TW201916040A - Resistive memory device - Google Patents

Resistive memory device Download PDF

Info

Publication number
TW201916040A
TW201916040A TW107131958A TW107131958A TW201916040A TW 201916040 A TW201916040 A TW 201916040A TW 107131958 A TW107131958 A TW 107131958A TW 107131958 A TW107131958 A TW 107131958A TW 201916040 A TW201916040 A TW 201916040A
Authority
TW
Taiwan
Prior art keywords
current
circuit
memory device
read
offset current
Prior art date
Application number
TW107131958A
Other languages
Chinese (zh)
Other versions
TWI776951B (en
Inventor
阿圖爾 安東尼楊
表錫洙
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201916040A publication Critical patent/TW201916040A/en
Application granted granted Critical
Publication of TWI776951B publication Critical patent/TWI776951B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Abstract

Provided is a resistive memory device configured to output a value stored in a memory cell in response to a read command, the resistive memory device including a cell array including the memory cell and a reference cell; a reference resistance circuit configured to be electrically connected to the reference cell; an offset current source circuit configured to add or draw an offset current to or from a read current provided to the reference resistance circuit; and a control circuit configured to control the offset current source circuit to compensate for a variation of a resistance of the memory cell. The resistive memory device of the invention accurately reads a value stored in a memory cell by compensating for variations in the resistance of the memory cell.

Description

電阻式記憶體裝置Resistive memory device

本發明是有關於一種電阻式記憶體裝置,且特別是有關於一種包括參考單元的電阻式記憶體裝置及一種操作電阻式記憶體裝置的方法。The present invention relates to a resistive memory device, and more particularly to a resistive memory device including a reference unit and a method of operating a resistive memory device.

電阻式記憶體裝置可將資料儲存在包括可變電阻元件的儲存單元中。為檢測儲存在電阻式記憶體裝置的儲存單元中的資料,舉例來說,可對儲存單元供應讀取電流,且可對由讀取電流以及儲存單元的可變電阻元件引起的電壓進行檢測。The resistive memory device stores data in a storage unit including a variable resistance element. To detect data stored in the storage unit of the resistive memory device, for example, a read current can be supplied to the storage unit, and a voltage caused by the read current and the variable resistance element of the storage unit can be detected.

在其中儲存有特定值的儲存單元中,可變電阻元件的電阻可為分散的,且所述分散可能會因工藝電壓溫度(process voltage temperature,PVT)等而發生波動。這種電阻散佈的變化可能會幹擾對儲存在儲存單元中的值的準確讀取。In a memory cell in which a specific value is stored, the resistance of the variable resistance element may be dispersed, and the dispersion may fluctuate due to a process voltage temperature (PVT) or the like. Such variations in resistance dispersion may interfere with accurate reading of values stored in the storage unit.

本發明概念提供一種電阻式記憶體裝置及一種操作所述記憶體裝置以通過補償儲存單元的電阻的變化來準確地讀取儲存在儲存單元中的值的方法。The inventive concept provides a resistive memory device and a method of operating the memory device to accurately read a value stored in a storage unit by compensating for changes in resistance of the storage unit.

根據本發明概念的一方面,提供一種電阻式記憶體裝置,所述電阻式記憶體裝置被配置成回應於讀取命令來輸出儲存在儲存單元中的值,所述電阻式記憶體裝置包括:單元陣列,包括所述儲存單元及參考單元;參考電阻電路,被配置成電連接到所述參考單元;偏移電流源電路,被配置成對被提供到所述參考電阻電路的讀取電流加上偏移電流或者從被提供到所述參考電阻電路的所述讀取電流汲取所述偏移電流;以及控制電路,被配置成控制所述偏移電流源電路來補償所述儲存單元的電阻的變化。According to an aspect of the present invention, a resistive memory device is provided, the resistive memory device being configured to output a value stored in a storage unit in response to a read command, the resistive memory device comprising: a cell array including the storage unit and a reference unit; a reference resistance circuit configured to be electrically connected to the reference unit; and an offset current source circuit configured to add a read current supplied to the reference resistance circuit And shifting current or extracting the offset current from the read current supplied to the reference resistor circuit; and a control circuit configured to control the offset current source circuit to compensate for resistance of the storage unit The change.

根據本發明概念的另一方面,提供一種電阻式記憶體裝置,所述電阻式記憶體裝置被配置成回應於讀取命令來輸出儲存在儲存單元中的值,所述電阻式記憶體裝置包括:單元陣列,包括所述儲存單元及參考單元,第一讀取電流流過所述儲存單元,參考電流流過所述參考單元;電流源電路,被配置成產生所述第一讀取電流及第二讀取電流;偏移電流源電路,被配置成通過對所述第二讀取電流加上偏移電流或者從所述第二讀取電流汲取所述偏移電流來產生所述參考電流;以及控制電路,被配置成控制所述偏移電流源電路來補償所述儲存單元的電阻的變化。According to another aspect of the inventive concept, a resistive memory device is provided, the resistive memory device being configured to output a value stored in a storage unit in response to a read command, the resistive memory device comprising a cell array including the storage unit and a reference unit, a first read current flowing through the storage unit, a reference current flowing through the reference unit, and a current source circuit configured to generate the first read current and a second read current; an offset current source circuit configured to generate the reference current by adding an offset current to the second read current or extracting the offset current from the second read current And a control circuit configured to control the offset current source circuit to compensate for a change in resistance of the storage unit.

根據本發明概念的另一方面,提供一種電阻式記憶體裝置,所述電阻式記憶體裝置被配置成回應於讀取命令來輸出儲存在儲存單元中的值,所述電阻式記憶體裝置包括:單元陣列,包括所述儲存單元及參考單元,第一讀取電流流過所述儲存單元,第二讀取電流流過所述參考單元;偏移電流源電路,被配置成通過對所述第二讀取電流加上偏移電流或者從所述第二讀取電流汲取所述偏移電流來產生參考電流;參考電阻電路,電連接到所述參考單元,且所述參考電流流過所述參考電阻電路;以及控制電路,被配置成控制所述偏移電流源電路來補償所述儲存單元的電阻的變化。According to another aspect of the inventive concept, a resistive memory device is provided, the resistive memory device being configured to output a value stored in a storage unit in response to a read command, the resistive memory device comprising a cell array including the storage unit and a reference unit, a first read current flowing through the storage unit, a second read current flowing through the reference unit; and an offset current source circuit configured to pass the a second read current plus an offset current or a reference current drawn from the second read current to generate a reference current; a reference resistor circuit electrically connected to the reference unit, and the reference current flowing through a reference resistance circuit; and a control circuit configured to control the offset current source circuit to compensate for a change in resistance of the storage unit.

以下,將參照圖式清楚並詳細地闡述本發明概念的示例性實施例以使所屬領域中的一般技術人員實施本發明概念的示例性實施例。Exemplary embodiments of the inventive concept will be described in detail below with reference to the accompanying drawings. FIG.

圖1是繪示根據示例性實施例的記憶體裝置100及控制器200的方塊圖。FIG. 1 is a block diagram of a memory device 100 and a controller 200, in accordance with an exemplary embodiment.

參照圖1,記憶體裝置100可與控制器200進行通信。記憶體裝置100可從控制器200接收命令CMD(比如寫入命令及讀取命令)及位址ADDR以及從控制器200接收資料DATA(即,將要寫入的資料)或者向控制器傳送資料DATA(即,將要讀取的資料)。儘管圖1分別繪示命令CMD、位址ADDR及資料DATA,然而根據一些示例性實施例,命令CMD、位址ADDR及資料DATA中的至少兩者可通過同一通道傳送。如圖1所示,記憶體裝置100可包括單元陣列110、電流源電路120、參考電阻電路130、偏移電流電路140、放大電路150和/或控制電路160。Referring to FIG. 1, the memory device 100 can communicate with the controller 200. The memory device 100 can receive commands CMD (such as write commands and read commands) and the address ADDR from the controller 200 and receive the data DATA from the controller 200 (ie, the data to be written) or transfer the data DATA to the controller. (ie, the material to be read). Although FIG. 1 illustrates the command CMD, the address ADDR, and the data DATA, respectively, according to some exemplary embodiments, at least two of the command CMD, the address ADDR, and the data DATA may be transmitted through the same channel. As shown in FIG. 1, the memory device 100 can include a cell array 110, a current source circuit 120, a reference resistance circuit 130, an offset current circuit 140, an amplification circuit 150, and/or a control circuit 160.

單元陣列110可包括多個儲存單元M。儲存單元M可包括可變電阻元件(例如,圖2中的磁性隧道結(magnetic tunnel junction,MTJ)),且可變電阻元件可具有與儲存在儲存單元M中的值對應的電阻。因此,記憶體裝置100可被稱為電阻式記憶體裝置或電阻式隨機存取記憶體(resistive random access memory,ReRAM)裝置。舉例來說,作為不受限制的實例,記憶體裝置100可包括具有如相變隨機存取記憶體(phase change random access memory,PRAM)、鐵電隨機存取記憶體(ferroelectric random access memory,FRAM)等結構的單元陣列110,或者可包括具有以下結構的單元陣列110:所述結構具有如自旋轉移力矩磁性隨機存取記憶體(spin-transfer torque magnetic random access memory,STT-MRAM)、自旋力矩轉移磁化切換隨機存取記憶體(spin torque transfer magnetization switching RAM,Spin-PRAM)及自旋動量轉移隨機存取記憶體(spin momentum transfer RAM,SMT-RAM)等磁性隨機存取記憶體(magnetic random access memory,MRAM)結構。如以下將參照圖2闡述,示例性實施例將主要參照MRAM加以闡述,但示例性實施例並非僅限於此。The cell array 110 can include a plurality of memory cells M. The storage unit M may include a variable resistance element (for example, a magnetic tunnel junction (MTJ) in FIG. 2), and the variable resistance element may have a resistance corresponding to a value stored in the storage unit M. Therefore, the memory device 100 can be referred to as a resistive memory device or a resistive random access memory (ReRAM) device. For example, as an unrestricted example, the memory device 100 may include a phase change random access memory (PRAM), a ferroelectric random access memory (FRAM). The cell array 110 of the same structure may include a cell array 110 having a structure such as a spin-transfer torque magnetic random access memory (STT-MRAM), Magnetic random access memory such as spin torque transfer magnetization switching RAM (Spin-PRAM) and spin momentum transfer RAM (SMT-RAM) Magnetic random access memory (MRAM) structure. As will be explained below with reference to FIG. 2, the exemplary embodiments will be mainly explained with reference to the MRAM, but the exemplary embodiments are not limited thereto.

單元陣列110可包括用於確定儲存在儲存單元M中的值的參考單元R。舉例來說,如圖1所示,單元陣列110可包括共同連接到字元線WLi的多個儲存單元M與參考單元R,且因此可通過被啟動的字元線WLi來同時選擇共同連接到字元線WLi的所述多個儲存單元M與參考單元R。儘管在圖1中只繪示一個參考單元R,然而在一些示例性實施例中,單元陣列110可包括連接到字元線WLi的兩個或更多個參考單元R。在一些示例性實施例中,參考單元R可為不包括電阻元件(例如,可變電阻元件)的短路單元(shorted cell),如以下參照圖4至圖6所闡述。The cell array 110 may include a reference cell R for determining a value stored in the storage unit M. For example, as shown in FIG. 1, the cell array 110 may include a plurality of memory cells M and a reference cell R that are commonly connected to the word line WLi, and thus may be simultaneously selected to be commonly connected to each other through the word line WLi being activated. The plurality of storage units M of the word line WLi and the reference unit R. Although only one reference cell R is illustrated in FIG. 1, in some exemplary embodiments, cell array 110 may include two or more reference cells R connected to word line WLi. In some exemplary embodiments, the reference unit R may be a shorted cell that does not include a resistive element (eg, a variable resistive element) as explained below with reference to FIGS. 4-6.

電流源電路120可向單元陣列110提供第一讀取電流I_RD1及第二讀取電流I_RD2。舉例來說,響應於讀取命令,電流源電路120可將第一讀取電流I_RD1提供到儲存單元M並將第二讀取電流I_RD2的至少一部分提供到參考單元R。在一些示例性實施例中,電流源電路120可產生具有相同量值的第一讀取電流I_RD1及第二讀取電流I_RD2。另外,在一些示例性實施例中,電流源電路120可在控制電路160的控制下對第一讀取電流I_RD1的量值和/或第二讀取電流I_RD2的量值進行調整。The current source circuit 120 can provide the first read current I_RD1 and the second read current I_RD2 to the cell array 110. For example, in response to the read command, current source circuit 120 can provide first read current I_RD1 to storage unit M and provide at least a portion of second read current I_RD2 to reference unit R. In some exemplary embodiments, current source circuit 120 may generate first read current I_RD1 and second read current I_RD2 having the same magnitude. In addition, in some exemplary embodiments, the current source circuit 120 may adjust the magnitude of the first read current I_RD1 and/or the magnitude of the second read current I_RD2 under the control of the control circuit 160.

回應於讀取命令,參考電阻電路130可電連接到參考單元R並提供供參考電流I_REF流過的電阻。如以下所闡述,參考電流I_REF可為通過對由電流源電路120產生的第二讀取電流I_RD2加上偏移電流I_OFF或者從由電流源電路120產生的第二讀取電流I_RD2汲取偏移電流I_OFF而產生的電流。舉例來說,如圖1所示,參考電阻電路130可在被供應參考電流I_REF的第一節點N1與輸出參考電流I_REF的第二節點N2之間提供具有參考電阻RREF 的電阻。另外,在一些示例性實施例中,參考電阻電路130可在控制電路160的控制下對參考電阻RREF 進行調整。參考電阻電路130的電阻可具有與形成在單元陣列110內部的電阻(例如,圖2中的MTJ)的特性不同的特性。舉例來說,參考電阻電路130的電阻可具有比形成在單元陣列110內部的電阻的特性更好的特性。舉例來說,參考電阻電路130的電阻對PVT變化可更加不敏感。In response to the read command, the reference resistor circuit 130 can be electrically coupled to the reference unit R and provide a resistor for the reference current I_REF to flow through. As explained below, the reference current I_REF may be obtained by subtracting the offset current I_OFF from the second read current I_RD2 generated by the current source circuit 120 or the second read current I_RD2 generated by the current source circuit 120. Current generated by I_OFF. For example, as shown in FIG. 1, the reference resistance circuit 130 may provide a resistance having a reference resistance R REF between the first node N1 to which the reference current I_REF is supplied and the second node N2 to which the reference current I_REF is supplied. Additionally, in some exemplary embodiments, the reference resistance circuit 130 may adjust the reference resistance R REF under the control of the control circuit 160. The resistance of the reference resistance circuit 130 may have characteristics different from those of the resistance formed inside the cell array 110 (for example, the MTJ in FIG. 2). For example, the resistance of the reference resistance circuit 130 may have better characteristics than the characteristics of the resistance formed inside the cell array 110. For example, the resistance of reference resistor circuit 130 may be less sensitive to PVT variations.

偏移電流電路140可通過對第二讀取電流I_RD2加上偏移電流I_OFF或者從第二讀取電流I_RD2汲取偏移電流I_OFF來產生參考電流I_REF。偏移電流電路140可包括用於產生偏移電流I_OFF的至少一個電流源,且偏移電流I_OFF的量值可根據從控制電路160提供的控制信號CTRL來進行調整。如以下所闡述,偏移電流I_OFF可具有與儲存單元M中所包括的可變電阻元件的變化對應的量值及方向。在一些示例性實施例中,第二讀取電流I_RD2可如以下參照圖4所闡述流過參考單元R,或者在一些示例性實施例中,參考電流I_REF可如以下參照圖5及圖6所闡述流過參考單元R。The offset current circuit 140 may generate the reference current I_REF by adding the offset current I_OFF to the second read current I_RD2 or the offset current I_OFF from the second read current I_RD2. The offset current circuit 140 may include at least one current source for generating an offset current I_OFF, and the magnitude of the offset current I_OFF may be adjusted according to a control signal CTRL provided from the control circuit 160. As explained below, the offset current I_OFF may have a magnitude and a direction corresponding to a change in the variable resistance element included in the storage unit M. In some exemplary embodiments, the second read current I_RD2 may flow through the reference unit R as explained below with reference to FIG. 4, or in some exemplary embodiments, the reference current I_REF may be as described below with reference to FIGS. 5 and 6. Explain the flow through the reference unit R.

放大電路150可接收讀取電壓V_RD及參考電壓V_REF且可基於讀取電壓V_RD及參考電壓V_REF確定儲存在儲存單元M中的值。舉例來說,放大電路150可通過將讀取電壓V_RD與參考電壓V_REF進行比較來輸出與儲存在儲存單元M中的值對應的信號。讀取電壓V_RD可包括由於由電流源電路120提供的第一讀取電流I_RD1流過儲存單元M而造成的壓降。另外,讀取電壓V_RD可不僅包括由儲存單元M造成的壓降,而且還包括因第一讀取電流I_RD1所流過的路徑(例如,行解碼器170a、源極線SLj及位元線BLj)中的寄生電阻造成的壓降。The amplifying circuit 150 can receive the read voltage V_RD and the reference voltage V_REF and can determine the value stored in the storage unit M based on the read voltage V_RD and the reference voltage V_REF. For example, the amplifying circuit 150 may output a signal corresponding to the value stored in the storage unit M by comparing the read voltage V_RD with the reference voltage V_REF. The read voltage V_RD may include a voltage drop due to the first read current I_RD1 supplied from the current source circuit 120 flowing through the memory cell M. In addition, the read voltage V_RD may include not only the voltage drop caused by the memory cell M but also the path through which the first read current I_RD1 flows (eg, the row decoder 170a, the source line SLj, and the bit line BLj). The voltage drop caused by the parasitic resistance in ).

與讀取電壓V_RD類似,參考電壓V_REF可不僅包括由參考單元R造成的壓降,而且還包括由於由電流源電路120提供的第二讀取電流I_RD2或參考電流I_REF所流過的路徑(例如,圖4中的行解碼器170a、短路源極線SSL及短路位元線SBL)中的寄生電阻造成的壓降。參考電壓V_REF還可包括由參考電阻電路130提供的參考電阻RREF 造成的壓降。因此,可通過控制參考電阻電路130的參考電流I_REF及參考電阻RREF 來調整參考電壓V_REF,且因此可對用於確定儲存在儲存單元M中的值的準則進行調整。Similar to the read voltage V_RD, the reference voltage V_REF may include not only the voltage drop caused by the reference cell R but also the path through which the second read current I_RD2 or the reference current I_REF provided by the current source circuit 120 flows (for example) The voltage drop caused by the parasitic resistance in the row decoder 170a, the short-circuit source line SSL, and the short-circuit bit line SBL in FIG. The reference voltage V_REF may also include a voltage drop caused by the reference resistance R REF provided by the reference resistance circuit 130. Therefore, the reference voltage V_REF can be adjusted by controlling the reference current I_REF of the reference resistance circuit 130 and the reference resistance R REF , and thus the criteria for determining the value stored in the storage unit M can be adjusted.

控制電路160可通過控制信號CTRL來控制偏移電流電路140。在一些示例性實施例中,控制電路160可基於PVT變化等來產生控制信號CTRL以補償記憶元件M中所包括的可變電阻元件的電阻的變化。舉例來說,當儲存單元M中所包括的可變電阻元件具有與溫度成比例的電阻(即,正溫度係數)時,控制電路160可通過控制信號CTRL來減小從第二讀取電流I_RD2汲取的偏移電流I_OFF的量值以使得向參考電阻電路130供應的參考電流I_REF增大,或增大對第二讀取電流I_RD2加上的偏移電流I_OFF的量值。另一方面,當儲存單元M中所包括的可變電阻元件具有與溫度成反比的電阻(即,負溫度係數)時,控制電路160可通過控制信號CTRL來增大從第二讀取電流I_RD2汲取的偏移電流I_OFF的量值或者減小對第二讀取電流I_RD2加上的偏移電流I_OFF的量值以使得向參考電阻電路130供應的參考電流I_REF減小。Control circuit 160 can control offset current circuit 140 by control signal CTRL. In some exemplary embodiments, the control circuit 160 may generate the control signal CTRL based on the PVT variation or the like to compensate for variations in the resistance of the variable resistance element included in the memory element M. For example, when the variable resistance element included in the storage unit M has a resistance proportional to temperature (ie, a positive temperature coefficient), the control circuit 160 may reduce the read current I_RD2 from the second by the control signal CTRL. The magnitude of the extracted offset current I_OFF is such that the reference current I_REF supplied to the reference resistance circuit 130 is increased, or the magnitude of the offset current I_OFF applied to the second read current I_RD2 is increased. On the other hand, when the variable resistance element included in the storage unit M has a resistance inversely proportional to temperature (ie, a negative temperature coefficient), the control circuit 160 can increase the read current I_RD2 from the second by the control signal CTRL. The magnitude of the extracted offset current I_OFF or the magnitude of the offset current I_OFF added to the second read current I_RD2 is decreased such that the reference current I_REF supplied to the reference resistance circuit 130 is decreased.

在一些示例性實施例中,控制電路160可從控制器200接收關於偏移電流I_OFF的資訊。舉例來說,控制器200可估計在對記憶體裝置100進行讀取的操作中用於補償記憶體裝置100的工藝變化的偏移電流I_OFF的量值,並將關於所估計的偏移電流I_OFF的資訊提供到記憶體裝置100。關於所估計的偏移電流I_OFF的資訊可被儲存在記憶體裝置100中所包括的非揮發性記憶體(non-volatile memory,NVM)裝置(例如,圖7B中的NVM)中,且控制電路160可根據儲存在非揮發性記憶體裝置中的所估計的偏移電流I_OFF的資訊來產生控制信號CTRL。In some exemplary embodiments, control circuit 160 may receive information regarding offset current I_OFF from controller 200. For example, the controller 200 may estimate the magnitude of the offset current I_OFF for compensating for the process variation of the memory device 100 in the operation of reading the memory device 100, and will report the estimated offset current I_OFF The information is provided to the memory device 100. The information about the estimated offset current I_OFF may be stored in a non-volatile memory (NVM) device (for example, NVM in FIG. 7B) included in the memory device 100, and the control circuit The 160 may generate the control signal CTRL based on the information of the estimated offset current I_OFF stored in the non-volatile memory device.

當對參考電阻電路130的參考電阻RREF 進行調整來補償因PVT變化等造成的儲存單元M中所包括的可變電阻元件的電阻的變化時,電阻可因可調整的電阻有限而被量化,且因此補償的準確性可劣化。另外,為提供多個可調整的參考電阻,參考電阻電路130可包括多個電阻器及開關裝置,且因此由參考電阻電路130造成的空間耗用及功耗可增大。另一方面,在通過偏移電流電路140的偏移電流I_OFF來補償儲存單元M中所包括的可變電阻元件的電阻的變化的情形中,由於基於如下所述簡單結構的偏移電流I_OFF的連續特性,因此預期可實現非常準確的補償。When the reference resistance R REF of the reference resistance circuit 130 is adjusted to compensate for variations in the resistance of the variable resistance element included in the memory cell M due to a change in PVT or the like, the resistance can be quantized due to the limited resistance of the adjustable, And thus the accuracy of the compensation can be degraded. In addition, to provide a plurality of adjustable reference resistors, the reference resistor circuit 130 can include a plurality of resistors and switching devices, and thus the space consumption and power consumption caused by the reference resistor circuit 130 can be increased. On the other hand, in the case where the variation of the resistance of the variable resistance element included in the storage unit M is compensated by the offset current I_OFF of the offset current circuit 140, due to the offset current I_OFF based on the simple structure as described below Continuous characteristics, so it is expected to achieve very accurate compensation.

圖2是繪示根據示例性實施例的圖1所示儲存單元M的實例的圖,且圖3是繪示根據示例性實施例的由圖2所示儲存單元M提供的電阻的分散的曲線圖。更具體來說,圖2繪示包括磁性隧道結(MTJ)元件作為可變電阻元件的儲存單元M',且圖3繪示圖2所示可變電阻元件MTJ的電阻的分散。2 is a diagram illustrating an example of the storage unit M illustrated in FIG. 1 according to an exemplary embodiment, and FIG. 3 is a diagram illustrating a dispersion of resistance provided by the storage unit M illustrated in FIG. 2, according to an exemplary embodiment. Figure. More specifically, FIG. 2 illustrates a memory cell M' including a magnetic tunnel junction (MTJ) element as a variable resistance element, and FIG. 3 illustrates dispersion of resistance of the variable resistance element MTJ of FIG.

如圖2所示,儲存單元M'可包括在位元線BLj與源極線SLj之間彼此串聯連接的可變電阻元件MTJ與單元電晶體CT。在一些示例性實施例中,可變電阻元件MTJ與單元電晶體CT可以所陳述的順序連接在位元線BLj與源極線SLj之間,如圖2所示,且在一些示例性實施例中可以單元電晶體CT與可變電阻元件MTJ的順序在位元線BLj與源極線SLj之間連接到彼此,如圖3所示。As shown in FIG. 2, the memory cell M' may include a variable resistance element MTJ and a cell transistor CT which are connected in series to each other between the bit line BLj and the source line SLj. In some exemplary embodiments, the variable resistance element MTJ and the unit transistor CT may be connected between the bit line BLj and the source line SLj in the stated order, as shown in FIG. 2, and in some exemplary embodiments. The order of the unit cell transistor CT and the variable resistance element MTJ is connected to each other between the bit line BLj and the source line SLj as shown in FIG.

可變電阻元件MTJ可包括自由層FL及被釘紮層PL,且在自由層FL與被釘紮層PL之間可包括勢壘層BL。如圖2中的箭頭所表示,被釘紮層PL的磁化方向可為固定的,而自由層FL可具有與被釘紮層PL的磁化方向相同或相反的磁化方向。當被釘紮層PL與自由層FL具有相同的磁化方向時,可變電阻元件MTJ可被稱為處於平行狀態P。同時,當被釘紮層PL與自由層FL具有相反的磁化方向時,可變電阻元件MTJ可被稱為處於反平行狀態AP。在一些示例性實施例中,可變電阻元件MTJ還可包括反鐵磁性層,以使被釘紮層PL具有固定的磁化方向。The variable resistance element MTJ may include a free layer FL and a pinned layer PL, and may include a barrier layer BL between the free layer FL and the pinned layer PL. As indicated by the arrows in FIG. 2, the magnetization direction of the pinned layer PL may be fixed, and the free layer FL may have the same or opposite magnetization direction as the magnetization direction of the pinned layer PL. When the pinned layer PL has the same magnetization direction as the free layer FL, the variable resistance element MTJ may be referred to as being in the parallel state P. Meanwhile, when the pinned layer PL and the free layer FL have opposite magnetization directions, the variable resistance element MTJ may be referred to as being in the anti-parallel state AP. In some exemplary embodiments, the variable resistance element MTJ may further include an antiferromagnetic layer such that the pinned layer PL has a fixed magnetization direction.

可變電阻元件MTJ可在平行狀態P中具有相對低的電阻RP 且在反平行狀態AP中具有相對高的電阻RAP 。在本說明書中,假設當處於平行狀態P的可變電阻元件MTJ具有低電阻RP 時儲存單元M'儲存'0',且當處於反平行狀態AP的可變電阻元件MTJ具有高電阻RAP 時儲存單元M'儲存'1'。另外,在本說明書中,可將與'0'對應的電阻RP 稱為平行電阻RP ,而可將與'1'對應的電阻RAP 稱為反平行電阻RAPThe variable resistance element MTJ may have a relatively low resistance R P in the parallel state P and a relatively high resistance R AP in the anti-parallel state AP . In the present specification, it is assumed that the memory cell M' stores '0' when the variable resistance element MTJ in the parallel state P has a low resistance R P , and the variable resistance element MTJ in the anti-parallel state AP has a high resistance R AP The storage unit M' stores '1'. Further, in the present specification, the resistor R P corresponding to '0' may be referred to as a parallel resistor R P , and the resistor R AP corresponding to '1' may be referred to as an anti-parallel resistor R AP .

單元電晶體CT可包括連接到字元線WLi的閘極以及連接到源極線SLj及可變電阻元件MTJ的源極及汲極。單元電晶體CT可根據被施加到字元線WLi的信號來對可變電阻元件MTJ與源極線SLj進行電連接及斷開連接。舉例來說,為在寫入操作中將'0'寫入到儲存單元M',單元電晶體CT可被接通,且從位元線BLj到源極線SLj的電流可流過可變電阻元件MTJ及單元電晶體CT。另外,為將'1'寫入到儲存單元M',單元電晶體CT可被接通,且從源極線SLj到位元線BLj的電流可流過單元電晶體CT及可變電阻元件MTJ。在讀取操作中,單元電晶體CT可被接通且從位元線BLj到源極線SLj的電流或者從源極線SLj到位元線BLj的電流(即,第一讀取電流I_RD1)可流過單元電晶體CT及可變電阻元件MTJ。在本文中假設第一讀取電流I_RD1從源極線SLj流到位元線BLj。The unit transistor CT may include a gate connected to the word line WLi and a source and a drain connected to the source line SLj and the variable resistance element MTJ. The unit transistor CT can electrically and disconnect the variable resistance element MTJ and the source line SLj in accordance with a signal applied to the word line WLi. For example, to write '0' to the memory cell M' in a write operation, the cell transistor CT can be turned on, and the current from the bit line BLj to the source line SLj can flow through the variable resistor. Element MTJ and unit transistor CT. In addition, to write '1' to the memory cell M', the cell transistor CT can be turned on, and current from the source line SLj to the bit line BLj can flow through the cell transistor CT and the variable resistance element MTJ. In the read operation, the cell transistor CT may be turned on and the current from the bit line BLj to the source line SLj or the current from the source line SLj to the bit line BLj (ie, the first read current I_RD1) may be The unit transistor CT and the variable resistance element MTJ flow through. It is assumed herein that the first read current I_RD1 flows from the source line SLj to the bit line BLj.

參照圖3,可變電阻元件MTJ的電阻可為分散的。舉例來說,如圖3所示,在儲存'0'的儲存單元中可存在平均值為RP '的分散的平行電阻RP ,且在儲存'1'的儲存單元中可存在平均值為RAP '或RAP "的分散的反平行電阻RAP 。另外,還可存在介於分散的平行電阻RP 與分散的反平行電阻RAP 之間的平均值為RREF '的分散的參考電阻RREF 。如圖3所示,由於參考電阻電路130的特性,參考電阻RREF 可具有相對良好的分散,即,比可變電阻元件MTJ的電阻RP 及RAP 相對低的分散。另外,在一些示例性實施例中,如圖3所示,反平行電阻RAP 可具有相對劣化的分散,即,比平行電阻RP 的分散相對高的分散。Referring to FIG. 3, the resistance of the variable resistance element MTJ may be dispersed. For example, as shown in FIG. 3, there may be a distributed parallel resistance R P having an average value of R P ' in a storage unit storing '0', and an average value may exist in a storage unit storing '1'. a dispersed antiparallel resistance R AP of R AP ' or R AP ". In addition, there may be a dispersion of the average value between the dispersed parallel resistance R P and the dispersed antiparallel resistance R AP 'R REF ' Resistor R REF . As shown in FIG. 3, due to the characteristics of the reference resistor circuit 130, the reference resistor R REF may have a relatively good dispersion, that is, a relatively low dispersion of the resistances R P and R AP of the variable resistance element MTJ. In some exemplary embodiments, as shown in FIG. 3, the anti-parallel resistance R AP may have a relatively degraded dispersion, that is, a dispersion that is relatively higher than a dispersion of the parallel resistance R P .

在圖3所示實例中,可變電阻元件MTJ的反平行電阻RAP 可隨著可變電阻元件MTJ的溫度升高而減小。另外,這種變化可對於反平行電阻RAP 而言比對於平行電阻RP 而言更明顯。舉例來說,如圖3中的箭頭所表示,低溫下的反平行電阻RAP 的分散可隨著溫度升高而朝高溫下的反平行電阻RAP 的分散向左移位,且反平行電阻RAP 的平均值可從RAP '移位到RAP "。因此,在高溫下使用參考電阻RREF 對反平行電阻RAP 進行檢測的感測裕度可減小,且舉例來說,如在圖3中由虛線所表示,參考電阻RREF 的分散可與反平行電阻RAP 的分散局部重疊。In the example shown in FIG. 3, the anti-parallel resistance R AP of the variable resistance element MTJ may decrease as the temperature of the variable resistance element MTJ rises. Additionally, this variation can be more pronounced for the anti-parallel resistance R AP than for the parallel resistance R P . For example, as indicated by the arrow in FIG. 3, the dispersion of the antiparallel resistance R AP at a low temperature may shift to the left toward the dispersion of the antiparallel resistance R AP at a high temperature as the temperature increases, and the antiparallel resistance The average value of the R AP can be shifted from R AP ' to R AP '. Therefore, the sensing margin for detecting the anti-parallel resistance R AP using the reference resistor R REF at a high temperature can be reduced, and for example, As indicated by the broken line in FIG. 3, the dispersion of the reference resistance R REF may partially overlap with the dispersion of the anti-parallel resistance R AP .

參考電阻RREF 的分散在高溫下可向左移位,從而即使在高溫下也可準確地讀取儲存在儲存單元M'中的'1'。如以上參照圖1所闡述,為在高溫下使參考電阻RREF 的分散向左移位,參考電阻電路130的參考電阻RREF 可減小,而參考電流I_REF的量值可根據偏移電流I_OFF而減小。換句話說,由於儲存在儲存單元M'中的值是基於讀取電壓V_RD及參考電壓V_REF來確定的,因此由於參考電流I_REF的減小而引起的參考電壓V_REF的降低可能會造成與將參考電阻RREF 的分散向左移位的效果相同的效果。儘管圖3例示了可變電阻元件MTJ的電阻隨著溫度發生的變化,然而也可通過以與在溫度的情形中相似的方式對參考電流I_REF進行調整來補償會造成可變電阻元件MTJ的電阻變化的其他因素(例如,工藝及電源電壓)。The dispersion of the reference resistance R REF can be shifted to the left at a high temperature, so that the '1' stored in the storage unit M' can be accurately read even at a high temperature. As set forth above with reference to FIG. 1, the dispersion of the reference resistor R REF is shifted to the left at a high temperature, the reference resistor R REF reference resistor circuit 130 can be reduced, and the magnitude of the reference current according to the I_REF offset current I_OFF And decrease. In other words, since the value stored in the memory cell M' is determined based on the read voltage V_RD and the reference voltage V_REF, a decrease in the reference voltage V_REF due to a decrease in the reference current I_REF may be caused and will be referred to The effect of the dispersion of the resistance R REF shifting to the left has the same effect. Although FIG. 3 exemplifies a change in resistance of the variable resistance element MTJ with temperature, it is also possible to compensate for the resistance of the variable resistance element MTJ by adjusting the reference current I_REF in a manner similar to the case of temperature. Other factors of change (for example, process and supply voltage).

在下文中,參照圖4至圖6,將闡述讀取操作中圖1所示記憶體裝置100的實例。在圖4至圖6所示實例中,偏移電流I_OFF可具有正值或負值。換句話說,參考電流I_REF可等於第二讀取電流I_RD2與偏移電流I_OFF之和,如以下方程式1所示。 [方程式1] I_REF = I_RD2 + I_OFFHereinafter, with reference to FIGS. 4 to 6, an example of the memory device 100 shown in FIG. 1 in the reading operation will be explained. In the examples shown in FIGS. 4 to 6, the offset current I_OFF may have a positive value or a negative value. In other words, the reference current I_REF may be equal to the sum of the second read current I_RD2 and the offset current I_OFF, as shown in Equation 1 below. [Equation 1] I_REF = I_RD2 + I_OFF

因此,正偏移電流I_OFF可表明參考電流I_REF是作為與對第二讀取電流I_RD2加上偏移電流I_OFF的量值對應的電流而產生的(即,I_REF > I_RD2)。同時,負偏移電流I_OFF可表明參考電流I_REF是作為從第二讀取電流I_RD2汲取偏移電流I_OFF的量值對應的電流而產生的(即,I_REF < I_RD2)。另外,偏移電流I_OFF的量值可根據控制信號CTRL而為零。Therefore, the positive offset current I_OFF may indicate that the reference current I_REF is generated as a current corresponding to the magnitude of the second read current I_RD2 plus the offset current I_OFF (ie, I_REF > I_RD2). Meanwhile, the negative offset current I_OFF may indicate that the reference current I_REF is generated as a current corresponding to the magnitude of the offset current I_OFF extracted from the second read current I_RD2 (ie, I_REF < I_RD2). In addition, the magnitude of the offset current I_OFF can be zero according to the control signal CTRL.

圖4是繪示根據示例性實施例的圖1所示記憶體裝置100的實例的方塊圖。詳細來說,圖4繪示在參考單元R與參考電阻電路130a之間包括偏移電流電路140a的記憶體裝置100a。如圖4所示,記憶體裝置100a可包括單元陣列110a、電流源電路120a、參考電阻電路130a、偏移電流電路140a、放大電路150a及行解碼器170a。FIG. 4 is a block diagram showing an example of the memory device 100 of FIG. 1 according to an exemplary embodiment. In detail, FIG. 4 illustrates the memory device 100a including the offset current circuit 140a between the reference unit R and the reference resistor circuit 130a. As shown in FIG. 4, the memory device 100a may include a cell array 110a, a current source circuit 120a, a reference resistance circuit 130a, an offset current circuit 140a, an amplification circuit 150a, and a row decoder 170a.

單元陣列110a可包括共同連接到字元線WLi的儲存單元M及參考單元R。儲存單元M可連接到位元線BLj及源極線SLj,且參考單元R可連接到短路位元線SBL及短路源極線SSL。位元線BLj、源極線SLj、短路位元線SBL及短路源極線SSL可延伸到行解碼器170a。儲存單元M可包括在位元線BLj與源極線SLj之間串聯連接的可變電阻元件MTJ與單元電晶體CT,而參考單元R可包括連接到短路位元線SBL及短路源極線SSL的單元電晶體CT。因此,短路位元線SBL及短路源極線SSL可通過參考單元R的單元電晶體CT而被電短路或斷開,且不具有電阻器的這種參考單元R可被稱為短路單元。The cell array 110a may include a memory cell M and a reference cell R that are commonly connected to the word line WLi. The storage unit M can be connected to the bit line BLj and the source line SLj, and the reference unit R can be connected to the shorted bit line SBL and the shorted source line SSL. The bit line BLj, the source line SLj, the shorted bit line SBL, and the shorted source line SSL may extend to the row decoder 170a. The storage unit M may include a variable resistance element MTJ and a unit transistor CT connected in series between the bit line BLj and the source line SLj, and the reference unit R may include a connection to the short-circuit bit line SBL and the short-circuit source line SSL Unit transistor CT. Therefore, the short-circuit bit line SBL and the short-circuit source line SSL can be electrically short-circuited or disconnected by the unit transistor CT of the reference unit R, and such a reference unit R having no resistor can be referred to as a short-circuit unit.

為補償因連接到儲存單元M的位元線BLj及源極線SLj而引起的壓降,可在單元陣列110a中設置連接到短路位元線SBL及短路源極線SSL的參考單元R。如圖4所示,參考單元R可為短路單元,且因此,可將因儲存單元M的可變電阻元件MTJ引起的壓降與因單元陣列110a外部的參考電阻電路130a引起的壓降進行比較。由於與單元陣列110a的空間限制及結構限制無關,因此位於單元陣列110a外部的參考電阻電路130a可提供對PVT變化等不敏感的參考電阻RREF ,且因此可通過參考電流I_REF來準確地調整參考電壓V_REF。To compensate for the voltage drop caused by the bit line BLj and the source line SLj connected to the memory cell M, a reference cell R connected to the short bit line SBL and the short source line SSL may be provided in the cell array 110a. As shown in FIG. 4, the reference unit R may be a short-circuit unit, and thus, the voltage drop caused by the variable resistance element MTJ of the memory unit M may be compared with the voltage drop caused by the reference resistance circuit 130a outside the unit array 110a. . The reference resistor circuit 130a located outside the cell array 110a can provide a reference resistor R REF that is insensitive to PVT variations or the like due to space limitations and structural limitations of the cell array 110a, and thus can accurately adjust the reference by the reference current I_REF. Voltage V_REF.

行解碼器170a可根據行位址COL來對位元線BLj、源極線SLj、短路位元線SBL及短路源極線SSL進行佈線。行位址COL可從從圖1所示控制器200接收的位址ADDR產生,且行解碼器170a可根據行位址COL來選擇根據被啟動的字元線WLi而在單元陣列110a中被選擇的儲存單元及參考單元中的至少一些儲存單元及參考單元。舉例來說,如圖4所示,行解碼器170a可將儲存單元M的位元線BLj連接到負電源電壓VSS並將源極線SLj連接到電流源電路120a。另外,行解碼器170a可將參考單元R的短路位元線SBL連接到與參考電阻電路130a及偏移電流電路140a連接的節點,並將短路源極線SSL連接到電流源電路120a。因此,第一讀取電流I_RD1可經由源極線SLj、儲存單元M及位元線BLj流到負電源電壓VSS,第二讀取電流I_RD2可流經短路源極線SSL、參考單元R及短路位元線SBL,且作為第二讀取電流I_RD2與偏移電流I_OFF之和的參考電流I_REF可經由參考電阻電路130a流到負電源電壓VSS。The row decoder 170a can route the bit line BLj, the source line SLj, the short-circuit bit line SBL, and the short-circuit source line SSL in accordance with the row address COL. The row address COL can be generated from the address ADDR received from the controller 200 shown in FIG. 1, and the row decoder 170a can select the selected in the cell array 110a according to the row address COL to be selected according to the row address COL. At least some of the storage unit and the reference unit and the reference unit. For example, as shown in FIG. 4, the row decoder 170a may connect the bit line BLj of the memory cell M to the negative supply voltage VSS and the source line SLj to the current source circuit 120a. In addition, the row decoder 170a may connect the short-circuited bit line SBL of the reference unit R to a node connected to the reference resistance circuit 130a and the offset current circuit 140a, and connect the short-circuit source line SSL to the current source circuit 120a. Therefore, the first read current I_RD1 can flow to the negative power supply voltage VSS via the source line SLj, the memory unit M, and the bit line BLj, and the second read current I_RD2 can flow through the short-circuit source line SSL, the reference unit R, and the short circuit. The bit line SBL, and the reference current I_REF as the sum of the second read current I_RD2 and the offset current I_OFF may flow to the negative power supply voltage VSS via the reference resistance circuit 130a.

放大電路150a可連接到從電流源電路120a輸出第一讀取電流I_RD1及第二讀取電流I_RD2的節點並根據所述節點的電壓(即,讀取電壓V_RD及參考電壓V_REF)來產生輸出信號Q。讀取電壓V_RD可基於儲存單元M的可變電阻元件MTJ的電阻值及第一讀取電流I_RD1來確定,而參考電壓V_REF可基於參考電阻值RREF 及參考電流I_REF來確定。放大電路150a可在讀取電壓V_RD高於參考電壓V_REF時產生與'1'對應的輸出信號Q,且可在讀取電壓V_RD低於參考電壓V_REF時產生與'0'對應的輸出信號Q。The amplifying circuit 150a is connectable to a node that outputs the first read current I_RD1 and the second read current I_RD2 from the current source circuit 120a and generates an output signal according to the voltage of the node (ie, the read voltage V_RD and the reference voltage V_REF) Q. The read voltage V_RD may be determined based on the resistance value of the variable resistance element MTJ of the memory cell M and the first read current I_RD1, and the reference voltage V_REF may be determined based on the reference resistance value R REF and the reference current I_REF. The amplifying circuit 150a may generate an output signal Q corresponding to '1' when the read voltage V_RD is higher than the reference voltage V_REF, and may generate an output signal Q corresponding to '0' when the read voltage V_RD is lower than the reference voltage V_REF.

偏移電流電路140a可包括用於提供源電流I_SC的第一電流源141a及用於提供灌電流(sink current)I_SK的第二電流源142a。因此,偏移電流I_OFF可等於源電流I_SC與灌電流I_SK之差,如以下方程式2所示。 [方程式2] I_OFF = I_SC - I_SKThe offset current circuit 140a may include a first current source 141a for providing a source current I_SC and a second current source 142a for providing a sink current I_SK. Therefore, the offset current I_OFF can be equal to the difference between the source current I_SC and the sink current I_SK, as shown in Equation 2 below. [Equation 2] I_OFF = I_SC - I_SK

第一電流源141a和/或第二電流源142a可根據控制信號CTRL來調整源電流I_SC和/或灌電流I_SK,從而調整偏移電流I_OFF。在一些示例性實施例中,偏移電流電路140a可只包括第一電流源141a及第二電流源142a中的一者,如以下參照圖8B及圖8C所闡述。The first current source 141a and/or the second current source 142a may adjust the source current I_SC and/or the sink current I_SK according to the control signal CTRL to adjust the offset current I_OFF. In some exemplary embodiments, the offset current circuit 140a may include only one of the first current source 141a and the second current source 142a, as explained below with reference to FIGS. 8B and 8C.

圖5是繪示根據示例性實施例的圖1所示記憶體裝置100的實例的方塊圖。詳細來說,圖5繪示在電流源電路120b與參考單元R之間包括偏移電流電路140b的記憶體裝置100b。如圖5所示,記憶體裝置100b可包括單元陣列110b、電流源電路120b、參考電阻電路130b、偏移電流電路140b、放大電路150b及行解碼器170b。在下文中,將省略與圖4的說明相同的說明。FIG. 5 is a block diagram illustrating an example of the memory device 100 of FIG. 1 in accordance with an exemplary embodiment. In detail, FIG. 5 illustrates the memory device 100b including the offset current circuit 140b between the current source circuit 120b and the reference unit R. As shown in FIG. 5, the memory device 100b may include a cell array 110b, a current source circuit 120b, a reference resistance circuit 130b, an offset current circuit 140b, an amplification circuit 150b, and a row decoder 170b. Hereinafter, the same description as that of FIG. 4 will be omitted.

由於在電流源電路120b與參考單元R之間設置有偏移電流電路140b,因此在將偏移電流I_OFF反映到第二讀取電流I_RD2時產生的參考電流I_REF可經由短路源極線SSL、參考單元R、短路位元線SBL及參考電阻電路130b流到負電源電壓VSS。偏移電流電路140b可包括用於提供源電流I_SC的第一電流源141b及用於提供灌電流I_SK的第二電流源142b,且偏移電流I_OFF可如方程式2中所示進行確定。第一電流源141b和/或第二電流源142b可根據控制信號CTRL來調整源電流I_SC和/或灌電流I_SK,從而調整偏移電流I_OFF。在一些示例性實施例中,不同於圖5中所示,偏移電流電路140b可只包括第一電流源141b及第二電流源142b中的一者。Since the offset current circuit 140b is provided between the current source circuit 120b and the reference unit R, the reference current I_REF generated when the offset current I_OFF is reflected to the second read current I_RD2 can be via the short-circuit source line SSL, reference The cell R, the short-circuit bit line SBL, and the reference resistance circuit 130b flow to the negative power supply voltage VSS. The offset current circuit 140b may include a first current source 141b for supplying the source current I_SC and a second current source 142b for providing the sink current I_SK, and the offset current I_OFF may be determined as shown in Equation 2. The first current source 141b and/or the second current source 142b may adjust the source current I_SC and/or the sink current I_SK according to the control signal CTRL to adjust the offset current I_OFF. In some exemplary embodiments, unlike the one shown in FIG. 5, the offset current circuit 140b may include only one of the first current source 141b and the second current source 142b.

圖6是繪示根據示例性實施例的圖1所示記憶體裝置100的實例的方塊圖。詳細來說,圖6繪示在參考單元R與參考電阻電路130c之間包括偏移電流電路140c的記憶體裝置100c。與圖5所示記憶體裝置100b相比,參考電阻電路130c可設置在電流源電路120c與參考單元R之間而非設置在參考單元R與負電源電壓VSS之間。如圖6所示,記憶體裝置100c可包括單元陣列110c、電流源電路120c、參考電阻電路130c、偏移電流電路140c、放大電路150c及行解碼器170c。在下文中,將省略與圖4及圖5的說明相同的說明。FIG. 6 is a block diagram showing an example of the memory device 100 of FIG. 1 according to an exemplary embodiment. In detail, FIG. 6 illustrates the memory device 100c including the offset current circuit 140c between the reference unit R and the reference resistance circuit 130c. Compared with the memory device 100b shown in FIG. 5, the reference resistance circuit 130c may be disposed between the current source circuit 120c and the reference unit R instead of between the reference unit R and the negative power supply voltage VSS. As shown in FIG. 6, the memory device 100c may include a cell array 110c, a current source circuit 120c, a reference resistance circuit 130c, an offset current circuit 140c, an amplification circuit 150c, and a row decoder 170c. Hereinafter, the same description as that of FIGS. 4 and 5 will be omitted.

由於在電流源電路120c與參考電阻電路130c之間設置有偏移電流電路140c,因此在將偏移電流I_OFF反映到第二讀取電流I_RD2時產生的參考電流I_REF可經由參考電阻電路130c、短路源極線SSL、參考單元R、及短路位元線SBL流到負電源電壓VSS。偏移電流電路140c可包括用於提供源電流I_SC的第一電流源141c及用於提供灌電流I_SK的第二電流源142c,且偏移電流I_OFF可如方程式2中所示進行確定。第一電流源141c和/或第二電流源142c可根據控制信號CTRL來調整源電流I_SC和/或灌電流I_SK,從而調整偏移電流I_OFF。在一些示例性實施例中,不同於圖6中所示,偏移電流電路140c可只包括第一電流源141c及第二電流源142c中的一者。Since the offset current circuit 140c is provided between the current source circuit 120c and the reference resistance circuit 130c, the reference current I_REF generated when the offset current I_OFF is reflected to the second read current I_RD2 can be short-circuited via the reference resistance circuit 130c. The source line SSL, the reference unit R, and the shorted bit line SBL flow to the negative power supply voltage VSS. The offset current circuit 140c may include a first current source 141c for supplying the source current I_SC and a second current source 142c for providing the sink current I_SK, and the offset current I_OFF may be determined as shown in Equation 2. The first current source 141c and/or the second current source 142c may adjust the source current I_SC and/or the sink current I_SK according to the control signal CTRL, thereby adjusting the offset current I_OFF. In some exemplary embodiments, unlike the one shown in FIG. 6, the offset current circuit 140c may include only one of the first current source 141c and the second current source 142c.

圖7A至圖7D是繪示根據示例性實施例的圖1所示控制電路160的實例的方塊圖。如以上參照圖1所闡述,圖7A至圖7D所示控制電路160a、160b、160c及160d可分別產生控制信號CTRL,且由偏移電流電路140產生的偏移電流I_OFF可基於控制信號CTRL來進行控制。在下文中,將參照圖1來闡述圖7A至圖7D。7A through 7D are block diagrams showing an example of the control circuit 160 of Fig. 1 in accordance with an exemplary embodiment. As explained above with reference to FIG. 1, the control circuits 160a, 160b, 160c, and 160d shown in FIGS. 7A through 7D can respectively generate the control signal CTRL, and the offset current I_OFF generated by the offset current circuit 140 can be based on the control signal CTRL. Take control. Hereinafter, FIGS. 7A to 7D will be explained with reference to FIG. 1.

參照圖7A,控制電路160a可包括第一信號產生器161a、第二信號產生器162a及組合電路163a且可基於量值會隨著PVT(例如,電壓、電流等)的變化而變化的信號來產生控制信號CTRL。在一些示例性實施例中,第一信號產生器161a可產生量值與溫度成比例的第一信號SIG1,而第二信號產生器162a可產生量值與溫度成反比的第二信號SIG2。在一些示例性實施例中,第一信號產生器161a可產生量值與電源電壓(例如,正電源電壓VDD)成比例的第一信號SIG1,而第二信號產生器162a可產生量值與正電源電壓VDD成反比的第二信號SIG2。組合電路163a可根據第一權重w1及第二權重w2來將控制信號CTRL產生為第一信號SIG1與第二信號SIG2的加權和。組合電路163a的第一權重w1及第二權重w2可根據儲存單元M的電阻的變化特性來確定。Referring to FIG. 7A, the control circuit 160a may include a first signal generator 161a, a second signal generator 162a, and a combination circuit 163a and may be based on a signal whose magnitude may vary with changes in PVT (eg, voltage, current, etc.). A control signal CTRL is generated. In some exemplary embodiments, the first signal generator 161a may generate a first signal SIG1 whose magnitude is proportional to temperature, and the second signal generator 162a may generate a second signal SIG2 whose magnitude is inversely proportional to temperature. In some exemplary embodiments, the first signal generator 161a may generate a first signal SIG1 whose magnitude is proportional to a supply voltage (eg, a positive supply voltage VDD), and the second signal generator 162a may generate a magnitude and a positive value The power supply voltage VDD is inversely proportional to the second signal SIG2. The combining circuit 163a may generate the control signal CTRL as a weighted sum of the first signal SIG1 and the second signal SIG2 according to the first weight w1 and the second weight w2. The first weight w1 and the second weight w2 of the combination circuit 163a may be determined according to the variation characteristics of the resistance of the storage unit M.

參照圖7B,控制電路160b可包括非揮發性記憶體161b且可接收工藝資訊P_INFO。舉例來說,工藝資訊P_INFO可從製造圖1所示記憶體裝置100的工藝中產生,且工藝資訊P_INFO可在製造記憶體裝置100的工藝期間提供。控制電路160b可將工藝資訊P_INFO儲存在非揮發性記憶體161b中且可在對記憶體裝置100進行讀取的操作期間基於儲存在非揮發性記憶體161b中的工藝資訊P_INFO來產生控制信號CTRL。在一些示例性實施例中,工藝資訊P_INFO可包含關於偏移電流I_OFF的資訊,且控制電路160b可基於關於偏移電流I_OFF的資訊來產生控制信號CTRL。Referring to FIG. 7B, the control circuit 160b may include the non-volatile memory 161b and may receive the process information P_INFO. For example, the process information P_INFO can be generated from the process of manufacturing the memory device 100 shown in FIG. 1, and the process information P_INFO can be provided during the process of manufacturing the memory device 100. The control circuit 160b can store the process information P_INFO in the non-volatile memory 161b and can generate the control signal CTRL based on the process information P_INFO stored in the non-volatile memory 161b during the operation of reading the memory device 100. . In some exemplary embodiments, the process information P_INFO may include information about the offset current I_OFF, and the control circuit 160b may generate the control signal CTRL based on the information about the offset current I_OFF.

參照圖7C,控制電路160c可包括查閱資料表161c且可接收感測信號SEN。感測信號SEN是通過對記憶體裝置100的操作環境進行感測產生的信號且可為類比信號或數位信號。舉例來說,感測信號SEN可在記憶體裝置100中所包括的溫度感測器對記憶體裝置100的溫度進行感測時產生,或者在記憶體裝置100中所包括電壓感測器對提供到記憶體裝置100的電源電壓進行感測時產生。查閱資料表161c可包含關於感測信號SEN及控制信號CTRL的映射資訊,且因此控制電路160c通過參照查閱資料表161c來產生與所接收的感測信號SEN對應的控制信號CTRL。Referring to FIG. 7C, the control circuit 160c may include a lookup data table 161c and may receive the sensing signal SEN. The sensing signal SEN is a signal generated by sensing an operating environment of the memory device 100 and may be an analog signal or a digital signal. For example, the sensing signal SEN may be generated when a temperature sensor included in the memory device 100 senses the temperature of the memory device 100, or provided by a voltage sensor pair included in the memory device 100. This is generated when the power supply voltage of the memory device 100 is sensed. The lookup data table 161c may include mapping information on the sensing signal SEN and the control signal CTRL, and thus the control circuit 160c generates a control signal CTRL corresponding to the received sensing signal SEN by referring to the lookup data table 161c.

參照圖7D,控制電路160d可包括信號處理電路161d且可接收感測信號SEN。如以上參照圖7C所闡述,感測信號SEN可為通過對記憶體裝置100的操作環境進行感測而產生的信號。在一些示例性實施例中,感測信號SEN可為類比信號且信號處理電路161d可通過對感測信號SEN進行放大或衰減來產生控制信號CTRL。在一些示例性實施例中,感測信號SEN可為數位信號且信號處理電路161d可通過對感測信號SEN進行計算或轉換來產生控制信號CTRL。Referring to FIG. 7D, the control circuit 160d may include a signal processing circuit 161d and may receive the sensing signal SEN. As explained above with reference to FIG. 7C, the sense signal SEN may be a signal generated by sensing an operating environment of the memory device 100. In some exemplary embodiments, the sense signal SEN may be an analog signal and the signal processing circuit 161d may generate the control signal CTRL by amplifying or attenuating the sense signal SEN. In some exemplary embodiments, the sense signal SEN may be a digital signal and the signal processing circuit 161d may generate the control signal CTRL by calculating or converting the sense signal SEN.

圖8A、圖8B及圖8C是繪示根據示例性實施例的圖1所示偏移電流電路140的實例的方塊圖。如以上參照圖1所闡述,圖8A所示偏移電流電路140d、圖8B所示偏移電流電路140e及圖8C所示偏移電流電路140f可分別產生量值會根據控制信號CTRL進行調整的偏移電流I_OFF。在下文中,將參照圖1來闡述圖8A、圖8B及圖8C。8A, 8B, and 8C are block diagrams illustrating an example of the offset current circuit 140 of FIG. 1 in accordance with an exemplary embodiment. As explained above with reference to FIG. 1, the offset current circuit 140d shown in FIG. 8A, the offset current circuit 140e shown in FIG. 8B, and the offset current circuit 140f shown in FIG. 8C can respectively generate magnitudes that are adjusted according to the control signal CTRL. Offset current I_OFF. Hereinafter, FIG. 8A, FIG. 8B, and FIG. 8C will be explained with reference to FIG. 1.

參照圖8A,在一些示例性實施例中,偏移電流電路140d可包括兩個電流源。舉例來說,如圖8A所示,偏移電流電路140d可包括用於產生源電流I_SC的PMOS電晶體PT以及用於產生灌電流I_SK的NMOS電晶體NT。PMOS電晶體PT可包括用於從控制電路160e接收第一控制信號CTRL1的閘極、連接到正電源電壓VDD的源極以及連接到NMOS電晶體NT的汲極。另外,NMOS電晶體NT可包括用於從控制電路160e接收第二控制信號CTRL2的閘極、連接到負電源電壓VSS的源極以及連接到PMOS電晶體PT的汲極。偏移電流I_OFF可通過與PMOS電晶體PT的汲極及NMOS電晶體NT的汲極連接的節點輸出,且因此,如圖8A所示,偏移電流I_OFF可相同於源電流I_SC與灌電流I_SK之差。控制電路160e可基於第一控制信號CTRL1及第二控制信號CTRL2產生比正偏移電流I_OFF(即,第二讀取電流I_RD2)大的參考電流I_REF,且還可產生負偏移電流I_OFF(即,比第二讀取電流I_RD2小的參考電流I_REF)。Referring to FIG. 8A, in some exemplary embodiments, the offset current circuit 140d can include two current sources. For example, as shown in FIG. 8A, the offset current circuit 140d may include a PMOS transistor PT for generating a source current I_SC and an NMOS transistor NT for generating a sink current I_SK. The PMOS transistor PT may include a gate for receiving the first control signal CTRL1 from the control circuit 160e, a source connected to the positive supply voltage VDD, and a drain connected to the NMOS transistor NT. In addition, the NMOS transistor NT may include a gate for receiving the second control signal CTRL2 from the control circuit 160e, a source connected to the negative supply voltage VSS, and a drain connected to the PMOS transistor PT. The offset current I_OFF can be output through a node connected to the drain of the PMOS transistor PT and the drain of the NMOS transistor NT, and therefore, as shown in FIG. 8A, the offset current I_OFF can be the same as the source current I_SC and the sink current I_SK. Difference. The control circuit 160e may generate a reference current I_REF greater than the positive offset current I_OFF (ie, the second read current I_RD2) based on the first control signal CTRL1 and the second control signal CTRL2, and may also generate a negative offset current I_OFF (ie, , a reference current I_REF) smaller than the second read current I_RD2.

參照圖8B,在一些示例性實施例中,偏移電流電路140e可包括一個電流源。舉例來說,如圖8B所示,偏移電流電路140e可包括用於產生源電流I_SC的PMOS電晶體PT。PMOS電晶體PT可包括用於從控制電路160f接收控制信號CTRL的閘極、連接到正電源電壓VDD的源極以及輸出偏移電流I_OFF的汲極。因此,偏移電流I_OFF可相同於源電流I_SC。在一些示例性實施例中,當儲存單元M中所包括的可變電阻元件具有正溫度係數且參考電阻RREF 被配置成具有適用於在低溫(例如,室溫)下確定可變電阻元件的電阻的量值時,控制電路160f可通過隨著溫度升高減小控制信號CTRL的電壓來增大偏移電流I_OFF的量值。因此,參考電流I_REF的量值可在高溫下增大且因此參考電壓V_REF可增大。Referring to Figure 8B, in some exemplary embodiments, the offset current circuit 140e can include a current source. For example, as shown in FIG. 8B, the offset current circuit 140e may include a PMOS transistor PT for generating a source current I_SC. The PMOS transistor PT may include a gate for receiving the control signal CTRL from the control circuit 160f, a source connected to the positive power supply voltage VDD, and a drain for outputting the offset current I_OFF. Therefore, the offset current I_OFF can be the same as the source current I_SC. In some exemplary embodiments, when the variable resistance element included in the storage unit M has a positive temperature coefficient and the reference resistance R REF is configured to have a variable resistance element suitable for determining at a low temperature (eg, room temperature) At the magnitude of the resistance, the control circuit 160f can increase the magnitude of the offset current I_OFF by decreasing the voltage of the control signal CTRL as the temperature rises. Therefore, the magnitude of the reference current I_REF can be increased at a high temperature and thus the reference voltage V_REF can be increased.

參照圖8C,在一些示例性實施例中,偏移電流電路140f可包括一個電流源。舉例來說,如圖8C所示,偏移電流電路140f可包括用於產生灌電流I_SK的NMOS電晶體NT。NMOS電晶體NT可具有用於從控制電路160g接收控制信號CTRL的閘極、連接到負電源電壓VSS的源極以及用於輸出偏移電流I_OFF的汲極。因此,偏移電流I_OFF可具有與灌電流I_SK相同的量值且可具有與灌電流I_SK的方向相反的方向。在一些示例性實施例中,當儲存單元M中所包括的可變電阻元件具有負溫度係數且參考電阻RREF 被配置成具有適用於在低溫(例如,室溫)下確定可變電阻元件的電阻的量值時,控制電路160g可通過隨著溫度升高而增大控制信號CTRL的電壓來增大偏移電流I_OFF的量值。因此,參考電流I_REF的量值可在高溫下減小且因此參考電壓V_REF可降低。Referring to Figure 8C, in some exemplary embodiments, the offset current circuit 140f can include a current source. For example, as shown in FIG. 8C, the offset current circuit 140f may include an NMOS transistor NT for generating a sink current I_SK. The NMOS transistor NT may have a gate for receiving the control signal CTRL from the control circuit 160g, a source connected to the negative power supply voltage VSS, and a drain for outputting the offset current I_OFF. Therefore, the offset current I_OFF may have the same magnitude as the sink current I_SK and may have a direction opposite to the direction of the sink current I_SK. In some exemplary embodiments, when the variable resistance element included in the storage unit M has a negative temperature coefficient and the reference resistance R REF is configured to have a variable resistance element suitable for determining at a low temperature (eg, room temperature) At the magnitude of the resistance, the control circuit 160g can increase the magnitude of the offset current I_OFF by increasing the voltage of the control signal CTRL as the temperature increases. Therefore, the magnitude of the reference current I_REF can be reduced at a high temperature and thus the reference voltage V_REF can be lowered.

圖9是根據示例性實施例的操作記憶體裝置的方法的流程圖。詳細來說,圖9繪示記憶體裝置回應於讀取命令進行的讀取操作的實例。在一些示例性所示實例中,圖9所示方法可由圖1所示記憶體裝置100執行,且在下文中,將參照圖1來闡述圖9。FIG. 9 is a flowchart of a method of operating a memory device, according to an exemplary embodiment. In detail, FIG. 9 illustrates an example of a read operation performed by the memory device in response to a read command. In some exemplary illustrated examples, the method illustrated in FIG. 9 may be performed by the memory device 100 illustrated in FIG. 1, and hereinafter, FIG. 9 will be illustrated with reference to FIG.

在操作S200中,可執行產生第一讀取電流I_RD1及第二讀取電流I_RD2的操作。舉例來說,記憶體裝置100的電流源電路120可響應於讀取命令而產生第一讀取電流I_RD1及第二讀取電流I_RD2。可將第一讀取電流I_RD1提供到單元陣列110的儲存單元M且可將第二讀取電流I_RD2的至少一部分提供到單元陣列110的參考單元R。在一些示例性實施例中,第一讀取電流I_RD1與第二讀取電流I_RD2可具有實質上相同的量值。In operation S200, an operation of generating the first read current I_RD1 and the second read current I_RD2 may be performed. For example, the current source circuit 120 of the memory device 100 can generate the first read current I_RD1 and the second read current I_RD2 in response to the read command. The first read current I_RD1 may be supplied to the memory cell M of the cell array 110 and at least a portion of the second read current I_RD2 may be provided to the reference cell R of the cell array 110. In some exemplary embodiments, the first read current I_RD1 and the second read current I_RD2 may have substantially the same magnitude.

在操作S400中,可執行用於根據儲存單元M的電阻的變化來產生偏移電流I_OFF的操作。舉例來說,可基於製造記憶體裝置100的工藝、記憶體裝置100的操作環境(例如,電源電壓及溫度)等來產生控制信號CTRL以對儲存單元M的電阻的變化進行補償,且偏移電流電路140可根據控制信號CTRL來產生偏移電流I_OFF。可通過利用偏移電流I_OFF增大或減小第二讀取電流I_RD2來產生參考電流I_REF。In operation S400, an operation for generating an offset current I_OFF according to a change in resistance of the storage unit M may be performed. For example, the control signal CTRL may be generated based on the process of manufacturing the memory device 100, the operating environment of the memory device 100 (eg, power supply voltage and temperature), etc. to compensate for variations in the resistance of the memory cell M, and offset. The current circuit 140 can generate the offset current I_OFF according to the control signal CTRL. The reference current I_REF can be generated by increasing or decreasing the second read current I_RD2 with the offset current I_OFF.

在操作S600中,可執行用於產生讀取電壓V_RD及參考電壓V_REF的操作。舉例來說,當第一讀取電流I_RD1流過儲存單元M時,可產生讀取電壓V_RD。另外,在一些示例性實施例中,當第二讀取電流I_RD2流過參考單元R且參考電流流過參考電阻電路130時可產生參考電壓V_REF。在一些示例性實施例中,當參考電流I_REF流過參考單元R及參考電阻電路130時可產生參考電壓V_REF。In operation S600, an operation for generating the read voltage V_RD and the reference voltage V_REF may be performed. For example, when the first read current I_RD1 flows through the memory cell M, the read voltage V_RD can be generated. In addition, in some exemplary embodiments, the reference voltage V_REF may be generated when the second read current I_RD2 flows through the reference cell R and the reference current flows through the reference resistance circuit 130. In some exemplary embodiments, the reference voltage V_REF may be generated when the reference current I_REF flows through the reference unit R and the reference resistance circuit 130.

在操作S800中,可執行用於確定儲存在儲存單元M中的值的操作。舉例來說,放大電路150可接收讀取電壓V_RD及參考電壓V_REF,將讀取電壓V_RD與參考電壓V_REF進行比較並產生與儲存在儲存單元M中值對應的輸出。當通過偏移電流I_OFF將儲存單元M的電阻的變化反映到參考電壓V_REF時,可準確地讀取儲存在儲存單元M中的值。In operation S800, an operation for determining a value stored in the storage unit M may be performed. For example, the amplifying circuit 150 can receive the read voltage V_RD and the reference voltage V_REF, compare the read voltage V_RD with the reference voltage V_REF, and generate an output corresponding to the value stored in the storage unit M. When the change in the resistance of the memory cell M is reflected to the reference voltage V_REF by the offset current I_OFF, the value stored in the memory cell M can be accurately read.

圖10是繪示包括根據示例性實施例的記憶體裝置的系統晶片(SoC)300的方塊圖。系統晶片300可指集成有計算系統的元件或其他電子系統的元件的積體電路。舉例來說,作為系統晶片300的實例,應用處理器(application processor,AP)可包括處理器及用於其他功能的組件。如圖10所示,系統晶片300可包括核310、數位訊號處理器(digital signal processor,DSP)320、圖形處理單元(graphic processing unit,GPU)330、內部記憶體340、通信介面350和/或儲存介面360。系統晶片300的各個元件可通過匯流排370彼此通信。FIG. 10 is a block diagram showing a system die (SoC) 300 including a memory device in accordance with an exemplary embodiment. System wafer 300 may refer to an integrated circuit that integrates elements of a computing system or elements of other electronic systems. For example, as an example of system wafer 300, an application processor (AP) can include a processor and components for other functions. As shown in FIG. 10, the system chip 300 can include a core 310, a digital signal processor (DSP) 320, a graphics processing unit (GPU) 330, internal memory 340, a communication interface 350, and/or The storage interface 360. The various components of system wafer 300 can communicate with each other through bus bar 370.

核310可處理指示且可控制系統晶片300中所包括的各個元件的操作。舉例來說,核310可驅動作業系統並通過處理一系列指令來執行作業系統上的應用。DSP 320可通過處理數位信號(例如,由通信介面350提供的數位信號)來產生有用的資料。GPU 330可從由內部記憶體340提供的圖像資料產生將通過顯示裝置進行輸出的圖像的資料或者對圖像資料進行編碼。Core 310 can process the instructions and can control the operation of the various components included in system wafer 300. For example, core 310 can drive an operating system and execute applications on the operating system by processing a series of instructions. The DSP 320 can generate useful data by processing digital signals (e.g., digital signals provided by the communication interface 350). The GPU 330 can generate or encode image data of an image to be output through the display device from image data supplied from the internal memory 340.

內部記憶體340可儲存用於運行核310、DSP 320及GPU 330的資料。內部記憶體340可包括根據示例性實施例的電阻式記憶體裝置,且因此內部記憶體340可通過補償可變電阻元件的變化來表現出高的操作可靠性。Internal memory 340 can store data for running core 310, DSP 320, and GPU 330. The internal memory 340 may include a resistive memory device according to an exemplary embodiment, and thus the internal memory 340 may exhibit high operational reliability by compensating for variations in the variable resistive element.

通信介面350可為一對一通信提供通信網路或介面。儲存介面360可為系統晶片300的外部記憶體(例如,動態隨機存取記憶體(dynamic random access memory,DRAM)、快閃記憶體(flash memory)等)提供介面。Communication interface 350 can provide a communication network or interface for one-to-one communication. The storage interface 360 can provide an interface for external memory (eg, dynamic random access memory (DRAM), flash memory, etc.) of the system chip 300.

圖11是繪示包括根據示例性實施例的記憶體裝置的記憶體系統400的方塊圖。如圖11所示,記憶體系統400可與主機500進行通信且可包括控制器410及記憶體裝置420。FIG. 11 is a block diagram showing a memory system 400 including a memory device in accordance with an exemplary embodiment. As shown in FIG. 11, the memory system 400 can communicate with the host 500 and can include a controller 410 and a memory device 420.

記憶體系統400與主機500彼此通信時所使用的介面600可使用電信號和/或光學信號,且可包括但不限於:串列高級技術附件(serial advanced technology attachment,SATA)介面、SATA快速(SATA express,SATAe)介面、串列連接小型電腦系統介面(serial attached small computer system interface,serial attached SCSI;SAS)、周邊元件連接快速(peripheral component interconnect express,PCIe)介面、非揮發性儲存快速(non-volatile memory express,NVMe)介面、高級主機控制器介面(advanced host controller interface,AHCI)或其組合。The interface 600 used by the memory system 400 and the host 500 to communicate with each other may use electrical signals and/or optical signals, and may include, but is not limited to, a serial advanced technology attachment (SATA) interface, SATA fast ( SATA express, SATAe) serial attached small computer system interface (serial attached SCSI; SAS), peripheral component interconnect express (PCIe) interface, non-volatile storage fast (non - volatile memory express, NVMe) interface, advanced host controller interface (AHCI) or a combination thereof.

在一些示例性實施例中,記憶體系統400可通過可移除地耦合到主機500來與主機500進行通信。作為電阻式記憶體,記憶體裝置420可為非揮發性記憶體,且記憶體系統400可被稱為儲存系統(storage system)。舉例來說,記憶體系統400可包括但不限於固態驅動器或固態盤(solid-state disk,SSD)、嵌入式SSD(embedded SSD,eSSD)、多媒體卡(multimedia card,MMC)、嵌入式多媒體卡(embedded multimedia card,eMMC)等。In some exemplary embodiments, memory system 400 can communicate with host 500 by being removably coupled to host 500. As a resistive memory, the memory device 420 can be a non-volatile memory, and the memory system 400 can be referred to as a storage system. For example, the memory system 400 can include, but is not limited to, a solid state drive or a solid state disk (SSD), an embedded SSD (eSSD), a multimedia card (MMC), an embedded multimedia card. (embedded multimedia card, eMMC) and so on.

控制器410可回應於通過介面600從主機500接收到的請求來控制記憶體裝置420。舉例來說,回應於寫入請求,控制器410可將與寫入請求相關聯地接收到的資料寫入到記憶體裝置420,以及回應於讀取請求將儲存在記憶體裝置420中的資料提供到主機500。Controller 410 can control memory device 420 in response to a request received from host 500 via interface 600. For example, in response to the write request, the controller 410 can write the data received in association with the write request to the memory device 420, and the data stored in the memory device 420 in response to the read request. Provided to the host 500.

記憶體系統400可包括至少一個記憶體裝置420且記憶體裝置420可包括參考單元及具有可變電阻元件的儲存單元。如以上參照示例性實施例所闡述,可通過調整流過連接到參考單元的參考電阻器的參考電流來簡單地及準確地補償因記憶體裝置420的製造工藝及記憶體裝置420或記憶體系統400的操作環境而引起的儲存單元的電阻的變化。因此,記憶體裝置420可回應於控制器410的讀取命令來將儲存在儲存單元中的值準確地提供到控制器410,從而提高記憶體系統400的操作可靠性。The memory system 400 can include at least one memory device 420 and the memory device 420 can include a reference unit and a storage unit having variable resistance elements. As explained above with reference to the exemplary embodiments, the manufacturing process by the memory device 420 and the memory device 420 or the memory system can be simply and accurately compensated by adjusting the reference current flowing through the reference resistor connected to the reference cell. A change in the resistance of the storage unit caused by the operating environment of 400. Therefore, the memory device 420 can accurately supply the value stored in the storage unit to the controller 410 in response to the read command of the controller 410, thereby improving the operational reliability of the memory system 400.

儘管已參照本發明概念的示例性實施例具體繪示並闡述了本發明概念,然而應理解,在不背離申請專利範圍的精神及範圍的條件下,可在本文中作出形式及細節上的各種改變。While the present invention has been particularly shown and described with reference to the exemplary embodiments of the embodiments of the present invention, it is understood that various forms and details may be made herein without departing from the spirit and scope of the claims change.

100、100a、100b、100c、420‧‧‧記憶體裝置100, 100a, 100b, 100c, 420‧‧‧ memory devices

110、110a、110b、110c‧‧‧單元陣列110, 110a, 110b, 110c‧‧‧ unit array

120、120a、120b、120c‧‧‧電流源電路120, 120a, 120b, 120c‧‧‧ current source circuit

130、130a、130b、130c‧‧‧參考電阻電路130, 130a, 130b, 130c‧‧‧ reference resistance circuit

140、140a、140b、140c、140d、140e、140f‧‧‧偏移電流電路140, 140a, 140b, 140c, 140d, 140e, 140f‧‧‧ offset current circuit

141a、141b、141c‧‧‧第一電流源141a, 141b, 141c‧‧‧ first current source

142a、142b、142c‧‧‧第二電流源142a, 142b, 142c‧‧‧ second current source

150、150a、150b、150c‧‧‧放大電路150, 150a, 150b, 150c‧‧‧ amplifying circuit

160、160a、160b、160c、160d、160e、160f、160g‧‧‧控制電路160, 160a, 160b, 160c, 160d, 160e, 160f, 160g‧‧‧ control circuit

161a‧‧‧第一信號產生器161a‧‧‧First signal generator

161b‧‧‧非揮發性記憶體161b‧‧‧Non-volatile memory

161c‧‧‧查閱資料表161c‧‧‧Check the data sheet

161d‧‧‧信號處理電路161d‧‧‧Signal Processing Circuit

162a‧‧‧第二信號產生器162a‧‧‧Second signal generator

163a‧‧‧組合電路163a‧‧‧Combined circuit

170a、170b、170c‧‧‧行解碼器170a, 170b, 170c‧‧‧ row decoder

200‧‧‧控制器200‧‧‧ controller

300‧‧‧系統晶片300‧‧‧System Chip

310‧‧‧核310‧‧‧nuclear

320‧‧‧數位訊號處理器(DSP)320‧‧‧Digital Signal Processor (DSP)

330‧‧‧圖形處理單元(GPU)330‧‧‧Graphical Processing Unit (GPU)

340‧‧‧內部記憶體340‧‧‧ internal memory

350‧‧‧通信介面350‧‧‧Communication interface

360‧‧‧儲存介面360‧‧‧ Storage interface

370‧‧‧匯流排370‧‧ ‧ busbar

400‧‧‧記憶體系統400‧‧‧ memory system

410‧‧‧控制器410‧‧‧ Controller

500‧‧‧主機500‧‧‧Host

600‧‧‧介面600‧‧‧ interface

ADDR‧‧‧位址ADDR‧‧‧ address

BL‧‧‧勢壘層BL‧‧‧ barrier layer

BLj‧‧‧位元線BLj‧‧‧ bit line

CMD‧‧‧命令CMD‧‧‧ Order

CT‧‧‧單元電晶體CT‧‧‧ unit transistor

CTRL‧‧‧控制信號CTRL‧‧‧ control signal

CTRL1‧‧‧第一控制信號CTRL1‧‧‧ first control signal

CTRL2‧‧‧第二控制信號CTRL2‧‧‧second control signal

COL‧‧‧行位址COL‧‧‧ address

DATA‧‧‧資料DATA‧‧‧Information

FL‧‧‧自由層FL‧‧‧ free layer

I_RD1‧‧‧第一讀取電流I_RD1‧‧‧First read current

I_RD2‧‧‧第二讀取電流I_RD2‧‧‧second read current

I_REF‧‧‧參考電流I_REF‧‧‧reference current

I_SC‧‧‧源電流I_SC‧‧‧ source current

I_SK‧‧‧灌電流I_SK‧‧‧ sink current

I_OFF‧‧‧偏移電流/正偏移電流/負偏移電流I_OFF‧‧‧Offset current / positive offset current / negative offset current

M、M'‧‧‧儲存單元M, M'‧‧‧ storage unit

MTJ‧‧‧可變電阻元件MTJ‧‧‧Variable Resistive Components

N1‧‧‧第一節點N1‧‧‧ first node

N2‧‧‧第二節點N2‧‧‧ second node

NT‧‧‧NMOS電晶體NT‧‧‧NMOS transistor

PL‧‧‧被釘紮層PL‧‧‧ pinned layer

PT‧‧‧PMOS電晶體PT‧‧‧PMOS transistor

P_INFO‧‧‧工藝資訊P_INFO‧‧‧Process Information

Q‧‧‧輸出信號Q‧‧‧Output signal

R‧‧‧參考單元R‧‧‧ reference unit

RAP‧‧‧反平行電阻/電阻/高電阻RAP‧‧‧antiparallel resistance / resistance / high resistance

RAP'、RAP''、RP'、RREF'‧‧‧平均值RAP', RAP'', RP', RREF'‧‧‧ average

RP‧‧‧平行電阻/電阻/低電阻RP‧‧‧parallel resistance/resistance/low resistance

RREF‧‧‧參考電阻/參考電阻值RREF‧‧‧reference resistor/reference resistor value

S200、S400、S600、S800‧‧‧操作S200, S400, S600, S800‧‧‧ operations

SBL‧‧‧短路位元線SBL‧‧‧Short bit line

SEN‧‧‧感測信號SEN‧‧‧Sensor signal

SIG1‧‧‧第一信號SIG1‧‧‧ first signal

SIG2‧‧‧第二信號SIG2‧‧‧ second signal

SLj‧‧‧源極線SLj‧‧‧ source line

SSL‧‧‧短路源極線SSL‧‧‧Short-circuit source line

VDD‧‧‧正電源電壓VDD‧‧‧ positive supply voltage

V_RD‧‧‧讀取電壓V_RD‧‧‧Read voltage

V_REF‧‧‧參考電壓V_REF‧‧‧reference voltage

VSS‧‧‧負電源電壓VSS‧‧‧negative supply voltage

w1‧‧‧第一權重W1‧‧‧ first weight

w2‧‧‧第二權重W2‧‧‧ second weight

WLi‧‧‧字元線WLi‧‧‧ character line

結合圖式閱讀以下詳細說明,將更清楚地理解本發明概念的示例性實施例,在圖式中: 圖1是繪示根據示例性實施例的記憶體裝置及控制器的方塊圖。 圖2是繪示根據示例性實施例的圖1所示儲存單元的實例的方塊圖。 圖3是繪示根據示例性實施例的由圖2所示儲存單元提供的電阻的分散的曲線圖。 圖4是繪示根據示例性實施例的圖1所示記憶體裝置的實例的方塊圖。 圖5是繪示根據示例性實施例的圖1所示記憶體裝置的實例的方塊圖。 圖6是繪示根據示例性實施例的圖1所示記憶體裝置的實例的方塊圖。 圖7A、圖7B、圖7C及圖7D是繪示根據示例性實施例的圖1所示控制電路的實例的方塊圖。 圖8A、圖8B及圖8C是繪示根據示例性實施例的圖1所示偏移電流電路的實例的方塊圖。 圖9是根據示例性實施例的操作記憶體裝置的方法的流程圖。 圖10是繪示包括根據示例性實施例的記憶體裝置的系統晶片(system-on-chip,SoC)的方塊圖。 圖11是繪示包括根據示例性實施例的記憶體裝置的記憶體系統的方塊圖。BRIEF DESCRIPTION OF THE DRAWINGS Exemplary embodiments of the present invention will be more clearly understood from the following detailed description of the embodiments of the invention. FIG. 1 is a block diagram showing a memory device and a controller according to an exemplary embodiment. 2 is a block diagram illustrating an example of the storage unit of FIG. 1 in accordance with an exemplary embodiment. FIG. 3 is a graph illustrating dispersion of resistance provided by the storage unit of FIG. 2, according to an exemplary embodiment. FIG. 4 is a block diagram showing an example of the memory device of FIG. 1 according to an exemplary embodiment. FIG. 5 is a block diagram showing an example of the memory device of FIG. 1 according to an exemplary embodiment. FIG. 6 is a block diagram showing an example of the memory device of FIG. 1 according to an exemplary embodiment. 7A, 7B, 7C, and 7D are block diagrams showing an example of the control circuit of Fig. 1 according to an exemplary embodiment. 8A, 8B, and 8C are block diagrams showing an example of the offset current circuit of FIG. 1 according to an exemplary embodiment. FIG. 9 is a flowchart of a method of operating a memory device, according to an exemplary embodiment. FIG. 10 is a block diagram showing a system-on-chip (SoC) including a memory device according to an exemplary embodiment. 11 is a block diagram showing a memory system including a memory device in accordance with an exemplary embodiment.

Claims (10)

一種電阻式記憶體裝置,被配置成回應於讀取命令來輸出儲存在儲存單元中的值,所述電阻式記憶體裝置包括: 單元陣列,包括所述儲存單元及參考單元; 參考電阻電路,被配置成電連接到所述參考單元; 偏移電流源電路,被配置成對被提供到所述參考電阻電路的讀取電流加上偏移電流或者從被提供到所述參考電阻電路的所述讀取電流汲取所述偏移電流;以及 控制電路,被配置成控制所述偏移電流源電路來補償所述儲存單元的電阻的變化。A resistive memory device configured to output a value stored in a storage unit in response to a read command, the resistive memory device comprising: a cell array including the storage unit and a reference unit; a reference resistance circuit, Configuring to be electrically connected to the reference unit; an offset current source circuit configured to add an offset current to a read current supplied to the reference resistor circuit or from a portion supplied to the reference resistor circuit The read current draws the offset current; and a control circuit configured to control the offset current source circuit to compensate for a change in resistance of the storage unit. 如申請專利範圍第1項所述的電阻式記憶體裝置,其中, 所述控制電路還被配置成基於所述電阻式記憶體裝置的溫度來調整所述偏移電流的量值。The resistive memory device of claim 1, wherein the control circuit is further configured to adjust a magnitude of the offset current based on a temperature of the resistive memory device. 如申請專利範圍第2項所述的電阻式記憶體裝置, 其中所述偏移電流源電路還被配置成根據控制信號來調整所述偏移電流的所述量值, 所述控制電路包括: 第一信號產生器,被配置成產生與溫度成比例的第一信號; 第二信號產生器,被配置成產生與溫度成反比的第二信號;以及 組合電路,被配置成將所述控制信號產生為所述第一信號與所述第二信號的加權和; 其中所述加權和的權重是根據所述儲存單元的所述電阻的溫度變化特性來確定的。The resistive memory device of claim 2, wherein the offset current source circuit is further configured to adjust the magnitude of the offset current according to a control signal, the control circuit comprising: a first signal generator configured to generate a first signal proportional to temperature; a second signal generator configured to generate a second signal inversely proportional to temperature; and a combination circuit configured to convert the control signal Generating a weighted sum of the first signal and the second signal; wherein the weight of the weighted sum is determined according to a temperature change characteristic of the resistance of the storage unit. 如申請專利範圍第2項所述的電阻式記憶體裝置,其中, 所述偏移電流源電路還被配置成根據控制信號來調整所述偏移電流的所述量值,且 所述控制電路包括查閱資料表,且還被配置成通過參照所述查閱資料表、根據所述電阻式記憶體裝置的所述溫度來從溫度信號產生所述控制信號。The resistive memory device of claim 2, wherein the offset current source circuit is further configured to adjust the magnitude of the offset current according to a control signal, and the control circuit A lookup data sheet is included and is further configured to generate the control signal from the temperature signal based on the temperature of the resistive memory device by reference to the lookup data table. 如申請專利範圍第1項所述的電阻式記憶體裝置,還包括: 非揮發性記憶體,被配置成由所述控制電路進行存取,並儲存處理資訊, 其中所述控制電路還被配置成基於所述處理資訊來調整所述偏移電流的量值。The resistive memory device of claim 1, further comprising: a non-volatile memory configured to be accessed by the control circuit and to store processing information, wherein the control circuit is further configured The magnitude of the offset current is adjusted based on the processing information. 如申請專利範圍第1項所述的電阻式記憶體裝置,其中, 所述控制電路還被配置成基於所述電阻式記憶體裝置的正電源電壓的量值來調整所述偏移電流的量值。The resistive memory device of claim 1, wherein the control circuit is further configured to adjust the amount of the offset current based on a magnitude of a positive power supply voltage of the resistive memory device. value. 一種電阻式記憶體裝置,被配置成回應於讀取命令來輸出儲存在儲存單元中的值,所述電阻式記憶體裝置包括: 單元陣列,包括所述儲存單元及參考單元,第一讀取電流流過所述儲存單元,參考電流流過所述參考單元; 電流源電路,被配置成產生所述第一讀取電流及第二讀取電流; 偏移電流源電路,被配置成通過對所述第二讀取電流加上偏移電流或者從所述第二讀取電流汲取所述偏移電流來產生所述參考電流;以及 控制電路,被配置成控制所述偏移電流源電路來補償所述儲存單元的電阻的變化。A resistive memory device configured to output a value stored in a storage unit in response to a read command, the resistive memory device comprising: a cell array including the storage unit and a reference unit, a first read a current flows through the storage unit, a reference current flows through the reference unit; a current source circuit configured to generate the first read current and a second read current; and an offset current source circuit configured to pass The second read current plus an offset current or the offset current is drawn from the second read current to generate the reference current; and a control circuit configured to control the offset current source circuit Compensating for changes in the resistance of the storage unit. 如申請專利範圍第7項所述的電阻式記憶體裝置,還包括: 參考電阻電路,電連接到所述參考單元,且所述參考電流流過所述參考電阻電路。The resistive memory device of claim 7, further comprising: a reference resistor circuit electrically connected to the reference unit, and the reference current flows through the reference resistor circuit. 如申請專利範圍第7項所述的電阻式記憶體裝置,其中, 所述第一讀取電流與所述第二讀取電流是相同的。The resistive memory device of claim 7, wherein the first read current and the second read current are the same. 一種電阻式記憶體裝置,被配置成回應於讀取命令來輸出儲存在儲存單元中的值,所述電阻式記憶體裝置包括: 單元陣列,包括所述儲存單元及參考單元,第一讀取電流流過所述儲存單元,第二讀取電流流過所述參考單元; 偏移電流源電路,被配置成通過對所述第二讀取電流加上偏移電流或者從所述第二讀取電流汲取所述偏移電流來產生參考電流; 參考電阻電路,被配置成電連接到所述參考單元,且所述參考電流流過所述參考電阻電路;以及 控制電路,被配置成控制所述偏移電流源電路來補償所述儲存單元的電阻的變化。A resistive memory device configured to output a value stored in a storage unit in response to a read command, the resistive memory device comprising: a cell array including the storage unit and a reference unit, a first read a current flows through the storage unit, a second read current flows through the reference unit; an offset current source circuit configured to add an offset current to the second read current or read from the second Taking a current to draw the offset current to generate a reference current; a reference resistance circuit configured to be electrically connected to the reference unit, and the reference current flowing through the reference resistance circuit; and a control circuit configured to control the An offset current source circuit is provided to compensate for variations in the resistance of the storage unit.
TW107131958A 2017-09-15 2018-09-12 Resistive memory device TWI776951B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
??10-2017-0118844 2017-09-15
KR20170118844 2017-09-15
KR10-2017-0118844 2017-09-15
KR10-2018-0020007 2018-02-20
KR1020180020007A KR102532204B1 (en) 2017-09-15 2018-02-20 Resistive memory device including reference cell and operating method thereof
??10-2018-0020007 2018-02-20

Publications (2)

Publication Number Publication Date
TW201916040A true TW201916040A (en) 2019-04-16
TWI776951B TWI776951B (en) 2022-09-11

Family

ID=65907787

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107131958A TWI776951B (en) 2017-09-15 2018-09-12 Resistive memory device

Country Status (3)

Country Link
JP (1) JP7190844B2 (en)
KR (1) KR102532204B1 (en)
TW (1) TWI776951B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI786731B (en) * 2020-09-17 2022-12-11 日商富士通半導體記憶解決方案股份有限公司 Resistive random access memory, and method for manufacturing resistive random access memory

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10832783B1 (en) * 2019-09-24 2020-11-10 Macronix International Co., Ltd. Data sensing device and data sensing method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7453719B2 (en) * 2003-04-21 2008-11-18 Nec Corporation Magnetic random access memory with improved data reading method
KR100735677B1 (en) * 2005-12-28 2007-07-04 삼성전자주식회사 Circuit for reducing standby current and semiconductor memory device having the same
US7471582B2 (en) * 2006-07-28 2008-12-30 Freescale Semiconductor, Inc. Memory circuit using a reference for sensing
KR101083302B1 (en) * 2009-05-13 2011-11-15 주식회사 하이닉스반도체 Semiconductor memory device
US8274819B2 (en) * 2010-02-04 2012-09-25 Magic Technologies Read disturb free SMT MRAM reference cell circuit
US8254195B2 (en) * 2010-06-01 2012-08-28 Qualcomm Incorporated High-speed sensing for resistive memories
US8559243B2 (en) * 2010-11-22 2013-10-15 Infineon Technologies Ag Self timed current integrating scheme employing level and slope detection
US8902641B2 (en) 2012-04-10 2014-12-02 Taiwan Semiconductor Manufacturing Co., Ltd. Adjusting reference resistances in determining MRAM resistance states
US9442838B2 (en) * 2012-10-22 2016-09-13 Rambus Inc. Remapping memory cells based on future endurance measurements
CN106233392B (en) * 2014-03-07 2019-03-29 东芝存储器株式会社 Memory devices
KR102354350B1 (en) 2015-05-18 2022-01-21 삼성전자주식회사 Memory device and memory system including the same
KR102358564B1 (en) 2015-09-02 2022-02-04 삼성전자주식회사 Semiconductor memory device having shorted variable resistor element of memory cell
US9601165B1 (en) * 2015-09-24 2017-03-21 Intel IP Corporation Sense amplifier
JP6660745B2 (en) 2016-01-28 2020-03-11 ラピスセミコンダクタ株式会社 Reference current generation circuit and memory device
US9679643B1 (en) * 2016-03-09 2017-06-13 Taiwan Semiconductor Manufacturing Co., Ltd. Resistive memory device having a trimmable resistance of at least on of a driver and a sinker is trimmed based on a row location

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI786731B (en) * 2020-09-17 2022-12-11 日商富士通半導體記憶解決方案股份有限公司 Resistive random access memory, and method for manufacturing resistive random access memory

Also Published As

Publication number Publication date
KR102532204B1 (en) 2023-05-16
JP7190844B2 (en) 2022-12-16
JP2019053812A (en) 2019-04-04
KR20190031108A (en) 2019-03-25
TWI776951B (en) 2022-09-11

Similar Documents

Publication Publication Date Title
CN109509497B (en) Resistive memory device
KR102476355B1 (en) Resistive memory device including reference cell and operating method thereof
US10964387B2 (en) Resistive memory device including reference cell and operating method thereof
KR102324769B1 (en) Error correction circuit, semiconductor memory device and memory system including the same
US9076542B2 (en) Memory system having variable operating voltage and related method of operation
KR102127137B1 (en) Resistive memory device capable of increasing sensing margin by controlling interface state of cell transistors
TWI550608B (en) Accessing a resistive storage element-based memory cell array
US20140098592A1 (en) Resistive memory device including compensation resistive device and method of compensating resistance distribution
US10777255B2 (en) Control signal generator for sense amplifier and memory device including the control signal generator
US10755752B2 (en) Memory device that performs a read operation and a test operation
TWI776951B (en) Resistive memory device
US10249352B2 (en) Memory device and memory system
KR102631352B1 (en) Resistive memory device providing reference calibration and operating method thereof
KR102414184B1 (en) Resistive memory device including reference cell and operating method thereof
WO2020248834A1 (en) Reading circuit for reading resistance state of storage unit
JP5140855B2 (en) Semiconductor device
KR20190110007A (en) Control signal generator for sense amplifier and memory device including the same
KR20160038269A (en) Spin-transfer torque magnetic ram
JP2009134794A (en) Semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent