TW201936978A - 使用低頻偏壓作介電膜的幾何選擇性沉積 - Google Patents

使用低頻偏壓作介電膜的幾何選擇性沉積 Download PDF

Info

Publication number
TW201936978A
TW201936978A TW107141833A TW107141833A TW201936978A TW 201936978 A TW201936978 A TW 201936978A TW 107141833 A TW107141833 A TW 107141833A TW 107141833 A TW107141833 A TW 107141833A TW 201936978 A TW201936978 A TW 201936978A
Authority
TW
Taiwan
Prior art keywords
processing
plasma
gas
base assembly
substrate
Prior art date
Application number
TW107141833A
Other languages
English (en)
Other versions
TWI793218B (zh
Inventor
大野賢一
田中啓一
立群 夏
田中努
狄米奇A 迪日諾
馬利歐D 席菲帝
約翰C 福斯特
拉凱許 拉瑪達斯
麥克 莫泰格
亞歷山大V 嘉萊許誠柯
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW201936978A publication Critical patent/TW201936978A/zh
Application granted granted Critical
Publication of TWI793218B publication Critical patent/TWI793218B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32366Localised processing
    • H01J37/32385Treating the edge of the workpieces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • H01J2237/3341Reactive etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本案描述用於沉積及處理或蝕刻膜的設備和方法。批量處理腔室包括具有至少一個電漿處理區域的複數個處理區域。低頻偏壓產生器連接到基座組件,以間歇地施加一低頻偏壓,以施行一定向處理或蝕刻該沉積的膜。

Description

使用低頻偏壓作介電膜的幾何選擇性沉積
本揭示案的實施例一般係關於用於處理基板的設備。更具體言之,本揭示案的實施例係關於用於以批量處理腔室來沉積和選擇性地蝕刻膜的設備和方法。
微電子技術的進步需要覆蓋三維(3D)結構的暴露表面的共形(conformal)膜。介電質膜(如SiO、SiN和SiCN)的原子層沉積(ALD)技術已經成為業界在通孔、接觸孔、溝槽和3D NAND內共形覆蓋的選擇,以保護結構免受後續製程步驟的影響。
儘管ALD膜通常旨在同時覆蓋水平和垂直表面,但是對於選擇性地覆蓋結構的側壁展露興趣,而頂部和底部或水平的表面未被覆蓋,或者反之僅覆蓋水平平面而側壁未被覆蓋。這些技術將能夠在後續製程中選擇性地改質未覆蓋表面中的下層材料,同時保護被覆蓋的平面免受材料或臨界尺寸(CD)變化的影響。例如,在磊晶Si或SiGe上方的接觸孔中的選擇性側壁沉積使得底部Si或SiGe的矽化和隨後的表面氧化物去除,同時保護它們的側壁通過這些製程。
目前,為了實現側壁沉積,沉積共形ALD膜並隨後在非原位(ex-situ)經歷乾式蝕刻製程。然而,在此流程中確定了若干問題。在這些問題中,乾式蝕刻製程由於對於防止蝕刻底部下層難以作到端點控制而導致元件劣化。另外,當前的製程需要昂貴的乾式蝕刻工具來達到此製程。
因此,本領域對於使額外的設備/步驟和成本最小化的選擇性側壁沉積的設備和方法有其需求。
本揭示案的一個或多個實施例係針對處理腔室。處理腔室包括: 一基座組件,該基座組件具有一頂表面和一中心軸,該中心軸旋轉繞該基座組件的該中心軸定位在該頂表面上的複數個基板;
一氣體分配組件,該氣體分配組件包含複數個處理區域,每個處理區域藉由一氣體幕與相鄰處理區域分開,該等處理區域中的至少一個處理區域包含一電漿處理區域,該電漿處理區域具有一主沉積產生器,該主沉積產生器以一主沉積產生器頻率操作;及
一低頻偏壓產生器,該低頻偏壓產生器電連接到該基座組件,以將一低頻偏壓施加到該基座組件。
本揭示案的額外的實施例係針對沉積膜的方法。該方法包括以下步驟:
將至少一個基板定位在一基座組件的一頂表面上;
提供氣體流入複數個處理區域,每個處理區域藉由一氣體幕與相鄰處理區域分開,該複數個處理區域包含複數個熱處理區域,其中該複數個處理區域中的至少一個處理區域是一電漿處理區域,該電漿處理區域具有與其連接的一主沉積產生器;
向主沉積產生器提供電力以在該電漿處理區域中形成一電漿;及
向一低頻偏壓產生器提供電力,該低頻偏壓產生器電連接到該基座組件,以將一低頻偏壓施加到該基座組件。
本揭示案的進一步實施例係針對沉積膜的方法。該方法包括以下步驟:
將至少一個基板定位在一處理腔室中的一基座組件的一頂表面上;
將一基板表面暴露於一第一數量的沉積循環,每個沉積循環包含:
將該基板表面暴露於在該處理腔室的一第一處理區域中的一第一反應氣體,
將該基板表面從該第一處理區域移動通過一氣體幕到達一第二處理區域,
將該基板表面暴露於該第二處理區域中的一第二反應氣體,
將該基板表面從該第二處理區域移動通過一氣體幕到達一電漿處理區域,及
將該基板表面暴露於該電漿處理區域中的一電漿製程;及
將該基板表面暴露於一第二數量的處理循環(treatment cycle),每個處理循環包含:
向該基座組件提供一低頻偏壓,及
將該基板表面暴露於使用由一主沉積產生器產生的一主頻率電漿之一偏壓電漿處理區域,其中該低頻偏壓施加到該基座組件。
本揭示案的實施例提供了用於連續基板沉積的基板處理系統,以最大化產量並提高處理效率。基板處理系統還可用於預沉積和後沉積電漿處理。
如在本說明書和所附專利申請範圍中所使用的,術語「基板」和「晶圓」可互換使用,兩者均指製程作用其上的表面或表面的一部分。本發明所屬領域中具有通常知識者還將理解到,除非上下文另有明確說明,否則提及基板也可僅指基板的一部分。另外,所提在基板上的沉積可以表示裸基板和具有在其上沉積或形成的一個或多個膜或特徵的基板。
如本說明書和所附申請專利範圍中所用,術語「反應氣體」、「前驅物」、「反應物」等可互換使用,表示包括與基板表面反應的物質的氣體。例如,第一「反應氣體」可以簡單地吸附到基板的表面上且可用於與第二反應氣體的進一步化學反應。
如在本說明書和所附申請專利範圍中所使用的,術語「減壓(reduced pressure)」是指小於約100Torr、或小於約75Torr、或小於約50Torr、或小於約25Torr的壓力。例如,定義在約1Torr至約25Torr範圍內的「中壓(medium pressure)」是減壓。
正考慮將旋轉平臺(platen)腔室用於許多應用。在這樣的腔室中,將一個或多個晶圓放置在旋轉支架(「平臺」)上。當平臺旋轉時,晶圓在各個處理區域之間移動。例如,在ALD中,處理區域將晶圓暴露於前驅物和反應物。另外,電漿暴露可以用作反應物或用於處理膜或基板表面以增強膜生長或改變膜性質。當使用旋轉平臺ALD腔室時,本揭示案的一些實施例提供ALD膜的均勻沉積和後處理(如緻密化)。
旋轉平臺ALD腔室可以藉由以下製程來沉積膜:整個晶圓暴露於第一氣體、經淨化以及接著暴露於第二氣體傳統的時域製程,或者晶圓的部分暴露於第一氣體以及部分暴露於第二氣體且晶圓通過這些氣流的運動使層沉積的空間ALD。
如在本說明書和所附申請專利範圍中所使用的,術語「派形」和「楔形」可互換使用以描述作為圓形扇區的形體。例如,楔形段可以是圓形或盤形結構的一部分,且多個楔形段可以經連接以形成圓形體。扇區可以定義為由圓的兩個半徑和交叉弧包圍的圓的一部分。派形段的內邊緣可以到達一個點或者可以被截斷為平坦邊緣或圓頭形。在一些實施例中,扇區可以被定義為環或環形的一部分。
基板的路徑可以垂直於氣體埠。在一些實施例中,每個氣體注入器組件包括複數個細長氣體埠,該複數個細長氣體埠在與基板通過的路徑實質垂直的一方向上延伸,其中氣體埠的前邊緣實質平行於平臺。如在本說明書和所附申請專利範圍中所使用的,術語「實質垂直」意味著基板的大致移動方向沿著與來自氣體埠的氣流幾近垂直(如約45°至90°)的平面。對於楔形氣體埠,氣體埠的細長軸可以視為該埠寬度的中點沿著該埠長度從楔形氣體埠的內邊緣(窄邊緣)到外邊緣(較寬邊緣)延伸所定義的線。
圖1表示包括氣體分配組件120(也稱為注入器或注入器組件)和基座組件140的處理腔室100的截面圖。氣體分配組件120是在處理腔室中使用的任何類型的氣體輸送裝置。氣體分配組件120包括面向基座組件140的前表​​面121。前表面121可以具有任何數量或種類的開口以將氣流向基座組件140輸送。氣體分配組件120還包括外周邊緣124,在所示的實施例中,外周邊緣124實質是圓形的。
所使用的氣體分配組件120的具體類型可以根據正在使用的具體製程而改變。本揭示案的實施例可以用於控制基座和氣體分配組件之間縫隙的任何類型的處理系統。儘管可以採用各種類型的氣體分配組件(如噴頭),但是本揭示案的實施例與具有空間ALD氣體分配組件一起使用可能是特別有用,空間ALD氣體分配組件具有複數個實質平行的氣體通道。如在本說明書和申請專利範圍中所使用的,術語「實質平行」是指氣體通道的細長軸在大致相同的方向上延伸。氣體通道的平行度可能會有輕微的偏差。複數個實質平行的氣體通道可以包括至少一個第一反應氣體A通道、至少一個第二反應氣體B通道、至少一個淨化氣體P通道和/或至少一個真空V通道。來自第一反應氣體A通道、第二反應氣體B通道和淨化氣體P通道的氣體引導向晶圓的頂表面。某些氣流橫跨晶圓的表面水平移動,以及透過淨化氣體P通道自處理區域流出。從氣體分配組件的一端移動到另一端的基板將依次暴露於每種處理氣體,而在基板表面上形成一層。
在一些實施例中,氣體分配組件120是由單個注入器單元製成的剛性(rigid)固定式主體。在一個或多個實施例中,氣體分配組件120由複數個獨立扇區(sector,如注入器單元122)組成,如圖2所示。單件式主體或多扇區主體可以與本揭示案所述之各式實施例一起使用。
基座組件140定位於氣體分配組件120下方。基座組件140包括頂表面141和頂表面141中的至少一個凹部142。基座組件140也具有底表面143和邊緣144。根據正在處理的基板60的形狀和尺寸,凹部142可以是任何合適的形狀和尺寸。在圖1所示的實施例中,凹部142具有平坦的底部以支撐晶圓的底部;然而,可以改變凹部的底部。在一些實施例中,凹部具有繞凹部的外周邊緣的階部區域,調整階部區域的尺寸以支撐晶圓的外周邊緣。由階部所支撐的晶圓的外周邊緣的量可以根據例如晶圓的厚度和已經存在於晶圓背面上的特徵的存在而改變。
在一些實施例中,如圖1所示,調整基座組件140頂表面141中的凹部142的尺寸,使得凹部142中所支撐的基板60具有與基座140頂表面141實質共面的頂表面61。如在本說明書和申請專利範圍中所使用的,術語「實質共面」是指晶圓的頂表面和基座組件的頂表面在±0.2mm內共面。在一些實施例中,頂表面在±0.15mm、±0.10mm或±0.05mm內共面。一些實施例的凹部142支撐晶圓,使得晶圓的內直徑(ID)位於距基座的中心(旋轉軸)約170mm至約185mm的範圍內。在一些實施例中,凹部142支撐晶圓,使得晶圓的外直徑(OD)位於距基座的中心(旋轉軸)約470mm至約485mm的範圍內。
圖1的基座組件140包括支撐柱160,其能夠升高、降低及旋轉基座組件140。基座組件可包括加熱器、氣體管線或者在支撐柱160的中心內的電組件。支撐柱160可以是增加或減小基座組件140和氣體分配組件120之間縫隙的主要構件,而將基座組件140移動到適當位置。基座組件140亦可包括微調致動器162,微調致動器162可以對基座組件140進行微調,以在基座組件140和氣體分配組件120之間產生預定縫隙170。在一些實施例中,縫隙170的間距在約0.1mm至約5.0mm的範圍內、或者在約0.1mm至約3.0mm的範圍內、或者在約0.1mm至約2.0mm的範圍內、或者在約0.2mm至約1.8mm的範圍、或者在約0.3mm至約1.7mm的範圍、或者在約0.4mm至約1.6mm的範圍、或者在約0.5mm至約1.5mm的範圍、或者在在約0.6mm至約1.4mm的範圍內、或者在約0.7mm至約1.3mm的範圍內、或者在約0.8mm至約1.2mm的範圍內、或者在約0.9mm至約1.1mm的範圍內,或約1mm。
圖中所示的處理腔室100是旋轉料架式腔室,其中基座組件140可以固持複數個基板60。如圖2所示,氣體分配組件120可包括複數個獨立的注入器單元122,當晶圓在注入器單元下方移動時,每個注入器單元122能夠將膜沉積在晶圓上。兩個派狀(pie-shaped)注入器單元122所示定位在基座組件140的大致相對側且在基座組件140上方。這個數量的注入器單元122僅是為了說明目的。應該理解,可以包括較多或較少的注入器單元。在一些實施例中,存在足夠數量的派狀注入器單元122以形成與基座組件140的形狀相符的形狀。在一些實施例中,各個獨立的派狀注入器單元122可以被獨立地移動、移除和/或替換而不影響任何其他注入器單元122。例如,可升高一個區段以允許機器人進出基座組件140和氣體分配組件120之間的區域以裝載/卸載基板60。
具有多個氣體注入器的處理腔室可以用於同時處理多個晶圓,使得晶圓經受相同的處理流程。例如,如圖3所示,處理腔室100具有四個氣體注入器組件和四個基板60。在處理開始時,基板60可以定位在注入器組件30之間。將基座組件140旋轉45°將導致在氣體分配組件120之間的每個基板60被移動到氣體分配組件120以用於膜沉積,如氣體分配組件120下方的虛線圓所示。額外的45°旋轉將使基板60自注入器組件30移動離開。利用空間ALD注入器,在晶圓相對於注入器組件移動期間,膜沉積在晶圓上。在一些實施例中,基座組件140以增量的方式旋轉,防止基板60在氣體分配組件120下方停止。基板60和氣體分配組件120的數量可以為相同或不同。在一些實施例中,正在處理的晶圓數量與氣體分配組件數量相同。在一個或多個實施例中,正在處理的晶圓的數量是氣體分配組件數量的幾分之一或整數倍。例如,如果有四個氣體分配組件,則有4x個正在處理的晶圓,其中x是大於或等於1的整數值。
圖3所示的處理腔室100僅代表一種可能的配置,不應視為限制本揭示案的範圍。此處,處理腔室100包括複數個氣體分配組件120。在所示的實施例中,繞處理腔室100均勻分佈有四個氣體分配組件120(也稱為注入器組件)。所示的處理腔室100是八角形的,然而,本發明所屬領域中具有通常知識者將會理解,這僅為一種可能的形狀,不應視為限制本揭示案的範圍。所示的氣體分配組件120是梯形的,但可以是單個的圓形部件、或者由複數個派狀區段組成,如圖2所示。
圖3所示的實施例包括裝載閘腔室180或者像緩衝站那樣的輔助腔室。腔室180連接到處理腔室100的一側,以允許例如從處理腔室100裝載/卸載基板(也稱為基板60)。晶圓機器人可定位在腔室180中以將基板移動到基座上。
旋轉料架(如基座組件140)的旋轉可以是連續的或不連續的。在連續處理中,晶圓不斷地旋轉,以使它們依次暴露於每個注入器。在不連續處理中,晶圓可以移動到注入器區域並停止,然後移動到注入器之間的區域84並停止。例如,旋轉料架可以旋轉,使得晶圓從注入器間的區域跨過注入器(或停止在注入器附近)移動以及接著繼續移動到旋轉料架可以再次暫停的下一個注入器間的區域。注入器之間的暫停可提供時間以用於每個層沉積之間額外的處理步驟(如暴露於電漿)。
圖4表示氣體分配組件120的扇區或部分(其可稱為注入器單元122)。注入器單元122可以單獨使用或與其他注入器單元組合使用。例如,如圖5所示,圖4注入器單元122中的四個被組合以形成單個氣體分配組件220。(為了清楚起見,沒有圖示分開四個注入器單元的線。)雖然除了淨化氣體埠155和真空埠145之外,圖4的注入器單元122還具有第一反應氣體埠125和第二反應氣體埠135兩者,但是注入器單元122不需要這些部件的全部。
參照圖4和圖5,根據一個或多個實施例的氣體分配組件220可包括複數個扇區(或注入器單元122),其中每個扇區為相同或不同。氣體分配組件220定位在處理腔室內且包括氣體分配組件220的前表面121中的複數個細長氣體埠125、135、145。複數個細長氣體埠125、135、145和真空埠155從鄰近內周邊緣123的區域向鄰近氣體分配組件120的外周邊緣124的區域延伸。所示的複數個氣體埠包括第一反應氣體埠125、第二反應氣體埠135、圍繞第一反應氣體埠和第二反應氣體埠的各個氣體埠之真空埠145以及淨化氣體埠155。
參照圖4或5所示的實施例,當說到埠從至少約略內周邊區域延伸到至少約略外周邊區域時,埠可以不僅僅是從內區域往外區域徑向延伸。當真空埠145圍繞反應氣體埠125和反應氣體埠135時,埠可以切向延伸。在圖4和5所示的實施例中,楔形反應氣體埠125、135在所有邊(包括鄰近的內周區域與外周區域)上被真空埠145所圍繞。
參考圖4,當基板沿著路徑127移動時,基板表面的每個部分暴露於各種反應氣體。為了遵循路徑127,基板將暴露於或「遇到(see)」淨化氣體埠155、真空埠145、第一反應氣體埠125、真空埠145、淨化氣體埠155、真空埠145、第二反應氣體埠135和真空埠145。因此,在圖4所示路徑127的末端,基板已經暴露於來自第一反應氣體125和第二反應氣體135的氣流以形成一層。所示的注入器單元122形成四分之一圓,但可以更大或更小。圖5中所示的氣體分配組件220可以視為是圖4注入器單元122中的四個以串聯連接的組合。
圖4的注入器單元122表示分隔反應氣體的氣體幕150。術語「氣體幕(gas curtain)」用於描述將反應氣體從混合中分離出來的氣流或真空的任何組合。圖4所示的氣體幕150包括第一反應氣體埠125旁邊的真空埠145的部分、中間的淨化氣體埠155以及第二氣體埠135旁邊的真空埠145的部分。氣流和真空的組合可以用於防止或最小化第一反應氣體和第二反應氣體的氣相反應。
參考圖5,來自氣體分配組件220的氣流和真空的組合形成分隔成複數個處理區域250。處理區域粗略界定為圍繞個別反應氣體埠125、135,其中氣體幕150介於250之間。圖5所示的實施例構成八個分開的處理區域250,其中八個分開的氣體幕150在其之間。處理腔室可以具有至少兩個處理區域。在一些實施例中,有至少三個、四個、五個、六個、七個、八個、九個、十個、十一個或十二個處理區域。
在處理期間,基板可以在任何給定時間暴露於多於一個處理區域250。然而,暴露於不同處理區域的部分將具有將兩個處理區域分開的氣體幕。例如,如果基板的前緣進入包括第二反應氣體埠135的處理區域,則基板的中間部分將位於氣體幕150下方,且基板的後緣將處於包括第一反應氣體埠125的處理區域中。
工廠介面280(其可以是例如裝載閘腔室)所示連接到處理腔室100。所示基板60疊加(superimpose)在氣體分配組件220上以提供參考框架。基板60通常可位於基座組件上以被固持在氣體分配組件120(也稱為氣體分配板)的前表面121附近。基板60經由工廠介面280裝載到處理腔室100中,裝載到基板支撐件或基座組件上(見圖3)。因為基板位於第一反應氣體埠125附近且位於兩個氣體幕150a、150b之間,所以所示基板60可以定位在處理區域內。沿路徑127旋轉基板60將把基板繞處理腔室100逆時針移動。因此,基板60將暴露於第一處理區域250a至第八處理區域250h,其包括其間的所有處理區域。對於處理腔室周圍的每個循環,使用所示的氣體分配組件,基板60將暴露於第一反應氣體和第二反應氣體的四個ALD循環。
批量處理器中的傳統ALD程序(如圖5那樣)利用其間的泵/淨化部分來維持分別來自空間分離的注入器之化學物質A和B的流動。傳統的ALD程序具有可能導致沉積膜的不均勻性之起始和結束圖案(pattern)。發明人意外發現,在空間ALD批量處理腔室中所施行的基於時間的ALD製程提供了具有更高均勻性的膜。暴露於無反應氣體的氣體A與無反應氣體的氣體B的基本製程將清掃注入器下方的基板,而分別利用化學物質A與B飽和表面,以避免膜具有開始與結束圖案形式。發明人意外發現,基於時間的方案特別有益於當目標膜厚度為薄(如少於20 ALD循環)時,開始與結束圖案對於晶圓均勻效能具有顯著影響。發明人亦發現,如本文所述的建立SiCN、SiCO、及SiCON膜的反應製程無法利用時域製程實現。用於淨化處理腔室的時間量導致材料從基板表面剝離。因為在氣體幕下方的時間短,所以利用空間ALD製程並不會發生剝離。
參照圖6至圖14B,本揭示案的一個或多個實施例係關於模組化電容耦合電漿源300。如在本說明書和所附申請專利範圍中所使用的,術語「模組化」意指電漿源300可以附接到處理腔室或從處理腔室移除。模組化源一般可以藉由單一個人移動、移除、或附接。
圖6表示根據本揭示案的一個或多個實施例的電漿源組件300的橫截面。圖6中所示的電漿源組件300包括具有氣體入口315和前表面312的殼體310。氣體入口315允許氣流沿著流動路徑318移動通過殼體310並從前表面312中的開口313流出。為了說明之目的,所示的實施例具有以偏心(off-center)繪示的氣體入口315,但是本發明所屬領域中具有通常知識者將理解到,氣體入口315可以在殼體310中居中。另外,一些實施例包括氣室316,以增加通過流動路徑318的氣流的均勻性。一些實施例的氣室316至少部分地以介電質填充,該介電質具有複數個通孔和/或氣室,以允許氣體均勻地到達電漿腔(縫隙340、340b)。通孔和/或氣室具有足夠小的尺寸以防止電漿崩潰(plasma breakdown)。在一些實施例中,通孔的直徑小於或等於約1mm、0.95mm、0.9mm、0.85mm、0.8mm、0.75mm、0.7mm、0.65mm或0.6mm。
電漿源組件300包括RF熱電極320和至少一個返回電極330。返回電極330是與RF熱電極320形成完整電路的任何導電材料。本發明所屬領域中具有通常知識者將理解,返回電極330可以提供電子流動的路徑。以此方式使用的術語「返回(return)」意指電極是電漿部件的電路徑的一部分,而不是暗示電流或電子流動的方向。
參照圖6至圖8,RF熱電極320具有第一表面322以及與第一表面322相對的第二表面324。圖6表示電漿源組件300的橫截面,而圖7和8表示電極的局部透視圖。如在這方面所使用的,第一表面322和第二表面324位於RF熱電極320的厚度T的相對側上。RF熱電極320通常成形為具有高度H、厚度T和長度L的矩形稜鏡。RF熱電極320具有實質平行於流動路徑318定向的第一表面322。如在這方面使用的術語「實質平行」意指表面在±10°的平行範圍內(定義為0°)。
返回電極330類似地成形為RF熱電極320。返回電極具有第一表面332,第一表面332實質平行於流動路徑318定向。返回電極330的第一表面332與RF熱電極320的第一表面322間隔開以形成縫隙340。
返回電極330、330b可以是任何合適的材料,包括但不限於鋁、不銹鋼和銅。返回電極330、330b可以具有任何合適的電特性。在一些實施例中,返回電極330、330b是接地電極。接地電極是與電接地電接觸的任何導電材料。
在一些實施例中,返回電極330、330b是與RF熱電極320不同的供電電極。以此方式使用的「與RF熱電極不同」意指電特性或電位不同於RF熱電極。例如,可使用移相器從單個源以推拉(push-pull)方式調諧所產生的電漿的驅動功率,以最小化與晶圓的相互作用。在這種實施例中,RF熱電極320可以例如與返回電極330異相180°。
如圖7所示,電漿源組件的一些實施例進一步包括第二返回電極330b。第二返回電極330b具有第一表面332b,第一表面332b實質平行於流動路徑318定向。第二返回電極330b的第一表面332b與RF熱電極320的第二表面324間隔開以形成縫隙340b。縫隙340和縫隙340b可以具有相同或不同的尺寸。在一些實施例中,RF熱電極320和返回電極330、330b之間的縫隙340、340b在約4mm至約15mm的範圍內、或在約5mm至約14mm的範圍內、或在約7mm至約13mm的範圍內、或在約9mm至約12mm的範圍內,或為約11mm。
RF熱電極320的厚度T可以是任何合適的厚度,例如取決於電極材料。在一些實施例中,RF熱電極的厚度為約3mm至約11mm的範圍內、或約4mm至約10mm的範圍內、或約6mm至約9mm的範圍內或為約8mm。
RF熱電極320的高度H可以改變。在一些實施例中,RF熱電極320的高度H在約8mm至約40mm的範圍內、或在約9mm至約35mm的範圍內、或在約10mm至約30mm的範圍內、或在約11mm至約25mm的範圍內、或在約12mm至約20mm的範圍內、或在約13mm至約15mm的範圍內或為約14mm。
在一些實施例中,電漿源組件300的殼體310是楔形的。圖9表示包含楔形殼體310的實施例。如圖所示,RF熱電極320和返回電極330沿著殼體310的主軸308延伸。以這種方式使用的主軸308指的是延伸通過形成內周邊緣123的弧的中間以及通過形成外周邊緣124的弧的中間之軸。
RF熱電極320和返回電極330之間的間隔沿著電漿源組件的主軸308可以實質相同或者可以變化。例如,在一些實施例中,RF熱電極和返回電極在楔形殼體310的外周邊緣124處比在內周邊緣123附近間隔得更遠。
一些實施例包括鄰近RF熱電極320的下邊緣329的包層360。參照圖10,RF熱電極320所示在兩個返回電極330之間。包層360將RF熱電極320的下邊緣329與基板60和基座組件140分隔開。在一些實施例中,包層360的存在有助於防止或最小化RF熱電極320的濺射污染基板60。包層360可以由任何合適的材料製成,包括但不限於介電質(如陶瓷材料)。可以調整包層360的尺寸以使RF熱電極320的下邊緣329從基板60附近移動。在一些實施例中,包層360的長度Ls在約10mm至約25mm的範圍內、或在約13mm至約20mm的範圍內或為約17mm。
參照圖1、2、8和11,本揭示案的一些實施例係關於處理腔室100,其包括基座組件140和氣體分配組件120。圖11表示根據本揭示案的一個或多個實施例的處理腔室100的等角視圖。基座組件140具有頂表面141,以支撐複數個基板60以及繞中心軸161旋轉複數個基板60。
氣體分配組件120具有面向基座組件140的頂表面141之前表面121,以引導氣流朝向基座組件140的頂表面141。一些實施例的氣體分配組件120包括具有楔形殼體310的電漿源組件300。楔形殼體具有內周邊緣123和外周邊緣124,外周邊緣124界定殼體310的主軸308。殼體310具有第一側371、第二側372、氣體入口315和前表面312。流動路徑定義為氣體從氣體入口315流過殼體310並從前表面312離開所遵循的路徑。
電漿源組件300具有至少一個RF熱電極320,其具有實質平行於流動路徑定向的第一表面322。在所示的實施例中,有三個RF熱電極320。至少一個返回電極330位於殼體310內並具有第一表面332,第一表面332平行於流動路徑定向且與RF熱電極320的第一表面322間隔開以形成縫隙340。電漿源組件300的楔形殼體310的前表面312定位在距基座組件140的頂表面141的一距離處,該距離在約1mm至約5mm的範圍內、或在約1.5mm至約4mm的範圍內或為約2mm。圖15所示的實施例僅僅是具有電漿源組件的處理腔室的一種可能配置的實例,且不應被視為限制本揭示案的範圍。
參考回圖6,一些實施例包括同軸RF饋線380,同軸RF饋線380穿過殼體310並為RF熱電極320提供電力以在縫隙340中產生電漿。同軸RF饋線380包括由絕緣體386分開的外導體382和內導體384。內導體384與RF熱電極320電連通,且外導體382與電接地或與和RF熱電極不同相位的電源(未圖示)電連通。如在本說明書和所附申請專利範圍中所使用的,術語「電連通」意指部件直接或透過中間部件連接,使得電阻很小。內導體384和外導體382之間的縫隙可以以介電質填充,該介電質可以是陶瓷,但可以是任何合適的介電質材料。
同軸RF饋線380可以構造成使得外導體382終止在返回電極330上。內導體384可以終止在RF熱電極320上。在一些實施例中,氣體入口315饋送到繞同軸饋(coaxial feed)的外周之殼體。RF饋送可以為同軸傳輸線的形式。外導體可以在返回電極中連接/終止,且內導體連接到RF熱電極。返回電極330可以藉由任何合適的方法(包括但不限於金屬墊圈)連接到金屬殼體。這有助於確保返回電流的對稱幾何。所有返回電流都流向饋線的外導體,而最小化RF雜訊。在一些實施例中,RF饋送經設計成向RF熱電極提供對稱的RF饋送電流,以及對稱的返回電流。所有返回電流都流向外導體,而最小化RF雜訊,以及最小化源安裝對操作的影響。
對於線性徑向電漿源,如圖6至8中所示,在使用旋轉基座(平臺)的任何處理系統中,與晶圓的外直徑(OD)相比,電漿暴露(處理)在晶圓的內直徑(ID)處更大。在同軸饋送連接到熱電極的近似中心的系統中,ID和OD暴露之間的差異可以是約2.7倍。目前,同軸饋送在電極的大致中心處連接到熱電極。此連接配置可能無法在晶圓的ID和OD處提供均勻的電漿暴露。本揭示案的一個或多個實施例有利地提供簡單的線性設計電漿源。一些實施例以增加從晶圓ID到OD的電漿通量的方式來有利地提供高頻或非常高頻率的內直徑饋送。
參見圖11和12,垂直電漿源(VPS)可以是具有供電電極(熱電極)以及從晶圓的ID延伸到OD且超出的返回電極之線性電漿源。熱電極和返回電極之間的縫隙可以沿著電極長度從ID到OD為實質均勻的。
一些實施例的電極被由介電材料製成的內包層和外包層所包圍,以最小化金屬污染。「內包層」可以用於表示與RF熱電極相關聯的包層,「外包層」可用於表示與返回電極相關聯的包層。在包層的底部和將電漿暴露於晶圓的晶圓/基座之間保持縫隙。
一般來說,在電漿組件中產生的電場(和電漿通量)在RF饋送附近最大,其中場強度隨著與RF饋送的距離增大而減小。在線性垂直電漿源中,RF饋送下方意外地出現最小電場和電漿密度。不受任何特定操作理論的束縛,咸信這是由於隨著RF功率的頻率增加而增加的電磁效應。本發明人已經發現,將RF饋送往熱電極的ID端移動可以補償暴露不均勻性。
電源390可以以任何合適的頻率操作。已經發現,較高頻率的功率可產生電漿密度變化,電漿密度變化可以補償由於基座旋轉引起的ID和OD之間的不同暴露。在一些實施例中,電源390以高頻(20-30MHz)或非常高的頻率(30-100MHz)操作。在一些實施例中,電源390以60MHz操作。
參照圖11至圖13,本揭示案的一個或多個實施例係關於電漿源組件300。電漿源組件300包括殼體310,如圖13所示。一些實施例的殼體310固持或支撐除了可能使用的電源連接件或氣體管線連接件之外電漿源組件的所有部件。結合到一個殼體中時,電漿源組件可以是模組化的;允許組件移動、添加到處理設備或從處理設備移除。一些實施例的殼體310是楔形的,以切合到如圖4或5所示的氣體分配組件120中。雖然殼體310可以是楔形的,但是電漿腔的形狀或形成電漿的縫隙可以是線性的。圖11中所示的實施例未示出用於說明目的的殼體。
圖12表示一些實施例的電漿源組件300的局部截面側視圖。殼體310具有內周邊緣123和外周端124,其可以與圖4和5中所示的氣體分配組件120對齊。如圖13所示,殼體310可包括氣體入口315,以從氣體入口315形成流動路徑318,以允許氣體流動通過殼體310並從電漿源組件300的前表面312中的開口313流出。前表面312可以由殼體310、RF熱電極320、返回電極330或可以定位在距基座組件一距離的任何合適材料形成。在一些實施例中,前表面312由單獨部件的組合形成,從而產生材料的混合物。
電漿源組件包括具有細長主體321的RF熱電極320,細長主體321包括第一表面322和與第一表面322相對的第二表面324。第一表面322和第二表面324界定RF熱電極320的寬度。在一些實施例中,第一表面322和第二表面324實質平行。如在這方面使用,術語「實質平行」係指表面形成在±10º、±9º、±8º、±7º、±6º、±5º、±4º、±3º、±2º或±1º範圍內平行的主要平面。在一些實施例中,RF熱電極320的寬度在約2mm至約20mm的範圍內、或在約3mm至約15mm的範圍內、或在約4mm至約10mm的範圍內、或在約5mm至約9mm的範圍內、或在約6mm至約8mm的範圍內或為約7mm。
RF熱電極320的細長主體321具有內周端323和外周端325。RF熱電極320的內周端323定位於殼體310內且靠近殼體310的內周邊緣123。RF熱電極320的外周邊緣325定位在殼體310內且靠近殼體310的外周邊緣124。內周端323和外周端325界定RF熱電極320的長度L。圖12中所示的實施例表示殼體310具有與RF熱電極320大約相同的長度。這僅僅代表一種可能的配置,且不應被視為限制本揭示案的範圍。一些實施例的殼體延伸超出RF熱電極的端部,且可以纏繞RF熱電極的至少部分。一些實施例的RF熱電極320的長度L在約160mm至約440mm的範圍內。RF熱電極320的長度L可以經配置橫跨待處理的基板的寬度。例如,如果正在處理的基板是直徑200mm的晶圓,則RF熱電極的長度L可以在約160mm至約440mm的範圍內、或者在約180mm至約220mm的範圍內、或者在約190mm至約210mm的範圍內、或者在約195mm至約205mm的範圍內。如果正在處理的基板是直徑300mm的晶圓,則RF熱電極的長度L可以在約160mm至約440mm的範圍內、或者在約260mm至約440mm的範圍內、或者在約280mm至約320mm、或者在約290mm至約310mm的範圍內、或者在約295mm至約305mm的範圍內。
返回電極330可以是適於允許返回電流從RF熱電極流動或提供相反極性電壓的任何部件。術語「返回電極」係用於表示與RF熱電極形成完整電路的電連接,且不應視為暗示電流或電子流動的方向。一些實施例的返回電極330是殼體310。在一些實施例中,返回電極330是殼體310內的單獨部件。返回電極330可以由與殼體310相同的材料製成,但是可以與殼體310電隔離,或者返回電極330可以由與殼體310不同的材料製成。在所示實施例中,返回電極330是與殼體310不同的材料。一些實施例的返回電極330具有細長主體,該細長主體從內周邊緣延伸到殼體的外周邊緣。返回電極與RF熱電極320分隔開以提供縫隙340,電漿可以在縫隙340中形成。
RF饋送380將電源390連接到RF熱電極320。RF饋送380可以是如圖6所示的同軸RF饋送線。如圖12所示,RF饋送380在與RF熱電極320的內周邊緣323的距離De處連接到RF熱電極。一些實施例的距離De小於或等於RF熱電極320的長度L的約25%。在一些實施例中,距離De小於或等於RF熱電極320的長度L的約20%、15%、10%、5%、4%、3%、2%或1%。
如圖13所示,在一些實施例中,RF熱電極320具有RF熱電極包層360,RF熱電極包層360經定位使得RF熱電極320沒有直接暴露於基板或基座組件。以此方式使用時,術語「沒有直接暴露」及類似用語係指從RF熱電極320射出的原子不能沿直線路徑行進以撞擊基板的表面。在所示的實施例中,RF熱電極包層360纏繞RF熱電極320所有暴露的側和表面。一些實施例的RF熱電極包層360包括矽或氧化矽中的一或多者。在一些實施例中,RF熱電極包層360包括石英或實質由石英組成。在一些實施例中,RF熱電極包層360由在所處理的晶圓上並未濺射為污染物的材料製成。RF熱電極包層360材料可取決於正在施行的製程或沉積。
在一些實施例中,返回電極330包括返回電極包層361。一些實施例的返回電極包層361經定位使得返回電極330沒有直接暴露於基板或基座表面。在一些實施例中,返回電極包層361包括矽、氧化矽或氧化鋁中的一或多者。
一些實施例的返回電極包層361包括與RF熱電極包層360不同的材料。在一些實施例中,RF熱電極包層360和返回電極包層361由相同材料製成。在一些實施例中,RF熱電極包層360包括石英,且返回電極包層包括氧化鋁。在一些實施例中,RF熱電極包層360實質由石英組成且/或返回電極包層實質由氧化鋁組成。以此方式使用時,術語「實質由......組成」是指所指包層的組成物大於或等於所述材料的重量的約95%、98%、或99%。
RF熱電極包層360和返回電極包層361可以形成電漿源組件300的前表面312。從RF熱電極包層360到基板60的距離Gh 可以與從返回電極包層361到基板60的距離Gr 相同或不同。
一些實施例的電漿源組件300提供具有在RF熱電極320的內周端323處產生的離子通量的電漿,該離子通量小於在RF熱電極320的外周端325處產生的離子通量。
本揭示案的另外的實施例係關於處理基板的方法。基板60定位在基座組件140上且與氣體分配組件120相鄰。氣體分配組件120包括根據本揭示案的一個或多個實施例的電漿源組件。氣體經由殼體310的氣體入口315流入RF熱電極320和返回電極330之間的縫隙340。RF熱電極320透過RF饋送380激發,以在縫隙340中形成電漿,RF饋送380係定位成從內周端323測量的RF熱電極320的長度L的25%內。電漿從殼體310的前表面312流出,以將基板60暴露於電漿。
圖14A和14B分別表示根據本揭示案的一個或多個實施例的電漿源組件300的截面圖和底視圖。電漿源組件300包括RF熱電極320和返回電極330。在所示實施例中,返回電極330是電漿源組件300的殼體。RF熱電極藉由介電質370與返回電極330隔離。同軸饋送線的內導體384連接到內直徑端323(相對於外直徑端325)附近的RF熱電極320。
在所示實施例中,包層360纏繞在RF熱電極320的下邊緣329和側邊緣328。沿著RF熱電極320的長度,從內直徑端323到外直徑端325,包層360將RF熱電極320與相鄰組件屏蔽隔開,使得RF熱電極320和其他組件之間沒有直接的視線。
外包層361定位於返回電極330上,使得外包層361在返回電極330和縫隙340之間。如圖所示,外包層361可以纏繞返回電極330的前部,以防止返回電極濺射。
因此,本揭示案的實施例係關於包括處理腔室100的處理方法,其中處理腔室100具有複數個處理區域250a-250h,每個處理區域藉由氣體幕150與相鄰區域分開。例如,圖5中所示的處理腔室。根據氣流的佈置,處理腔室內的氣體幕和處理區域的數量可以為任何合適的數量。圖5所示的實施例具有八個氣體幕150和八個處理區域250a-250h。氣體幕的數量通常等於或大於處理區域的數量。例如,如果區域250a沒有反應氣體流,但僅用作裝載區域,則處理腔室將具有七個處理區域和八個氣體幕。
複數個基板60定位在基板支撐件上,例如,圖1和2中所示的基座組件140。複數個基板60繞處理區域旋轉以進行處理。一般來說,氣體幕150在整個製程中接合(氣體流動和開啟真空),整個製程包括沒有反應氣體流入腔室的週期。
第一反應氣體A流入一個或多個處理區域250,同時惰性氣體流入沒有第一反應氣體A流入的任何處理區域250。例如,如果第一反應氣體經由處理區域250h流入處理區域250b,則惰性氣體將流入處理區域250a中。惰性氣體可以流過第一反應氣體埠125或第二反應氣體埠135。
處理區域內的惰性氣體流可以是恆定的或是變化的。在一些實施例中,反應氣體與惰性氣體共流(co-flowed)。惰性氣體將用作載體和稀釋劑。因為反應氣體的量(相對於載體氣體)很小,所以共流可以藉由減少相鄰區域之間的壓力差來更容易地平衡處理區域之間的氣體壓力。
在一些實施例中,處理區域中的至少一個包括電漿源組件。一些實施例使用遠端電漿源,其中可以在供電板(powered plate,RF熱電極)和組板(group plate,返回電極)之間產生電漿。氣體物質在該等板之間流動且被激發以在基座組件的表面附近形成電漿。電漿可以被實質限制於源,並使來自供電板到達晶圓表面的濺射材料最小化。一些實施例亦有利地提供了不實質改變基板表面的軟電漿。一個或多個實施例提供了一種能夠產生電漿而不允許電返回路徑穿過基板的設備。本揭示案的一些實施例提供模組化遠端電漿源,其可以添加到氣體分配組件或從氣體分配組件移除。遠端電漿源在不使用基板或基板支撐件作為電極的情況下產生電漿。
可以改變RF熱電極(供電電極)和接地板(稱為返回電極)之間的縫隙。在一些實施例中,縫隙在約3mm至約15mm的範圍內且可以是可調整的。可以改變RF熱電極的寬度。例如,該等板可以是錐形的以加速離子。在使用中,在RF熱電極和返回電極之間的縫隙中流動的氣態物質被離子化。接著離子化的物質可以接觸基板表面。在一些實施例中,形成的電漿是軟電漿,其沒有實質改變基板表面。
本揭示案的一個或多個實施例係關於選擇性側壁沉積製程和設備。在一些實施例中,低頻(LF)偏壓能力將方向偏壓添加到電漿增強原子層沉積(PE-ALD)批量處理工具。將LF偏壓施加到基座可有利地實現在電漿內產生的離子和自由基流的方向性,其選擇性地在水平表面上改變膜性質。共形膜的性質的幾何依賴性可以在後續的濕式蝕刻製程期間實現水平平面膜的選擇性蝕刻(或選擇性蝕刻容差),而不會增加顯著的成本。一些實施例有利地提供具有原位LF偏壓能力的設備,以打開製程裕度(process window),該製程裕度彈性地最佳化各種應用的膜特性。
參照圖15,本揭示案的一些實施例係關於處理腔室500。處理腔室500含有一個(或多個)基座140,以固持繞軸160和附接在腔室底部的馬達163旋轉的多個基板60。晶圓朝向注入器(氣體分配組件120)向上,注入器含有沿方位角方向的多個單元(cell,氣體埠)。每個單元的氣流可以由個別的質量流量控制器(MFC)單獨控制。每個單元藉由惰性氣體流(如氮氣)的幕分開,以防止來自不同單元的氣體混合。藉由旋轉基座,晶圓依次暴露於多個前驅物(氣體)以建立ALD循環。藉由添加RF產生器510和匹配電路512,可以將批量處理系統中的一些單元配置為射頻(RF)電漿處理區域。在沉積期間添加電漿暴露可用於調節膜性質,或者改善其品質,或者有意地降解(degrade)膜的部分。氣體分配組件120包括複數個處理區域(如圖5所見)。每個處理區域藉由氣體幕與相鄰處理區域分開,且至少一個處理區域是電漿處理區域525。圖5中所示的截面圖5包括位於處理腔室的相對側的兩個電漿處理區域525。例如,參考圖5的命名法,第四處理區域250d和第八處理區域250h可以是電漿處理區域,而其他處理區域被稱為熱處理區域。術語「熱處理區域」的使用僅意味在該區域中沒有電漿,沒有暗示溫度。電漿處理區域525包括氣體分配組件120的楔形扇區,其中氣體埠由氣體幕界定。
主沉積產生器510透過匹配電路512連接到電漿處理區域525。一些實施例的主沉積產生器510以主沉積產生器頻率操作。一些實施例的主沉積產生器頻率大於或等於2MHz。在一些實施例中,主沉積產生器頻率為約13.56MHz、40MHz、60MHz或100MHz。在一些實施例中,主沉積產生器510將電力施加於氣體分配組件120,且基座組件140用作返回電極。主沉積產生器510可以經配置施加足夠的能量以點燃電漿處理區域525中的電漿且不點燃非電漿處理區域(即,熱處理區域)中的電漿。
除了主沉積產生器510之外,第二「低頻」偏壓產生器540可以電連接到基座組件140。在一些實施例中,低頻偏壓產生器540透過介面盒550連接到基座組件140。低頻偏壓產生器540電連接到基座組件120,以將低頻偏壓施加到基座組件120。低頻偏壓可以是任何合適的低頻。在一些實施例中,低頻偏壓小於約2MHz、1MHz或500kHz。在一些實施例中,低頻偏壓產生器以約325kHz的頻率操作。
在一些實施例中,如圖15所示,低頻偏壓產生器540透過介面盒550連接到基座組件120。參照圖16描述介面盒550的功能。本發明所屬領域中具有通常知識者將認識到,可能沒有包含所有列出的功能和部件,或者可能包括額外的部件和功能。所示實施例僅代表一種可能的配置。介面盒550可以包括具有DC阻擋電容器551的基座的DC隔離。在一些實施例中,可以併入RF濾波器552a、552b以分別阻擋主產生器RF的主要以及第二(和可能的第三)諧波頻率。雖然所示為兩個RF濾波器,但是可以包括多於或少於兩個,這取決於例如欲阻擋的諧波頻率的數量。在一些實施例中,額外的低通濾波器553阻擋高於該低偏壓頻率的RF功率。在一些實施例中,用於基座DC電壓(Vdc)554和低頻偏壓電壓(Vrms)555的讀出電路可以輸出到輸入/輸出599裝置(如電腦監控器)。
主頻率產生器510的輸入功率用於在腔室內產生電漿。來自低頻偏壓產生器540的第二頻率遠低於主頻率(如325kHz vs. 13.56MHz),來自低頻偏壓產生器540的第二頻率增強電漿中產生的產物(如離子和自由基)流的方向性。在一些實施例中,低頻偏壓產生器的頻率和功率經配置增加到達晶圓的水平面上的離子和自由基的能量或數量,同時在垂直平面上保持恆定或減小。這可以允許藉由幾何調節電漿處理,來根據膜在三維結構中的面上產生一個連續膜的不同特性。
處理腔室500的一些實施例包括控制器595。控制器595可以被提供並耦接到處理腔室500的各種部件以控制其操作。控制器595可以是控制整個處理腔室500的單個控制器,或是控制處理腔室500的個別部分的多個控制器。在一些實施例中,控制器595包括中央處理器(CPU)596、記憶體597、支援電路598及輸入/輸出(I/O)599。控制器595可直接控制處理腔室500,或者經由與特定處理腔室和/或支援系統部件相關聯的電腦(或控制器)來控制處理腔室500。控制器595可以是可以在工業環境中用於控制各式腔室與副處理器的任意形式之通用電腦處理器。控制器595的記憶體597或電腦可讀取媒體可係一個或更多個容易取得之記憶體,如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、軟碟、硬碟、光儲存媒體(如光碟或數位影碟)、快閃驅動裝置或任何其他的數位儲存格式,本端的或是遠端的。支援電路598與CPU 596耦接而用傳統方式支援處理器。這些電路包括快取記憶體、電源供應、時脈電路、輸入/輸出電路與子系統以及類似物。一個或更多個製程可作為軟體子程式儲存在記憶體597中,軟體子程式可經執行或引動以本說明書所述方法控制處理腔室500或個別處理腔室的操作。軟體例程亦可由第二CPU(未圖示)儲存及(或)執行,第二CPU位於CPU 596正控制的硬體之遠端。輸入/輸出599可以包括鍵盤、電腦滑鼠、顯示器和/或印表機。
在一些實施例中,控制器595耦接到基座組件140和氣體分配組件120。一些實施例的控制器595具有一個或多個配置,以控制各種功能和製程。在一些實施例中,控制器595亦連接到主沉積產生器510和低頻偏壓產生器540以控制其功能。在一些實施例中,配置選自以下各者中:第一配置、第二配置、第三配置及第四配置,該第一配置使該基座組件繞該中心軸旋轉,該第二配置控制氣體進入該等處理區域的各者之流動,該第三配置控制到該主沉積產生器的功率,該第四配置控制到該低頻偏壓產生器的功率。
本揭示案的一個或多個實施例係關於用於在3D結構的側壁上選擇性地沉積介電膜的方法。偏壓硬體設置可以實現定向電漿處理。一些實施例係關於藉由在電漿處理期間改變氣體成分來作選擇性水平平面沉積。
參照圖15和17,本揭示案的一些實施例係關於沉積膜的方法600。至少一個基板定位於基座組件的頂表面上。基板610具有表面612,至少有一個特徵614形成於其中。特徵614的深度從表面612延伸到底部616且特徵614具有側壁618。特徵的寬度可以是任何合適的寬度,且特徵的深度可以是任何合適的深度。
將氣流提供到處理腔室中的複數個處理區域中。向主沉積產生器510提供電力以在電漿處理區域525中形成電漿。低頻偏壓產生器540被供電以向基座組件140提供低頻偏壓。在一些實施例中,停止向熱處理區域的反應氣體流動,同時將低頻偏壓施加到基座組件140。
可以將基板表面暴露於第一數量的沉積循環,然後接著第二數量的處理(treatment)循環。每個沉積循環包括以下步驟:將該基板表面暴露於該處理腔室的第一處理區域中的第一反應氣體,將該基板表面從該第一處理區域移動通過氣體幕到達第二處理區域,將該基板表面暴露於該第二處理區域中的第二反應氣體,將該基板表面從該第二處理區域移動通過氣體幕到達電漿處理區域,及將該基板表面暴露於該電漿處理區域中的電漿製程。每個處理循環包括以下步驟:向該基座組件提供低頻偏壓,及將該基板表面暴露於使用由主沉積產生器產生的主頻率電漿之偏壓電漿處理區域中的偏壓電漿製程,其中該低頻偏壓施加到該基座組件。在一些實施例中,處理循環進一步包括停止該第一處理區域中的該第一反應氣體和該第二處理區域中的該第二反應氣體的流動。在一些實施例中,偏壓電漿處理區域與電漿處理區域相同。
沉積循環的第一數量可以是任何合適的數量。在一些實施例中,沉積循環的第一數量在約1至約500的範圍內,或在約10至約250的範圍內。在一些實施例中,沉積循環的第一數量為約100。處理循環的第二數量可以在約1至約50的範圍內。在一些實施例中,根據沉積循環的數量,僅使用一個處理循環。
參考圖5和16,描述示例性製程。第一250a和第五250e處理區域經配置輸送第一反應氣體。第二250b和第六250f處理區域經配置輸送第二反應氣體。第三個250c和第七個250g處理區域經配置輸送淨化氣體。第四250d和第八250h處理區域經配置具有具主沉積產生器510的電漿處理。基板繞基座組件的中心軸旋轉,以使基板暴露於多個循環,以在基板的頂表面、特徵的側壁和底部上沉積膜620。
可以停止向第一250a、第二250b、第五250e和第六250f處理區域流動反應氣體,以及可以流動淨化氣體。淨化氣體可在這些(或其他)部分中恆定地流動,其中將反應氣體添加到淨化氣體流中。低頻偏壓產生器540可以被供電以將低頻偏壓施加到基座組件140,且基板可以暴露於至少一個處理循環。一個處理循環是一次暴露於電漿處理區域,而不是繞處理腔室會有兩次暴露的完整循環。處理製程從基板表面612和特徵614的底部616移除膜620,將膜620留在特徵614的側壁618上。處理電漿的成分可以與沉積電漿的成分相同或不同。在一些實施例中,處理電漿的成分包含Ar、He、N2 、H2 或NH3 中的一或多者。在一些實施例中,處理電漿成分不同於沉積電漿成分。
實例
在不施加偏壓的情況下,藉由~400Å的SiN的連續膜沉積來製備參考點(POR)樣品。處理過的(Trt)樣品經歷50次循環,該循環由~5Å的SiN膜沉積步驟(在有或沒有偏壓的情況下)以及施加偏壓的處理步驟組成。藉由在沉積步驟期間將氣體混合物從Ar/N2 切換到處理期間的Ar/NH3 ,而在同一腔室中連續進行這些沉積-處理步驟。
不受理論侷限,咸信處理製程引起膜的電漿損壞,這增加了它們的蝕刻速率(ER)。藉由施加偏壓來增強電漿處理的方向性,使得藉由後續的蝕刻製程比起在側壁上的膜更容易地去除三維結構中的頂部和底部膜,從而將膜選擇性地留在側壁上。為了使電漿處理效率最大化,在沉積期間週期性地施加電漿處理。處理的頻率(或每個沉積步驟之間的膜的厚度)可以藉由電漿穿透深度(通常為幾十埃)來決定。
評估經處理過的膜的濕式蝕刻速率(在稀釋劑中為1:100HF)(WER)(標準化為POR膜的蝕刻速率)。隨著偏壓功率增加,經處理過的膜的WER急劇增加,且達到POR樣品的40倍以上。WER似乎在高於約50W的功率下飽和,這可能對製程的可重複性有用。
在具有深寬比(AR)4-5:1的特徵的結構化晶圓上處理沉積處理SiN膜。TEM圖像顯示,在處理後的樣品中,SiN膜均勻地覆蓋了結構。結構的側壁上的膜在蝕刻1分鐘後選擇性地保留,而結構的頂部和底部的膜被蝕刻掉。
藉由在沉積和處理步驟期間改變氣體成分,將選擇性側壁沉積製程擴展到選擇性「水平平面沉積」。在沉積製程期間使用Ar/NH3 電漿,導致低品質(高WER)膜。藉由在處理部分期間施加LF偏壓,用Ar/N2 電漿處理膜。Ar/N2 處理改善了膜性質(低WER),使得在後續的濕式蝕刻製程之後SiN膜選擇性地保留在水平平面上。在沉積約5Å後施行處理循環。
根據一個或更多個實施例,在形成一層之前和/或之後基板經受處理。此處理可以在相同的腔室中或者在一個或更多個單獨的處理腔室中施行。在一些實施例中,基板從第一腔室移動到單獨的第二腔室以用於進一步處理。基板可以從第一腔室直接移動到單獨的處理腔室,或者基板可以從第一腔室移動到一個或更多個移送腔室,以及接著移動到單獨的處理腔室。因此,處理設備可包括與移送站連通的多個腔室。這種設備可稱為「叢集工具」或「叢集系統」等。
一般而言,叢集工具是包括多個腔室的模組化系統,該等多個腔室施行各種功能,包括基板中心尋找和定向、脫氣、退火、沉積和/或蝕刻。根據一個或更多個實施例,叢集工具包括至少第一腔室和中央移送腔室。中央移送腔室可容納機器人,機器人可以使基板在處理腔室和裝載閘腔室之間穿梭。移送腔室通常保持在真空狀態且提供用於將基板從一個腔室往返移動到另一個腔室和/或位於叢集工具的前端的裝載閘腔室的中間階段。可適用於本揭示案的兩種眾所周知的叢集工具是均可自加州聖塔克拉拉的應用材料公司的取得的Centura® 和Endura® 。然而,為了施行如本說明書所述製程的特定步驟,可以改變腔室的確切佈置和組合。可使用的其他處理腔室包括但不限於:循環層沉積(CLD)、原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(PVD)、蝕刻、預清洗、化學清洗、熱處理(如RTP)、電漿氮化、脫氣、定向、羥基化和其他基板製程。藉由在叢集工具上的腔室中施行製程,在沉積隨後的膜之前,可以避免具有大氣雜質的基板表面污染物,而不會氧化。
根據一個或更多個實施例,基板連續處於真空或「裝載閘」狀態,且當基板從一個腔室移動到下一個腔室時不暴露於周遭空氣。因此移送腔室處於真空狀態,並在真空壓力下「抽氣」。惰性氣體可存在於處理腔室或移送腔室中。在一些實施例中,在基板表面上形成層之後,使用惰性氣體作為淨化氣體以除去一些或所有反應物。根據一個或更多個實施例,淨化氣體注入於沉積腔室的出口以防止反應物從沉積腔室移動到移送腔室和/或另外的處理腔室。因此,惰性氣體流在腔室的出口處形成幕。
在處理期間,可以加熱或冷卻基板。這樣的加熱或冷卻可以藉由任何合適的方法來實現,包括但不限於:改變基板支撐件的溫度及使加熱或冷卻的氣體流動到基板表面。在一些實施例中,基板支撐件包括可以經控制以用傳導方式改變基板溫度的加熱器/冷卻器。在一個或更多個實施例中,所採用的氣體(活性氣體或惰性氣體)被加熱或冷卻以局部地改變基板溫度。在一些實施例中,加熱器/冷卻器位於靠近基板表面的腔室內以用對流方式改變基板溫度。
在處理期間,基板也可以是靜止的或旋轉的。旋轉的基板可以連續地旋轉或以離散的步驟旋轉。例如,基板可以在整個製程中旋轉,或者基板可以在暴露於不同的反應氣體或淨化氣體之間少量地旋轉。在處理期間(連續地或分步驟地)旋轉基板可藉由最小化例如氣流幾何的局部變化之影響來幫助產生更均勻的沉積或蝕刻。
雖然前面所述係針對本揭示案的實施例,但在不背離本揭示案的基本範圍下,可設計本揭示案的其他與進一步的實施例,且本揭示案的範圍由以下專利申請範圍所界定。
60‧‧‧基板
61‧‧‧頂表面
84‧‧‧區域
100‧‧‧處理腔室
120‧‧‧氣體分配組件
121‧‧‧前表面
122‧‧‧注入器單元
123‧‧‧內周邊緣
124‧‧‧外周邊緣
125‧‧‧第一反應氣體埠
127‧‧‧路徑
135‧‧‧第二反應氣體埠
140‧‧‧基座組件
141‧‧‧頂表面
142‧‧‧凹部
143‧‧‧底表面
144‧‧‧邊緣
145‧‧‧真空埠
150‧‧‧氣體幕
150a-150b‧‧‧氣體幕
155‧‧‧真空埠
160‧‧‧支撐柱
161‧‧‧中心軸
162‧‧‧微調致動器
163‧‧‧馬達
170‧‧‧縫隙
180‧‧‧裝載閘腔室
220‧‧‧氣體分配組件
250‧‧‧處理區域
250a-250h‧‧‧處理區域
280‧‧‧工廠介面
300‧‧‧電漿源組件
310‧‧‧殼體
312‧‧‧前表面
313‧‧‧開口
315‧‧‧氣體入口
316‧‧‧氣室
318‧‧‧流動路徑
320‧‧‧RF熱電極
321‧‧‧細長主體
322‧‧‧第一表面
323‧‧‧內周端
324‧‧‧第二表面
325‧‧‧外周端
328‧‧‧側邊緣
329‧‧‧下邊緣
330‧‧‧返回電極
330b‧‧‧第二返回電極
332‧‧‧第一表面
332b‧‧‧第一表面
340‧‧‧縫隙
340b‧‧‧縫隙
360‧‧‧包層
361‧‧‧包層
370‧‧‧介電質
371‧‧‧第一側
372‧‧‧第二側
380‧‧‧RF饋送
382‧‧‧外導體
384‧‧‧內導體
386‧‧‧絕緣體
390‧‧‧電源
500‧‧‧處理腔室
510‧‧‧RF產生器
512‧‧‧匹配電路
525‧‧‧電漿處理區域
540‧‧‧低頻偏壓產生器
550‧‧‧介面盒
551‧‧‧DC阻擋電容器
552a‧‧‧RF濾波器
552b‧‧‧RF濾波器
553‧‧‧低通濾波器
554‧‧‧基座DC電壓
555‧‧‧低頻偏壓電壓
595‧‧‧控制器
596‧‧‧中央處理器(CPU)
597‧‧‧記憶體
598‧‧‧支援電路
599‧‧‧輸入/輸出
600‧‧‧方法
610‧‧‧基板
612‧‧‧表面
614‧‧‧特徵
616‧‧‧底部
618‧‧‧側壁
620‧‧‧膜
本揭示案之特徵已簡要概述於前,並在以下有更詳盡之討論,可以藉由參考所附圖式中繪示之本案實施例以作瞭解。然而,值得注意的是,所附圖式僅繪示了本揭示案的典型實施例,而由於本揭示案可允許其他等效之實施例,因此所附圖式並不會視為本揭示案範圍之限制。
圖1表示根據本揭示案的一個或多個實施例的基板處理系統的示意性截面圖。
圖2表示根據本揭示案的一個或多個實施例的基板處理系統的透視圖;
圖3表示根據本揭示案的一個或多個實施例的基板處理系統的示意圖;
圖4表示根據本揭示案的一個或多個實施例的氣體分配組件的前部的示意圖;
圖5表示根據本揭示案的一個或多個實施例的處理腔室的示意圖;
圖6表示根據本揭示案的一個或多個實施例的電漿源組件的示意性截面圖;
圖7表示根據本揭示案的一個或多個實施例的電漿源組件的局部透視圖;
圖8表示根據本揭示案的一個或多個實施例的電漿源組件的局部等角視圖;
圖9表示根據本揭示案的一個或多個實施例的電漿源組件的示意性底視圖。
圖10表示根據本揭示案的一個或多個實施例的電漿源組件的示意性側視圖;
圖11表示根據本揭示案的一個或多個實施例的具有電漿源組件的處理腔室的局部等角視圖;
圖12表示根據本揭示案的一個或多個實施例的電漿源組件電極的局部截面側視圖;
圖13表示根據本揭示案的一個或多個實施例的電漿源組件的局部截面圖;
圖14A表示根據本揭示案的一個或多個實施例的電漿源組件的截面圖;
圖14B表示根據本揭示案的一個或多個實施例的電漿源組件的截面側視圖;
圖15表示根據本揭示案的一個或多個實施例的處理腔室的示意性截面圖;
圖16表示根據本揭示案的一個或多個實施例的介面盒的示意圖;
圖17表示使用本揭示案的一個或多個實施例的設備的示例性處理方法。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無

Claims (20)

  1. 一種處理腔室,包括: 一基座組件,該基座組件具有一頂表面和一中心軸,該中心軸旋轉繞該基座組件的該中心軸定位在該頂表面上的複數個基板; 一氣體分配組件,該氣體分配組件包含複數個處理區域,每個處理區域藉由一氣體幕與相鄰處理區域分開,該等處理區域中的至少一個處理區域包含一電漿處理區域,該電漿處理區域具有一主沉積產生器,該主沉積產生器以一主沉積產生器頻率操作;及 一低頻偏壓產生器,該低頻偏壓產生器電連接到該基座組件,以將一低頻偏壓施加到該基座組件。
  2. 如請求項1所述之處理腔室,其中該低頻偏壓產生器具有約325kHz的一頻率。
  3. 如請求項1所述之處理腔室,其中該低頻偏壓產生器透過介面盒連接到該基座組件。
  4. 如請求項3所述之處理腔室,其中該介面盒包括一DC阻擋電容器,該DC阻擋電容器用於該基座組件的DC隔離。
  5. 如請求項3所述之處理腔室,其中該介面盒包括至少一個RF濾波器,以阻擋該主沉積產生器頻率的諧波。
  6. 如請求項3所述之處理腔室,其中該介面盒包括至少一個低通濾波器,以阻擋高於該低頻的頻率。
  7. 如請求項1所述之處理腔室,其中該主沉積產生器頻率為約13.56MHz。
  8. 如請求項1所述之處理腔室,其中該電漿處理區域產生一遠端電漿。
  9. 如請求項8所述之處理腔室,其中該電漿處理區域包括一垂直電漿源,該垂直電漿源具有一RF熱電極和一返回電極,該返回電極定位於該基座組件的該頂表面上方一距離處。
  10. 如請求項1所述之處理腔室,其中該電漿處理區域產生一直接電漿。
  11. 如請求項10所述之處理腔室,其中該主沉積產生器將電力施加於該氣體分配組件,及該基座組件用作一返回電極,該主沉積產生器施加足夠的能量以點燃該電漿處理區域中的一電漿且不點燃非電漿處理區域中的一電漿。
  12. 如請求項1所述之處理腔室,進一步包括一控制器,該控制器連接到該基座組件、氣體分配組件、主沉積產生器和低頻偏壓產生器,以控制其功能。
  13. 如請求項12所述之處理腔室,其中該控制器具有一個或多個配置,以控制該處理腔室的功能,該一個或多個配置選自以下各者中:一第一配置、一第二配置、一第三配置及一第四配置,該第一配置使該基座組件繞該中心軸旋轉,該第二配置控制氣體進入該等處理區域的各者之流動,該第三配置控制到該主沉積產生器的功率,該第四配置控制到該低頻偏壓產生器的功率。
  14. 一種沉積一膜的方法,該方法包括以下步驟: 將至少一個基板定位在一基座組件的一頂表面上; 提供氣體流入複數個處理區域,每個處理區域藉由一氣體幕與相鄰處理區域分開,該複數個處理區域包含複數個熱處理區域,其中該複數個處理區域中的至少一個處理區域是一電漿處理區域,該電漿處理區域具有與其連接的一主沉積產生器; 向該主沉積產生器提供電力以在該電漿處理區域中形成一電漿;及 向一低頻偏壓產生器提供電力,該低頻偏壓產生器電連接到該基座組件,以將一低頻偏壓施加到該基座組件。
  15. 如請求項14所述之方法,進一步包括以下步驟:當將該低頻偏壓施加到該基座組件時,停止到該複數個熱處理區域的反應氣體的流動。
  16. 如請求項14所述之方法,其中該主沉積產生器以約13.56MHz的一主沉積頻率操作,且該低頻偏壓具有約325kHz的一頻率。
  17. 一種沉積一膜的方法,該方法包括以下步驟: 將至少一個基板定位在一處理腔室中的一基座組件的一頂表面上; 將一基板表面暴露於一第一數量的沉積循環,每個沉積循環包含以下步驟: 將該基板表面暴露於在該處理腔室的一第一處理區域中的一第一反應氣體, 將該基板表面從該第一處理區域移動通過一氣體幕到達一第二處理區域, 將該基板表面暴露於該第二處理區域中的一第二反應氣體, 將該基板表面從該第二處理區域移動通過一氣體幕到達一電漿處理區域,及 將該基板表面暴露於該電漿處理區域中的一電漿製程;及 將該基板表面暴露於一第二數量的處理循環,每個處理循環包含以下步驟: 向該基座組件提供一低頻偏壓,及 將該基板表面暴露於使用由一主沉積產生器產生的一主頻率電漿之一偏壓電漿處理區域中的一偏壓電漿製程,其中該低頻偏壓施加到該基座組件。
  18. 如請求項17所述之方法,其中該處理循環進一步包括停止該第一處理區域中的該第一反應氣體和該第二處理區域中的該第二反應氣體的流動。
  19. 如請求項17所述之方法,其中偏壓電漿處理區域與該電漿處理區域相同。
  20. 如請求項17所述之方法,其中該第一數量係在約1至約500的範圍內,且該第二數量是1。
TW107141833A 2017-12-16 2018-11-23 使用低頻偏壓作介電膜的幾何選擇性沉積的處理腔室及方法 TWI793218B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762599688P 2017-12-16 2017-12-16
US62/599,688 2017-12-16

Publications (2)

Publication Number Publication Date
TW201936978A true TW201936978A (zh) 2019-09-16
TWI793218B TWI793218B (zh) 2023-02-21

Family

ID=66816246

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107141833A TWI793218B (zh) 2017-12-16 2018-11-23 使用低頻偏壓作介電膜的幾何選擇性沉積的處理腔室及方法

Country Status (5)

Country Link
US (1) US11081318B2 (zh)
JP (1) JP7002655B2 (zh)
KR (1) KR102405729B1 (zh)
TW (1) TWI793218B (zh)
WO (1) WO2019118812A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102662705B1 (ko) * 2016-01-24 2024-04-30 어플라이드 머티어리얼스, 인코포레이티드 파이 형상 처리를 발생시키기 위한 대칭적인 플라즈마 소스
JP7308774B2 (ja) * 2020-02-06 2023-07-14 東京エレクトロン株式会社 成膜方法及び成膜装置
KR102482734B1 (ko) 2020-11-13 2022-12-30 충남대학교산학협력단 고주파 펄스 소스 및 저주파 펄스 바이어스를 이용한 플라즈마 극고종횡비 식각 방법
US11705312B2 (en) 2020-12-26 2023-07-18 Applied Materials, Inc. Vertically adjustable plasma source
KR102660299B1 (ko) 2021-12-29 2024-04-26 세메스 주식회사 기판 처리 장치, 고조파 제어 유닛 및 고조파 제어 방법
CN115852315A (zh) * 2022-12-20 2023-03-28 安徽纯源镀膜科技有限公司 一种用于提高退膜效率的设备及工艺

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664202B2 (en) * 2002-04-18 2003-12-16 Applied Materials Inc. Mixed frequency high temperature nitride CVD process
KR101037043B1 (ko) * 2009-02-27 2011-05-26 성균관대학교산학협력단 반도체 기판의 비아 형성방법
JP5608384B2 (ja) 2010-02-05 2014-10-15 東京エレクトロン株式会社 半導体装置の製造方法及びプラズマエッチング装置
JP5864879B2 (ja) * 2011-03-31 2016-02-17 東京エレクトロン株式会社 基板処理装置及びその制御方法
US20130143415A1 (en) * 2011-12-01 2013-06-06 Applied Materials, Inc. Multi-Component Film Deposition
JP6011417B2 (ja) * 2012-06-15 2016-10-19 東京エレクトロン株式会社 成膜装置、基板処理装置及び成膜方法
KR101493254B1 (ko) * 2012-07-09 2015-02-16 엘아이지에이디피 주식회사 원자층 박막 증착장비
KR102133895B1 (ko) * 2013-11-06 2020-07-15 어플라이드 머티어리얼스, 인코포레이티드 Dc 바이어스 변조에 의한 입자 발생 억제기
WO2015080900A1 (en) * 2013-11-26 2015-06-04 Applied Materials, Inc. Tilted plate for batch processing and methods of use
TW201610215A (zh) * 2014-03-27 2016-03-16 應用材料股份有限公司 用於低熱預算處理的循環尖峰退火化學曝露
US9443716B2 (en) * 2014-10-08 2016-09-13 Applied Materials, Inc. Precise critical dimension control using bilayer ALD
TWI676709B (zh) * 2015-01-22 2019-11-11 美商應用材料股份有限公司 使用空間上分開的佈植器腔室進行的對薄膜的原子層沈積
US10121655B2 (en) * 2015-11-20 2018-11-06 Applied Materials, Inc. Lateral plasma/radical source
KR102662705B1 (ko) * 2016-01-24 2024-04-30 어플라이드 머티어리얼스, 인코포레이티드 파이 형상 처리를 발생시키기 위한 대칭적인 플라즈마 소스
TWI722132B (zh) * 2016-03-13 2021-03-21 美商應用材料股份有限公司 用於間隔墊應用之氮化矽薄膜的選擇性沉積
US9644271B1 (en) * 2016-05-13 2017-05-09 Lam Research Corporation Systems and methods for using electrical asymmetry effect to control plasma process space in semiconductor fabrication
US10340123B2 (en) * 2016-05-26 2019-07-02 Tokyo Electron Limited Multi-frequency power modulation for etching high aspect ratio features

Also Published As

Publication number Publication date
JP7002655B2 (ja) 2022-02-04
KR20200089342A (ko) 2020-07-24
US20190189400A1 (en) 2019-06-20
JP2021507517A (ja) 2021-02-22
WO2019118812A1 (en) 2019-06-20
KR102405729B1 (ko) 2022-06-07
TWI793218B (zh) 2023-02-21
US11081318B2 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
TWI774283B (zh) 用於產生派形加工的電漿源組件、處理腔室及方法
KR102124463B1 (ko) 플라즈마 균일성을 개선하기 위한 rf 다중-피드 구조
TWI793218B (zh) 使用低頻偏壓作介電膜的幾何選擇性沉積的處理腔室及方法
CN107338423B (zh) 等离子体源组件
JP7069319B2 (ja) 垂直プラズマ源からの改良されたプラズマ暴露のために成形された電極
KR102302006B1 (ko) 서셉터를 회전시키기 위한 플라즈마 소스
JP6892439B2 (ja) スロット付きグランドプレートを有するプラズマモジュール
US20230307213A1 (en) Vertically adjustable plasma source