TW201935076A - 光檢查裝置及光檢查方法 - Google Patents

光檢查裝置及光檢查方法 Download PDF

Info

Publication number
TW201935076A
TW201935076A TW107141580A TW107141580A TW201935076A TW 201935076 A TW201935076 A TW 201935076A TW 107141580 A TW107141580 A TW 107141580A TW 107141580 A TW107141580 A TW 107141580A TW 201935076 A TW201935076 A TW 201935076A
Authority
TW
Taiwan
Prior art keywords
light
fabry
perot interference
interference filter
wafer
Prior art date
Application number
TW107141580A
Other languages
English (en)
Other versions
TWI797200B (zh
Inventor
笠原隆
柴山勝己
廣瀬真樹
川合敏光
大山泰生
蔵本有未
Original Assignee
日商濱松赫德尼古斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商濱松赫德尼古斯股份有限公司 filed Critical 日商濱松赫德尼古斯股份有限公司
Publication of TW201935076A publication Critical patent/TW201935076A/zh
Application granted granted Critical
Publication of TWI797200B publication Critical patent/TWI797200B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0285Testing optical properties by measuring material or chromatic transmission properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/005Testing of reflective surfaces, e.g. mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • G01M11/0214Details of devices holding the object to be tested
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9511Optical elements other than lenses, e.g. mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Micromachines (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

本發明之光檢查裝置具備:晶圓支持部,其將構成有互相對向之第1鏡面部與第2鏡面部間之距離藉由靜電力而變化之複數個法布里-佩洛干涉濾光器部之晶圓,以第1鏡面部與第2鏡面部互相對向之方向沿基準線之方式支持;光出射部,其使沿基準線入射至複數個法布里-佩洛干涉濾光器部之各者之光出射;及光檢測部,其檢測沿基準線透過複數個法布里-佩洛干涉濾光器部之各者之光。晶圓支持部具有使光沿基準線通過之光通過區域。

Description

光檢查裝置及光檢查方法
本發明係關於一種用以獲得法布里-佩洛干涉濾光器之光檢查裝置及光檢查方法。
作為先前之法布里-佩洛干涉濾光器,已知有具備基板以及於基板上介隔空隙互相對向之固定鏡面及可動鏡面者(例如參照專利文獻1)。
先前技術文獻
專利文獻
專利文獻1:日本專利特表2013-506154號公報
[發明所欲解決之問題]
由於如上述之法布里-佩洛干涉濾光器係微細之構造體,故於製造法布里-佩洛干涉濾光器時,難以提高製造效率及良率之兩者。
因此,本發明之目的在於提供一種可效率良好且良率良好地獲得複數個法布里-佩洛干涉濾光器之光檢查裝置及光檢查方法。
[解決問題之技術手段]
本發明之一態樣之光檢查裝置具備:晶圓支持部,其將具備基板層以及二維配置於基板層上之複數對第1鏡面部及第2鏡面部、且藉由於互相對向之第1鏡面部與第2鏡面部間形成空隙而構成互相對向之第1鏡面部與第2鏡面部間之距離藉由靜電力變化之複數個法布里-佩洛干涉濾光器部的晶圓,以第1鏡面部與第2鏡面部互相對向之方向沿基準線之方式支持;光出射部,其使沿基準線入射至複數個法布里-佩洛干涉濾光器部之各者之光出射;及光檢測部,其檢測沿基準線透過複數個法布里-佩洛干涉濾光器部之各者之光;且晶圓支持部具有使光沿基準線通過之光通過區域。
該光檢查裝置中,對成為複數個法布里-佩洛干涉濾光器之複數個法布里-佩洛干涉濾光器部,於晶圓狀態下實施光透過特性之檢查。因此,該光檢查裝置可效率良好且良率良好地獲得複數個法布里-佩洛干涉濾光器。其理由如下。法布里-佩洛干涉濾光器係於經過直至自晶圓切出後並裝配於例如光檢測裝置為止之各步驟期間,特性易變化之元件。因此,認為需要於最終階段之裝配時檢查法布里-佩洛干涉濾光器之特性。但,本發明人等發現,晶圓之狀態下為良品之法布里-佩洛干涉濾光器部即使其後特性變化,亦不易成為不良品之法布里-佩洛干涉濾光器。因此,藉由於晶圓狀態下檢查各法布里-佩洛干涉濾光器部之光透過特性,而可於初始階段排除如晶圓狀態下為不良品之法布里-佩洛干涉濾光器直至最終階段之裝配之浪費,且提高良品之法布里-佩洛干涉濾光器直至最終階段之裝配之概率。
並且,根據該光檢查裝置,可效率良好且精度良好地檢查各法布里-佩洛干涉濾光器部之光透過性。其理由如下。於法布里-佩洛干涉濾光器中,透過之光之波長根據入射角變化。因此,若欲對各法布里-佩洛干涉濾光器實施光透過特性之檢查,則有必要對每個法布里-佩洛干涉濾光器調整支持角度。藉由於晶圓狀態下檢查各法布里-佩洛干涉濾光器部之光透過特性,而可減少此種調整之負擔。又,於法布里-佩洛干涉濾光器中,透過之光之波長亦根據溫度等環境條件變化。因此,若對各法布里-佩洛干涉濾光器實施光透過特性之檢查,則成為檢查結果之前提之環境條件於法布里-佩洛干涉濾光器間易不同。藉由於晶圓狀態下檢查各法布里-佩洛干涉濾光器部之光透過特性,而可於穩定之環境條件下獲得檢查結果。
本發明之一態樣之光檢查裝置中,亦可為,晶圓支持部具有面向晶圓中構成有複數個法布里-佩洛干涉濾光器部之有效區域之開口,作為光通過區域。藉此,可使晶圓支持部之構成簡易化,且使光沿基準線透過藉由晶圓支持部支持之晶圓之各法布里-佩洛干涉濾光器部。
本發明之一態樣之光檢查裝置中,亦可為,晶圓支持部具有與晶圓中構成有複數個法布里-佩洛干涉濾光器部之有效區域接觸之光透過構件,作為光通過區域。藉此,可抑制晶圓之翹曲,且使光沿基準線透過藉由晶圓支持部支持之晶圓之各法布里-佩洛干涉濾光器部。
本發明之一態樣之光檢查裝置亦可進而具備電壓施加部,該電壓施加部以互相對向之第1鏡面部與第2鏡面部間之距離變化之方式,對複數個法布里-佩洛干涉濾光器部之各者施加電壓。藉此,可針對各法布里-佩洛干涉濾光器部,取得施加之電壓之大小與透過之光之波長之關係。
本發明之一態樣之光檢查裝置中,亦可為,光出射部係以同時出射複數個波長之光之方式構成,光檢測部係以針對複數個波長之光按波長進行檢測之方式構成。藉此,使施加至法布里-佩洛干涉濾光器部之電壓之大小變化,於各電壓下取得光之檢測強度成為峰值之波長,而可針對各法布里-佩洛干涉濾光器部,取得施加之電壓大小與透過之光之波長之關係。
本發明之一態樣之光檢查裝置中,亦可為,光出射部以將複數個波長之光按波長出射之方式構成,光檢測部以對複數個波長之光具有感度之方式構成。藉此,使出射之光之波長變化,於各波長下使施加至法布里-佩洛干涉濾光器部之電壓大小變化,取得光之檢測強度成為峰值之電壓,由此可針對各法布里-佩洛干涉濾光器部,取得施加之電壓大小與透過之光之波長之關係。或者,使施加於法布里-佩洛干涉濾光器部之電壓大小變化,於各電壓下使出射之光之波長變化,取得光之檢測強度成為峰值之波長,由此可針對各法布里-佩洛干涉濾光器部,取得施加之電壓大小與透過之光之波長之關係。
本發明之一態樣之光檢查裝置亦可進而具備攝像部,該攝像部拍攝由晶圓支持部支持之晶圓。藉此,可取得各法布里-佩洛干涉濾光器部之座標資訊,基於取得之座標資訊,使法布里-佩洛干涉濾光器部位於基準線上。
本發明之一態樣之光檢查方法具備如下步驟:準備晶圓,該晶圓具備基板層以及二維配置於基板層上之複數對第1鏡面部及第2鏡面部,且藉由於互相對向之第1鏡面部與第2鏡面部間形成空隙,而構成互相對向之第1鏡面部與第2鏡面部間之距離藉由靜電力而變化之複數個法布里-佩洛干涉濾光器部;使沿第1鏡面部與第2鏡面部互相對向之方向入射至複數個法布里-佩洛干涉濾光器部之各者之光出射;及檢測沿第1鏡面部與第2鏡面部互相對向之方向透過複數個法布里-佩洛干涉濾光器部之各者之光。
該光檢查方法根據與上述光檢查裝置相同之理由,可效率良好且良率良好地獲得複數個法布里-佩洛干涉濾光器。
本發明之一態樣之光檢查方法亦可進而具備如下步驟:以互相對向之第1鏡面部與第2鏡面部間之距離變化之方式,對複數個法布里-佩洛干涉濾光器部之各者施加電壓。藉此,可針對各法布里-佩洛干涉濾光器部,取得施加之電壓之大小與透過之光之波長之關係。
本發明之一態樣之光檢查方法亦可進而具備拍攝晶圓之步驟。藉此,例如使光沿基準線入射至各法布里-佩洛干涉濾光器部之情形時,可取得各法布里-佩洛干涉濾光器部之座標資訊,基於取得之座標資訊,使各法布里-佩洛干涉濾光器部位於基準線上。
[發明之效果]
根據本發明,可提供一種能夠效率良好且良率良好地獲得複數個法布里-佩洛干涉濾光器之光檢查裝置及光檢查方法。
以下,參照圖式,針對本發明之實施形態進行詳細說明。再者,對各圖中相同或相當部分標註相同符號,省略重複說明。
[法布里-佩洛干涉濾光器及虛設濾光器之構成]
於說明一實施形態之光檢查裝置及光檢查方法之前,針對自作為其等之檢查對象之晶圓切出之法布里-佩洛干涉濾光器及虛設濾光器之構成進行說明。
如圖1、圖2及圖3所示,法布里-佩洛干涉濾光器1具備基板11。基板11具有互相對向之第1表面11a及第2表面11b。於第1表面11a,依序積層有抗反射層21、第1積層體22、中間層23及第2積層體24。於第1積層體22與第2積層體24之間,藉由框狀之中間層23劃定有空隙(氣隙)S。
自垂直於第1表面11a之方向觀察之情形(俯視)之各部之形狀及位置關係如下。基板11之外緣例如係矩形狀。基板11之外緣及第2積層體24之外緣互相一致。抗反射層21之外緣、第1積層體22之外緣及中間層23之外緣互相一致。基板11具有位於較中間層23之外緣相對於空隙S之中心更靠外側之外緣部11c。外緣部11c例如係框狀,自垂直於第1表面11a之方向觀察之情形時包圍中間層23。空隙S例如係圓形狀。
法布里-佩洛干涉濾光器1於劃定於其中央部之光透過區域1a,使具有特定波長之光透過。光透過區域1a例如係圓柱狀之區域。基板11例如包含矽、石英或玻璃等。基板11包含矽之情形時,抗反射層21及中間層23例如包含氧化矽。中間層23之厚度例如為數十nm~數十μm。
第1積層體22中對應於光透過區域1a之部分作為第1鏡面部31發揮功能。第1鏡面部31係固定鏡面。第1鏡面部31介隔抗反射層21配置於第1表面11a。第1積層體22係藉由複數個多晶矽層25與複數個氮化矽層26逐層交替積層而構成。法布里-佩洛干涉濾光器1中,多晶矽層25a、氮化矽層26a、多晶矽層25b、氮化矽層26b及多晶矽層25c依序積層於抗反射層21上。構成第1鏡面部31之多晶矽層25及氮化矽層26之各者之光學厚度較佳為中心透過波長之1/4之整數倍。再者,第1鏡面部31亦可不介隔抗反射層21而直接配置於第1表面11a上。
第2積層體24中對應於光透過區域1a之部分作為第2鏡面部32發揮功能。第2鏡面部32係可動鏡面。第2鏡面部32於相對於第1鏡面部31的基板11之相反側介隔空隙S與第1鏡面部31對向。第1鏡面部31與第2鏡面部32互相對向之方向與垂直於第1表面11a之方向平行。第2積層體24介隔抗反射層21、第1積層體22及中間層23,配置於第1表面11a。第2積層體24係藉由複數個多晶矽層27與複數個氮化矽層28逐層交替積層而構成。法布里-佩洛干涉濾光器1中,多晶矽層27a、氮化矽層28a、多晶矽層27b、氮化矽層28b及多晶矽層27c依序積層於中間層23上。構成第2鏡面部32之多晶矽層27及氮化矽層28之各者之光學厚度較佳為中心透過波長之1/4之整數倍。
再者,於第1積層體22及第2積層體24中,亦可取代氮化矽層,使用氧化矽層。又,作為構成第1積層體22及第2積層體24之各層之材料,亦可使用氧化鈦、氧化鉭、氧化鋯、氟化鎂、氧化鋁、氟化鈣、矽、鍺、硫化鋅等。又,此處,第1鏡面部31之空隙S側之表面(多晶矽層25c之表面)與第2鏡面部32之空隙S側之表面(多晶矽層27a之表面)介隔空隙S直接對向。但,亦可於第1鏡面部31之空隙S側之表面及第2鏡面部32之空隙S側之表面,形成(不構成鏡面之)電極層、保護層等。該情形時,第1鏡面部31與第2鏡面部32於使該等層介置於之間之狀態下,介隔空隙S互相對向。換言之,此種情形時,亦可實現第1鏡面部31與第2鏡面部32介隔空隙S對向。
於第2積層體24中對應於空隙S之部分(自垂直於第1表面11a之方向觀察之情形時與空隙S重疊之部分),形成有複數個貫通孔24b。各貫通孔24b自第2積層體24之與中間層23為相反側之表面24a到達空隙S。複數個貫通孔24b以對第2鏡面部32之功能實質不帶來影響之程度形成。複數個貫通孔24b係為了藉由蝕刻除去中間層23之一部分以形成空隙S而使用。
第2積層體24除了第2鏡面部32以外,進而具備被覆部33及周緣部34。第2鏡面部32、被覆部33及周緣部34以具有互相相同之積層構造之一部分且互相連續之方式一體形成。被覆部33於自垂直於第1表面11a之方向觀察之情形時,包圍第2鏡面部32。被覆部33被覆中間層23之與基板11為相反側之表面23a、以及中間層23之側面23b(外側之側面,即與空隙S側為相反側之側面)、第1積層體22之側面22a及抗反射層21之側面21a,並到達第1表面11a。即,被覆部33被覆中間層23之外緣、第1積層體22之外緣及抗反射層21之外緣。
周緣部34於自垂直於第1表面11a之方向觀察之情形時,包圍被覆部33。周緣部34位於外緣部11c之第1表面11a上。周緣部34之外緣於自垂直於第1表面11a之方向觀察之情形時,與基板11之外緣一致。周緣部34沿外緣部11c之外緣被薄化。即,周緣部34中沿外緣部11c之外緣之部分與周緣部34中除沿外緣之部分外之其他部分相比更薄。法布里-佩洛干涉濾光器1中,周緣部34係藉由將構成第2積層體24之多晶矽層27及氮化矽層28之一部分除去而薄化。周緣部34具有與被覆部33連續之非薄化部34a、及包圍非薄化部34a之薄化部34b。薄化部34b中,將直接設置於第1表面11a上之多晶矽層27a以外之多晶矽層27及氮化矽層28除去。
第1表面11a至非薄化部34a之與基板11為相反側之表面34c之高度低於第1表面11a至中間層23之表面23a之高度。第1表面11a至非薄化部34a之表面34c之高度例如為100 nm~5000 nm。第1表面11a至中間層23之表面23a之高度例如為500 nm~20000 nm。薄化部34b之寬度(自垂直於第1表面11a之方向觀察之情形時之非薄化部34a之外緣與外緣部11c之外緣間之距離)為基板11之厚度之0.01倍以上。薄化部34b之寬度例如為5 μm~400 μm。基板11之厚度例如為500 μm~800 μm。
於第1鏡面部31,以自垂直於第1表面11a之方向觀察之情形時包圍光透過區域1a之方式,形成有第1電極12。第1電極12係藉由於多晶矽層25c摻雜雜質進行低電阻化而形成。於第1鏡面部31,以自垂直於第1表面11a之方向觀察之情形時包含光透過區域1a之方式,形成有第2電極13。第2電極13係藉由於多晶矽層25c摻雜雜質進行低電阻化而形成。自垂直於第1表面11a之方向觀察之情形時,第2電極13之大小較佳為包含光透過區域1a之整體之大小,但亦可與光透過區域1a之大小大致相同。
於第2鏡面部32,形成有第3電極14。第3電極14介隔空隙S與第1電極12及第2電極13對向。第3電極14係藉由於多晶矽層27a摻雜雜質進行低電阻化而形成。
一對端子15係以隔著光透過區域1a對向之方式設置。各端子15係配置於第2積層體24之表面24a至第1積層體22之貫通孔內。各端子15係經由配線12a與第1電極12電性連接。各端子15例如係藉由鋁或其合金等之金屬膜而形成。
一對端子16以隔著光透過區域1a對向之方式設置。各端子16配置於第2積層體24之表面24a至第1積層體22之貫通孔內。各端子16經由配線13a與第2電極13電性連接,且經由配線14a與第3電極14電性連接。端子16例如係藉由鋁或其合金等之金屬膜而形成。一對端子15對向之方向與一對端子16對向之方向正交(參照圖1)。
於第1積層體22之表面22b,設有複數個溝槽17、18。溝槽17以包圍配線13a中與端子16之連接部分之方式呈環狀延伸。溝槽17將第1電極12與配線13a電性絕緣。溝槽18沿第1電極12之內緣環狀延伸。溝槽18將第1電極12與第1電極12內側之區域(第2電極13)電性絕緣。各溝槽17、18內之區域可為絕緣材料,亦可為空隙。
於第2積層體24之表面24a,設有溝槽19。溝槽19以包圍端子15之方式呈環狀延伸。溝槽19將端子15與第3電極14電性絕緣。溝槽19內之區域可為絕緣材料,亦可為空隙。
於基板11之第2表面11b,依序積層有抗反射層41、第3積層體42、中間層43及第4積層體44。抗反射層41及中間層43各自具有與抗反射層21及中間層23相同之構成。第3積層體42及第4積層體44各自具有以基板11為基準,與第1積層體22及第2積層體24對稱之積層構造。抗反射層41、第3積層體42、中間層43及第4積層體44具有抑制基板11之翹曲之功能。
第3積層體42、中間層43及第4積層體44沿外緣部11c之外緣被薄化。即,第3積層體42、中間層43及第4積層體44中沿外緣部11c之外緣之部分與第3積層體42、中間層43及第4積層體44中除沿外緣之部分外之其他部相比更薄。法布里-佩洛干涉濾光器1中,第3積層體42、中間層43及第4積層體44係藉由於自垂直於第1表面11a之方向觀察之情形時與薄化部34b重疊之部分,將第3積層體42、中間層43及第4積層體44之全部除去而薄化。
於第3積層體42、中間層43及第4積層體44,以自垂直於第1表面11a之方向觀察之情形時包含光透過區域1a之方式,設有開口40a。開口40a具有與光透過區域1a之大小大致相同之直徑。開口40a於光出射側開口。開口40a之底面到達抗反射層41。
於第4積層體44之光出射側之表面,形成有遮光層45。遮光層45例如包含鋁等。於遮光層45之表面及開口40a之內表面,形成有保護層46。保護層46被覆第3積層體42、中間層43、第4積層體44及遮光層45之外緣,且被覆外緣部11c上之抗反射層41。保護層46例如包含氧化鋁。再者,藉由將保護層46之厚度設為1 nm~100 nm(較佳為30 nm左右),而可忽視保護層46帶來之光學影響。
於如上構成之法布里-佩洛干涉濾光器1中,若經由一對端子15、16對第1電極12與第3電極14之間施加電壓,則於第1電極12與第3電極14之間產生對應於該電壓之靜電力。藉由該靜電力,第2鏡面部32被吸引至固定於基板11之第1鏡面部31側,而調整第1鏡面部31與第2鏡面部32間之距離。如此,於法布里-佩洛干涉濾光器1中,第1鏡面部31與第2鏡面部32間之距離藉由靜電力而變化。
透過法布里-佩洛干涉濾光器1之光之波長依存於光透過區域1a之第1鏡面部31與第2鏡面部32間之距離。因此,可藉由調整施加於第1電極12與第3電極14間之電壓,而適當選擇透過之光之波長。此時,第2電極13與第3電極14為相同電位。因此,第2電極13作為光透過區域1a中用以將第1鏡面部31及第2鏡面部32保持平坦之補償電極發揮功能。
於法布里-佩洛干涉濾光器1中,例如藉由一面使施加於法布里-佩洛干涉濾光器1之電壓變化(即,使法布里-佩洛干涉濾光器1中第1鏡面部31與第2鏡面部32間之距離變化),一面藉由光檢測器檢測透過法布里-佩洛干涉濾光器1之光透過區域1a之光,而可獲得分光光譜。
如圖4所示,虛設濾光器2與上述之法布里-佩洛干涉濾光器1之不同點在於,於第2積層體24未形成複數個貫通孔24b,及於中間層23未形成空隙S。虛設濾光器2中,於第1鏡面部31與第2鏡面部32之間設有中間層23。即,第2鏡面部32未於空隙S上懸空,而配置於中間層23之表面23a。
[晶圓之構成]
繼而,針對一實施形態之光檢查裝置及光檢查方法之檢查對象即晶圓之構成進行說明。如圖5及圖6所示,晶圓100具備基板層110。基板層110例如呈圓板狀之形狀,於其一部分形成有定向平面OF。基板層110例如包含矽、石英或玻璃等。以下,將自基板層110之厚度方向觀察之情形時通過基板層110之中心且與定向平面OF平行之假想直線稱為第1直線3,將自基板層110之厚度方向觀察之情形時通過基板層110之中心且與定向平面OF垂直之假想直線稱為第2直線4。
於晶圓100,設有有效區域101及虛設區域102。虛設區域102係沿基板層110之外緣110c(即,晶圓100之外緣100a)之區域。有效區域101係虛設區域102之內側之區域。虛設區域102於自基板層110之厚度方向觀察之情形時,包圍有效區域101。虛設區域102與有效區域101鄰接。
於有效區域101,設有二維配置之複數個法布里-佩洛干涉濾光器部1A。複數個法布里-佩洛干涉濾光器部1A係設置於有效區域101之整體。於虛設區域102,設有二維配置之複數個虛設濾光器部2A。複數個虛設濾光器部2A係設置於虛設區域102中除一對區域102a外之區域。一區域102a係沿定向平面OF之區域。另一區域102a係沿基板層110之外緣110c中與定向平面OF為相反側之部分之區域。於有效區域101與虛設區域102之邊界部分,法布里-佩洛干涉濾光器部1A與虛設濾光器部2A鄰接。自基板層110之厚度方向觀察之情形時,法布里-佩洛干涉濾光器部1A之外形與虛設濾光器部2A之外形相同。複數個法布里-佩洛干涉濾光器部1A及複數個虛設濾光器部2A以相對於互相正交之第1直線3及第2直線4之各者對稱之方式配置。再者,複數個虛設濾光器部2A亦可設置於虛設區域102之整體。又,複數個虛設濾光器部2A亦可設置於虛設區域102中除任一區域102a外之區域。
複數個法布里-佩洛干涉濾光器部1A係藉由將晶圓100沿各線5切斷而成為複數個法布里-佩洛干涉濾光器1之預定之部分。複數個虛設濾光器部2A係藉由將晶圓100沿各線5切斷而成為複數個虛設濾光器2之預定之部分。自基板層110之厚度方向觀察之情形時,複數條線5以沿與定向平面OF平行之方向之方式延伸,複數條線5以沿與定向平面OF垂直之方向之方式延伸。作為一例,自基板層110之厚度方向觀察之情形時各濾光器部1A、2A呈矩形狀時,各濾光器部1A、2A呈二維矩陣狀配置,複數條線5以通過相鄰之濾光器部1A、1A間、相鄰之濾光器部1A、2A間、及相鄰之濾光器部2A、2A間之方式設定為格子狀。
圖7(a)係法布里-佩洛干涉濾光器部1A之剖視圖,圖7(b)係虛設濾光器部2A之剖視圖。如圖7(a)及(b)所示,基板層110係藉由將晶圓100沿各線5切斷而成為複數個基板11之預定層。基板層110具有互相對向之第1表面110a及第2表面110b。於基板層110之第1表面110a,設有抗反射層210。抗反射層210係藉由將晶圓100沿各線5切斷,而成為複數個抗反射層21之預定之層。於基板層110之第2表面110b,設有抗反射層410。抗反射層410係藉由將晶圓100沿各線5切斷,而成為複數個抗反射層41之預定之層。
於抗反射層210上,設有器件層200。器件層200具有第1鏡面層220、中間層230、及第2鏡面層240。第1鏡面層220係具有複數個第1鏡面部31之層,係藉由將晶圓100沿各線5切斷而成為複數個第1積層體22之預定層。複數個第1鏡面部31介隔抗反射層210二維配置於基板層110之第1表面110a。中間層230係藉由將晶圓100沿各線5切斷成為複數個中間層23之預定層。第2鏡面層240係具有複數個第2鏡面部32之層,係藉由將晶圓100沿各線5切斷而成為複數個第2積層體24之預定層。複數個第2鏡面部32介隔中間層23二維配置於第1鏡面層220上。
於抗反射層410上,設有應力調整層400。即,應力調整層400介隔抗反射層410設置於基板層110之第2表面110b。應力調整層400具有複數個層420、430、440。層420係藉由將晶圓100沿各線5切斷而成為複數個第3積層體42之預定層。層430係藉由將晶圓100沿各線5切斷而成為複數個中間層43之預定層。層440係藉由將晶圓100沿各線5切斷而成為複數個第4積層體44之預定層。
於應力調整層400上,設有遮光層450及保護層460。遮光層450係藉由將晶圓100沿各線5切斷而成為複數個遮光層45之預定層。保護層460係藉由將晶圓100沿各線5切斷而成為複數個保護層46之預定層。
如圖7(a)所示,於各法布里-佩洛干涉濾光器部1A中,於互相對向之第1鏡面部31與第2鏡面部32之間形成有空隙S。即,於各法布里-佩洛干涉濾光器部1A中,中間層23劃定有空隙S,第2鏡面部32於空隙S上懸空。於各法布里-佩洛干涉濾光器部1A中,與上述之法布里-佩洛干涉濾光器1之構成同樣地,設有第1電極12、第2電極13、第3電極14、複數個端子15、16及開口40a等相關之構成。因此,複數個法布里-佩洛干涉濾光器部1A即便對於晶圓100,若經由一對端子15、16對各法布里-佩洛干涉濾光器部1A施加電壓,則互相對向之第1鏡面部31與第2鏡面部32間之距離亦會藉由靜電力而變化。
如圖7(b)所示,於各虛設濾光器部2A中,於互相對向之第1鏡面部31與第2鏡面部32間設有中間層23。即,於虛設濾光器部2A中,中間層23未劃定空隙S,第2鏡面部32配置於中間層23之表面23a。因此,於各虛設濾光器部2A中,雖與上述虛設濾光器2之構成同樣地,設有第1電極12、第2電極13、第3電極14、複數個端子15、16及開口40a等相關之構成,但互相對向之第1鏡面部31與第2鏡面部32間之距離不變化。再者,亦可不於各虛設濾光器部2A,設置第1電極12、第2電極13、第3電極14、複數個端子15、16(構成各端子15、16之鋁等之金屬膜、用以配置各端子15、16之貫通孔等)及開口40a等相關之構成。
如圖6及圖7(a)所示,於器件層200,形成有於與基板層110相反之側開口之第1槽290。第1槽290係沿各線5形成。第1槽290於各法布里-佩洛干涉濾光器部1A及各虛設濾光器部2A中,包圍第1鏡面部31、中間層23及第2鏡面部32。於各法布里-佩洛干涉濾光器部1A中,第1鏡面部31、中間層23及第2鏡面部32係由環狀地連續之第1槽290包圍。同樣地,於各虛設濾光器部2A中,第1鏡面部31、中間層23及第2鏡面部32係由環狀地連續之第1槽290包圍。若著眼於相鄰之濾光器部1A、1A、相鄰之濾光器部1A、2A及相鄰之濾光器部2A、2A,則第1槽290與一濾光器部之周緣部34及另一濾光器部之周緣部34上之區域對應。第1槽290於有效區域101及虛設區域102中相連,且自第1鏡面部31與第2鏡面部32互相對向之方向(以下簡稱為「對向方向」)觀察之情形時到達基板層110之外緣110c。再者,第1槽290於各法布里-佩洛干涉濾光器部1A及各虛設濾光器部2A中,只要至少包圍第2鏡面部32即可。
如圖7(b)所示,於應力調整層400,形成有於與基板層110相反之側開口之第2槽470。第2槽470係沿各線5形成。即,第2槽470係以對應於第1槽290之方式形成。此處,所謂第2槽470對應於第1槽290,意指自對向方向觀察之情形時,第2槽470與第1槽290重疊。因此,第2槽470於有效區域101及虛設區域102相連,自對向方向觀察之情形時,到達基板層110之外緣110c。
[晶圓之製造方法]
繼而,針對晶圓100之製作方法,參照圖8~圖13進行說明。圖8~圖13中,(a)係對應於法布里-佩洛干涉濾光器部1A之部分之剖視圖,(b)係對應於虛設濾光器部2A之部分之剖視圖。
首先,如圖8所示,於基板層110之第1表面110a形成抗反射層210,且於基板層110之第2表面110b形成抗反射層410。繼而,藉由於各抗反射層210、410上,交替積層複數個多晶矽層及複數個氮化矽層,而於抗反射層210上形成第1鏡面層220,且於抗反射層410上形成層420。
形成第1鏡面層220時,藉由蝕刻以抗反射層210之表面露出之方式將第1鏡面層220中沿各線5之部分除去。又,藉由雜質摻雜使第1鏡面層220之特定之多晶矽層局部低電阻化,從而於每個對應於基板11之部分,形成第1電極12、第2電極13及配線12a、13a。再者,藉由蝕刻,於每個對應於基板11之部分,在第1鏡面層220之表面形成溝槽17、18。
繼而,如圖9所示,於第1鏡面層220上及露出之抗反射層210之表面形成中間層230,且於層420上形成層430。於對應於各法布里-佩洛干涉濾光器部1A之部分,中間層230包含對應於空隙S(參照圖3)之除去預定部50。繼而,藉由蝕刻以基板層110之第1表面110a露出之方式,將中間層230及抗反射層210中沿各線5之部分除去。又,藉由該蝕刻,於每個對應於基板11之部分,在中間層230中對應於各端子15、16(參照圖3)之部分形成空隙。
繼而,如圖10所示,於基板層110之第1表面110a側及第2表面110b側之各者中,藉由將複數個多晶矽層及複數個氮化矽層交替積層,而於中間層230上及露出之基板層110之第1表面110a,形成第2鏡面層240,且於層430上形成層440。
形成第2鏡面層240時,將沿線5互相對向之中間層230之側面230a、第1鏡面層220之側面220a及抗反射層210之側面210a利用第2鏡面層240被覆。又,藉由雜質摻雜使第2鏡面層240之特定之多晶矽層局部低電阻化,從而於每個對應於基板11之部分,形成第3電極14及配線14a。
繼而,如圖11所示,藉由蝕刻以第2鏡面層240所含之多晶矽層27a(參照圖3)(即,位於最靠第1表面110a側之多晶矽層)之表面露出之方式,將第2鏡面層240中沿各線5之部分薄化。又,藉由該蝕刻,於每個對應於基板11之部分,在第2鏡面層240中對應於各端子15、16(參照圖3)之部分形成空隙。繼而,於每個對應於基板11之部分,在該空隙形成各端子15、16,將各端子15與配線12a連接,且將各端子16與配線13a及配線14a之各者連接。
至此為止,於基板層110之第1表面110a,形成抗反射層210及器件層200,且於器件層200形成第1槽290。第1槽290係器件層200沿各線5被局部薄化之區域。
繼而,如圖12(a)所示,於對應於各法布里-佩洛干涉濾光器部1A之部分,藉由蝕刻,將第2積層體24之表面24a至除去預定部50之複數個貫通孔24b形成於第2積層體24。此時,如圖12(b)所示,於對應於各虛設濾光器部2A之部分,不將複數個貫通孔24b形成於第2積層體24。繼而,如圖12所示,於層440上形成遮光層450。繼而,藉由蝕刻以抗反射層410之表面露出之方式,將遮光層450及應力調整層400(即,層420、430、440)中沿各線5之部分除去。又,藉由該蝕刻,於每個對應於基板11之部分,形成開口40a。繼而,於遮光層450上、露出之抗反射層410之表面、及開口40a之內表面、面向第2槽470之應力調整層400之側面形成保護層460。
至此為止,於基板層110之第2表面110b,形成抗反射層410、應力調整層400、遮光層450及保護層460,且於應力調整層400形成第2槽470。第2槽470係應力調整層400沿各線5被局部薄化之區域。
繼而,如圖13(a)所示,於對應於各法布里-佩洛干涉濾光器部1A之部分,藉由經由複數個貫通孔24b之蝕刻(例如,使用氟酸氣之氣相蝕刻),將複數個除去預定部50自中間層230一起除去。藉此,於對應於各法布里-佩洛干涉濾光器部1A之部分,在每個對應於基板11之部分形成空隙S。此時,如圖13(b)所示,由於在對應於各虛設濾光器部2A之部分,複數個貫通孔24b未形成於第2積層體24,故未於中間層230形成空隙S。
根據以上所述,於有效區域101中,如圖7(a)所示,藉由於互相對向之第1鏡面部31與第2鏡面部32間形成空隙S,而構成複數個法布里-佩洛干涉濾光器部1A。另一方面,於虛設區域102中,如圖7(b)所示,藉由於互相對向之第1鏡面部31與第2鏡面部32間設置中間層23,而構成複數個虛設濾光器部2A。
[第1實施形態之光檢查裝置之構成]
繼而,針對第1實施形態之光檢查裝置之構成進行說明。如圖14所示,第1實施形態之光檢查裝置500具備晶圓支持部510、光出射部520、光檢測部530、電壓施加部540、攝像部550及控制部560。晶圓支持部510、光出射部520、光檢測部530、電壓施加部540及攝像部550係配置於暗箱(省略圖示)內。光檢查裝置500之檢查對象係晶圓100。
晶圓支持部510以晶圓100之對向方向(即,第1鏡面部31與第2鏡面部32互相對向之方向)與基準線RL平行之方式,支持晶圓100。但,晶圓支持部510只要以晶圓100之對向方向沿基準線RL之方式支持晶圓100即可。即,晶圓支持部510無須以晶圓100之對向方向與基準線RL完全平行之方式支持晶圓100。晶圓支持部510具有載台511。載台511構成為能夠沿與基準線RL垂直之平面(沿至少與該平面平行且互相正交之2方向之各者)移動。再者,載台511亦可構成為能夠以平行於基準線RL之線為中心線旋轉。
如圖15所示,載台511具有互相對向之第1表面511a及第2表面511b。作為一例,第1表面511a係垂直方向之上側之表面,第2表面511b係垂直方向之下側之表面。於載台511,形成有於第1表面511a及第2表面511b開口之開口513。藉由於第1表面511a,將開口513之第1表面511a側之部分加寬,而形成階差部514。於階差部514,載置晶圓100之虛設區域102,例如藉由吸引將其保持。於階差部514載置有晶圓100之虛設區域102之狀態下,開口513面向有效區域101。具體而言,自與基準線RL平行之方向觀察之情形時,開口513包含有效區域101。開口513作為使光L1沿基準線RL通過之光通過區域512發揮功能。即,晶圓支持部510具有開口513作為光通過區域512。
如圖14所示,光出射部520出射沿基準線RL入射至藉由晶圓支持部510支持之晶圓100之各法布里-佩洛干涉濾光器部1A之光L1。光出射部520具有白色光源521、透鏡522及光圈構件523。白色光源521輸出作為白色光之光L1。透鏡522將自白色光源521輸出之光L1聚集於光圈構件523之針孔。光圈構件523將藉由透鏡522聚集之光L1藉由針孔縮窄。如此,光出射部520以同時出射複數個波長之光L1之方式構成。自光出射部520出射之光L1藉由鏡面501被反射。藉由鏡面501反射之光L1藉由凹面鏡502以於基準線RL上前進之方式被反射,且被聚光(或被準直)。藉由凹面鏡502被反射且被聚光之光L1透過半反射鏡503。透過半反射鏡503之光L1沿基準線RL入射至藉由晶圓支持部510支持之晶圓100之各法布里-佩洛干涉濾光器部1A。
光檢測部530檢測沿基準線RL透過藉由晶圓支持部510支持之晶圓100之各法布里-佩洛干涉濾光器部1A之光L1。光檢測部530具有透鏡531、光纖532及分光器533。透鏡531將沿基準線RL透過各法布里-佩洛干涉濾光器部1A之光L1聚集於光纖532之光入射端。再者,透過透鏡531之光L1經由未圖示之反射鏡聚集於光纖532之光入射端。光纖532引導藉由透鏡531聚集之光L1。分光器533針對每個波長檢測藉由光纖532引導之光L1,將檢測信號輸出至控制部560。如此,光檢測部530以針對每個波長檢測複數個波長之光L1之方式構成。
電壓施加部540以互相對向之第1鏡面部31與第2鏡面部32間之距離變化之方式,對各法布里-佩洛干涉濾光器部1A施加電壓。電壓施加部540具有載台541、一對臂542、一對探針543及電源量測單元544。載台541沿與基準線RL平行之方向可移動地構成。一對臂542安裝於載台541。一對探針543安裝於一對臂542。一對臂542及一對探針543係作為顯微操縱器構成。一對探針543之前端間之距離調整成各法布里-佩洛干涉濾光器部1A之一對端子15、16間之距離。電源量測單元544使一對探針543產生電位差。再者,於晶圓支持部510中載台511沿與基準線RL平行之方向可移動地構成之情形時,載台541亦可不可移動地構成。又,對於電壓施加部540,亦可取代顯微操縱器而應用探針卡。
攝像部550拍攝藉由晶圓支持部510支持之晶圓100(具體而言,係晶圓100之表面)。攝像部550具有相機551及變焦透鏡552。相機551出射觀察用光L2,檢測於藉由晶圓支持部510支持之晶圓100之表面反射之光L2,將所得之圖像顯示於顯示器(省略圖示)。變焦透鏡552具有將晶圓100之表面之像放大之功能。自相機551出射之光L2藉由半反射鏡503以於基準線RL上前進之方式被反射。藉由半反射鏡503被反射之光L2於基準線RL上前進,於藉由晶圓支持部510支持之晶圓100之表面被反射。於晶圓100之表面被反射之光L2於同一光路上相反地前進,經由變焦透鏡552入射至相機551。
控制部560作為包含處理器、記憶體、儲存裝置及通信器件等之電腦裝置構成。於控制部560中,藉由以處理器執行讀入至記憶體等之特定之軟體(程式),控制記憶體及儲存裝置之資料之讀出及寫入等而實現各種功能。例如,控制部560藉由控制各部(晶圓支持部510、光出射部520、光檢測部530、電壓施加部530及攝像部550)之動作,實現後述之光檢查方法。
於如上構成之光檢查裝置500中,藉由利用控制部560控制各部之動作,而如下般實施光檢查方法。首先,準備作為檢查對象之晶圓100,並藉由晶圓支持部510予以支持。此時,以對向方向沿基準線RL之方式,藉由晶圓支持部510支持晶圓100。繼而,藉由攝像部550拍攝由晶圓支持部510支持之晶圓100,將晶圓100之圖像顯示於顯示器。且,例如目視顯示於顯示器之晶圓100之圖像,修正晶圓100(例如晶圓100之中心位置)自特定之初始位置(特定之座標)之偏移。藉此,控制部560可取得藉由晶圓支持部510支持之晶圓100之各法布里-佩洛干涉濾光器部1A之座標資訊,作為與特定之初始位置之相對位置。再者,亦可將攝像部550連接於控制部560,控制部560基於自攝像部550輸出之攝像資料,取得晶圓100之各法布里-佩洛干涉濾光器部1A之座標資訊。
繼而,使晶圓支持部510之載台511基於座標資訊動作,使1個法布里-佩洛干涉濾光器部1A位於基準線RL上(以下,將位於基準線RL上之1個法布里-佩洛干涉濾光器部1A簡稱為「1個法布里-佩洛干涉濾光器部1A」)。繼而,使電壓施加部540之載台541動作,使電壓施加部540之一對探針543與1個法布里-佩洛干涉濾光器部1A之一對端子15、16接觸。繼而,使電壓施加部540之電源量測單元544動作,對一對端子15、16施加特定之電壓。藉此,於1個法布里-佩洛干涉濾光器部1A中,互相對向之第1鏡面部31與第2鏡面部32間之距離變化成對應於施加之電壓之距離。
繼而,使光L1自光出射部520出射。藉此,光L1沿基準線RL(即,沿對向方向)入射至1個法布里-佩洛干涉濾光器部1A。若光L1入射至1個法布里-佩洛干涉濾光器部1A,則對應於互相對向之第1鏡面部31與第2鏡面部32間之距離之波長之光L1透過1個法布里-佩洛干涉濾光器部1A。且,藉由光檢測部530檢測透過1個法布里-佩洛干涉濾光器部1A之光L1。藉此,控制部560可基於自光檢測部530輸出之檢測信號,針對1個法布里-佩洛干涉濾光器部1A,取得施加之電壓與透過之光之波長之關係,或判斷1個法布里-佩洛干涉濾光器部1A是否為良品。再者,該檢查時,亦可藉由以電源量測單元544對法布里-佩洛干涉濾光器部1A施加電壓,同時測定一對端子15、16間之漏電流,而測定異物有無混入形成於互相對向之第1鏡面部31與第2鏡面部32間之空隙S,設置於各法布里-佩洛干涉濾光器部1A之配線有無斷線等。
若1個法布里-佩洛干涉濾光器部1A之檢查結束,則使電壓施加部540之載台541動作,電壓施加部540之一對探針543自1個法布里-佩洛干涉濾光器部1A之一對端子15、16離開。繼而,使下一個法布里-佩洛干涉濾光器部1A位於基準線RL上,同樣地實施該下一個法布里-佩洛干涉濾光器部1A之檢查。以下,同樣地,依序實施各法布里-佩洛干涉濾光器部1A之檢查。藉此,控制部560可與晶圓100之各法布里-佩洛干涉濾光器部1A之座標資訊建立對應地記憶各法布里-佩洛干涉濾光器部1A相關之資訊(檢查結果)。再者,對於來自光出射部520之光L1之出射,不限於每一個法布里-佩洛干涉濾光器部1A切換接通/斷開(ON/OFF)之情形,亦可於複數個法布里-佩洛干涉濾光器部1A之檢查實施中,維持接通(ON)。又,亦可對在事先之檢查(目視檢查、電性檢查)下明確為非良品之法布里-佩洛干涉濾光器部1A,不使一對端子15、16與一對探針543接觸(省略光透過檢查),對下一個法布里-佩洛干涉濾光器部1A實施光透過檢查,由此提高檢查效率。又,亦可對1片晶圓100之所有法布里-佩洛干涉濾光器部1A中特定比例之數量之法布里-佩洛干涉濾光器部1A,實施光透過檢查,由此判斷該1片晶圓100是否為良品。即,對法布里-佩洛干涉濾光器部1A之光透過檢查並非對1片晶圓100之所有法布里-佩洛干涉濾光器部1A實施。
如上,第1實施形態之光檢查裝置500中,光出射部520以同時出射複數個波長之光L1之方式構成,光檢測部530以針對複數個波長之光L1按波長進行檢測之方式構成。因此,使施加於法布里-佩洛干涉濾光器部1A之電壓大小變化,於各電壓下取得光L1之檢測強度成為峰值之波長,由此可針對各法布里-佩洛干涉濾光器部1A,取得施加電壓之大小與透過之光之波長的關係。
[第2實施形態之光檢查裝置之構成]
繼而,針對第2實施形態之光檢查裝置之構成進行說明。如圖16所示,第2實施形態之光檢查裝置500於光出射部520之構成方面與第1實施形態之光檢查裝置500不同。
第2實施形態之光檢查裝置500中,光出射部520具有白色光源521、透鏡522、光纖524及透鏡525。白色光源521輸出作為白色光之光L1。透鏡522將自白色光源521出射之光L1聚集於光纖524之光入射端。光纖524引導藉由透鏡522聚集之光L1。透鏡525將藉由光纖524引導之光L1聚集於基準線RL上。
於第2實施形態之光檢查裝置500中,未設置鏡面501及凹面鏡502,藉由透鏡525聚集之光L1透過半反光鏡503。透過半反射鏡503之光L1沿基準線RL入射至藉由晶圓支持部510支持之晶圓100之各法布里-佩洛干涉濾光器部1A。
第2實施形態之光檢查裝置500中,與第1實施形態之光檢查裝置500同樣地,光出射部520以同時出射複數個波長之光L1之方式構成,光檢測部530以針對複數個波長之光L1按波長進行檢測之方式構成。因此,使施加於法布里-佩洛干涉濾光器部1A之電壓大小變化,於各電壓下取得光L1之檢測強度成為峰值之波長,由此可針對各法布里-佩洛干涉濾光器部1A,取得施加之電壓之大小與透過之光之波長的關係。
[第3實施形態之光檢查裝置之構成]
繼而,針對第3實施形態之光檢查裝置之構成進行說明。如圖17所示,第3實施形態之光檢查裝置500於光出射部520及光檢測部530之構成方面與第1實施形態之光檢查裝置500不同。
第3實施形態之光檢查裝置500中,光出射部520具有白色光源521、透鏡522A、單色儀526、透鏡522B、光纖524及透鏡525。白色光源521輸出作為白色光之光L1。透鏡522A將自白色光源521出射之光L1聚集於單色儀526。單色儀526輸出藉由透鏡522A聚集之白色光中特定波長之光L1。透鏡522B將自單色儀526輸出之光L1聚集於光纖524之光入射端。光纖524引導藉由透鏡522B聚集之光L1。透鏡525將藉由光纖524引導之光L1聚集於基準線RL上。再者,亦可取代光纖524及透鏡525,如第1實施形態,使用光圈構件523、鏡面501、凹面鏡502。如此,各實施形態中,關於以使自光源出射之光L1沿基準線RL之手段,各實施形態中採用之各種手段可以互相替代使用。
第3實施形態之光檢查裝置500中,未設置鏡面501及凹面鏡502,藉由透鏡525聚集之光L1透過半反射鏡503。透過半反射鏡503之光L1沿基準線RL入射至藉由晶圓支持部510支持之晶圓100之各法布里-佩洛干涉濾光器部1A。
第3實施形態之光檢查裝置500中,入射至各法布里-佩洛干涉濾光器部1A之光L1係自白色光源521輸出之白色光中特定波長之光。單色儀526可切換輸出之光L1之波長。藉此,光出射部520以將複數個波長之光L1按波長依序切換並出射之方式構成。
第3實施形態之光檢查裝置500中,光檢測部530具有透鏡531、光電二極體534、放大器535及AD(Analog/Digital,類比/數位)轉換器536。透鏡531將沿基準線RL透過各法布里-佩洛干涉濾光器部1A之光L1聚集於光電二極體534。光電二極體534對於白色光具有感度。光電二極體534檢測藉由透鏡531聚集之光L1,將類比信號輸出至放大器535。放大器535將自光電二極體534輸出之類比信號放大。AD轉換器536將藉由放大器535放大之類比信號轉換成數位信號,並輸出至控制部560。如此,光檢測部530以對於自光出射部520輸出之複數個波長之光L1具有感度之方式構成。
第3實施形態之光檢查裝置500中,與第1實施形態之光檢查裝置500不同,光出射部520以將複數個波長之光L1按波長出射之方式構成,光檢測部530以對於複數個波長之光L1具有感度之方式構成。因此,使出射之光L1之波長變化,於各波長下使施加於法布里-佩洛干涉濾光器部1A之電壓大小變化,取得光L1之檢測強度成為峰值之電壓,由此可針對各法布里-佩洛干涉濾光器部1A,取得施加之電壓大小與透過之光之波長的關係。或者,使施加於法布里-佩洛干涉濾光器部1A之電壓大小變化,於各電壓下使出射之光L1之波長變化,取得光L1之檢測強度成為峰值之波長,由此可針對各法布里-佩洛干涉濾光器部1A,取得施加之電壓大小與透過之光之波長的關係。
[第4實施形態之光檢查裝置之構成]
繼而,針對第4實施形態之光檢查裝置之構成進行說明。如圖18所示,第4實施形態之光檢查裝置500於光出射部520及光檢測部530之構成方面與第3實施形態之光檢查裝置500不同。
第4實施形態之光檢查裝置500中,光出射部520具有光源切換部527及光圈構件523。光源切換部527切換複數個雷射光源527a、527b、527c。各雷射光源527a、527b、527c出射波長互不相同之雷射光。雷射光源之數量可根據需要之波長適當變更。光圈構件523藉由針孔縮窄自光源切換部527出射之雷射光即光L1。如此,光出射部520以將複數個波長之光L1按波長出射之方式構成。自光出射部520出射之光L1藉由鏡面504,以於基準線RL上前進之方式被反射。藉由鏡面504被反射之光L1透過半反射鏡503。透過半反射鏡503之光L1沿基準線RL入射至藉由晶圓支持部510支持之晶圓100之各法布里-佩洛干涉濾光器部1A。再者,於自雷射光源527a、527b、527c出射之光L1之強度超出光電二極體534之可測定之強度範圍之情形時,亦可於雷射光源527a、527b、527c與光電二極體534間之光路上之任意位置設置例如ND濾光器,使光L1衰減。
第4實施形態之光檢查裝置500中,光檢測部530具有光電二極體534、放大器535及AD轉換器536。光電二極體534對於自光出射部520出射之複數個波長之雷射光具有感度。光電二極體534檢測沿基準線RL透過各法布里-佩洛干涉濾光器部1A之光L1,將類比信號輸出至放大器535。放大器535將自光電二極體534輸出之類比信號放大。AD轉換器536將藉由放大器535放大之類比信號轉換成數位信號,並輸出至控制部560。如此,光檢測部530以對於自光出射部520出射之複數個波長之光L1具有感度之方式構成。
第4實施形態之光檢查裝置500中,亦與第3實施形態之光檢查裝置500同樣地,光出射部520以將複數個波長之光L1按波長出射之方式構成,光檢測部530以對於複數個波長之光L1具有感度之方式構成。因此,使出射之光L1之波長變化,於各波長下使施加於法布里-佩洛干涉濾光器部1A之電壓大小變化,取得光L1之檢測強度成為峰值之電壓,由此可針對各法布里-佩洛干涉濾光器部1A,取得施加之電壓之大小與透過之光之波長的關係。或者,使施加於法布里-佩洛干涉濾光器部1A之電壓大小變化,與各電壓下使出射之光L1之波長變化,取得光L1之檢測強度成為峰值之波長,由此可針對各法布里-佩洛干涉濾光器部1A,取得施加之電壓大小與透過之光之波長的關係。
[第5實施形態之光檢查裝置之構成]
繼而,針對第5實施形態之光檢查裝置之構成進行說明。如圖19所示,第5實施形態之光檢查裝置500於光出射部520之構成方面與第4實施形態之光檢查裝置500不同。
第5實施形態之光檢查裝置500中,光出射部520具有光源切換部527、透鏡522、光纖524及透鏡525。光源切換部527切換複數個雷射光源527a、527b、527c。各雷射光源527a、527b、527c出射波長互不相同之雷射光。雷射光源之數量可根據需要之波長適當變更。透鏡522將自光源切換部527輸出之光L1聚集於光纖524之光入射端。光纖524引導藉由透鏡522聚集之光L1。透鏡525將藉由光纖524引導之光L1聚集於基準線RL上。如此,光出射部520以將複數個波長之光L1按波長出射之方式構成。第5實施形態之光檢查裝置500中,未設置鏡面504,自光出射部520出射之光L1透過半反射鏡503。透過半反射鏡503之光L1沿基準線RL入射至藉由晶圓支持部510支持之晶圓100之各法布里-佩洛干涉濾光器部1A。
第5實施形態之光檢查裝置500中,亦與第4實施形態之光檢查裝置500同樣地,光出射部520以將複數個波長之光L1按波長出射之方式構成,光檢測部530以對於複數個波長之光L1具有感度之方式構成。因此,使出射之光L1之波長變化,於各波長下使施加於法布里-佩洛干涉濾光器部1A之電壓大小變化,取得光L1之檢測強度成為峰值之電壓,由此可針對各法布里-佩洛干涉濾光器部1A,取得施加之電壓大小與透過之光之波長的關係。或者,使施加於法布里-佩洛干涉濾光器部1A之電壓大小變化,於各電壓下使出射之光L1之波長變化,取得光L1之檢測強度成為峰值之波長,由此可針對各法布里-佩洛干涉濾光器部1A,取得施加之電壓大小與透過之光之波長的關係。
[電壓施加方法]
繼而,針對為取得施加之電壓之大小與透過之光之波長的關係而實施之電壓施加方法進行說明。
例如,如第1實施形態及第2實施形態之光檢查裝置500,光出射部520以同時出射複數個波長之光L1之方式構成,光檢測部530以針對複數個波長之光L1按波長進行檢測之方式構成之情形時,如下所述,若針對法布里-佩洛干涉濾光器部1A取得施加之電壓之大小與透過之光之波長的關係,則可防止黏結(第2鏡面部32與第1鏡面部31接觸而無法移動之現象)之產生。
首先,基於透過法布里-佩洛干涉濾光器部1A之預定之波長範圍(設計上之範圍)之下限值,設定基準下限值。基準下限值係自設計上之波長範圍之下限值減去特定值所得之值。例如,若將特定值設為10 nm,則設計上之波長範圍處於1550 nm~1850 nm之情形時,基準下限值變為1540 nm。繼而,使施加於法布里-佩洛干涉濾光器部1A之電壓大小階段性增加。再者,若使電壓大小階段性增加,則互相對向之第1鏡面部31與第2鏡面部32間之距離階段性變小,透過法布里-佩洛干涉濾光器部1A之光之波長階段性變短。
使施加於法布里-佩洛干涉濾光器部1A之電壓大小階段性增加時,於各電壓下每次取得光L1之檢測強度成為峰值之波長(以下稱為「峰值波長」)。此時,就特定之電壓而言,將該電壓下取得之峰值波長與基準下限值進行比較。且,若峰值波長短於基準下限值,則於其時點,結束電壓大小之階段性增加,結束施加之電壓之大小與透過之光之波長之關係的取得。另一方面,若峰值波長長於基準下限值,則使施加於法布里-佩洛干涉濾光器部1A之電壓大小增加一階段,將該電壓下取得之峰值波長與基準下限值進行比較。
即,藉由使複數個波長之光L1同時入射至法布里-佩洛干涉濾光器部1A,檢測透過法布里-佩洛干涉濾光器部1A之光L1之波長,而取得施加於法布里-佩洛干涉濾光器部1A之電壓大小與透過法布里-佩洛干涉濾光器部1A之光之波長的關係時所實施之電壓施加方法,具備如下步驟:基於透過法布里-佩洛干涉濾光器部1A之預定之波長範圍之下限值,設定基準下限值;使施加於法布里-佩洛干涉濾光器部1A之電壓大小階段性增加,於各電壓下每次取得峰值波長,就特定之電壓,將於該電壓下取得之峰值波長與基準下限值進行比較;及若峰值波長短於基準下限值,則於其時點,結束電壓大小之階段性增加,結束施加之電壓之大小與透過之光之波長之關係的取得,若峰值波長長於基準下限值,則使施加於法布里-佩洛干涉濾光器部1A之電壓大小增加一階段,將於該電壓下取得之峰值波長與基準下限值進行比較。藉此,可防止取得施加之電壓之大小與透過之光之波長之關係時產生黏結。該電壓施加方法不僅可對晶圓100之狀態下之法布里-佩洛干涉濾光器部1A實施,亦可對各個法布里-佩洛干涉濾光器1實施。
又,如第3實施形態、第4實施形態及第5實施形態之光檢查裝置500,光出射部520以將複數個波長之光L1按波長出射之方式構成,且光檢測部530以對於複數個波長之光L1具有感度之方式構成之情形時,如下所述,若針對法布里-佩洛干涉濾光器部1A取得施加之電壓之大小與透過之光之波長的關係,則可防止黏結之產生。
首先,使入射至法布里-佩洛干涉濾光器部1A之光L1之波長階段性變化。此時,於各波長下,使施加於法布里-佩洛干涉濾光器部1A之電壓大小以第1間距(例如100 mV)變化,取得光L1之檢測強度成為峰值之電壓(以下稱為「第1峰值電壓」)。繼而,於包含第1峰值電壓之電壓範圍內(例如,第1峰值電壓±200 mV之電壓範圍),使施加於法布里-佩洛干涉濾光器部1A之電壓大小以小於第1間距之第2間距(例如5 mV)變化,取得光L1之檢測強度成為峰值之電壓(以下稱為「第2峰值電壓」)。包含第1峰值電壓之電壓範圍之設定可設為±「第1間距之特定倍數(例如2倍)」,亦可不依第1間距而設為±「特定值(例如±200 mV)」。如此,藉由於各波長下實施第1峰值電壓之取得及基於其之第2峰值電壓之取得,而針對法布里-佩洛干涉濾光器部1A取得施加之電壓大小與透過之光之波長的關係。
即,藉由使複數個波長之光L1按波長入射至法布里-佩洛干涉濾光器部1A,於各波長下檢測透過法布里-佩洛干涉濾光器部1A之光L1之檢測強度成為峰值之電壓,而取得施加於法布里-佩洛干涉濾光器部1A之電壓之大小與透過法布里-佩洛干涉濾光器部1A之光之波長的關係時,實施電壓施加方法,該電壓施加方法具備如下步驟:使第1波長之光L1入射至法布里-佩洛干涉濾光器部1A,使施加於法布里-佩洛干涉濾光器部1A之電壓之大小以第1間距變化,取得第1峰值電壓,於包含第1峰值電壓之電壓範圍內,使施加於法布里-佩洛干涉濾光器部1A之電壓之大小以小於第1間距之第2間距變化,取得第2峰值電壓;及使不同於第1波長之第2波長之光L1入射至法布里-佩洛干涉濾光器部1A,使施加於法布里-佩洛干涉濾光器部1A之電壓之大小以第1間距變化,取得第1峰值電壓,於包含第1峰值電壓之電壓範圍內,使施加於法布里-佩洛干涉濾光器部1A之電壓之大小以小於第1間距之第2間距變化,取得第2峰值電壓。藉此,可防止取得施加之電壓之大小與透過之光之波長之關係時產生黏結。該電壓施加方法不僅對晶圓100之狀態下之法布里-佩洛干涉濾光器部1A實施,亦可對各法布里-佩洛干涉濾光器1實施。
再者,亦可於各波長下,使施加之電壓之大小以第1間距變化時,預先設定預測檢測出第1峰值電壓之電壓範圍,於該電壓範圍內,使施加之電壓之大小以第1間距變化。又,亦可於使施加之電壓之大小以第1間距階段性增加時,於取得光L1之檢測強度成為峰值之電壓後,自該電壓於特定電壓範圍內,以結束電壓以第1間距階段性增加之方式設置限制。
[晶圓支持部之變化例之構成]
繼而,針對可應用於第1實施形態~第5實施形態之光檢查裝置500之晶圓支持部510之變化例之構成進行說明。圖20(a)所示之晶圓支持部510與圖15所示之晶圓支持部510之不同點在於,在載台511之開口513內配置有光透過構件515。圖20(b)所示之晶圓支持部510與圖15所示之晶圓支持部510之不同點在於,未於載台511之第1表面511a形成階差部514、及於載台511之開口513內配置有光透過構件515。光透過構件515係藉由能使光L1透過之材料形成,與晶圓100之有效區域101接觸。具體而言,於自與基準線RL平行之方向觀察之情形時,光透過構件515包含有效區域101。光透過構件515作為使光L1沿基準線RL通過之光通過區域512發揮功能。即,晶圓支持部510亦可具有光透過構件515作為光通過區域512。
[法布里-佩洛干涉濾光器之製造方法]
繼而,針對自晶圓100切出法布里-佩洛干涉濾光器1之方法(法布里-佩洛干涉濾光器1之製造方法),參照圖21及圖22進行說明。圖21及圖22中,(a)係對應於法布里-佩洛干涉濾光器部1A之部分之剖視圖,(b)係對應於虛設濾光器部2A之部分之剖視圖。
首先,如圖21所示,於保護層460上(即,第2表面110b側)貼附擴張片60。繼而,於第2表面110b側貼附有擴張片60之狀態下,自擴張片60之相反側照射雷射光L,使雷射光L之聚光點位於基板層110之內部,且使雷射光L之聚光點沿各線5相對移動。即,自擴張片60之相反側,經由第1槽290中露出之多晶矽層之表面,對基板層110入射雷射光L。
且,藉由該雷射光L之照射,沿各線5於基板層110之內部形成改質區域7。改質區域7係指密度、折射率、機械強度、其他物理特性與周圍不同之狀態之區域,且係成為於基板層110之厚度方向伸展之龜裂之起點之區域。作為改質區域7,例如有熔融處理區域(意指暫時熔融後再固化之區域、熔融狀態中之區域及自熔融再固化之狀態中之區域中至少任一者)、裂縫區域、絕緣破壞區域、折射率變化區域等,亦有該等混合存在之區域。進而,作為改質區域7,有基板層110之材料中改質區域7之密度與非改質區域之密度相比產生變化之區域、形成有晶格缺陷之區域等。於基板層110之材料為單晶矽之情形時,改質區域7亦可稱為高錯位密度區域。再者,相對於各線5排列於基板層110之厚度方向之改質區域7之行數根據基板層110之厚度而適當調整。
繼而,如圖22所示,藉由使貼附於第2表面110b側之擴張片60擴張,而使龜裂自形成於基板層110之內部之改質區域7向基板層110之厚度方向伸展,將基板層110沿各線5切斷成複數個基板11。此時,於第1槽290中將第2鏡面層240之多晶矽層沿各線5切斷,且於第2槽470中將抗反射層410及保護層460沿各線5切斷。藉此,獲得於擴張片60上互相分離狀態下之複數個法布里-佩洛干涉濾光器1及複數個虛設濾光器2。
[光檢測裝置之構成]
繼而,針對具備法布里-佩洛干涉濾光器1之光檢測裝置10之構成進行說明。如圖23所示,光檢測裝置10具備封裝71。封裝71為具有底座72及蓋73之CAN封裝。蓋73係由側壁74及頂壁75一體構成。底座72及蓋73係藉由金屬材料形成,互相氣密地接合。藉由金屬材料形成之封裝71中,側壁74之形狀係以線9為中心線之圓筒狀。底座72及頂壁75於平行於線9之方向互相對向,分別蓋住側壁74之兩端。
於底座72之內表面72a,固定有配線基板76。作為配線基板76之基板材料,例如可使用矽、陶瓷、石英、玻璃、塑料等。於配線基板76,安裝有光檢測器(光檢測部)77、及熱敏電阻等溫度檢測器(省略圖示)。光檢測器77配置於線9上。更具體而言,光檢測器77係以其受光部之中心線與線9一致之方式配置。光檢測器77例如係使用InGaAs等之量子型感測器、使用熱電堆或輻射熱計等之熱型感測器等紅外線感測器。於檢測紫外線、可見光、近紅外線之各波長區域之光之情形時,作為光檢測器77,例如可使用矽光電二極體等。再者,於光檢測器77可設置1個受光部,或亦可呈陣列狀設置複數個受光部。進而,亦可為複數個光檢測器77安裝於配線基板76。為能夠檢測法布里-佩洛干涉濾光器1之溫度變化,亦可將溫度檢測器配置於例如接近法布里-佩洛干涉濾光器1之位置。
於配線基板76上,固定有複數個間隔件78。作為各間隔件78之材料,例如可使用矽、陶瓷、石英、玻璃、塑料等。於複數個間隔件78上,例如藉由接著劑固定有法布里-佩洛干涉濾光器1。法布里-佩洛干涉濾光器1係配置於線9上。更具體而言,法布里-佩洛干涉濾光器1係以光透過區域1a之中心線與線9一致之方式配置。再者,間隔件78亦可與配線基板76一體構成。又,法布里-佩洛干涉濾光器1亦可並非藉由複數個間隔件78支持,而藉由1個間隔件78支持。
於底座72,固定有複數個引線接腳81。更具體而言,各引線接腳81以維持與底座72間之電性絕緣性及氣密性之狀態,貫通底座72。於各引線接腳81,藉由導線82電性連接有設置於配線基板76之電極墊、光檢測器77之端子、溫度檢測器之端子、及法布里-佩洛干涉濾光器1之端子之各者。再者,光檢測器77、溫度檢測器及法布里-佩洛干涉濾光器1亦可經由配線基板76與各引線接腳81電性連接。例如,亦可將各個端子與設置於配線基板76之電極墊電性連接,將電極墊與各引線接腳81藉由導線82連接。藉此,可對光檢測器77、溫度檢測器及法布里-佩洛干涉濾光器1之各者輸入輸出電性信號等。
於封裝71形成有開口71a。更具體而言,開口71a係以其中心線與線9一致之方式,形成於蓋73之頂壁75。於自平行於線9之方向觀察之情形時,開口71a之形狀為圓形狀。於頂壁75之內表面75a,以蓋住開口71a之方式配置有光透過構件83。光透過構件83與頂壁75之內表面75a氣密接合。光透過構件83具有於平行於線9之方向互相對向之光入射面83a及光出射面(內表面)83b、以及側面83c。光透過構件83之光入射面83a於開口71a與頂壁75之外表面成為大致同一平面。光透過構件83之側面83c與封裝71之側壁74之內表面74a接觸。即,光透過構件83到達開口71a內及側壁74之內表面74a。此種光透過構件83係藉由將開口71a設為下側之狀態下於蓋73之內側配置玻璃顆粒,使該玻璃顆粒熔融而形成。即,光透過構件83係藉由熔接玻璃而形成。
於光透過構件83之光出射面83b,藉由接著構件85固定有帶通濾波器84。即,接著構件85經由接合於頂壁75之內表面75a之光透過構件83,將帶通濾波器84固定於頂壁75之內表面75a。帶通濾波器84使透過光透過構件83之光中光檢測裝置10之測定波長範圍之光(特定之波長範圍之光,且應入射至法布里-佩洛干涉濾光器1之光透過區域1a之光)選擇性透過(即,僅使該波長範圍之光透過)。帶通濾波器84之形狀為四角形板狀。更具體而言,帶通濾波器84具有於平行於線9之方向上互相對向之光入射面84a及光出射面84b、以及4個側面84c。帶通濾波器84係於藉由光透過性材料(例如矽、玻璃等)形成為四角形板狀之光透過構件之表面,形成有介電質多層膜(例如包含TiO2 、Ta2 O5 等高折射材料與SiO2 、MgF2 等低折射材料之組合之多層膜)者。
接著構件85具有配置於帶通濾波器84之光入射面84a之整個區域之第1部分85a。即,第1部分85a係接著構件85中配置於互相對向之光透過構件83之光出射面83b與帶通濾波器84之光入射面84a之間的部分。進而,接著構件85具有自平行於線9之方向觀察之情形時自帶通濾波器84之外緣向外側突出之第2部分85b。第2部分85b到達側壁74之內表面74a,與側壁74之內表面74a接觸。又,第2部分85b與帶通濾波器84之側面84c接觸。
如上構成之光檢測裝置10中,若光自外部經由開口71a、光透過構件83及接著構件85入射至帶通濾波器84,則使特定之波長範圍之光選擇性透過。若透過帶通濾波器84之光入射至法布里-佩洛干涉濾光器1之光透過區域1a,則使特定之波長範圍之光中特定波長之光選擇性透過。透過法布里-佩洛干涉濾光器1之光透過區域1a之光入射至光檢測器77之受光部,並藉由光檢測器77進行檢測。即,光檢測器77將透過法布里-佩洛干涉濾光器1之光轉換成電性信號並輸出。例如,光檢測器77輸出對應於入射至受光部之光之強度的大小之電性信號。
[光檢查裝置及光檢查方法之作用及效果]
第1實施形態~第5實施形態之光檢查裝置500中,對成為複數個法布里-佩洛干涉濾光器1之複數個法布里-佩洛干涉濾光器部1A,於晶圓100之狀態下實施光透過特性之檢查。因此,第1實施形態~第5實施形態之光檢查裝置500可效率良好且良率良好地獲得複數個法布里-佩洛干涉濾光器1。其理由如下。法布里-佩洛干涉濾光器1係於直至自晶圓100切出並裝配於例如光檢測裝置10為止之各步驟期間,特性易變化之元件。因此,認為需要於最終階段之裝配時檢查法布里-佩洛干涉濾光器1之特性。但,本發明者等人發現,晶圓100之狀態下為良品之法布里-佩洛干涉濾光器部1A即使其後特性變化,亦不易成為不良品之法布里-佩洛干涉濾光器1。因此,藉由於晶圓100之狀態下檢查各法布里-佩洛干涉濾光器部1A之光透過特性,而可於初始階段排除如晶圓100之狀態下為不良品之法布里-佩洛干涉濾光器1直至最終階段之裝配之浪費,且可提高良品之法布里-佩洛干涉濾光器1直至最終階段之裝配之概率。
並且,根據第1實施形態~第5實施形態之光檢查裝置500,可效率良好且精度良好地檢查各法布里-佩洛干涉濾光器部1A之光透過性。其理由如下。於法布里-佩洛干涉濾光器1中,透過之光之波長根據入射角變化。因此,若欲對各法布里-佩洛干涉濾光器1實施光透過特性之檢查,則有必要對每個法布里-佩洛干涉濾光器1調整支持角度。藉由於晶圓100之狀態下檢查各法布里-佩洛干涉濾光器部1A之光透過特性,而可減少此種調整之負擔。又,於法布里-佩洛干涉濾光器1中,透過之光之波長亦根據溫度等環境條件而變化。因此,若對各法布里-佩洛干涉濾光器1實施光透過特性之檢查,則成為檢查結果之前提之環境條件於法布里-佩洛干涉濾光器1間易不同。藉由於晶圓100之狀態下檢查各法布里-佩洛干涉濾光器部1A之光透過特性,而可於穩定之環境條件下獲得檢查結果。
又,於第1實施形態~第5實施形態之光檢查裝置500中,晶圓支持部510具有面向晶圓100之有效區域101之開口513作為光通過區域512。藉此,可使晶圓支持部510之構成簡化,且使光沿基準線RL透過藉由晶圓支持部510支持之晶圓100之各法布里-佩洛干涉濾光器部1A。
又,於第1實施形態~第5實施形態之光檢查裝置500中,亦可為,晶圓支持部510具有與晶圓100之有效區域101接觸之光透過構件515作為光通過區域512。藉此,可抑制晶圓100之翹起,且使光沿基準線RL透過藉由晶圓支持部510支持之晶圓100之各法布里-佩洛干涉濾光器部1A。
又,第1實施形態~第5實施形態之光檢查裝置500具備以互相對向之第1鏡面部31與第2鏡面部32間之距離變化之方式對各法布里-佩洛干涉濾光器部1A施加電壓之電壓施加部540。藉此,可針對各法布里-佩洛干涉濾光器部1A,取得施加之電壓之大小與透過之光之波長的關係。
又,第1實施形態及第2實施形態之光檢查裝置500中,光出射部520以同時出射複數個波長之光L1之方式構成,光檢測部530以針對複數個波長之光L1按波長進行檢測之方式構成。藉此,使施加於法布里-佩洛干涉濾光器部1A之電壓大小變化,於各電壓下取得光L1之檢測強度成為峰值之波長,由此可針對各法布里-佩洛干涉濾光器部1A,取得施加之電壓大小與透過之光之波長的關係。
又,於第3實施形態、第4實施形態及第5實施形態之光檢查裝置500中,光出射部520以將複數個波長之光L1按波長出射之方式構成,光檢測部530以對於複數個波長之光L1具有感度之方式構成。藉此,使出射之光L1之波長變化,於各波長下使施加於法布里-佩洛干涉濾光器部1A之電壓大小變化,取得光L1之檢測強度成為峰值之電壓,由此可針對各法布里-佩洛干涉濾光器部1A,取得施加之電壓大小與透過之光之波長的關係。或者,使施加於法布里-佩洛干涉濾光器部1A之電壓大小變化,於各電壓下使出射之光L1之波長變化,取得光L1之檢測強度成為峰值之波長,由此可針對各法布里-佩洛干涉濾光器部1A,取得施加之電壓大小與透過之光之波長的關係。
又,第1實施形態~第5實施形態之光檢查裝置500具備拍攝藉由晶圓支持部510支持之晶圓100之攝像部550。藉此,可取得各法布里-佩洛干涉濾光器部1A之座標資訊,基於取得之座標資訊,使各法布里-佩洛干涉濾光器部1A位於基準線RL上。
又,第1實施形態~第5實施形態之光檢查裝置500中實施之光檢查方法具備如下步驟:準備晶圓100,該晶圓100構成互相對向之第1鏡面部31與第2鏡面部32間之距離藉由靜電力變化之複數個法布里-佩洛干涉濾光器部1A;使沿對向方向入射至各法布里-佩洛干涉濾光器部1A之光出射;及檢測沿對向方向透過各法布里-佩洛干涉濾光器部1A之光。該光檢查方法根據與上述第1實施形態~第5實施形態之光檢查裝置500相同之理由,可效率良好且良率良好地獲得複數個法布里-佩洛干涉濾光器1。
又,上述光檢查方法進而具備以互相對向之第1鏡面部31與第2鏡面部32間之距離變化之方式,對各法布里-佩洛干涉濾光器部1A施加電壓之步驟。藉此,可針對各法布里-佩洛干涉濾光器部1A,取得施加之電壓之大小與透過之光之波長的關係。
又,上述光檢查方法進而具備拍攝晶圓100之步驟。藉此,例如使光L1沿基準線RL入射至各法布里-佩洛干涉濾光器部1A之情形時,可取得各法布里-佩洛干涉濾光器部1A之座標資訊,基於取得之座標資訊,使各法布里-佩洛干涉濾光器部1A位於基準線RL上。
再者,於晶圓100中,成為複數個法布里-佩洛干涉濾光器1之複數個法布里-佩洛干涉濾光器部1A係設置於有效區域101。另一方面,於沿基板層110之外緣110c且包圍有效區域101之虛設區域102,設有複數個虛設濾光器部2A,於各虛設濾光器部2A中,於互相對向之第1鏡面部31與第2鏡部32之間設有中間層23。藉此,充分確保晶圓100整體之強度。因此,對各法布里-佩洛干涉濾光器部1A實施上述檢查方法時之晶圓100之處理變容易。又,由於晶圓100不易翹曲,故即使過度調整晶圓100之支持角度,亦可使光L1以適當之入射角入射至各法布里-佩洛干涉濾光器部1A。進而,可使一對探針543確實地與各法布里-佩洛干涉濾光器部1A之一對端子15、16接觸。
又,於晶圓100之製造方法中,保持複數個法布里-佩洛干涉濾光器部1A為晶圓100之狀態,於各法布里-佩洛干涉濾光器部1A中形成空隙S。藉此,與以各晶片級實施空隙S之形成之情形相比,效率極其高,可於第1鏡面部31與第2鏡面部32之間形成空隙S。並且,於有效區域101中,對二維配置之複數個除去預定部50同時實施中間層230之蝕刻等,於基板層110內之任意對應於基板11之部分、及包圍其之周圍之對應於基板11之部分,製程同時進展,故可減少基板層110之面內之應力偏差。由此,根據晶圓100之製造方法,可獲得能夠穩定地量產高品質之法布里-佩洛干涉濾光器1之晶圓100。
又,藉由雷射光L之照射,沿各線5於基板層110之內部形成改質區域7,從而根據以下理由,沿各線5切斷晶圓100於製造法布里-佩洛干涉濾光器1之方面極其有效。即,於使用雷射光L之晶圓100之切斷中,由於無需水,故不會產生於空隙S上懸空之第2鏡面部32因水壓而破損,或水滲透至空隙S內而黏結(第2鏡面部32與第1鏡面部31接觸而無法移動之現象)。由此,使用雷射光L之晶圓100之切斷於製造法布里-佩洛干涉濾光器1之方面極其有效。
[變化例]
以上,已針對本發明之一實施形態進行了說明,但本發明並不限定於上述實施形態。例如,各構成之材料及形狀不限於上述材料及形狀,可採用各種材料及形狀。於晶圓100中,自基板層110之厚度方向觀察之情形時,法布里-佩洛干涉濾光器部1A之外形與虛設濾光器部2A之外形亦可不同。又,自晶圓100切出複數個法布里-佩洛干涉濾光器1時,亦可不切出所有虛設濾光器部2A(即,亦可不將所有虛設濾光器部2A單片化)。又,虛設區域102之構成不限於上述者。例如,於對應於虛設區域102之區域中,至少第2鏡面部32可不由呈環狀連續之第1槽290包圍(例如,第1槽290亦可僅橫穿對應於虛設區域102之區域),亦可不於器件層200形成第1槽290。又,對應於虛設區域102之區域中,亦可不設置器件層200之一部分層或器件層200之整體。即,成為本發明之檢查對象之晶圓中,虛設區域並非為必需構成。
第1實施形態~第5實施形態之光檢查裝置500、及各光檢查裝置500中實施之光檢查方法中,以互相對向之第1鏡面部31與第2鏡面部32間之距離變化之方式對法布里-佩洛干涉濾光器部1A施加電壓,於該狀態下,檢測透過法布里-佩洛干涉濾光器部1A之光L1,但亦可於不對法布里-佩洛干涉濾光器部1A施加電壓之狀態下,檢測透過法布里-佩洛干涉濾光器部1A之光L1。該情形時,亦可基於透過法布里-佩洛干涉濾光器部1A之光L1之檢測結果,判斷法布里-佩洛干涉濾光器部1A是否為良品,例如法布里-佩洛干涉濾光器部1A中第2鏡面部32是否正常等。
又,如圖21所示,於晶圓100中,亦可以對應於第1槽290之方式,於基板層110之內部形成改質區域7。此處,所謂改質區域7對應於第1槽290,意指自對向方向觀察之情形時,改質區域7與第1槽290重疊,尤其意指改質區域7沿各線5形成之狀態。藉此,可使龜裂自改質區域7向基板層110之厚度方向伸展,可容易且精度良好地自晶圓100切出複數個法布里-佩洛干涉濾光器1。該情形時,亦可於基板層110之第2表面110b側貼附擴張片60。此時,貼附於晶圓100之擴張片60之外緣部係藉由環狀之框保持。藉此,即使係於基板層110之內部形成有改質區域7之狀態,亦可容易處理晶圓100。再者,於基板層110之內部形成有改質區域7之晶圓100中,有龜裂自改質區域7意外伸展之虞。於晶圓100中,由於未於虛設區域102中之一對區域102a設置複數個虛設濾光器部2A以及第1槽290及第2槽470,故抑制龜裂之產生,且即使龜裂進展,亦藉由一對區域102a使龜裂之伸展停止。
又,如圖24所示,亦可將藉由接合第1晶圓610及第2晶圓620而構成之晶圓600設為檢查對象。晶圓600包含複數個法布里-佩洛干涉濾光器部650A。複數個法布里-佩洛干涉濾光器部650A係藉由將晶圓600沿設定於第1晶圓610及第2晶圓620之各者之各線5切斷而成為複數個法布里-佩洛干涉濾光器650之預定部分。自晶圓600之厚度方向觀察之情形時,複數個法布里-佩洛干涉濾光器部650A係二維配置。
第1晶圓610具備基板層611、複數個第1鏡面部612及複數個驅動電極613。基板層611具有互相對向之表面611a及表面611b。基板層611係藉由光透過性材料形成。各第1鏡面部612例如係金屬膜、介電質多層膜或其等之複合膜。各驅動電極613例如係藉由金屬材料形成。
第2晶圓620具備基板層621、複數個第2鏡面部622及複數個驅動電極623。基板層621具有互相對向之表面621a及表面621b。基板層621係藉由光透過性材料形成。各第2鏡面部622例如係金屬膜、介電質多層膜或其等之複合膜。各驅動電極623例如係藉由金屬材料形成。
於晶圓600中,藉由1個第1鏡面部612、1個驅動電極613、1個第2鏡面部622及1個驅動電極623,構成1個法布里-佩洛干涉濾光器部650A。以下,著眼於1個法布里-佩洛干涉濾光器部650A,針對晶圓600之構成進行說明。
於基板層611之表面611a,形成有凹部614。於凹部614之底面614a,設有凸部615。凸部615之高度小於凹部614之深度。即,凸部615之端面615a處於相對於基板層611之表面611a凹陷之狀態。第1鏡面部612設置於凸部615之端面615a。驅動電極613以包圍凸部615之方式設置於凹部614之底面614a。驅動電極613例如經由設置於基板層611之配線(省略圖示)與電極墊(省略圖示)電性連接。該電極墊例如設置於基板層611中可自外部存取之區域。
基板層621之表面621b例如藉由電漿聚合膜等與基板層611之表面611a接合。於基板層621之表面621b,設有第2鏡面部622及驅動電極623。第2鏡面部622介隔空隙S與第1鏡面部612對向。驅動電極623以包圍第2鏡面部622之方式設置於基板層621之表面621b,且介隔空隙S與驅動電極613對向。驅動電極623例如經由設置於基板層621之配線(省略圖示)與電極墊(省略圖示)電性連接。該電極墊例如設置於基板層621中可自外部存取之區域。
於基板層621之表面621a,以自晶圓600之厚度方向觀察之情形時包圍第2鏡面部622及驅動電極623之方式形成有凹槽621c。凹槽621c係圓環狀延伸。基板層621中被凹槽621c包圍之部分將形成有凹槽621c之部分作為隔膜狀之保持部621d,可於晶圓600之厚度方向移位。再者,隔膜狀之保持部621d亦可藉由將自晶圓600之厚度方向觀察之情形時包圍第2鏡面部622及驅動電極623之凹槽形成於基板層621之表面621a及表面621b之至少一者而構成。又,亦可藉由將自晶圓600之厚度方向觀察之情形時包圍第1鏡面部612及驅動電極613之凹槽形成於基板層611,而構成基板層611中隔膜狀之保持部。又,亦可取代隔膜狀之保持部,藉由呈放射狀配置之複數個樑構成保持部。
於如上構成各法布里-佩洛干涉濾光器部650A之晶圓600中,若於各法布里-佩洛干涉濾光器部650A中,對驅動電極613與驅動電極623間施加電壓,則對應於該電壓之靜電力產生於驅動電極613與驅動電極623之間。藉由該靜電力,基板層621中被凹槽621c包圍之部分被吸引至基板層611側,從而調整第1鏡面部612與第2鏡面部622間之距離。藉此,具有對應於第1鏡面部612與第2鏡面部622間之距離之波長之光透過。本發明中成為檢查對象之晶圓(100,600)只要具備基板層(110,611)、及二維配置於基板層(110,611)上之複數對第1鏡面部(31,612)及第2鏡面部(32,622),且藉由於互相對向之第1鏡面部(31,612)及第2鏡面部(32,622)間形成空隙S而構成互相對向之第1鏡面部(31,612)與第2鏡面部(32,622)間之距離藉由靜電力變化之複數個法布里-佩洛干涉濾光器部(1A,650A)即可。
1‧‧‧法布里-佩洛干涉濾光器
1a‧‧‧光透過區域
1A‧‧‧法布里-佩洛干涉濾光器部
2‧‧‧虛設濾光器
2A‧‧‧虛設濾光器部
3‧‧‧第1直線
4‧‧‧第2直線
5‧‧‧線
7‧‧‧改質區域
11‧‧‧基板
11a‧‧‧第1表面
11b‧‧‧第2表面
11c‧‧‧外緣部
12‧‧‧第1電極
12a‧‧‧配線
13‧‧‧第2電極
13a‧‧‧配線
14‧‧‧第3電極
14a‧‧‧配線
15‧‧‧端子
16‧‧‧端子
17‧‧‧溝槽
18‧‧‧溝槽
19‧‧‧溝槽
21‧‧‧抗反射層
21a‧‧‧側面
22‧‧‧第1積層體
22a‧‧‧側面
22b‧‧‧表面
23‧‧‧中間層
23a‧‧‧表面
24‧‧‧第2積層體
24a‧‧‧表面
24b‧‧‧貫通孔
25‧‧‧多晶矽層
25a‧‧‧晶矽層
25b‧‧‧多晶矽層
25c‧‧‧多晶矽層
26‧‧‧氮化矽層
26a‧‧‧氮化矽層
26b‧‧‧氮化矽層
27‧‧‧多晶矽層
27a‧‧‧多晶矽層
27b‧‧‧多晶矽層
27c‧‧‧多晶矽層
28‧‧‧氮化矽層
28a‧‧‧氮化矽層
28b‧‧‧氮化矽層
31‧‧‧第1鏡面部
32‧‧‧第2鏡面部
33‧‧‧被覆部
34‧‧‧周緣部
34a‧‧‧非薄化部
34b‧‧‧薄化部
34c‧‧‧表面
40a‧‧‧開口
41‧‧‧抗反射層
42‧‧‧第3積層體
43‧‧‧中間層
44‧‧‧第4積層體
45‧‧‧遮光層
46‧‧‧保護層
50‧‧‧除去預定部
60‧‧‧擴張片
71‧‧‧封裝
72‧‧‧底座
72a‧‧‧內表面
73‧‧‧蓋
74‧‧‧側壁
74a‧‧‧內表面
75‧‧‧頂壁
75a‧‧‧內表面
76‧‧‧配線基板
77‧‧‧光檢測器
78‧‧‧間隔件
81‧‧‧引線接腳
82‧‧‧導線
83‧‧‧光透過構件
83a‧‧‧光入射面
83b‧‧‧光出射面
83c‧‧‧側面
84‧‧‧帶通濾波器
84a‧‧‧光入射面
84b‧‧‧光出射面
84c‧‧‧側面
85‧‧‧接著構件
85a‧‧‧第1部分
85b‧‧‧第2部分
100‧‧‧晶圓
100a‧‧‧外緣
101‧‧‧有效區域
102‧‧‧虛設區域
102a‧‧‧區域
110‧‧‧基板層
110a‧‧‧第1表面
110b‧‧‧第2表面
110c‧‧‧外緣
200‧‧‧器件層
210‧‧‧抗反射層
220‧‧‧第1鏡面層
230‧‧‧中間層
240‧‧‧第2鏡面層
290‧‧‧第1凹槽
400‧‧‧應力調整層
410‧‧‧抗反射層
420‧‧‧層
430‧‧‧層
440‧‧‧層
450‧‧‧遮光層
460‧‧‧保護層
470‧‧‧第2凹槽
500‧‧‧光檢查裝置
501‧‧‧鏡面
502‧‧‧凹面鏡
503‧‧‧半反射鏡
510‧‧‧晶圓支持部
511‧‧‧載台
511a‧‧‧第1表面
511b‧‧‧第2表面
512‧‧‧光通過區域
513‧‧‧開口
514‧‧‧階差部
515‧‧‧光透過構件
520‧‧‧光出射部
521‧‧‧白色光源
522‧‧‧透鏡
522A‧‧‧透鏡
522B‧‧‧透鏡
523‧‧‧光圈構件
524‧‧‧光纖
525‧‧‧透鏡
526‧‧‧單色儀
527‧‧‧光源切換部
527a‧‧‧雷射光源
527b‧‧‧雷射光源
527c‧‧‧雷射光源
530‧‧‧光檢測部
531‧‧‧透鏡
532‧‧‧光纖
533‧‧‧分光器
534‧‧‧光電二極體
535‧‧‧放大器
536‧‧‧AD轉換器
540‧‧‧電壓施加部
541‧‧‧載台
542‧‧‧臂
543‧‧‧探針
544‧‧‧電源量測單元
550‧‧‧攝像部
551‧‧‧相機
552‧‧‧變焦透鏡
560‧‧‧控制部
600‧‧‧晶圓
610‧‧‧第1晶圓
611‧‧‧基板層
611a‧‧‧表面
611b‧‧‧表面
612‧‧‧第1鏡面部
613‧‧‧驅動電極
614‧‧‧凹部
614a‧‧‧底面
615‧‧‧凸部
615a‧‧‧端面
620‧‧‧第2晶圓
621‧‧‧基板層
621a‧‧‧表面
621b‧‧‧表面
621c‧‧‧凹槽
621d‧‧‧保持部
622‧‧‧第2鏡面部
623‧‧‧驅動電極
650‧‧‧法布里-佩洛干涉濾光器
650A‧‧‧法布里-佩洛干涉濾光器部
L1‧‧‧光
L2‧‧‧光
OF‧‧‧定向平面
RL‧‧‧基準線
S‧‧‧空隙
圖1係自作為一實施形態之光檢查裝置及光檢查方法之檢查對象的晶圓切出之法布里-佩洛干涉濾光器之俯視圖。
圖2係圖1所示之法布里-佩洛干涉濾光器之仰視圖。
圖3係沿圖1所示之Ⅲ-Ⅲ線之法布里-佩洛干涉濾光器之剖視圖。
圖4係自作為一實施形態之光檢查裝置及光檢查方法之檢查對象的晶圓切出之虛設濾光器之剖視圖。
圖5係作為一實施形態之光檢查裝置及光檢查方法之檢查對象的晶圓之俯視圖。
圖6係圖5所示之晶圓之一部分之放大俯視圖。
圖7(a)、(b)係圖5所示之晶圓之法布里-佩洛干涉濾光器部及虛設濾光器部之剖視圖。
圖8(a)、(b)係用以說明圖5所示之晶圓之製造方法之剖視圖。
圖9(a)、(b)係用以說明圖5所示之晶圓之製造方法之剖視圖。
圖10(a)、(b)係用以說明圖5所示之晶圓之製造方法之剖視圖。
圖11(a)、(b)係用以說明圖5所示之晶圓之製造方法之剖視圖。
圖12(a)、(b)係用以說明圖5所示之晶圓之製造方法之剖視圖。
圖13(a)、(b)係用以說明圖5所示之晶圓之製造方法之剖視圖。
圖14係第1實施形態之光檢查裝置之構成圖。
圖15係圖14所示之光檢查裝置之晶圓支持部之剖視圖。
圖16係第2實施形態之光檢查裝置之構成圖。
圖17係第3實施形態之光檢查裝置之構成圖。
圖18係第4實施形態之光檢查裝置之構成圖。
圖19係第5實施形態之光檢查裝置之構成圖。
圖20(a)、(b)係第1實施形態~第5實施形態之光檢查裝置之晶圓支持部之變化例之剖視圖。
圖21(a)、(b)係用以說明自圖5所示之晶圓切出法布里-佩洛干涉濾光器之方法之剖視圖。
圖22(a)、(b)係用以說明自圖5所示之晶圓切出法布里-佩洛干涉濾光器之方法之剖視圖。
圖23係具備法布里-佩洛干涉濾光器之光檢查裝置之剖視圖。
圖24係變化例之晶圓之剖視圖。

Claims (10)

  1. 一種光檢查裝置,其具備: 晶圓支持部,其將具備基板層以及二維配置於上述基板層上之複數對第1鏡面部及第2鏡面部、且藉由於互相對向之第1鏡面部與第2鏡面部間形成空隙而構成互相對向之第1鏡面部與第2鏡面部間之距離藉由靜電力而變化之複數個法布里-佩洛干涉濾光器部的晶圓,以上述第1鏡面部與上述第2鏡面部互相對向之方向沿基準線之方式支持; 光出射部,其使沿上述基準線入射至上述複數個法布里-佩洛干涉濾光器部之各者之光出射;及 光檢測部,其檢測沿上述基準線透過上述複數個法布里-佩洛干涉濾光器部之各者之光;且 上述晶圓支持部具有使光沿上述基準線通過之光通過區域。
  2. 如請求項1之光檢查裝置,其中上述晶圓支持部具有面向上述晶圓中構成有上述複數個法布里-佩洛干涉濾光器部之有效區域之開口,作為上述光通過區域。
  3. 如請求項1之光檢查裝置,其中上述晶圓支持部具有與上述晶圓中構成有上述複數個法布里-佩洛干涉濾光器部之有效區域接觸之光透過構件,作為上述光通過區域。
  4. 如請求項1至3中任一項之光檢查裝置,其進而具備電壓施加部,該電壓施加部以互相對向之上述第1鏡面部與上述第2鏡面部間之距離變化之方式對上述複數個法布里-佩洛干涉濾光器部之各者施加電壓。
  5. 如請求項4之光檢查裝置,其中上述光出射部係以同時出射複數個波長之光之方式構成, 上述光檢測部係以針對上述複數個波長之光按波長進行檢測之方式構成。
  6. 如請求項4之光檢查裝置,其中上述光出射部以將複數個波長之光按波長出射之方式構成, 上述光檢測部以對上述複數個波長之光具有感度之方式構成。
  7. 如請求項1至6中任一項之光檢查裝置,其進而具備攝像部,該攝像部拍攝由上述晶圓支持部支持之上述晶圓。
  8. 一種光檢查方法,其具備如下步驟: 準備晶圓,該晶圓具備基板層、以及二維配置於上述基板層上之複數對第1鏡面部及第2鏡面部,且藉由於互相對向之上述第1鏡面部與上述第2鏡面部間形成空隙,而構成互相對向之上述第1鏡面部與上述第2鏡面部間之距離藉由靜電力而變化之複數個法布里-佩洛干涉濾光器部; 使沿上述第1鏡面部與上述第2鏡面部互相對向之方向入射至上述複數個法布里-佩洛干涉濾光器部之各者之光出射;及 檢測沿上述第1鏡面部與上述第2鏡面部互相對向之方向透過上述複數個法布里-佩洛干涉濾光器部之各者之光。
  9. 如請求項8之光檢查方法,其進而具備如下步驟:以互相對向之上述第1鏡面部與上述第2鏡面部間之距離變化之方式,對上述複數個法布里-佩洛干涉濾光器部之各者施加電壓。
  10. 如請求項8或9之光檢查方法,其進而具備拍攝上述晶圓之步驟。
TW107141580A 2017-11-24 2018-11-22 光檢查裝置及光檢查方法 TWI797200B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017226090A JP7313115B2 (ja) 2017-11-24 2017-11-24 光検査装置及び光検査方法
JP2017-226090 2017-11-24

Publications (2)

Publication Number Publication Date
TW201935076A true TW201935076A (zh) 2019-09-01
TWI797200B TWI797200B (zh) 2023-04-01

Family

ID=66630924

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107141580A TWI797200B (zh) 2017-11-24 2018-11-22 光檢查裝置及光檢查方法

Country Status (8)

Country Link
US (1) US11422059B2 (zh)
EP (1) EP3715817B1 (zh)
JP (1) JP7313115B2 (zh)
KR (1) KR102642774B1 (zh)
CN (1) CN111406206B (zh)
FI (1) FI3715817T3 (zh)
TW (1) TWI797200B (zh)
WO (1) WO2019102879A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11303356B1 (en) 2019-04-18 2022-04-12 Raytheon Company Methods and apparatus for maintaining receiver operating point with changing angle-of-arrival of a received signal
US11307395B2 (en) 2019-05-23 2022-04-19 Raytheon Company Methods and apparatus for optical path length equalization in an optical cavity
US11290191B2 (en) 2019-06-20 2022-03-29 Raytheon Company Methods and apparatus for tracking moving objects using symmetric phase change detection
EP3994808A1 (en) * 2019-07-03 2022-05-11 Raytheon Company Optical receiver comprising a rotatable optical resonator, and method for demodulating an optical signal using said receiver
US11199754B2 (en) 2019-07-15 2021-12-14 Raytheon Company Demodulator with optical resonator
KR20220009009A (ko) 2020-07-15 2022-01-24 주식회사 엘지에너지솔루션 안전성이 향상된 파우치형 이차전지 및 이를 포함하는 배터리 모듈
CN114720097B (zh) * 2022-04-13 2023-06-09 安徽科瑞思创晶体材料有限责任公司 一种用于tgg晶片检测的光学检测系统

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719804B2 (ja) * 1987-01-21 1995-03-06 東京エレクトロン株式会社 プロ−ブ装置
JPH0416735A (ja) * 1990-05-11 1992-01-21 Matsushita Electric Ind Co Ltd 光学部品の測定方法
JPH0435846A (ja) * 1990-05-31 1992-02-06 Toshiba Corp 半導体ウエハの位置合せ方法
US5550373A (en) * 1994-12-30 1996-08-27 Honeywell Inc. Fabry-Perot micro filter-detector
JPH10135291A (ja) * 1996-10-30 1998-05-22 Sharp Corp 半導体装置の評価方法及びその評価装置
JP2000028931A (ja) * 1998-07-09 2000-01-28 Tdk Corp 多波長フィルタアレイ
US6770882B2 (en) * 2002-01-14 2004-08-03 Multispectral Imaging, Inc. Micromachined pyro-optical structure
JP2004101478A (ja) * 2002-09-12 2004-04-02 Mitsui Mining & Smelting Co Ltd 複数の光を用いた同時光学的測定方法およびその装置
GB2418028B (en) * 2003-05-07 2007-08-01 Qinetiq Ltd Dynamic optical reflector and interrogation system
US20040255853A1 (en) * 2003-05-15 2004-12-23 Aegis Semiconductor PECVD reactor in-situ monitoring system
US7333208B2 (en) * 2004-12-20 2008-02-19 Xerox Corporation Full width array mechanically tunable spectrophotometer
JP2008032401A (ja) * 2006-07-26 2008-02-14 Fujifilm Corp 赤外カットフィルタの検査方法及び装置
US7911623B2 (en) * 2007-08-07 2011-03-22 Xerox Corporation Fabry-Perot piezoelectric tunable filter
US8334984B2 (en) * 2008-08-22 2012-12-18 The Regents Of The University Of California Single wafer fabrication process for wavelength dependent reflectance for linear optical serialization of accelerometers
FI20095976A0 (fi) 2009-09-24 2009-09-24 Valtion Teknillinen Mikromekaanisesti säädettävä Fabry-Perot -interferometri ja menetelmä sen tuottamiseksi
JP5609542B2 (ja) * 2010-10-28 2014-10-22 セイコーエプソン株式会社 光測定装置
JP2013097150A (ja) * 2011-10-31 2013-05-20 Kyocera Crystal Device Corp エタロンフィルタ
JP5987573B2 (ja) * 2012-09-12 2016-09-07 セイコーエプソン株式会社 光学モジュール、電子機器、及び駆動方法
JP6211833B2 (ja) 2013-07-02 2017-10-11 浜松ホトニクス株式会社 ファブリペロー干渉フィルタ
JP6290594B2 (ja) * 2013-10-31 2018-03-07 浜松ホトニクス株式会社 光検出装置
CN105683726B (zh) * 2013-10-31 2019-05-07 浜松光子学株式会社 光检测装置
JP6356427B2 (ja) * 2014-02-13 2018-07-11 浜松ホトニクス株式会社 ファブリペロー干渉フィルタ
FI126791B (en) * 2014-12-29 2017-05-31 Teknologian Tutkimuskeskus Vtt Oy Mirror disk for an optical interferometer, method for manufacturing a mirror disk and optical interferometer
JP6671860B2 (ja) * 2015-04-28 2020-03-25 浜松ホトニクス株式会社 光検出装置
CN113358223A (zh) 2015-10-02 2021-09-07 浜松光子学株式会社 光检测装置
JP2017226092A (ja) 2016-06-20 2017-12-28 コクヨ株式会社 書類ホルダ
US10323985B2 (en) * 2016-11-09 2019-06-18 Trutag Technologies, Inc. Signal processing for tunable Fabry-Perot interferometer based hyperspectral imaging
US20180188110A1 (en) * 2016-12-29 2018-07-05 Verifood, Ltd. Fabry-perot spectrometer apparatus and methods
JP6983633B2 (ja) * 2017-11-24 2021-12-17 浜松ホトニクス株式会社 ウェハの検査方法、及びウェハ

Also Published As

Publication number Publication date
EP3715817A4 (en) 2021-08-11
US11422059B2 (en) 2022-08-23
TWI797200B (zh) 2023-04-01
EP3715817B1 (en) 2023-10-18
FI3715817T3 (fi) 2024-01-08
JP7313115B2 (ja) 2023-07-24
JP2019095667A (ja) 2019-06-20
KR20200087180A (ko) 2020-07-20
WO2019102879A1 (ja) 2019-05-31
CN111406206A (zh) 2020-07-10
US20200278272A1 (en) 2020-09-03
EP3715817A1 (en) 2020-09-30
KR102642774B1 (ko) 2024-03-05
CN111406206B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
TWI797200B (zh) 光檢查裝置及光檢查方法
TWI817960B (zh) 異物除去方法及光檢測裝置之製造方法
TWI791683B (zh) 晶圓之檢查方法及晶圓
KR102658807B1 (ko) 전기적 검사 방법
TWI825876B (zh) 晶圓
JP7051746B2 (ja) 光学装置の製造方法
JP6902571B2 (ja) ウェハ