‧‧圖式
402、404、406‧‧‧曲線
500‧‧‧圖式
502、504、506‧‧‧曲線
600‧‧‧IC控制器
601‧‧‧VBUS線
603‧‧‧電源開關
605‧‧‧電源節點
607‧‧‧輸出節點
611‧‧‧輸出接腳/接地接腳
640‧‧‧USB Type-C埠
650‧‧‧功率轉換器
660‧‧‧補償網路
700‧‧‧IC控制器
701‧‧‧VBUS線
703‧‧‧電源開關
705‧‧‧電源節點
707‧‧‧輸出節點
711‧‧‧輸出接腳/接地接腳
740‧‧‧USB Type-C埠
750‧‧‧功率轉換器
760‧‧‧控制器
800‧‧‧IC控制器
801‧‧‧VBUS線
803‧‧‧電源開關
805‧‧‧電源節點
807‧‧‧輸出節點
811‧‧‧輸出接腳/接地接腳
840‧‧‧USB Type-C埠
845‧‧‧USB Type-A埠
850‧‧‧電池
860‧‧‧調整器
865‧‧‧調整器
900‧‧‧IC控制器
901‧‧‧VBUS線
903‧‧‧電源開關
905‧‧‧電源節點
907‧‧‧輸出節點
909‧‧‧電源開關
911‧‧‧輸出接腳/接地接腳
940‧‧‧USB Type-C埠
945‧‧‧USB Type-A埠
950‧‧‧電池
960‧‧‧調整器
965‧‧‧調整器
970‧‧‧電池充電器
980‧‧‧低壓差調整器
圖1A繪示根據一些具體實例的具有USB-PD子系統的實例晶粒上積體電路(IC)控制器。
圖1B繪示根據一些具體實例的可包括圖1A之IC控制器的實例裝置。
圖2繪示根據一些具體實例的經組態用於USB電壓(VBUS)線之可程式電壓放電的實例IC控制器之示意圖。
圖3繪示根據一些具體實例的實例放電電路。
圖4繪示根據一例示具體實例的在無驅動強度排程的情況下USB VBUS線之電流放電之圖式。
圖5繪示根據一例示具體實例的在具有可程式驅動強度排程的情況下USB VBUS線之電流放電之圖式。
圖6繪示根據一例示具體實例的個人電腦(PC)USB-PD電源適配器之示意圖。
圖7繪示根據一例示具體實例的行動電話USB-PD電源適配器之示意圖。
圖8繪示根據一例示具體實例的USB-PD車載充電器之示意圖。
圖9繪示根據一例示具體實例的USB-PD行動電源之示意圖。

Claims (20)

  1. 一種用於控制通用序列匯流排(USB)電壓(VBUS)線上之功率傳送的積體電路(IC),該IC包含: USB功率遞送(USB-PD)子系統,其中該USB-PD子系統包含: 第一放電電路,其經組態以耦接至該VBUS線上之電源節點; 第二放電電路,其經組態以耦接至該VBUS線上之輸出節點;以及 放電控制邏輯,其耦接至該第一放電電路且耦接至該第二放電電路,該放電控制邏輯經組態以獨立地控制該第一放電電路及該第二放電電路來使該VBUS線上之電壓放電。
  2. 如請求項1所述之積體電路,其中該電源節點設置在該VBUS線上之電源開關之一側上,且該輸出節點設置在該VBUS線上之該電源開關之另一側上。
  3. 如請求項1所述之積體電路,其進一步包含: 第一輸入接腳,其耦接至該第一放電電路; 第二輸入接腳,其耦接至該第二放電電路;以及 一或多個接地輸出接腳,其耦接至該第一放電電路及該第二放電電路。
  4. 如請求項1所述之積體電路,其進一步包含韌體指令,該等韌體指令用以控制驅動強度排程,其被該放電控制邏輯應用於該第一放電電路及第二放電電路中之至少一者。
  5. 如請求項1所述之積體電路,其中該USB-PD子系統進一步包含電壓臨限值偵測器,其耦接至該放電控制邏輯,該電壓臨限值偵測器經組態以監測該VBUS線上之該電源節點及該輸出節點處之電壓。
  6. 如請求項5所述之積體電路,其中該電壓臨限值偵測器經組態以相對於多個電壓位準來監測該VBUS線上之電壓。
  7. 如請求項1所述之積體電路,其中該USB-PD子系統進一步包含耦接至該放電控制邏輯之保護邏輯,該保護邏輯經組態以監測該VBUS線上之電壓的放電速率。
  8. 如請求項7所述之積體電路,其中該保護邏輯經組態以防止使該VBUS線上之帶電電源電壓放電。
  9. 如請求項7所述之積體電路,其中該放電控制邏輯經組態以產生應用於該第一放電電路及該第二放電電路的多位元控制信號。
  10. 如請求項1所述之積體電路,其中該第一放電電路及該第二放電電路中之每一者包含一或多個汲極延伸式場效電晶體(DEFET)。
  11. 如請求項1所述之積體電路,其中該放電控制邏輯經組態以控制該第一放電電路以使該VBUS線上之電壓以第一放電速率放電,且控制該第二放電電路以使該VBUS線上之電壓以第二放電速率放電。
  12. 如請求項1所述之積體電路,其中該放電控制邏輯經組態以在非零電壓位準處停止使該VBUS線上之電壓放電。
  13. 如請求項1所述之積體電路,其中該USB-PD子系統進一步包含: 電壓臨限值偵測器,其經組態以監測該VBUS線上之電壓; 電流感測偵測器,其經組態以監測USB接地線上返回的電流;以及 故障偵測器,其耦接至該電流感測偵測器且耦接至該電壓臨限值偵測器,該故障偵測器經組態以偵測該VBUS線上之一或多個故障事件。
  14. 一種設備,其包含: 通用序列匯流排(USB)Type-C連接件,該USB Type-C連接件包含電壓(VBUS)線;以及 積體電路(IC),其經耦接以控制該VBUS線上之功率傳送,該IC包含: 第一放電電路,其耦接至該VBUS線上之電源節點; 第二放電電路,其耦接至該VBUS線上之輸出節點;以及 放電控制邏輯,其耦接至該第一放電電路且耦接至該第二放電電路,該放電控制邏輯經組態以獨立地控制該第一放電電路及該第二放電電路來使該VBUS線上之電壓放電。
  15. 如請求項14所述之設備,其進一步包含耦接在該VBUS線上之電源開關,其中該電源節點設置在該電源開關的一側上,且該輸出節點設置在該電源開關的另一側上。
  16. 如請求項14所述之設備,其中該IC包含: 第一輸入接腳,其將該第一放電電路耦接至該電源節點; 第二輸入接腳,其將該第二放電電路耦接至該輸出節點;以及 一或多個接地輸出接腳,其將該第一放電電路及該第二放電電路耦接至局部接地端。
  17. 如請求項14所述之設備,其中該IC經組態以根據USB功率遞送(USB-PD)規格來控制該VBUS線上之功率傳送。
  18. 如請求項14所述之設備,其中該IC經組態以控制該VBUS線上之電壓的放電速率。
  19. 如請求項14所述之設備,其中該IC經組態以相對於多個電壓位準來監測該VBUS線上之電壓。
  20. 如請求項14所述之設備,其中該設備為個人電腦(PC)電源適配器、行動電話充電器、壁式插座、車載充電器及行動電源(power bank)中之一者。
TW108105293A 2018-03-12 2019-02-18 用於在通用序列匯流排功率遞送中進行可程式vbus放電之積體電路和設備 TWI767107B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862641894P 2018-03-12 2018-03-12
US62/641,894 2018-03-12
US15/983,596 2018-05-18
US15/983,596 US10599597B2 (en) 2018-03-12 2018-05-18 Programmable VBUS discharge in USB power delivery

Publications (2)

Publication Number Publication Date
TW201939299A true TW201939299A (zh) 2019-10-01
TWI767107B TWI767107B (zh) 2022-06-11

Family

ID=67843998

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108105293A TWI767107B (zh) 2018-03-12 2019-02-18 用於在通用序列匯流排功率遞送中進行可程式vbus放電之積體電路和設備

Country Status (5)

Country Link
US (1) US10599597B2 (zh)
CN (1) CN111868703B (zh)
DE (1) DE112019001303T5 (zh)
TW (1) TWI767107B (zh)
WO (1) WO2019177810A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763137B (zh) * 2020-11-23 2022-05-01 瑞昱半導體股份有限公司 具有usb供受電之電子裝置
TWI777624B (zh) * 2020-06-26 2022-09-11 加拿大商萬國半導體國際有限合夥公司 端口控制器中電源通路短路檢測的方法及其系統
TWI779777B (zh) * 2020-10-29 2022-10-01 威鋒電子股份有限公司 多埠電力供應裝置及其操作方法
TWI782555B (zh) * 2021-06-01 2022-11-01 偉詮電子股份有限公司 偵測過電流及故障之電源傳輸系統及方法
TWI812013B (zh) * 2022-02-16 2023-08-11 聯陽半導體股份有限公司 應用於USB Type-C通訊埠之過電壓保護電路和相關過電壓保護方法
US11755087B2 (en) 2020-10-29 2023-09-12 Via Labs, Inc. Multi-port power supply device and operation method thereof
US11775041B2 (en) 2020-10-29 2023-10-03 Via Labs, Inc. Multi-port power supply device and operation method thereof
TWI825900B (zh) * 2022-08-05 2023-12-11 瑞昱半導體股份有限公司 帶有通用非同步收發器介面的系統單晶片
TWI830559B (zh) * 2022-12-28 2024-01-21 嘉基科技股份有限公司 可縮短快速角色交換時間之連接埠擴充基座

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019213325A (ja) * 2018-06-04 2019-12-12 ルネサスエレクトロニクス株式会社 コントローラ、制御方法、制御プログラム
US11150711B2 (en) * 2018-06-22 2021-10-19 Western Digital Technologies, Inc. Power adapter with protection circuitry
US11429173B2 (en) * 2018-12-21 2022-08-30 Intel Corporation Apparatus and method for proactive power management to avoid unintentional processor shutdown
US11100034B1 (en) * 2020-02-21 2021-08-24 Cypress Semiconductor Corporation Dual integrated gate-driver with reverse current fault protection for USB Type-C and USB power delivery
US11093426B1 (en) * 2020-03-20 2021-08-17 Dell Products L.P. USB recepticle configuration and system therefor
TWI723920B (zh) * 2020-07-16 2021-04-01 宏碁股份有限公司 可延長壽命之電源傳輸系統
US11671013B2 (en) * 2020-09-02 2023-06-06 Cypress Semiconductor Corporation Control logic performance optimizations for universal serial bus power delivery controller
CN112098708B (zh) * 2020-11-23 2021-02-02 成都市易冲半导体有限公司 用于次级边pd控制器的线电压信息检测电路及检测方法
CN114579496A (zh) * 2020-11-30 2022-06-03 瑞昱半导体股份有限公司 具有usb供受电的电子装置
US11640192B2 (en) * 2021-01-12 2023-05-02 Siliconch Systems Pvt Ltd Method and apparatus for implementing a programmable power supply on a USB-C port supporting power delivery
JP2023037688A (ja) * 2021-09-06 2023-03-16 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、及びプログラム
CN114779915B (zh) * 2022-04-06 2024-02-02 上海艾为电子技术股份有限公司 接口检测模块和方法、功率管理芯片、电子设备
TWI812264B (zh) * 2022-06-07 2023-08-11 宏正自動科技股份有限公司 周邊分享裝置以及其控制方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193442B2 (en) * 2004-09-20 2007-03-20 Texas Instruments Incorporated USB 1.1 for USB OTG implementation
US7838940B2 (en) * 2007-12-04 2010-11-23 Infineon Technologies Ag Drain-extended field effect transistor
WO2010099483A2 (en) * 2009-02-27 2010-09-02 Fairchild Semiconductor Corporation Peripheral device host charging
US8725910B1 (en) * 2011-08-09 2014-05-13 Maxim Integrated Products, Inc Cable connection detection for electronic devices
US9122813B2 (en) * 2012-03-06 2015-09-01 Smsc Holdings S.A.R.L. USB host determination of whether a USB device provides power via a USB coupling
US8681461B2 (en) * 2012-03-26 2014-03-25 Intel Mobile Communications GmbH Selective current pumping to enhance low-voltage ESD clamping using high voltage devices
JPWO2013168289A1 (ja) * 2012-05-11 2015-12-24 富士通株式会社 電子機器およびその制御方法
US9348382B2 (en) * 2013-02-22 2016-05-24 Maxim Integrated Products, Inc. Method and apparatus for providing power to an electronic device
JP6185763B2 (ja) * 2013-06-14 2017-08-23 ローム株式会社 電力供給装置およびその制御方法
JP6301756B2 (ja) * 2014-06-30 2018-03-28 ローム株式会社 過電流検出回路およびそれを利用したホスト、過電流検出方法
JPWO2016013451A1 (ja) * 2014-07-22 2017-04-27 ローム株式会社 充電回路およびそれを利用した電子機器、充電器
JP6295887B2 (ja) * 2014-08-22 2018-03-20 ミツミ電機株式会社 プラグ付きケーブル及び制御回路及び基板
EP4216064A1 (en) * 2014-09-15 2023-07-26 Micro Motion Inc. A method and apparatus to control a mode of a device
JP6382065B2 (ja) * 2014-10-24 2018-08-29 ローム株式会社 Usb給電装置、それを用いた電子機器、usb給電装置の制御方法
US9501118B2 (en) * 2014-11-19 2016-11-22 Dell Products L.P. Information handling system multi-purpose connector guide pin structure
US9400546B1 (en) * 2015-06-19 2016-07-26 Cypress Semiconductor Corporation Low-power implementation of Type-C connector subsystem
US9811135B2 (en) * 2015-06-19 2017-11-07 Cypress Semiconductor Corporation Low-power type-C receiver with high idle noise and DC-level rejection
TWI559125B (zh) * 2015-09-11 2016-11-21 技嘉科技股份有限公司 行動電源裝置及其電源控制方法
CN107240940B (zh) * 2016-03-29 2020-06-30 快捷半导体(苏州)有限公司 Usb连接器放电方法及电路
US10090671B2 (en) * 2016-07-15 2018-10-02 Dialog Semiconductor Inc. Short circuit protection for data interface charging

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI777624B (zh) * 2020-06-26 2022-09-11 加拿大商萬國半導體國際有限合夥公司 端口控制器中電源通路短路檢測的方法及其系統
US11646570B2 (en) 2020-06-26 2023-05-09 Alpha And Omega Semiconductor International Lp Port controller power path short detection
TWI779777B (zh) * 2020-10-29 2022-10-01 威鋒電子股份有限公司 多埠電力供應裝置及其操作方法
US11755087B2 (en) 2020-10-29 2023-09-12 Via Labs, Inc. Multi-port power supply device and operation method thereof
US11775041B2 (en) 2020-10-29 2023-10-03 Via Labs, Inc. Multi-port power supply device and operation method thereof
TWI763137B (zh) * 2020-11-23 2022-05-01 瑞昱半導體股份有限公司 具有usb供受電之電子裝置
TWI782555B (zh) * 2021-06-01 2022-11-01 偉詮電子股份有限公司 偵測過電流及故障之電源傳輸系統及方法
US11569655B2 (en) 2021-06-01 2023-01-31 Weltrend Semiconductor Inc. Power delivery system and related method of detecting overcurrent and failure
TWI812013B (zh) * 2022-02-16 2023-08-11 聯陽半導體股份有限公司 應用於USB Type-C通訊埠之過電壓保護電路和相關過電壓保護方法
TWI825900B (zh) * 2022-08-05 2023-12-11 瑞昱半導體股份有限公司 帶有通用非同步收發器介面的系統單晶片
TWI830559B (zh) * 2022-12-28 2024-01-21 嘉基科技股份有限公司 可縮短快速角色交換時間之連接埠擴充基座

Also Published As

Publication number Publication date
TWI767107B (zh) 2022-06-11
CN111868703B (zh) 2024-06-14
CN111868703A (zh) 2020-10-30
US20190278731A1 (en) 2019-09-12
WO2019177810A1 (en) 2019-09-19
DE112019001303T5 (de) 2020-12-31
US10599597B2 (en) 2020-03-24

Similar Documents

Publication Publication Date Title
TWI767107B (zh) 用於在通用序列匯流排功率遞送中進行可程式vbus放電之積體電路和設備
TWI827581B (zh) 用於通用序列匯流排功率遞送中的可程式閘極驅動器控制之電路及系統
US10320180B1 (en) Current control and protection for universal serial bus type-C (USB-C) connector systems
CN112154400B (zh) 支持有源线缆和dfp/ufp/drp应用的usb-c的电源架构
CN112154578B (zh) 通用串行总线c型(usb-c)连接器系统的电压保护
US10879686B2 (en) Overcurrent protection for universal serial bus Type-C (USB-C) connector systems
US11271484B2 (en) Primary controller calibration and trimming using secondary controller in secondary-controlled flyback converters
CN112074996A (zh) 用于通用串行总线c型(usb-c)连接器系统的过电压保护
US11100034B1 (en) Dual integrated gate-driver with reverse current fault protection for USB Type-C and USB power delivery
CN114424442A (zh) 功率高效同步整流器栅极驱动器架构
JP2018007238A (ja) USB電力供給且つType−C SoC用の設定可能な及び電力最適化された集積化ゲートドライバ
CN114026773A (zh) 次级控制的反激转换器中的初级控制器与次级控制器之间的通信故障指示
CN112005447A (zh) 用于通用串行总线c型(usb-c)连接器系统的反向过电流保护
US20230299676A1 (en) Floating gate driver with programmable drive strength for a wide range of universal serial bus (usb) power delivery applications