TW201904087A - Light-emitting device and manufacturing metode thereof - Google Patents

Light-emitting device and manufacturing metode thereof Download PDF

Info

Publication number
TW201904087A
TW201904087A TW107134908A TW107134908A TW201904087A TW 201904087 A TW201904087 A TW 201904087A TW 107134908 A TW107134908 A TW 107134908A TW 107134908 A TW107134908 A TW 107134908A TW 201904087 A TW201904087 A TW 201904087A
Authority
TW
Taiwan
Prior art keywords
region
light
layer
emitting element
energy gap
Prior art date
Application number
TW107134908A
Other languages
Chinese (zh)
Other versions
TWI714891B (en
Inventor
盧廷昌
張巧芸
李衡
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW107134908A priority Critical patent/TWI714891B/en
Publication of TW201904087A publication Critical patent/TW201904087A/en
Application granted granted Critical
Publication of TWI714891B publication Critical patent/TWI714891B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting device includes a substrate; a first semiconductor layer on the substrate; a first barrier on the first semiconductor layer; a well on the first barrier including a first region having a first energy gap; and a second region having a second energy gap and being closer to the semiconductor layer than the first region; a second barrier on the well; and a second semiconductor layer on the second barrier; wherein the first energy gap decreases in a stacking direction of the light-emitting device and has a first gradient, the second energy gap increases in the stacked direction and has a second gradient, and an absolute value of the first gradient is less than an absolute value of the second gradient. Additionally, a method for manufacturing thereof is also provided.

Description

發光元件及其製造方法Light-emitting element and method of manufacturing same

本發明關於一種發光元件,特別是有關於一種具有量子井結構的發光二極體。The present invention relates to a light-emitting element, and more particularly to a light-emitting diode having a quantum well structure.

相較於傳統光源,發光二極體使用壽命更長、更輕薄,以及效率較佳,已經廣泛地使用在光學顯示裝置、交通號誌、資料儲存裝置、通訊裝置、照明裝置與醫療器材上。發光二極體除了可以單獨使用外,還可以與其他裝置結合以形成發光裝置,像是先將發光二極體放置於基板之上再連接到載體的一側,或是以焊料接點或者黏膠等材料形成於載體與發光二極體之間以形成發光裝置。此外,載體上更可以包含電路電性連接到發光二極體的電極。Compared with the traditional light source, the light-emitting diode has a longer service life, is lighter and thinner, and has better efficiency. It has been widely used in optical display devices, traffic signs, data storage devices, communication devices, lighting devices and medical equipment. In addition to being used alone, the light-emitting diode can be combined with other devices to form a light-emitting device, such as placing the light-emitting diode on the substrate and then connecting to one side of the carrier, or soldering or bonding. A material such as glue is formed between the carrier and the light emitting diode to form a light emitting device. In addition, the carrier may further comprise an electrode electrically connected to the LED.

一般而言,發光二極體包含n型半導體層、主動區、p型半導體層。為了提升發光二極體的發光效率,還可以在主動區內形成多重量子井結構。如何藉由量子井結構以提高發光效率,已成為現今改善發光二極體效能的重要課題。In general, the light emitting diode includes an n-type semiconductor layer, an active region, and a p-type semiconductor layer. In order to improve the luminous efficiency of the light-emitting diode, a multiple quantum well structure can also be formed in the active region. How to improve the luminous efficiency by quantum well structure has become an important issue for improving the performance of light-emitting diodes.

本發明關於一種發光元件,包含:一基板;一第一半導體導電層,形成於基板上;一第一阻障層,位於第一半導體導電層上;一井層,位於第一阻障層上,井層包含:一第一區域具有一第一能隙;以及一第二區域具有一第二能隙,且較第一區域靠近第二半導體導電層;一第二阻障層,位於井層上;以及一第二半導體導電層,形成於第二阻障層上;其中,第一能隙沿發光元件之一堆疊方向遞減並具有一第一梯度,第二能隙沿堆疊方向遞增並具有一第二梯度,且第一梯度之絶對值小於第二梯度之絶對值。The invention relates to a light-emitting element comprising: a substrate; a first semiconductor conductive layer formed on the substrate; a first barrier layer on the first semiconductor conductive layer; and a well layer on the first barrier layer The well layer includes: a first region having a first energy gap; and a second region having a second energy gap, and closer to the second semiconductor conductive layer than the first region; and a second barrier layer located at the well layer And a second semiconductor conductive layer formed on the second barrier layer; wherein the first energy gap decreases along a stacking direction of one of the light emitting elements and has a first gradient, and the second energy gap increases in the stacking direction and has a second gradient, and the absolute value of the first gradient is less than the absolute value of the second gradient.

本發明還關於一種發光元件的製造方法,包含:形成一第一半導體導電層於一基板上;形成一第一阻障層於第一半導體導電層上;形成一井層於第一阻障層上,其中形成井層之步驟包含:在一第一時距中,於一第一操作溫度下通入一含鎵元素氣體、一含銦元素氣體,以及一含氮元素氣體以形成一第一區域;以及在一第二時距中,於一第二操作溫度下通入含鎵元素氣體、含銦元素氣體,以及含氮元素氣體以形成一第二區域,其中第二時距晚於第一時距;形成一第二阻障層於該井層上;以及形成一第二半導體導電層於第二阻障層上。The invention further relates to a method for fabricating a light-emitting device, comprising: forming a first semiconductor conductive layer on a substrate; forming a first barrier layer on the first semiconductor conductive layer; forming a well layer on the first barrier layer The step of forming a well layer includes: introducing, in a first time interval, a gallium-containing element gas, an indium-containing element gas, and a nitrogen-containing element gas at a first operating temperature to form a first a region; and in a second time interval, a gallium-containing element gas, an indium-containing element gas, and a nitrogen-containing element gas are introduced at a second operating temperature to form a second region, wherein the second time interval is later than the first a time interval; forming a second barrier layer on the well layer; and forming a second semiconductor conductive layer on the second barrier layer.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features and advantages of the present invention will become more <RTIgt;

以下實施例將伴隨著圖式說明本發明之概念,在圖式或說明中,相似或相同之部分係使用相同之標號,並且在圖式中,元件之形狀或厚度可擴大或縮小。需特別注意的是,圖中未繪示或描述之元件,可以是熟習此技藝之人士所知之形式。The present invention will be described with reference to the drawings, in which the same or the same reference numerals are used in the drawings or the description, and in the drawings, the shape or thickness of the elements may be enlarged or reduced. It is to be noted that elements not shown or described in the figures may be in a form known to those skilled in the art.

第1A圖為本發明之一實施例的發光元件剖面圖。發光元件1,包含基板10、成核層20、晶格緩衝層30、第一半導體導電層40、應力釋放疊層50、主動區60、第二半導體導電層70、第一電極80,以及第二電極90。於本實施例中,上述的各層是以磊晶方式成長於基板10上,其成長方向以箭頭CN 表示,磊晶方式例如為金屬有機物化學氣相磊晶法(metal-organic chemical vapor deposition, MOCVD)或分子束磊晶法(molecular-beam epitaxy, MBE);基板10可以選用單晶基板,例如導電基板或絕緣基板;導電基板例如是矽基板、氮化鎵基板或者是碳化矽(SiC)基板,也可以選用絕緣基板如具透光性的藍寶石基板等。於本實施例中,是以MOCVD磊晶法成長各層於藍寶石基板的C平面上,為了提高光萃取率,基板10的表面還可以蝕刻製程使其磊晶成長面具有圖案畫表面。此外,磊晶選用的三族的成長源例如為三甲基鎵(TMGa)、三乙基鎵(TEGa)、三甲基鋁(TMAl)、三甲基銦(TMIn)。五族的成長源例如為氨氣(NH3 )。摻雜源例如是矽烷(silane, SiH4 ) 、二環戊二烯鎂(bis-cyclopentadienyl magnesium , Cp2 Mg)。Fig. 1A is a cross-sectional view showing a light-emitting element according to an embodiment of the present invention. The light-emitting element 1 includes a substrate 10, a nucleation layer 20, a lattice buffer layer 30, a first semiconductor conductive layer 40, a stress relief laminate 50, an active region 60, a second semiconductor conductive layer 70, a first electrode 80, and Two electrodes 90. In the present embodiment, the above-mentioned layers are grown on the substrate 10 in an epitaxial manner, and the growth direction thereof is represented by an arrow C N , and the epitaxial method is, for example, a metal-organic chemical vapor deposition (metal-organic chemical vapor deposition). MOCVD) or molecular-beam epitaxy (MBE); the substrate 10 may be a single crystal substrate such as a conductive substrate or an insulating substrate; the conductive substrate is, for example, a germanium substrate, a gallium nitride substrate or a tantalum carbide (SiC). As the substrate, an insulating substrate such as a translucent sapphire substrate or the like can also be used. In the present embodiment, each layer is grown on the C-plane of the sapphire substrate by MOCVD epitaxy. In order to increase the light extraction rate, the surface of the substrate 10 may be etched to have a patterned surface on the epitaxial growth surface. Further, the growth sources of the three groups selected by the epitaxial crystal are, for example, trimethylgallium (TMGa), triethylgallium (TEGa), trimethylaluminum (TMAl), or trimethylindium (TMIn). The growth source of the five families is, for example, ammonia gas (NH 3 ). The doping source is, for example, silane (SiH 4 ) or bis-cyclopentadienyl magnesium (Cp 2 Mg).

為了縮小基板10與第一半導體導電層40之間的晶格差異以減少晶體缺陷,還可以依序成長成核層20、晶格緩衝層30於基板10和第一半導體導電層40之間,兩者的厚度可分別約為幾十奈米(例如,30奈米)與幾微米(例如,3微米)。成核層20、晶格緩衝層30材料例如是三五族材料,包括氮化鎵(GaN)或氮化鋁(AlN)等材料。In order to reduce the lattice difference between the substrate 10 and the first semiconductor conductive layer 40 to reduce crystal defects, the core layer 20 and the lattice buffer layer 30 may be sequentially grown between the substrate 10 and the first semiconductor conductive layer 40. The thickness of both can be on the order of tens of nanometers (e.g., 30 nanometers) and several micrometers (e.g., 3 micrometers). The material of the nucleation layer 20 and the lattice buffer layer 30 is, for example, a tri-five material including a material such as gallium nitride (GaN) or aluminum nitride (AlN).

第一半導體導電層40,例如是n型半導體導電層,形成於基板上10、成核層20與晶格緩衝層30上。於本實施例中,第一半導體導電層40的厚度約為幾微米(例如,2.5um),其組成材料是氮化鎵,並可透過比例約為1000:1的五族成長源(例如,氨氣NH3 )以及三族成長源(例如,三甲基鎵)來成長第一半導體導電層40,另於成長時通以矽烷作為摻雜源以構成矽摻雜的氮化鎵層,但組成材料不以此為限,亦可以是其他三五族材料。The first semiconductor conductive layer 40, for example, an n-type semiconductor conductive layer, is formed on the substrate 10, the nucleation layer 20, and the lattice buffer layer 30. In the present embodiment, the first semiconductor conductive layer 40 has a thickness of about several micrometers (for example, 2.5 um), a constituent material of gallium nitride, and a five-family growth source having a ratio of about 1000:1 (for example, Ammonia NH 3 ) and a tri-family growth source (for example, trimethylgallium) to grow the first semiconducting layer 40, and further grow with decane as a doping source to form an antimony doped gallium nitride layer, but The constituent materials are not limited to this, but may be other three or five materials.

類似地,為了縮小第一半導體導電層40與主動區60之間的晶格差異以減少晶體缺陷,還可以於第一半導體導電層40上形成應力釋放層50,應力釋放層50例如是超晶格結構,其由不同材料組成的兩半導體層為一組相互交疊而成,兩半導體層例如是氮化銦鎵層(InGaN)與氮化鎵層,厚度約為數百奈米(例如,120奈米),應力釋放層50亦可以由具有相同功效的多層不同材料組成的半導體疊層構成。Similarly, in order to reduce the lattice difference between the first semiconductor conductive layer 40 and the active region 60 to reduce crystal defects, the stress relief layer 50 may also be formed on the first semiconductor conductive layer 40, and the stress relief layer 50 is, for example, a supercrystal. a lattice structure in which two semiconductor layers composed of different materials are overlapped with each other, and the two semiconductor layers are, for example, an indium gallium nitride layer (InGaN) and a gallium nitride layer, and have a thickness of about several hundred nanometers (for example, 120 nm), the stress relief layer 50 can also be composed of a semiconductor laminate composed of a plurality of layers of different materials having the same efficacy.

於形成應力釋放層50之後成長主動區60。請參考第1B圖及第1C圖,第1B圖為第1A圖之主動區60的局部放大圖,第1C圖為第1B圖的局部轉正視圖。於本實施例中,主動區60為多重量子井結構,但本發明並不以此為限,於其他實施例中亦可為單層量子井結構。主動區60由多個井層601以及多個阻障層603相互交疊而成,於本實施例中,在應力釋放層50上先成長阻障層603,然後再成長井層601,接著重複成長阻障層603與井層601,最後再成長一層阻障層603或井層601。上述的主動區60之多重量子井結構亦可以先成長井層601,接著成長阻障層603,然後重複交疊成長。每一個井層601的厚度範圍約在數奈米之間(例如是2奈米~3奈米),且包括區域I 6010、區域II 6012、區域III 6014。其中,區域I 6010離第一半導體導電層40和應力釋放層50較近,區域II 6012位於區域I 6010和區域III 6014之間,而區域III 6014離第一半導體導電層40和應力釋放層50較遠。阻障層603的材料可以是三五族材料,例如為氮化鎵或氮化鋁,井層601的材料亦可以是三五族材料,例如是Inx Ga(1-x) N(氮化銦鎵系)、Alx Ga(1-x) N(氮化鋁鎵系)、Alx Iny Ga(1-x-y) N(氮化鋁銦鎵系)、Alx In1-x N(氮化鋁銦系)或是上述的組合,其中0≦x、y、(1-x-y)<1。於本實施例中,阻障層603的材料為氮化鎵,井層601的材料為氮化銦鎵。於形成主動區60時,可以透過比例約為18000:1的五族成長源(如,氨氣)和三族成長源(如,三甲基銦)來成長主動區60的井層601,並透過比例約為2000:1 的五族成長源(如,氨氣)和三族成長源(如三乙基鎵)來成長主動區60的阻障層603,然本發明不以上述為限。The active region 60 is grown after the stress relief layer 50 is formed. Please refer to FIG. 1B and FIG. 1C. FIG. 1B is a partial enlarged view of the active region 60 of FIG. 1A, and FIG. 1C is a partial front elevational view of FIG. 1B. In the present embodiment, the active region 60 is a multiple quantum well structure, but the invention is not limited thereto, and may be a single-layer quantum well structure in other embodiments. The active region 60 is formed by overlapping a plurality of well layers 601 and a plurality of barrier layers 603. In this embodiment, the barrier layer 603 is grown on the stress relief layer 50, and then the well layer 601 is grown, and then repeated. The barrier layer 603 and the well layer 601 are grown, and finally a barrier layer 603 or a well layer 601 is grown. The multiple quantum well structure of the active region 60 described above may also grow the well layer 601 first, then grow the barrier layer 603, and then repeat the overlap growth. Each well layer 601 has a thickness in the range of about a few nanometers (eg, 2 nanometers to 3 nanometers) and includes a region I 6010, a region II 6012, and a region III 6014. Wherein, the region I 6010 is closer to the first semiconductor conductive layer 40 and the stress relief layer 50, the region II 6012 is located between the region I 6010 and the region III 6014, and the region III 6014 is away from the first semiconductor conductive layer 40 and the stress relief layer 50. Farther. The material of the barrier layer 603 may be a three-five material, such as gallium nitride or aluminum nitride, and the material of the well layer 601 may also be a three-five material, such as In x Ga (1-x) N (nitriding). Indium gallium), Al x Ga (1-x) N (aluminum gallium nitride), Al x In y Ga (1-xy) N (aluminum indium gallium nitride), Al x In 1-x N ( Aluminum indium nitride) or a combination thereof, wherein 0 ≦ x, y, (1-xy) < 1. In this embodiment, the material of the barrier layer 603 is gallium nitride, and the material of the well layer 601 is indium gallium nitride. When the active region 60 is formed, the well layer 601 of the active region 60 can be grown through a five-member growth source (eg, ammonia gas) having a ratio of about 18,000:1 and a tri-generation growth source (eg, trimethylindium). The barrier layer 603 of the active region 60 is grown by a five-factor growth source (e.g., ammonia gas) having a ratio of about 2000:1 and a tri-generation growth source (e.g., triethylgallium), but the present invention is not limited to the above.

在形成主動區60之後,形成第二半導體導電層70於主動區60上。於本實施例中,第二半導體導電層70例如是p型半導體導電層,p型半導體導電層可以是摻雜鎂(Mg)的氮化鎵層,但不以此為限,亦可以是其他三五族材料。本實施例中,透過比例約為5000:1的五族成長源(如,氨氣NH3)以及三族成長源(如,三甲基鎵)成長第二半導體導電層70,並且使用二環戊二烯作為鎂的摻雜源。在形成第二半導體層70之後,再透過黃光製程、蝕刻、金屬沉積等方式製作第一電極80與第二電極90以完成發光元件1的製作。前文所說的第一半導體導電層40及第二半導體導電層70可以分別是單層或多層疊層,亦可以分別於第一半導體導電層40或第二半導體導電層70中插入不摻雜之半導體層。After the active region 60 is formed, a second semiconductor conductive layer 70 is formed on the active region 60. In this embodiment, the second semiconductor conductive layer 70 is, for example, a p-type semiconductor conductive layer, and the p-type semiconductor conductive layer may be a magnesium (Mg)-doped gallium nitride layer, but not limited thereto, and may be other Three or five family materials. In this embodiment, the fifth semiconductor growth layer 70 is grown by a five-member growth source having a ratio of about 5000:1 (for example, ammonia NH3) and a three-group growth source (for example, trimethylgallium), and dicyclopentan is used. The diene acts as a doping source for magnesium. After the second semiconductor layer 70 is formed, the first electrode 80 and the second electrode 90 are formed by a yellow light process, etching, metal deposition, or the like to complete the fabrication of the light-emitting element 1. The first semiconductor conductive layer 40 and the second semiconductor conductive layer 70 may be a single layer or a plurality of layers, or may be inserted into the first semiconductor conductive layer 40 or the second semiconductor conductive layer 70, respectively. Semiconductor layer.

請參閱第2A~2D圖以進一步了解主動區60的形成方式。第2A圖為本發明第一實施例之形成井層601與阻障層603時的流量與時間關係圖;第2B圖為本發明第一實施例之井層601與阻障層603示意圖;第2C圖為本發明第一實施例之形成井層601與阻障層603時的溫度與時間關係圖;第2D圖為本發明第一實施例之井層601與阻障層603的能帶與結構對照圖。如前文所述,主動區60由多個井層601與多個阻障層603相互交疊而層。如第2A~2D圖所示,井層601位於兩阻障層603之間,在成長阻障層603時(僅示意部分區域)會持續通入含鎵元素氣體(例如是三乙基鎵TEGa)、含銦元素氣體(例如是三甲基銦TMIn),以及含氮元素氣體(例如是氨氣NH3 )三種氣體,其中含鎵元素氣體流量FR1、含銦元素氣體流量FR2、含氮元素氣體流量FR3可各維持在一定值,而操作溫度維持在第一預設值T1 (例如是攝氏870度),阻障層603成長的厚度約為幾奈米到幾十奈米之間(例如12奈米)。Please refer to Figures 2A-2D for further understanding of the formation of active region 60. 2A is a flow rate versus time relationship between the well layer 601 and the barrier layer 603 according to the first embodiment of the present invention; FIG. 2B is a schematic view of the well layer 601 and the barrier layer 603 according to the first embodiment of the present invention; 2C is a temperature versus time diagram of the well layer 601 and the barrier layer 603 according to the first embodiment of the present invention; FIG. 2D is an energy band of the well layer 601 and the barrier layer 603 according to the first embodiment of the present invention. Structure comparison chart. As described above, the active region 60 is layered by a plurality of well layers 601 and a plurality of barrier layers 603 overlapping each other. As shown in FIGS. 2A-2D, the well layer 601 is located between the two barrier layers 603. When the barrier layer 603 is grown (only a portion of the region is shown), a gallium-containing gas is continuously introduced (for example, triethylgallium TEGa). ), an indium-containing gas (for example, trimethylindium TMIn), and a nitrogen-containing gas (for example, ammonia gas NH 3 ), wherein the gallium-containing gas flow rate FR1, the indium-containing gas flow rate FR2, and the nitrogen-containing element The gas flow rate FR3 may each be maintained at a certain value, and the operating temperature is maintained at a first predetermined value T 1 (for example, 870 degrees Celsius), and the barrier layer 603 is grown to a thickness of about several nanometers to several tens of nanometers ( For example 12 nm).

當形成井層601時,首先在成長時間t1 到t2 之時距下(約160秒),通入的含鎵元素氣體流量FR1、含銦元素氣體流量FR2、含氮元素氣體流量FR3一樣可各自維持在一定值,成長溫度從第一預設值T1 (例如是攝氏870度)逐漸下降至第二預設值T2 (例如攝氏755度)以形成井層601的區域I 6010。上述成長溫度下降變化方式包含以線性變化、階梯變化的方式,或者是其他變化方式。一般而言,在以金屬有機物化學氣相沉積的方式形成磊晶層的時候,銦含量會隨著操作溫度的下降而上升(或說隨著操作溫度的上升而下降),藉由上述調整操作溫度的方式,可以逐漸調整區域I 6010的銦含量,使得區域I 6010的銦含量沿著發光元件1的堆疊方向(成長方向以箭頭CN 表示)遞增,例如是從GaN遞增至In0.25 Ga0.75 N,但不以此為限。遞增的方式可以是線性變化、階梯變化,或者是其他變化方式。When the well layer 601 is formed, first, at the time of the growth time t 1 to t 2 (about 160 seconds), the flow rate of the gallium-containing element gas FR1, the flow rate of the indium-containing element gas FR2, and the flow rate of the nitrogen-containing element gas FR3 are the same. Each may be maintained at a value that gradually decreases from a first predetermined value T 1 (eg, 870 degrees Celsius) to a second predetermined value T 2 (eg, 755 degrees Celsius) to form region I 6010 of the formation 601. The above-described manner of changing the growth temperature includes a linear change, a step change, or another change. In general, when an epitaxial layer is formed by metal organic chemical vapor deposition, the indium content rises as the operating temperature decreases (or decreases as the operating temperature rises), by the above adjustment operation. The temperature can be gradually adjusted to the indium content of the region I 6010 such that the indium content of the region I 6010 is increased along the stacking direction of the light-emitting element 1 (the growth direction is indicated by the arrow CN ), for example, increasing from GaN to In 0.25 Ga 0.75 N, but not limited to this. The way to increase can be linear, step change, or other changes.

形成區域I 6010之後,在成長時間t2 到t3 之時距(約60秒)成長井層601的區域II 6012,操作溫度可以維持在第二預設值T2 。此外,含鎵元素氣體流量FR1、含銦元素氣體流量FR2、含氮元素氣體流量FR3可各自維持在一定值。由於在此時距中,操作溫度維持在第二預設值T2 ,因此區域II 6012的銦含量實質上可視為一常數(例如是維持在In0.25 Ga0.75 N)。After the formation of the region I 6010, the region II 6012 of the well layer 601 is grown at a time interval (about 60 seconds) from the growth time t 2 to t 3 , and the operating temperature can be maintained at the second predetermined value T 2 . Further, the gallium-containing element gas flow rate FR1, the indium-containing element gas flow rate FR2, and the nitrogen-containing element gas flow rate FR3 may each be maintained at a constant value. Since the operating temperature is maintained at the second predetermined value T 2 at this time, the indium content of the region II 6012 can be substantially regarded as a constant (for example, maintained at In 0.25 Ga 0.75 N).

在形成區域I 6010及區域II 6012之後,在t3 到t4 之時距下(例如為60秒)成長井層601的區域III 6014,此時含鎵元素氣體流量FR1、含銦元素氣體流量FR2、含氮元素氣體流量FR3同樣各自維持在前述定值下,操作溫度從第二預設值T2 以線性變化、階梯變化的方式,或其他方式逐漸上升至第三預設值T3 (例如是攝氏875度),藉此逐漸調整區域III 6014的銦含量,使得區域III 6014的銦含量沿著磊晶的堆疊方向遞減,例如是從In0.25 Ga0.75 N遞增至GaN,遞減的方式可以是線性變化或者是階梯變化。此外,針對個別的井層601而言,區域III 6014是較區域I 6010靠近第二半導體層70,而區域II 6012是位於區域I 6010與區域III 6014之間。也就是說依序形成區域I 6010、區域II 6012及區域III 6014。然而本發明區域I、區域II、區域III的形成順序不以上述為限,於其他實施例中,形成順序亦可有變動。After formation region and the region I 6010 II 6012, in the distance t to t. 3 (e.g. 60 seconds) well layer 601 is grown region III 6014, this time gallium-containing gas flow rate of FR1 4, the indium element-containing gas flow rate The FR2 and the nitrogen-containing element gas flow rate FR3 are also each maintained at the above-mentioned fixed value, and the operating temperature is gradually increased from the second preset value T 2 by a linear change, a step change, or other means to a third preset value T 3 ( For example, 875 degrees Celsius), thereby gradually adjusting the indium content of the region III 6014, so that the indium content of the region III 6014 decreases along the stacking direction of the epitaxial crystal, for example, increasing from In 0.25 Ga 0.75 N to GaN, the decreasing manner can be It is a linear change or a step change. Moreover, for individual well layers 601, region III 6014 is closer to second semiconductor layer 70 than region I 6010, and region II 6012 is located between region I 6010 and region III 6014. That is, the region I 6010, the region II 6012, and the region III 6014 are sequentially formed. However, the order of formation of the region I, the region II, and the region III of the present invention is not limited to the above, and in other embodiments, the order of formation may also vary.

於形成井層601之後,再形成一層阻障層603(僅示意部分區域),且以成長井層601及井層之前的阻障層603相同的氣體流量條件,持續通入含鎵元素氣體(例如是三乙基鎵TEGa)、含銦元素氣體(例如是三甲基銦TMIn),以及含氮元素氣體(例如是氨氣NH3 )三種氣體,而操作溫度維持在第三預設值T3After forming the well layer 601, a barrier layer 603 is formed (only a partial region is illustrated), and the gallium-containing element gas is continuously supplied under the same gas flow conditions as the growth well layer 601 and the barrier layer 603 before the well layer ( For example, triethylgallium TEGa), an indium-containing gas (for example, trimethylindiumTMIn), and a nitrogen-containing gas (for example, ammonia NH 3 ), and the operating temperature is maintained at a third preset value T. 3 .

另外,如第2D圖所示,區域I 6010具有能隙EgI (未標示於圖中),能隙EgI 沿著發光元件1的堆疊方向(基板10之C平面的法線方向,以箭頭CN 表示)以線性變化、階梯變化或其他方式遞減,並具有第一梯度(於本實施例中,第一梯度的定義為在區域I 6010中每單位厚度的能隙變化量ΔEgI /ΔDI ,其中厚度方向平行於堆疊方向CN 。於本實施例中是以氮化銦鎵Inx Ga(1-x) N作為井層,能隙EgI 遞減的原因在於形成區域I 6010時,操作溫度隨堆疊方向逐漸下降,而導致銦含量會隨著溫度下降而升高(x變大),進而使能隙EgI 遞減。Further, as shown in FIG. 2D, the region I 6010 has an energy gap Eg I (not shown in the drawing), and the energy gap Eg I is along the stacking direction of the light-emitting element 1 (the normal direction of the C-plane of the substrate 10, with an arrow) C N represents) decreasing linearly, stepwise, or otherwise, and having a first gradient (in the present embodiment, the first gradient is defined as the amount of change in energy gap per unit thickness in region I 6010 ΔEg I /ΔD I , wherein the thickness direction is parallel to the stacking direction C N . In this embodiment, indium gallium nitride In x Ga (1-x) N is used as the well layer, and the energy gap Eg I is decreased because the region I 6010 is formed. The operating temperature gradually decreases with the stacking direction, and the indium content increases as the temperature decreases (x becomes larger), thereby causing the energy gap Eg I to decrease.

另一方面,區域II 6012具有能隙EgII (未標示於圖中)。由於在形成區域II 6012時,操作溫度維持在第二預設值T2 ,因此在區域II 6012的銦含量大致上維持一定,可將其能隙EgII 視為一常數,換句話說能隙EgII 沿堆疊方向不具有梯度變化。On the other hand, the region II 6012 has an energy gap Eg II (not shown in the figure). Since the operating temperature is maintained at the second predetermined value T 2 when the region II 6012 is formed, the indium content in the region II 6012 is substantially maintained, and the energy gap Eg II can be regarded as a constant, in other words, the energy gap. The Eg II does not have a gradient change along the stacking direction.

區域III 6014具有能隙EgIII (未標示於圖中),能隙EgIII 沿堆疊方向以線性變化、階梯變化或是其他變化方式遞增(原因如前文所述),並具有第二梯度。第二梯度GIII 的定義為在區域III 6014中每單位厚度的能隙變化量ΔEgIII /ΔDIII 。由第2D圖可知,能隙EgI 的變化量較能隙EgIII 的變化量小(僅考慮數值的變化),即第一梯度的絕對值∣ΔEgI /ΔDI ∣小於第二梯度的絕對值∣ΔEgIII /ΔDIII ∣。這是因為在成長區域I 6010時操作溫度在較長的t1 -t2 時距中(例如是160秒)從第一預設值T1 降低到第二預設值T2 ,而對應影響區域I 6010中的銦含量在較長的時間(例如是160秒)內從較低含量變化到較高含量,而在成長區域III 6014時操作溫度在較短的t3 -t4 時距中(例如是60秒)從第二預設值T2 上升到第三預設值T3 ,而對應影響區域III 6014中的銦含量在較短的時間(例如是60秒)內從較高含量變化到較低含量。此外,如第2D圖所示,能隙EgI 的平均值或能隙EgIII 的平均值大於能隙EgII ,另外阻障層603的能隙亦會大於井層601的能隙。The region III 6014 has an energy gap Eg III (not shown in the figure), and the energy gap Eg III is increased in a linear, stepwise or other manner in the stacking direction (for the reason as described above) and has a second gradient. The second gradient G III is defined as the amount of change in energy gap ΔEg III /ΔD III per unit thickness in the region III 6014. As can be seen from Fig. 2D, the amount of change in the energy gap Eg I is smaller than the change in the energy gap Eg III (only the change in value is considered), that is, the absolute value of the first gradient ∣ΔEg I /ΔD I ∣ is smaller than the absolute of the second gradient The value ∣ΔEg III /ΔD III ∣. This is because the operating temperature is decreased from the first preset value T 1 to the second preset value T 2 at a longer time t 1 -t 2 (for example, 160 seconds) in the growing region I 6010, and the corresponding influence The indium content in region I 6010 varies from a lower content to a higher content over a longer period of time (eg, 160 seconds), while the operating temperature in a growing region III 6014 is in a shorter t 3 -t 4 time interval. (for example, 60 seconds) rising from the second preset value T 2 to the third preset value T 3 , and the indium content in the corresponding influence region III 6014 is higher from the shorter time (for example, 60 seconds) Change to a lower level. Further, as shown in FIG. 2D, the average value of the energy gap Eg I or the average value of the energy gap Eg III is larger than the energy gap Eg II , and the energy gap of the barrier layer 603 is also larger than the energy gap of the well layer 601.

本實施例中雖然是透過操作溫度來調整銦含量,進而改變井層中不同區域的能隙值,然而本發明並不以改變操作溫度為限,通入的氣體也不以上述為限,所調整的金屬含量也不以銦為限。於其他實施例中,亦可透過其他手段來調整井層中的金屬含量(例如,鋁),進而改變能隙值,以使第一梯度的絕對值∣ΔEgI /ΔDI ∣小於或大於第二梯度的絕對值∣ΔEgIII /ΔDIII ∣。舉例來說,若阻障層的材料為氮化鋁AlN而井層的材料為氮化鋁鎵Alx Ga(1-x) N層時,其中0≦x、 (1-x)≦1,則通入的氣體會包括含鋁元素氣體。由於氮化鋁AlN的能隙約為6.1eV,大於氮化鎵GaN之3.4eV,故為了使區域I的能隙EgI 隨著堆疊方向而下降,以及使區域III的能隙EgIII 隨著堆疊方向而上升,則會使區域I中的鋁含量隨著堆疊方向而減少,區域III中的鋁含量隨著堆疊方向而增加。In this embodiment, although the indium content is adjusted by the operating temperature, thereby changing the energy gap value of different regions in the well layer, the present invention is not limited to changing the operating temperature, and the gas to be introduced is not limited to the above. The adjusted metal content is also not limited to indium. In other embodiments, the metal content (for example, aluminum) in the well layer may also be adjusted by other means, thereby changing the energy gap value such that the absolute value of the first gradient ∣ΔEg I /ΔD I ∣ is smaller or larger than the first The absolute value of the two gradients ∣ΔEg III /ΔD III ∣. For example, if the material of the barrier layer is aluminum nitride AlN and the material of the well layer is aluminum gallium nitride Al x Ga (1-x) N layer, where 0≦x, (1-x)≦1, The gas that is introduced will include a gas containing aluminum. Since the energy gap of aluminum nitride AlN is about 6.1 eV, which is larger than 3.4 eV of gallium nitride GaN, in order to make the energy gap Eg I of the region I decrease with the stacking direction, and the energy gap Eg III of the region III The rise in the stacking direction causes the aluminum content in the region I to decrease with the stacking direction, and the aluminum content in the region III increases with the stacking direction.

請參閱第3A~3D圖,第3A圖為本發明第二實施例之形成井層與阻障層時的流量與時間關係圖;第3B圖為本發明第二實施例之井層與阻障層示意圖;第3C圖為本發明第二實施例之形成井層與阻障層的溫度與時間關係圖;第3D圖為本發明第二實施例之井層與阻障層的能帶與結構對照圖。第3A~3D圖的第二實施例與第2A~2D圖的第一實施例大致類似,主要的差異是在主動區之井層的結構。於第二實施例中,主動區包含井層601’和阻障層603’,同樣是在t1 -t2 時距中形成井層601’的區域I 6010’,在t2 -t3 時距中形成井層601’的區域II 6012’,以及在t3 -t4 時距中形成井層601’的區域III 6014’,其中區域I 6010’的組成例如是從GaN遞增至In0.25 Ga0.75 N,區域II 6012’的組成例如是In0.25 Ga0.75 N,而區域III 6014’的組成例如是從In0.25 Ga0.75 N遞增至GaN。第一實施例與第二實施例的不同之處在於第3A~3D圖中的t1 -t2 時距(例如是60秒)較t3 -t4 時距(例如是160秒)短,故在t1 -t2 時距中每單位時間的銦含量變化量會較t3 -t4 時距中每單位時間的銦含量變化量大(僅考慮數值)。因此,如第3D圖所示,區域I 6010’的能隙EgI 隨著厚度DI’ 的變化量會較區域III 6014’之能隙EgIII 隨著厚度DIII’ 的變化量大(僅考慮數值大小)。換句話說,第二實施例中第一梯度的絕對值∣ΔEgI /ΔDI’∣ 大於第二梯度的絕對值∣ΔEgIII /ΔDIII’∣Please refer to FIGS. 3A-3D. FIG. 3A is a flow rate versus time relationship between a well layer and a barrier layer according to a second embodiment of the present invention; FIG. 3B is a view showing a well layer and a barrier according to a second embodiment of the present invention; FIG. 3C is a temperature versus time diagram of forming a well layer and a barrier layer according to a second embodiment of the present invention; FIG. 3D is an energy band and structure of a well layer and a barrier layer according to a second embodiment of the present invention; Comparison chart. The second embodiment of Figures 3A-3D is substantially similar to the first embodiment of Figures 2A-2D, with the main difference being the structure of the well layer in the active zone. In the second embodiment, the active region comprises a well layer 601' and a barrier layer 603', also in the region I 6010' where the well layer 601' is formed at a distance t 1 -t 2 , at t 2 -t 3 well layer 601 is formed from 'region II 6012', and the well layer 601 is formed in the time distance t 3 -t 4 in 'a region III 6014', wherein the region I 6010 'composed of GaN, for example, to increase from in 0.25 Ga The composition of 0.75 N, the region II 6012' is, for example, In 0.25 Ga 0.75 N, and the composition of the region III 6014' is, for example, increasing from In 0.25 Ga 0.75 N to GaN. The first embodiment is different from the second embodiment in that the t 1 -t 2 time interval (for example, 60 seconds) in the 3A to 3D map is shorter than the t 3 -t 4 time interval (for example, 160 seconds). Therefore, the amount of change in indium content per unit time in the distance t 1 -t 2 is larger than the amount of change in indium content per unit time in the t 3 -t 4 time interval (only values are considered). Therefore, as shown in Fig. 3D, the energy gap Eg I ' of the region I 6010' varies with the thickness D I ' compared with the energy gap E g III ' of the region III 6014 ' with the thickness D III ' (Only consider the value of the size). In other words, the second embodiment of the absolute value of the first gradient |ΔEg I '/ ΔD I'| an absolute value greater than the second gradient |ΔEg III' / ΔD III'|.

於本發明第一實施例和第二實施例中的t1 -t2 時距、t2 -t3 時距、t3 -t4 時距的持續時間並不限於160秒、60秒、60秒或者是60秒、60秒、160秒。於其他實施例中為了使各時距的銦含量變化方式不同,可對應變化不同時距的持續時間。舉例而言t1 -t2 時距可以是t3 -t4 時距的2~3倍,或者是t1 -t2 時距比t3 -t4 時距短,也或者是t3 -t4 時距及t2 -t3 時距皆長於t1 -t2 時距。本發明並不以上述為限,僅需t1 -t2 時距與t3 -t4 時距中每單位時間內溫度的變化量不同(絕對值),以藉此對應使得區域I與區域III每單位厚度的銦含量變化量(梯度)之絕對值不相同。此外,第一預設值、第二預設值及第三預設值也不以攝氏870度、攝氏755度、攝氏875度為限,第一預設值及第三預設值大於第二預設值即可。於其他實施例中,也可將第一預設值及第三預設值設在攝氏900度的附近,第二預設值小於攝氏900度。此外,於其他實施例中第一預設值可以介於攝氏870度到攝氏900度,第二預設值可以介於攝氏750度至攝氏780度,第三預設值可以介於攝氏870度至攝氏900度之間。The durations of the t 1 -t 2 time interval, the t 2 -t 3 time interval, and the t 3 -t 4 time interval in the first embodiment and the second embodiment of the present invention are not limited to 160 seconds, 60 seconds, 60 degrees. Seconds are 60 seconds, 60 seconds, 160 seconds. In other embodiments, in order to change the indium content of each time interval, the duration of different time intervals may be changed correspondingly. For example, the time interval of t 1 -t 2 may be 2 to 3 times of the distance of t 3 -t 4 , or the time interval of t 1 -t 2 is shorter than the distance of t 3 -t 4 , or is t 3 - The t 4 time interval and the t 2 -t 3 time interval are longer than the t 1 -t 2 time interval. The present invention is not limited to the above, and only needs to change the difference (absolute value) of the temperature per unit time between the time interval of t 1 -t 2 and the time interval of t 3 -t 4 , thereby correspondingly making the region I and the region The absolute value of the amount of change (gradient) of indium content per unit thickness of III is different. In addition, the first preset value, the second preset value, and the third preset value are not limited to 870 degrees Celsius, 755 degrees Celsius, and 875 degrees Celsius, and the first preset value and the third preset value are greater than the second value. The default value is fine. In other embodiments, the first preset value and the third preset value may also be set in the vicinity of 900 degrees Celsius, and the second preset value is less than 900 degrees Celsius. In addition, in other embodiments, the first preset value may be between 870 degrees Celsius and 900 degrees Celsius, the second preset value may be between 750 degrees Celsius and 780 degrees Celsius, and the third preset value may be between 870 degrees Celsius and Celsius. Between 900 degrees Celsius.

請參閱第4圖,第4圖為本發明第一實施例和第二實施例之發光元件與習知發光元件的井層與阻障層能帶圖,於第4圖中,S表示習知的發光元件,G表示本發明第一實施例的發光元件,N表示本發明第二實施例的發光元件。於第4圖中,習知發光元件S的井層S01與阻障層S03的材料分別為氮化銦鎵In0.25 Ga0.75 N以及氮化鎵GaN,而井層S01的能隙為固定值,並沒有隨著厚度而變化。Referring to FIG. 4, FIG. 4 is a view showing the energy layer of the well layer and the barrier layer of the light-emitting element and the conventional light-emitting element according to the first embodiment and the second embodiment of the present invention. In FIG. 4, S indicates a conventional one. A light-emitting element, G denotes a light-emitting element of the first embodiment of the present invention, and N denotes a light-emitting element of the second embodiment of the present invention. In FIG. 4, the materials of the well layer S01 and the barrier layer S03 of the conventional light-emitting element S are respectively indium gallium nitride In 0.25 Ga 0.75 N and gallium nitride GaN, and the energy gap of the well layer S01 is a fixed value. It does not change with thickness.

請參閱第5圖,第5圖為本發明第一實施例與第二實施例的發光元件與第4圖之習知發光元件的內部量子效率與功率關係圖。於第5圖中,S表示第4圖中的習知發光元件,A表示根據本發明第一實施例與第二實施例的發光元件(A同時表示G與N),由第5圖可清楚看出根據本發明第一實施例與第二實施例的發光元件在同樣的功率下,內部量子效率比習知的發光元件的內部量子效率來的高。Referring to Fig. 5, Fig. 5 is a diagram showing the relationship between the internal quantum efficiency and the power of the light-emitting element according to the first embodiment and the second embodiment of the present invention and the conventional light-emitting element of Fig. 4. In Fig. 5, S denotes a conventional light-emitting element in Fig. 4, and A denotes a light-emitting element (A and G and N at the same time) according to the first embodiment and the second embodiment of the present invention, which is clear from Fig. 5. It is seen that the internal quantum efficiency of the light-emitting element according to the first embodiment of the present invention and the second embodiment is higher than the internal quantum efficiency of the conventional light-emitting element at the same power.

請參閱第6A~6B圖,第6A圖為本發明第一實施例和第二實施例之發光元件與習知發光元件的輸出功率與電流密度關係圖,第6B圖為本發明第一實施例和第二實施例之發光元件與習知發光元件的歸一化效率與電流密度關係圖。圖中S表示習知的發光元件,G表示根據本發明第一實施例的發光元件,N表示根據本發明第二實施例的發光元件。第6A圖為發光元件在室溫操作下進行量測的結果,而第6B圖則是將此量測結果分別以各元件在低溫下進行量測的輸出功率結果進行歸一化,得到發光元件效率隨電流密度增加之變化趨勢。如第6A圖所示,在相同的操作電壓,電流密度為69A/cm2 的條件下,第一實施例及第二實施例和習知的發光元件的輸出功率分別為136.8mW 、122.7mW、110.1mW,第一實施例及第二實施例之發光元件的輸出功率分別比習知的發光元件增加了24.3%及11.4%。而第6B圖顯示本發明第一實施例的發光元件與習知發光元件在電流密度為69A/cm2 的條件下,其歸一化效率分別為73%與61%,亦即第一實施例的發光元件隨電流密度增加元件效率下降程度比習知發光元件少。Please refer to FIGS. 6A-6B. FIG. 6A is a diagram showing relationship between output power and current density of the light-emitting element according to the first embodiment and the second embodiment of the present invention, and FIG. 6B is a first embodiment of the present invention. And the relationship between the normalized efficiency and the current density of the light-emitting element of the second embodiment and the conventional light-emitting element. In the figure, S denotes a conventional light-emitting element, G denotes a light-emitting element according to a first embodiment of the present invention, and N denotes a light-emitting element according to a second embodiment of the present invention. Figure 6A shows the results of the measurement of the light-emitting element at room temperature, and Figure 6B normalizes the measurement results with the output power of each element at a low temperature to obtain a light-emitting element. The trend of efficiency increases with current density. As shown in FIG. 6A, the output powers of the first embodiment and the second embodiment and the conventional light-emitting elements are 136.8 mW and 122.7 mW, respectively, under the same operating voltage and current density of 69 A/cm 2 . At 110.1 mW, the output power of the light-emitting elements of the first embodiment and the second embodiment was increased by 24.3% and 11.4%, respectively, compared to the conventional light-emitting elements. 6B shows that the illuminating element of the first embodiment of the present invention and the conventional illuminating element have a normalized efficiency of 73% and 61% under the condition of a current density of 69 A/cm 2 , that is, the first embodiment. The light-emitting elements increase in efficiency with increasing current density compared to conventional light-emitting elements.

此外,在電流密度為13.8A/cm2 的條件下,習知的發光元件、第一實施例和第二實施例發光元件的外部量子效率(未圖示)分別為59.6%、68.3%、66.5%,且第一實施例第二實施例的發光元件的輸出功率值分別較習知的發光元件增加了11.7%及5.8%。由上可知,不論是在電流密度為69A/cm2 或者13.8A/cm2 的情況下,本發明之第一實施例及第二實施例的發光元件相對習知的發光元件具有較高的輸出功率及較高的發光效率。Further, the external quantum efficiency (not shown) of the conventional light-emitting element, the first embodiment, and the second embodiment light-emitting element was 59.6%, 68.3%, and 66.5, respectively, under the condition of a current density of 13.8 A/cm 2 . %, and the output power values of the light-emitting elements of the second embodiment of the first embodiment are increased by 11.7% and 5.8%, respectively, compared to the conventional light-emitting elements. It can be seen from the above that the light-emitting elements of the first embodiment and the second embodiment of the present invention have higher output than the conventional light-emitting elements, regardless of the current density of 69 A/cm 2 or 13.8 A/cm 2 . Power and high luminous efficiency.

請參閱第7A、8A、9A圖,其為外加偏壓下的模擬結果。第7A圖為習知的發光元件之井層與阻障層的載子濃度、能帶與位置關係圖;第8A圖為本發明第一實施例之井層601與阻障層603的載子濃度、能帶和位置關係圖;第9A圖為本發明第二實施例之井層601’與阻障層603’的載子濃度、能帶和位置關係圖。為了清楚起見,第7A、8A、9A圖中,圖面上方分別標示著該位置所對應的結構代號(即阻障層、井層、區域I、區域II、區域III)。由第7A、8A、9A圖可以得知,較高的載子濃度出現在井層處,並且相較於習知的發光元件,本發明第一實施例與第二實施例之電子濃度的峰值與電洞濃度的峰值的位置較為靠近,此代表的意義為電子和電洞在空間中的波函數較為重疊,復合率會較習知的發光元件佳。另外,如第8A圖所示,能隙的變化在井層601的區域I 6010較為緩和而在區域III 6014較為劇烈,當本發明第一實施例的發光元件作動時,電子從區域I 6010往區域III 6014移動,而電洞是從區域III 6014往區域I 6010移動,這樣的設計可加速電洞的移動而提高效率,並且有效侷限電子移動而改善電子溢流的狀況。See Figures 7A, 8A, and 9A for simulation results with applied bias. FIG. 7A is a diagram showing a carrier concentration, an energy band and a positional relationship between a well layer and a barrier layer of a conventional light-emitting element; FIG. 8A is a carrier of the well layer 601 and the barrier layer 603 according to the first embodiment of the present invention; Concentration, energy band and positional relationship diagram; FIG. 9A is a diagram showing carrier concentration, energy band and position relationship of the well layer 601' and the barrier layer 603' according to the second embodiment of the present invention. For the sake of clarity, in the figures 7A, 8A, and 9A, the structural codes corresponding to the positions (ie, barrier layer, well layer, region I, region II, and region III) are respectively indicated above the plane. It can be seen from the figures 7A, 8A, and 9A that a higher carrier concentration occurs at the well layer, and the peaks of the electron concentrations of the first embodiment and the second embodiment of the present invention are compared with the conventional light-emitting elements. The position of the peak of the hole concentration is relatively close. The meaning of this represents that the wave functions of electrons and holes in space overlap, and the recombination rate is better than that of the conventional light-emitting elements. In addition, as shown in FIG. 8A, the change of the energy gap is moderate in the region I 6010 of the well layer 601 and is relatively intense in the region III 6014. When the light-emitting element of the first embodiment of the present invention is actuated, the electrons are from the region I 6010. Zone III 6014 moves, and the hole moves from zone III 6014 to zone I 6010. This design accelerates the movement of the hole to increase efficiency and effectively limits electron movement to improve the condition of electronic overflow.

請參閱第7B、8B、9B圖,其為外加偏壓下的模擬結果。第7B圖為習知的發光元件之井層與阻障層能帶與費米能階圖;第8B圖為本發明第一實施例之井層與阻障層能帶與費米能階圖;第9B圖為本發明第二實施例之井層與阻障層能帶與費米能階圖。於第7B、8B、9B圖中有四條線段,上方的實線與虛線分別表示導帶和電子的費米能階,下方的實線與虛線則分別表示價帶和電洞的費米能階。相較於第7B圖,第8B圖中電子的費米能階較遠離導帶的最小值(谷值),此代表著電子在井層601的出現機率較電子在井層S01高,而且費米能階和導帶所圍成的面積較多(如斜線所示),意味著電子數量在井層601也較多。Please refer to Figures 7B, 8B, and 9B, which are simulation results under an applied bias voltage. FIG. 7B is a well layer and a barrier layer energy band and a Fermi energy diagram of a conventional light-emitting element; FIG. 8B is a view showing a well layer and a barrier layer energy band and a Fermi energy level diagram according to the first embodiment of the present invention; FIG. 9B is a diagram showing the energy band and Fermi energy level of the well layer and the barrier layer according to the second embodiment of the present invention. In the 7B, 8B, and 9B diagrams, there are four line segments. The upper solid line and the broken line respectively indicate the Fermi level of the conduction band and the electron, and the lower solid line and the broken line respectively indicate the Fermi level of the valence band and the hole. . Compared with Figure 7B, the Fermi level of the electron in Figure 8B is farther away from the minimum value (valley) of the conduction band, which means that the probability of electrons appearing in the well 601 is higher than that of the electron in the well S01, and The area enclosed by the rice energy level and the conduction band is large (as indicated by the diagonal line), which means that the number of electrons is also larger in the well layer 601.

請參閱第10圖,第10圖為本發明第一實施例和第二實施例的發光元件與習知發光元件之復合率與位置模擬關係圖。S、G、N分別代表習知的發光元件和第一實施例與第二實施例的發光元件。如圖10所示,本發明第一實施例與第二實施例的發光元件,其主動區的復合率較習知的發光元件之主動區復合率來的佳。Referring to FIG. 10, FIG. 10 is a diagram showing the relationship between the recombination rate and the positional simulation of the light-emitting element and the conventional light-emitting element according to the first embodiment and the second embodiment of the present invention. S, G, and N respectively represent a conventional light-emitting element and the light-emitting elements of the first embodiment and the second embodiment. As shown in FIG. 10, in the light-emitting elements of the first embodiment and the second embodiment of the present invention, the recombination rate of the active region is better than that of the conventional active region.

請參閱第11圖,第11圖為本發明第一實施例的發光元件與習知的發光元件之歸一化效率與電流密度模擬關係圖。S、G分別代表沒有極化電場之習知的發光元件和第一實施例的發光元件。S-P、G-P分別代表處於極化電場(0.7Mvolt˙cm-1 )的情況下之習知發光元件和本發明第一實施例之發光元件。由圖可知,不論有沒有因極化電場極化作用,本發明第一實施例的發光元件隨電流密度增加其效率下降程度比習知發光元件少。Referring to FIG. 11, FIG. 11 is a diagram showing the relationship between the normalized efficiency and the current density of the light-emitting element according to the first embodiment of the present invention and the conventional light-emitting element. S and G respectively represent a conventional light-emitting element having no polarization electric field and the light-emitting element of the first embodiment. SP and GP respectively represent a conventional light-emitting element in the case of a polarized electric field (0.7 M volt ̇ cm -1 ) and a light-emitting element of the first embodiment of the present invention. As can be seen from the figure, the light-emitting element of the first embodiment of the present invention has a lower degree of efficiency degradation than that of the conventional light-emitting element, with or without the polarization of the polarization electric field.

雖然本發明已說明如上,然其並非用以限制本發明之範圍、實施順序、或使用之材料與製程方法。對於本發明所作之各種修飾與變更,皆不脫本發明之精神與範圍。Although the invention has been described above, it is not intended to limit the scope of the invention, the order of implementation, or the materials and process methods used. Various modifications and variations of the present invention are possible without departing from the spirit and scope of the invention.

1‧‧‧發光元件1‧‧‧Lighting elements

10‧‧‧基板10‧‧‧Substrate

20‧‧‧成核層20‧‧‧Nuclear layer

30‧‧‧晶格緩衝層30‧‧‧ lattice buffer layer

40‧‧‧第一半導體導電層40‧‧‧First semiconductor conductive layer

50‧‧‧應力釋放層50‧‧‧stress release layer

60‧‧‧主動區60‧‧‧active area

601、601’、S01‧‧‧井層601, 601', S01‧‧‧ wells

603、603’、S03‧‧‧阻障層603, 603', S03‧‧ ‧ barrier layer

6010、6010’‧‧‧區域I6010, 6010’‧‧‧ Area I

6012、6012’‧‧‧區域II6012, 6012'‧‧‧Regional II

6014、6014’‧‧‧區域III6014, 6014'‧‧‧Regional III

70‧‧‧第二半導體導電層70‧‧‧Second semiconductor conductive layer

80‧‧‧第一電極80‧‧‧first electrode

90‧‧‧第二電極90‧‧‧second electrode

S‧‧‧習知發光元件S‧‧‧Study light-emitting elements

S-P‧‧‧極化作用下的習知發光元件S-P‧‧‧Looking light-emitting elements under polarization

G‧‧‧第一實施例發光元件G‧‧‧First embodiment light-emitting element

G-P‧‧‧極化作用下的第一實施例發光元件G-P‧‧‧Lighting element of the first embodiment under polarization

N‧‧‧第二實施例發光元件N‧‧‧Second embodiment light-emitting element

t1、t2、t3‧‧‧時間t 1 , t 2 , t 3 ‧‧‧ time

T1、T2、T3‧‧‧ 預設值(溫度)T 1 , T 2 , T 3 ‧‧‧ Preset (temperature)

FR1、FR2、FR3‧‧‧流量FR1, FR2, FR3‧‧‧ flow

CN‧‧‧成長方向C N ‧‧‧Growth direction

第1A圖為本發明之一實施例的發光元件剖面圖。Fig. 1A is a cross-sectional view showing a light-emitting element according to an embodiment of the present invention.

第1B圖為第1A圖的局部放大圖。Fig. 1B is a partial enlarged view of Fig. 1A.

第1C圖為第1B圖的局部轉正視圖。Fig. 1C is a partial front elevational view of Fig. 1B.

第2A圖為本發明第一實施例之形成井層與阻障層時的流量與時間關係圖。Fig. 2A is a diagram showing the relationship between flow rate and time when forming a well layer and a barrier layer according to the first embodiment of the present invention.

第2B圖為本發明第一實施例之井層與阻障層示意圖。2B is a schematic view of a well layer and a barrier layer according to a first embodiment of the present invention.

第2C圖為本發明第一實施例之形成井層與阻障層時的溫度與時間關係圖。Fig. 2C is a graph showing temperature versus time for forming a well layer and a barrier layer according to the first embodiment of the present invention.

第2D圖為本發明第一實施例之井層與阻障層的能帶與結構對照圖。2D is a comparison diagram of the energy band and structure of the well layer and the barrier layer according to the first embodiment of the present invention.

第3A圖為本發明第二實施例之形成井層與阻障層時的流量與時間關係圖。Fig. 3A is a diagram showing the relationship between flow rate and time when forming a well layer and a barrier layer according to a second embodiment of the present invention.

第3B圖為本發明第二實施例之井層與阻障層示意圖。3B is a schematic view of a well layer and a barrier layer according to a second embodiment of the present invention.

第3C圖為本發明第二實施例之形成井層與阻障層時的溫度與時間關係圖。Fig. 3C is a graph showing temperature versus time for forming a well layer and a barrier layer according to a second embodiment of the present invention.

第3D圖為本發明第二實施例之井層與阻障層的能帶與結構對照圖。Fig. 3D is a view showing the energy band and structure of the well layer and the barrier layer according to the second embodiment of the present invention.

第4圖為本發明第一實施例和第二實施之發光元件與習知發光元件的井層與阻障層能帶圖Figure 4 is a view showing the energy layer of the well layer and the barrier layer of the light-emitting element of the first embodiment and the second embodiment of the present invention and the conventional light-emitting element.

第5圖為本發明第一實施例和第二實施例之發光元件與習知發光元件的內部量子效率與功率關係圖。Fig. 5 is a graph showing the relationship between the internal quantum efficiency and the power of the light-emitting element of the first embodiment and the second embodiment of the present invention and the conventional light-emitting element.

第6A圖為本發明第一實施例和第二實施例之發光元件與習知發光元件的輸出功率與電流密度關係圖。Fig. 6A is a graph showing the relationship between the output power and the current density of the light-emitting element of the first embodiment and the second embodiment of the present invention and the conventional light-emitting element.

第6B圖為本發明第一實施例和第二實施例之發光元件與習知發光元件的歸一化效率與電流密度關係圖。Fig. 6B is a graph showing the relationship between the normalized efficiency and the current density of the light-emitting element of the first embodiment and the second embodiment of the present invention and the conventional light-emitting element.

第7A圖為習知發光元件之井層與阻障層的載子濃度、能帶與位置關係圖。Fig. 7A is a diagram showing the relationship between the carrier concentration, the energy band and the position of the well layer and the barrier layer of the conventional light-emitting element.

第7B圖為習知發光元件之井層與阻障層能帶與費米能階圖。Figure 7B is a well layer and barrier layer energy band and Fermi energy diagram of a conventional light-emitting element.

第8A圖為本發明第一實施例之井層與阻障層的載子濃度、能帶和位置關係圖。Fig. 8A is a diagram showing the relationship between the carrier concentration, the energy band and the position of the well layer and the barrier layer according to the first embodiment of the present invention.

第8B圖為本發明第一實施例之井層與阻障層能帶與費米能階圖。Figure 8B is a diagram showing the energy band and Fermi energy level of the well layer and the barrier layer according to the first embodiment of the present invention.

第9A圖為本發明第二實施例之井層與阻障層的載子濃度、能帶和位置關係圖。Fig. 9A is a diagram showing the relationship between the carrier concentration, the energy band and the position of the well layer and the barrier layer according to the second embodiment of the present invention.

第9B圖為本發明第二實施例之井層與阻障層能帶與費米能階圖。Figure 9B is a diagram showing the energy band and Fermi energy level of the well layer and the barrier layer according to the second embodiment of the present invention.

第10圖為本發明第一實施例和第二實施例的發光元件與習知發光元件之復合率與位置模擬關係圖。Fig. 10 is a diagram showing the relationship between the recombination ratio and the positional simulation of the light-emitting element of the first embodiment and the second embodiment of the present invention and the conventional light-emitting element.

第11圖為本發明第一實施例的發光元件與習知發光元件之歸一化效率與電流密度模擬關係圖。Fig. 11 is a graph showing the relationship between the normalization efficiency and the current density of the light-emitting element and the conventional light-emitting element according to the first embodiment of the present invention.

無。no.

Claims (10)

一種發光元件,包含: 一基板; 一第一半導體導電層,位於該基板上; 一第一阻障層,位於該第一半導體導電層上; 一井層,位於該第一阻障層上,該井層包含一具有一第一能隙的第一區域以及一具有一第二能隙的第二區域,且該第一區域較該第二區域靠近該第一半導體導電層; 一第二阻障層,位於該井層上;以及 一第二半導體導電層,位於第二阻障層上; 其中,該第一能隙沿該發光元件之一堆疊方向遞減並具有一第一梯度,該第二能隙沿該堆疊方向遞增並具有一第二梯度,且該第一梯度之絶對值大於該第二梯度之絶對值。A light-emitting element comprising: a substrate; a first semiconductor conductive layer on the substrate; a first barrier layer on the first semiconductor conductive layer; a well layer on the first barrier layer, The well layer includes a first region having a first energy gap and a second region having a second energy gap, and the first region is closer to the first semiconductor conductive layer than the second region; a barrier layer on the well layer; and a second semiconductor conductive layer on the second barrier layer; wherein the first energy gap decreases along a stacking direction of the light emitting element and has a first gradient, the first The two energy gaps are incremented in the stacking direction and have a second gradient, and the absolute value of the first gradient is greater than the absolute value of the second gradient. 如申請專利範圍第1項所述的發光元件,其中該第一區域包含銦,該第一區域的銦含量沿著該堆疊方向遞增。The light-emitting element of claim 1, wherein the first region comprises indium, and the indium content of the first region is increased along the stacking direction. 如申請專利範圍第1項所述的發光元件,其中該第二區域包含銦,該第二區域的銦含量沿著該堆疊方向遞減。The light-emitting element of claim 1, wherein the second region comprises indium, and the indium content of the second region decreases along the stacking direction. 如申請專利範圍第1項所述的發光元件,其更包含位於該第一區域以及該第二區域之間的一第三區域,其中該第三區域具有一第三能隙,該第三能隙沿該堆疊方向不具有梯度變化。The illuminating element of claim 1, further comprising a third region between the first region and the second region, wherein the third region has a third energy gap, the third energy The gap does not have a gradient change along the stacking direction. 如申請專利範圍第4項所述的發光元件,其中該第三區域包含銦,該第三區域的銦含量為一常數。The light-emitting element of claim 4, wherein the third region comprises indium, and the indium content of the third region is a constant. 如申請專利範圍第1項所述的發光元件,其中該第一阻障層具有一能隙,該第二阻障層具有一能隙,且該第一能隙的一最大值實質上與該第一阻障層的該能隙相同,或是該第二能隙的一最大值實質上與該第二阻障層的該能隙相同。The illuminating element of claim 1, wherein the first barrier layer has an energy gap, the second barrier layer has an energy gap, and a maximum value of the first energy gap is substantially The energy gap of the first barrier layer is the same, or a maximum of the second energy gap is substantially the same as the energy gap of the second barrier layer. 如申請專利範圍第1項所述的發光元件,其中該第一能隙沿該堆疊方向遞減是以線性變化或階梯變化遞減。The light-emitting element according to claim 1, wherein the first energy gap is decreased in the stacking direction by a linear change or a step change. 如申請專利範圍第1項所述的發光元件,其中該第二能隙沿該堆疊方向遞增是以線性變化或階梯變化遞增。The illuminating element of claim 1, wherein the second energy gap increases in the stacking direction by a linear change or a step change. 如申請專利範圍第1項所述的發光元件,其中該第一區域包含鋁,該第一區域的鋁含量沿著該堆疊方向遞減。The light-emitting element of claim 1, wherein the first region comprises aluminum, and the aluminum content of the first region decreases along the stacking direction. 如申請專利範圍第1項所述的發光元件,其中該第二區域包含鋁,該第二區域的鋁含量沿著該堆疊方向遞增。The light-emitting element of claim 1, wherein the second region comprises aluminum, and the aluminum content of the second region is increased along the stacking direction.
TW107134908A 2014-09-03 2014-09-03 Light-emitting device and manufacturing metode thereof TWI714891B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107134908A TWI714891B (en) 2014-09-03 2014-09-03 Light-emitting device and manufacturing metode thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107134908A TWI714891B (en) 2014-09-03 2014-09-03 Light-emitting device and manufacturing metode thereof

Publications (2)

Publication Number Publication Date
TW201904087A true TW201904087A (en) 2019-01-16
TWI714891B TWI714891B (en) 2021-01-01

Family

ID=65803245

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107134908A TWI714891B (en) 2014-09-03 2014-09-03 Light-emitting device and manufacturing metode thereof

Country Status (1)

Country Link
TW (1) TWI714891B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728364B (en) * 2019-05-21 2021-05-21 國立陽明交通大學 SEMICONDUCTOR STRUCTURE OF GaN EPITAXY IN HETEROINTEGRATION WITH Si SUBSTRATE AND METHOD OF MANUFACTURING THE SAME

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539752B2 (en) * 2008-04-09 2010-09-08 住友電気工業株式会社 Method for forming quantum well structure and method for manufacturing semiconductor light emitting device
TWI416764B (en) * 2010-05-06 2013-11-21 Light emitting diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728364B (en) * 2019-05-21 2021-05-21 國立陽明交通大學 SEMICONDUCTOR STRUCTURE OF GaN EPITAXY IN HETEROINTEGRATION WITH Si SUBSTRATE AND METHOD OF MANUFACTURING THE SAME
US11342179B2 (en) 2019-05-21 2022-05-24 National Chiao Tung University Semiconductor structure having a Si substrate heterointegrated with GaN and method for fabricating the same

Also Published As

Publication number Publication date
TWI714891B (en) 2021-01-01

Similar Documents

Publication Publication Date Title
JP3219854U (en) III-V nitride semiconductor epitaxial wafer and III-V nitride semiconductor device
CN106784210B (en) Epitaxial wafer of light emitting diode and manufacturing method thereof
KR100966367B1 (en) Light emitting device and manufacturing method for the same
CN106098882B (en) Light emitting diode epitaxial wafer and preparation method thereof
TWI648872B (en) Semiconductor structures having active regions comprising ingan, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures
KR20120028104A (en) Group iii nitride nanorod light emitting device and manufacturing method for the same
KR102094471B1 (en) Method for growing nitride semiconductor layer and Nitride semiconductor formed therefrom
CN103337573A (en) Epitaxial wafer of semiconductor light emitting diode and manufacturing method of epitaxial wafer
TW201717429A (en) Semiconductor light-emitting device
JP2014036231A (en) Semiconductor element manufacturing method
CN106159052A (en) Light emitting diode epitaxial wafer and manufacturing method thereof
TW201937753A (en) Nitride semiconductor light-emitting element
KR101737981B1 (en) GAlIUM-NITRIDE LIGHT EMITTING DEVICE OF MICROARRAY TYPE STRUCTURE AND MANUFACTURING THEREOF
US20130075755A1 (en) Light emitting device and manufacturing method thereof
WO2024002094A1 (en) Light-emitting diode and epitaxial structure thereof
CN109671817B (en) Light emitting diode epitaxial wafer and preparation method thereof
KR20130040518A (en) Semiconductor light emitting device and method for manufacturing the same
US11049997B2 (en) Optoelectronic device comprising three-dimensional semiconductor structures with a wider single-crystal portion
KR102099877B1 (en) Method for fabricating nitride semiconductor device
TWI612686B (en) Light-emitting device and manufacturing metode thereof
TWI714891B (en) Light-emitting device and manufacturing metode thereof
TWI641160B (en) Light-emitting device and manufacturing metode thereof
KR101876576B1 (en) Nitride semiconductor light emitting device and method for fabricating the same
TW201633560A (en) Light emitting device
CN106910803A (en) LED epitaxial slice and its manufacture method