TW201905450A - 食用油分析方法、識別系統、產生庫的方法及數據載體 - Google Patents
食用油分析方法、識別系統、產生庫的方法及數據載體Info
- Publication number
- TW201905450A TW201905450A TW106121410A TW106121410A TW201905450A TW 201905450 A TW201905450 A TW 201905450A TW 106121410 A TW106121410 A TW 106121410A TW 106121410 A TW106121410 A TW 106121410A TW 201905450 A TW201905450 A TW 201905450A
- Authority
- TW
- Taiwan
- Prior art keywords
- edible oil
- maldi
- data
- oil samples
- samples
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/03—Edible oils or edible fats
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
- G01N33/6848—Methods of protein analysis involving mass spectrometry
- G01N33/6851—Methods of protein analysis involving laser desorption ionisation mass spectrometry
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/0009—Calibration of the apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/0027—Methods for using particle spectrometers
- H01J49/0036—Step by step routines describing the handling of the data generated during a measurement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/16—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
- H01J49/161—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
- H01J49/164—Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
- H01J49/0409—Sample holders or containers
- H01J49/0418—Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Immunology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Hematology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plasma & Fusion (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本發明提供一種用於分析一個或多個食用油樣本的方法和食用油樣本識別系統。在一個實施例中,本發明提供:校準針對一個或多個食用油樣本獲得的基質輔助鐳射解吸/電離質譜法(MALDI-MS)數據以獲得用於一個或多個食用油樣本的校準的譜數據;以及將所述校準的譜數據與用於多個參考食用油樣本的校準的MALDI-MS譜的庫進行比較以確定一個或多個食用油樣本的最可能組成。本發明還提供一種産生用於多個不同類型的多個參考食用油樣本的基質輔助鐳射解吸/電離質譜法(MALDI-MS)數據的庫以用於識別除所述參考食用油樣本外的樣本的方法以及一種其上具有指令的數據載體。
Description
發明領域 本發明涉及用於使用光譜分析、具體來說基質輔助鐳射解吸/電離質譜法(MALDI-MS)識別樣本中存在的食用油以及使樣本數據與潛在候選者的譜庫匹配的系統和方法。
發明背景 消費者健康意識的提高以及對所消耗食物中存在的配料的關注度的提高均意味著食物供應鏈中的所有實體都需要證明所使用配料的完整性和純度。
食用油、特別是用於烹調的食用油的完整性和純度已經得到顯著的關注。在中國的廣東地區(包含香港)還有在臺灣,已經存在許多摻假的油(“地溝油”)的情況,其中使用了再回收的油代替高品質食用油。
確定食用油樣本的真實性的一個方法是關注於在樣本-標記物中檢測食物殘餘標記物,其可包含辣椒素(辣椒的標記物)、丁香酚(調味品的標記物)、十一烷酸(受熱蔬菜油的標記物)以及13-甲基十四烷酸(動物油的標記物)。然而,單獨關注於這些標記物的存在或不存在幷不決定食用油樣本的真實性;因爲無良的供應商可以簡單地移除這些標記物。
因此,使用氣相色譜法-火焰電離檢測器(GC-FID)的分析是驗證食用油的ISO標準方法。在該方法中,首先使用氫氧化鈉水解油樣本,然後使用三氟化硼催化劑將其轉換成脂肪酸的甲酯。隨後使用GC-FID分離且檢測脂肪酸甲酯。
隨後根據食用油樣本的脂肪酸組成來確認食用油樣本的身份。然而,這些過程是相對耗時且勞動密集的,意味著處置大量樣本是不可能的。例如基於液相色譜法(LC)的方法等其它方法也具有相似的可擴展性問題。
努力解決以上缺陷的一種方法是,已經開發使用基質輔助鐳射解吸/電離質譜法(MALDI-MS)的簡單分析規程。
(參見例如Ng, T.T.、So, P.K.、Zheng, B.、Yao, Z.P.的“通過基質輔助鐳射解吸/電離質譜法對混合的食用油和地溝油的快速篩查(Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry)”,Analytica Chimica Acta,2015,884,70-76。
MALDI-MS廣泛用於包含脂質的生物樣本的分析,且具有簡單的樣本製備、較短的分析時間,以及高靈敏度而無需色譜分離。從MALDI-MS獲得的食用油的質譜廣泛公認爲用於區分和驗證的“指紋”。
通過MALDI-MS産生的譜是由對應於像二醯基甘油(DAGs)的片段和三醯基甘油(TAGs)的鈉加成物的信號來控制。也已經探究較低質量區(100-500 Da)和較高質量區(1000-2000 Da),但通常未獲得顯著信號。
食用油的加熱和混合改變食用油的組成,從而更改其MALDI-MS譜的TAG圖樣。油的長期加熱通常造成TAG的降解以及例如二醯基甘油、單醯基甘油、遊離脂肪酸、氧化TAG和TAG聚合物等化合物的形成。此改變可通過與參考譜進行比較來檢測以確定正被測試的樣本的身份和/或組成。
在處理MALDI-MS譜以確定樣本的真實性/身份的一種方法中,使用主成分分析(PCA)(一種統計分析形式)來對正被分析的食用油樣本中的TAG峰進行譜的比較。
然而,手動地處理MALDI-MS樣本以及使用PCA分析來識別樣本或檢驗樣本的真實性包含若干大型步驟。相關峰的提取的初始步驟需要經訓練的操作者的手動選擇,所述操作者已經被訓練從而知道選擇哪些峰。
PCA分析過程自身也可能是誤差/複雜性的來源,因爲對於例如葵花油和葡萄籽油等一些類型的油,其TAG組成類似於其它油品種。這意味著需要若干PCA步驟來區分油,這個過程可能是極冗長的。
最後,PCA過程的輸出是輸入數據到PCA繪圖上的投影,其比較樣本與數據庫中的數據之間的相似性。然而,無法直接顯示樣本的身份。根據PCA分析,經訓練的操作者仍需要從結果歸納出合理的結論。
TAG圖樣被認爲是食用油的“指紋”。然而,一些品種共享高度相似的TAG圖樣(例如橄欖油和鰐梨油),這無法容易地通過PCA來區分。
使用PCA分析的先前的方法僅考慮PCA分析中的TAG相關的峰。例如氧化相關以及環肽相關的峰等其它峰也可能是有用的。然而,無法使用所建立的PCA模型直接適應那些額外的峰,從而要求PCA的重新建模來配合新資訊。此過程同樣需要有經驗和經訓練的操作者。
因此,當使用PCA來分析MALDI-MS譜時,所述譜仍需要由經高度訓練的人員處理且手動地匹配,這是昂貴、費力且耗時的,且限制了擴展MALDI-MS系統用於食用油分析的能力。
因此,使用MALDI-MS方法對食用油的潛在分析需要達到的狀態與現有的當前狀態之間存在顯著差距。
發明概要 本發明的目的是提供一種系統和方法,其至少解決或改善上述問題中的一些或者爲公衆提供替代的選擇。本發明的特徵和優點將在以下描述中加以闡述,並且在某種程度上根據所述描述本發明的特徵和優點將是明顯的,或者可以通過對本文中所公開的原理的實踐習得本發明的特徵和優點。借助於在所附申請專利範圍中具體指出的裝置和組合可實現且獲得本發明的特徵和優點。
根據本發明的第一方面,提供一種用於分析一個或多個食用油樣本的方法,所述方法包括: 校準針對一個或多個食用油樣本獲得的基質輔助鐳射解吸/電離質譜法(MALDI-MS)數據以獲得用於一個或多個食用油樣本的校準的譜數據;以及 將所述校準的譜數據與用於多個參考食用油樣本的校準的MALDI-MS譜的庫進行比較以確定所述一個或多個食用油樣本的最可能組成。
所述校準的譜數據與用於多個參考食用油樣本的校準的MALDI-MS譜的庫進行的所述比較可以使用餘弦相似性測試來執行。
餘弦相似性得分可以根據所述參考食用油樣本存在於所述一個或多個食用油樣本中的可能性,從最可能到最不可能來進行排名;以及基於最高排名的餘弦相似性得分而確定所述一個或多個食用油樣本的最可能組成。
任選地,可以通過以下方式進行所述餘弦相似性測試:將用於所述一個或多個食用油樣本的所述校準的譜數據的一個或多個區與所述校準的MALDI-MS譜的庫中所述參考食用油樣本的一個或多個對應區進行比較,其中所述一個或多個區選自包括高質量、低質量和三醯甘油(TAG)區的群組。
可通過使用三醯甘油(TAG)峰和二羥基苯甲酸(DHB)基質峰中的至少一個作爲參考峰來執行校準。
在校準後且在與用於多個參考食用油樣本的所述校準的MALDI-MS譜的庫進行比較之前,可通過數據分箱(data binning)將所述校準的譜數據量化。可通過將整個所述校準的譜數據劃分爲0.5 m/z的間隔,使每一箱(bin)內的所有讀數的強度平均化,且將m/z讀數設定爲在間隔的中間的m/z值來執行數據分箱。
在分箱後,可通過將每一箱的強度除以所有箱的最大強度或總強度、乘以適當按比例縮放的參數且舍入到最近整數而使所述校準的譜數據正規化。
也可以使用選自包括特性峰匹配方法、偏最小二乘判別分析(PLS-DA)或基於決策樹的方法的群組的統計測試來執行所述校準的譜數據與用於多個參考食用油樣本的校準的MALDI-MS譜的庫之間的所述比較。
在本發明的另一方面中,提供一種食用油樣本識別系統,其包括: 輸入系統,其經配置以接收一個或多個食用油樣本的基質輔助鐳射解吸/電離質譜法(MALDI-MS)數據; 庫,其包括用於多個參考食用油樣本的多個校準的MALDI-MS譜數據; 處理器,其經配置以校準從所述一個或多個食用油樣本獲得的所述MALDI-MS數據且將其與所述庫進行比較以確定所述一個或多個食用油樣本的預測組成。
所述處理器可經配置以使用餘弦相似性測試將從所述一個或多個食用油樣本獲得的校準的MALDI-MS數據與所述庫的參考食用油樣本進行比較,且輸出確定的餘弦相似性得分。
所述處理器可經配置以對從所述一個或多個食用油樣本獲得的校準的MALDI-MS數據的一個或多個區以及所述庫中的參考食用油樣本的一個或多個對應區進行所述餘弦相似性測試,其中所述一個或多個區選自包括高質量、低質量和TAG區的群組。
可通過使用TAG峰和DHB基質峰中的至少一個作爲參考峰來執行對從所述一個或多個食用油樣本獲得的MALDI-MS數據和所述庫的MALDI-MS譜數據的校準。
在校準後且在與所述庫的MALDI-MS譜數據進行比較之前,所述處理器可經配置以通過數據分箱使從所述一個或多個食用油樣本獲得的校準的MALDI-MS數據量化。
在本發明的再一方面中,提供一種産生用於多個不同類型的多個參考食用油樣本的基質輔助鐳射解吸/電離質譜法(MALDI-MS)數據的庫以用於識別除所述參考食用油樣本外的樣本的方法,所述方法包括: 提供具有已知類型的多個參考食用油樣本; 通過使用TAG峰和DHB基質峰中的至少一個作爲參考峰來校準用於所述多個參考食用油樣本中的每一個的所述MALDI-MS數據; 通過數據分箱使用於所述參考食用油樣本的所述MALDI-MS數據量化; 通過將每一箱的強度除以最大箱的強度或所有箱的總強度以將所述參考食用油樣本的所述MALDI-MS數據正規化;以及 使正規化的所述MALDI-MS數據與食用油類型關聯。
本發明還可包含其上具有指令的數據載體,所述指令在由處理器執行時使所述處理器進行以下操作: 校準針對一個或多個食用油樣本獲得的基質輔助鐳射解吸/電離質譜法(MALDI-MS)數據;以及 將從所述一個或多個食用油樣本獲得的校準的所述MALDI-MS數據與用於多個參考食用油樣本的校準的MALDI-MS譜的庫進行比較以確定所述一個或多個食用油樣本的最可能組成。
較佳實施例之詳細說明 下文詳細論述本發明的各種實施例。雖然討論了特定實施方案,但是應瞭解,這樣做是爲了說明性目的。相關領域的普通技術人員將認識到,可以在不脫離本發明的範圍的情況下使用其它組件和配置。
所公開的技術解決了此項技術中對於用於食用油分析的可擴展、可靠的技術的需要。 用於樣本(庫和未知樣本)的分析的典型MALDI規程
典型MALDI-MS規程涉及基質溶液與樣本溶液的混合,其隨後被允許乾燥到MALDI板上。在樣本和基質晶體的形成之後,將MALDI板插入到MALDI-MS儀器中用於分析。
MALDI-MS分析中不涉及色譜分離,因此允許食用油樣本的快速分析。
在示範性MALDI-MS規程中,可將食用油樣本直接加載到預沉積有基質層的MALDI板上以用於MALDI-MS分析。用於一個樣本的樣本加載可在幾秒內完成,且大約三百個樣本可加載到同一MALDI板上。
在根據示範性方法的樣本加載的特定步驟中,將丙酮中100 mg mL1 DHB的1µL的使用的等分部分加載到MADLI板的點上且風乾以形成基質層。隨後通過吸液管尖端或棉簽尖端轉移每一油樣本的大約0.2µL以在基質層上形成薄油層。
隨後將該板引入到質譜儀中用於MALDI-MS分析。
使用Ultraflex Xtreme MALDI-TOF/TOF質譜儀(德國布魯克道爾頓公司)用於分析。MALDI源的鐳射是在2000 Hz的頻率下操作的智慧束-II(Nd:YAG,355 nm)脈衝鐳射。質譜儀在正反射模式中操作。用於離子源1、源2、透鏡、反射器1、反射器2和脈衝離子提取的正反射模式的設定分別是20.00 kV、17.75 kV、7.00 kV、21.10 kV、10.85 kV和140 ns。取樣率和數字化器設定成5.00GS/s。在必要時採用擴展的質量範圍。
以PEG溶液混合物(PEG600/PEG1000 /PEG2000/Nal = 1/2/2/5(v/v))校準質譜儀。
使用flexControl 3.4(德國布魯克道爾頓公司)程式執行譜採集。使用flexAnalysis 3.4(德國布魯克道爾頓公司)程式分析質譜。使用質心算法用於峰檢測。
參考圖1a到圖1c,示出了産生於選定食用油樣本的MALDI-MS分析的典型譜。
現參看圖1a,示出了産生於來自500-1200 m/z的菜籽油樣本的MALDI-MS譜的全譜的結果。可以看到在907.8 Da處的主要三醯甘油峰連同在881.8 Da處的較小峰。還存在片段區中群集於603.6 Da周圍的若干峰。在920 Da後方的峰是典型的氧化/熱産物。
群集於935.8 Da周圍的峰可爲氧化的TAG,且在1059.8 Da處的峰似乎與TAG片段群集離子相關。
在作爲來自850-920 m/z的圖1a的區的放大部分的圖1b中,可看見相同的兩個TAG峰,其中字母表示各種脂肪酸,包含P(棕櫚酸)、O(油酸)、L(亞麻油酸)和Ln(次亞麻油酸)。
最後,圖1c描繪不同類型的若干其它食用油樣本的MALDI MS譜的峰,包含:(i)菜籽,(ii)花生,(iii)橄欖,(iv)葵花,具有其特徵TAG峰(且按較輕微程度來說,其像DAG的峰)。
圖2描繪從廣州的國家分析中心獲得的且TAG圖樣似乎相當不同於數據庫的純食用油的再回收油的各種樣本的TAG峰。
圖3a到圖3d描繪通過橄欖油和菜籽油的各種混合物的分析已獲得的典型MADLI-MS譜。特別強調的是隨著混合物的組分的相對比例改變而在特性峰中出現改變。可以看到在908 Da處的特性TAG峰和在882 Da處的次級峰是圖3a中的菜籽油的存在的獨特指示符。如在圖3a到圖3e處所示,當橄欖油的組成增加時,在882 Da處的峰的強度增加。譜的改變允許對橄欖油和菜籽油的各種混合物進行區分。
現參看圖4a,示出了在已針對樣本獲得例如圖1、圖2和圖3的那些峰之後,來自現有技術方法的輸出,其中使用PCA進行樣本識別。
PCA使用正交線性變換將可能相關的變量的觀測值轉換爲線性不相關變量的一組值。此技術允許高維度數據集的視覺化和處理,但同時保持數據集的盡可能多的變化。
在進行樣本的主成分分析時,從樣本的第一和第二主要TAG組分産生得分繪圖。
對TAG組分使用PCA的結果示出了來自同一品種的樣本單獨地群集,且不同的植物油品種可以彼此清楚地區分。(參見Ng, T.T.、So, P.K.、Zheng, B.、Yao, Z.P.的“通過基質輔助鐳射解吸/電離質譜法對混合的食用油和地溝油的快速篩查(Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry)”,Analytica Chimica Acta,2015,884,70-76。)
在圖4a中,對樣本的MALDI-MS的結果可劃分成基本上四個群組,如由輪廓線指示。
群組1(10)可能是花生油,群組2(12)可能是亞麻籽,群組3(14)可能是具有類似於橄欖油的TAG圖樣的蔬菜油,且群組4(16)可能是其它蔬菜油。
參考圖4b,可以看到進一步的PCA分析的結果,其中進一步分析子群組2。菜籽/油菜籽油、芝麻油、米糠油和棉籽油的樣本(位於下半部的點)可能與子群組2中的其它油(位於上半部的點)區分。子群組2中的其它油將需要進一步PCA分析以完全區分。
然而,如本發明的背景中所提到,PCA分析存在若干缺陷,這意味著其是不可擴展的且必須由有技巧的操作者執行。
因此,本發明提供一種方法和系統,其解決了這些缺陷,且實現用於食用油的分析、檢驗和識別的穩健、可擴展的技術。
參考圖5a,可以看到本發明的方法和系統中的步驟的三個主要群組。
參考組成部分50,公開了與産生MALDI-MS譜數據的庫相關聯的一系列步驟。在步驟52處,選擇具有已知類型和發源的多個食用油樣本用於評估。在産生的庫中,我們已選擇來自各種供應商的多達六百個樣本,包含來自中國大陸、臺灣、香港以及美國的西格瑪-奧德裏奇公司。在許多情況下已選擇來自不同來源的一個類型的油的多個實例以提供完整數據庫。
如在步驟54中在本發明的規程下所公開的,這些樣本經受MALDI-MS分析。
在步驟56處從分析獲得的MALDI-MS譜通過在步驟58處的任選的品質保證檢查,其涉及由經訓練的操作者來檢查。在此檢查期間,操作者檢查譜的校準和解析度以便確保最佳參考譜包含在庫中。高水平的氧化産物和/或較差的校準將造成數據被檢查者拒絕。將瞭解,雖然此步驟是任選的,特別是在譜數據的庫的産生中是任選的,但對譜數據進行檢查以確保拒絕顯而易見的誤差或被污染的樣本,這又增加了所獲得譜數據的庫的完整性。
在品質保證檢查後,在步驟59處將MALDI-MS譜存儲在譜數據庫中,從而形成食用油樣本的譜數據的庫。任選地,爲了增加使用庫中的樣本進行假定識別的準確性,可從若干不同製造商獲得已知油類型的多個不同樣本,預期不管來自若干不同製造商的油的發源如何,都將觀測到相當相似的譜。
本發明的系統的另一部分包含圖5a的框60處涉及的樣本分析系統。將瞭解,樣本分析允許檢測摻假的油(62a)(與較貴的油混合的較便宜的油,且被誤標記爲純的、常常更貴的油)和已經用於烹調且已經再回收的“地溝”油,以及來自未知樣本的純食用油或來自未知樣本的食用油混合物的識別(62b)。
根據本發明的較早描述的規程在步驟64未知樣本經受MALDI-MS分析以在步驟66産生樣本MALDI-MS譜。
現參看本發明的識別組成部分70,概述地描述示範性識別系統中的一系列步驟。
在演算法匹配步驟72通過計算機的處理器匹配樣本譜66。演算法匹配可爲一種比較的形式,例如餘弦相似性測試,或類似方法,通過該類似方法將樣本數據66與在庫的産生組成部分50中針對多個食用油樣本已獲得的譜數據庫59進行比較。參考圖5b更詳細地公開了該過程。
樣本譜66與譜數據庫59之間的演算法匹配的結果是根據庫中存在的食用油樣本的一個或多個相似性得分。
如所屬領域的技術人員所瞭解,無論通過哪種演算法用於使樣本的譜與食用油庫中的對應譜匹配,産生的相似性得分越高,未知食用油樣本的假定識別的機會越高。
將瞭解,不管未知食用油樣本是否爲摻假的食用油樣本、純食用油樣本或食用油的混合物,此過程都是相似的,即,通過演算法進行與庫的匹配並得到假定識別將是大體上相同的。
現參看圖5b,更詳細地公開用於未知樣本的譜的處理的過程。在66處,用戶提供原始MALDI-MS譜用於分析。將瞭解,這可作爲數據文件提供到在地理上遠離執行MALDI-MS譜的地點的中央處理設施。替代地,所述譜和處理可在同一設施處進行,而不偏離本發明。
一旦已經從用戶輸入獲得原始MALDI-MS譜,就在步驟72a處校準該譜。通常使用突出的TAG峰和DHB基質峰作爲參考來進行校準。此校準過程確保樣本被標準化,以便於對照標準化食用油譜峰的庫的分析和分析的再現性。
也可使用替代的基質,例如CHCA(α-氰基-4-羥基肉桂酸)和SA(芥子酸)。基於無論使用何種基質,也可通過特性峰執行適當校準。然而,應注意,如果使用CHCA則背景噪聲較高,且如果芥子酸用作基質則信號強度非常差。
爲了幫助獲得再現的結果,按照最佳實驗室實踐,還應當在進行分析之前以PEG溶液混合物(PEG600/PEG1000/PEG2000/Nal = 1/2/2/5(v/v))來校準質譜儀。
在校準後,在步驟72b處對數據進行分箱過程。如所屬領域的技術人員所知,數據分箱或分桶(data binning or bucketing)是使數據量化的數據預處理技術。基本上,在數據分箱中,落入給定小窗口或箱(bin)中的原始數據系列值由代表該間隔的值(常常是中心值)代替。
如此項技術中已知,數據分箱減少了數據量(必定丟失資訊)但促進了分析。在MALDI-MS譜分析中,箱的典型大小是0.5m/z,但也可使用其它大小。所屬領域的技術人員將瞭解,增加的箱大小將減小所獲得數據的解析度。箱的大小影響匹配的準確性和品質,且箱的最佳大小表示太多細節與太低解析度之間的平衡。
在本發明的示範性實施例中,使用的數據分箱過程是將整個譜劃分爲0.5 m/z的間隔,使每一箱內的所有讀數的強度平均化,且將m/z讀數設定爲在間隔的中間的m/z值。
在步驟72b處的數據分箱過程之後,通過將每一箱的強度除以所有箱的最大強度、接著乘以10000且舍入到最近整數來將數據正規化。
替代地,在正規化的替代過程中,可通過將每一箱的強度除以所有箱的總強度,並且然後將結果乘以10000且進行舍入來將樣本數據正規化。
在正規化過程之後,在步驟72d中,將已經校準、分箱且正規化的未知樣本數據與食用油的參考譜的數據庫(該數據庫中的資訊是用於已經被類似地校準的、分箱的且正規化的食用油)進行比較。該比較可使用餘弦相似性方法來進行。
如此項技術中已知,餘弦相似性匹配是相似性量度,其中未知樣本譜的樣本表示爲向量;且獲得所述樣本與表示庫中的樣本數據的多個向量的點積。
餘弦相似性計算兩個向量之間的角度的餘弦。
在向量處於大體上同一方向上的情況下,兩個向量之間的角度的餘弦近似爲100%或1。然而,在向量(譜數據的抽象化)定向於不同方向上(近似爲正交)的情況下,通過點積求解獲得的兩個向量之間的角度的餘弦近似爲零,即0%。此外,在向量處於完全不同(相反)方向上的情況下,獲得的餘弦相似性是-1。
因此,餘弦相似性是獲得表示兩個譜之間的相似度的數值得分的有用演算法。
任選地,也可使用其它數據處理技術,例如特性峰匹配方法(主要用於檢測氧化産物或環肽的存在或不存在)、偏最小二乘判別分析(PLS-DA)或基於決策樹的技術(例如,隨機森林),以將經校準的、分箱的且正規化的MALDI-MS樣本數據與參考譜的類似地經校準的、分箱的且正規化的數據進行比較。
在步驟76處的過程的結果是油的識別。
有利的是,如連續圖中描繪的,其可以庫的多個樣本的餘弦相似性的得分的排名系列的形式來提供,或替代地可簡單地被選擇爲最高得分識別。
現參看圖6a,可以看到食用油樣本S88(菜籽)的示範性參考譜。突出的TAG峰區80在圖6a中被圈出以便於參考,並且在圖6b中以放大視圖進一步提取。
在樣本的左側,可以看到存在菜籽油82的多個樣本,其中已經在84處記錄製造商和收集源的細節。
還任選地存在通過鏈接86的選擇而以文本格式查看原始數字數據的能力。
大多數食用油具有在870-885 Da周圍的一個群組的TAG峰,以及在900-910 Da處的另一群組的TAG峰。例如椰子油等一些食用油將具有其在不同區的TAG峰。對於每種類型的油,每一TAG的比率大部分由母代品種的酶類決定。因此,TAG區內的峰的相對強度對於每一類型的油是特定的,且峰的強度對於每一類型的油形成獨特形狀。因此,TAG區的位置和形狀可用作指紋以識別未知的油類型。
因此,本發明提供了用戶例如通過瀏覽多個不同類型食用油的參考譜且在許多情況下瀏覽特定食用油的多個樣本的參考譜來進行查看的能力。
此樣本參考數據可被存儲爲一系列原始數字數據,但爲了便於人爲解釋而以描繪的圖形格式表示。
現參看圖7a,可以看到來自未知油樣本的驗證過程的輸出。有利的是,文件可包含在由88指示的螢幕的部分以及輸出由在90處下方的區中所示的相關性得分指示。在此實例中,呈文本格式的未知的油譜已被假定地識別爲棕櫚油,其具有0.9959的相對較強相關性得分。
現參看圖7b,可以看到存在兩個樣本,其已被分別提供在92和94處呈現的輸出處。
對於在92處被識別爲黃油的樣本,相關性得分相對較低(0.9410),意味著對該假定的識別沒有太多的信心。
類似地在94處,經識別的食用油是南瓜籽油,然而相關性得分也相對較低。
(注意:‘低得分’可取決於用法。如果用戶僅想要識別未知物而無其它資訊,那麽用戶可滿足於0.97的得分,因爲其將爲最接近匹配。
然而,如果用戶想要知道已知類型的油是否已經摻假或受熱一段時間,那麽用於正確匹配的閾值需要更高,因爲較低得分將意味著油中的TAG已在某種程度上改變。
一般來說,基於到目前爲止獲得的實驗數據,0.97的閾值得分似乎爲用於大多數目的的合理水平。)
這些結果可與圖7a中針對棕櫚油所示的高相關性得分進行比較。
因此,考慮到弱相關性得分,查閱這些結果的用戶將較不確信後面的樣本的假定識別。
現參看圖8a,可以看到較差品質的示例性譜。如在917.7和933.7處的峰(分別爲100和102)表示,樣本中存在較高水平的氧化産物。因此,通過圖5a的人爲品質保證步驟(58),在建立譜數據庫時將不包含此樣本。
替代地,如果這些樣本是從未知的樣本獲得,那麽系統將對照數據庫中的油譜而産生較差的相關性得分,且用戶將知道油已在某種程度上被改變(摻假、受熱、儲存太久等)。
現參看圖8b,可以看到正常葵花油樣本的好得多的譜,其中氧化産物100、102明顯不存在。
類似地,現參看圖9a,描繪玉米油的較差校準的譜,其中與玉米油相關聯的典型TAG峰已經向右移位0.3Da。
當將圖9a的譜或較差校準的譜與圖9b的參考譜進行比較時,TAG峰110和112顯然移位,這是明顯的,且因此在校準之後圖9a的譜被調整0.3 Da以提供恰當校準的譜,如圖9c中所描繪。
圖9d中可以看到較差校準和解析度的另一實例,其中描繪山茶油的TAG圖樣。查看此山茶油樣本的特性峰114和116可以看到該樣本已經再次被較差地校準,且在900與910之間的區118中經受較差的解析度。所獲得的峰應當爲尖銳的且基線應當爲較低的。圖9d中的特性峰看起來太寬且基線被提高。
因此,在操作者執行的檢查和品質保證之後,如圖9e中所描繪,TAG山茶油樣本的重新分析給出好得多的更穩健的譜,其中校準和解析度問題已經解決。
參考圖10a,存在對形成參考庫的樣本進行品質保證的必要性的又一實例。
可以看到10a(i)中的譜的有問題的樣本具有與10a(ii)和10a(iii)中描繪的亞麻籽油樣本完全不同的峰圖樣。在對亞麻籽油的所聲稱的參考樣本與參考庫中的其它參考樣本之間的誤匹配進行識別之後,有問題的樣本可經受GC-FID分析。如圖10b中所描繪,此分析的結果揭露了該樣本實際上被誤標記,且該樣本將不再作爲亞麻籽油包含在參考數據庫中。
因此,可增加用於食用油樣本的識別的參考庫的完整性。
本發明提供識別食用油的有利、潛在地可擴展的方法。這實現誤標記的食用油的快速檢測、摻假油和地溝油的識別,以及驗證經標記的油譜的能力。
也可能通過與參考庫中的參考樣本(例如圖3a到3e中描繪的那些)的比較而識別混合油的主要元素和少量元素。
在該使用中,用戶可以實際所檢測的組成來檢查食用油的標簽上所聲稱的相對比例。
本發明的另一優點是可在分析實驗室進行MALDI-MS分析,且參考庫可以必要地位於在地理上遠離分析實驗室的位置。假定的識別可隨後在因特網上進行,其中數據簡單地上載到適當網站上。
食用油的分析和假定識別可通過例行實驗室程式而實行,而不需要不間斷的訓練或窮盡性統計分析。
用於匹配譜的演算法提供了對照參考庫假設地識別廣泛多種食用油的可靠、可擴展且高效的方式。
包含自動數據匹配過程消除了對參考譜的人工匹配的需要。
不同於先前的PCA方法,若新類型的油添加到數據庫,所述演算法不需要修改。
結果也可自動顯示給用戶,這對於先前的方法是不可能的。
上文實施例僅作爲實例描述。在不脫離本發明的如所附申請專利範圍中所限定的範圍的情況下,許多變化是可能的。
爲了清楚解釋,在一些情況下本發明技術可呈現爲包含單獨的功能塊,其包括裝置、裝置組件、體現在軟件或硬體與軟件的組合的方法中的步驟或例程。
根據上述實例的方法可使用經存儲的或另外從計算機可讀介質可用的計算機可執行過程來實施。這些過程可包括例如致使或另外配置通用計算機、專用計算機或專用處理裝置執行某一功能或功能群組的指令和數據。所使用計算機資源的部分可通過網絡來接入。計算機可執行指令可以例如是二進制、例如匯編語言的中間格式指令、固件,或源代碼。可用以存儲指令、所使用資訊和/或在根據所描述實例的方法期間産生的資訊的計算機可讀介質的實例包含磁盤或光盤、快閃存儲器、具備非易失性存儲器的通用串列總線(USB)裝置、聯網存儲裝置等。
實施根據這些公開內容的方法的裝置可包括硬體、固件和/或軟件,且可採取任何多種形狀因數。這些形狀因數的典型實例包含可擕式計算機、智能電話、小形狀因數個人計算機等。本文所描述的功能性也可體現在外圍設備或附加卡中。借助於進一步的實例,這些功能性也可實施於電路板上的不同晶片中或在單個裝置中執行的不同過程中。
指令、用於遞送這些指令的介質、用於執行指令的計算資源以及用於支援這些計算資源的其它結構是用於提供這些公開內容中描述的功能的方式。
雖然使用多種實例和其它資訊來闡釋所附申請專利範圍的範圍內的各個方面,但不應當基於這些實例中的特定特徵或佈置而暗示對申請專利範圍的限制,因爲所屬領域的技術人員將能夠使用這些實例以推導出廣泛的多種實施方案。
此外雖然可能已經用結構特徵和/或方法步驟的實例所特定的語言描述了一些主題,但應瞭解,所附申請專利範圍中限定的主題不一定限於這些描述的特徵或動作。舉例來說,這些功能性可在除本文識別的那些組件外的組件中不同地分佈或執行。實際上,所描述的特徵和步驟被公開作爲所附申請專利範圍的範圍內的系統和方法的組成部分的實例。
1‧‧‧離子源;透鏡;反射器
2‧‧‧源;反射器
50‧‧‧參考組成部分
52、54、56、58、59、62、64、72a、72b、72c、72d、76‧‧‧步驟
59‧‧‧譜數據庫
60‧‧‧框
62a‧‧‧油
62b‧‧‧食用油混合物的識別
66‧‧‧樣本譜;步驟
70‧‧‧識別組成部分
72‧‧‧演算法匹配步驟
80‧‧‧TAG峰區
82‧‧‧菜籽油
86‧‧‧鏈接
100、102‧‧‧峰;氧化産物
110、112‧‧‧TAG峰
114、116‧‧‧特性峰
118‧‧‧區
爲了描述可以獲得本發明的上述和其它優勢和特徵的方式,將參考附圖中所說明的上文所簡單描述的原理的特定實施例來呈現所述原理的更具體描述。在理解這些圖式僅描繪本發明的示範性實施例並且因此不應認爲其限制本發明的範圍的情況下,將通過使用附圖來以附加的特徵和細節來描述並解釋本文的原理。
下文將通過實例並且參考附圖來進一步詳細解釋本發明的優選實施例,在附圖中: 圖1a描繪用於菜籽油的示範性MALDI質譜,其示出了來自500-1000 Da的全譜; 圖1b是圖1a的TAG區的放大視圖; 圖1c示出了菜籽、花生、橄欖和葵花食用油的特性峰,聚焦於這些油的TAG區; 圖2示出了各種再回收的油的示範性MALDI-MS譜; 圖3a到圖3e描繪菜籽油和橄欖油的混合物在各種濃度下的示範性MALDI-MS譜; 圖4a描繪不同類型的油的示範性PCA繪圖,其中所述油可被劃分成4個群組(通過層次聚類而獲得的相同結果); 圖4b描繪圖4a的繪圖的群組2的示範性後續PCA分析,其中進行進一步的PCA以進一步識別不同類型的油; 圖5a描繪本發明的系統的實施例的示範性流程圖; 圖5b描繪圖5a的流程圖的核心以及工作流如何進行; 圖6a示出了庫的針對已知樣本存儲的特性譜的示範性數據,以圖形方式向用戶描繪; 圖6b示出了圖6a的樣本的譜區的放大部分的示範性表示; 圖7a描繪純油的未知樣本與存儲在庫中的棕櫚油的參考樣本之間的強相關性; 圖7b描繪摻假油的未知樣本的分析的結果以及與參考樣本中的花生或橄欖譜的較低相關性得分; 圖8a是不會存儲在數據庫中的葵花油的不良TAG譜的示範性樣本; 圖8b是將作爲參考樣本存儲在數據庫中的葵花油的良好TAG譜的示範性樣本; 圖9a是玉米油的質譜分析的示範性樣本,其中尚未恰當地進行校準; 圖9b示出了在已恰當地進行校準之後的玉米油的同一樣本; 圖9c示出了用於參考的玉米油的TAG譜的參考樣本; 圖9d示出了另一樣本,其中山茶油的TAG譜被較差地校準且具有較差的解析度; 圖9e示出了圖9d的樣本,其中已矯正解析度和校準; 圖10a示出了誤標記爲亞麻籽油的示範性樣本; 圖10b示出了樣本的GC-FID分析,其支持此樣本已被誤標記的結論。
Claims (16)
- 一種用於分析一個或多個食用油樣本的方法,所述方法包括: 校準針對一個或多個食用油樣本獲得的基質輔助鐳射解吸/電離質譜法(MALDI-MS)數據,以獲得用於一個或多個食用油樣本的校準的譜數據;以及 將所述校準的譜數據與用於多個參考食用油樣本的校準的MALDI-MS譜的庫進行比較,以確定所述一個或多個食用油樣本的最可能組成。
- 如請求項1之用於分析一個或多個食用油樣本的方法,其中,所述校準的譜數據與用於多個參考食用油樣本的校準的MALDI-MS譜的庫進行的所述比較是使用餘弦相似性測試來執行的。
- 如請求項2之用於分析一個或多個食用油樣本的方法,其中餘弦相似性得分是根據所述參考食用油樣本存在於所述一個或多個食用油樣本中的可能性,從最可能到最不可能來進行排名的;以及 基於最高排名的餘弦相似性得分而確定所述一個或多個食用油樣本的最可能組成。
- 如請求項2或3中任一項之用於分析一個或多個食用油樣本的方法,其中通過以下方式進行所述餘弦相似性測試:將用於所述一個或多個食用油樣本的所述校準的譜數據的一個或多個區與所述校準的MALDI-MS譜的庫中所述參考食用油樣本的一個或多個對應區進行比較,其中所述一個或多個區選自包括高質量、低質量和三醯甘油(TAG)區的群組。
- 如請求項1或請求項2之用於分析一個或多個食用油樣本的方法,其中通過使用三醯甘油(TAG)峰和二羥基苯甲酸(DHB)基質峰中的至少一個作爲參考峰來執行校準。
- 如請求項1至5中任一項之用於分析一個或多個食用油樣本的方法,其中在校準後且在與用於多個參考食用油樣本的所述校準的MALDI-MS譜的庫進行比較之前,通過數據分箱將所述校準的譜數據量化。
- 如請求項6之用於分析一個或多個食用油樣本的方法,其中通過將整個所述校準的譜數據劃分爲0.5 m/z的間隔,使每一箱內的所有讀數的強度平均化,且將m/z讀數設定爲在間隔的中間的m/z值來執行所述數據分箱。
- 如請求項6或請求項7之用於分析一個或多個食用油樣本的方法,其中在分箱後,通過將每一箱的強度除以所有箱的最大強度或總強度、乘以適當按比例縮放的參數且舍入到最近整數,來使所述校準的譜數據正規化。
- 如請求項1之用於分析一個或多個食用油樣本的方法,其中使用選自包括特性峰匹配方法、偏最小二乘判別分析(PLS-DA)或基於決策樹的方法的群組的統計測試來執行所述校準的譜數據與用於多個參考食用油樣本的校準的MALDI-MS譜的庫之間的所述比較。
- 一種食用油樣本識別系統,其包括: 輸入系統,其經配置以接收一個或多個食用油樣本的基質輔助鐳射解吸/電離質譜法(MALDI-MS)數據; 庫,其包括用於多個參考食用油樣本的多個校準的MALDI-MS譜數據; 處理器,其經配置以校準從所述一個或多個食用油樣本獲得的所述MALDI-MS數據且將其與所述庫進行比較以確定所述一個或多個食用油樣本的預測組成。
- 如請求項10之食用油樣本識別系統,其中所述處理器經配置以使用餘弦相似性測試將從所述一個或多個食用油樣本獲得的校準的所述MALDI-MS數據與所述庫的所述參考食用油樣本進行比較,且輸出確定的餘弦相似性得分。
- 如請求項11之食用油樣本識別系統,其中所述處理器經配置以對從所述一個或多個食用油樣本獲得的校準的所述MALDI-MS數據的一個或多個區以及所述庫中的所述參考食用油樣本的一個或多個對應區進行所述餘弦相似性測試,其中所述一個或多個區選自包括高質量、低質量和TAG區的群組。
- 如請求項10之食用油樣本識別系統,其中通過使用TAG峰和DHB基質峰中的至少一個作爲參考峰來執行對從所述一個或多個食用油樣本獲得的所述MALDI-MS數據以及所述庫的所述MALDI-MS譜數據的校準。
- 如請求項10之食用油樣本識別系統,其中在校準後且在與所述庫的所述MALDI-MS譜數據進行比較之前,所述處理器經配置以通過數據分箱使從所述一個或多個食用油樣本獲得的校準的所述MALDI-MS數據量化。
- 一種産生用於多個不同類型的多個參考食用油樣本的基質輔助鐳射解吸/電離質譜法(MALDI-MS)數據的庫以用於識別除所述參考食用油樣本外的樣本的方法,所述方法包括: 提供具有已知類型的多個參考食用油樣本; 通過使用TAG峰和DHB基質峰中的至少一個作爲參考峰來校準用於所述多個參考食用油樣本中的每一個的所述MALDI-MS數據; 通過數據分箱使用於所述參考食用油樣本的所述MALDI-MS數據量化; 通過將每一箱的強度除以最大箱的強度或所有箱的總強度以將所述參考食用油樣本的所述MALDI-MS數據正規化;以及 使正規化的所述MALDI-MS數據與食用油類型關聯。
- 一種其上具有指令的數據載體,所述指令在由處理器執行時使所述處理器進行以下操作: 校準針對一個或多個食用油樣本獲得的基質輔助鐳射解吸/電離質譜法(MALDI-MS)數據;以及 將從所述一個或多個食用油樣本獲得的校準的所述MALDI-MS數據與用於多個參考食用油樣本的校準的MALDI-MS譜的庫進行比較以確定所述一個或多個食用油樣本的最可能組成。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/628,043 | 2017-06-20 | ||
US15/628,043 US10859552B2 (en) | 2017-06-20 | 2017-06-20 | Edible oil analysis system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201905450A true TW201905450A (zh) | 2019-02-01 |
TWI714784B TWI714784B (zh) | 2021-01-01 |
Family
ID=59366236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106121410A TWI714784B (zh) | 2017-06-20 | 2017-06-27 | 食用油分析方法、識別系統、產生庫的方法及數據載體 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10859552B2 (zh) |
CN (1) | CN109100477B (zh) |
TW (1) | TWI714784B (zh) |
WO (1) | WO2018234854A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI740230B (zh) * | 2019-10-14 | 2021-09-21 | 崑山科技大學 | 燃料油品之螢光鑑識方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107894408B (zh) * | 2017-11-24 | 2021-04-13 | 中国农业科学院油料作物研究所 | 一种基于近红外光谱仪的食用油多元掺伪鉴别方法 |
CN110887893A (zh) * | 2019-11-08 | 2020-03-17 | 山东省分析测试中心 | 一种基于maldi-ms的快速鉴别贝母种属的方法 |
CN111208265A (zh) * | 2020-03-11 | 2020-05-29 | 济南海能仪器股份有限公司 | 探头组件及食用油品质检测仪 |
CN116868272A (zh) * | 2020-10-13 | 2023-10-10 | 沃特世科技爱尔兰有限公司 | 通过向量比较来识别感兴趣的样本的方法、介质和系统 |
RU2757649C1 (ru) * | 2021-02-19 | 2021-10-19 | Сергей Александрович Савчук | Способ удаленной идентификации и распознавания объектов сложного состава |
CN113884594B (zh) * | 2021-09-28 | 2023-06-23 | 江西省林业科学院 | 一种基于机器学习算法的掺伪茶油鉴别方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020087273A1 (en) * | 2001-01-04 | 2002-07-04 | Anderson Norman G. | Reference database |
US7858560B2 (en) * | 2001-07-16 | 2010-12-28 | Caprotec Bioanalytics Gmbh | Capture compounds, collections thereof and methods for analyzing the proteome and complex compositions |
WO2003040715A1 (en) | 2001-11-05 | 2003-05-15 | Irm, Llc. | Sample preparation methods for maldi mass spectrometry |
US20030214104A1 (en) * | 2002-05-17 | 2003-11-20 | Chuck Chang | Roller skate having a safety device |
US20070087448A1 (en) * | 2004-02-16 | 2007-04-19 | Nelsestuen Gary L | Biological profiles and methods of use |
US20060293861A1 (en) * | 2005-06-01 | 2006-12-28 | Manor Askenazi | Recursive base peak framing of mass spectrometry data |
US8304206B2 (en) * | 2005-12-02 | 2012-11-06 | Sirtris Pharmaceuticals, Inc. | Mass spectrometry assays for identifying compounds that activate deacetylases |
CN101482547A (zh) * | 2009-03-04 | 2009-07-15 | 湖南中烟工业有限责任公司 | 一种烟用香精香料热脱附-气相色谱-质谱指纹图谱分析方法 |
JP2012529058A (ja) | 2009-06-03 | 2012-11-15 | ウエイン・ステート・ユニバーシテイ | レーザースプレーイオン化を用いる質量分析 |
US9773090B2 (en) | 2010-06-10 | 2017-09-26 | International Business Machines Corporation | Method computer program and system to analyze mass spectra |
US8429153B2 (en) * | 2010-06-25 | 2013-04-23 | The United States Of America As Represented By The Secretary Of The Army | Method and apparatus for classifying known specimens and media using spectral properties and identifying unknown specimens and media |
CN102590172B (zh) | 2012-01-19 | 2014-01-15 | 邹玉峰 | 食用油脂与地沟油的分类检测方法及检测系统 |
CN102830195A (zh) * | 2012-09-03 | 2012-12-19 | 湖南农业大学 | 基于脂肪酸标准指纹图谱的茶籽油掺假检测方法 |
US20140203176A1 (en) | 2013-01-23 | 2014-07-24 | Dow Agrosciences Llc | Systems and methods for real-time sampling and analysis of biomolecules beneath the surface of biological tissue |
CN103278591B (zh) | 2013-05-16 | 2015-08-26 | 江苏师范大学 | 一种色谱指纹图谱相似度计算方法 |
CN103353501A (zh) * | 2013-07-22 | 2013-10-16 | 安徽农业大学 | 一种基于gc/ms技术的普洱熟茶指纹图谱识别方法 |
CN103776891B (zh) * | 2013-09-04 | 2017-03-29 | 中国科学院计算技术研究所 | 一种检测差异表达蛋白质的方法 |
CN105486744B (zh) | 2014-10-13 | 2019-07-02 | 香港理工大学深圳研究院 | 鉴别食用油的方法 |
CN105574474B (zh) * | 2014-10-14 | 2019-03-12 | 中国科学院大连化学物理研究所 | 一种基于质谱信息的生物特征图像识别方法 |
CN104297205A (zh) * | 2014-11-04 | 2015-01-21 | 天津工业大学 | 一种快速、无损的食用油鉴别方法 |
CN105891320A (zh) * | 2014-12-18 | 2016-08-24 | 中国农业科学院生物技术研究所 | 生物质谱技术检测抗草甘膦转基因大豆种子中kunitz型胰蛋白酶抑制剂 |
CN104483412A (zh) * | 2014-12-30 | 2015-04-01 | 江南大学 | 一种基于指纹图谱的无锡毫茶掺假的检测方法 |
US20180052144A1 (en) | 2015-03-11 | 2018-02-22 | Hormoz Azizian | Method And Technique For Verification Of Olive Oil Composition |
-
2017
- 2017-06-20 US US15/628,043 patent/US10859552B2/en active Active
- 2017-06-27 WO PCT/IB2017/053821 patent/WO2018234854A1/en active Application Filing
- 2017-06-27 TW TW106121410A patent/TWI714784B/zh active
- 2017-07-19 CN CN201710588321.1A patent/CN109100477B/zh active Active
-
2020
- 2020-12-07 US US17/113,573 patent/US20210088495A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI740230B (zh) * | 2019-10-14 | 2021-09-21 | 崑山科技大學 | 燃料油品之螢光鑑識方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI714784B (zh) | 2021-01-01 |
US10859552B2 (en) | 2020-12-08 |
US20180364210A1 (en) | 2018-12-20 |
WO2018234854A1 (en) | 2018-12-27 |
CN109100477B (zh) | 2022-10-21 |
CN109100477A (zh) | 2018-12-28 |
US20210088495A1 (en) | 2021-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI714784B (zh) | 食用油分析方法、識別系統、產生庫的方法及數據載體 | |
Cody et al. | Rapid classification of White Oak (Quercus alba) and Northern Red Oak (Quercus rubra) by using pyrolysis direct analysis in real time (DART™) and time-of-flight mass spectrometry | |
McClure et al. | Metabolic chemotypes of CITES protected Dalbergia timbers from Africa, Madagascar, and Asia | |
US10847354B2 (en) | Rapid authentication using surface desorption ionization and mass spectrometry | |
Hantao et al. | Determination of disease biomarkers in Eucalyptus by comprehensive two-dimensional gas chromatography and multivariate data analysis | |
Granitto et al. | Rapid and non-destructive identification of strawberry cultivars by direct PTR-MS headspace analysis and data mining techniques | |
JP6896906B2 (ja) | 分光画像データ処理装置および2次元分光装置 | |
KR102258866B1 (ko) | 매트릭스 지원 레이저 탈착/이온화 비행 시간 질량 분광계를 사용한 카테고리화 데이터 조작 | |
WO2017195271A1 (ja) | イメージング質量分析装置 | |
AU2006210088A1 (en) | Mass spectrometry analysis method and system | |
Baskali-Bouregaa et al. | Tea geographical origin explained by LIBS elemental profile combined to isotopic information | |
Mallard | AMDIS in the chemical weapons convention | |
Price et al. | Identification of rhinoceros keratin using direct analysis in real time time‐of‐flight mass spectrometry and multivariate statistical analysis | |
Alves et al. | Electrospray ionization mass spectrometry and partial least squares discriminant analysis applied to the quality control of olive oil | |
CN110470629A (zh) | 一种油茶籽中水分和含油量的近红外定量分析方法 | |
Hung et al. | Classification and differentiation of agarwoods by using non-targeted HS-SPME-GC/MS and multivariate analysis | |
You et al. | Automatic analyte-ion recognition and background removal for ambient mass-spectrometric data based on cross-correlation | |
CN112912723B (zh) | 使用共有文库进行样品分析的技术 | |
Ji et al. | Pure ion chromatogram extraction via optimal k-means clustering | |
KR20190054994A (ko) | 말디토프 질량 분석에 의한 항생제 내성 판별 장치 및 방법 | |
CN112630293B (zh) | 一种猪肉新鲜度的鉴别方法及系统 | |
Cui et al. | Geographical differentiation of garlic based on HS-GC-IMS combined with multivariate statistical analysis | |
Sajid et al. | Analysis of feed additives by DART mass spectrometry: method optimisation and applications for product traceability in the European Union focusing on coccidiostats and carotenoids | |
Carlson et al. | Extracting homologous series from mass spectrometry data by projection on predefined vectors | |
Bhatia et al. | Rapid and non‐destructive approach for characterization and differentiation of sealing wax using ATR‐FTIR spectroscopy |