TW201909720A - Electronic device cooling system - Google Patents

Electronic device cooling system Download PDF

Info

Publication number
TW201909720A
TW201909720A TW107124967A TW107124967A TW201909720A TW 201909720 A TW201909720 A TW 201909720A TW 107124967 A TW107124967 A TW 107124967A TW 107124967 A TW107124967 A TW 107124967A TW 201909720 A TW201909720 A TW 201909720A
Authority
TW
Taiwan
Prior art keywords
electronic device
cooling fluid
cooling
housing
barrier
Prior art date
Application number
TW107124967A
Other languages
Chinese (zh)
Other versions
TWI826384B (en
Inventor
柯曼 B. 納姆比爾
布萊恩 R. 霍那
安德魯 C. 貝里
保羅 A. 尤斯凱維奇
Original Assignee
美商江森自控科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商江森自控科技公司 filed Critical 美商江森自控科技公司
Publication of TW201909720A publication Critical patent/TW201909720A/en
Application granted granted Critical
Publication of TWI826384B publication Critical patent/TWI826384B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/202Air circulating in closed loop within enclosure wherein heat is removed through heat-exchangers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0212Condensation eliminators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20309Evaporators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20354Refrigerating circuit comprising a compressor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components

Abstract

An electronics cooling system with an electronics enclosure that is hermetically sealed. The system includes a heat exchanger that exchanges heat between a first cooling fluid within the electronics enclosure and a second cooling fluid of a vapor compression system. A fan circulates the first cooling fluid within the electronics enclosure. The electronics cooling system may also include a baffle system within the electronics enclosure that directs the first cooling fluid over one or more electronic components disposed within the electronics enclosure to cool the one or more electronic components.

Description

電子器件冷卻系統    Electronic device cooling system    相關申請的交叉引用     Cross-reference of related applications    

本申請要求於2017年7月19日提交的題為“ELECTRONICS COOLING SYSTEM(電子器件冷卻系統)”的美國臨時申請案序號62/534,627的優先權和權益,所述美國臨時申請案出於所有目的藉由援引以其全部內容併入本文。 This application requires the priority and rights of the US Provisional Application Serial No. 62 / 534,627, entitled "ELECTRONICS COOLING SYSTEM", filed on July 19, 2017. The entire contents are incorporated into this article by reference.

本申請總體上涉及一種用於冷卻包含電子器件的外殼之系統。 The present application generally relates to a system for cooling a housing containing electronic devices.

製冷系統用於各種場合,如用於住宅、商業、工業空調系統。該等系統可以包括多個不同的部件,如馬達、壓縮機、閥門等。該等部件中的一些或全部可以藉由電子器件來控制。電子器件使用諸如電阻器、電晶體、數位訊號處理器、可程式設計邏輯控制器、類比數位轉換器、感應器、變壓器、IGBT、二極體、以及積體電路等電子部件來控制電能的流動和信號。不幸的是,該等電子部件的操作和壽命可能受到熱量、濕氣、工業煙氣/氣體、和/或灰塵的不利影響。 The refrigeration system is used in various occasions, such as residential, commercial, and industrial air conditioning systems. Such systems may include many different components, such as motors, compressors, valves, etc. Some or all of these components can be controlled by electronic devices. Electronic devices use electronic components such as resistors, transistors, digital signal processors, programmable logic controllers, analog-to-digital converters, inductors, transformers, IGBTs, diodes, and integrated circuits to control the flow of electrical energy And signal. Unfortunately, the operation and life of such electronic components may be adversely affected by heat, moisture, industrial smoke / gas, and / or dust.

在一個總體方面,一種電子器件冷卻系統,所述電子器件冷卻系統具有氣密密封的電子器件外殼。所述系統包括熱交換器,所述熱交換器在,在電子器件外殼內的第一冷卻流體與蒸氣壓縮系統的第二冷卻流體之間交換熱量。風扇使第一冷卻流體在電子器件外殼內循環。電子器件冷卻系統還可以包括位於電子器件外殼內的隔擋系統,所述隔擋系統以受控方式引導所述第一冷卻流體經過佈置在電子器件外殼內的一個或多個電子部件,以冷卻所述一個或多個電子部件。 In a general aspect, an electronic device cooling system has a hermetically sealed electronic device housing. The system includes a heat exchanger that exchanges heat between the first cooling fluid within the electronics enclosure and the second cooling fluid of the vapor compression system. The fan circulates the first cooling fluid within the housing of the electronic device. The electronic device cooling system may further include a barrier system located in the electronic device housing, the barrier system guiding the first cooling fluid through one or more electronic components disposed in the electronic device housing in a controlled manner to cool The one or more electronic components.

在另一個方面,一種系統,所述系統具有電子器件冷卻系統。所述電子器件冷卻系統包括氣密密封的電子器件外殼。所述系統包括熱交換器,所述熱交換器在,在電子器件外殼內的第一冷卻流體與蒸氣壓縮系統的第二冷卻流體之間交換熱量。風扇使第一冷卻流體在電子器件外殼內循環。電子器件冷卻系統還可以包括位於電子器件外殼內的隔擋系統,所述隔擋系統引導所述第一冷卻流體經過佈置在所述電子器件封殼內的一個或多個電子部件,以冷卻所述一個或多個電子器件部件。所述系統包括蒸氣壓縮系統,所述蒸氣壓縮系統產生第二冷卻流體。所述熱交換器在所述第一冷卻流體與所述第二冷卻流體之間交換熱量。在一些實施方式中,所述第二冷卻流體藉由第三冷卻流體來增強。 In another aspect, a system having an electronic device cooling system. The electronic device cooling system includes a hermetically sealed electronic device housing. The system includes a heat exchanger that exchanges heat between the first cooling fluid within the electronics enclosure and the second cooling fluid of the vapor compression system. The fan circulates the first cooling fluid within the housing of the electronic device. The electronic device cooling system may further include a barrier system located in the electronic device housing, the barrier system guiding the first cooling fluid through one or more electronic components arranged in the electronic device enclosure to cool the Describe one or more electronic device components. The system includes a vapor compression system that generates a second cooling fluid. The heat exchanger exchanges heat between the first cooling fluid and the second cooling fluid. In some embodiments, the second cooling fluid is enhanced by a third cooling fluid.

在另一個方面,一種電子器件冷卻系統,所述電子器件冷卻系統包括電子器件外殼,所述電子器件外殼儲存用於控制蒸氣壓縮系統(例如,電動馬達)的一個或多個電子部件。所 述電子器件外殼係氣密密封的。所述電子器件冷卻系統包括位於電子器件外殼內的隔擋系統。所述隔擋系統引導第一冷卻流體經過所述一個或多個電子部件,以冷卻所述一個或多個電子部件。 In another aspect, an electronic device cooling system includes an electronic device housing that stores one or more electronic components for controlling a vapor compression system (eg, electric motor). The electronic device housing is hermetically sealed. The electronic device cooling system includes a barrier system located in the electronic device housing. The barrier system directs the first cooling fluid through the one or more electronic components to cool the one or more electronic components.

10‧‧‧空調和製冷(HVAC&R)系統 10‧‧‧HVAC & R system

12‧‧‧建築物 12‧‧‧ building

14‧‧‧蒸氣壓縮系統 14‧‧‧Vapor compression system

16‧‧‧鍋爐 16‧‧‧Boiler

18‧‧‧空氣分配系統 18‧‧‧Air distribution system

20‧‧‧空氣返回管道 20‧‧‧Air return duct

22‧‧‧空氣供應管道 22‧‧‧Air supply pipe

24‧‧‧空氣處理機 24‧‧‧Air processor

26‧‧‧管道 26‧‧‧Pipeline

28‧‧‧樓層 28‧‧‧Floor

32‧‧‧壓縮機 32‧‧‧Compressor

34‧‧‧冷凝器 34‧‧‧Condenser

36‧‧‧膨脹閥或冷凝裝置/膨脹裝置/第二膨脹裝置 36‧‧‧Expansion valve or condensation device / expansion device / second expansion device

38‧‧‧蒸發器 38‧‧‧Evaporator

40‧‧‧電子器件外殼 40‧‧‧Electronic device housing

42‧‧‧電子器件冷卻系統 42‧‧‧Electronic device cooling system

50‧‧‧馬達 50‧‧‧Motor

52‧‧‧馬達變速驅動器(VSD) 52‧‧‧Variable speed motor drive (VSD)

54‧‧‧磁軸承 54‧‧‧Magnetic bearing

55、58‧‧‧管束 55, 58‧‧‧ tube bundle

56‧‧‧冷卻塔 56‧‧‧cooling tower

60S、64、95、96、120、202‧‧‧供應管線 60S, 64, 95, 96, 120, 202‧‧‧ supply pipeline

60R、66、97、122、204‧‧‧返回管線 60R, 66, 97, 122, 204 ‧‧‧ return pipeline

62‧‧‧冷卻負載 62‧‧‧Cooling load

68‧‧‧膨脹閥/膨脹裝置 68‧‧‧Expansion valve / expansion device

72‧‧‧泵 72‧‧‧Pump

84‧‧‧中間回路 84‧‧‧Intermediate circuit

86‧‧‧第一膨脹裝置 86‧‧‧First expansion device

88、94‧‧‧入口管線 88, 94‧‧‧ inlet pipeline

90‧‧‧中間容器 90‧‧‧Intermediate container

92、98‧‧‧管線 92, 98‧‧‧ pipeline

100‧‧‧第一外殼 100‧‧‧The first shell

102‧‧‧第二外殼 102‧‧‧Second shell

104‧‧‧出口 104‧‧‧Export

106‧‧‧入口 106‧‧‧ entrance

108‧‧‧第一冷卻流體 108‧‧‧First cooling fluid

110‧‧‧第一腔體 110‧‧‧ First cavity

112‧‧‧第二腔體 112‧‧‧The second cavity

114‧‧‧電子器件 114‧‧‧Electronic device

116‧‧‧熱交換器 116‧‧‧ Heat exchanger

118‧‧‧第二冷卻流體 118‧‧‧Second cooling fluid

124‧‧‧風扇 124‧‧‧Fan

126‧‧‧隔擋系統 126‧‧‧Ball system

128‧‧‧擋板 128‧‧‧Baffle

130‧‧‧隔板 130‧‧‧Partition

132、178、228、230‧‧‧距離 132, 178, 228, 230 ‧‧‧ distance

134‧‧‧外殼壁 134‧‧‧Housing wall

136‧‧‧後部面 136‧‧‧ rear face

138、140‧‧‧軸向方向 138、140‧‧‧Axial direction

142‧‧‧冷凝物呼吸閥 142‧‧‧Condensate breathing valve

144‧‧‧緊固件 144‧‧‧fastener

146‧‧‧風扇進入面板 146‧‧‧Fan enters the panel

148‧‧‧緊固件 148‧‧‧fastener

150‧‧‧外殼面板 150‧‧‧Enclosure panel

152‧‧‧入口腔室 152‧‧‧ Entrance chamber

154‧‧‧出口腔室 154‧‧‧ out of the oral cavity

156‧‧‧密封元件 156‧‧‧Sealing element

170‧‧‧冷卻(冷)板 170‧‧‧cooling (cold) plate

172、174‧‧‧T形接頭 172、174‧‧‧T joint

200‧‧‧第三冷卻流體 200‧‧‧Third cooling fluid

220‧‧‧導向板 220‧‧‧Guide plate

222‧‧‧內表面 222‧‧‧Inner surface

224‧‧‧頂板 224‧‧‧Top plate

226‧‧‧表面 226‧‧‧Surface

232‧‧‧突起 232‧‧‧protrusion

234‧‧‧凹陷 234‧‧‧Sag

250、252‧‧‧切口 250, 252‧‧‧ incision

254、256‧‧‧端部 254、256‧‧‧End

258‧‧‧長度 258‧‧‧Length

260‧‧‧孔口 260‧‧‧ Orifice

280‧‧‧可調隔擋件 280‧‧‧ adjustable partition

圖1係根據本揭露的一方面的可以利用採暖、通風、空調、以及製冷(HVAC&R)系統的建築物之透視圖;圖2係根據本揭露的一方面的聯接至電子器件冷卻系統之蒸氣壓縮系統之透視圖;圖3係根據本揭露的一方面的聯接至電子器件冷卻系統之蒸氣壓縮系統示意圖;圖4係根據本揭露的一方面的聯接至電子器件冷卻系統之蒸氣壓縮系統示意圖;圖5係根據本揭露的一方面的電子器件冷卻系統之截面視圖;圖6係根據本揭露的一方面的電子器件冷卻系統之截面視圖;圖7係根據本揭露的一方面的電子器件冷卻系統在圖6的線7-7內之局部截面視圖;圖8係根據本揭露的一方面的電子器件冷卻系統在圖6的線7-7內之局部截面視圖;圖9係根據本揭露的一方面的電子器件冷卻系統之 截面視圖;圖10係根據本揭露的一方面的電子器件冷卻系統之截面視圖;圖11係根據本揭露的一方面的電子器件冷卻系統之隔擋系統之前視圖;並且圖12係根據本揭露的一方面的電子器件冷卻系統之隔擋系統之前視圖。 Figure 1 is a perspective view of a building that can utilize heating, ventilation, air conditioning, and refrigeration (HVAC & R) systems according to one aspect of the disclosure; Figure 2 is a vapor compression coupled to an electronic device cooling system according to an aspect of the disclosure Perspective view of the system; Figure 3 is a schematic view of a vapor compression system coupled to an electronic device cooling system according to an aspect of the present disclosure; Figure 4 is a schematic view of a vapor compression system coupled to an electronic device cooling system according to an aspect of the present disclosure; 5 is a cross-sectional view of an electronic device cooling system according to an aspect of the disclosure; FIG. 6 is a cross-sectional view of an electronic device cooling system according to an aspect of the disclosure; FIG. 7 is an electronic device cooling system according to an aspect of the disclosure 6 is a partial cross-sectional view within line 7-7; FIG. 8 is a partial cross-sectional view within line 7-7 of FIG. 6 of an electronic device cooling system according to an aspect of the disclosure; FIG. 9 is an aspect according to the disclosure 10 is a cross-sectional view of an electronic device cooling system; FIG. 10 is a cross-sectional view of an electronic device cooling system according to an aspect of the disclosure; FIG. 11 is a party according to the disclosure View of the baffle before the system electronics cooling system; and FIG. 12 in accordance with previous compartment based electronics cooling system according to an aspect of the disclosed system block view.

本揭露的實施方式包括電子器件冷卻系統,所述電子器件冷卻系統冷卻電子器件並且保護該等電子器件不受濕氣、工業氣體/煙氣、以及灰塵的影響。電子器件冷卻系統包括氣密密封(或近似氣密密封)的電子器件外殼,以將在電子器件外殼內循環的第一冷卻流體密封起來以免與圍繞外殼的流體相互作用。例如,第一冷卻流體可以是空氣,並且電子器件外殼將此空氣密封起來、並且消除或減少電子器件外殼內的空氣與電子器件外殼外的濕潤或骯髒的空氣相互作用。隨著第一冷卻流體在電子器件外殼內循環,第一冷卻流體藉由強制對流來去除熱量從而冷卻電子器件。第一冷卻流體在熱交換器中將此能量釋放到第二冷卻流體(例如,水、製冷劑)。第二冷卻流體可以來自蒸氣壓縮系統,如來自形成採暖、通風、空調、以及製冷(HVAC&R)系統的一部分的冷卻器。由於電子器件冷卻系統係氣密密封的,電子器件冷卻系統將冷卻並保護電子器件,而不會在各種環境(例如,工 業區、海洋區、沙漠區、熱帶區、沿海地區等)中直接暴露於外部空氣。 Embodiments of the present disclosure include an electronic device cooling system that cools electronic devices and protects the electronic devices from moisture, industrial gas / flue gas, and dust. The electronic device cooling system includes a hermetically sealed (or nearly hermetically sealed) electronic device housing to seal the first cooling fluid circulating within the electronic device housing from interaction with the fluid surrounding the housing. For example, the first cooling fluid may be air, and the electronics enclosure seals this air, and eliminates or reduces the interaction of the air inside the electronics enclosure with the humid or dirty air outside the electronics enclosure. As the first cooling fluid circulates within the electronic device housing, the first cooling fluid removes heat by forced convection to cool the electronic device. The first cooling fluid releases this energy to the second cooling fluid (eg, water, refrigerant) in the heat exchanger. The second cooling fluid may come from a vapor compression system, such as from a cooler that forms part of a heating, ventilation, air conditioning, and refrigeration (HVAC & R) system. Since the electronic device cooling system is hermetically sealed, the electronic device cooling system will cool and protect the electronic devices without direct exposure in various environments (eg, industrial areas, marine areas, desert areas, tropical areas, coastal areas, etc.) For outside air.

第二冷卻流體可以由壓力差驅動穿過熱交換器,和/或可以由泵驅動。例如,壓力差可以由將電子器件冷卻系統流體地聯接在蒸發器管束的相反端部之間產生。以這種方式,流過蒸發器的較高壓力的第二冷卻流體的一小部分被轉移至電子器件冷卻系統。第二冷卻流體流過電子器件冷卻系統熱交換器,以在第一冷卻流體被從電子器件冷卻系統中抽出之前由離開蒸發器管束的然後較低壓力的第二冷卻流體冷卻所述第一冷卻流體。在一些實施方式中,電子器件冷卻系統的供應和返回管線可以聯接至HVAC&R系統中的其他位置,以產生穿過在沒有泵的情況下驅動第二冷卻流體電子器件冷卻系統的壓力差。電子器件冷卻系統因此可以不使用泵來驅動第二冷卻流體穿過熱交換器,從而降低潛在的製造和/或操作成本,而同時增加電子器件冷卻系統的可靠性。然而,在一些實施方式中,第二冷卻流體可以由泵驅動穿過電子器件冷卻系統。在另外的其他實施方式中,泵可以由HVAC&R系統中的壓力差輔助。 The second cooling fluid may be driven through the heat exchanger by a pressure difference, and / or may be driven by a pump. For example, the pressure difference can be created by fluidly coupling the electronics cooling system between the opposite ends of the evaporator tube bundle. In this way, a small portion of the higher pressure second cooling fluid flowing through the evaporator is transferred to the electronic device cooling system. The second cooling fluid flows through the electronic device cooling system heat exchanger to cool the first cooling by the then lower pressure second cooling fluid leaving the evaporator tube bundle before the first cooling fluid is extracted from the electronic device cooling system fluid. In some embodiments, the supply and return lines of the electronics cooling system can be coupled to other locations in the HVAC & R system to create a pressure differential across the electronics cooling system that drives the second cooling fluid without a pump. The electronic device cooling system may therefore not use a pump to drive the second cooling fluid through the heat exchanger, thereby reducing potential manufacturing and / or operating costs while increasing the reliability of the electronic device cooling system. However, in some embodiments, the second cooling fluid may be driven through the electronics cooling system by a pump. In still other embodiments, the pump may be assisted by the pressure difference in the HVAC & R system.

現在轉到附圖,圖1係用於建築物12中的採暖、通風、空調和製冷(HVAC&R)系統10的環境的實施方式之透視圖。類似的安排還可以適用於遠洋船舶。HVAC&R系統10可以包括蒸氣壓縮系統14(例如,冷卻器),所述蒸氣壓縮系統供應可用於冷卻建築物12的已冷卻液體。HVAC&R系統10還可以包括供應溫暖液體以對建築物12供暖的鍋爐16、以及使空氣循環通過建築物12 的空氣分配系統18。空氣分配系統18還可以包括空氣返回管道20、空氣供應管道22、和/或空氣處理機24。在一些實施方式中,空氣處理機24可以包括藉由管道26連接至鍋爐16和蒸氣壓縮系統14的熱交換器。取決於HVAC&R系統10的運行模式,空氣處理機24中的熱交換器可以接收來自鍋爐16的加熱液體或來自蒸氣壓縮系統14的已冷卻液體。HVAC&R系統10被示出為在建築物12的每個樓層28上具有單獨的空氣處理機24,但是在其他實施方式中,HVAC&R系統10可以包括可在兩個或更多個樓層28之間共用的空氣處理機24和/或其他部件。 Turning now to the drawings, FIG. 1 is a perspective view of an embodiment of an environment for a heating, ventilation, air conditioning, and refrigeration (HVAC & R) system 10 in a building 12. Similar arrangements can also be applied to ocean-going ships. The HVAC & R system 10 may include a vapor compression system 14 (eg, a cooler) that supplies cooled liquid that can be used to cool the building 12. The HVAC & R system 10 may also include a boiler 16 that supplies warm liquid to heat the building 12 and an air distribution system 18 that circulates air through the building 12. The air distribution system 18 may also include an air return duct 20, an air supply duct 22, and / or an air handler 24. In some embodiments, the air handler 24 may include a heat exchanger connected to the boiler 16 and the vapor compression system 14 by piping 26. Depending on the operating mode of the HVAC & R system 10, the heat exchanger in the air handler 24 may receive heated liquid from the boiler 16 or cooled liquid from the vapor compression system 14. The HVAC & R system 10 is shown as having a separate air handler 24 on each floor 28 of the building 12, but in other embodiments, the HVAC & R system 10 may include a common between two or more floors 28 The air handler 24 and / or other components.

圖2和圖3展示了可在HVAC&R系統10中使用的蒸氣壓縮系統14之實施方式。具體地,圖2係蒸氣壓縮系統14之透視圖,並且圖3係蒸氣壓縮系統14之示意圖。蒸氣壓縮系統14可以使製冷劑循環通過以壓縮機32開始的回路。所述回路還可以包括冷凝器34、(多個)膨脹閥或(多個)裝置36、以及蒸發器38。蒸氣壓縮系統14可以進一步包括電子器件外殼40,所述電子器件外殼儲存用於操作蒸氣壓縮系統14的多個不同的電子器件。可被儲存在電子器件外殼40中的一些電子器件包括(多個)數位(A/D)轉換器、(多個)微處理器、一個或多個非易失性記憶體、(多個)介面板等。如將在以下更詳細解釋的,電子器件外殼40形成以上所討論的電子器件冷卻系統42的冷卻電子器件的一部分。在一些實施方式中,電子器件外殼40係氣密密封的容器,所述容器減少和/或阻止電子器件暴露於濕潤且骯髒的環境。在一些實施方式中,電子器件外殼40可以與包含馬達變速驅動器(VSD)52的外殼或與包含控制馬達磁軸承的部件的外殼相同。 2 and 3 illustrate an embodiment of a vapor compression system 14 that can be used in HVAC & R system 10. Specifically, FIG. 2 is a perspective view of the vapor compression system 14, and FIG. 3 is a schematic view of the vapor compression system 14. The vapor compression system 14 may circulate the refrigerant through the circuit starting with the compressor 32. The circuit may also include a condenser 34, an expansion valve (s) or device (s) 36, and an evaporator 38. The vapor compression system 14 may further include an electronic device housing 40 that stores a plurality of different electronic devices for operating the vapor compression system 14. Some electronic devices that can be stored in the electronic device housing 40 include a digital converter (A / D), a microprocessor (s), one or more non-volatile memories, (s) Interface panel, etc. As will be explained in more detail below, the electronic device housing 40 forms part of the cooling electronic device of the electronic device cooling system 42 discussed above. In some embodiments, the electronic device housing 40 is a hermetically sealed container that reduces and / or prevents the electronic device from being exposed to a wet and dirty environment. In some embodiments, the electronics housing 40 may be the same as the housing containing the motor variable speed drive (VSD) 52 or the housing containing the components that control the magnetic bearings of the motor.

可在蒸氣壓縮系統14中用作製冷劑的流體的一些實例係氫氟烴(HFC)基的製冷劑(例如R-410A、R-407、R-134a、氫氟烯烴(HFO)、R1233zd、R1234ze),“天然”製冷劑(如氨(NH3)、R-717、二氧化碳(CO2)、R-744),或烴基製冷劑,水蒸氣,或任何合適的製冷劑。在一些實施方式中,蒸氣壓縮系統14可以被配置成有效地利用在一個大氣壓下具有約19攝氏度(86華氏度)的標準沸點的製冷劑(相對於諸如R-134a等中壓製冷劑,也稱為低壓製冷劑)。如本文所使用的,“標準沸點”可以是指在一個大氣壓下測量到的沸點溫度。 Some examples of fluids that can be used as refrigerants in the vapor compression system 14 are hydrofluorocarbon (HFC) -based refrigerants (such as R-410A, R-407, R-134a, hydrofluoroolefins (HFO), R1233zd, of R1234ze), "natural" refrigerants (e.g., ammonia (NH 3), R-717 , carbon dioxide (CO 2), R-744 ), or a hydrocarbon refrigerant, water vapor, or any suitable refrigerant. In some embodiments, the vapor compression system 14 may be configured to effectively utilize a refrigerant having a standard boiling point of about 19 degrees Celsius (86 degrees Fahrenheit) at one atmospheric pressure (as opposed to medium-pressure refrigerants such as R-134a, etc. (Called low-pressure refrigerant). As used herein, "standard boiling point" may refer to the boiling temperature measured at one atmospheric pressure.

在一些實施方式中,蒸氣壓縮系統14可以使用以下部件中的一個或多個:(多個)變速驅動器52、馬達50、壓縮機32、冷凝器34、膨脹閥或冷凝裝置36、和/或蒸發器38。馬達50驅動壓縮機32並且可以由變速驅動器(VSD)52供電。VSD 52從交流(AC)電源接收具有特定的固定線路電壓和固定線路頻率的AC電力,並且向電機50提供具有可變電壓和頻率的電力。在其他實施方式中,馬達50可以直接由AC或直流(DC)電源供電。馬達50可以包括可以由VSD 52供電或者直接由AC或DC電源供電的任何類型的電動馬達,諸如開關磁阻馬達、感應馬達、電子換向永磁馬達或其他合適的馬達。在一些實施方式中,壓縮機32和/或馬達50可以使用磁軸承54以減少操作期間的摩擦和/或噪音並且增加壓縮機/馬達的可靠性。磁軸承54可以由容納在電子器件外殼40內的電子器件進行控制。如以上所解釋的,電子器件外殼40可以保護電子器件不受灰塵和濕氣的影響,而電子器件冷卻系統42使用由蒸氣壓縮系統14供應的冷卻流體(例如,水、製冷劑)冷卻電子器件。 In some embodiments, the vapor compression system 14 may use one or more of the following components: variable speed drive (s) 52, motor 50, compressor 32, condenser 34, expansion valve or condensing device 36, and / or Evaporator 38. The motor 50 drives the compressor 32 and may be powered by a variable speed drive (VSD) 52. The VSD 52 receives AC power having a specific fixed line voltage and fixed line frequency from an alternating current (AC) power source, and supplies power having a variable voltage and frequency to the motor 50. In other embodiments, the motor 50 may be directly powered by AC or direct current (DC) power. Motor 50 may include any type of electric motor that may be powered by VSD 52 or directly powered by an AC or DC power source, such as a switched reluctance motor, induction motor, electronically commutated permanent magnet motor, or other suitable motor. In some embodiments, the compressor 32 and / or motor 50 may use magnetic bearings 54 to reduce friction and / or noise during operation and increase compressor / motor reliability. The magnetic bearing 54 can be controlled by the electronic device housed in the electronic device housing 40. As explained above, the electronic device housing 40 can protect electronic devices from dust and moisture, and the electronic device cooling system 42 uses cooling fluid (eg, water, refrigerant) supplied by the vapor compression system 14 to cool the electronic devices .

壓縮機可以是容積式裝置32,所述容積式裝置壓縮製冷劑蒸氣並且將蒸氣通過排放通道輸送至冷凝器34。在一些實施方式中,壓縮機32可以是離心式壓縮機。由壓縮機32輸送至冷凝器34的製冷劑蒸氣可以將熱量傳遞至冷凝器34中的冷卻流體(例如,水或空氣)。作為與冷卻流體進行熱傳遞的結果,製冷劑蒸氣可以在冷凝器34中冷凝成製冷劑液體。來自冷凝器34的液體製冷劑可以流過膨脹裝置36到達蒸發器38。在圖3所展示的實施方式中,冷凝器34係水冷式的、並且包括連接至冷卻塔56(或圍繞容器的水體)的管束55,所述管束將冷卻流體供應至冷凝器34。 The compressor may be a volumetric device 32 that compresses refrigerant vapor and delivers the vapor to the condenser 34 through the discharge passage. In some embodiments, the compressor 32 may be a centrifugal compressor. The refrigerant vapor delivered by the compressor 32 to the condenser 34 may transfer heat to the cooling fluid (eg, water or air) in the condenser 34. As a result of heat transfer with the cooling fluid, the refrigerant vapor may be condensed into a refrigerant liquid in the condenser 34. The liquid refrigerant from the condenser 34 can flow through the expansion device 36 to the evaporator 38. In the embodiment shown in FIG. 3, the condenser 34 is water-cooled and includes a tube bundle 55 connected to a cooling tower 56 (or a body of water surrounding the container) that supplies cooling fluid to the condenser 34.

輸送到蒸發器38的液體製冷劑可以吸收來自另一冷卻流體的熱量,所述另一冷卻流體可以是或可以不是與冷凝器34中使用的相同冷卻流體。蒸發器38中的液體製冷劑可能經歷從液體製冷劑到製冷劑蒸氣的相變。如圖3所展示的實施方式中所示,蒸發器38可以包括管束58,所述管束聯接至已冷卻流體供應管線60S和返回管線60R。供應管線60S和返回管線60R將冷卻器14連接至冷卻負載62。蒸發器38的冷卻流體(例如水、乙二醇、氯化鈣鹽水、氯化鈉鹽水或任何其他合適的流體)經由返回管線60R進入蒸發器38並經由供應管線60S離開蒸發器38。蒸發器38可以經由與製冷劑的熱傳遞來降低管束58中的冷卻流體的溫度。蒸發器38中的管束58可以包括多個管和/或多個管束。在任何情況下,蒸氣製冷劑都從蒸發器38流出並藉由抽吸管線返回到壓縮機32以完成循環。 The liquid refrigerant delivered to the evaporator 38 may absorb heat from another cooling fluid, which may or may not be the same cooling fluid used in the condenser 34. The liquid refrigerant in the evaporator 38 may undergo a phase change from liquid refrigerant to refrigerant vapor. As shown in the embodiment shown in FIG. 3, the evaporator 38 may include a tube bundle 58 coupled to the cooled fluid supply line 60S and the return line 60R. The supply line 60S and the return line 60R connect the cooler 14 to the cooling load 62. The cooling fluid of the evaporator 38 (eg, water, ethylene glycol, calcium chloride brine, sodium chloride brine, or any other suitable fluid) enters the evaporator 38 via the return line 60R and exits the evaporator 38 via the supply line 60S. The evaporator 38 may reduce the temperature of the cooling fluid in the tube bundle 58 via heat transfer with the refrigerant. The tube bundle 58 in the evaporator 38 may include multiple tubes and / or multiple tube bundles. In any case, the vapor refrigerant flows out of the evaporator 38 and returns to the compressor 32 through the suction line to complete the cycle.

如所展示的,電子器件冷卻系統42可以聯接至蒸發 器38中的管束58以接收來自HVAC&R系統10的冷卻流體流。電子器件冷卻系統42使用來自HVAC&R系統10的冷卻流體(例如,水)以冷卻電子器件外殼40內的電子器件。如以上所解釋的,電子器件冷卻系統42可以不包括泵、並且可以替代地使用HVAC&R系統10中的壓力差來驅動冷卻流體流穿過電子器件冷卻系統42。例如,電子器件冷卻系統42的供應管線64可以接入管束58的接收流過返回管線60R的冷卻流體的端部。在穿過電子器件冷卻系統42之後,冷卻流體由於其從佈置在電子器件外殼40內的電子器件中吸收能量而溫度和壓力升高。冷卻流體然後通過返回管線66返回至管束58的供應管線側。在蒸發器38中的這個位置,蒸發器38中的冷卻流體的壓力將比從蒸發器38轉移通過供應管線64的冷卻流體的壓力更低。在沒有泵的情況下,此壓力差驅動冷卻流體流穿過電子器件冷卻系統42。 As shown, the electronics cooling system 42 may be coupled to the tube bundle 58 in the evaporator 38 to receive the flow of cooling fluid from the HVAC & R system 10. The electronic device cooling system 42 uses a cooling fluid (eg, water) from the HVAC & R system 10 to cool the electronic devices within the electronic device housing 40. As explained above, the electronic device cooling system 42 may not include a pump, and may instead use the pressure differential in the HVAC & R system 10 to drive the flow of cooling fluid through the electronic device cooling system 42. For example, the supply line 64 of the electronic device cooling system 42 may access the end of the tube bundle 58 that receives the cooling fluid flowing through the return line 60R. After passing through the electronic device cooling system 42, the cooling fluid increases in temperature and pressure as it absorbs energy from the electronic devices disposed within the electronic device housing 40. The cooling fluid then returns to the supply line side of the tube bundle 58 through the return line 66. At this position in evaporator 38, the pressure of the cooling fluid in evaporator 38 will be lower than the pressure of the cooling fluid transferred from evaporator 38 through supply line 64. Without a pump, this pressure differential drives the flow of cooling fluid through the electronics cooling system 42.

在一些實施方式中,電子器件冷卻系統42的供應管線64和返回管線66可以聯接至蒸氣壓縮系統14中的其他位置,以形成驅動冷卻流體穿過電子器件冷卻系統42的壓力差。例如,供應管線64(即,虛線供應管線64)可以在離開冷凝器34的冷卻流體(例如,製冷劑)穿過膨脹閥/膨脹裝置68之後接收所述冷卻流體。供應管線64引導冷卻流體穿過電子器件冷卻系統42,在所述電子器件冷卻系統中冷卻流體在通過返回管線66(即,虛線返回管線66)離開之前通過冷卻板/冷板冷卻第一流體或電子器件。由於離開膨脹閥68的冷卻流體處於比蒸發器38中的冷卻流體更高的壓力,返回管線66然後可以使冷卻流體(即,製冷劑)返回至蒸發器38,在沒有泵的情況下,壓力差驅動冷卻流體流穿過電子器 件冷卻系統42。 In some embodiments, the supply line 64 and return line 66 of the electronic device cooling system 42 may be coupled to other locations in the vapor compression system 14 to create a pressure differential that drives the cooling fluid through the electronic device cooling system 42. For example, the supply line 64 (ie, the dashed supply line 64) may receive the cooling fluid (eg, refrigerant) leaving the condenser 34 after passing through the expansion valve / expansion device 68. The supply line 64 directs the cooling fluid through the electronic device cooling system 42 where the cooling fluid cools the first fluid through the cooling plate / cold plate before leaving through the return line 66 (ie, the dotted line return line 66) or Electronic devices. Since the cooling fluid leaving the expansion valve 68 is at a higher pressure than the cooling fluid in the evaporator 38, the return line 66 can then return the cooling fluid (ie, refrigerant) to the evaporator 38, without the pump, the pressure The differential drives the flow of cooling fluid through the electronics cooling system 42.

然而,在一些實施方式中,可以由一個或多個泵72將冷卻流體驅動穿過電子器件冷卻系統42。在另外的其他實施方式中,(多個)泵72可以由HVAC&R系統10中的壓力差輔助。 However, in some embodiments, one or more pumps 72 may drive the cooling fluid through the electronics cooling system 42. In still other embodiments, the pump (s) 72 may be assisted by the pressure difference in the HVAC & R system 10.

圖4係具有結合在冷凝器34與蒸發器38之間的中間回路84的蒸氣壓縮系統14的示意圖。中間回路84可以具有直接流體連接至冷凝器34的入口管線88。在其他實施方式中,入口管線88可以間接地流體聯接至冷凝器34。如圖4所展示的實施方式所示,入口管線88包括定位在中間容器90上游的第一膨脹裝置86。在一些實施方式中,中間容器90可以是閃蒸罐(例如,閃蒸式中冷器)。在其他實施方式中,中間容器90可以被配置成直接膨脹熱交換器或經濟器。在圖4所展示的實施方式中,中間容器90用作閃蒸罐,並且第一膨脹裝置86被配置成降低從冷凝器34接收的液體製冷劑的壓力(例如,膨脹)。在膨脹過程期間,一部分液體可能汽化,並且因此中間容器90可以用於將蒸氣與從第一膨脹裝置86接收到的液體分離。另外,由於液體製冷劑在進入中間容器90時經歷了壓降(例如,由於進入中間容器90時體積快速增大),中間容器90可以使液體製冷劑進一步膨脹。中間容器90中的蒸氣可以通過入口管線94被壓縮機32抽至壓縮機32的中間壓力埠。在其他實施方式中,中間容器90中的蒸氣可以被抽至壓縮機32的中間段。由於在膨脹裝置86和/或中間容器90中膨脹,在中間容器90中收集的液體可以比離開冷凝器34的液體製冷劑具有更低的焓。來自中間容器90的液體然後可以在管線92中流過第二膨脹裝置36到 達蒸發器38。 FIG. 4 is a schematic diagram of vapor compression system 14 with an intermediate circuit 84 incorporated between condenser 34 and evaporator 38. The intermediate circuit 84 may have an inlet line 88 directly fluidly connected to the condenser 34. In other embodiments, the inlet line 88 may be indirectly fluidly coupled to the condenser 34. As shown in the embodiment shown in FIG. 4, the inlet line 88 includes a first expansion device 86 positioned upstream of the intermediate container 90. In some embodiments, the intermediate container 90 may be a flash tank (eg, flash intercooler). In other embodiments, the intermediate vessel 90 may be configured as a direct expansion heat exchanger or economizer. In the embodiment shown in FIG. 4, the intermediate container 90 serves as a flash tank, and the first expansion device 86 is configured to reduce the pressure (eg, expansion) of the liquid refrigerant received from the condenser 34. During the expansion process, a portion of the liquid may vaporize, and therefore the intermediate container 90 may be used to separate the vapor from the liquid received from the first expansion device 86. In addition, since the liquid refrigerant experiences a pressure drop when entering the intermediate container 90 (for example, due to the rapid increase in volume when entering the intermediate container 90), the intermediate container 90 can further expand the liquid refrigerant. The vapor in the intermediate container 90 may be drawn by the compressor 32 to the intermediate pressure port of the compressor 32 through the inlet line 94. In other embodiments, the vapor in the intermediate container 90 may be drawn to the intermediate section of the compressor 32. Due to the expansion in the expansion device 86 and / or the intermediate container 90, the liquid collected in the intermediate container 90 may have a lower enthalpy than the liquid refrigerant leaving the condenser 34. The liquid from the intermediate container 90 can then flow through the second expansion device 36 to the evaporator 38 in line 92.

如所展示的,電子器件冷卻系統42接收來自蒸氣壓縮系統14的冷卻流體。藉由使用熱交換器,電子器件冷卻系統42使用冷卻流體來冷卻電子器件外殼40內的電子器件。如以上所解釋的,電子器件冷卻系統42可以不包括泵、並且可以替代地使用蒸氣壓縮系統14中的壓力差來驅動冷卻流體流穿過電子器件冷卻系統42。例如,到電子器件冷卻系統42的供應管線96可以接入將液體冷卻流體(即,製冷劑)從中間容器90運送到蒸發器38的管線92中。在穿過電子器件冷卻系統42之後,冷卻流體的溫度升高。冷卻流體通過管線98返回至蒸發器38,所述蒸發器處於比流過管線92的冷卻流體更低的壓力下。如所展示的,返回管線98聯接至蒸發器38。由於離開管線92的冷卻流體處於比蒸發器38中的壓力更高的壓力下,在沒有泵的情況下,壓力差驅動冷卻流體流穿過電子器件冷卻系統42。然而,在一些實施方式中,泵72可以輔助和/或驅動冷卻流體(即,來自蒸發器38的液體製冷劑)穿過供應管線95到達電子器件冷卻系統42、並且使冷卻流體通過返回管線97返回至蒸發器38。 As shown, the electronic device cooling system 42 receives the cooling fluid from the vapor compression system 14. By using a heat exchanger, the electronic device cooling system 42 uses a cooling fluid to cool the electronic devices in the electronic device housing 40. As explained above, the electronic device cooling system 42 may not include a pump, and may instead use the pressure difference in the vapor compression system 14 to drive the flow of cooling fluid through the electronic device cooling system 42. For example, the supply line 96 to the electronic device cooling system 42 may be connected to a line 92 that transports liquid cooling fluid (ie, refrigerant) from the intermediate container 90 to the evaporator 38. After passing through the electronic device cooling system 42, the temperature of the cooling fluid increases. The cooling fluid returns to evaporator 38 through line 98, which is at a lower pressure than the cooling fluid flowing through line 92. As shown, the return line 98 is coupled to the evaporator 38. Since the cooling fluid leaving line 92 is at a higher pressure than the pressure in the evaporator 38, in the absence of a pump, the pressure differential drives the flow of cooling fluid through the electronics cooling system 42. However, in some embodiments, the pump 72 may assist and / or drive the cooling fluid (ie, liquid refrigerant from the evaporator 38) through the supply line 95 to the electronic device cooling system 42 and pass the cooling fluid through the return line 97 Return to evaporator 38.

圖5係電子器件冷卻系統42的實施方式的截面視圖。如以上所解釋的,電子器件外殼40形成電子器件冷卻系統42的一部分。電子器件外殼40係氣密密封的容器,所述容器減少和/或阻止電子器件暴露於環境中的濕氣、工業煙氣/氣體和灰塵。如所展示的,電子器件外殼40包括第一外殼100,所述第一外殼聯接至第二外殼102。第一外殼100和第二外殼102藉由出口104和入口 106流體聯接在一起。在一些實施方式中,可以存在多個入口106和出口104(例如,2個、3個、4個、5個、或更多個)。出口104和入口106使得冷卻流體108(例如,空氣)能夠在第一外殼100中的第一腔體110與第二外殼102中的第二腔體112之間循環,以冷卻電子器件114。電子器件114可以包括微晶片、積體電路、電源、電晶體、電阻器、感應器、變壓器、IGBT等。有利地,電子器件冷卻系統42限制和/或阻止冷卻流體108與電子器件外殼40外部的流體之間的直接相互作用。以這種方式,電子器件外殼40能夠阻止和/或減少電子器件114暴露於環境中的濕氣、工業煙氣/氣體、和/或灰塵。例如,冷卻流體108(例如,空氣)可以不暴露於圍繞電子器件外殼40的外部循環的潮濕/濕潤空氣。 FIG. 5 is a cross-sectional view of an embodiment of an electronic device cooling system 42. As explained above, the electronic device housing 40 forms part of the electronic device cooling system 42. The electronic device housing 40 is a hermetically sealed container that reduces and / or prevents the electronic device from being exposed to moisture, industrial smoke / gas, and dust in the environment. As shown, the electronic device housing 40 includes a first housing 100 that is coupled to a second housing 102. The first housing 100 and the second housing 102 are fluidly coupled together through an outlet 104 and an inlet 106. In some embodiments, there may be multiple inlets 106 and outlets 104 (eg, 2, 3, 4, 5, or more). The outlet 104 and the inlet 106 enable a cooling fluid 108 (eg, air) to circulate between the first cavity 110 in the first housing 100 and the second cavity 112 in the second housing 102 to cool the electronic device 114. The electronic device 114 may include microchips, integrated circuits, power supplies, transistors, resistors, inductors, transformers, IGBTs, and the like. Advantageously, the electronic device cooling system 42 limits and / or prevents direct interaction between the cooling fluid 108 and the fluid outside the electronic device housing 40. In this way, the electronic device housing 40 can prevent and / or reduce the exposure of the electronic device 114 to moisture, industrial smoke / gas, and / or dust in the environment. For example, the cooling fluid 108 (eg, air) may not be exposed to humid / humid air circulating around the outside of the electronic device housing 40.

為了從冷卻流體108中去除熱量,電子器件冷卻系統42包括熱交換器116(例如,氣體至液體熱交換器)。熱交換器116通過供應管線120接收第二冷卻流體118。第二冷卻流體118來自蒸氣壓縮系統14,並且可以是製冷劑、水等。在熱交換器116中,第二冷卻流體118與在電子器件外殼40中循環的第一冷卻流體108交換能量。在熱交換器116中交換能量之後,第二冷卻流體118以較高的溫度離開熱交換器116。第二冷卻流體118然後離開電子器件冷卻系統42通過返回管線122運送到HVAC&R系統10。 To remove heat from the cooling fluid 108, the electronic device cooling system 42 includes a heat exchanger 116 (eg, a gas to liquid heat exchanger). The heat exchanger 116 receives the second cooling fluid 118 through the supply line 120. The second cooling fluid 118 comes from the vapor compression system 14 and may be refrigerant, water, or the like. In the heat exchanger 116, the second cooling fluid 118 exchanges energy with the first cooling fluid 108 circulating in the electronic device housing 40. After exchanging energy in the heat exchanger 116, the second cooling fluid 118 leaves the heat exchanger 116 at a higher temperature. The second cooling fluid 118 then leaves the electronics cooling system 42 and is transported to the HVAC & R system 10 through the return line 122.

在離開熱交換器116之後,使用風扇124將第一冷卻流體108驅動進入第二外殼102。更具體地,風扇124抽吸穿過熱交換器116的第一冷卻流體108,並且然後吹動第一冷卻流體108穿過出口104並進入入口腔室152。在穿過出口104之後,第一冷卻流體 108接觸隔擋系統126。如所展示的,隔擋系統126重新引導冷卻流體108的流動並控制冷卻流體流過第二外殼102。隔擋系統126包括擋板128和隔板130。隔板130聯接至第二外殼102、並且將擋板128與外殼壁134以一定距離132間隔開。在某些實施方式中,距離132可以被選擇用於優化冷卻流體108的流動和壓降。除了將擋板128與外殼壁134間隔開之外,隔板130還將出口104與入口106間隔開以形成入口腔室152和出口腔室154。相應地,當冷卻流體108通過出口104離開第一外殼100時,隔板130阻止第一冷卻流體108直接流動到入口106而不經過擋板128和所附接的電子器件114。 After leaving the heat exchanger 116, a fan 124 is used to drive the first cooling fluid 108 into the second housing 102. More specifically, the fan 124 sucks the first cooling fluid 108 through the heat exchanger 116 and then blows the first cooling fluid 108 through the outlet 104 and into the inlet chamber 152. After passing through the outlet 104, the first cooling fluid 108 contacts the barrier system 126. As shown, the barrier system 126 redirects the flow of cooling fluid 108 and controls the flow of cooling fluid through the second housing 102. The baffle system 126 includes a baffle 128 and a baffle 130. The baffle 130 is coupled to the second housing 102 and spaces the baffle 128 from the housing wall 134 at a distance 132. In some embodiments, the distance 132 may be selected to optimize the flow and pressure drop of the cooling fluid 108. In addition to spacing the baffle 128 from the housing wall 134, the partition 130 also spaces the outlet 104 from the inlet 106 to form an inlet chamber 152 and an outlet chamber 154. Accordingly, when the cooling fluid 108 leaves the first housing 100 through the outlet 104, the partition 130 prevents the first cooling fluid 108 from flowing directly to the inlet 106 without passing through the baffle 128 and the attached electronic device 114.

當第一冷卻流體108離開出口104時,所述第一冷卻流體接觸擋板128的後部面136。第一冷卻流體108因而在入口腔室152中沿軸向方向138(例如,豎直)被向上引導。當第一冷卻流體108向上流動時,其經過擋板128。在經過擋板128之後,第一冷卻流體108沿軸向方向140(例如,向下)流動。當第一冷卻流體108沿方向140流動時,這產生冷卻電子器件114的級聯冷卻效果。第一冷卻流體108然後圍繞擋板128的底部流動,在所述底部處,所述第一冷卻流體接觸第二外殼102的壁134。壁134和擋板128沿軸向方向138向上引導第一冷卻流體108通過出口腔室154。如以上所解釋的,隔板130阻止出口104與入口106之間的直接流體流動。第一冷卻流體108因而被驅動穿過入口106並且進入熱交換器116,在所述熱交換器處,所述第一冷卻流體再次與第二冷卻流體118交換能量。 When the first cooling fluid 108 leaves the outlet 104, the first cooling fluid contacts the rear face 136 of the baffle 128. The first cooling fluid 108 is thus directed upward in the axial direction 138 (eg, vertical) in the inlet chamber 152. When the first cooling fluid 108 flows upward, it passes the baffle 128. After passing the baffle 128, the first cooling fluid 108 flows in the axial direction 140 (eg, downward). When the first cooling fluid 108 flows in the direction 140, this produces a cascade cooling effect that cools the electronic device 114. The first cooling fluid 108 then flows around the bottom of the baffle 128 where the first cooling fluid contacts the wall 134 of the second housing 102. The wall 134 and the baffle 128 guide the first cooling fluid 108 upward in the axial direction 138 through the exit chamber 154. As explained above, the partition 130 prevents direct fluid flow between the outlet 104 and the inlet 106. The first cooling fluid 108 is thus driven through the inlet 106 and into the heat exchanger 116 where it exchanges energy with the second cooling fluid 118 again.

由於電子器件外殼40係氣密密封的,第一冷卻流體 108中的濕氣可以不增多。然而,第一冷卻流體108中的初始濕氣可能在腔體110內冷凝,在所述腔體處,熱交換器116和供應管線120產生最冷的表面。為了便於從電子器件外殼40中去除液體,電子器件冷卻系統42包括冷凝物呼吸閥142。冷凝物呼吸閥142使得液體能夠離開電子器件外殼40,同時阻止和/或減少外部(環境)流體流動進入電子器件外殼40。冷凝物呼吸閥142可以被置於第一外殼100中,以便冷凝在第一冷卻流體108中的液體離開熱交換器116時將其捕獲。換言之,在第一冷卻流體108離開熱交換器116時,液體可以從第一冷卻流體108中冷凝出並且由於重力而沿方向140落到第一外殼100的底部。液體可以然後流動至冷凝物呼吸閥142,在所述冷凝物呼吸閥處,所述液體被沿方向140引導出第一外殼100。這個過程因此可以在腔體110和112中產生乾燥的冷空氣,所述冷空氣冷卻電子器件114並保護電子器件不受濕氣影響。此外,為了促進冷凝以及所形成的與任何冷凝物冷電子器件114分隔開,熱交換器116被置於第一外殼100內。如以上所解釋的並且參見圖5,第一外殼100和第二外殼102由壁134分隔開,所述壁阻止在第一外殼100中形成的最小限度的冷凝物流動進入第二外殼102。 Since the electronic device case 40 is hermetically sealed, the moisture in the first cooling fluid 108 may not increase. However, the initial moisture in the first cooling fluid 108 may condense within the cavity 110 where the heat exchanger 116 and the supply line 120 produce the coldest surface. To facilitate removal of liquid from the electronics housing 40, the electronics cooling system 42 includes a condensate breathing valve 142. The condensate breathing valve 142 enables liquid to leave the electronics housing 40 while preventing and / or reducing external (environmental) fluid flow into the electronics housing 40. The condensate breathing valve 142 may be placed in the first housing 100 to capture the liquid condensed in the first cooling fluid 108 as it leaves the heat exchanger 116. In other words, as the first cooling fluid 108 leaves the heat exchanger 116, liquid may condense out of the first cooling fluid 108 and fall to the bottom of the first housing 100 in the direction 140 due to gravity. The liquid may then flow to the condensate breathing valve 142 where it is directed out of the first housing 100 in the direction 140. This process can therefore produce dry cold air in the cavities 110 and 112 that cools the electronic device 114 and protects the electronic device from moisture. In addition, in order to promote condensation and form a separation from any condensate cold electronics 114, the heat exchanger 116 is placed within the first housing 100. As explained above and referring to FIG. 5, the first shell 100 and the second shell 102 are separated by a wall 134 that prevents the minimal condensate formed in the first shell 100 from flowing into the second shell 102.

在一些實施方式中,第一外殼100和第二外殼102係聯接到一起的單獨的外殼。例如,第一外殼100和第二外殼102可以藉由緊固件144聯接到一起。當被聯接時,第一外殼100和第二外殼102可以形成不透流體的密封,所述密封阻止和/或減少外部(環境)流體進入電子器件外殼40。可以使用密封元件156來形成不透流體的密封,如使用墊圈、焊接、聚合物密封件(例如O型圈 等)、銅焊、黏合劑等。在一些實施方式中,第一外殼100和第二外殼102可以彼此成一體(例如,單件式)。雖然所展示的第一外殼100和第二外殼102具有不同的尺寸,但在一些實施方式中它們可以是相同尺寸的。 In some embodiments, the first housing 100 and the second housing 102 are coupled together as separate housings. For example, the first housing 100 and the second housing 102 may be coupled together by fasteners 144. When coupled, the first housing 100 and the second housing 102 may form a fluid-tight seal that prevents and / or reduces external (environmental) fluid from entering the electronic device housing 40. The sealing element 156 may be used to form a fluid-tight seal, such as using gaskets, welding, polymer seals (e.g., O-rings, etc.), brazing, adhesives, and the like. In some embodiments, the first housing 100 and the second housing 102 may be integrated with each other (eg, in one piece). Although the illustrated first housing 100 and second housing 102 have different sizes, in some embodiments they may be the same size.

為了有助於進入腔體110和112,第一外殼100和第二外殼102可以具有進入面板。例如,第一外殼100可以包括風扇進入面板146。風扇進入面板146藉由一個或多個緊固件148(例如,像螺栓、螺釘的螺紋緊固件)聯接至第一外殼100。風扇進入面板146使得能夠進入進行風扇124的更換和/或維護。當被聯接至外殼40時,風扇進入面板146使用墊圈、銅焊、黏合劑等與第一外殼100形成不透流體的密封,以阻止和/或減少與圍繞電子器件外殼40外部的流體接觸。還可以藉由聯接至第二外殼102的外殼面板150觸及電子器件114。外殼面板150可以同樣地藉由緊固件(例如,像螺栓、螺釘的螺紋緊固件等)聯接至第二外殼102。外殼面板150還可以使用墊圈、銅焊、黏合劑等與第二外殼102形成不透流體的密封,以阻止和/或減少與圍繞電子器件外殼40外部的流體接觸。 To facilitate access to the cavities 110 and 112, the first housing 100 and the second housing 102 may have access panels. For example, the first housing 100 may include a fan access panel 146. The fan entry panel 146 is coupled to the first housing 100 by one or more fasteners 148 (eg, threaded fasteners like bolts, screws). The fan access panel 146 enables access to the replacement and / or maintenance of the fan 124. When coupled to the housing 40, the fan entry panel 146 forms a fluid-tight seal with the first housing 100 using gaskets, brazing, adhesives, etc. to prevent and / or reduce fluid contact with the outside of the housing 40 surrounding the electronic device. The electronic device 114 can also be accessed by the housing panel 150 coupled to the second housing 102. The housing panel 150 may likewise be coupled to the second housing 102 by fasteners (eg, threaded fasteners like bolts, screws, etc.). The housing panel 150 may also form a fluid-tight seal with the second housing 102 using gaskets, brazing, adhesives, etc. to prevent and / or reduce fluid contact with the outside of the electronic device housing 40.

圖6係電子器件冷卻系統42的實施方式的截面視圖。圖6中的電子器件冷卻系統42使第一冷卻流體108循環通過第一外殼100和第二外殼102以冷卻電子器件114。然而,為了提供額外的冷卻,電子器件冷卻系統42可以包括一個或多個冷卻(冷)板170。冷卻(冷)板170可以提高來自一個或多個電子部件114的熱傳遞。例如,一些電子部件114可能比其他電子部件產生更多的熱量。該等電子部件114可能因而提高對電子器件冷卻系統42的熱 傳遞的要求。因此,電子器件冷卻系統42可以包括冷卻(冷)板170以使得能夠更直接地從電子器件向第二冷卻流體118傳遞熱量。如圖6中所示出的,冷卻(冷)板170可以直接接收第二冷卻流體118並使其循環。供應管線120和返回管線122可以包括相應的T形接頭172和174。如圖6中所示出的,T形接頭172、174使得第二冷卻流體118能夠流入和流出熱交換器116以及冷卻(冷)板170。第二冷卻流體118可以是水或製冷劑。 FIG. 6 is a cross-sectional view of an embodiment of an electronic device cooling system 42. The electronic device cooling system 42 in FIG. 6 circulates the first cooling fluid 108 through the first housing 100 and the second housing 102 to cool the electronic device 114. However, in order to provide additional cooling, the electronic device cooling system 42 may include one or more cooling (cold) plates 170. The cooling (cold) plate 170 may improve heat transfer from one or more electronic components 114. For example, some electronic components 114 may generate more heat than other electronic components. Such electronic components 114 may thus increase the heat transfer requirements of the electronic device cooling system 42. Therefore, the electronic device cooling system 42 may include a cooling (cold) plate 170 to enable more direct heat transfer from the electronic device to the second cooling fluid 118. As shown in FIG. 6, the cooling (cold) plate 170 may directly receive the second cooling fluid 118 and circulate it. The supply line 120 and the return line 122 may include corresponding T-joints 172 and 174. As shown in FIG. 6, the T-shaped joints 172, 174 enable the second cooling fluid 118 to flow into and out of the heat exchanger 116 and the cooling (cold) plate 170. The second cooling fluid 118 may be water or refrigerant.

由於冷卻(冷)板170位於第二外殼102內,冷卻(冷)板170可以在第二外殼102內形成冷凝物。為了減小由冷卻(冷)板170形成的冷凝物與電子器件114之間潛在的接觸,冷卻(冷)170可以沿方向140被定位在擋板128的底部。相應地,如果冷凝物形成在冷卻(冷)板170上,則所述冷凝物可以沿方向140落到第二外殼102的底部,而不接觸任何其他電子器件114。為了去除冷凝物,第二外殼102可以包括第二冷凝物呼吸閥142、176。如以上所解釋的,冷凝物呼吸閥176使得電子器件冷卻系統42能夠從第一外殼100和/或第二外殼102中去除液體。然而,在一些實施方式中,由於熱交換器116和供應管線120在冷卻流體108到達第二外殼102之前從冷卻流體中的濕氣冷凝出,冷卻(冷)板170可以在第二外殼102內不形成冷凝物。 Since the cooling (cold) plate 170 is located in the second housing 102, the cooling (cold) plate 170 may form condensate in the second housing 102. To reduce potential contact between the condensate formed by the cooling (cold) plate 170 and the electronic device 114, the cooling (cold) 170 may be positioned at the bottom of the baffle 128 in the direction 140. Accordingly, if condensate is formed on the cooling (cold) plate 170, the condensate may fall to the bottom of the second housing 102 in the direction 140 without contacting any other electronic device 114. To remove condensate, the second housing 102 may include second condensate breathing valves 142, 176. As explained above, the condensate breathing valve 176 enables the electronics cooling system 42 to remove liquid from the first housing 100 and / or the second housing 102. However, in some embodiments, since the heat exchanger 116 and the supply line 120 condense out of the moisture in the cooling fluid before the cooling fluid 108 reaches the second housing 102, the cooling (cold) plate 170 may be inside the second housing 102 No condensate formed.

在一些實施方式中,電子器件冷卻系統42可以包括額外的隔擋系統126來容納並冷卻更多的電子部件114。如圖6中所展示的,電子器件冷卻系統42包括聯接至第二外殼102的壁134的第一隔擋系統126和聯接至外殼面板150的第二隔擋系統126。相應 的第一和第二隔擋系統126的擋板128可以以一定距離178間隔開,以有助於第一冷卻流體108流過電子器件114。距離178可以優化,以促進從電子器件114到冷卻流體108的所需熱傳遞。 In some embodiments, the electronic device cooling system 42 may include an additional barrier system 126 to house and cool more electronic components 114. As shown in FIG. 6, the electronic device cooling system 42 includes a first barrier system 126 coupled to the wall 134 of the second housing 102 and a second barrier system 126 coupled to the housing panel 150. The baffles 128 of the respective first and second barrier systems 126 may be spaced apart by a distance 178 to facilitate the flow of the first cooling fluid 108 through the electronics 114. The distance 178 may be optimized to facilitate the required heat transfer from the electronic device 114 to the cooling fluid 108.

圖7係電子器件冷卻系統42的實施方式在圖6的線7-7內之局部截面視圖。如以上所解釋的,圖7中的電子器件冷卻系統42使第一冷卻流體108循環通過第一外殼100和第二外殼102以冷卻電子器件114。為了提供額外的冷卻,電子器件冷卻系統42可以包括一個或多個冷卻(冷)板170。冷卻(冷)板170可以提高來自一個或多個電子部件114的熱傳遞。例如,一些電子部件114可能比其他電子部件產生更多的熱量。因此,電子器件冷卻系統42可以包括冷卻(冷)板170以使得能夠更直接地從電子器件向第二冷卻流體118傳遞熱量。然而,在重新引導第二冷卻流體118以流過熱交換器116之前,電子器件冷卻系統42可以首先將第二冷卻流體118引導至冷卻(冷)板170,而不是使第二冷卻流體118的流動分流。 7 is a partial cross-sectional view of the embodiment of the electronic device cooling system 42 within line 7-7 of FIG. As explained above, the electronic device cooling system 42 in FIG. 7 circulates the first cooling fluid 108 through the first housing 100 and the second housing 102 to cool the electronic device 114. To provide additional cooling, the electronic device cooling system 42 may include one or more cooling (cold) plates 170. The cooling (cold) plate 170 may improve heat transfer from one or more electronic components 114. For example, some electronic components 114 may generate more heat than other electronic components. Therefore, the electronic device cooling system 42 may include a cooling (cold) plate 170 to enable more direct heat transfer from the electronic device to the second cooling fluid 118. However, before redirecting the second cooling fluid 118 to flow through the heat exchanger 116, the electronic device cooling system 42 may first direct the second cooling fluid 118 to the cooling (cold) plate 170 instead of causing the flow of the second cooling fluid 118 Shunt.

圖8係電子器件冷卻系統42的實施方式在圖6的線7-7內之局部截面視圖。如以上所解釋的,為了提供額外的冷卻,電子器件冷卻系統42可以包括一個或多個冷卻(冷)板170。冷卻(冷)板170可以提高來自一個或多個電子部件114的熱傳遞。然而,電子器件冷卻系統42可以首先將第二冷卻流體118引導至熱交換器116,在此之後第二冷卻流體118則被引導至冷卻(冷)板170,而不是首先將第二冷卻流體118引導至冷卻(冷)板170。藉由首先引導第二冷卻流體118通過熱交換器116,電子器件冷卻系統42 可以在冷卻一個或多個電子部件114的同時加熱第二冷卻流體118並且減少第二外殼102中的冷凝。 8 is a partial cross-sectional view of the embodiment of the electronic device cooling system 42 within line 7-7 of FIG. As explained above, in order to provide additional cooling, the electronic device cooling system 42 may include one or more cooling (cold) plates 170. The cooling (cold) plate 170 may improve heat transfer from one or more electronic components 114. However, the electronic device cooling system 42 may first direct the second cooling fluid 118 to the heat exchanger 116, after which the second cooling fluid 118 is directed to the cooling (cold) plate 170 instead of first guiding the second cooling fluid 118 Lead to the cooling (cold) plate 170. By first directing the second cooling fluid 118 through the heat exchanger 116, the electronic device cooling system 42 can heat the second cooling fluid 118 and reduce condensation in the second housing 102 while cooling one or more electronic components 114.

圖9係電子器件冷卻系統42的實施方式的截面視圖。如以上所解釋的,電子器件冷卻系統42可以包括一個或多個冷卻(冷)板170。冷卻(冷)板170可以提高來自一個或多個電子部件114的熱傳遞。例如,一些電子部件114可能比其他電子部件產生更多的熱量。該等電子部件114可能因而提高對電子器件冷卻系統42的熱傳遞的要求。然而,冷卻(冷)板170可以單獨地供應有第三冷卻流體200。第三冷卻流體200通過相應的供應管線202和返回管線204流入和流出冷卻(冷)板170。在一些實施方式中,第二冷卻流體118和第三冷卻流體200可以是相同的冷卻流體。例如,第二冷卻流體118和第三冷卻流體200可以是水、製冷劑等。在另一個實施方式中,第二冷卻流體118和第三冷卻流體200可以是不同的。例如,第二冷卻流體118可以是水,而第三冷卻流體200可以是製冷劑,或反之亦然。 9 is a cross-sectional view of an embodiment of an electronic device cooling system 42. As explained above, the electronic device cooling system 42 may include one or more cooling (cold) plates 170. The cooling (cold) plate 170 may improve heat transfer from one or more electronic components 114. For example, some electronic components 114 may generate more heat than other electronic components. Such electronic components 114 may thus increase the heat transfer requirements of the electronic device cooling system 42. However, the cooling (cold) plate 170 may be separately supplied with the third cooling fluid 200. The third cooling fluid 200 flows into and out of the cooling (cold) plate 170 through corresponding supply lines 202 and return lines 204. In some embodiments, the second cooling fluid 118 and the third cooling fluid 200 may be the same cooling fluid. For example, the second cooling fluid 118 and the third cooling fluid 200 may be water, refrigerant, or the like. In another embodiment, the second cooling fluid 118 and the third cooling fluid 200 may be different. For example, the second cooling fluid 118 may be water, and the third cooling fluid 200 may be a refrigerant, or vice versa.

圖10係電子器件冷卻系統42的實施方式之截面視圖。在一些實施方式中,隔擋系統126可以包括一個或多個額外的導向板220。導向板220輔助控制第一冷卻流體108流過第二外殼102。如所展示的,導向板220聯接至第二外殼102的頂板224的內表面222。導向板220沿方向140背離內表面222延伸。導向板220可以在一部分或整個擋板128上延伸以引導第一冷卻流體108的流動。如所展示的,第一冷卻流體108向上流動並流過擋板128。在經過擋板128之後,第一冷卻流體108接觸導向板220的表面226。 導向板220引導第一冷卻流體108沿方向140向下並經過電子器件114。以這種方式,導向板220使第一冷卻流體108在電子器件114上的流動集中起來以促進熱傳遞。在一些實施方式中,導向板220的表面226與擋板128之間的距離228可以增大或減小,以控制在電子器件114上的流體流動的特性。增大的流動速度可以增大湍流,從而導致從電子器件114傳更多的熱量。例如,藉由減小距離228,導向板220可以使第一冷卻流體108在電子器件114上的流動速度增大。同樣地,如果增大距離228,則導向板220可以使第一冷卻流體108在電子器件114上的流動速度減小。以這種方式,電子器件冷卻系統42可以使用導向板220來引導並定制第一冷卻流體108與電子器件114之間的熱傳遞。 10 is a cross-sectional view of an embodiment of an electronic device cooling system 42. In some embodiments, the barrier system 126 may include one or more additional guide plates 220. The guide plate 220 assists in controlling the flow of the first cooling fluid 108 through the second housing 102. As shown, the guide plate 220 is coupled to the inner surface 222 of the top plate 224 of the second housing 102. The guide plate 220 extends away from the inner surface 222 in the direction 140. The guide plate 220 may extend over a part or the entire baffle 128 to guide the flow of the first cooling fluid 108. As shown, the first cooling fluid 108 flows upward and flows through the baffle 128. After passing the baffle 128, the first cooling fluid 108 contacts the surface 226 of the guide plate 220. The guide plate 220 guides the first cooling fluid 108 down the direction 140 and past the electronic device 114. In this way, the guide plate 220 concentrates the flow of the first cooling fluid 108 on the electronic device 114 to promote heat transfer. In some embodiments, the distance 228 between the surface 226 of the guide plate 220 and the baffle 128 may be increased or decreased to control the characteristics of the fluid flow on the electronic device 114. The increased flow velocity may increase turbulence, causing more heat to be transferred from the electronic device 114. For example, by reducing the distance 228, the guide plate 220 can increase the flow speed of the first cooling fluid 108 on the electronic device 114. Likewise, if the distance 228 is increased, the guide plate 220 may reduce the flow speed of the first cooling fluid 108 on the electronic device 114. In this way, the electronic device cooling system 42 may use the guide plate 220 to guide and customize the heat transfer between the first cooling fluid 108 and the electronic device 114.

如所展示的,導向板220的表面226係平的;然而,在一些實施方式中,表面226可以是彎曲的或以其他方式成形,以促進沿導向板220的不同位置處的熱傳遞。例如,導向板220與擋板128之間的距離230可以在沿長度230的不同點處增大和/或減小,以定制和/或優化不同的電子器件114上的熱傳遞(例如,增大或減小不同電子器件114上的流動速度)。在一些實施方式中,導向板220可以包括突起232和/或凹陷234,而不是在沿導向板220的長度230的不同點處改變導向板的曲率。突起232和凹陷234可以類似地控制第一冷卻流體108在特定電子部件114上的流動速度和流率,並且因此控制熱傳遞特性。 As shown, the surface 226 of the guide plate 220 is flat; however, in some embodiments, the surface 226 may be curved or otherwise shaped to promote heat transfer at different locations along the guide plate 220. For example, the distance 230 between the guide plate 220 and the baffle 128 may increase and / or decrease at different points along the length 230 to customize and / or optimize the heat transfer on different electronic devices 114 (eg, increase Or reduce the flow velocity on different electronic devices 114). In some embodiments, the guide plate 220 may include protrusions 232 and / or recesses 234 instead of changing the curvature of the guide plate at different points along the length 230 of the guide plate 220. The protrusion 232 and the recess 234 may similarly control the flow speed and flow rate of the first cooling fluid 108 on the specific electronic component 114, and thus control the heat transfer characteristics.

為了觸及電子器件114,導向板220可以與第二外殼102可移除地聯接。例如,導向板220可以藉由卡扣連接、卡口連 接等聯接至第二外殼102。在一些實施方式中,導向板220可以使用緊固件(例如,螺紋緊固件)可移除地聯接。 To access the electronic device 114, the guide plate 220 may be removably coupled with the second housing 102. For example, the guide plate 220 may be coupled to the second housing 102 by a snap connection, a bayonet connection, or the like. In some embodiments, the guide plate 220 may be removably coupled using fasteners (eg, threaded fasteners).

圖11係隔擋系統126的實施方式之前視圖。如所展示的,擋板128可以具有除矩形或正方形之外的另一種形狀。例如,擋板128可以具有不規則的形狀,以控制第一冷卻流體108在電子器件114上的流動。在圖11中,板128在擋板128的相應端部254和256處包括矩形切口250和252。然而,切口250、252可以位於沿擋板128的長度258的不同位置,具有不同的尺寸、和/或不同的形狀(例如,半圓形、三角形、正方形等),以便定制/控制第一冷卻流體108在電子器件114上的流動。如所展示的,由於切口252比切口250更大,在擋板128的端部256上或附近擋板128將更多的第一冷卻流體108引導經過電子器件114。應當注意到的是,切口250、252可以被置於擋板128上在隔板130上方和/或下方的任何位置,以控制第一冷卻流體108在電子器件114上的流動。 FIG. 11 is a front view of an embodiment of the barrier system 126. As shown, the baffle 128 may have another shape than rectangular or square. For example, the baffle 128 may have an irregular shape to control the flow of the first cooling fluid 108 on the electronic device 114. In FIG. 11, the plate 128 includes rectangular cutouts 250 and 252 at corresponding ends 254 and 256 of the baffle 128. However, the cutouts 250, 252 may be located at different positions along the length 258 of the baffle 128, have different sizes, and / or different shapes (eg, semicircular, triangular, square, etc.) to customize / control the first cooling The flow of the fluid 108 on the electronic device 114. As shown, because the cut 252 is larger than the cut 250, the baffle 128 directs more of the first cooling fluid 108 through the electronic device 114 at or near the end 256 of the baffle 128. It should be noted that the cutouts 250, 252 may be placed on the baffle 128 at any position above and / or below the baffle 130 to control the flow of the first cooling fluid 108 on the electronic device 114.

在一些實施方式中,擋板128還可以包括孔口260。孔口260使得第一冷卻流體108能夠穿過孔口260,而不是向上流動並流過擋板128。這實現了第一冷卻流體108在特定電子器件114上的已定制和/或優化的流體流動。雖然圖11中示出了兩個孔口260,但在其他實施方式中,可以存在不同數量的孔口260,如1個、3個、4個、5個、6個、7個、8個、9個、10個或更多個。此外,孔口260可以具有不同的形狀和/或尺寸,以便定制和/或優化第一冷卻流體108在電子器件114上的流動。 In some embodiments, the baffle 128 may also include an orifice 260. The orifice 260 enables the first cooling fluid 108 to pass through the orifice 260 instead of flowing upward and through the baffle 128. This enables a customized and / or optimized fluid flow of the first cooling fluid 108 on specific electronic devices 114. Although two orifices 260 are shown in FIG. 11, in other embodiments, there may be different numbers of orifices 260, such as 1, 3, 4, 5, 6, 7, 8 , 9, 10 or more. In addition, the orifice 260 may have different shapes and / or sizes in order to customize and / or optimize the flow of the first cooling fluid 108 on the electronic device 114.

圖12係隔擋系統126的實施方式之前視圖。如所展示 的,隔擋系統126包括擋板128和隔板130。如圖11中所見的,隔擋系統126包括可調隔擋件280,而不是使用不規則形狀的擋板128和/或孔口260來控制第一冷卻流體108的流動。可調隔擋件280聯接至擋板128的相應端部254和256。可調隔擋件280可以沿方向138和140豎直地重新定位,以定制第一冷卻流體108在電子器件114上的流動。雖然圖12使用可調隔擋件280來控制第一冷卻流體108的流動,但是在一些實施方式中,隔擋系統126可以包括可調隔擋件280、孔口260、以及切口250和252的組合,以控制第一冷卻流體108在電子器件114上的流動。 Figure 12 is a front view of an embodiment of the barrier system 126. As shown, the barrier system 126 includes a baffle 128 and a baffle 130. As seen in FIG. 11, the barrier system 126 includes an adjustable barrier 280 instead of using irregularly shaped baffles 128 and / or orifices 260 to control the flow of the first cooling fluid 108. The adjustable barrier 280 is coupled to the respective ends 254 and 256 of the baffle 128. The adjustable baffle 280 may be vertically repositioned in directions 138 and 140 to customize the flow of the first cooling fluid 108 on the electronic device 114. Although FIG. 12 uses an adjustable barrier 280 to control the flow of the first cooling fluid 108, in some embodiments, the barrier system 126 may include an adjustable barrier 280, an orifice 260, and cutouts 250 and 252. Combined to control the flow of the first cooling fluid 108 on the electronic device 114.

儘管僅展示和描述了本揭露的某些特徵和實施方式,但熟習該項技術者可以想到許多修改和變化(例如,各種元件的大小、尺寸、結構、形狀和比例、參數的值(例如,溫度、壓力等)、安裝佈置、材料的使用、顏色、取向等的變化)而實質上無需脫離申請專利範圍中所述的主題的新穎性教導和優點。可以根據替代實施方式對任何過程或方法步驟的順序或序列進行改變或重新排序。因此,應當理解的是,所附申請專利範圍旨在將所有這類修改和變化涵蓋為落入本發明的真正精神內。此外,為了提供對示例性實施方式的簡要描述,可能沒有描述實際的實現方式的所有特徵(即與目前預期的實施本發明的最佳模式無關的那些特徵或與實現所保護發明無關的那些特徵)。應當理解的是,在任何這種實際實施方式的開發中(如在任何工程或設計方案中),必須作出大量實施方式特定的決定。這種開發工作可能是複雜且耗時的,但是對於從本揭露中受益的普通技術人員來說,這仍是常規的設計、生產和製造工作,而無需過多實驗。 Although only certain features and embodiments of the present disclosure are shown and described, those skilled in the art can think of many modifications and changes (for example, the size, dimensions, structure, shape and ratio of various elements, and the values of parameters (for example, Temperature, pressure, etc.), installation arrangements, use of materials, changes in color, orientation, etc.) without substantially departing from the novel teachings and advantages of the subject matter described in the scope of the patent application. The order or sequence of any process or method steps may be changed or reordered according to alternative embodiments. Therefore, it should be understood that the scope of the attached patent application is intended to cover all such modifications and changes as falling within the true spirit of the present invention. Furthermore, in order to provide a brief description of the exemplary embodiments, all features of the actual implementation may not be described (ie, those features that are not related to the best mode currently contemplated for carrying out the invention or those that are not related to the realization of the protected invention ). It should be understood that in the development of any such actual implementation (as in any project or design), a large number of implementation-specific decisions must be made. Such development work may be complicated and time-consuming, but for ordinary technicians who benefit from this disclosure, this is still conventional design, production, and manufacturing work without undue experimentation.

Claims (20)

一種電子器件冷卻系統,包括:電子器件外殼,其中所述電子器件外殼係氣密密封的;熱交換器,所述熱交換器被配置成在所述電子器件外殼內的第一冷卻流體與蒸氣壓縮系統的第二冷卻流體之間交換熱量;風扇,所述風扇被配置成使所述第一冷卻流體在所述電子器件外殼內循環;以及隔擋系統,所述隔擋系統位於所述電子器件外殼內,其中所述隔擋系統被配置成引導所述第一冷卻流體經過佈置在所述電子器件外殼內的一個或多個電子部件,以冷卻所述一個或多個電子部件。     An electronic device cooling system includes: an electronic device housing, wherein the electronic device housing is hermetically sealed; a heat exchanger, the heat exchanger is configured as a first cooling fluid and vapor in the electronic device housing Heat is exchanged between the second cooling fluid of the compression system; a fan configured to circulate the first cooling fluid within the electronics housing; and a barrier system, the barrier system is located in the electronic Within the device housing, wherein the barrier system is configured to direct the first cooling fluid through one or more electronic components disposed within the electronic device housing to cool the one or more electronic components.     如請求項1所述之系統,包括冷凝物呼吸閥,所述冷凝物呼吸閥聯接至所述電子器件外殼,其中所述冷凝物呼吸閥被配置成釋放冷凝在所述電子器件外殼中的液體。     The system of claim 1, comprising a condensate breathing valve coupled to the electronics housing, wherein the condensate breathing valve is configured to release liquid condensed in the electronics housing .     如請求項1所述之系統,其中,所述電子器件外殼包括第一外殼,並且所述第一外殼被配置成固持所述熱交換器和所述風扇。     The system of claim 1, wherein the electronic device housing includes a first housing, and the first housing is configured to hold the heat exchanger and the fan.     如請求項3所述之系統,其中,所述電子器件外殼包括第二外殼,並且所述第二外殼被配置成支撐所述隔擋系統並固持所述一個或多個電子部件。     The system of claim 3, wherein the electronic device housing includes a second housing, and the second housing is configured to support the barrier system and hold the one or more electronic components.     如請求項4所述之系統,其中,所述第一外殼和所述第二外殼經由入口和出口流體聯接到一起,並且其中,所述入口和出口使得所述第一冷卻流體能夠在所述第一外殼與第二外殼之間循環。     The system of claim 4, wherein the first housing and the second housing are fluidly coupled together via an inlet and an outlet, and wherein the inlet and outlet enable the first cooling fluid to The first casing and the second casing circulate.     如請求項5所述之系統,其中,所述隔擋系統包括擋板和聯接至所述擋 板的隔板,並且其中,所述隔板被定位在所述入口與所述出口之間以迫使所述第一冷卻流體流過所述擋板。     The system of claim 5, wherein the barrier system includes a baffle plate and a baffle plate coupled to the baffle plate, and wherein the baffle plate is positioned between the inlet and the outlet to The first cooling fluid is forced to flow through the baffle.     如請求項6所述之系統,其中,所述隔擋系統包括可調隔擋件,所述可調隔擋件聯接至所述擋板,其中所述可調隔擋件被配置成相對於所述擋板移動以調節所述第二冷卻流體在所述一個或多個電子部件上的流動。     The system of claim 6, wherein the barrier system includes an adjustable barrier that is coupled to the baffle, wherein the adjustable barrier is configured relative to The baffle moves to regulate the flow of the second cooling fluid on the one or more electronic components.     如請求項1所述之系統,包括冷卻板,所述冷卻板聯接至所述隔擋系統,其中,所述冷卻板被配置成聯接至所述一個或多個電子部件並且冷卻所述一個或多個電子部件。     The system of claim 1, comprising a cooling plate coupled to the barrier system, wherein the cooling plate is configured to be coupled to the one or more electronic components and cool the one or Multiple electronic components.     如請求項8所述之系統,其中,所述冷卻板被配置成從所述蒸氣壓縮系統接收第三冷卻流體以冷卻所述一個或多個電子部件。     The system of claim 8, wherein the cooling plate is configured to receive a third cooling fluid from the vapor compression system to cool the one or more electronic components.     如請求項9所述之系統,其中,所述第一冷卻流體和所述第三冷卻流體係不同的。     The system of claim 9, wherein the first cooling fluid and the third cooling flow system are different.     一種系統,包括:電子器件冷卻系統,所述電子器件冷卻系統包括:電子器件外殼,其中所述電子器件外殼係氣密密封的;熱交換器;風扇,所述風扇被配置成使第一冷卻流體在所述電子器件外殼內循環;以及隔擋系統,所述隔擋系統位於所述電子器件外殼內,其中所述隔擋系統被配置成引導所述第一冷卻流體經過一個或多個電子部件,以冷卻所述一個或多個電子部件;以及蒸氣壓縮系統,所述蒸氣壓縮系統被配置成產生第二冷卻流體; 其中,所述熱交換器被配置成在所述第一冷卻流體與所述第二冷卻流體之間交換熱量。     A system includes: an electronic device cooling system including: an electronic device housing, wherein the electronic device housing is hermetically sealed; a heat exchanger; a fan, the fan configured to cool the first Fluid circulates within the electronic device housing; and a barrier system located within the electronic device housing, wherein the barrier system is configured to direct the first cooling fluid through one or more electrons Components to cool the one or more electronic components; and a vapor compression system configured to generate a second cooling fluid; wherein the heat exchanger is configured to Heat is exchanged between the second cooling fluids.     如請求項11所述之系統,其中,所述蒸氣壓縮系統係冷卻器。     The system according to claim 11, wherein the vapor compression system is a cooler.     如請求項12所述之系統,其中,所述第二冷卻流體係水。     The system according to claim 12, wherein the second cooling stream system water.     如請求項12所述之系統,其中,所述第二冷卻流體係製冷劑。     The system of claim 12, wherein the second cooling flow system refrigerant.     如請求項11所述之系統,包括所述一個或多個電子部件,其中,所述一個或多個電子部件被配置成控制所述蒸氣壓縮系統的操作。     The system of claim 11, including the one or more electronic components, wherein the one or more electronic components are configured to control operation of the vapor compression system.     一種電子器件冷卻系統,包括:電子器件外殼,所述電子器件外殼被配置成儲存用於控制蒸氣壓縮系統的一個或多個電子部件,其中所述電子器件外殼係氣密密封的;以及隔擋系統,所述隔擋系統位於所述電子器件外殼內,其中所述隔擋系統被配置成引導第一冷卻流體經過所述一個或多個電子部件,以冷卻所述一個或多個電子部件。     An electronic device cooling system includes: an electronic device housing configured to store one or more electronic components for controlling a vapor compression system, wherein the electronic device housing is hermetically sealed; and a barrier The barrier system is located within the electronics enclosure, wherein the barrier system is configured to direct a first cooling fluid through the one or more electronic components to cool the one or more electronic components.     如請求項16所述之系統,其中,所述隔擋系統包括隔板,所述隔板將所述隔擋系統聯接至所述電子器件外殼。     The system of claim 16, wherein the barrier system includes a barrier that couples the barrier system to the electronics enclosure.     如請求項17所述之系統,包括擋板,所述擋板聯接至所述隔板,其中所述擋板被配置成支撐所述電子部件。     The system of claim 17, comprising a baffle plate coupled to the baffle plate, wherein the baffle plate is configured to support the electronic component.     如請求項18所述之系統,包括可調隔擋件,所述可調隔擋件聯接至所述擋板,其中所述可調隔擋件被配置成在不同的位置處聯接至所述擋板,以控制所述第一冷卻流體在所述電子部件上的流動。     The system of claim 18, including an adjustable baffle coupled to the baffle, wherein the adjustable baffle is configured to be coupled to the baffle at different positions A baffle to control the flow of the first cooling fluid on the electronic component.     如請求項18所述之系統,其中,所述擋板限定一個或多個孔,所述一個 或多個孔引導所述第一冷卻流體經過所述電子部件。     The system of claim 18, wherein the baffle defines one or more holes that direct the first cooling fluid through the electronic component.    
TW107124967A 2017-07-19 2018-07-19 Electronics cooling system and heating, ventilation, air conditioning and refrigeration system TWI826384B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762534627P 2017-07-19 2017-07-19
US62/534,627 2017-07-19

Publications (2)

Publication Number Publication Date
TW201909720A true TW201909720A (en) 2019-03-01
TWI826384B TWI826384B (en) 2023-12-21

Family

ID=63104160

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124967A TWI826384B (en) 2017-07-19 2018-07-19 Electronics cooling system and heating, ventilation, air conditioning and refrigeration system

Country Status (6)

Country Link
EP (1) EP3656190A1 (en)
JP (2) JP2020528217A (en)
KR (1) KR102435795B1 (en)
CN (2) CN116261308A (en)
TW (1) TWI826384B (en)
WO (1) WO2019018681A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750540B (en) * 2019-11-22 2021-12-21 英業達股份有限公司 Computer system and composite heat dissipation system
TWI825559B (en) * 2022-01-17 2023-12-11 長航股份有限公司 Through-type heat dissipation device for electronic equipment

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959182A (en) * 2019-04-15 2019-07-02 广东美的制冷设备有限公司 Refrigeration system and air conditioner
CN110996635B (en) * 2020-01-06 2021-12-31 阳光电源股份有限公司 Case heat radiation structure
US11464136B2 (en) * 2020-05-05 2022-10-04 Carrier Corporation Hybrid cooling for power electronics unit
EP4196722A1 (en) * 2020-08-11 2023-06-21 Johnson Controls Tyco IP Holdings LLP Cooling system with intermediate chamber
US20230184445A1 (en) * 2020-08-26 2023-06-15 Gd Midea Heating & Ventilating Equipment Co., Ltd. Air conditioning apparatus and electric control box
BR112023000332A2 (en) * 2020-08-26 2023-03-14 Midea Group Co Ltd AIR CONDITIONING APPLIANCE AND ELECTRICAL CONTROL BOX.
US11963328B2 (en) * 2020-10-13 2024-04-16 Raytheon Company Electronic component connector cooling device
GB202101678D0 (en) * 2021-02-07 2021-03-24 Octopus Energy Ltd Methods and systems and apparatus to support reduced energy and water usage
EP4072255A1 (en) * 2021-04-09 2022-10-12 Accelsius, LLC Cooling systems and heat exchangers

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126352A (en) * 1991-11-05 1993-05-21 Hitachi Ltd Cooling apparatus accomodating electronic device
JPH11294611A (en) * 1998-04-10 1999-10-29 Ishikawajima Harima Heavy Ind Co Ltd Breather valve for closed case for aircraft apparatus
JP2000340976A (en) * 1999-05-31 2000-12-08 Nec Ibaraki Ltd Sealed electronic apparatus
US6490874B2 (en) * 2000-12-21 2002-12-10 International Business Machines Corporation Recuperative environmental conditioning unit
JP2003023284A (en) * 2001-07-05 2003-01-24 Matsushita Electric Ind Co Ltd Electronic apparatus
JP4927679B2 (en) * 2007-10-17 2012-05-09 シャープ株式会社 Electric equipment and circuit board cooling method
JP2009175230A (en) * 2008-01-22 2009-08-06 Sharp Corp Display device
US20090310300A1 (en) * 2008-06-11 2009-12-17 Minebea Co., Ltd. Flow-Through Air Conditioning for Electronics Racks
CN101403522B (en) * 2008-10-29 2010-06-16 深圳市生瑞科技有限公司 High-efficiency heat exchange communication cabinet and its high-efficiency heat exchange method
CN101957026A (en) * 2009-07-20 2011-01-26 乐金电子(天津)电器有限公司 Window-type air conditioner with water coolant anti-spattering structure at outdoor side
EP2503257B9 (en) * 2011-03-22 2014-06-04 Erwin Gasser Shelter
CN103597918B (en) * 2011-05-17 2016-08-24 开利公司 Variable ratio frequency changer drives heat radiator assembly
US9320177B2 (en) * 2011-11-22 2016-04-19 Le Groupe S.M. Inc. Data center cooling system
JP6308207B2 (en) * 2013-02-26 2018-04-11 日本電気株式会社 Electronic device and cooling device
EP3012568B1 (en) * 2014-10-20 2018-09-12 ABB Schweiz AG Cooling device and cooled electrical assembly comprising the same
CN205320452U (en) * 2016-01-13 2016-06-15 浙江师范大学 Automatic sealed electrical control cabinet of accuse temperature
CN205378475U (en) * 2016-01-29 2016-07-06 卡尔迈耶(中国)有限公司 Shunting inner loop heat abstractor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750540B (en) * 2019-11-22 2021-12-21 英業達股份有限公司 Computer system and composite heat dissipation system
TWI825559B (en) * 2022-01-17 2023-12-11 長航股份有限公司 Through-type heat dissipation device for electronic equipment

Also Published As

Publication number Publication date
JP2022177184A (en) 2022-11-30
JP7412064B2 (en) 2024-01-12
CN116261308A (en) 2023-06-13
CN111096091A (en) 2020-05-01
TWI826384B (en) 2023-12-21
JP2020528217A (en) 2020-09-17
EP3656190A1 (en) 2020-05-27
WO2019018681A1 (en) 2019-01-24
KR102435795B1 (en) 2022-08-25
KR20200024932A (en) 2020-03-09

Similar Documents

Publication Publication Date Title
TWI826384B (en) Electronics cooling system and heating, ventilation, air conditioning and refrigeration system
JP6317300B2 (en) Power system cooling system
US10462942B2 (en) Structural frame cooling manifold
JP6614389B1 (en) Refrigeration equipment indoor unit
TWI740871B (en) Heat exchanger with water box
US11841148B2 (en) Window-type air conditioner
TW201544775A (en) Method for operating a chiller
WO2018062054A1 (en) Refrigeration cycle device
TW201727170A (en) Vapor compression system
CN104185765A (en) Refrigeration device
CN104515227A (en) Dehumidifier
JP6205576B2 (en) Dehumidifier
CN103154622B (en) Thermal medium interpreter and carry the aircondition of this thermal medium interpreter
JP6310077B2 (en) Heat source system
CN111630329B (en) Heating, ventilating, air conditioning and refrigerating system, condenser and design method thereof
TWI782099B (en) Enclosure, in particular for a vapor compression system
KR20190121846A (en) Collector for compressor
CN114251878A (en) Condenser arrangement for HVAC systems
TW202403249A (en) Pre-subcooler for a condenser
TW202225609A (en) Chiller system with serial flow evaporators