TW201920959A - 預測用於免疫療法之疾病特異性胺基酸修飾的效用的方法 - Google Patents

預測用於免疫療法之疾病特異性胺基酸修飾的效用的方法 Download PDF

Info

Publication number
TW201920959A
TW201920959A TW107119773A TW107119773A TW201920959A TW 201920959 A TW201920959 A TW 201920959A TW 107119773 A TW107119773 A TW 107119773A TW 107119773 A TW107119773 A TW 107119773A TW 201920959 A TW201920959 A TW 201920959A
Authority
TW
Taiwan
Prior art keywords
different
amino acid
cells
disease
mhc
Prior art date
Application number
TW107119773A
Other languages
English (en)
Inventor
尤格爾 沙辛
Original Assignee
德商拜恩迪克Rna製藥有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商拜恩迪克Rna製藥有限公司 filed Critical 德商拜恩迪克Rna製藥有限公司
Publication of TW201920959A publication Critical patent/TW201920959A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001154Enzymes
    • A61K39/001156Tyrosinase and tyrosinase related proteinases [TRP-1 or TRP-2]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001184Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
    • A61K39/001188NY-ESO
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/80Vaccine for a specifically defined cancer
    • A61K2039/876Skin, melanoma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • G01N2333/70514CD4
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • G01N2333/70517CD8
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本發明是關於預測包含疾病特異性胺基酸修飾之肽或多肽(特別是腫瘤相關新抗原)是否包含可用於諸如疫苗接種之免疫療法之表位(尤其是腫瘤相關新表位)的方法。本發明方法尤其可用於提供對患者腫瘤具有特異性的疫苗,並因而用於個人化癌症疫苗中。

Description

預測用於免疫療法之疾病特異性胺基酸修飾的效用的方法
本發明是關於預測包含疾病特異性胺基酸修飾之肽或多肽(特別是腫瘤相關新抗原)是否包含可用於諸如疫苗接種之免疫療法之表位(尤其是腫瘤相關新表位)的方法。本發明方法尤其可用於提供對患者腫瘤具有特異性的疫苗,並因而用於個人化癌症疫苗中。
在脊椎動物中,免疫系統的演化產生以兩種防禦類型為主的高效網絡:先天性免疫力以及後天性免疫力。相對於在演化上古老的先天性免疫系統是仰賴辨識與病原體締合之共通分子類型的不變受體,後天性免疫力是以B細胞(B淋巴球)以及T細胞(T淋巴球)上的高度特異性抗原受體以及株系篩選為基礎。B細胞是透過分泌抗體提高體液性免疫反應,而T細胞則是媒介細胞性免疫反應來摧毀被辨識的細胞。
T細胞在人類以及動物的細胞媒介免疫力中扮演關鍵角色。辨識並且結合特定抗原是受到T細胞表面上所表現的T細胞受體所媒介。T細胞的T細胞受體(TCR)能夠與被結合至主要組織相容性複合體(MHC)分子並且被呈現於目標細胞表面上的免疫性肽(表位)交互作用。TCR的特異性結合觸發T細胞內部的訊號級聯,致使增生並分化為成熟的效應T細胞。為了能夠靶向各式各樣的抗原,T細胞受體必須具有相當多樣性。
抗原特異性免疫療法旨在提高或誘發患者體內的特異性免疫反應,以便控制傳染病或惡性病。鑑定越來越多的病原體相關抗原及腫瘤相關抗原產生大量用於免疫療法的適宜目標。呈現衍生自這些抗原之免疫性肽(表位) 的細胞可被主動免疫法或被動免疫法策略特異性地對準。主動免疫法傾向在患者體內誘發並擴增抗原特異性T細胞,這能夠特異地辨識並殺滅罹病細胞。相反地,被動免疫法則是仰賴於授受性轉移(adoptive transfer)T細胞,這些T細胞是在活體外經擴增並且視情況進行遺傳工程(授受性T細胞療法;adoptive T cell,ACT)。
腫瘤疫苗旨在透過主動免疫法來誘發內源性腫瘤特異性免疫反應。針對腫瘤免疫接種可使用不同的抗原形式,包括完整罹病細胞、蛋白質、肽或免疫載體(諸如RNA、DNA或病毒載體),它們可以直接在活體內應用或在活體外透過脈衝輸送樹突狀細胞(DC)然後轉移至患者來應用。
癌症中的體細胞突變對於治療性疫苗法來說是一個理想目標(Castle,J.C.et al.Cancer Res.72,1081-1091(2012);Schumacher,T.N.& Schreiber,R.D.Science 348,69-74(2015);Türeci,O.et al.Clin.Cancer Res.22,1885-1896(2016))。它們可以被加工成肽,被呈現在腫瘤細胞表面上並且被T細胞辨識為新表位。新表位被排除在中樞免疫耐受性之外且不存在於健康組織內,因此合併了有效強烈的免疫源性還有較低的自體免疫性可能性。越來越多的數據指出,臨床免疫療法(諸如檢查點阻斷)(Rizvi,N.A.et al.Science 348,124-128(2015);Snyder,A.et al.N.Engl.J.Med.371,2189-2199(2014);Van Allen,E.M.et al.Science 350,207-211(2015);Le,D.T.et al.N.Engl.J.Med.372,2509-2520(2015);Mcgranahan,N.et al.Science 351,1463-1469(2016))以及授受性T細胞療法(Tran,E.et al.Science 344,641-645(2014);Robbins,P.F.et al.Nat.Med.19,747-752(2013);Tran,E.et al.N.Engl.J.Med.375,2255-2262(2016))的順利臨床結果與新表位免疫辨識有關。吾人在小鼠腫瘤模型中證實,突變體(mutanome)(也就是由次世代定序所鑑定的體細胞突變全體)的一大部分具有免疫原性且這些新表位較佳是由CD4+ T細胞所辨識。從突變體數據經電腦預測之新表位所組成的疫苗顯示出強烈的抗腫瘤活性並且引發完全排斥已確立的侵襲性生長小鼠腫瘤(Kreiter,S.et al.Nature 520,692-696(2015))。同樣地,在小鼠腫瘤模型中透過單獨或與質譜 組合之外顯子體(exome)以及轉錄體分析所鑑定出的第I型MHC新表位似乎是合宜的疫苗目標以及腫瘤排斥抗原(Yadav,M.et al.Nature 515,572-576(2014);Gubin,M.M.et al.Nature 515,577-581(2014))。總而言之,這些研究為新表位疫苗帶來熱情(Carreno,B.M.et al.Science 348,803-808(2015);Bobisse,S.,Foukas,P.G.,Coukos,G.& Harari,A.Ann.Transl.Med.4,262(2016);Katsnelson,A.Nat.Med.22,122-124(2016);Delamarre,L.,Mellman,I.& Yadav,M.Science 348,760-1(2015))。
在人類癌症中,絕大多數的癌症突變對於個別患者來說都是獨一無二的,因此需要個人化治療策略。就每位患者來說,個人癌症突變概況需要透過深度定序來測定,以告知要根據需求製造的個別訂製疫苗的組成。
在此,吾人描述在第III期與第IV期黑色素瘤患者中首次於人類實施此個人化免疫療法。吾人遵循臨床開發指南建立一個方法,其包括次世代定序用於從慣常腫瘤生檢週全地鑑定個別突變、電腦預測可能相關的第I型HLA以及第II型HLA新表位,並且為每名患者設計與製造獨特的聚-新-表位RNA疫苗。適格的患者一開始使用由NY-ESO-1以及酪胺酸酶RNA組成的共同腫瘤抗原疫苗,直到釋出其個人化RNA疫苗。總計有13名患者完成治療,顯示為可實行的、安全並且充分耐受。免疫原性比率出乎意料地高。60%的新表位受到疫苗誘發的T細胞特異地辨識。每名患者對其十個個別新表位中的至少三者有反應,並且調動了許多且不同的TCR庫。於開始疫苗接種之後兩週至四週,新表位特異性T細胞在血液中的發生率範圍從低到需要活體外擴增才能被偵測到的數目,高至單個位數百分率。在兩名有疫苗接種後經切除之黑色素瘤轉移的患者中,顯示帶有疫苗誘發之新表位反應性T細胞的濃滲入液還有新表位特異性殺滅自體腫瘤細胞。
在所有患者中對越來越多的再發轉移事件進行臨床評估揭示,相較於患者的先前病史,在新表位RNA疫苗接種之後有非常明顯的降低,造成相當有利的臨床結果伴隨著無持續進展存活。一名帶有多重轉移的患者因為腫瘤進展快速而僅僅經新表位疫苗短暫地治療,其對之後的PD-1阻斷立刻 有反應並且經歷了完全反應。在兩名患者中紀錄了與直接新表位疫苗治療相關的客觀腫瘤消退。這些患者中的一位有進行性轉移的完全反應並且繼續持續疾病控制歷時26個月。第二位患者經歷客觀腫瘤反應,但儘管存在有多特異性,完全功能新抗原反應性T細胞還是有後續復發。
要確定用於免疫療法的適宜表位仍是個挑戰。因此,需要一個預測表位(特別是新表位)是否可用於免疫療法的模型。
對新表位特異性反應進行次分類(subtyping)不但確認吾人先前的研究成果(CD4+ T細胞媒介辨識免疫原性新表位的高發生率)(Kreiter,S.et al.Nature 520,692-696(2015)),還顯示出CD8+ T細胞反應對抗用於疫苗的四分之一新表位。CD4+反應對抗突變的優勢可由第II型HLA分子相對於肽配體的組成以及長度的高度混合性來說明,而高特異性第I型HLA分子結合至一組長度分布較窄的有限肽(Arnold,P.Y.et al.J.Immunol.169,739-49(2002))。大約三分之二所觀察到的CTL反應是指向針對伴隨被CD4+ T細胞辨識的突變,而CD4+ T細胞是針對個別新表位的不同位置做出反應。因為被納入疫苗之50%的全部新表位展現出CD4+ T細胞反應,所觀察到的關聯性最有可能並非單純CD4+與CD8新表位免疫反應的巧合。已知共價連結至輔助表位的CTL表位會更有免疫原性(Shirai,M.et al.J.Immunol.152,549-556(1994))。帶有第I型HLA以及第II型HLA新表位的突變在機械上提供適合CTL起動的條件,因為CD4+ T細胞辨識其在交叉呈現CD8+ T細胞新表位之DC上的配體,並且透過CD40L媒介的DC活化來提供同源T細胞輔助(Schoenberger,S.P.,Toes,R.E.,van der Voort,E.I.,Offringa,R.& Melief,C.J.Nature 393,480-3(1998))。密切注意到,吾人也發現一個相同的突變可能造成新表位呈現在不同的第I型HLA限制要素上並且被獨立的CD8+ T細胞所辨識(圖3b)。同樣地,吾人發現一個相同的表位/限制要素複合體被帶有不同TCR純系型的新表位特異性T細胞所辨識。這些研究成果說明了,突變特異性T細胞的意料外寬廣庫可以透過新表位疫苗接種獲得充實,且各個單一突變對T細胞特異性的多樣性發揮槓桿作用。
總而言之,本文所呈現的研究成果證明,確定適宜的個人化新表位疫苗(尤其是個人化RNA新表位疫苗)可以在癌症患者體內開展出一個寬廣的新抗原特異性T細胞庫(T-cell repertoire),使T細胞得以有效靶向其突變體。
本發明的一個態樣是關於一種評估表現於罹病細胞中之肽或多肽內之疾病特異性胺基酸修飾用於免疫療法的效用的方法,該方法包含確定包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在不同類型的MHC分子中被呈現,及/或當在MHC分子(較佳為不同類型的MHC分子)中被呈現時,與限定於不同MHC類型之T細胞是否有反應。
在一個具體例中,不同類型的MHC分子為第I型MHC分子以及第II型MHC分子,及/或限定於不同MHC類型的T細胞為CD4+ T細胞與CD8+ T細胞。在一個具體例中,在不同類型的MHC分子中呈現包含疾病特異性胺基酸修飾之肽或多肽之相同或不同片段,及/或當在MHC分子中被呈現時,包含疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於不同MHC類型的T細胞的反應性係指明該疾病特異性胺基酸修飾適用於免疫療法。
發明的另一個態樣是關於一種評估表現於罹病細胞中之肽或多肽內的疾病特異性胺基酸修飾用於免疫療法的效用的方法,該方法包含確認包含該疾病特異性胺基酸修飾之肽或多肽的片段當在相同MHC分子中被呈現時與具有不同T細胞受體的T細胞是否有反應。
在一個具體例中,不同T細胞受體具有不同純系型(clonotypes)。在一個具體例中,包含疾病特異性胺基酸修飾的肽或多肽的片段當在相同MHC分子中被呈現時與帶有不同T細胞受體之T細胞的反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
發明的另一個態樣是關於一種評估表現於罹病細胞中之肽或多肽內的疾病特異性胺基酸修飾用於免疫療法的效用的方法,該方法包含確認包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在相同類型的不同MHC分子中被呈現,及/或當在相同類型的不同MHC分子中被呈現時與 限定於相同MHC類型的不同T細胞是否有反應。
在一個具體例中,相同類型的不同MHC分子為不同的第I型MHC分子,及/或限定於相同MHC類型的不同T細胞為不同的CD8+ T細胞。在一個具體例中,在相同類型的不同MHC分子中呈現包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在相同類型之不同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於相同MHC類型之不同T細胞的反應性指出該疾病特異性胺基酸修飾適用於免疫療法。
本發明的另一個態樣是關於一種評估表現於罹病細胞中之肽或多肽內的疾病特異性胺基酸修飾用於免疫療法之效用的方法,該方法包含確認下列一或多者:(i)確認包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在不同類型之MHC分子中被呈現,及/或若在MHC分子(較佳為不同類型的MHC分子)中被呈現時,與限定於不同MHC類型的T細胞是否有反應,(ii)當在相同MHC分子中被呈現時,確認包含該疾病特異性胺基酸修飾之肽或多肽的片段與帶有不同T細胞受體之T細胞是否有反應,及/或(iii)確認包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在相同類型的不同MHC分子中被呈現,及/或當在相同類型的不同MHC分子中被呈現時,與限定於相同MHC類型的不同T細胞是否有反應。
在一個具體例中,不同類型的MHC分子為第I型MHC分子以及第II型MHC分子,及/或限定於不同MHC類型的T細胞為CD4+ T細胞以及CD8+ T細胞。在一個具體例中,在不同類型的MHC分子中呈現包含疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於不同MHC類型之T細胞的反應性,指明該疾病特異性胺基酸修飾適用於免疫療法。在一個具體例中,不同T細胞受體為不同的純系型。在一個具體例中,當在相同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽 的片段與帶有不同T細胞受體的T細胞的反應性指明該疾病特異性胺基酸修飾適用於免疫療法。在一個具體例中,相同類型的不同MHC分子為不同的第I型MHC分子及/或限定於相同MHC類型的不同T細胞為不同的CD8+ T細胞。在一個具體例中,在相同類型的不同MHC分子中呈現包含疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在相同類型之不同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於相同MHC類型之不同T細胞的反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
本發明的另一個態樣是關於一種篩選及/或評定疾病特異性胺基酸修飾在免疫療法中之效用的方法,該方法包含以下步驟:(i)鑑別表現於罹病細胞中的肽及/或多肽,各肽及/或多肽包含至少一個疾病特異性胺基酸修飾,以及(ii)確認包含相同疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在不同類型的MHC分子中被呈現,及/或當在MHC分子(較佳不同類型的MHC分子)中被呈現時,與限定於不同MHC類型的T細胞是否有反應,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
在一個具體例中,不同類型的MHC分子為第I型MHC分子以及第II型MHC分子,及/或限定於不同MHC類型的T細胞為CD4+ T細胞以及CD8+ T細胞。在一個具體例中,在不同類型的MHC分子中呈現包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於不同MHC類型的T細胞的反應性係指明該疾病特異性胺基酸修飾適用於免疫療法。
本發明的另一個態樣是關於一種篩選及/或評定疾病特異性胺基酸修飾在免疫療法中之效用的方法,該方法包含以下步驟:(i)鑑別表現於罹病細胞中的肽及/或多肽,各肽及/或多肽包含至少一 個疾病特異性胺基酸修飾,以及(ii)確認當在相同MHC分子中被呈現時,包含疾病特異性胺基酸修飾之肽或多肽的片段與帶有不同T細胞受體的T細胞是否有反應,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
在一個具體例中,不同T細胞受體為不同純系型。在一個具體例中,當在相同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的片段與帶有不同T細胞受體之T細胞的反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
本發明的另一個態樣是關於一種篩選及/或評定疾病特異性胺基酸修飾在免疫療法中之效用的方法,該方法包含以下步驟:(i)鑑別表現於罹病細胞中的肽及/或多肽,各肽及/或多肽包含至少一個疾病特異性胺基酸修飾,以及(ii)確認包含相同疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在相同類型的不同MHC分子中被呈現,及/或當在相同類型的不同MHC分子中被呈現時,與限定於相同MHC類型的不同T細胞是否有反應,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
在一個具體例中,相同類型的不同MHC分子為不同的第I型MHC分子及/或限定於相同MHC類型的不同T細胞為不同CD8+ T細胞。在一個具體例中,在相同類型的不同MHC分子中呈現包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在相同類型的不同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於相同MHC類型之不同T細胞的反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
本發明的另一個態樣是關於一種篩選及/或評定疾病特異性胺基酸修飾在免疫療法中之效用的方法,該方法包含以下步驟:(i)鑑別表現於罹病細胞中的肽及/或多肽,各肽及/或多肽包含至少一 個疾病特異性胺基酸修飾,以及(ii)確認下列中的一或多者:(1)確認包含相同疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在不同類型的MHC分子中被呈現,及/或當在MHC分子(較佳不同類型的MHC分子)中被呈現時,與限定於不同MHC類型的T細胞是否有反應,(2)確認當在相同MHC分子中被呈現時,包含疾病特異性胺基酸修飾之肽或多肽的片段與帶有不同T細胞受體的T細胞是否有反應,及/或(3)確認包含相同疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在相同類型之不同MHC分子中被呈現,及/或當在相同類型的不同MHC分子中被呈現時,與限定於相同MHC類型的不同T細胞是否有反應,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
在一個具體例中,不同類型的MHC分子為第I型MHC分子以及第II型MHC分子,及/或限定於不同MHC類型的T細胞為CD4+ T細胞以及CD8+ T細胞。在一個具體例中,在不同類型的MHC分子中呈現包含疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於不同MHC類型之T細胞的反應性,指明該疾病特異性胺基酸修飾適用於免疫療法。在一個具體例中,不同T細胞受體是不同的純系型。在一個具體例中,當在相同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的片段與帶有不同T細胞受體之T細胞的反應性指明該疾病特異性胺基酸修飾適用於免疫療法。在一個具體例中,相同類型的不同MHC分子為不同的第I型MHC分子,及/或限定於相同MHC類型之不同T細胞為不同的CD8+ T細胞。在一個具體例中,在相同類型的不同MHC分子中呈現包含疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在相同類型的不同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於相同MHC類型的不同T細胞的反應性,指明該疾病特異性 胺基酸修飾適用於免疫療法。
在一個具體例中,步驟(ii)中測試之不同胺基酸修飾被呈現在相同及/或不同的肽或多肽中。在一個具體例中,本發明方法包含比較針對步驟(ii)中測試之不同胺基酸修飾所獲得的計分。
在本發明所有態樣的一個具體例中,疾病特異性胺基酸修飾是因為疾病特異性體細胞突變。在本發明所有態樣的一個具體例中,疾病為癌症且免疫療法為抗癌免疫療法。在本發明所有態樣的一個具體例中,免疫療法包含投與下列中的一或多者:(i)表現於罹病細胞中的肽或多肽,該肽或多肽包含至少一個疾病特異性胺基酸修飾,(ii)包含(i)之肽或多肽的片段的肽或多肽,該片段包含至少一個疾病特異性胺基酸修飾,以及(iii)編碼(i)或(ii)之肽或多肽的核酸。在本發明所有態樣的一個具體例中,本發明方法適用於提供疫苗。
本發明的另一個態樣是關於一種提供疫苗的方法,包含下列步驟:(i)鑑別一或多個疾病特異性胺基酸修飾,其經本發明方法中的任一者預測為適用於免疫療法,(ii)提供包含下列中之一或多者的疫苗:(1)表現於罹病細胞中的肽或多肽,該肽或多肽包含至少一個經預測適用於免疫療法的疾病特異性胺基酸修飾,(2)包含(i)之肽或多肽之片段的肽或多肽,該片段包含經預期適用於免疫療法的疾病特異性胺基酸修飾的至少一者,以及(3)編碼(i)或(ii)之肽或多肽的核酸。
在本發明所有態樣的一個具體例中,該片段為MHC結合肽或潛在MHC結合肽,且可經加工成提供MHC結合肽或潛在MHC結合肽(例如,MHC結合預測指出該片段將結合至MHC)。
本發明的另一個態樣是關於一種依據本發明方法製造的疫苗。依據本 發明提供的疫苗可包含醫藥上可接受的載劑且可視情況包含一或多種佐劑、穩定劑等。該疫苗可呈治療性或預防性疫苗的形式。
在本發明所有態樣的一個具體例中,指明用於免疫療法之疾病特異性胺基酸修飾的效用表示表現於罹病細胞中之包含該疾病特異性胺基酸修飾的肽或多肽,或包含此一表位之片段之肽或多肽,或包含包含該疾病特異性胺基酸修飾的疫苗序列在投與(視情況呈編碼核酸的形式)之後將引發免疫反應。
在本發明所有態樣的一個具體例中,透過在一或多個編碼區中鑑別出非同義突變而鑑別出肽或多肽中的胺基酸修飾。在一個具體例中,透過對一或多個細胞(諸如一或多個癌細胞以及視情況一或多個非癌細胞)的基因體或轉錄體進行部份或完全定序,並且在一或多個編碼區中鑑別出突變來鑑別出胺基酸修飾。在一個具體例中,該等突變為體細胞突變。在一個具體例中,該等突變為癌症突變。
在本發明所有態樣的一個具體例中,尤其是為了要提供患者(諸如癌症患者)的個人化疫苗,該(等)修飾存在於該患者體內且本發明方法是針對該患者實施。
本發明的另一個態樣是關於一種在患者體內引發免疫反應的方法,包含向該患者投與依據本發明提供的疫苗。
本發明的另一個態樣是關於一種治療患者的方法,包含以下步驟:(a)使用依據本發明之方法提供疫苗;以及(b)向該患者投與疫苗。
本發明的另一個態樣是關於一種治療患者的方法,包含向該患者投與如本文所述的疫苗。
在一個具體例中,患者為癌症患者且疫苗為抗癌疫苗,諸如投與會提供癌症特異性新表位的疫苗。
在更多態樣中,本發明提供一種如本文所述用於本文所述治療方法中的疫苗,尤其是用於治療或預防癌症。
本文所述的癌症治療可以與外科切除術及/或放射線及/或傳統化療組合。
本發明亦關於下列:
1.一種用於預測表現於罹病細胞中之多肽內的疾病特異性胺基酸修飾是否適用於免疫療法的方法,該方法包含確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段是否在不同類型的MHC分子中被呈現。
2.如第1項之方法,其中不同類型的MHC分子為第I型MHC分子以及第II型MHC分子。
3.如第1或2項之方法,其中包含該疾病特異性胺基酸修飾之多肽的相同或不同片段呈現在不同類型的MHC分子中指明該疾病特異性胺基酸修飾適用於免疫療法。
4.如第1至3項中任一項之方法,進一步包含當在MHC分子中被呈現時,確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於不同MHC類型的T細胞是否有反應。
5.一種用於預測表現於罹病細胞中之多肽內的疾病特異性胺基酸修飾是否適用於免疫療法的方法,該方法包含當在MHC分子中被呈現時,確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於不同MHC類型的T細胞是否有反應。
6.如第4或5項之方法,其中該等限定於不同MHC類型的T細胞為CD4+ T細胞以及CD8+ T細胞。
7.如第4至6項中任一項之方法,其中當在MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於不同MHC類型的T細胞的T細胞反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
8.一種用於預測表現於罹病細胞中之多肽內的疾病特異性胺基酸修飾是否適用於免疫療法的方法,該方法包含當在相同MHC分子中被呈現時,確定包含該疾病特異性胺基酸修飾之多肽的片段與帶有不同T細胞受體的T細胞是否有反應。
9.如第8項之方法,其中不同T細胞受體為不同純系型。
10.如第8或9項之方法,其中當在相同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之多肽的片段與帶有不同T細胞受體的T細胞的T細胞反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
11.一種用於預測表現於罹病細胞中之多肽內的疾病特異性胺基酸修飾是否適用於免疫療法的方法,該方法包含確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段是否在相同類型的不同MHC分子中被呈現。
12.如第11項之方法,其中相同類型的不同MHC分子為不同的第I型MHC分子。
13.如第11或12項之方法,其中包含該疾病特異性胺基酸修飾之多肽的相同或不同片段呈現在相同類型的不同MHC分子中指明該疾病特異性胺基酸修飾適用於免疫療法。
14.如第11至13項中任一項之方法,進一步包含當在相同類型的不同MHC分子中被呈現時,確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於相同MHC類型的不同T細胞是否有反應。
15.一種用於預測表現於罹病細胞中之多肽內的疾病特異性胺基酸修飾是否適用於免疫療法的方法,該方法包含當在相同類型的不同MHC分子中被呈現時,確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於相同MHC類型的不同T細胞是否有反應。
16.如第14或15項之方法,其中相同類型的不同MHC分子為不同的第I型MHC分子。
17.如第14至16項中任一項之方法,其中限定於相同MHC類型的不同T細胞為不同的CD8+ T細胞。
18.如第14至17項中任一項之方法,其中當在相同類型的不同MHC分子中被呈現時,確定對包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於相同MHC類型之不同T細胞的T細胞反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
19.一種用於預測表現於罹病細胞中之多肽內的疾病特異性胺基酸修飾是否適用於免疫療法的方法,該方法包含下列中的一或多者:(i)確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段是否在不同類型的MHC分子中被呈現,(ii)當在MHC分子中被呈現時,確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於不同MHC類型的T細胞是否有反應,(iii)當在相同MHC分子中被呈現時,確定包含該疾病特異性胺基酸修飾之多肽的片段與帶有不同T細胞受體的T細胞是否有反應,(iv)確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段是否在相同類型的不同MHC分子中被呈現,以及(v)當在相同類型之不同MHC分子中被呈現時,確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於相同MHC類型的不同T細胞是否有反應。
20.如第19項之方法,其包含確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段是否在不同類型的MHC分子中被呈現,以及當在MHC分子中被呈現時,確定與限定於不同MHC類型的T細胞是否有反應。
21.如第19或20項之方法,其包含確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段是否在相同類型的不同MHC分子中被呈現,以及當在相同類型的不同MHC分子中被呈現時,與限定於相同MHC類型的不同T細胞是否有反應。
22.如第19至21項中任一項之方法,其中不同類型的MHC分子為第I型MHC分子以及第II型MHC分子。
23.如第19至22項中任一項之方法,其中限定於不同MHC類型的T細胞為CD4+ T細胞以及CD8+ T細胞。
24.如第19至23項中任一項之方法,其中包含該疾病特異性胺基酸修飾之多肽的相同或不同片段呈現在不同類型的MHC分子中指明該疾病特異性胺基酸修飾適用於免疫療法。
25.如第19至24項中任一項之方法,其中當在MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於不同MHC類型的T細胞的T細胞反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
26如第19至25項中任一項之方法,其中不同的T細胞受體為不同的純系型。
27.如第19至26項中任一項之方法,其中當在相同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之多肽的片段與帶有不同T細胞受體之T細胞的T細胞反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
28.如第19至27項中任一項之方法,其中相同類型的不同MHC分子為不同的第I型MHC分子。
29.如第19至28項中任一項之方法,其中限定於相同MHC類型的不同T細胞為不同的CD8+ T細胞。
30.如第19至29項中任一項之方法,其中包含該疾病特異性胺基酸修飾之多肽的相同或不同片段呈現於相同類型之不同MHC分子中指明該疾病特異性胺基酸修飾適用於免疫療法。
31.如第19至30項中任一項之方法,其中當在相同類型之不同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於相同MHC類型之不同T細胞的T細胞反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
32.一種用於篩選及/或評定疾病特異性胺基酸修飾於免疫療法之效用的方法,該方法包含下列步驟:(i)鑑別表現於罹病細胞中的多肽,各多肽包含至少一個疾病特異性胺基酸修飾,以及(ii)確定包含該相同疾病特異性胺基酸修飾之多肽的相同或不同片段是否被呈現在不同類型的MHC分子中,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
33.如第32項之方法,其中不同類型的MHC分子為第I型MHC分子以及第II型MHC分子。
34.如第32或33項之方法,其中在不同類型的MHC分子中呈現包含該疾病特異性胺基酸修飾之多肽的相同或不同片段指明該疾病特異性胺基酸修飾適用於免疫療法。
35.如第32至34項中任一項之方法,其中當在MHC分子中被呈現時,步驟(ii)進一步包含確定包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於不同MHC類型的T細胞是否有反應。
36.一種用於篩選及/或評定疾病特異性胺基酸修飾於免疫療法之效用的方法,該方法包含下列步驟:(i)鑑別表現於罹病細胞中的多肽,各多肽包含至少一個疾病特異性胺基酸修飾,以及(ii)當在MHC分子中被呈現時,確定包含該相同疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於不同MHC類型的T細胞是否有反應,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
37.如第35或36項之方法,其中限定於不同MHC類型的T細胞為CD4+細胞以及CD8+ T細胞。
38.如第35至37項中任一項之方法,其中當在MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於不同MHC類型之T細胞的T細胞反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
39.一種用於篩選及/或評定疾病特異性胺基酸修飾於免疫療法之效用的方法,該方法包含下列步驟:(i)鑑別表現於罹病細胞中的多肽,各多肽包含至少一個疾病特異性胺基酸修飾,以及(ii)當在MHC分子中被呈現時,確定包含疾病特異性胺基酸修飾之多肽的片段與帶有不同T細胞受體的T細胞是否有反應,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
40.如第39項之方法,其中不同的T細胞受體為不同純系型。
41.如第39或40項之方法,其中當在相同MHC分子中被呈現時,包含該疾 病特異性胺基酸修飾之多肽的片段與帶有不同T細胞受體之T細胞的T細胞反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
42.一種用於篩選及/或評定疾病特異性胺基酸修飾於免疫療法之效用的方法,該方法包含下列步驟:(i)鑑別表現於罹病細胞中的多肽,各多肽包含至少一個疾病特異性胺基酸修飾,以及(ii)確定包含該相同疾病特異性胺基酸修飾之多肽的相同或不同片段是否被呈現在相同類型的不同MHC分子中,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
43.如第42項之方法,其中相同類型的不同MHC分子為不同的第I型MHC分子。
44.如第42或43項之方法,其中包含該疾病特異性胺基酸修飾之多肽的相同或不同片段呈現在相同類型的不同MHC分子中指明該疾病特異性胺基酸修飾適用於免疫療法。
45.如第42至44項中任一項之方法,其中當在相同類型的不同MHC分子中被表現時,步驟(ii)進一步包含確定包含該相同疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於相同MHC類型之不同T細胞是否有反應。
46.一種用於篩選及/或評定疾病特異性胺基酸修飾於免疫療法之效用的方法,該方法包含下列步驟:(i)鑑別表現於罹病細胞中的多肽,各多肽包含至少一個疾病特異性胺基酸修飾,以及(ii)當在相同類型的不同MHC分子中被呈現時,確定包含該相同疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於相同MHC類型的不同T細胞是否有反應,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
47.如第46項之方法,其中相同類型的不同MHC分子為不同的第I型MHC分子。
48.如第45至47項中任一項之方法,其中限定於相同MHC類型的不同T細胞為不同的CD8+ T細胞。
49.如第45至48項中任一項之方法,其中當在相同類型的不同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於相同MHC類型之不同T細胞的T細胞反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
50.一種用於篩選及/或評定疾病特異性胺基酸修飾於免疫療法之效用的方法,該方法包含下列步驟:(i)鑑別表現於罹病細胞中的多肽,各多肽包含至少一個疾病特異性胺基酸修飾,以及(ii)確定下列中的一或多者:(1)確定包含該相同疾病特異性胺基酸修飾之多肽的相同或不同片段是否被呈現於不同類型的MHC分子中,(2)當在MHC分子中被呈現時,確定包含該相同疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於不同MHC類型的T細胞是否有反應,(3)當在MHC分子中被呈現時,確定包含疾病特異性胺基酸修飾之多肽的片段與帶有不同T細胞受體的T細胞是否有反應,(4)確定包含該相同疾病特異性胺基酸修飾之多肽的相同或不同片段是否被呈現在相同類型的不同MHC分子中,以及(5)當在相同類型的不同MHC分子中被呈現時,確定包含該相同疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於相同MHC類型的不同T細胞是否有反應,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
51.如第50項之方法,其中步驟(ii)包含確定包含該相同疾病特異性胺基酸修飾之多肽的相同或不同片段是否被呈現在不同類型的MHC分子中,並且當在MHC分子中被呈現時確定與限定於不同MHC類型的T細胞是否有反應。
52.如第50或51項之方法,其中步驟(ii)包含確定包含該相同疾病特異性胺基酸修飾之多肽的相同或不同片段是否被呈現在相同類型的不同MHC分子中,並且當在相同類型的不同MHC分子中被呈現時確定與限定於相同MHC類型的不同T細胞是否有反應。
53.如第50至52項中任一項之方法,其中不同類型的MHC分子為第I型MHC分子以及第II型MHC分子。
54.如第50至53項中任一項之方法,其中限定於不同MHC類型的T細胞為CD4+ T細胞以及CD8+ T細胞。
55.如第50至54項中任一項之方法,其中包含該疾病特異性胺基酸修飾之多肽的相同或不同片段呈現於不同類型的MHC分子中指明該疾病特異性胺基酸修飾適用於免疫療法。
56.如第50至55項中任一項之方法,其中當在MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於不同MHC類型之T細胞的T細胞反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
57.如第50至56項中任一項之方法,其中不同T細胞受體為不同純系型。
58.如第50至57項中任一項之方法,其中當在相同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之多肽的片段與帶有不同T細胞受體之T細胞的T細胞反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
59.如第50至58項中任一項之方法,其中相同類型的不同MHC分子是不同的第I型MHC分子。
60.如第50至59項中任一項之方法,其中限定於相同MHC類型的不同T細胞是不同的CD8+ T細胞。
61.如第50至60項中任一項之方法,其中包含該疾病特異性胺基酸修飾之多肽的相同或不同片段呈現在相同類型的不同MHC分子中指明該疾病特異性胺基酸修飾適用於免疫療法。
62.如第50至61項中任一項之方法,其中當被呈現相同類型的不同MHC分子中時,包含該疾病特異性胺基酸修飾之多肽的相同或不同片段與限定於 相同MHC類型之不同T細胞的T細胞反應性指明該疾病特異性胺基酸修飾適用於免疫療法。
63.如第32至62項中任一項之方法,其中在步驟(ii)中測試的胺基酸修飾存在於相同多肽中。
64.如第32至63項中任一項之方法,其中在步驟(ii)中測試的胺基酸修飾存在於不同多肽中。
65.如第32至64項中任一項之方法,其包含比較步驟(ii)中測試之不同胺基酸修飾所測得的計分。
66.如第1至65項中任一項之方法,其中該(等)疾病特異性胺基酸修飾是因為疾病特異性體細胞突變。
67.如第1至66項中任一項之方法,其中該疾病為癌症且免疫療法為抗癌免疫療法。
68.如第1至67項中任一項之方法,其中免疫療法包含投與下列中的一或多者:(i)表現於罹病細胞中的多肽,該多肽包含至少一個疾病特異性胺基酸修飾,(ii)包含(i)之多肽之片段的多肽,該片段包含至少一個疾病特異性胺基酸修飾,以及(iii)編碼(i)或(ii)之多肽的核酸。
69.如第1至68項中任一項之方法,其適用提供於疫苗中。
70.一種提供疫苗的方法,包含以下步驟:(i)鑑別一或多個疾病特異性胺基酸修飾,其透過如第1至69項中任一項之方法被預測為適用於免疫療法,(ii)提供包含下列中之一或多者的疫苗:(1)表現於罹病細胞中的多肽,該多肽包含至少一個被預測為適用於免疫療法的疾病特異性胺基酸修飾,(2)包含(i)之多肽之片段的多肽,該片段包含至少一個被預測為適用於免疫 療法的疾病特異性胺基酸修飾,以及(3)編碼(i)或(ii)之多肽的核酸。
71.如第1至70項中任一項之方法,其中該片段為MHC結合肽或潛在MHC結合肽,或可經加工以提供MHC結合肽或潛在MHC結合肽。
72.一種疫苗,其是依據第69至71項中任一項之方法製造。
73.一種治療癌症的方法,該方法包含投與免疫原性組合物,該免疫原性組合物包含含有如第1至68項中任一項之方法所鑑別之疾病特異性胺基酸修飾的多肽或編碼該多肽的核酸。
74.如第73項之方法,其中該免疫原性組合物為疫苗。
本發明的其他特徵以及優勢將因為下面的詳細說明以及申請專利範圍而清楚。
圖1,用於引發純CD4+或雙CD4+/CD8+ T-細胞反應對抗新表位的例示性例子。a,用患者的五表位RNA刺激患者P19之富含CD4+以及CD8+ T細胞培養物的疫苗接種之前與之後經讀出為對抗自體DC,該自體DC加載有含括ST5(致瘤抑制因子5)蛋白中之突變新表位的OLP。b-c,在ELISpot中用患者特異性五表位RNA刺激患者P19之富含CD4+以及CD8+ T細胞培養物的疫苗接種之前與之後經讀出為對抗自體DC,該自體DC加載有含括UTP6(小次單位處理體組份)蛋白中之突變新表位的OLP。c,CD4+以及CD8+ T細胞培養物在刺激之後針對純度依據流式細胞儀進行品管。
圖2,從患者P01的CD8+ T細胞選殖NARFL-E62K-特異性TCR的特異性。針對辨識經HLA-A*3101轉染並且用含括突變或野生型序列之個別15員肽脈衝的K562細胞,透過IFNg-ELISpot測試經引導對抗NARFL(前核片層蛋白A辨識因子樣)蛋白中的突變之TCR #1、#5、#7或#9-轉染的CD8+ T細胞。
圖3,帶有高復發風險的黑色素瘤患者受到新表位RNA疫苗接種的疾病控制。a,編碼選殖自單一TIL之TCR#8的TCR-α/β鏈的RNA被轉染至健康供體衍生而來的CD8+ T細胞中,並且對經RETSAT-P546S OLP脈衝之患者的 表現兩個第I型HLA分子的K562細胞進行測試。b,描述呈現在兩個HLA對偶基因上的可能新表位。突變被劃線(亦參見圖4)。
圖4,引發CD8+ T-細胞反應對抗由相同突變所產生之限定於兩種不同HLA T細胞的表位。a,P17之疫苗後CD8+ T細胞對於加載有個別P17-RETSAT-P546S OLP之自體DC的IFNγELISpot分析測試。b,偵測辨識HSCVMASLR的CD8+ T細胞,依據多聚體染色,HSCVMASLR是在P17-RETSAT-P546(由OLP與4編碼)內於患者P17的疫苗接種TIL後預測為最佳的限定於HLA A*6801-最小表位。c,辨識OLP1與2之得自患者P17的TIL的兩個限定於HLA B*3701之RETSAT-P546S-TCR的特異性。
圖5:受到對抗新表位之CD4+與CD8+ T-細胞媒介之預先存在免疫反應A,受到OLP池刺激之患者P01的富含CD4+與CD8+ T-細胞培養物以及在IFNγ-ELISpot中讀出對抗加載有含括目標001_107之OLP池的自體DC。目標001_107未經疫苗接種。B,CD4+與CD8+ T細胞培養物(IVS)在刺激之後針對純度依據流式細胞儀進行品管。C,受到OLP池刺激之患者P06的富含CD4+與CD8+ T-細胞培養物以及在IFNγ-ELISpot中讀出對抗加載有含括目標006_003之OLP池的自體DC。目標006_003未經疫苗接種。D,CD4+與CD8+ T細胞培養物在刺激之後針對純度依據流式細胞儀進行品管。
儘管於下文詳細說明本發明,但應理解,本發明不受限於本文所述的特定方法學、協定以及藥劑,因為它們可能會有所不同。也應理解,本文使用的術語僅適用於說明特定具體例,而不希望限制本發明,本發明將僅會囿限於隨附申請專利範圍。除非另有說明,否則本文使用的所有技術性以及科學性術語具有與習於技藝者所共同理解的相同含意。
在下文中,將說明本發明的要素。這些要素隨特定具體例一起列出,但應理解,它們可以任何方式以及任何數量組合以產生更多具體例。各式各樣所述實例以及較佳具體例不應被理解為是將本發明侷限於具體說明的具體例。此說明應理解為支持並含括具體例,具體例組合了明確說明之具 體例以及任何數量之已揭示及/或較佳要素。此外,在本申請案中,除非在他處有指明,否則全部所述要素的任何排列以及組合應被視為本申請案的說明所揭示。
較佳地,本文使用的術語是如「A multilingual glossary of biotechnological terms:(IUPAC Recommendations)」,H.G.W.Leuenberger,B.Nagel,and H.Kölbl,Eds.,(1995)Helvetica Chimica Acta,CH-4010 Basel,Switzerland」中所述來定義。
除非另有指明,否則實施本發明將會採用技術領域的文獻中所釋明的生化學、細胞生物學、免疫學以及重組DNA技術的習用方法(參照例如Molecular Cloning:A Laboratory Manual,2nd Edition,J.Sambrook et al.eds.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor 1989)。
在之後本說明書以及申請專利範圍通篇中,除非上下文另有需要,否則單詞「包含(comprise)」及變化形式(諸如「comprises」以及「comprising」)應理解為意味著包括所述數量、整數或步驟或數量、整數或步驟之群,但不排除任何其他數量、整數或步驟或數量、整數或步驟之群,儘管在一些具體例中這些其他數量、整數或步驟或數量、整數或步驟之群可能被排除在外,也就是說發明標的由納入所述數量、整數或步驟或數量、整數或步驟之群所組成。術語「一(「a」與「an」)」以及「該」還有說明本發明之上下文內使用的類似參考字(尤其是申請專利範圍中)被認為是含括單數形以及複數形,除非本文他處另有指明或者是與上下文有清楚牴觸。在本文中提到數值範圍僅是用作為分別提及落在範圍內之各個數值的簡略方法。除非在本文中另有指明,否則各個獨立值如同其在本文中個別引用般被併入說明書。
除非本文他處有明確指明或與上下文清楚牴觸,否則本文描述的所有方法可以任何適當的順序實施。使用本文提供任何以及所有實例或例示性語言(例如「諸如」)僅是要更加充分地描繪本發明而不是要對以其他方式請求之本發明範疇設下限制。說明書內的語言不應被視為是指明對於實施本 發明來說為不可或缺的任何未請求要素。
本說明書內文通篇中引用數篇文獻。本文引用的每份文獻(包括所有專利案、專利申請案、科學公開資料、製造商說明書、操作指南等)不論是在上文或下文均以其整體併入本文。在此不應解釋為承認本案因為此等揭示內容早於先前發明而無權賦予權利。
本發明預期疾病(尤其是癌症疾病)的免疫療法,透過採用存在於罹病細胞中的蛋白質或蛋白質片段作為標記用於並且靶向罹病細胞。具體而言,罹病細胞可以藉由靶向以MHC被呈現在罹病細胞表面上的蛋白質片段而被靶向。具體而言,本發明旨在確定表現於罹病細胞中之肽或多肽內的疾病特異性胺基酸修飾,該等修飾位於適用於免疫療法之肽或多肽的片段內。此等包含一或多個疾病特異性胺基酸修飾的片段為適用於免疫療法的新表位或包含適用於免疫療法的新表位,具體而言是用以引發有效細胞性免疫反應對抗表現包含該疾病特異性胺基酸修飾之肽或多肽,或肽或多肽之片段的罹病細胞。在鑑別出一個包含疾病特異性胺基酸修飾的合宜片段之後,這個片段(視情況為大型多肽的一部份)或編碼該片段(視情況為大型肽的一部份)的核酸可用作為疫苗以提高或引發免疫反應對抗表現該等片段衍生而來之該經修飾肽或多肽的細胞,具體而言是藉由引發及/或活化適當效應細胞(諸如當在MHC中被呈現時,辨識表現該經修飾肽或多肽之細胞的T細胞)。
依據本發明,包含一或多個疾病特異性胺基酸修飾且表現於罹病細胞中的肽或多肽在本文中也稱為「新抗原」。此外,依據本發明,包含一或多個疾病特異性胺基酸修飾之新抗原的片段被免疫系統所辨識,例如被T細胞所辨識,尤其是當在MHC分子中被呈現時,且較佳該片段己經過本發明方法確定適用於免疫療法(視情況作為大型多肽的一部份,例如新抗原或人工肽或多肽的一部份,例如包含例如2個或更多個已經被本發明方法確定適用於免疫療法之新表位的多表位多肽的一部份)在本文中也稱為「新表位」。
依據本發明,疾病特異性胺基酸修飾較佳是因為一或多個疾病特異性 體細胞突變。在一個特佳的具體例中,疾病特異性胺基酸修飾為癌症特異性胺基酸修飾,且疾病特異性體細胞突變為癌症特異性體細胞突變。因此,依據本發明,疫苗較佳地是以患者的疾病特異性胺基酸修飾/疾病特異性體細胞突變為特徵,且較佳地在投與之後提供一或多種以突變為基礎的新表位。因此,疫苗可包含含有一或多個以突變為基礎之新表位的肽或多肽,或編碼該肽或多肽的核酸。在一個具體例中,疾病特異性胺基酸修飾是透過鑑別出疾病特異性體細胞突變而被鑑別出,例如是透過定序罹病組織或一或多個罹病細胞的基因體DNA及/或RNA。
依據本發明,術語「肽」意指包含透過肽鍵共價接合的兩個或更多個,較佳地3個或更多個、較佳地4個或更多個、較佳地6個或更多個、較佳地8個或更多個、較佳地10個或更多個、較佳地13個或更多個、較佳地16個或更多個、較佳地21個或更多個且至多較佳地8、10、20、30、40或50個,尤其是100個胺基酸的物質。術語「多肽」或「蛋白質」意指大型肽,較佳是具有超過100個胺基酸殘基的肽,但大體上術語「肽」、「多肽」以及「蛋白質」為同義詞且在本文中交替使用。
依據本發明,術語「疾病特異性胺基酸修飾」是關於一種胺基酸修飾,其存在於罹病細胞之肽或多肽的胺基酸序列中,但不存在於相對正常(亦即未罹病)細胞之肽或多肽的胺基酸序列中。
依據本發明,術語「腫瘤特異性胺基酸修飾」或「癌症特異性胺基酸修飾」是關於一種胺基酸修飾,其存在於腫瘤或癌細胞之肽或多肽的胺基酸序列中,但不存在於相對正常(亦即非腫瘤或非癌)細胞之肽或多肽的胺基酸序列中。
依據本發明,關於肽、多肽或蛋白質,術語「修飾」是關於肽、多肽或蛋白質的序列相較於親代序列的序列變化,親代序列為諸如野生型肽、多肽或蛋白質的序列。該術語包括胺基酸插入變異體、胺基酸添加變異體、胺基酸刪除變異體以及胺基酸置換變異體,較佳為胺基酸置換變異體。依據本發明,所有這些序列變化可能創造出新的表位。
胺基酸插入變異體包含單個或兩個或更多個胺基酸插入特定胺基酸序列中。
胺基酸添加變異體包含胺基端及/或羧基端融合一或多個胺基酸,諸如1個、2個、3個、4個,或5個或更多個胺基酸。
胺基酸刪除變異體的特徵在於從序列移除一或多個胺基酸,諸如移除1個、2個、3個、4個或5個,或更多個胺基酸。
胺基酸置換變異體的特徵在於序列中的至少一個殘基被移除且在其位置插入另一個殘基。
依據本發明,疾病特異性胺基酸修飾或包含疾病特異性胺基酸修飾之肽或多肽片段(諸如表位或疫苗序列)可能是衍生自包含該疾病特異性胺基酸修飾的肽或多肽。
依據本發明,術語「衍生」表示某個特定實體(諸如特定胺基酸序列)存在於其衍生而來的對象中。在胺基酸序列的情況下,尤其是特定序列區,「衍生」尤其是表示相關的胺基酸序列衍生自其所存在的胺基酸序列中。
依據本發明,本文所述的肽或多肽較佳地包含一或多個疾病特異性胺基酸修飾。在一個具體例中,這些一或多個疾病特異性胺基酸修飾位在肽或多肽的表位或潛在表位中。因此,本文中所述的較佳肽或多肽為新抗原,較佳地包含一或多個新表位。同樣地,本文中所述的較佳肽或多肽片段為包含一或多個疾病特異性胺基酸修飾的肽或多肽的片段,其中一或多個疾病特異性胺基酸修飾位在片段內。因此,本文中所述的較佳肽或多肽為新表位。
依據本發明,術語「疾病特異性突變」是關於體細胞突變,其存在於罹病細胞的核酸中,但不存在於相對正常(亦即未罹病)細胞的核酸中。
依據本發明,術語「腫瘤特異性突變」或「癌症特異性突變」是關於一種體細胞突變,其存在於腫瘤或癌細胞的核酸中,但不存在於相對正常(亦即非腫瘤或非癌)細胞的核酸中。在本文中交替使用術語「腫瘤特異性突變」與「腫瘤突變」以及術語「癌症特異性突變」與「癌症突變」。
術語「免疫反應」是關於免疫系統的一種反應。術語「免疫反應」包括先天性免疫反應以及後天性免疫反應。較佳地,免疫反應是關於活化免疫細胞,且更佳地是關於細胞性免疫反應。
較佳地,由本文所述組成物引起的免疫反應包含以下步驟:活化抗原呈現細胞(諸如樹突狀細胞及/或巨噬細胞)、透過該抗原呈現細胞呈現抗原或其片段,以及因為這個呈現而活化細胞毒性T細胞。
「引發免疫反應」可能表示在引發之前沒有免疫反應,但也可能表示在引發之前有某種程度的免疫反應且該免疫反應在引發之後被提高。因此,「引發免疫反應」也包括「提高免疫反應」。較佳地,在個體體內引發免疫反應之後,該個體受到保護免於生成諸如癌症疾病的疾病,或疾病病況因為引發免疫反應而獲得改善。例如,對抗被腫瘤所表現之抗原的免疫反應可以在帶有癌症疾病的患者體內或在處於生成癌症疾病風險下的個體體內被引發。引發免疫反應在這個情況下可能表示個體的疾病病況獲得改善、個體未生成轉移,或處於生成癌症疾病風險下的個體未生成癌症疾病。
術語「細胞性免疫反應」以及「細胞性反應」或類似術語意指針對特徵在於以第I型MHC分子或第II型MHC分子呈現抗體之細胞的免疫反應,第I型MHC分子或第II型MHC分子涉及作為「幫手(helper)」或「殺手(killer)」的T細胞或T淋巴球。輔助T細胞(又稱為CD4+ T細胞)透過調節免疫反應扮演關鍵角色,而殺手細胞(又稱為細胞毒性T細胞、溶胞性T細胞、CD8+ T細胞或CTL)殺滅罹病細胞(諸如癌細胞)、預防更多罹病細胞產生。在較佳具體例中,本發明涉及刺激抗疾病CTL反應對抗表現一或多種疾病相關抗原且較佳地利用第I型MHC呈現此等疾病相關抗原的罹病細胞,特別是抗腫瘤CTL反應對抗表現一或多種被腫瘤所表現之抗原且較佳地利用第I型MHC呈現此等被腫瘤所表現之抗原的腫瘤細胞。
依據本發明,術語「抗原」或「免疫原」含括本身為免疫反應標的及/或會引起免疫反應的任何物質,較佳為肽或多肽。具體而言,「抗原」是 關於特異地與抗體或T淋巴球(T細胞)反應的任何物質。在一個具體例中,術語「抗原」包含含有至少一個表位(諸如T細胞表位)的分子。較佳地,在本發明中的抗原是一種視情況在處理之後引發免疫反應的分子,其較佳地對抗原或表現該抗原的細胞具有特異性。在本發明的具體例中,抗原較佳地是由細胞(較佳由抗原呈現細胞)在MHC分子中呈現,其產生對抗抗原或表現抗原之細胞的免疫反應。
術語「疾病相關抗原」以其最廣泛的意思用於意指任何與疾病相關的抗原。在一個具體例中,疾病相關抗原是一種含有一或多個表位的分子,其會刺激宿主的免疫系統而引起細胞性免疫反應對抗罹病細胞。疾病相關抗原因而可用於治療目的。疾病相關抗原可能與癌症有關,特別是腫瘤。
依據本發明,術語「新抗原」是關於一種肽或多肽,相較於親代肽或多肽,其包括一或多個胺基酸修飾。例如,新抗原可能是腫瘤相關新抗原,其中術語「腫瘤相關新抗原」包括含有因為腫瘤特異性突變所致之胺基酸修飾的肽或多肽。
術語「表位」意指一種在分子(諸如抗原)中的抗原決定基,亦即抗原的一部份或片段,其可被免疫系統所辨識,舉例而言其被T細胞所辨識,特別是在MHC分子中被呈現時。肽或多肽之表位較佳地包含該肽或多肽的連續或不連續部份且長度較佳地介於5至100,較佳地介於5至50、更佳地介於8至30、最佳地介於10至25個胺基酸,例如表位長度較佳地可為9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25個胺基酸。在一個具體例中,表位可結合至MHC分子(諸如細胞表面上的MHC分子),且視情況可被T細胞受體(諸如T細胞表面上的T細胞受體)所辨識。因此在一個具體例中,表位為「MHC結合肽」且更佳為「T細胞表位」。
術語「主要組織相容性複合體」以及縮寫「MHC」包括第I型MHC分子以及第II型MHC分子,且是關於一種存在於所有脊椎動物中的基因複合體。在免疫反應中,MHC蛋白或分子對於淋巴球與抗原呈現細胞或罹病細胞之間的訊息傳遞至為重要,其中MHC蛋白或分子結合肽且將肽呈現以供T 細胞受體辨識。MHC所編碼的蛋白質表現於細胞表面上,並且同時對T細胞展現自身抗原(細胞本身的肽片段)以及非自身抗原(例如侵入微生物的片段)。
MHC區被區分成三個子群,第I型、第II型以及第III型。第I型MHC蛋白含有α鏈以及β2微球蛋白(不是由染色體15編碼之MHC的一部份)。它們向細胞毒性T細胞呈現抗原片段。在大多數的免疫系統細胞上(特別是抗原呈現細胞上),第II型MHC蛋白含有α鏈以及β鏈且它們向輔助T細胞呈現抗原片段。第III型MHC區編碼其他免疫組份,諸如補體組份而一些編碼細胞激素。
MHC為多基因支配的(有數個第I型MHC以及第II型MHC基因)且是多型性的(每個基因有多個對偶基因)。
如本文所用,術語「單倍型」意指在一個染色體中所發現的MHC對偶基因且由其編碼的蛋白質。單倍型也可能意指存在於MHC內任何一個基因座處的對偶基因。每一型的MHC是由數個基因座所表示:例如第I型的HLA-A(人類白白血球抗原-A)、HLA-B、HLA-C、HLA-E、HLA-F、HLA-G、HLA-H、HLA-J、HLA-K、HLA-L、HLA-P與HLA-V,以及第II型的HLA-DRA、HLA-DRB1-9、HLA-DQA1、HLA-DQB1、HLA-DPA1、HLA-DPB1、HLA-DMA、HLA-DMB、HLA-DOA與HLA-DOB。術語「HLA對偶基因」與「MHC對偶基因」在本文中交替使用。
MHC展現出極大多型性:在人類群體中,在每個遺傳基因座處有大量包含獨特對偶基因的單倍型。第I型以及第II型的不同多型性MHC對偶基因具有不同的肽特異性;每個對偶基因編碼結合展現特定序列型態之肽的蛋白質。
在本發明所有態樣的一個較佳具體例中,MHC分子為HLA分子。
如本文所用,若肽或表位結合至MHC分子,則肽或表位是要「在MHC分子中被呈現」。這樣的結合可以使用技藝中已知的任何分析予以偵測。術語「MHC結合肽」是關於結合至第I型MHC分子及/或第II型MHC分子的 肽。在第I型MHC/肽複合體的情況下,結合肽長度典型為8至10個胺基酸,儘管更長或更短的肽也可能是有效的。在第II型MHC/肽複合體的情況下,結合肽長度典型為10至25個胺基酸且尤其是13至18個胺基酸,而更長與更短的肽可能也是有效的。在本發明所有態樣的一個較佳具體例中,MHC分子為HLA分子。
若肽或表位為包含額外序列的更大實體(例如疫苗序列或多肽)的一部份,而且在處理之後(尤其是切割之後)要被呈現,則因為處理而產生的肽或表位的長度適於結合至MHC分子。較佳地,在處理之後要被呈現之肽或表位的序列是衍生自用於免疫接種之抗原或多肽的胺基酸序列,意即其序列基本上對應於該抗原或多肽的片段且較佳地完全相同於該抗原或多肽的片段。
因此,在一個具體例中,MHC結合肽包含基本上對應於抗原片段且較佳地完全相同於抗原片段的序列。
如本文所用,術語「新表位」包括不存在於正常品(諸如正常非罹病,例如非癌)細胞或生殖系細胞,但在罹病細胞(例如癌細胞)中找到的表位。特別是在正常非罹病細胞或生殖系細胞的情況下,這包括因為在罹病細胞中的一或多個突變所致而被發現的對應表位,該表位的序列改變了而產生新表位。
如本文所用,術語「T細胞表位」意指結合至MHC分子的肽,呈被T細胞受體所辨識的構型。通常T細胞表位被呈現於抗原呈現細胞的表面上。依據本發明,T細胞表位較佳地是關於抗原的一部份或片段,其能夠刺激免疫反應,較佳為對抗特徵為表現抗原且較佳為呈現抗原(諸如罹病細胞,尤其是癌細胞)之抗原或細胞的細胞性反應。較佳地,T細胞表位能夠刺激細胞性反應對抗特徵為利用第I型MHC呈現抗原的細胞,且較佳能夠刺激抗原反應性細胞毒性T淋巴球(CTL)。
在一個具體例中,依據本發明,疫苗提供一或多個能夠用於免疫接種目標生物體的新表位。習於技藝者將能夠知道免疫生物學以及免疫接種原 理之一是基於對疾病的免疫保護性反應透過利用疫苗來免疫生物體所產生的,而疫苗與待治療疾病在免疫上相關聯。依據本發明,抗原較佳為自身抗原。
術語「免疫原性」是關於引發免疫反應的相對有效性,其較佳地與治療性治療有關,諸如對抗癌症的治療。如本文所用,術語「免疫原性」是關於具有免疫原性的特性。舉例而言,術語「免疫原性修飾」當用於肽、多肽或蛋白質中時,是關於該肽、多肽或蛋白質引發免疫反應的有效性,該免疫反應是因為修飾所致及/或引導對抗該修飾。較佳地,未經修飾肽、多肽或蛋白質不會引發免疫反應、引發不同的免疫反應或者引發不同程度(較佳地程度較低)的免疫反應。
依據本發明,術語「免疫原性(immunogenicity)或(immunognic)」較佳地是關於引發生物學相關免疫反應的相對有效性,特別是適用於免疫接種的免疫反應。因此,在一個較佳具體例中,若胺基酸修飾或經修飾肽在個體體內引發免疫反應對抗目標修飾,則其具有免疫原性,該免疫反應可能有利於治療性或預防性目的。
如本文所用,術語「評估疾病特異性胺基酸修飾用於免疫療法的有效性」或「預測疾病特異性胺基酸修飾是否適用於免疫療法」意指預測疾病特異性胺基酸修飾,尤其是包含該疾病特異性胺基酸修飾的抗原或包含該疾病特異性胺基酸修飾之抗原的片段(諸如包含一或多個含有疾病特異性胺基酸修飾之表位的抗原片段),特別是一或多個T細胞表位是否適用於引發免疫反應或靶向免疫反應。術語「預測適用於免疫療法的疾病特異性胺基酸修飾」或類似術語意指該疾病特異性胺基酸修飾,尤其是包含疾病特異性胺基酸修飾之抗原或包含疾病特異性胺基酸修飾之抗原的片段(諸如包含一或多個含有疾病特異性胺基酸修飾之表位的抗原片段),特別是一或多個T細胞表位已被預測適用於引發免疫反應或靶向免疫反應。若疾病特異性胺基酸修飾經預測適用於免疫療法,則例如包含疾病特異性胺基酸修飾之抗原或包含疾病特異性胺基酸修飾之抗原的片段(諸如包含一或多個含有疾病 特異性胺基酸修飾之表位的抗原片段),尤其是一或多個T細胞表位可用於免疫接種或設計本文所述的疫苗。
依據本發明,表位(諸如T細胞表位)可存在於疫苗中做為較大實體的一部份,實體為諸如包含超過一個表位的疫苗序列及/或多肽。所呈現的肽或表位是在適當加工之後所產生。還有,表位也可以在一或多個對結合至MHC或TCR辨識不重要的殘基處被修飾。此等經修飾表位可以被認為是免疫學上等效的。較佳地,當經MHC呈現且被T細胞受體辨識時,表位能夠引發適當共刺激性訊號出現、帶有特異地辨識肽/MHC複合體之T細胞受體的T細胞純系擴增。較佳地,表位包含基本上對應於抗原片段之胺基酸序列的胺基酸序列。較佳地,該抗原片段為第I型MHC及/或第II型MHC呈現的肽。
「抗原加工」或「加工」意指肽、多肽或蛋白質分解成加工產物,其為該肽、多肽或蛋白質的片段(例如多肽分解成肽),且這些片段中的一或多者與MHC分子締合(例如經由結合)以便被細胞(較佳為抗原呈現細胞)呈現給特定T細胞。
「抗原呈現細胞」(APC)是將蛋白質抗原的肽片段與MHC分子締合呈現在其細胞表面上的細胞。一些APC可活化抗原特異性T細胞。
專業抗原呈現細胞在內化抗原方面非常有效率(不論是透過吞噬作用或透過受體媒介的胞吞作用),然後在其膜上展現抗原片段,結合至第II型MHC分子。T細胞辨識抗原呈現細胞膜上的抗原-第II型MHC分子複合體並與其交互作用。抗原呈現細胞接而產生其他共刺激性訊號,導致T細胞活化。共刺激性分子表現是專業抗原呈現細胞的一個獨有特徵。
專業抗原呈現細胞的主要類型為樹突狀細胞(具有廣泛的抗原呈現範圍,且可能是最為重要的抗原呈現細胞)、巨噬細胞、B細胞以及某些活化的表皮細胞。樹突狀細胞(DC)為白血球群,其經由第II型MHC以及第I型MHC抗原呈現路徑將在周邊組織中所捕獲的抗原呈現給T細胞。已知樹突狀細胞有效引發免疫反應,而且活化這些細胞對於引發抗腫瘤免疫力來說是一個至為關鍵的步驟。樹突狀細胞從前被分類為「不成熟」與「成熟」細 胞,其可用做一個用來區別兩種經特徵鑑定表現型的簡單方式。但是,這個命名法不應被認為是排除所有可能的中間分化階段。不成熟樹突狀細胞經特徵鑑定為抗原攝入以及加工能力高的抗原呈現細胞,其與Fcγ受體以及甘露糖受體的高度表現有關。成熟表現型的特徵典型在於這些標記的表現較低,但負責T細胞活化的細胞表面分子表現較高,諸如第I型以及第II型MHC、黏附細胞(例如CD54與CD11)以及共刺激性分子(例如CD40、CD80、CD86與4-1 BB)。樹突狀細胞成熟被稱為樹突狀細胞活化的狀態,在此狀態下,這些呈現抗原的樹突狀細胞會導致T細胞起動,而不成熟樹突狀細胞的呈現會產生耐受性。樹突狀細胞成熟主要是由生物分子與被先天性受體所偵測到的微生物特徵(細菌性DNA、病毒性RNA、內毒素等)、促發炎性細胞激素(TNF、IL-1、IFN)、在樹突狀細胞表面上的CD40被CD40L接合,以及從正在經歷壓力型細胞死亡的細胞釋放出的物質所造成。樹突狀細胞可以透過在活體外與細胞激素一起培養骨髓細胞衍生而來,細胞激素為諸如顆粒球巨噬細胞群落刺激因子(GM-CSF)以及腫瘤壞死因子α。
非專業抗原呈現細胞並未持續地表現與原生T細胞交互作用所需的第II型MHC蛋白;它們僅在受到某些細胞激素(諸如IFNγ)刺激非專業抗原呈現細胞之後被表現。
「特徵為呈現抗原的細胞」或「呈現抗原的細胞」或類似用語表示一種細胞(諸如罹病細胞,例如癌細胞),或一種例如透過對抗原進行加工而在MHC分子中(尤其在第I型MHC分子中)呈現抗原或由該抗原衍生而來之片段的抗原呈現細胞。同樣地,術語「特徵為呈現抗原的疾病」表示一種涉及特徵為利用第I型MHC來呈現抗原之細胞的疾病。由細胞呈現抗原可以是透過用核酸(諸如編碼抗原的RNA)轉染細胞而達成。
「被呈現的抗原片段」或類似用語表示片段可為第I型或第II型MHC所呈現,較佳為第I型MCH,例如當直接被添加至抗原呈現細胞中時。在一個具體例中,片段為表現抗原之細胞所自然呈現的片段。
「目標細胞」應表示一種細胞,其為免疫反應(諸如細胞性免疫反應) 的目標。目標細胞包括呈現抗原(意即衍生自抗原之肽片段)的細胞,且包括所有不樂見的細胞,諸如癌細胞。在較佳具體例中,目標細胞為表現如本文所述之抗原的細胞且較佳地利用第I型MHC呈現該抗原。
術語「一部份」意指一小部份。講到特定結構(諸如胺基酸序列或蛋白質)時,術語其「一部份」可表明該結構的一個連續或不連續小部份。較佳地,胺基酸序列的一部份包含該胺基酸序列的至少1%、至少5%、至少10%、至少20%、至少30%、較佳至少40%、較佳至少50%、更佳至少60%、更佳至少70、甚至更佳至少80%,以及最佳至少90%的胺基酸。較佳地,若該一部份為不連續小部份,則該不連續小部份是由結構的2個、3個、4個、5個、6個、7個、8個或更多個部份組成,每個部份是該結構的連續構成要素。例如,胺基酸序列的不連續小部份可以由該胺基酸序列的2個、3個、4個、5個、6個、7個、8個或更多個部份組成,或較佳地由不超過該胺基酸序列的4個部份組成,其中每個部份較佳地包含該胺基酸序列的至少5個連續胺基酸、至少10個連續胺基酸、較佳至少20個連續胺基酸、較佳至少30個連續胺基酸。
術語「部份」以及「片段」在本文中交替使用且意指連續構成要素。例如,某個結構(諸如胺基酸序列或蛋白質)的一部份意指該結構的連續構成要素。結構的一部份、一份或片段較佳地包含該結構的一或多個功能性特性。例如,表位、肽或蛋白質的一部份、一份或片段較佳地與其衍生而來的表位、肽或蛋白質在免疫學上等效。在本發明中,「結構」(諸如胺基酸序列)的一份較佳地包含下列、較佳地由下列組成:整個結構或胺基酸序列的至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少85%、至少90%、至少92%、至少94%、至少96%、至少98%、至少99%。
術語「效應細胞」、「免疫效應細胞」或「免疫反應性細胞」在本發明中是關於一種細胞,其在免疫反應期間展現效應功能。「免疫反應性細胞」較佳地能夠結合抗原或特徵為呈現抗原或其肽片段(例如T細胞表位)並 且媒介免疫反應的細胞。例如,此等細胞分泌細胞激素及/或趨化激素、分泌抗體、辨識癌細胞並且視情況消除細胞。舉例而言,免疫反應性細胞包含T細胞(細胞毒性T細胞、輔助T細胞、腫瘤浸潤T細胞)、B細胞、天然殺手細胞、嗜中性球、巨噬細胞以及樹突狀細胞。較佳地,在本發明中,免疫反應性細胞為T細胞,較佳為CD4+ T細胞及/或CD8+ T細胞。
較佳地,「免疫反應性細胞」以某種程度的特異性辨識抗原或其肽片段,特別是若在MHC分子中被呈現時,諸如在抗原呈現細胞或罹病細胞(諸如癌細胞)的表面上。較佳地,該辨識能夠使得細胞辨識要反應或交互作用的抗原或其肽片段。在第II型MHC分子中,若細胞為帶有辨識抗原或其肽片段之受體的輔助T細胞(CD4+ T細胞),則此反應性或交互作用可能涉及細胞激素釋放及/或CD8+淋巴球(CTL)及/或B細胞活化。若細胞為CTL,則此反應性或交互作用可能涉及例如經由細胞凋亡或穿孔蛋白媒介的細胞溶解消除在第I型MHC分子中被呈現的細胞,意即特徵在於利用第I型MHC呈現抗原的細胞。依據本發明,CTL反應性可包括持續鈣流動、細胞分裂、細胞激素(諸如IFN-γ以及TNF-α)的產生、活化標記(諸如CD44與CD69)的上調,以及特異性細胞溶解性殺滅表現抗原的目標細胞。CTL反應性也可以使用精確指明CTL反應性的人工報導子獲得確定。這些辨識抗原或抗原片段且具有反應性或交互作用的CTL在本文中也稱為「抗原反應性CTL」。若細胞為B細胞,則此反應性可能涉及免疫球蛋白釋放。
術語「T細胞」以及「T淋巴球」在本文中交替使用且包括輔助T細胞(CD4+ T細胞)以及細胞毒性T細胞(CTL、CD8+ T細胞),其包含細胞溶解性T細胞。
T細胞屬於一群已知為淋巴球的白血球,並且在細胞媒介的免疫力中扮演著核心角色。它們可以依據其細胞表面上存在的特殊受體(稱為T細胞受體,TCR)而與其他淋巴球類型(諸如B細胞以及天然殺手細胞)區別開來。胸腺是負責T細胞成熟的主要器官。已發現數個不同的T細胞子群,分別具有不同的功能。
輔助T細胞在免疫學過程中協助其他白血球,包括B細胞成熟變成漿細胞以及活化細胞毒性T細胞與巨噬細胞。這些細胞亦已知為CD4+ T細胞,因為它們在其表面上表現CD4蛋白。當輔助T細胞透過表現於抗原呈現細胞(APC)上之第II型MHC分子呈現肽抗原時,它們變得被活化。在活化之後,它們快速分裂並分泌被稱為細胞激素的小蛋白,細胞激素調節或輔助活化免疫反應。
細胞毒性T細胞摧毀被病毒感染的細胞以及腫瘤細胞,還涉入移植排斥。這些細胞已知為CD8+ T細胞,因為它們在其表面處表現CD8醣蛋白。這些細胞透過結合至與第I型MHC締合的抗原來辨識其目標,其中第I型MHC出現在身體的幾乎每個細胞表面上。
大多數T細胞具有以數個蛋白質的複合體形式存在的T細胞受體(TCR)。實際的T細胞受體是由兩個分開的肽鏈組成,這兩個肽鏈是由獨立的T細胞受體α與β(TCRα與TCRβ)基因所產生並且被稱為α-TCR鏈與β-TCR鏈。γδ T細胞代表一個小的T細胞子群,在其表面上具有獨特的T細胞受體(TCR)。不過,在γδ T細胞中,TCR是由一條γ鏈以及一條δ鏈組成。這群T細胞比αβ T細胞更不常見(T細胞總數的2%)。
在活化T細胞時,第一個訊號是因為T細胞受體結合至另一個細胞上之MHC呈現的短肽所提供。這確保了僅僅帶有對那個肽具有特異性之TCR的T細胞被活化。夥伴細胞通常為抗原呈現細胞,諸如專業抗原呈現細胞,在初級反應的情況下通常是樹突狀細胞,雖然B細胞以及巨噬細胞也是重要的APC。
依據本發明,若一個分子對一個目標具有明顯的親和力,則該分子能夠結合至該預定目標並且在標準分析中結合至該預定目標。「親和力」或「結合親和力」通常是透過平衡解離常數(KD)來測量。若一個分子對某個目標不具有明顯的親和力,則該分子(基本上)不能結合至該目標並且在標準分析中不會顯著結合至該目標。
細胞毒性T淋巴球可以透過在活體內將抗原或其肽片段併入至抗原呈 現細胞中而在活體內生成。抗原或其肽片段可被呈現為蛋白質、DNA(在載體內)或RNA。抗原可被加工以產生適用於MHC分子的肽夥伴(peptide partner),同時其片段可以被呈現而毋需進一步加工。後者尤其是片段可結合至MHC分子。大體來說,透過皮內注射投與給患者是可行的。但是,也可以在結節內注射至淋巴結中(Maloy et al.(2001),Proc Natl Acad Sci USA 98:3299-303)。所得細胞呈現感興趣的複合體並且被自體細胞毒性T淋巴球所辨識,而這些自體細胞毒性T淋巴球接而增殖。
CD4+ T細胞或CD8+ T細胞的特異性活化可以不同方式被偵測到。用於偵測特異性T細胞活化的方法包括偵測T細胞增生、細胞激素(例如淋巴激素,諸如IFNγ)生成,或細胞溶解活性。就CD4+ T細胞來說,用於偵測特異性T細胞活化的較佳方法是偵測T細胞增生。就CD8+ T細胞來說,用於偵測特異性T細胞活化的較佳方法是偵測細胞溶解活性的生成。具體而言,細胞內細胞激素染色或ELISPOT可用來偵測CD4+ T細胞與CD8+ T細胞所產生的細胞激素,例如透過使用如本文所述的方法。
大體上,在ELISPOT分析中,膜的表面塗覆捕捉抗體,其結合待分析之細胞激素的特定表位。因為細胞被活化,它們釋放出細胞激素,細胞激素被固定抗體直接捕抓在膜表面上。細胞激素因而被「捕捉」在直接圍繞著分泌細胞的區域內。後續的偵測步驟將被固定的細胞激素顯現為「免疫點」,其本質上為活化細胞的分泌足跡。ELISPOT分析技術因而允許估算對特定抗原性刺激反應而生產特定細胞激素(例如IFNγ)之T細胞的數目及/或發生率。點計數可以表示為得自重複數值的中位值,並且可與陰性對照(例如未經刺激的細胞)相比較。若觀察到每某個數目的細胞有最低點數及/或點數相較於陰性對照超過某個程度,則反應可以被定義為陽性。例如,若每1 x 103細胞、1 x 104細胞或1 x 105細胞最低有五點,及/或若點數比個別陰性對照高出2x、3x、4x、5x或甚至更高,則反應可定義為陽性。
術語「免疫學上等效」表示免疫學上等效分子(諸如免疫學上等效胺基酸序列)展現出相同或本質上相同的免疫學特性,及/或展現出相同或本質上 相同的免疫學效用,例如就免疫學效用的類型來說,諸如引發體液性及/或細胞性免疫反應、引發免疫反應的強度及/或持續時間,或引發免疫反應的特異性。在本發明中,術語「免疫學上等效」較佳地是相對於免疫學效用或用於免疫接種之肽或多肽的特性來使用。舉例來說,若某一個胺基酸序列在暴露於個體的免疫系統時引發具有與某一個參考胺基酸序列交互作用之特異性的免疫反應,則該胺基酸序列在免疫學上等效於該參考胺基酸序列。
術語「免疫效應功能」在本發明中包括由免疫系統組份所媒介的任何功能,其造成(例如)殺滅腫瘤細胞,或抑制種瘤生長及/或抑制腫瘤生成,包括抑制腫瘤擴散與轉移。較佳地,免疫效應功能在本發明中為T細胞媒介的效應功能。此等功能包含在輔助T細胞(CD4+ T細胞)中透過T細胞受體辨識第II型MHC分子中的抗原或抗原片段、釋放細胞激素及/或活化CD8+ T淋巴球(CTL)及/或B細胞,以及在CTL中透過T細胞受體辨識第I型MHC分子的抗原或抗原片段、(例如經由細胞凋亡或穿孔蛋白酶介的細胞溶解)消除以第I型MHC呈現的細胞(亦即特徵在於以第I型MHC呈現抗原的細胞)、細胞激素(諸如IFN-γ與TNF-α)生成,以及特異性細胞溶解性殺滅表現抗原的目標細胞。
一般來說,依據本發明,評估表現於罹病細胞中之肽或多肽的片段的疾病特異性胺基酸修飾於免疫療法的效用,該等片段包含一或多個疾病特異性胺基酸修飾。預期有效用於免疫療法的一或多個片段可用於提供疫苗,該疫苗包含(例如)該一或多個片段衍生而來之肽或多肽或該肽或多肽的一或多個肽片段(尤其是肽或多肽之一或多個(潛在)MHC結合肽)。疫苗亦可包含編碼該一或多個片段衍生而來之肽或多肽的核酸(諸如RNA)或肽或多肽的一或多個肽片段,尤其是肽或多肽之一或多個(潛在)MHC結合肽。
依據本發明,術語「計分」是關於測試或分析的某種結果,通常以數值表示,測試或分析包括例如測量在MHC分子上的多肽片段呈現之分析或測量對MHC分子上之多肽片段的T細胞反應性之分析。諸如「較佳計分」或 「計分較佳」是關於測試或分析的較佳結果或最佳結果。
多肽呈現以及T細胞反應性的程度是使用技藝中已知的任何方法來測定。例如可以使用已知預測方法以及實驗方法來測定肽呈現。舉例而言,已發展出若干生化分析是為了測定MHC-肽親和力。典型方法是競爭分析,其中通常經放射性標記的參考肽結合至MHC。也使用T細胞反應性分析來測定MHC肽結合。可如本文所述評估T細胞反應性,例如藉由免疫分析,包括酶聯免疫吸附分析(ELISPOT)或細胞激素分泌分析(CSA)。
依據本發明,疾病特異性胺基酸修飾可依據預測包含至少一個疾病特異性胺基酸修飾之肽或多肽表位的下列能力來進行評定:(1)在不同類型之MHC分子中被呈現及/或與限定於不同MHC類型之T細胞反應、(2)當在相同MHC分子中被呈現時與帶有不同T細胞受體之細胞反應,及/或(3)在相同類型之不同MHC分子中被呈現及/或當於相同類型之不同MHC分子中被呈現時與限定於相同MHC類型之不同T細胞反應。大體上,參數(1)至(3)越多,則評定疾病特異性胺基酸修飾或包含至少一個疾病特異性胺基酸修飾的肽或多肽表位越符合疾病特異性胺基酸修飾。
術語諸如「預測(predict、predicting或prediction)」是關於決定例如表現於罹病細胞中之多肽內的疾病特異性胺基酸修飾是否適用於免疫療法的可能性。若多肽內的相同或不同片段(這些片段包含疾病特異性胺基酸修飾)在不同類型的MHC分子中被呈現、若多肽的相同或不同片段與限定於不同MHC類型之T細胞有反應或兩者均有,則表現於罹病細胞中之多肽內的疾病特異性胺基酸修飾經鑑定適用於免疫療法。或者或另外,若包含疾病特異性胺基酸修飾之多肽的片段當在相同MHC分子中被呈現時與帶有不同T細胞受體的T細胞有反應時,則表現於罹病細胞中之多肽內的疾病特異性胺基酸修飾經鑑定為適用於免疫療法。或者或另外,若多肽的相同或不同片段(這些片段包含疾病特異性胺基酸修飾)在相同類型的不同MHC分子中被呈現、若多肽的相同或不同片段當在相同類型的不同MHC分子中被呈現時與限定於相同MHC類型的不同T細胞有反應或兩者均有,則表現於罹病細胞中 之多肽內的疾病特異性胺基酸修飾經鑑定為適用於免疫療法。
例如藉由使用任何肽:MHC結合預測工具及/或以實驗的方式藉由測定片段與MHC分子的結合來確認包含疾病特異性胺基酸修飾之肽或多肽的片段呈現於MHC分子中。
當在MHC分子中被呈現時,可以例如透過實驗的方式確定包含疾病特異性胺基酸修飾之肽或多肽的片段與T細胞的反應性。
在一個具體例中,評估通常是針對帶有疾病特異性胺基酸修飾之患者體內所發現的MHC分子及/或T細胞進行。因此,本發明亦可包括確定患者體內的MHC及/或T細胞庫。
術語「包含疾病特異性胺基酸修飾之肽或多肽的不同片段」在一個具體例中是關於包含經修飾肽或多肽之不同片段的肽或由經修飾肽或多肽之不同片段組成的肽,該等不同片段包含存在於該肽或多肽中但是修飾的長度及/或位置上不同的相同修飾。若肽或多肽在位置x有修飾,則該肽或多肽的兩個或更多個片段(各自包含含括該位置x之該肽或多肽的不同序列窗)被認為是包含疾病特異性胺基酸修飾之肽或多肽的不同片段。
術語「不同的胺基酸修飾」是關於相同及/或不同肽或多肽的不同胺基酸修飾。
較佳地,依據本發明,「包含疾病特異性胺基酸修飾之肽或多肽的片段」具有適當長度以供MHC結合。
依據本發明要被評估免疫療法之效用的胺基酸修飾,或依據本發明要根據其於免疫療法中的效用而被篩選及/或評定的胺基酸修飾較佳地是因為細胞的核酸突變,細胞為諸如罹病細胞,特別是患者的癌細胞或腫瘤細胞。此等突變可透過已知定序技術加以鑑別。因此,本發明方法可針對諸如癌症患者的患者進行,以提供患者特異性疫苗,諸如抗癌疫苗。
在一個具體例中,突變為癌患者之腫瘤樣本中的癌症特異性體細胞突變,其可以透過鑑別腫瘤樣本的基因體、外顯子體及/或轉錄體,以及非致瘤樣本之基因體、外顯子體及/或轉錄體之間的序列差異而被確定。
依據本發明,腫瘤樣本是關於任何樣品,諸如衍生自患者之含有或懷疑含有腫瘤或癌細胞的身體樣品。身體樣品可以是任何組織樣品,諸如血液、得自於原發性腫瘤或轉移腫瘤的組織樣品或含有腫瘤或癌細胞的任何其他樣品。較佳地,身體樣品是血液且癌症特異性體細胞突變或序列差異是在血液中所含有的一或多個循環腫瘤細胞(CTC)裡進行測定。在另一個具體例中,腫瘤樣本是關於一或多個經分離的腫瘤或癌細胞(諸如循環的腫瘤細胞(CTC))或含有一或多個經分離腫瘤或癌細胞(諸如循環的腫瘤細胞(CTC))的樣品。
非腫瘤樣本是關於任何樣品,諸如衍生自患者或另一名個體(較佳為與患者相同的物種,較佳為不含有或未預期含有腫瘤或癌細胞的健康個體)的身體樣品。身體樣品可以是任何組織樣品,諸如血液或者是非致瘤組織的樣品。
本發明可能涉及確定患者的癌症突變特徵。術語「癌症突變特徵」可意指存在於患者之一或多個癌細胞內的所有癌症突變,或其可意指存在於患者的一或多個癌細胞中的僅僅一部份癌症突變。因此,本發明可能涉及鑑別存在於患者之一或多個癌細胞中的所有癌症特異性突變,或其可能涉及鑑別存在於患者之一或多個癌細胞中的一部份癌症特異性突變。大體上,提供本發明方法以供鑑定突變數量,其提供要被納入本發明方法中之足夠數量的突變或經修飾肽或多肽。
較佳地,依據本發明所鑑別的突變為非同義突變,較佳為表現於腫瘤或癌細胞中之肽或多肽的非同義突變。
在一個具體例中,在腫瘤樣本的基因體(較佳地整個基因體)中確定癌症特異性體細胞突變或序列差異。因此,本發明可包含鑑別一或多個癌細胞之基因體(較佳整個基因體)的癌症突變特徵。在一個具體例中,在癌症患者的腫瘤樣本中鑑別癌症特異性體細胞突變的步驟包含鑑別全基因體癌症突變概況。
在一個具體例中,在腫瘤樣本的外顯子體(較佳地整個外顯子體)中確定 癌症特異性體細胞突變或序列差異。因此,本發明可包含鑑別一或多個癌細胞的外顯子體(較佳地整個外顯子體)的癌症突變特徵。在一個具體例中,在癌症患者的腫瘤樣本中鑑別癌症特異性體細胞突變的步驟包含鑑別全外顯子體癌症突變概況。
在一個具體例中,在腫瘤樣本的轉錄體(較佳地整個轉錄體)中確定癌症特異性體細胞突變或序列差異。因此,本發明可包含鑑別一或多個癌細胞的轉錄體(較佳地整個轉錄體)的癌症突變特徵。在一個具體例中,在癌症患者的腫瘤樣本中鑑別癌症特異性體細胞突變的步驟包含鑑別全轉錄體癌症突變概況。
在一個具體例中,鑑別癌症特異性體細胞突變或鑑別序列差異的步驟包含一或多個(較佳2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或甚至更多個)癌細胞的單細胞定序。因此,本發明可包含鑑別該一或多個癌細胞的癌症突變特徵。在一個具體例中,癌細胞為循環的腫瘤細胞。癌細胞(諸如循環的腫瘤細胞)可以在單細胞定序前被分離。
在一個具體例中,鑑別癌症特異性體細胞突變或鑑別序列差異的步驟涉及使用次世代定序(NGS)。
在一個具體例中,鑑別癌症特異性體細胞突變或鑑別序列差異的步驟包含定序腫瘤樣本的基因體DNA及/或RNA。
為了揭示癌症特異性體細胞突變或序列差異,由腫瘤樣本取得的序列資訊較佳地與參考品進行比較,參考品為諸如由定序例如正常非癌細胞(諸如生殖系細胞,其可得自於患者或不同個體)的核酸(諸如DNA或RNA)取得的序列資訊。在一個具體例中,正常基因體生殖系DNA是得自於周邊血液單核細胞(PBMC)。
術語「基因體」是關於個體或細胞之染色體中的遺傳訊細總量。
術語「外顯子體」意指由外顯子形成之生物體的一部分基因體,其為表現基因的編碼部份。外顯子體提供合成蛋白質與其他功能性基因產物時 所使用的遺傳藍圖。它在功能上是與基因體最為相關的部份,因此,其最有可能提供生物體的表現型。人類基因體的外顯子體經估算佔整個基因體的1.5%(Ng,PC et al.,PLoS Gen.,4(8):1-15,2008)。
術語「轉錄體」是關於所有RNA分子組,包括在一個細胞或細胞群中所產生的mRNA、rRNA、tRNA以及其他非編碼RNA。在本發明中,轉錄體表示在一個細胞或細胞群(較佳為癌細胞群或指定個體在某個時間點之所有細胞)中所產生的所有RNA分子組。
依據本發明,「核酸」較佳地為去氧核糖核酸(DNA)或核糖核酸(RNA),更佳為RNA,最佳為活體外轉錄的RNA(IVT RNA)或合成RNA。依據本發明,核酸包括基因體DNA、cDNA、mRNA、經重組產生以及化學合成的分子。依據本發明,核酸可以單股或雙股以及線性或共價環狀封閉分子的形式存在。依據本發明,核酸可以被分離。術語「經分離核酸」表示核酸(i)在活體外被擴增,例如經由聚合酶鏈反應(PCR)、(ii)透過選殖以重組的方式生產、(iii)被純化,例如透過切割以及利用凝膠電泳分離,或(iv)被合成,例如透過化學合成。核酸可以被用來引入(亦即轉染)至細胞,特別是呈RNA形式,其可透過由DNA模板在活體外轉錄來製備。RNA更可以在應用之前透過穩定序列、加帽以及聚腺苷酸化而被修飾。
術語「遺傳物質」意指經分離核酸,不論是DNA或RNA、雙螺旋的一段、染色體的一段,或生物體或細胞的整個基因體,尤其是其外顯子體或轉錄體。
術語「突變」意指核酸序列相較於參考物的改變或差異(核苷酸置換、添加或刪除)。「體細胞突變」可能發生在生殖系細胞(精子與卵子)以外的身體任何細胞,並因此不會傳給後代。這些改變可以(但不完全)導致癌症或其他疾病。較佳地,突變為非同義突變。術語「非同義突變」意指一種突變,較佳為核苷酸置換,其在轉譯產物中造成諸如胺基酸置換的胺基酸改變。
依據本發明,術語「突變」包括點突變、插入刪除、融合、染色體碎 裂(chromothripsis)以及RNA編輯。
依據本發明,術語「插入刪除(Indel)」描述一種特別的突變類型,定義為導致共定位插入以及刪除的突變並且在核苷酸導致淨獲得或喪失。在基因體的編碼區中,除非插入刪除的長度為3的倍數,否則它們會產生框移突變。插入刪除與點突變是相對的;插入刪除插入核苷酸並且從序列刪除核苷酸,而點突變是一種置換形式,其取代核苷酸之一者。
融合可以產生由兩個先前為分離的基因形成的融合基因。其可能是轉座、中間缺失或染色體倒位引起。融合基因通常為致癌基因。致癌性融合基因可能從兩個融合伴侶產生帶有新的或不同功能的基因產物。或者,原致癌基因融合至一個強啟動子,因而致癌功能由於上游融合伴侶之強啟動子造成的上調而發揮功能。致癌融合轉錄本也可能是因為交叉剪接或通讀(read-through)事件所致。
依據本發明,術語「染色體碎裂」意指一種遺傳現象,基因體的特定區域經由單一破壞性事件被破碎且接著被接合在一起。
依據本發明,術語「RNA編輯(RNA edit或RNA editing)」意指分子過程,其中RNA分子中的資訊內容透過鹼基組成的化學變化而改變。RNA編輯包括核苷修飾,諸如胞苷(C)變成尿苷(U),以及腺苷(A)變成肌苷(I)去胺,還有非依照模板的核苷酸添加與插入。mRNA中的RNA編輯有效地改變編碼蛋白的胺基酸序列,使得其不同於自基因體DNA序列所預測者。
術語「癌症突變特徵」意指一組突變,當與非癌參考細胞相比較時其存在於癌細胞中。
依據本發明,「參考物」可用來與腫瘤樣本的結果相關連以及比較。通常,「參考物」可基於一或多個正常樣本而獲得,尤其是未受到癌症疾病所影響的樣本,不論是得自於患者或者是一或多名不同個體(較佳為健康個體,尤其是相同物種的個體)。「參考物」可以透過測試足夠多量的正常樣本而在實驗上獲得確認。
依據本發明,任何適宜的定序方法可用於確定突變,次世代定序(NGS) 技術是較佳的。第三代定序法在未來可能取代NGS技術以加速方法的定序步驟。為清楚起見:術語「次世代定序」或「NGS」在本發明中表示所有新穎的高通量定序技術,其相對於「傳統的」定序方法學(已知為桑格化學),透過將整個基因體分成數個小片段來沿著整個基因體平行隨機讀取核酸模板。這些NGS技術(已知為大規模平行定序技術)能夠在非常短的時間內(例如1-2週內,較佳地1-7天內或更佳地少於24小時內)釋出整個基因體、外顯子體、轉錄體(基因體的全部轉錄序列)或甲基體(基因體的全部甲基化序列)的核酸序列資訊,並且主要容許單細胞定序法。商業上使用的或者是文獻內提到的多NGS平台可用於本發明中,例如那些詳細說明於Zhang et al.2011:The impact of next-generation sequencing on genomics.J.Genet Genomics 38(3),95-109;or in Voelkerding et al.2009:Next generation sequencing:From basic research to diagnostics.Clinical chemistry 55,641-658中者。此等NGS技術/平台的非限制性實例為
1)例如在Roche-相關公司454 Life Sciences(Branford,Connecticut)的GS-FLX 454 Genome SequencerTM中實施已知為焦磷酸鹽定序的邊合成邊定序(The sequencing-by-synthesis)技術,首先描述於Ronaghi et al.1998:A sequencing method based on real-time pyrophosphate".Science 281(5375),363-365。這個技術使用乳化PCR,其中單股DNA結合珠粒透過劇烈渦漩而被囊封至含有PCR反應物之被油包圍的水性微胞中以供乳化PCR擴增。在焦磷酸研定序過程期間,當聚合酶合成DNA股時,紀錄由磷酸鹽分子在核苷酸併入期間所發射的光。
2)由Solexa(現為Illumina Inc.,San Diego,California的一部分)開發的邊合成邊定序方法,其是基於可逆染料終止子並且在例如llumina/Solexa Genome AnalyzerTM還有Illumina HiSeq 2000 Genome AnalyzerTM中實施。在這個技術中,所有四種核苷酸連同DNA聚合酶被同時添加至流-細胞通道中的經寡啟動簇集片段。橋式擴增利用 四種經螢光標記的核苷酸延長簇集股以供定序。
3)邊接合編定序方法,例如在Applied Biosystems(現為Life Technologies Corporation,Carlsbad,California)的SOLidTM平台中實施。在這個技術中,一池的具有固定長度的所有可能寡核苷酸是依據定序位置被標記。寡核苷酸經黏合與接合;匹配的序列偏好透過DNA接合酶接合,在那個位置的核苷酸產生訊號資訊。在定序之前,DNA經乳化PCR擴增。所得珠粒各自僅含有相同DNA分子的一個複本,被放置在玻璃載片上。作為第二個實例,Dover Systems(Salem,New Hampshire)的PolonatorTM G.007平台也採用邊接合編定序方法,透過使用隨機配置、以珠粒為主的乳化PCR來擴增DNA片段以供平行定序。
4)單分子定序技術,諸如例如在Pacific Biosciences(Menlo Park,California)的PacBio RS系統中或者在Helicos Biosciences (Cambridge,Massachusetts)的HeliScopeTM平台中實施。這個技術的明確特徵在於其能夠定序單一DNA或RNA分子而不需要擴增,如Single-Molecule Real Time(SMRT)DNA定序所定義。例如,HeliScope使用高度敏感的螢光偵測系統在各個核苷酸合成時來直接偵測它們。基於螢光共振能量轉移(FRET)的一個類似方法已由Visigen Biotechnology(Houston,Texas)開發。其他以螢光為基礎的單分子技術是來自U.S.Genomics(GeneEngineTM)以及Genovoxx(AnyGeneTM)。
5)用於單分子定序的奈米技術,其中使用各種奈米結構,其為例如排列在晶片上以監測聚合酶分子於複製期間在單股上的移動。基於奈米技術之方法的非限制性實例為Oxford Nanopore Technologies(Oxford,UK)的GridONTM平台、Nabsys(Providence,Rhode Island)開發的雜交輔助奈米孔定序(HANSTM)平台,還有帶有DNA奈米球(DNB)技術之以接合酶為基礎的專利DNA定序平台,其被稱為組合 型探針-錨接合(cPALTM)。
6)用於單分子定序之以電子顯微術為基礎的技術,例如那些由LightSpeed Genomics(Sunnyvale,California)與Halcyon Molecular(Redwood City,California)所開發者。
7)離子半導體定序,其是基於偵測在DNA聚合作用期間被釋出的氫離子。例如Ion Torrent Systems(San Francisco,California)使用高密度陣列的微機械化孔以大規模平行的方式來實行這個生化過程。每個孔含有不同DNA模板。在孔下面是離子敏感層且在離子敏感層下面是一個專利離子感測器。
較佳地,DNA以及RNA製備品作為NGS的起始材料。這些核酸可由樣品(諸如生物材料)輕易獲得,例如由新鮮的、快速冷凍或經福馬林固定石蠟包埋的腫瘤組織(FFPE)或由新鮮分離之細胞或從存在於患者周邊血液中的CTC。正常未突變基因體DNA或RNA可萃取自正常、體細胞組織,但是本發明中偏好生殖系細胞。生殖系DNA或RNA可以萃取自帶有非血液學惡性病之患者的周邊血液單核細胞(PBMC)。儘管萃取自FFPE組織或新鮮分離的單細胞之核酸被高度片段化,但它們仍適用於NGS應用。
在文獻中描述數種用於外顯子體定序的標靶NGS方法(關於回顧參見例如Teer and Mullikin 2010:Human Mol Genet 19(2),R145-51),其全部可結合本發明使用。這些方法中的許多者(描述,例如基因體捕捉、基因體區分割、基因體增濃等)採用雜交技術並且包括以陣列為主(例如Hodges et al.2007:Nat.Genet.39,1522-1527)還有以液體為主(例如Choi et al.2009:Proc.Natl.Acad.Sci USA 106,19096-19101)的雜交方法。用於DNA樣品製備以及後續外顯子捕捉的商業套組也是可使用的:例如Illumina Inc.(San Diego,California)提供TruSeqTM DNA Sample Preparation Kit與Exome Enrichment Kit TruSeqTM Exome Enrichment Kit。
當將(例如)腫瘤樣品的序列與參考樣品的序列(諸如生殖系樣品的序列)相比較,為了在偵測癌症特異性體細胞突變或序列差異時降低偽陽性結果 的數量,偏好以這些樣品類型的一或多者重複來測定序列。因此,參考樣品的序列(諸如生殖系樣品的序列)偏好測定兩次、三次或更多次。或者或另外,腫瘤樣品的序列測定兩次、三次或更多次。也可以透過測定基因體DNA中的序列至少一次並且確定該參考樣品及/或該腫瘤樣品中之RNA序列至少一次來測定參考樣品的序列(諸如生殖系樣品的序列及/或腫瘤樣品的序列)超過一次。例如,透過測定參考樣品(諸如生殖系樣品)重複之間的差異,可估算偽陽性(FDR)體細胞突變的機率作為統計量。樣品的技術重複理應產生相同結果且以這個「相同相對於相同比較」方式偵測到的任何突變為偽陽性。具體而言,針對腫瘤樣品中的體細胞突變偵測,為了相對於參考樣品來測定偽發現率,可使用參考樣品的技術重複做為參考以估算偽陽性數。此外,各種與品質相關的度量(例如有效區或SNP品質)可使用機器學習法結合至單品質計分。關於給定體細胞變異,可計算帶有超出品質計分的所有其他變異,其使得評定資料組中的所有變異變得可行。
在本發明中,術語「RNA」是關於一種分子,其包含至少一個核糖核苷酸殘基且較佳地全部或基本上由核糖核苷酸殘基組成。「核糖核苷酸」是關於一種在β-D-核糖呋喃糖基之2’-位置處帶有羥基的核苷酸。術語「RNA」包含雙股RNA、單股RNA、經分離RNA(諸如經部分或完全純化RNA)、基本上純的RNA、合成RNA,以及經重組產生的RNA,諸如經修飾RNA,其因為添加、刪除、置換及/或改變一或多個核苷酸而不同於天然RNA。此等改變包括添加非核苷酸材料(諸如)至RNA的末端或內部,例如在RNA的一或多個核苷酸處。RNA分子中的核苷酸也可以包含非標準核苷酸,諸如非天然核苷酸或化學合成的核苷酸或去氧核苷酸。這些經過改變的RNA可被稱為類似物或天然RNA的類似物。
依據本發明,術語「RNA」包括且較佳地是關於「mRNA」。術語「mRNA」表示「信使RNA」並且是關於「轉錄本」,其是透過使用DNA模板所產生並且編碼肽或多肽。典型地,mRNA包含5’-UTR、蛋白質編碼區、3’-UTR以及視情況存在的聚(A)尾部。mRNA在細胞中還有在活體外僅具有不長的 半衰期。在本發明中,mRNA可以在活體外透過從DNA模板轉錄而產生。活體外轉錄方法學為習於技藝者所熟知。例如,商業上有各種活體外轉錄套組可供使用。
依據本發明,RNA的穩定性以及轉錄效率可以視需要進行修飾。例如,RNA可以被穩定且其轉譯透過一或多個具有穩定效用及/或增加RNA轉錄效率的修飾而被提高。此等修飾描述於例如透過引用併入本文中的PCT/EP2006/009448。較佳地在不改變表現肽或蛋白質序列的情況下,為了增加本發明中所使用之RNA的表現,編碼區內可以受到修飾,編碼區域意即編碼表現肽或多肽的序列,使得GC含量增加而增加mRNA穩定性並且進行密碼子最佳化,且因而提高細胞內的轉譯。
在本發明內使用的RNA中,術語「修飾」包括RNA的任何修飾,其在自然的情況下不存在於該RNA中。
在本發明的一個具體例中,依據本發明使用的RNA不具有未加帽的5’-三磷酸根。可以透過用磷酸酶處理RNA來移除這樣未加帽的5’-三磷酸根。
依據本發明,RNA可具有經修飾的核糖核苷酸以增加其穩定性及/或降低細胞毒性。舉例而言,在一個具體例中,依據本發明使用的RNA中,5-甲基胞苷基本上部分地或完全地(較佳完全地)置換腺苷。此外或另外,在一個具體例中,在本發明使用的RNA中,假尿苷部份地或完全地(較佳完全地)置換尿苷。
在一個具體例中,術語「修飾」與提供帶有5’-帽或5’-帽類似物的RNA相關。術語「5’-帽」意指一種在mRNA分子的5’-端所發現,且通常是經由不常見5’至5’三磷酸鏈結而連結至mRNA的鳥苷核苷酸所組成的帽結構。在一個具體例中,這個鳥苷在7-位置處被甲基化。術語「習知5’-帽」意指天然的RNA 5’-蓋,較佳為7-甲基尿苷帽(m7G)。在本發明中,術語「5’-帽」包括與RNA帽結構類似的5’-帽類似物,且經修飾而具有穩定RNA及/或(較佳在活體內及/或在細胞內)若附接至RNA時提高RNA轉譯的能力。
若在5’-帽或5’-帽類似物存在下,帶有5’-帽或5’-帽類似物的RNA可以透 過在活體外轉錄DNA模板而達致,其中5’-帽被共轉錄併入致所產生的RNA股,或例如透過活體外轉錄而產生TNA,且5’-帽可以在轉錄後使用加帽酶(例如牛痘病毒的加帽酶)被附接至RNA。
RNA可包含更多修飾。例如,本發明中所用之RNA的又一個修飾可為延長或截短天然聚(A)尾部或者改變5’-或3’-未轉譯區(UTR),諸如引入與該RNA之編碼區不相干的UTR,例如將現有3’-UTR與一或多個(較佳兩個複本)的3’-UTR(衍生自球蛋白基因,諸如α2-球蛋白、α1-球蛋白、β-球蛋白,較佳為β-球蛋白,更佳為人類β-球蛋白)交換,或插入一或多個(較佳兩個複本)的3’-UTR(衍生自球蛋白基因,諸如α2-球蛋白、α1-球蛋白、β-球蛋白,較佳為β-球蛋白,更佳為人類β-球蛋白)。
帶有未遮蔽聚-A序列的RNA比帶有遮蔽聚-A序列的RNA更有效率地被轉譯。術語「聚(A)尾部」或「聚-A序列」是關於腺苷(A)殘基的序列,其典型是位在RNA分子的3’-端,而「未遮蔽聚-A序列」表示在RNA分子之3’末端處的聚-A序列是以聚-A序列的一個A作為末端,且位在聚-A序列的3’端(意即下游)處之後不是一個A以外的核苷酸。此外,一個約120個鹼基對長度的聚-A序列會產生RNA的最佳轉錄本穩定性以及轉譯效率。
因此,為了要增加依據本發明使用之RNA的穩定性及/或表現,其可受到修飾以與聚-A序列(較佳具有10至500,更佳30至300,甚至更佳65至200且特別是100至150腺苷殘基的長度)結合存在。在一個尤佳的具體例中,聚-A序列具有約120個腺苷殘基的長度。為了增加依據本發明使用之RNA的穩定性及/或表現,聚-A序列可以是未遮蔽的。
術語RNA的「穩定性」是關於RNA的「半衰期」。「半衰期」是關於分子的活性、數量或數目減少一半所需的時間期間。在本發明中,RNA的半衰期是該RNA穩定性的一個指標。RNA的半衰期可能影響RNA的「表現持續時間」。可預期半衰期長的RNA可以表現一段較長的時間期間。
當然,若依據本發明有需要降低RNA的穩定性及/或轉譯效率,可以修飾RNA以干擾如上所述增加RNA的穩定性及/或轉譯效率之要素的功能。
術語「表現」依據本發明以其最為普遍的意思使用並且包含產生RNA及/或肽、多肽或蛋白質,例如透過轉錄及/或轉譯。關於RNA,術語「表現」或「轉譯」是尤其關於產生肽、多肽或蛋白質。其亦包含部分表現核酸。此外,表現可能是暫時或穩定的。
在本發明中,術語「轉錄」是關於一種過程,其中DNA序列中的遺傳密碼被轉錄成RNA。之後,RNA可以被轉譯成肽、多肽或蛋白質。依據本發明,術語「轉錄」包含「活體外轉錄」,其中術語「活體外轉錄」是關於一種過程,其中RNA(尤其是mRNA)在活體外於無細胞系統中被合成,較佳地使用適當的細胞萃取物。較佳地,將選殖載體應用於產生轉錄本。這些選殖載體通常被命名為轉錄載體,且依據本發明被術語「載體」所涵括。依據本發明,本發明中所使用的RNA較佳為活體外轉錄的RNA(IVT-RNA)且可透過活體外轉錄適當DNA模板而獲得。用於控制轉錄的啟動子可以是用於任何RNA聚合酶的任一種啟動子。RNA聚合酶的特定實例為T7、T3,以及SP6 RNA聚合酶。較佳地,依據本發明,活體外轉錄是受到T7或SP6啟動子所控制。用於活體外轉錄的DNA模板可以透過選殖核酸(尤其是cDNA),並且將其引入至適當載體中用於活體外轉錄而獲得。cDNA可以經由逆轉錄RNA而獲得。
術語「轉譯」依據本發明是關於在細胞之核糖體內的一個過程,透過該過程一股的信使RNA指導胺基酸序列組裝來製造肽、多肽或蛋白質。
依據本發明可以在功能上與核酸連結的表現控制序列或調節序列和核酸可以是同源或異源。若編碼序列以及調節序列被共價鍵結在一起,則它們可以是在「功能上」被連結在一起,使得編碼序列的轉錄或轉譯受到調節序列所控制或受到調節序列影響。若編碼序列要被轉譯成功能性肽、多肽或蛋白質,在功能性鏈結調節序列與編碼序列的情況下,引入調節序列會使得編碼序列轉錄,而不會造成編碼序列內的讀框轉移或無法將編碼序列轉譯成所需之肽、多肽或蛋白質。
依據本發明,術語「表現控制序列」或「調節序列」包含啟動子、核 糖體結合序列以及控制核酸轉錄或衍生之RNA轉譯的其他控制要素。在本發明的某些具體例中,調節序列可受到控制。調節序列的確切結構可能隨著物種或隨著細胞類型而改變,但通常包含5’-未轉錄以及5’-與3’-未轉譯序列,它們涉及轉錄或轉譯的起始,諸如TATA-盒、加帽序列、CAAT-序列以及類似序列。具體而言,5’-未轉錄調節序列包含啟動子區,其包括啟動子序列以供轉錄控制在功能上相連結的基因。調節序列也可以包含增強子序列或上游活化序列。
較佳地,依據本發明,要在細胞中表現的RNA被引入該細胞中。在本發明方法的一個具體例中,待引入細胞中的RNA是透過活體外轉錄適當DNA模板而獲得。
依據本發明,諸如「能夠表現的RNA」以及「編碼...的RNA」的術語在本文中交替使用並且就特定肽或多肽來說表示該RNA若存在於適當環境時(較佳在細胞內)可被表現以產生該肽或多肽。較佳地,依據本發明,RNA能夠與細胞轉譯機制交互作用以提供能夠表現的肽或多肽。
術語諸如「轉移」、「引入」或「轉染」在本文中交替使用並且是關於將核酸(尤其是外源性或異源性核酸,特別是RNA)引入至細胞中。依據本發明,細胞可能構成器官、組織及/或生物體的一部分。依據本發明,投與核酸是以如裸核酸或與投與試劑組合般來實現。較佳地,投與核酸是呈裸核酸的形式。較佳地,與穩定物質(諸如RNase抑制劑)組合投與RNA。本發明亦預期將核酸重複引入細胞中以容許持續表現一段長時間期間。
可利用任何與RNA締合的載劑來轉染細胞,例如透過與RNA形成複合體或形成RNA被密封或囊封於其中之囊泡,使得RNA的穩定性相較於裸RNA增加。依據本發明,可使用的載劑包括(例如)含脂質載劑(諸如陽離子脂質)、脂質體(尤其是陽離子脂質體以及微胞)與奈米粒子。陽離子脂質可與帶負電核酸形成複合體。依據本發明,可使用任何一種陽離子脂質。
較佳地,將編碼肽或多肽的RNA引入至細胞中,尤其是引入至存在於活體內的細胞中,使得該肽或多肽在細胞中表現。在特定具體例中,偏好 使核酸靶向特定細胞。在此等具體例中,應用於向細胞投與核酸的載劑(例如逆轉錄病毒或脂質體)展現一個靶向分子。例如,對目標細胞上之表面膜蛋白具有特異性的分子(諸如抗體)或對目標細胞上之受體具有特異性的配體可被併入核酸載劑中或可以連結至核酸載劑。在核酸是透過脂質體投與的情況下,結合至與胞吞作用有關之表面膜蛋白的蛋白質可以被併入脂質體調配物中而能夠靶向及/或攝入。此等蛋白質含括對特定細胞類型具有特異性的蛋白殼蛋白或其片段、對抗被內化之蛋白質的抗體、靶向某一個細胞內位置的蛋白質等。
術語「細胞」或「宿主細胞」較佳為完整的細胞,亦即帶有未釋放其正常細胞內組份(諸如酶、胞器或遺傳物質)之完整細胞膜的細胞。完整的細胞較佳為活細胞,亦即能夠執行其正常代謝功能的活細胞。較佳地,該術語依據本發明是關於任一種細胞,其可利用外源性核酸轉形或轉染。依據本發明,術語「細胞」包括原核細胞(例如大腸桿菌)或真核細胞(例如樹突狀細胞、B細胞、CHO細胞、COS細胞、K562細胞、HEK293細胞、HELA細胞、酵母菌細胞與昆蟲細胞)。外源性核酸可以在細胞內找到,其(i)本身游離地分散、(ii)併入重組載體中,或(iii)整併至宿主細胞基因體或粒線體DNA中。尤其偏好哺乳動物細胞,諸如人類、小鼠、倉鼠、豬、山羊以及靈長類的細胞。細胞可以是衍生自大量組織類型且包括初代細胞以及細胞株。特定實例包括角質細胞、周邊血液白血球、骨髓幹細胞以及胚幹細胞。在更多具體例中,細胞為抗原呈現細胞,尤其是樹突狀細胞、單核球或巨噬細胞。
包含核酸分子的細胞較佳地表現由該核酸所編碼的肽或多肽。
術語「純系擴增」意指一種特定實體被倍增的過程。在本發明中,該術語較佳地使用於免疫學反應中,其中淋巴球受到抗原刺激、增生,而辨識該抗原的特定淋巴球經倍增。較佳地,純系擴增造成淋巴球的分化。
諸如「降低」」或「抑制」的術語是關於在程度上造成整體降低較佳5%或更多、10%或更多、20%或更多,更佳地50%或更多,以及最佳地75% 或更多的能力。術語「抑制」或類似用語包括完全或實質上完全抑制,亦即降低至零或實質上至零。
諸如「增加、「提高」、「促進」或「延長」的術語較佳地是關於增加、提高、促進或延長約至少10%,較佳地至少20%、較佳地至少30%、較佳地至少40%、較佳地至少50%、較佳地至少80%、較佳地至少100%,較佳地至少200%,以及尤其至少300%。這些術語也關於從零或未能測量到或未能偵測到的程度增加、提高、促進或延長至超過零或可測量到或可偵測到的程度。
本發明提供用於鑑別經預測為適用於免疫療法之胺基酸修飾的方法。胺基酸修飾存在於在患者之罹病細胞中表現的肽或多肽。術語「患者之罹病細胞中表現的肽或多肽」不必然就表示肽或多肽的表現已經過實驗測試。而是表示編碼肽或多肽的開放閱讀框存在於患者的罹病細胞中,因而該肽或多肽有可能在患者的罹病細胞中表現。
預測適用於免疫療法的胺基酸修飾可用來設計疫苗。具體而言,疫苗可包含由罹病細胞所表現且包含經本發明方法預測適用於免疫療法之胺基酸修飾的肽或多肽,或核酸(諸如編碼該肽或多肽的RNA)。或者或另外,疫苗可包含疫苗肽或多肽,其含有由罹病細胞所表現之該肽或多肽的片段,該片段包含經本發明方法預測適用於免疫療法的胺基酸修飾,或核酸(諸如編碼該疫苗肽或多肽的RNA)。
若本發明的方法指出包含疾病特異性胺基酸修飾之肽或多肽的片段(1)在不同類型的MHC分子中被呈現,及/或當在MHC分子中被呈現時與限定於不同MHC類型的T細胞有反應、(2)當在相同MHC分子中被呈現時與帶有不同T細胞受體的T細胞有反應,及/或(3)在相同類型的不同MHC分子中被呈現,及/或當在相同類型的不同MHC分子中被呈現時與限定於相同MHC類型的不同T細胞有反應,則該疫苗肽或多肽較佳地包含至少涵蓋該片段之肽或多肽的序列或更長序列(亦即疫苗序列)。
若本發明的方法指出包含疾病特異性胺基酸修飾之肽或多肽的不同片 段(1)在不同類型的MHC分子中被呈現,及/或當在MHC分子中被呈現時與限定於不同MHC類型的T細胞有反應,及/或(2)在相同類型的不同MHC分子中被呈現,及/或當在相同類型的不同MHC分子中被呈現時與限定於相同MHC類型的不同T細胞有反應,則該疫苗肽或多肽較佳地包含至少涵蓋該片段之肽或多肽的序列或更長序列(亦即疫苗序列)。
依據本發明,術語「疫苗」是關於一種醫藥製品(醫藥組合物)或產品,其在投與之後引發免疫反應,尤其是細胞性免疫反應,其辨識並攻擊病原體或罹病細胞(諸如癌細胞)。疫苗可用來預防或治療疾病。術語「個人化癌症疫苗」或「個別化癌症疫苗」涉及某位特定的癌症患者,並且表示癌症疫苗係針對個別癌症患者的需求或特別情況而進行調整。
在一個具體例中,依據本發明提供的疫苗可包含含有經本發明方法預測適用於免疫療法之一或多個胺基酸修飾的肽或多肽或一或多個經修飾肽,或核酸(較佳為編碼該肽或多肽的RNA)。
當投與給患者時,依據本發明提供的癌症疫苗較佳地提供一或多個T細胞表位,其適用於刺激、啟動及/或擴張對患者之罹病細胞(諸如患者的腫瘤)具有特異性之T細胞。T細胞較佳地針對表現抗原的細胞,T細胞表位是自抗原衍生而來。本文所述的疫苗較佳地能夠引發或促進細胞性反應,較佳為細胞毒性T細胞活性來對抗特徵在於利用第I型MHC呈現一或多個腫瘤相關新抗原的癌症疾病。靶向癌症特異性突變的疫苗對患者的腫瘤將具有特異性。
依據本發明提供的疫苗是關於一種疫苗,當投與給患者時,較佳地提供一或多個T細胞表位(諸如2個或更多個、5個或更多個、10個或更多個、15個或更多個、20個或更多個、25個或更多個、30個或更多個以及較佳地至多60個、至多55個、至多50個、至多45個、至多40個、至多35個或至多30個T細胞表位),併入經本發明方法預測為具免疫原性的胺基酸修飾或經修飾肽。此等T細胞表位在本文中又被稱為「新表位」。當結合至MHC時,由患者的細胞(特別是抗原呈現細胞)呈現這些表位較佳地會造成T細胞靶向 表位,並因而靶向患者的腫瘤,較佳為原發性腫瘤以及腫瘤轉移,表現T細胞表位衍生而來的抗原,並且在腫瘤細胞表面上呈現相同的表位。
本發明方法可包含決定經鑑別胺基酸修飾或經修飾肽用於癌症疫苗之可用性的進一步步驟。因此,進一步步驟可涉及下列中的一或多者:(i)評估該等修飾是否位在已知或預測的經MHC呈現之表位中、(ii)活體外及/或電腦上測試該等修飾是否位在經MHC呈現之表位中,例如測試該等修飾是否為肽序列的一部分,其經加工成經MHC呈現表位及/或經MHC呈現表位,以及(iii)活體外測試所預期的經修飾表位(特別是當存在於其天然序列中時,例如當兩側為也在天然肽或多肽的該等表位兩側的胺基酸續列側接時,且當於抗原呈現細胞中表現時)能否刺激T細胞(諸如帶有所需特異性之患者的T細胞)。此等側接序列各自可包含3個或更多個、5個或更多個、10個或更多個、15個或更多個、20個或更多個,且較佳地至多50個、至多45個、至多40個、至多35個或至多30個胺基酸並在N端及/或C端側接表位序列。
依據本發明測定之經修飾肽可以依據其作為癌症疫苗接種之表位的效用來進行評比。因此,在一個態樣中,本發明包含一種基於手動或電腦分析的過程,其中分析經鑑別的經修飾肽並且針對其在打算提供之個別疫苗中的可用性來進行篩選。在一個較佳具體例中,該分析過程是一種基於電腦演算的過程。較佳地,該分析過程包含依據預測表位能否是免疫原性來確定及/或評定表位。
依據本發明鑑別且透過本發明之疫苗提供的新表位較佳地是以多肽的形式存在,該多肽包含該新表位,諸如多表位性多肽或核酸,尤其是編碼該多肽的RNA。此外,新表位可存在於形式呈疫苗序列的多肽中,亦即存在於其天然序列中,亦即側接也在天然肽或多肽中側接該等表位的胺基酸序列。此等側接序列各自可包含5個或更多個、10個或更多個、15個或更多個、20個或更多個且較佳地至多50個、至多45個、至多40個、至多35個或至多30個胺基酸,並可在N端及/或C端側接表位序列。因此,疫苗序列可包含20個或更多個、25個或更多個、30個或更多個、35個或更多個、40個或 更多個且較佳地至多50個、至多45個、至多40個、至多35個或至多30個胺基酸。在一個具體例中,新表位及/或疫苗序列在多肽中頭尾排列。
在一個具體例中,新表位及/或疫苗序列被連接子隔開,尤其是中性連接子。術語「連接子」依據本發明是關於被添加在兩個肽結構域(諸如表位或疫苗序列)之間以連接該等肽結構域的肽。連接子序列並沒有特殊限制。但是,偏好連接子序列會降低兩個肽結構域之間的立體阻礙、經充分轉譯並且支持或允許表位的加工處理。另外,連接子應不具有或僅有很少的免疫原性序列要素。連接子較佳地不應產生非內源性新表位,像是那些因為相鄰新表位之間的接合結構所產生者,它們可能會產生不樂見的免疫反應。因此,多表位性疫苗較佳地應含有連接子序列,其能夠降低不樂見MHC結合接合表位的數目。Hoyt et al.(EMBO J.25(8),1720-9,2006)and Zhang et al.(J.Biol.Chem.,279(10),8635-41,2004)已證明,富含甘胺酸的序列會阻礙蛋白酶體加工並因而富含甘胺酸的連接子序列用於使可被蛋白酶體加工處理之含連接子肽的數目降至最低。另外,發現甘胺酸會抑制MHC結合溝位置中的強烈結合(Abastado et al.,J.Immunol.151(7),3569-75,1993)Schlessinger et al.(Proteins,61(1),115-26,2005)已發現,胺基酸序列中所含的胺基酸甘胺酸與絲胺酸會產生更富彈性的蛋白質,其更為有效率地被轉譯並且受到蛋白酶體加工處理,使得更能接近所編碼之新表位。連接子各自可包含3個或更多個、6個或更多個、9個或更多個、10個或更多個、15個或更多個、20個或更多個且較佳地至多50個、至多45個、至多40個、至多35個或至多30個胺基酸。較佳地,連接子富含甘胺酸及/或絲胺酸胺基酸。較佳地,連接子的至少50%、至少60%、至少70%、至少80%、至少90%或至少95%胺基酸為甘胺酸及/或絲胺酸。在一個較佳具體例中,連接子實質上是由胺基酸甘胺酸與絲胺酸組成。在一個具體例中,連接子包含胺基酸序列(GGS)a(GSS)b(GGG)c(SSG)d(GSG)e,其中a、b、c,d與e為獨立地選自0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20的數字,且其中a+b+c+d+e不同於0且較佳為2或更多、3或更多、4 或更多,或5或更多。在一個具體例中,連接子包含如本文所述的序列,包含實例中所述的連接子序列,諸如序列GGSGGGGSG。
在一個尤佳具體例中,依據本發明整併一或多個新表位的多肽(諸如多表位性多肽)以核酸的形式(較佳為RNA,諸如活體外經轉錄或合成RNA,其可在諸如抗原呈現細胞之患者細胞中被表現以生產多肽)被投與至患者。本發明亦預期投與一或多個多表位性多肽,其基於本發明是被術語「多表位性多肽」所涵括,較佳地呈核酸的形式,較佳為RNA,諸如活體外經轉錄或合成RNA,其可在諸如抗原呈現細胞之患者細胞中被表現以生產一或多個多肽。在投與超過一個多表位性多肽的情況下,不同多表位性多肽所提供的新表位可能不同或部分重疊。一旦出現在患者的細胞(諸如抗原呈現細胞)中,多肽依據本發明被加工處理以產生依據本發明所鑑別的新表位。投與依據本發明提供的疫苗較佳地提供第I型MHC呈現的表位,其能夠引起CD8+ T細胞反應對抗表現由MHC呈現之表位所衍生而來之抗原的細胞。投與依據本發明提供的疫苗也可以提供第II型MHC呈現的表位,其能夠引起CD4+ T細胞反應對抗表現由MHC呈現之表位所衍生而來之抗原的細胞。此外,投與依據本發明提供的疫苗可以提供一或多種新表位(包括已知的新表位以及依據本發明鑑別的新表位)還有一或多個不含有癌症特異性體細胞突變但被癌細胞表現的表位,且較佳地引發對抗癌細胞的免疫反應,較佳為癌症特異性免疫反應。
依據本發明提供的疫苗可以是重組疫苗。
術語「重組」在本發明中表示「透過遺傳工程製造」。較佳地,「重組實體」(諸如重組多肽)在本發明中不是天然的,且較佳地是因為實體(諸如胺基酸或核酸序列,其在自然界中並未被組合)的組合。舉例而言,重組多肽在本發明中可含有數個胺基酸序列(諸如新表位)或衍生自透過肽鍵或適當連接子融合在一起之不同蛋白質或相同蛋白質的不同部分的疫苗序列。
術語「天然」如本文所用意指一個物體可以在自然界中被發現。例如, 存在於生物體(包括病毒)中且可由自然來源分離且未經人為在實驗室中蓄意修飾的肽或核酸為天然的。
本文所述的藥劑以及組合物可用來治療患有疾病的個體,疾病為例如特徵在於存在表現抗原並且呈現其片段的罹病細胞。尤佳的疾病為癌症疾病。本文所述的要劑以及組合物亦可用來免疫或免疫接種以預防本文所述疾病。
術語「疾病」意指一種影響個體身體的異常狀況。疾病通常被認為是與特定症狀和病徵有關的醫學狀態。疾病可能因為源自於外部因素(諸如傳染病)所致,或者其可能是因為內部功能障礙所致(諸如自體免疫疾病)。在人類體內,「疾病」通常更為廣泛地用來意指造成罹病個體的疼痛、功能障礙、痛苦、社會問題或死亡,或者是那些與個體接觸者之類似問題的任何病況。以這個更為廣泛的意思來說,其有時候包括損傷、障礙、病症、症狀、感染、分離的症狀、偏離行為以及結構與功能的非典型變化,而在其他情況以及其他目的下這些可被認為是可區別的分類。疾病通常不僅在身體上侵犯個體,在情緒上也會,因為染病且在許多疾病的狀態下生活會在生命方面改變一個人的觀點還有一個人的個性。
術語「正常」意指在健康個體或組織中的健康狀態或狀況,意即非病理學狀況,其中「健康」較佳地表示非癌症。
術語「與抗原有關的疾病」或「涉及抗原的疾病」意指牽涉到抗原的疾病,意即特徵在於存在抗原或表現抗原之細胞的疾病。涉及抗原的疾病可能是癌症疾病或單單癌症。如上文所提,抗原可能是疾病相關抗原,諸如腫瘤相關抗原。
依據本發明,「涉及表現抗原之細胞的疾病」表示偵測到抗原在罹病組織或器官之細胞中表現。在罹病組織或器官之細胞中的表現可能相較於在健康組織或器官中的狀態有所增加。增加意指增加至少10%,特別是至少20%、至少50%、至少100%、至少200%、至少500%、至少1000%、至少10000%或甚至更多。在一個具體例中,僅在罹病組織中發現到表現,而在健康組 織中的表現受到壓抑。依據本發明,涉及表現抗原之細胞或與表現抗原之細胞有關的疾病包括癌症疾病。
術語「癌症疾病」或「癌症」意指或描述在個體體內的生理學狀態,其典型特徵在於不受控制的細胞生長。癌症的實例包括(但不限於)癌、淋巴瘤、胚細胞瘤,肉瘤以及白血病。更特別地,此等癌症的實例包括骨癌、血液癌肺癌、肝癌、胰臟癌、皮膚癌、頭部或頸部癌、皮膚或眼內黑色素瘤、子宮癌、卵巢癌、直腸癌、肛門區癌、胃癌、結腸癌、乳癌、前列腺癌、子宮癌、性與生殖器官的癌、霍奇金氏病、食道癌、小腸癌、內分泌系統癌、甲狀腺癌、副甲狀腺癌、腎上腺癌、軟組織肉瘤、膀胱癌、腎癌、腎細胞癌、腎盂癌、中樞神經系統(CNS)贅瘤、神經外胚層癌、脊軸腫瘤、神經膠質瘤、腦脊髓膜瘤以及垂體腺瘤。依據本發明,術語「癌症」也包含癌症轉移。
依據本發明,術語「腫瘤」或「腫瘤疾病」意指細胞(稱為贅瘤細胞、致瘤細胞或腫瘤細胞)的異常生長,較佳地形成腫脹或病灶。「腫瘤細胞」表示生長快速、細胞增生不受控制且在刺激已起始的新生長停止之後繼續生長的異常細胞。腫瘤顯示部分或完全缺乏結構組織以及與正常組織的功能協同,且通常形成獨特的組織塊,其可能是良性、癌前或惡性。
為本發明之目的,術語「癌症」以及「癌症疾病」與術語「腫瘤」和「腫瘤疾病」交替使用。
「轉移」表示癌細胞從其原有部位擴散致身體的另一個部分。形成轉移是一個非常複雜的過程,並且取決於惡性細胞脫離原發性腫瘤、侵犯細胞外基質、穿透內皮基底膜而進入體腔與血管,然後被血液運輸、浸潤目標組織。最後,在目標部位長成新的腫瘤(意即繼發性腫瘤或轉移腫瘤)取決於血管新生。即使在移除原發性腫瘤後常發生腫瘤轉移,因為腫瘤細胞或組份可能保有並生成轉移潛力。在一個具體例中,依據本發明,「轉移」是關於「遠端轉移」,其是關於與原發性腫瘤以及局部淋巴結系統遠離的轉移。
繼發性或轉移性腫瘤的細胞像是那些在原來腫瘤中的細胞。這表示,舉例而言,若卵巢癌轉移至肝臟,則繼發性腫瘤是由異常的卵巢細胞所構成,而不是異常的肝細胞。於是肝臟中的腫瘤被稱為轉移性卵巢癌,而不是肝癌。
術語「循環的腫瘤細胞」或「CTC」是關於已經從原發性腫瘤或腫瘤轉移脫離並且循環於血流中的細胞。CTC可以構成根源以供額外腫瘤(轉移)在不同組織中的後續生長。循環的腫瘤細胞可以在帶有轉移性疾病的患者體內以每mL全血1-10 CTC的等級發生率被發現到。已開發出研究方法來分離CTC。在技藝中已經描述數種研究方法來分離CTC,例如使用通常表現細胞黏附蛋白EpCAM之表皮細胞的技術,EpCAM不存在於正常血球中。以免疫磁性珠粒為基礎的捕獲涉及用針對EpCAM之與磁性粒子接合的抗體處理血液樣本,然後在磁場中分離經標記的細胞。接著用針對另一表皮標記(細胞角蛋白還有常見白血球標記CD45)的抗體對經分離細胞進行染色,藉以將CTC與污染白血球予以區分。這個耐用且半自動方法鑑別出帶有平均產量為約1 CTC/mL以及純度為0.1%的CTC(Allard et al.,2004:Clin Cancer Res 10,6897-6904)。用於分離CTC的第二個方法使用以微流體為主的CTC捕獲裝置,其涉及使全血通過嵌埋有80,000個微柱的空室,該等微柱因為塗覆有針對EpCAM的抗體而被賦予功能。CTC接著用對抗細胞角蛋白或組織特異性標記(諸如前列腺癌的PSA與乳癌的HER2)的二級抗體染色並且透過在數個平面沿著三維座標自動掃描微柱而呈現。CTC-晶片能夠在患者體內鑑別出細胞角蛋白陽性循環腫瘤細胞,中位產量為50個細胞/ml而純度範圍為1-80%(Nagrath et al.,2007:Nature 450,1235-1239)。用於分離CTC的另一個可能性是使用Veridex,LLC(Raritan,NJ)的CellSearchTM Circulating Tumor Cell(CTC)Test,其捕獲、鑑定且計數血液管中的CTC。CellSearchTM系統是經美國食品藥物管理局(FDA)核可用於計算全血中之CTC的方法學,其是基於組合免疫磁性標記以及自動數位顯微術。在文獻中有其他用於分離CTC的方法,它們可以與本發明組合使用。
當某人再次罹患過去侵襲他們的病況,便發生了復發或再發。例如,若患者罹患腫瘤疾病,已接受成功治療該疾病且再次生成該疾病,則新生成的疾病可被視為復發或再發。但是,依據本發明,腫瘤疾病的復發或再發可能,但不必然發生在原有腫瘤疾病的部位。因此,例如,若患者先前罹患卵巢腫瘤疾病且已經接受成功治療,復發或再發可能是出現卵巢腫瘤或在與卵巢不同的部位出現腫瘤。腫瘤復發或再發也包括腫瘤出現在不同於原來腫瘤部位之部位處還有在原來腫瘤部位處的情況。較佳地,患者接受處理的原有腫瘤為原發性腫瘤,而在與原有腫瘤部位不同的部位處的腫瘤為繼發性或轉移性腫瘤。
術語「免疫療法」是關於藉由引發、提高或壓抑免疫反應來治療疾病或病況。被設計成引起或擴大免疫反應的免疫療法歸類為活化免疫療法,而降低或壓抑免疫反應的免疫療法歸類為壓抑免疫療法。術語「免疫療法」包括抗原免疫接種或抗原疫苗接種,或腫瘤免疫接種或腫瘤疫苗接種。術語「免疫療法」也關於操控免疫反應,使得不恰當的免疫反應在自體免疫疾病(諸如類風溼性關節炎、過敏、糖尿病或多發性硬化症)中被調整成更為適當。
術語「免疫接種」或「疫苗接種」描述向個體投與抗原的過程,目的在於引發免疫反應,例如基於治療性或預防性理由。
術語「治療性治療」或簡單地「治療」是關於任一種治療,其改善健康狀態及/或延長(增加)個體的壽命。該治療可能消除個體體內的疾病、遏止或減緩個體體內的疾病進展、抑制或減緩個體體內的疾病生成、降低個體體內症狀的發生率以及嚴重性,及/或降低目前有或先前已患病之個體體內的再發。
術語「預防性治療」或「防止性治療」是關於任一種治療,其意欲要防止個體體內的疾病發生。術語「預防性治療」或「防止性治療」在本文中交替使用。
術語「保護」、「防止」、「預防性」、「防止性」或「保護性」是 關於防止及/或治療個體體內的疾病(例如腫瘤)發生及/或增殖。例如,預防性投與免疫療法(例如透過投與本文所述的組合物)可保護接受的個體免於生成腫瘤。例如,治療性投與免疫療法(例如透過投與本文所述的組合物)可中止疾病生成,例如導致腫瘤進展/生長的抑制。這包含使腫瘤進展/生長減速,尤其是中斷腫瘤進展,其較佳地導致腫瘤消滅。治療性投與免疫療法可保護個體例如免於現有腫瘤散布或轉移。
術語「個體(individual或subject)」是關於脊椎動物,尤其是哺乳動物。例如,哺乳動物在本發明中為人類、非人類靈長類、馴養動物(諸如狗、貓、綿羊、牛、山羊、豬、馬等)、實驗室動物(諸如小鼠、大鼠、兔、天竺鼠等),還有被關起來的動物(諸如動物園動物)。術語「個體」也是關於非哺乳動物脊椎動物,諸如禽類(尤其是豢養禽類,諸如雞、鴨、鵝、火雞)還有魚類(尤其是養殖魚類,例如鮭魚或鯰魚)。術語「動物」如本文所用也包括人類。較佳地,術語「患者」是關於罹病個體。
本文所述的藥劑可呈任一種適宜醫藥組合物的形式被投與。術語「醫藥組合物」是關於一種包含治療有效劑或其鹽的調配物,較佳地與醫藥賦形劑(諸如緩衝劑、防腐劑與張力調節劑)一起。該醫藥組合物適用於透過向個體投與該醫藥組合物來治療、防止或降低疾病或病症的嚴重性。醫藥組合物在技藝中已知為醫藥調配物。醫藥組合物可以局部或全身性地投與。
術語「全身性投與」意指投與治療有效劑,使得該藥劑以明顯之量廣泛地分布在個體體內並產生生物效用。依據本發明,偏好透過非經腸投與來進行投藥。
術語「非經腸投與」意指投與治療有效劑,使得該藥劑不通過腸。術語「非經腸投與」包括靜脈內投與、皮下投與、皮內投與或動脈內投與,但不限於此。
在一個尤佳的具體例中,依據本發明的組合物被投與至肌肉組織,諸如骨骼肌。肌肉內投與(諸如透過肌肉內注射)因而為偏好的投與路徑。
投與可以不同方式達成。在一個具體例中,依據本發明的組合物經由 注射投與。在一個較佳具體例中,注射是經由針頭。無針注射可用作為替代方案。
本發明的醫藥組合物可包含至少一種佐劑。術語「佐劑」是關於化合物,當其與抗原或抗原肽組合被投與給個體時,延長或提高或加速免疫反應。假設佐劑透過一或多種機制展現其生物學活性,機制包括增加抗原表面、延長抗原在體內的滯留、拖延抗原釋放、將抗原靶向至巨噬細胞、增加抗原攝入、提高抗原加工、刺激細胞激素釋放、刺激並活化免疫細胞(諸如B細胞、巨噬細胞、樹突狀細胞、T細胞)以及非特異性活化免疫細胞。佐劑包含異質化合物群,諸如油乳液(例如佛氏佐劑)、無機化合物(諸如明礬)、細菌產物(諸如百日咳嗜血桿菌毒素),或免疫刺激複合體。佐劑的實例包括皂素、不完全佛氏佐劑、完全佛氏佐劑、生育酚或明礬,但不限於此。
依據本發明,醫藥組合物大體上以「醫藥上有效量」且以「醫藥上可接受製品」施用。
術語「醫藥上有效量」意指單獨或與其他劑量一起達到所需反應或所需效用之量。在治療特定疾病的情況下,所需反應較佳地是有關抑制疾病的進程。這包含減緩疾病的進展,且具體而言中斷或逆轉疾病的進展。在治療疾病時,所需反應也可以是延遲該疾病或病況發生或防止該疾病或病況發生。有效量的本文所述組合物將取決於待治療病況、疾病的嚴重性、患者的特別參數(包括年齡、生理學狀態、身材與體重)、治療的持續時間、伴隨療法的類型(若有的話)、投藥的具體路徑以及類似因素。因此,本文所述組合物的投與劑量可能取決於這些不同的參素。在患者使用初始劑量但反應不夠的情況下,可使用較高劑量(或透過不同、更為局部的投藥路徑達到有效的更高劑量)。
術語「醫藥上可接受」意指不予醫藥組合物之化學組分的作用交互作用的物質的非毒性。
本發明的醫藥組合物可含有鹽類、緩衝劑、防腐劑、載劑,以及視情況選用的其他治療劑。較佳地,本發明的醫藥組合物包含一或多種醫藥上 可接受的載劑、稀釋劑及/或賦形劑。
術語「賦形劑」希望是指明醫藥組合物中的所有物質,其並非活性成分,諸如黏合劑、潤滑劑、增稠劑、界面活性劑、防腐劑、乳化劑、緩衝劑、風味劑或著色劑。
術語「稀釋劑」是有關稀釋及/或稀化劑。此外,術語「稀釋劑」包括任一或多種流體、液體或固體懸浮液及/或混合介質。
術語「載劑」是關於一或多種可相容的固體或液體填料或稀釋劑,其適用投與給人類。術語「載劑」是關於天然或合成或有機或無機組分,其與一種活性組份結合以促進活性組份的施用。較佳地,載劑組份為無菌液體,諸如水或油,包括那些衍生自礦物油、動物或植物者(諸如花生油、大豆油、芝麻油、葵花籽油等)。鹽溶液以及水性葡萄糖與甘油溶液也可用作為水性載劑化合物。
治療用的醫藥上可接受載劑或稀釋劑為醫藥技藝中已知,並描述於例如Remington's Pharmaceutical Sciences,Mack Publishing Co.(A.R Gennaro edit.1985)中。適當載劑的實例包括(例如)碳酸鎂、硬脂酸鎂、滑石、糖、乳糖、果膠、糊精、澱粉、明膠、黃耆樹膠、甲基纖維素、羧甲基纖維素鈉、低溶點蠟、可可脂,以及類似物。適當稀釋劑的實例包括乙醇、甘油與水。
醫藥載劑、賦形劑或稀釋劑可就所欲投藥路徑以及標準醫藥實務來選定。本發明的醫藥組合物可包含(或除了載劑、賦形劑或稀釋劑以外)任何適當黏合劑、潤滑劑、懸浮劑、塗覆劑及/或助溶劑。適當黏合劑的實例包括澱粉、明膠、天然糖(諸如葡萄糖)、無水乳糖、自由流動乳糖、β乳糖、玉米甜味劑、天然與合成膠(阿拉伯膠、黃耆樹膠與海藻酸鈉)、羧甲基纖維素與聚乙二醇。適當潤滑劑的實例包括油酸鈉、硬脂酸鈉、硬脂酸鎂、苯甲酸鈉、乙酸鈉、氯化鈉與類似物。防腐劑、安定劑、染料還有甚至風味劑可提供於醫藥組合物中。防腐劑的實例包括苯甲酸鈉、山梨酸與對羥基苯甲酸的酯類。也可以使用抗氧化劑以及懸浮劑。
在一個具體例中,組合物為水性組合物。水性組合物可視情況包含溶質,例如鹽類。在一個具體例中,組合物呈冷凍乾燥組合物的形式。冷凍乾燥組合物是透過冷凍乾燥個別水性組合物而獲得。
本文提供的藥劑以及組合物可單獨使用或與其他治療方案(諸如外科手術、放射線、化療及/或骨髓移殖(自體、同基因型、同種異體或不相干))一起使用。
詳細說明本發明並且透過圖式與實例來釋明,它們僅供說明之用而不希望具有限制性。由於說明以及實例,同樣納入本發明中的更多具體例可為習於技藝者所取得。
實例
在此說明本文所使用的技術與方法或以本身已知以及如例如在Sambrook et al.,Molecular Cloning:A Laboratory Manual,2nd Edition(1989)Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.中所述的方式來實施。除非另有明確指明,否則包括使用套組以及試劑的全部方法是依據製造商的資訊來實施。
實例 實例1:材料與方法
研究設計
這個多中心第I期研究(NCT02035956)的主要目標在於評估疫苗的安全性以及疫苗引發之抗原特異性免疫反應。
本研究是依據赫爾辛基宣言以及良好臨床操作規範,並且經各參與地點和適任管理機構的機構複審委員會或獨立倫理委員會核准來執行。所有患者均有提供知情同意書。
適格的患者為18歲,具有任何治療階段為完全緩解、部分緩解或穩定疾病的第IIIA-C或IV期惡性黑色素瘤(AJCC 2009黑色素瘤分類)。若有轉移的患者可被活性化合物所治療直到可利用其個別化疫苗,則他們是適格的。患者必須有適當的血液學與終器功能。主要排除標準為臨床上相關的 自體免疫疾病、HIV、HBV、HCV以及急性EBV或CMV感染和腦部轉移。規律治療為在43天內有八次注射;繼續治療則要視研究人員的判斷。RNA五表位(pentatope)被稀釋於1.0mg/mL林格氏溶液(Rotexmedica或BAG Healthcare)中,並注射至個別的鼠蹊部淋巴結中。10名患者在每次治療投與500μg而三名患者在每次治療投與1000μg以探究兩種不同的劑量範圍。
主要研究評估
在第一次疫苗注射之前(訪視12,稱為「疫苗接種前」)以及在第8次疫苗注射之後(訪視20;稱為「疫苗接種後」)進行用於免疫原性測試的白血球去除術(leukaphereses)。
在基線(訪視1)、疫苗接種前(訪視12)、第90天(訪視21)和持續治療結束(訪視26)時,依據局部成像指南以及RECIST(irRC)1.1版和免疫相關反應標準(irRC)準則(Wolchok,J.D.et al.Clin.Cancer Res.15,7412-20(2009))透過CT掃描以及MRI來執行胸部、腹部、腦部成像。安全性是依據CTCAE v4.03特徵鑑定從第1級至多到第5級。
在此呈現的數據是基於探究暫時分析,數據截止日期為2016年11月。
患者材料
經福馬林固定且經石蠟包埋(FFPE)或新鮮冷凍的腫瘤組織是在慣常診斷切除術時取得,並且在經H&E染色的切片中評估腫瘤內容。
新鮮腫瘤樣品用於製備腫瘤浸潤淋巴球(TIL)以及初代腫瘤細胞株。
TIL是生長自如先前公開般培養於X-Vivo 15培養基(Lonza)中歷時兩週的小塊新鮮腫瘤組織,培養基具有2%人類血清白蛋白(CSL-Behring)與6000U/mL IL-2(Proleukin S,Novartis)(Dudley,M.E.,Wunderlich,J.R.,Shelton,T.E.,Even,J.& Rosenberg,S.A.J.Immunother.26,332-42)。之後,TIL使用經放射線照射、同種異體PBMC作為餵養細胞(feeder cell)於30ng/mL抗-CD3 IgG2a(純系OKT3,eBiosciences)和300U/mL IL-2(Proleukin S,Novartis)存在下增長歷時兩週。
關於生成患者衍生的黑色素瘤細胞株,在補充有15% FCS(Biochrome AG)的RPMI1640培養基(Life Technologies)中培養新鮮腫瘤組織碎片。
用於免疫監測或作為起始材料用於製造程序的所得PBMC是透過Ficoll-Hypaque(Amersham Biosciences)密度梯度離心從健康供體或從黑色素瘤患者的周邊血液樣品的膚色血球層分離。不成熟DC(DC)是如先前所述生成(Holtkamp,S.et al.Blood 108,4009-17(2006))。
次世代定序
以三重複的方式,使用Qiagen's QIAamp DNA FFPE Tissue套組的修改版本從三個十μm-柯爾(curl)FFPE腫瘤組織萃取DNA。FFPE腫瘤柯爾的RNA萃取是以二重複使用Qiagen的RNeasy FFPE套組完成。關於從新鮮冷凍腫瘤樣品或細胞萃取DNA與RNA,分別使用Qiagen的DNeasy Blood and Tissue套組RNeasy Mini Kit。
經萃取的核酸使用於產生各種庫。RNA-Seq庫是使用Illumina的TruSeq RNA Sample Prep套組V2以及1μg總RNA作為輸入物以二重複從FFPE腫瘤或細胞株RNA來進行製備。DNA外顯子體捕獲庫是以二重複由1至3μg的FFPE腫瘤DNA以及匹配的PBMC DNA使用Agilent的SureSelect XT V4 Human All Exon構成。
MZ-GaBa-018的全基因體定序(WGS)的NGS庫以及匹配PBMC是透過將100ng基因體DNA以15μL的總體積使用微TUBE-15(Covaris Ltd)予以片段化成平均片段長度為約160bp來製備。該庫是使用NEB用於Illumina®的NEBNext® UltraTM DNA Library Prep Kit利用25ng片段化gDNA作為輸入物來進行製備。
關於次世代定序(NGS),將庫稀釋成2nM或十nM並且使用Illumina TruSeq PE Cluster套組v3-cBot-HS以十pM予以簇集。每個外顯子體捕獲庫分別在一條道中進行定序,而RNA庫重複品在一條道中以2叢進行定序。所有庫使用兩個Illumina的TruSeq SBS Kit v3-HS在Illumina HiSeq 2500平台上為雙端的50個nt進行定序50個循環。MZ-GaBa-018細胞株以及匹配的PBMC WGS庫在4條道各自被展開來並且使用Illumina的TruSeq SBS Kit v3-HS在 相同平台上為雙端的100個nt進行定序200個循環。
生物資訊學以及突變發現
單位患者的所有突變體相關數據分析步驟是透過在Python程式語言中實施的軟體路線來進行協調。就DNA庫來說需要最少150 x 106雙端50nt讀段,而就RNA庫來說需要最少75 x 106雙端50nt讀段。
關於突變偵測,DNA讀段利用bwa對準參考基因體hg19(Li,H.& Durbin,R.Bioinformatics 25,1754-1760(2009))。針對單核苷酸變異體來分析腫瘤以及匹配正常樣品的二重複外顯子體。在正常樣品中鑑定帶有推定同型合子基因型的基因座並且予以過濾以保持單核苷酸變異體的高度信賴結果。進一步檢查推定同型合子或異型合子突變事件的其餘位點。對可疑的位點進行過濾,以移除可能的偽陽性。透過分別測試重複的總合與重複而將重複併入。單核苷酸變異體的最後清單是由正常樣品中的高信賴同型合子位點以及腫瘤樣品中高信賴異型合子或同型合子突變事件所組成。將經鑑別變異體的基因體座標與UCSC已知基因轉錄本座標相比對,以便將變異體與基因、轉錄本、可能胺基酸序列變化以及RNA-Seq衍生之表現值相關聯。
關於RNA-Seq,RNA讀段使用bowtie(Langmead,B.,Trapnell,C.,Pop,M.& Salzberg,S.L.Genome Biol.10,R25(2009))對準hg 19參考基因體與轉錄體,而基因表現是透過與UCSC已知基因轉錄本和外顯子座標比對,然後相對於RPKM單位進行常規化(Mortazavi,A.et al.Nat.Methods 5,1-8(2008))而確定。
新表位優先順序確定以及選定
從已鑑別的單核苷酸變異體,透過推斷程序選出至多46個預測變異體:a)移除無意義變異體並且依據非零外顯子以及轉錄本表現過濾;然後先依據外顯子表現然後依據第I型HLA結合預測計分使用穩定分類演算法進行分類,並選出至多46個變異體(P01-P04)。b)移除無意義變異體並且依據非零外顯子以及轉錄本表現,還有在RNA-Seq數據中的非零變異體發生率過 濾;接著依據外顯子表現然後依據第I型HLA結合預測計分使用穩定分類演算法進行分類,並選出至多23個目標肽序列;之後先依據第I型HLA結合預測計分然後使用穩定分類演算法依據外顯子表現進行分類,並且選出至多23個額外的目標肽序列;兩個篩選步驟不允許有超過46個選定變異體(P05-P07、P09-P12)。以及c)移除無意義變異體並且依據非零外顯子以及轉錄本表現,還有在RNA-Seq數據中的非零變異體發生率;接著依據外顯子表現然後依據第II型HLA結合預測計分使用穩定分類演算法進行分類,並且選出至多基因表現10 RPKM的20個目標肽序列;接著先依據表現然後是依據第I型HLA結合預測計分使用穩定分類演算法來對其餘目標肽序列進行分類,並且選出至多20個額外目標肽序列;接著依據第I型HLA結合預測計分然後依據外顯子表現使用穩定分類演算法來對其餘目標肽序列進行分類,並且補滿至多46個選定變異體(P17、P19)。每位患者最後選出至多十個突變目標肽需要決定目標選定板,其基於MHC I與MHC II結合預測、基因表現以及變異體對偶基因發生率來評估目標肽。
針對HLA-DRB/DQB結合估算,HLA結合親和力是經由IEDB T-細胞預測工具的IEDB建議模式(Kim,Y.et al.Nucleic Acids Res.40,W525-30(2012))(2.5版)使用含有所有變異體的8-11員(mer)來進行預測。單變異體的所有預測中,最佳一致計分是與個別變異體有關。
基於這個數據,透過桑格定序確認選出一個精簡列表的單核苷酸變異體。
驗證性桑格定序
關於引子設計,從參考基因體萃取出側接突變位點的基因體序列,並且用作為primer3軟體(Untergasser,A.et al.Nucleic Acids Res.40,e115(2012);Koressaar,T.& Remm,M.Bioinformatics 23,1289-91(2007))的輸入物。使用blast(Kent,W.J.Genome Res.12,656-64(2002))將輸出引子對與參考基因體對準。移除與脫靶基因座對準的引子對且其餘最佳引子對回到個別輸入位點。
桑格定序是藉由PCR(95℃下15分以供初始活化,然後35個循環:94 C下30s以供變性、60 C下30s以供黏合、72 C下30s以供延伸,以及72 C下6min以供最後延伸),透過將腫瘤組織以及PBMC DNA的各個選定突變基因座進行擴增來執行。每個PCR產物使用QIAxcel(Qiagen)裝置進行品管且經由ExoI/AP處理或MinElute PCR Purification Kit(Qiagen®)進行純化。桑格定序是由Eurofins/MWG Ebersberg,Germany執行。
製造活體外轉錄的RNA
依據GMP(良好製造規範)準則實施製造。編碼五個推測新表位的合成DNA片段被選殖至一個起始載體,其含有針對最佳化排徑至第I型與第II型HLA路徑的sec-與MITD結構域(Kreiter,S.et al.J.Immunol.180,309-318(2008))以及用於增進RNA穩定性和轉譯效率的骨架序列要素(Holtkamp,S.et al.Blood 108,4009-17(2006))。將DNA線性化、經分光光度定性,並且使用T7 RNA聚合酶如先前所述(Grudzien-Nogalska,E.et al.Methods Mol.Biol.969,55-72(2013)),在7.5mM ATP、CTP、UTP、GTP與3mM β-S-ACA(D1)帽類似物(Kuhn,A.N.et al.Gene Ther.17,961-971(2010))存在下於乾淨室內環境中進行活體外轉錄。使用磁性粒子(Berensmeier,S.Appl.Microbiol.Biotechnol.73,495-504(2006))純化RNA並且透過凝膠電泳與微流體毛細管電泳(Experion,Biorad)評估完整度。更多分析包括確定濃度、外觀、pH、滲透壓、效力、內毒素含量以及無菌性。
活體外刺激PBMC
由冷凍保存的PBMC使用微珠粒(Miltenyi Biotec)分離CD4+與CD8+ T細胞。使T細胞、CD4-或CD8-耗盡PBMC靜置過夜。CD4-或CD8-耗盡PBMC經編碼患者特異性突變目標、eGFP、流感基質蛋白1(M1)或破傷風p2/p16序列(陽性對照)的RNA電穿孔、在37 C下靜置3小時,並且以15Gy輻照。CD4+/CD8+ T細胞以及經電泳與經輻照的抗原呈現細胞接著以2:1的效應對目標比率合併。一天後,添加含有十U/mL IL-2(Proleukin S,Novartis)以及五ng/mL IL-15(Peprotech)的新鮮培養基。在開始培養後七天補充IL-2。刺激 11天後,透過流式細胞儀分析細胞並且用於ELISpot分析中。
ELISpot
Multiscreen過濾盤(Merck Millipore)經對IFNγ具有特異性的抗體(Mabtech)預先塗覆,用PBS洗滌並且用含有2%人類血清白蛋白(CSL-Behring)的X-Vivo 15(Lonza)阻斷1-5小時。用經RNA電穿孔或加載肽的自體DC、黑色素瘤細胞株或經第I型或第II型HLA轉染K562細胞刺激0.5-3 x 105效應細胞/孔歷時16-20小時(TIL為40小時)。關於離體T細胞反應的分析,經冷凍保存的PBMC在37 C下靜置2-5小時期間後進行ELISpot。以二重複或三重複實施所有測試並且包括分析陽性對照(葡萄球菌腸毒素B(Sigma Aldrich))還有來自具有已知反應性之參考供體的細胞。用經生物素接合的抗-IFNγ抗體(Mabtech),然後與ExtrAvidin-Alkaline Phosphatase(Sigma-Aldrich)以及BCIP/NBT受質(Sigma-Aldrich)一起培育而使點顯現。使用CTL的ImmunoSpot® Series S five Versa ELISpot Analyzer(S5Versa-02-9038)掃描盤並且藉由ImmunoCapture V6.3軟體分析。將點計數歸納為每個三重複的中數值。受到突變RNA或肽所刺激的T細胞反應分別與經對照RNA(螢光素酶)電穿孔的目標細胞或未加載目標細胞相比對。在離體環境中每1 x 105個細胞具有最少五點,或在IVS後環境中每五x 104個細胞最少25點,還有點計數比個別對照高出至少兩倍的反應定義為陽性。
多聚體染色以及數據分析
使用帶有來自免疫原性突變之9個或十個胺基酸長之表位的dextramer (Immudex)鑑別突變特異性CD8+ T細胞。首先以多聚體將細胞染色,之後進行細胞表面標記的染色(CD28 CD28.8、CD197 150503、CD45RA HI100、CD3 UCHT1、CD16 3G8、CD14、MΦP9、CD19 SJ25C1、CD27 L128、CD279 EH12、CD8 RPA-T8,全為BD而CD4 OKT4為Biolegend),以及活-死染色(DAPI BD)。接而在BD LSR Fortessa SORP上擷取經染色的細胞。單峰、活、多聚體陽性事件在CD3(或CD8)陽性、CD4/CD14/CD16/CD19陰性或CD3(或CD8)陽性/CD4陰性事件中被鑑別出。HLA-A*0201 dextramer對患者特異 性新表位的特異性是透過缺少HLA-A*0201+血液供體的染色獲得證實。
細胞內細胞激素染色
以10:1 E:T比率添加經編碼單新表位之RNA電穿孔的自體DC,並且在37 C下於布雷非德菌素A及莫能菌素存在下培養歷時約16小時。針對存活力對細胞染色(可固定存活力染料eFluor506,eBioscience),然後針對表面標記(CD8 SK1 BD,CD4 OKT4,Biolegend)染色。在滲透之後,進行細胞內細胞激素染色(IL-2 MQ1-17H12,IFNγ B27,全為BD以及TNFα Mab11 Biolegend)且在BD FACS Canto II(Becton Dickinson)上擷取樣品。
單細胞分選
在抗原特異性擴增PBMC、經純化CD8+或CD4+ T細胞或TIL 11天之後,進行單抗原特異性T細胞的分選。在分選之前,用經編碼個別新表位或對照抗原之IVT RNA轉染的2 x 105個自體DC重新刺激2 x 106的經擴增T細胞。16至20小時之後,收取細胞並且用針對對抗CD14、CD19、CD3、CD8、CD4、CD137、CD134之結合螢光染料的抗體(全部來自BD Biosciences)還有使用IFNγ分泌分析套組(Miltenyi Biotec)針對IFNγ進行處理。在BD FACS Aria流式細胞儀(BD Biosciences)上進行單新抗原特異性T細胞的分選。在含有3T3-L1載體細胞的96孔V底盤中每孔收取一個雙重陽性細胞(IFNγ/CD8、CD137/CD8、IFNγ/CD4或CD134/CD4),離心並且儲存於-65℃至-85 C。
選殖新表位特異性TCR
從單一T細胞選殖TCR基因是如先前所述(Simon,P.et al.Cancer Immunol.Res.2,1230-44(2014))進行。簡言之,用Micro RNeasy Kit(Qiagen)萃取的總RNA用於使用RevertAid H- Reverse Transcriptase(Thermo Fisher)的模板切換cDNA合成,然後使用PfuUltra Hotstart DNA Polymerase(Agilent)預先擴增。所得cDNA的等分試樣用於Vα-/Vβ基因特異性多股PCR。在毛細管電泳系統(Qiagen)上分析產物。在430至470bp具有帶的樣品在瓊脂糖凝膠上進行尺寸區分並使用Gel Extraction Kit(Qiagen)進行純化。將經純化的樣品進行定序,並且使用IMGT/V-Quest工具(Brochet,X.,Lefranc,M.-P.& Giudicelli,V.Nucleic Acids Res.36,W503-8(2008))分析個別的V(D)J接合。新穎且有效率重排之對應TCR鏈的DNA經NotI-消化並且被選殖至含有適當骨架以供活體外轉錄完整TCR-α/β的pST1載體中(Simon,P.et al.Cancer Immunol.Res.2,1230-44(2014))。
使用PBMC的總RNA利用TCR-Typer套組(BioNTech Diagnostics)實施TCR-α/β深度定序。所得DNA庫在Illumina MiSeq定序儀上使用2 x 300bp雙端化學進行定序。利用Typer Toolbox軟體分析定序數據。每個樣品的總TCR讀段數範圍在1.1 x 106至1.5 x 106
qRT-PCR
分別使用ExpressArt FFPE Clear RNAready套組(AmpTec)與PrimeScriptTM RT Reagent Kit加上gDNA Eraser(Takara Bio Inc.)產生RNA以及cDNA。使用BioMarkTM HD系統(Fluidigm®)或96-Well Applied Biosystems 7300 Real-Time PCR System施行qRT-PCR。依據「快速基因表現分析」由FFPE衍生的RNA使用Quantitative SYBR® Green Real-Time PCR或TaqMan® Gene Expression Assays在BioMarkTM或「BioMarkTM HD System Fluidigm® Advanced Development Protocol 28」上製備並分析樣品與分析。使用IFC Controller HX加載96.96 Gene Expression Dynamic Array IFC。
免疫組織化學
在3至4μm FFPE切片去除石蠟之後,透過在補充有0.05% Tween-20(pH 6.0)的十mM檸檬酸中於120 C下煮沸歷時十分鐘對玻片進行抗原修復,接著淬滅(藉由0.3% H2O2;15分)並在室溫下用PBS中的十%山羊血清阻斷(30分)。
在2至8℃下於阻斷緩衝液中用0.2μg/mL抗-人類CD3(F7.2.38;Dako)、0.2μg/mL抗-人類CD8(C8/144B;Dako)、1μg/mL抗-人類FoxP3(236A/E7;Abcam)、1:200抗-PD-L1(13684;Cell Signaling Technologies)或1:2500抗-β-2-微球蛋白(D8P1H;Cell Signaling Technologies)培育玻片過夜。用經辣根-過氧化酶標記的二級抗體(BrightVision HRP,Immunologic)連同紅色受質色素原溶液(VectorRed;Vector Labs)使抗體結合顯現。腫瘤細胞用1μg/mL Melan-A特異性抗體(A103,Dako)染色。
接著用邁爾氏蘇木精(Carl Roth GmbH)將切片進行對比染色並透過以電腦為基礎的分析(Definiens Developer)進行評估。
關於分析,掃描玻片(Axio.Scan;Zeiss)並且經由電腦影像分析軟體(Developer,Definiens)對經手動預先定義的腫瘤、正常組織與壞死區域進行定性。在分類為腫瘤組織的區域中確定CD3、CD8以及FoxP3 TIL的數量。
選殖HLA抗原
透過服務供應商(Eurofins Genomics)依據個別高解析HLA鑑定結果來合成HLA抗原。HLA-DQA序列是由供體特異性cDNA以2.5U Pfu聚合酶使用DQA1_s(PHO-GCC ACC ATG ATC CTA AAC AAA GCT CTG MTG C)與DQA1_as(TAT GCG ATC GCT CAC AAK GGC CCY TGG TGT CTG)引子來進行擴增。HLA抗原被選殖至經適當消化的IVT載體(Simon,P.et al.Cancer Immunol.Res.2,1230-44(2014))中。
RNA轉移至細胞中
將RNA加至懸浮於預冷4-mm空隙無菌電穿孔比色管(Bio-Rad)之X-VIVO 15培養基(Lonza)中的細胞。使用BTX ECM 830方形波電穿孔系統執行電穿孔(T細胞:500V/3ms/1脈衝;iDC:300V/12ms/1脈衝;大量PBMC:400V/6ms/1脈衝;MZ-GaBa-018:225V/3ms/2脈衝;K562:200V/八ms/3脈衝)。
使用被稱為重疊肽池(OLP)之具有11個胺基酸重疊部分的合成15-員肽,其含括27員新抗原序列(4 OLP/新抗原)或對照抗原(HIV-gag,TPTE),或8至11員表位。所有合成肽是購自JPT Peptide Technologies GmbH並於具有10% DMSO之AquaDest.(Aqua B.Braun,BRAUN Melsungen)中溶解成最終濃度3mM。
流式細胞分析
藉由流式細胞儀使用對抗TCR-β鏈之適當可變區家族或恆定區之經PE- 或FITC-結合抗-TCR抗體(Beckman Coulter),以及經FITC-或APC-標記抗-CD8/-CD4+抗體(BD Biosciences)來分析經轉染TCR基因的細胞表面表現。藉由用經FITC-標記之第II型HLA特異性抗體(Beckman Coulter)以及經PE-標記第I型HLA-特異性抗體(BD Biosciences),偵測用於評估TCR轉染T細胞之功能的抗原呈現細胞的HLA抗原。在BD FACSCantoTM II分析型流式細胞儀(BD Biosciences)上執行流式細胞分析。使用FlowJo軟體(Tree Star)的第十版來分析所取得的數據。
細胞毒性分析
如先前所述執行以螢光素酶為基礎的細胞毒性分析(Omokoko,T.A.et al.J.Immunol.Res.2016,9540975(2016))。經單獨螢光素酶RNA或螢光素酶與B2M RNA組合轉染的1 x 104目標細胞與突變特異性效應T細胞(經OKT3-活化TCR-轉染的CD8+ T細胞或CD4+/CD8+ IVS T細胞)共培養歷時19至25小時。添加含有D-螢光素(BD Biosciences;最終濃度1.2mg/mL)的反應混合物。一小時後,使用Tecan Infinite M200讀取儀(Tecan)測量螢光。透過測量總螢光素酶活性的降低來計算細胞殺滅。透過螢光素酶媒介的螢光素氧化來測量活細胞。依據以下等式來計算特異性殺滅:
細胞凋亡分析
關於凋亡蛋白酶3/7活化細胞凋亡分析(IncuCyte),將每孔1 x 104黑色素瘤細胞以及20 x 104效應T細胞鋪於96孔Corning培養盤中歷時24小時。以稀釋度為1:1000的5mM原液(Essen Bioscience)添加凋亡蛋白酶3/7試劑,每個條件三重複。以10倍放大率在IncuCyte Zoom即時內容成像系統中於37℃、5% CO2下使細胞成像。每個小時擷取影像歷時24小時,每孔4個影像。使用IncuCyte分析軟體來分析數據,以偵測並量化綠色(細胞凋亡)細胞/影像。每個時間點的綠色物體計數的平均以及SD是使用GraphPad Prism軟體來作圖。
實例2:帶有新表位之個人化RNA疫苗接種的臨床可行性以及適當安全性
從全面定位腫瘤突變到製造並且釋出個別疫苗組合物,先前吾人已描述過關於設計以及生產編碼多個體細胞突變之RNA疫苗(之後稱為「新表位RNA疫苗」)的個人化相關程序(Kreiter,S.et al.Nature 520,692-696(2015);Vormehr,M.et al.J.Immunol.Res.2015,6(2015);Kranz,L.M.et al.Nature 534,396-401(2016)。這些程序進一步發展成遵循管理準則的標準化方法。
第III期以及第IV期黑色素瘤患者所表現的非同義突變是藉由核酸的外顯子體以及RNA序列來鑑別,而該等核酸是來自作為健康組織DNA來源的慣常冷凍或經福馬林固定、石蠟包埋(FFPE)的腫瘤生檢與血球。兩個獨立原則適用於評比突變。一者使用預測高親和力結合至患者之第II型HLA分子加上組合編碼RNA之突變高表現量。另一者是基於預測第I型HLA結合。突變對偶基因發生率以及相對轉錄值進一步作為微分器,其排定帶有預測HLA結合親和力相當之突變的優先順序。經排定優先順序的腫瘤特異性體細胞突變是藉由桑格定序來確認。
每名患者選出十個突變(患者P09只有五個)並且工程化成兩個合成RNA(五表位RNA),各者編碼代表這些突變之一者的五個27員肽。依據良好製造規範(GMP)級程序來製造極純的RNA,成功率為100%。RNA疫苗的中位粗製製造時間為68天(範圍為49至102天)。由於首先在人類中使用還有研究階段的規範要求,所製造的各個個人化疫苗經歷廣泛分析測試,從選出突變到疫苗釋出的總中位時間延長到103天(範圍為89至160天)。
將編碼NY-ESO-1及酪胺酸酶的RNA疫苗提供給帶有這兩個腫瘤相關共用自體抗原(TAA)的黑色素瘤患者作為搭接,直到釋出其新表位RNA疫苗。在超音波控制下,以經皮的方式將八個劑量的個別RNA疫苗注射至淋巴結。之後,汲取疫苗接種後的血液樣品用於免疫原性測試。在研究人員考量之後繼續新表位疫苗接種。
篩選二十名患者加入臨床試驗,其中16名依據納入以及排除標準被判定為適格,並且加入研究。兩名患者撤回他們的同意書,而一名患者因為新近診斷出有快速進展的腦部轉移而無法開始研究治療。因此,總計十三 名患者接受了新表位RNA疫苗,九名患者在先前接受橋接TAA RNA疫苗。
所有患者成功地完成治療,接受至多20次新表位RNA疫苗給藥。就黑色素瘤來說,每名患者所偵測到的突變數(範圍為69至1440)在預期範圍內(Lawrence,M.S.et al.Nature 499,214-8(2013);Vormehr,M.et al.Curr.Opin.Immunol.39,14-22(2016))。十名患者在BRAF或HRAS/NRAS基因中帶有最為常見的黑色素瘤驅動突變(Hodis,E.et al.Cell 150,251-263(2012))。突變概況主要典型為UV誘導之黑色素瘤的胞嘧啶至胸嘧啶(C>T)轉換(Pleasance,E.D.et al.Nature 463,191-196(2009))。
整體來說,所有患者對治療為耐受充分。在18件報導的嚴重不良事件(SAE)中,兩名患者中的四件SAE為新表位疫苗治療萌生的,但與研究藥物無關。新表位疫苗治療萌生的不良事件(AE)大多為第1或2級。沒有第4或5級AE。藥物相關的AE並未聚集至任何系統器官類。臨床安全性以及結果數據將在他處詳盡報導。
實例3:藉由新表位RNA疫苗接種引發多特異性T細胞免疫力
為了估算在本研究中個別投與之125個新表位的每一者的免疫原性,吾人從疫苗接種前以及疫苗接種後血液樣品分析高度富含CD4+與CD8+ T細胞。免疫原性是依據IFNγ ELISpot針對經圍繞突變為中心之編碼單一27個胺基酸(aa)序列的RNA轉染的自體樹突狀細胞(DC)或加載有15員重疊肽(OLP)(其含括個別序列)之DC來讀出。免疫原性讀值均產生高度相符的結果。
總體來說,60%的新表位轉為免疫原性。每位接種疫苗的患者對至少三個新表位有反應。有預先存在的T細胞對抗三分之一的免疫原性新表位,這些細胞在疫苗接種之後進一步增長。對將近70%新表位的反應未能在疫苗接種之前偵測到,但重新被引發。
大部分新表位只被CD4+T細胞辨識而僅一小部分被CD8+ T細胞辨識。約四分之一的免疫原性新表位與CD4+以及CD8+ T細胞為雙反應性。CD4+與CD8+ T細胞的交叉污染可以在實驗上被排除(圖1c)。依據15員OLP之反應 的詳細特徵鑑定顯示,CD4+以及CD8+ T細胞辨識新表位之略有差異的部位(圖1a、b)。免疫原性新表位平均分布於五表位RNA的五個位置,證實多新表位形式的合適性。
為了評估新表位引發的T細胞是否會辨識非突變對應部分,吾人透過ELISpot測試經代表野生型或突變表位之RNA或OLP脈衝的DC。就絕大部分的新表位RNA疫苗誘發的反應來說,對抗個別野生型表位的反應性不是未被偵測到,就是在低位準。依據ELISpot分析,約四分之一的反應顯示與野生型表位的反應性超出背景。可充分預想到,點突變之13個aa的WT序列段N端以及C端可以被呈現在第I型HLA以及第II型HLA分子上,產生野生型表位反應性T細胞。但是,自體反應性T細胞的強勁增長預期會受到中央耐受機制所抑制。因此,吾人特徵鑑定對抗疫苗目標(P04-C7-E258K、P09-MAN1A2-E323D、P05-FAM135-A479S)的T細胞反應,其更為詳細地顯示野生型RNA DC的有意義辨識。就P04-C7-E258K野生型表位來說,反應性並未透過測試經OLP加載的DC獲得確認。關於P09-MAN1A2-E323D,觀察到突變表位以及野生型均辨識橫跨27員之aa 9-23的肽,而橫跨aa 5-19的肽僅有突變形式會辨識。這指出,交叉反應性免疫反應可能含有僅辨識突變表位的T細胞,而其可能展現出腫瘤控制。在所有情況中,吾人發現到自體DC雖然內源性地表現個別野生型基因但不被個別T細胞所辨識,排除非突變基因產物的生物有意異性辨識。
實例4:使用中央以及效應記憶表現型透過疫苗接種快速且有效增生新表位特異性T細胞
在本研究中,約五分之一的免疫原性新表位引起非常高的反應。這些T細胞可以透過離體測試血液樣品在沒有先前活體外刺激的情況下被偵測到。在經新表位以及共用TAA疫苗接種的患者中,對抗新表位的T細胞反應較為強烈。為了在分子層級研究T細胞辨識,吾人從選定患者之疫苗接種前T細胞培養物選殖出新表位特異性T細胞受體(TCR)。透過流式細胞儀分選單個新表位特異性CD4+與CD8+ T細胞並進行以RT-PCR為基礎的TCR定序 (Simon,P.et al.Cancer Immunol.Res.2,1230-44(2014))。經選殖TCR α與β鏈在活體外被轉錄成RNA並且被共轉染至T細胞中,以便測試新表位特異性以及HLA限制。
在患者P01中,吾人鑑定出四個TCR,全都由不同的TCR α與β鏈純系型組成(表1)。
TCR(V(D)J基因在IMGT命名中被指出。V:可變;D:多樣性;J:接合;C:恆定。OLP,重疊肽;t.b.d.,待進行;NARFL,前核片層蛋白A辨識因子樣(NARFL),mRNA;HPN,絲胺酸穿膜蛋白酶(Hepsin);PPFIA4,蛋白酪胺酸磷酸酶,受體型,f多肽(PTPRF),交互作用蛋白(liprin),α4。
所有四種TCR辨識衍生自HLA A*3101上之前核片層蛋白A辨識因子樣基因的免疫優勢NARFL-E62K新表位,而不是非突變表位(圖2)。
患者P02有辨識衍生自liprin α4基因的PPFIA4-S709N(新表位)的兩種HLA B*3906-限制型TCR以及HLA DRB1*0401限制性辨識突變絲胺酸穿膜蛋白酶HPN-G71R新表位的兩種TCR,它們的野生型交叉反應性不同。
在疫苗接種前(訪視V1、V12)以及疫苗接種後(訪視V20),從患者邊血球於TCR深度定序數據中追蹤這些TCR的TCR-β序列。在疫苗接種前無法偵測到個別TCR β純系型,但在疫苗接種後血液樣品中卻非常豐富。
透過離體MHC多聚體分析研究數名患者的新表位反應,揭示循環CD8+ T細胞在開始新表位疫苗接種後2至4週內快速增長,至高到單個位數百分率。新表位特異性CD8+ T細胞含有微弱的PD-1陽性記憶表現型子群。一些新表位反應是由中央記憶佔優勢,其他則是效應記憶T細胞。在用經新表位加載的DC刺激之後,CD8+ T細胞展現出典型細胞毒性細胞激素型態,有IFNγ與TNFα的共伴表現。
實例5:在帶有復發高風險的黑色素瘤患者體內透過個人化新表位RNA疫苗接種進行疾病控制
13名研究患者中的大多數有疾病再發的新近病史,且全部都有高復發風險。比較所有患者在新表位RNA疫苗接種之前與之後所紀錄的黑色素瘤再發,揭示軸向累積再發轉移事件非常顯著降低(p<0.0001),在高風險患者群中轉化成非常長的無進展存活期。患者中有八名在新表位疫苗接種開始時無可測得的病灶。所有8名患者產生強烈免疫反應對抗疫苗新表位並且在整個追蹤期間(範圍為12至23個月)內維持無復發直到數據截止。免疫反應的動力學以及效力有改變;一些在疫苗接種的前3-4週內逐漸形成。其他五名患者則在納入以及接受標準治療之後,在施用疫苗之前經歷腫瘤進展。所有五名患者在其個人化疫苗可用之前具有可測得的疾病。其疾病進程在新表位疫苗接種的情況下進展如下:
患者P02在納入時有數個可測量到的內臟與淋巴結轉移,並經BRAF抑制劑治療,疾病因為治療而進展緩慢。當新表位疫苗接種開始時繼續BRAF抑制劑治療。P02發動CD4+ T-細胞反應對抗十個疫苗新表位中的六者,並且經歷混合型反應,其中淋巴結轉移萎縮、內臟轉移穩定、胸部病灶有進展以及新增可測量到的轉移病灶。在放射線療法以及切除進展中與新病灶之後,患者婉拒更多醫學治療並且在最後一次訪視後12個月過世。
因為疾病再發,在納入後立刻有數個新的門淋巴結與腎臟轉移,患者P03延遲新表位疫苗接種。局部放射線療法以及抗-CTLA-4治療失敗。腎臟轉移持續快速進展並且被切除。此後,開始新表位RNA疫苗接種且產生對抗三個新表位的T細胞反應,其中兩者被CD8+ T細胞所辨識而一者被CD4+ 與CD8+ T細胞所辨識。在疫苗接種前進展的門淋巴結轉移,於之後12個月內完全消退,如藉由核磁共振成像(MRI)所測定。患者以總計18次疫苗注射完成治療且在沒有任何進一步治療的情況下維持無復發歷時26個月。
在納入研究之後,患者P17經診斷有腋淋巴結轉移,其在四次新表位RNA疫苗注射之後維持穩定並且被切除,且用來產生腫瘤浸潤淋巴球(TIL)以及自體黑色素瘤細胞株(MZ-I-017)。患者繼續另外14次注射的疫苗接種。尤其,在P17的PBMC中偵測到對抗疫療之所有十種新表位的反應性T細胞。新表位特異性T細胞也在腫瘤浸潤淋巴球中被偵測到。對抗鳥苷酸結合蛋白(GBP1-P86F)以及視網醇飽和酶(RETSAT-P546S)的突變表位的反應性尤其高。在RETSAT-P546S新表位中,吾人鑑定出一個HLA-A*6801限制型最小表位(HSCVMASLR),還透過HLA-多聚體染色確認在TIL中存在有對抗此表位的CD8+ T細胞。
吾人用經RETSAT-P546S RNA-轉染的自體DC刺激TIL,並且選殖個別的TCR。藉由單細胞選殖所鑑別之經RETSAT-P546S-特異性TCR#8轉染的T細胞有效率地殺滅自體黑色素瘤細胞株MZ-I-017,而不是自體APC。這不但確認腫瘤細胞表現、處理並且呈現新表位,還確認腫瘤細胞被疫苗引發的細胞毒性T細胞有效識別。出乎意料地,進一步特徵鑑定TCR#8揭示,HLA-B*3701(而不是HLA-A*6801)限制性辨識新表位,其不同於原先確定的最小表位(圖3a、圖3b、圖4)。這證明在相同患者體內,單一突變可能同時誘發CD8+ T細胞反應對抗不同的肽/HLA複合體(圖3b)。
在新表位RNA疫苗接種開始時,患者P07有一系列的再發以及進行性皮膚與內臟轉移。P07生成強烈的T細胞反應對抗六種新表位,其中五者在離體可測量到。因為在第一次成像時證明了疾病持續進展,中止新表位疫苗接種。P07加入恩慈抗-PD-1(帕姆單抗(pembrolizumab))計畫。患者經歷了所有黑色素瘤病灶快速消退,目標病灶的尺寸在兩個月內減少80%且在持續PD-1阻斷下最後完全反應。在抗-PD-1治療下疫苗引發的T細胞以高發生率存活下來,在疫苗接種之後歷時至多9個月。
實例6:由對抗新表位之CD4+與CD8+ T細胞媒介的已存在免疫反應
患者材料
用於免疫原性測試的所得PBMC是藉由Ficoll-Hypaque(Amersham Biosciences)密度梯度離心從周邊血液樣品或黑色素瘤患者的白血球去除術分離。NCT02035956的額外材料用於大規模免疫原性測試。研究設計如第64頁所述。
新表位選定
方法次世代定序詳細說明在第65頁。關於大規模免疫原性測試,使用無偏方法選出至多一百個新表位以含括數個特徵,諸如結合預測以及目標表現位準。
活體外刺激CD4以及CD8 T細胞
在第零天,使用微珠粒(Miltenyi Biotech)從冷凍保存的PBMC分離單核球,並且透過添加含有IL-4/GM-CSF與IL-6/IL-1β/TNFα/PGE2的細胞激素混合物分化成快速樹突狀細胞(fDC)。兩天後,使用微珠粒(Miltenyi Biotech)從冷凍保存的PBMC分離CD4+與CD8+ T-細胞。就活體外刺激來說,以10:1的效應與目標比率組合CD4+ T-細胞以及加載重疊肽(OLP)池的fDC,而以1:10的效應與目標比率組合CD8+ T-細胞以及加載OLP池的CD4-耗盡PBMC。一天後,添加含有10U/mL IL-2(Proleukin S,Novartis)和5ng/mL IL-15(Peprotech)的新鮮培養基。在開始培養之後七天補充IL-2。活體外培養11天之後,經由流式細胞儀分析細胞並且在IFNγ ELISpot分析中用作為效應細胞。
IFNγ ELIspot
不成熟樹突狀細胞(iDC)用作為IFNγ ELIspot分析的目標。從冷凍保存的PBMC使用微珠粒(Milteniy Biotech)分離單核球並且在IL-4與GM-CSF存在下分化成不成熟樹突狀細胞(iDC)。
預先塗覆對IFNγ具有特異性的抗體(Mabtech)的多重篩選過濾盤(Merck Millipore)經含有2%人類血清白蛋白(CSL Behring)的X-VIVO 15(Lonza)阻 斷歷時1-5小時。關於CD4+ T-細胞,以10:1的效應與目標比率用經OLP加載的自體iDC重新刺激0,5 x 105效應細胞/孔歷時18-20小時。關於CD8+ T-細胞,以10:1的效應與目標比率用經OLP加載的自體iDC重新刺激1 x 105效應細胞/孔歷時18-20小時。所有測試進行三重複並且包括分析陽性對照(葡萄球菌腸毒素B(Sigma Aldrich))。經對照OLP池加載的iDC以及效應細胞僅用作為陰性對照。用經生物素結合的抗-IFNγ抗體(Mabtech),接著與Extra-Avidin-Alkaline Phosphatase(Sigma-Aldrich)以及BCIP/NBT受質(Sigma-Aldrich)一起培養而使點顯現。使用CTL的ImmunoSpot ® S6Core ELISpot Analyzer掃描盤並且透過ImmunoCaptureTM v6.6軟體分析。受到突變肽刺激的T細胞反應與對照肽(不相干肽池)相比較。若平均點計數相較於個別對照為為至少兩倍高時,反應定義為陽性。
關於活體外刺激,使用帶有11個胺基酸重疊之含括27員新表位序列的合成15員肽(粗製產物)(稱為重疊肽(OLP))。所有合成肽是購自於JPT Peptide Technologies GmbH並由其預先集中,且在DMSO(AppliChem)中溶解成每OLP為5mg/mL的原液濃度。關於活體外刺激,使用每OLP為2.5μg/mL的最終濃度,關於ELISpot讀值為3.5μg/mL。不同新抗原的池(4 OLP/新抗原)用於活體外刺激還有使用矩陣法的ELISpot讀值。
流式細胞分析
CD4以及CD8 T細胞培養物的純度是透過流式細胞儀來進行評估(CD25 PE、CD56 PE CY7、CD8 APC、eFluor780 FVD、CD3 BV421、CD4 FITC)。在BD FACSVerseTM(BD Biosciences)上進行流式細胞分析。使用FlowJo軟體(Tree Star)版本10分析所擷取的數據
結果
到此,分析七名患者以及總計26種反應性,偵測到其均受到CD4+以及CD8+ T-細胞所媒介。
<110> BioNTech RNA Pharmaceuticals GmbH
<120> 預測用於免疫療法之疾病特異性胺基酸修飾的效用的方法
<130> 674-187 PCT2
<150> PCT/EP2017/064140
<151> 2017-06-09
<160> 23
<170> PatentIn version 3.5
<210> 1
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 連接子序列
<220>
<221> 重複序列
<222> (1)..(3)
<223> 序列重複a次的部分,其中a為獨立地選自0、1、2、3、4、5、6、7、8、9、10、11、12、 13、14、15、16、17、18、19或20的數字
<220>
<221> 其他特徵
<222> (1)..(15)
<223> a+b+c+d+e不同於0且較佳為2或更多、3或更多、4或更多或5或更多
<220>
<221> 重複序列
<222> (4)..(6)
<223> 序列重複b次的部分,其中b為獨立地選自0、1、2、3、4、5、6、7、8、9、10、11、12、 13、14、15、16、17、18、19或20的數字
<220>
<221> 重複序列
<222> (7)..(9)
<223> 序列重複c次的部分,其中c為獨立地選自0、1、2、3、4、5、6、7、8、9、10、11、12、 13、14、15、16、17、18、19或20的數字
<220>
<221> 重複序列
<222> (10)..(12)
<223> 序列重複d次的部分,其中d為獨立地選自0、1、2、3、4、5、6、7、8、9、10、11、12、 13、14、15、16、17、18、19或20的數字
<220>
<221> 重複序列
<222> (13)..(15)
<223> 序列重複e次的部分,其中e為獨立地選自0、1、2、3、4、5、6、7、8、9、10、11、12、 13、14、15、16、17、18、19或20的數字
<400> 1
<210> 2
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 連接子序列
<400> 2
<210> 3
<211> 9
<212> PRT
<213> 智人
<400> 3
<210> 4
<211> 9
<212> PRT
<213> 智人
<400> 4
<210> 5
<211> 14
<212> PRT
<213> 智人
<400> 5
<210> 6
<211> 15
<212> PRT
<213> 智人
<400> 6
<210> 7
<211> 15
<212> PRT
<213> 智人
<400> 7
<210> 8
<211> 15
<212> PRT
<213> 智人
<400> 8
<210> 9
<211> 15
<212> PRT
<213> 智人
<400> 9
<210> 10
<211> 15
<212> PRT
<213> 智人
<400> 10
<210> 11
<211> 15
<212> PRT
<213> 智人
<400> 11
<210> 12
<211> 15
<212> PRT
<213> 智人
<400> 12
<210> 13
<211> 19
<212> PRT
<213> 智人
<400> 13
<210> 14
<211> 9
<212> PRT
<213> 智人
<400> 14
<210> 15
<211> 9
<212> PRT
<213> 智人
<400> 15
<210> 16
<211> 15
<212> PRT
<213> 智人
<400> 16
<210> 17
<211> 15
<212> PRT
<213> 智人
<400> 17
<210> 18
<211> 15
<212> PRT
<213> 智人
<400> 18
<210> 19
<211> 15
<212> PRT
<213> 智人
<400> 19
<210> 20
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸
<400> 20
<210> 21
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸
<400> 21
<210> 22
<211> 27
<212> PRT
<213> 智人
<400> 22
<210> 23
<211> 18
<212> PRT
<213> 智人
<400> 23

Claims (41)

  1. 一種評估表現於罹病細胞中之肽或多肽內的疾病特異性胺基酸修飾用於免疫療法的效用的方法,該方法包含確定包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在不同類型的MHC分子中被呈現,及/或當在MHC分子中被呈現時,與限定於不同MHC類型之T細胞是否有反應。
  2. 如請求項1之方法,其中不同類型的MHC分子為第I型MHC分子以及第II型MHC分子,及/或限定於不同MHC類型的T細胞為CD4+ T細胞與CD8+ T細胞。
  3. 如請求項1或2之方法,其中在不同類型的MHC分子中呈現包含疾病特異性胺基酸修飾之肽或多肽之相同或不同片段,及/或當在MHC分子中被呈現時,包含疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於不同MHC類型的T細胞的反應性係指明該疾病特異性胺基酸修飾適用於免疫療法。
  4. 一種評估表現於罹病細胞中之肽或多肽內的疾病特異性胺基酸修飾用於免疫療法的效用的方法,該方法包含確認包含該疾病特異性胺基酸修飾之肽或多肽的片段當在相同MHC分子中被呈現時與具有不同T細胞受體的T細胞是否有反應。
  5. 如請求項4之方法,其中不同T細胞受體具有不同純系型。
  6. 如請求項4或5之方法,其中包含疾病特異性胺基酸修飾的肽或多肽的片段當在相同MHC分子中被呈現時與帶有不同T細胞受體之T細胞的反應性係指明該疾病特異性胺基酸修飾適用於免疫療法。
  7. 一種評估表現於罹病細胞中之肽或多肽內的疾病特異性胺基酸修飾用於免疫療法的效用的方法,該方法包含確認包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在相同類型的不同MHC分子中被呈現,及/或當在相同類型的不同MHC分子中被呈現時與限定於相同MHC類型的不同T細胞是否有反應。
  8. 如請求項7之方法,其中相同類型的不同MHC分子為不同的第I型MHC分子,及/或限定於相同MHC類型的不同T細胞為不同的CD8+ T細胞。
  9. 如請求項7或8之方法,其中在相同類型的不同MHC分子中呈現包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在相同類型之不同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於相同MHC類型之不同T細胞的反應性係指明該疾病特異性胺基酸修飾適用於免疫療法。
  10. 一種評估表現於罹病細胞中之肽或多肽內的疾病特異性胺基酸修飾用於免疫療法之效用的方法,該方法包含確認下列一或多者:(i)確認包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在不同類型之MHC分子中被呈現,及/或若在MHC分子中被呈現時,與限定於不同MHC類型的T細胞是否有反應,(ii)當在相同MHC分子中被呈現時,確認包含該疾病特異性胺基酸修飾之肽或多肽的片段與帶有不同T細胞受體之T細胞是否有反應,及/或(iii)確認包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在相同類型的不同MHC分子中被呈現,及/或當在相同類型的不同MHC分子中被呈現時,與限定於相同MHC類型的不同T細胞是否有反應。
  11. 如請求項10之方法,其中不同類型的MHC分子為第I型MHC分子以及第II型MHC分子,及/或限定於不同MHC類型的T細胞為CD4+ T細胞以及CD8+ T細胞。
  12. 如請求項10或11之方法,其中在不同類型的MHC分子中呈現包含疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於不同MHC類型之T細胞的反應性係指明該疾病特異性胺基酸修飾適用於免疫療法。
  13. 如請求項10至12中任一項之方法,其中不同T細胞受體為不同的純系型。
  14. 如請求項10至13中任一項之方法,其中當在相同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的片段與帶有不同T細胞受體的T細胞的反應性係指明該疾病特異性胺基酸修飾適用於免疫療法。
  15. 如請求項10至14中任一項之方法,其中相同類型的不同MHC分子為不同的第I型MHC分子及/或限定於相同MHC類型的不同T細胞為不同的CD8+ T細胞。
  16. 如請求項10至15中任一項之方法,其中在相同類型的不同MHC分子中呈現包含疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在相同類型之不同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於相同MHC類型之不同T細胞的反應性係指明該疾病特異性胺基酸修飾適用於免疫療法。
  17. 一種用於篩選及/或評定疾病特異性胺基酸修飾在免疫療法中之效用的方法,該方法包含以下步驟:(i)鑑別表現於罹病細胞中的肽及/或多肽,各肽及/或多肽包含至少一個疾病特異性胺基酸修飾,以及(ii)確認包含相同疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在不同類型的MHC分子中被呈現,及/或當在MHC分子中被呈現時,與限定於不同MHC類型的T細胞是否有反應,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
  18. 如請求項17之方法,其中不同類型的MHC分子為第I型MHC分子以及第II型MHC分子,及/或限定於不同MHC類型的T細胞為CD4+ T細胞以及CD8+ T細胞。
  19. 如請求項17或18之方法,其中在不同類型的MHC分子中呈現包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於不同MHC類型的T細胞的反應性係指明該疾病特異性胺基酸修飾適用於免疫療法。
  20. 一種篩選及/或評定疾病特異性胺基酸修飾在免疫療法中之效用的方法,該方法包含以下步驟:(i)鑑別表現於罹病細胞中的肽及/或多肽,各肽及/或多肽包含至少一個疾病特異性胺基酸修飾,以及(ii)確認當在相同MHC分子中被呈現時,包含疾病特異性胺基酸修飾之肽或多肽的片段與帶有不同T細胞受體的T細胞是否有反應,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
  21. 如請求項20之方法,其中不同T細胞受體為不同純系型。
  22. 如請求項20或21之方法,其中當在相同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的片段與帶有不同T細胞受體之T細胞的反應性係指明該疾病特異性胺基酸修飾適用於免疫療法。
  23. 一種篩選及/或評定疾病特異性胺基酸修飾在免疫療法中之效用的方法,該方法包含以下步驟:(i)鑑別表現於罹病細胞中的肽及/或多肽,各肽及/或多肽包含至少一個疾病特異性胺基酸修飾,以及(ii)確認包含相同疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在相同類型的不同MHC分子中被呈現,及/或當在相同類型的不同MHC分子中被呈現時,與限定於相同MHC類型的不同T細胞是否有反應,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
  24. 如請求項23之方法,其中相同類型的不同MHC分子為不同的第I型MHC分子及/或限定於相同MHC類型的不同T細胞為不同CD8+ T細胞。
  25. 如請求項23或24之方法,其中在相同類型的不同MHC分子中呈現包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在相同類型的不同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於相同MHC類型之不同T細胞的反應性係指明該疾病特異性胺基酸修飾適用於免疫療法。
  26. 一種篩選及/或評定疾病特異性胺基酸修飾在免疫療法中之效用的方法,該方法包含以下步驟:(i)鑑別表現於罹病細胞中的肽及/或多肽,各肽及/或多肽包含至少一個疾病特異性胺基酸修飾,以及(ii)確認下列中的一或多者:(1)確認包含相同疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在不同類型的MHC分子中被呈現,及/或當在MHC分子中被呈現時,與限定於不同MHC類型的T細胞是否有反應,(2)確認當在相同MHC分子中被呈現時,包含疾病特異性胺基酸修飾之肽或多肽的片段與帶有不同T細胞受體的T細胞是否有反應,及/或(3)確認包含相同疾病特異性胺基酸修飾之肽或多肽的相同或不同片段是否在相同類型之不同MHC分子中被呈現,及/或當在相同類型的不同MHC分子中被呈現時,與限定於相同MHC類型的不同T細胞是否有反應,以及(iii)針對(i)中鑑別的至少再一個胺基酸修飾重複步驟(ii)。
  27. 如請求項26之方法,其中不同類型的MHC分子為第I型MHC分子以及第II型MHC分子,及/或限定於不同MHC類型的T細胞為CD4+ T細胞以及CD8+ T細胞。
  28. 如請求項26或27之方法,其中在不同類型的MHC分子中呈現包含疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於不同MHC類型之T細胞的反應性,指明該疾病特異性胺基酸修飾適用於免疫療法。
  29. 如請求項26至28中任一項之方法,其中不同T細胞受體是不同的純系型。
  30. 如請求項26至29中任一項之方法,其中當在相同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的片段與帶有不同T細胞受體 之T細胞的反應性係指明該疾病特異性胺基酸修飾適用於免疫療法。
  31. 如請求項26至30中任一項之方法,其中相同類型的不同MHC分子為不同的第I型MHC分子,及/或限定於相同MHC類型之不同T細胞為不同的CD8+ T細胞。
  32. 如請求項26至31中任一項之方法,其中在相同類型的不同MHC分子中呈現包含疾病特異性胺基酸修飾之肽或多肽的相同或不同片段,及/或當在相同類型的不同MHC分子中被呈現時,包含該疾病特異性胺基酸修飾之肽或多肽的相同或不同片段與限定於相同MHC類型的不同T細胞的反應性,指明該疾病特異性胺基酸修飾適用於免疫療法。
  33. 如請求項17至32中任一項之方法,其中步驟(ii)中測試之不同胺基酸修飾被呈現在相同及/或不同的肽或多肽中。
  34. 如請求項17至33中任一項之方法,其包含比較針對步驟(ii)中測試之不同胺基酸修飾所獲得的計分。
  35. 如請求項1至34中任一項之方法,其中疾病特異性胺基酸修飾是因為疾病特異性體細胞突變。
  36. 如請求項1至35中任一項之方法,其中疾病為癌症且免疫療法為抗癌免疫療法。
  37. 如請求項1至36中任一項之方法,其中免疫療法包含投與下列中的一或多者:(i)表現於罹病細胞中的肽或多肽,該肽或多肽包含至少一個疾病特異性胺基酸修飾,(ii)包含(i)之肽或多肽的片段的肽或多肽,該片段包含至少一個疾病特異性胺基酸修飾,以及(iii)編碼(i)或(ii)之肽或多肽的核酸。
  38. 如請求項1至37中任一項之方法,其適用於提供疫苗。
  39. 一種提供疫苗的方法,包含下列步驟:(i)鑑別一或多個疾病特異性胺基酸修飾,其經請求項1至38中任一項 的方法預測為適用於免疫療法,(ii)提供包含下列中之一或多者的疫苗:(1)表現於罹病細胞中的肽或多肽,該肽或多肽包含至少一個經預測適用於免疫療法的疾病特異性胺基酸修飾,(2)包含(i)之肽或多肽之片段的肽或多肽,該片段包含經預測為適用於免疫療法的疾病特異性胺基酸修飾的至少一者,以及(3)編碼(i)或(ii)之肽或多肽的核酸。
  40. 如請求項1至39中任一項之方法,其中該片段為MHC結合肽或潛在MHC結合肽,且可經加工以提供MHC結合肽或潛在MHC結合肽。
  41. 一種依據請求項38至40中任一項之方法製造的疫苗。
TW107119773A 2017-06-09 2018-06-08 預測用於免疫療法之疾病特異性胺基酸修飾的效用的方法 TW201920959A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/EP2017/064140 WO2018224166A1 (en) 2017-06-09 2017-06-09 Methods for predicting the usefulness of disease specific amino acid modifications for immunotherapy
??PCT/EP2017/064140 2017-06-09

Publications (1)

Publication Number Publication Date
TW201920959A true TW201920959A (zh) 2019-06-01

Family

ID=59227704

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107119773A TW201920959A (zh) 2017-06-09 2018-06-08 預測用於免疫療法之疾病特異性胺基酸修飾的效用的方法

Country Status (14)

Country Link
US (1) US20200209251A1 (zh)
EP (1) EP3635408A1 (zh)
JP (2) JP7396903B2 (zh)
KR (1) KR102560750B1 (zh)
CN (1) CN110741260B (zh)
AR (1) AR112601A1 (zh)
AU (1) AU2018279117A1 (zh)
BR (1) BR112019022349A2 (zh)
CA (1) CA3066308A1 (zh)
IL (1) IL271031A (zh)
MA (1) MA49246A (zh)
SG (2) SG11201911618UA (zh)
TW (1) TW201920959A (zh)
WO (2) WO2018224166A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4046651A1 (en) * 2021-02-23 2022-08-24 baseclick GmbH Method for producing an mrna tumor vaccine
CN115620810B (zh) * 2022-12-19 2023-03-28 北京诺禾致源科技股份有限公司 基于第三代基因测序数据的外源插入信息的检测方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE512160T1 (de) * 2005-04-26 2011-06-15 Immatics Biotechnologies Gmbh T-cell-epitope aus dem unreifen lamininrezeptorprotein (oncofoetal antigen) und deren medizinische verwendungen
AU2012261237B2 (en) * 2011-05-24 2017-06-01 BioNTech SE Individualized vaccines for cancer
EP2925348B1 (en) * 2012-11-28 2019-03-06 BioNTech RNA Pharmaceuticals GmbH Individualized vaccines for cancer
CA2919567A1 (en) * 2013-07-30 2015-02-05 Biontech Ag Tumor antigens for determining cancer therapy
WO2016128060A1 (en) * 2015-02-12 2016-08-18 Biontech Ag Predicting t cell epitopes useful for vaccination
GB201511191D0 (en) * 2015-06-25 2015-08-12 Immatics Biotechnologies Gmbh T-cell epitopes for the immunotherapy of myeloma

Also Published As

Publication number Publication date
CN110741260B (zh) 2024-03-08
EP3635408A1 (en) 2020-04-15
BR112019022349A2 (pt) 2020-05-26
US20200209251A1 (en) 2020-07-02
SG11201911618UA (en) 2020-01-30
MA49246A (fr) 2020-04-15
RU2019139982A (ru) 2021-07-09
AR112601A1 (es) 2019-11-20
JP2020523016A (ja) 2020-08-06
KR20200014311A (ko) 2020-02-10
WO2018224405A1 (en) 2018-12-13
WO2018224166A1 (en) 2018-12-13
RU2019139982A3 (zh) 2021-07-09
CN110741260A (zh) 2020-01-31
JP2024026224A (ja) 2024-02-28
SG10201912475XA (en) 2020-02-27
AU2018279117A1 (en) 2020-01-02
JP7396903B2 (ja) 2023-12-12
CA3066308A1 (en) 2018-12-13
IL271031A (en) 2020-01-30
KR102560750B1 (ko) 2023-07-27

Similar Documents

Publication Publication Date Title
JP6882178B2 (ja) ワクチン接種に有用なt細胞エピトープの予測
JP2024037890A (ja) T細胞エピトープの免疫原性の予測
KR102358620B1 (ko) 면역 치료를 위한 단백질 또는 단백질 단편의 유용성 예측 방법
JP7171543B2 (ja) 有効性が増強された治療法のための疾患特異的標的としてのネオエピトープの選択
JP2024026224A (ja) 免疫療法のための疾患特異的アミノ酸修飾の有用性を予測する方法
RU2799341C2 (ru) Способы прогнозирования применимости специфичных для заболевания аминокислотных модификаций для иммунотерапии
RU2782336C2 (ru) Способы прогнозирования применимости белков или белковых фрагментов для иммунотерапии
KR102670064B1 (ko) 예방접종에 유용한 t 세포 에피토프의 예측 방법
NZ790046A (en) Selecting neoepitopes as disease-specific targets for therapy with enhanced efficacy