TW201829678A - 二氧化鈰研磨粒 - Google Patents

二氧化鈰研磨粒 Download PDF

Info

Publication number
TW201829678A
TW201829678A TW106146209A TW106146209A TW201829678A TW 201829678 A TW201829678 A TW 201829678A TW 106146209 A TW106146209 A TW 106146209A TW 106146209 A TW106146209 A TW 106146209A TW 201829678 A TW201829678 A TW 201829678A
Authority
TW
Taiwan
Prior art keywords
polishing
cerium oxide
oxide abrasive
liquid composition
abrasive particles
Prior art date
Application number
TW106146209A
Other languages
English (en)
Inventor
衣田幸司
大井信
Original Assignee
日商花王股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商花王股份有限公司 filed Critical 日商花王股份有限公司
Publication of TW201829678A publication Critical patent/TW201829678A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/0056Control means for lapping machines or devices taking regard of the pH-value of lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

本發明於一態樣中提供一種可提昇研磨速度之二氧化鈰研磨粒。 本發明於一態樣中係關於一種二氧化鈰研磨粒,其係用於研磨劑者,並且二氧化鈰研磨粒表面之{100}面之露出量為30%以上。

Description

二氧化鈰研磨粒
本發明係關於一種二氧化鈰研磨粒、研磨液組合物、使用其之半導體基板之製造方法、研磨方法及半導體裝置之製造方法。
所謂化學機械研磨(CMP)技術係指藉由在使欲加工之被研磨基板之表面與研磨墊接觸之狀態下一邊將研磨液供給至該等接觸部位,一邊使被研磨基板及研磨墊相對地移動,而使被研磨基板之表面凹凸部分進行化學反應,並且機械地將其去除,從而使之平坦化之技術。 CMP技術之效率(performance)取決於CMP之步驟條件、研磨液之種類、研磨墊之種類等。該等之中,尤其是研磨液係對CMP步驟之效率所產生影響最大之因素。作為該研磨液所包含之研磨粒子,業界廣泛地使用二氧化矽(SiO2 )或二氧化鈰(CeO2 )。 目前,於進行半導體元件之製造步驟中之層間絕緣膜之平坦化、淺溝槽元件分離構造(以下亦稱為「元件分離構造」)之形成、插塞及埋入金屬配線之形成等時,該CMP技術成為必須技術。近年來,半導體元件之多層化、高精細化飛躍地發展,要求半導體元件之良率及產能(產量)之進一步提昇。伴隨於此,對於CMP步驟亦期待無研磨損傷且更高速之研磨。例如,於淺溝槽元件分離構造之形成步驟中,期待高研磨速度,同時期待提昇研磨擋止膜(例如,氮化矽膜)對於被研磨膜(例如,二氧化矽膜)之研磨選擇性(換言之,研磨擋止膜較被研磨膜更不易被研磨之研磨選擇性)。 尤其於廣泛地使用之記憶體領域,提昇產能為重要之課題,針對提昇產能,業界亦正進行研磨劑之改良。例如於使用二氧化鈰作為研磨粒子之情形時,為了提昇被研磨膜(二氧化矽膜)之研磨速度,普遍已知的是增大研磨粒子之粒徑,但若增大粒徑,則會因研磨損傷之增加而於品質方面變差,結果使良率降低。 因此,例如專利文獻1中揭示有一種CMP用研磨液,其係調配二氧化鈰(ceria)等無機研磨劑、導電率調整劑、及分散劑而成,導電率為8~1000 mS/m,且pH值為3.0~7.0。 於專利文獻2中,作為用於二氧化矽膜之研磨之研磨液組合物,揭示有一種水性研磨液組合物,其含有(A)包含二氧化鈰之研磨劑粒子、(B)選自線狀及支鏈狀之環氧烷均聚物與共聚物中之至少1種水溶性或水分散性聚合物、及(C)陰離子性磷酸鹽分散劑。 專利文獻3中揭示有一種修整器,其係於母材之表面利用結合材而單層固著有超研磨粒的金屬膜之CMP研磨墊用修整器,並且超研磨粒中含有40重量%以上之具有結晶面由{100}面及{111}面之兩者所構成之六八面體的超研磨粒。 先前技術文獻 專利文獻 專利文獻1:日本專利特開2009-218558號公報 專利文獻2:日本專利特表2013-540849號公報 專利文獻3:日本專利特開2009-136926號公報
[發明所欲解決之問題] 於近年來之半導體領域,正向高積體化方向發展,進一步要求配線之複雜化或微細化。因此,對於以更高速進行二氧化矽膜研磨之要求日益提高。 本發明提供一種可提昇研磨速度之二氧化鈰研磨粒、使用其之研磨液組合物、半導體基板之製造方法、研磨方法及半導體裝置之製造方法。 [解決問題之技術手段] 本發明係關於一種二氧化鈰研磨粒,其係用於研磨劑者,並且二氧化鈰研磨粒表面之{100}面之露出量為30%以上。 本發明係關於一種包含本發明之二氧化鈰研磨粒、及水系介質之研磨液組合物。 本發明係關於一種半導體基板之製造方法,其包括使用本發明之研磨液組合物對被研磨基板進行研磨之步驟。 本發明係關於一種基板之研磨方法,其包括使用本發明之研磨液組合物對被研磨基板進行研磨之步驟。 本發明係關於一種半導體裝置之製造方法,其包括使用本發明之研磨液組合物對被研磨基板進行研磨之步驟。 [發明之效果] 根據本發明,可發揮出可提供能夠提昇研磨速度之二氧化鈰研磨粒之效果。
已知通常於藉由增層法合成二氧化鈰(以下,亦稱為「二氧化鈰」)之情形時,{111}面、{100}面、{110}面等結晶面會於表面露出。本發明者等人進行了努力研究,結果發現:若將露出{100}面之二氧化鈰研磨粒(參照圖1)用於研磨,則可提昇研磨速度,從而完成本發明。於本發明中,所謂{100}面相當於與二氧化鈰之藉由X射線繞射測定所檢測出之33°附近出現之波峰對應之{200}面。 即,本發明係關於一種二氧化鈰研磨粒(以下,亦稱為「本發明之二氧化鈰研磨粒」),其係用於研磨劑者,並且二氧化鈰研磨粒之表面之30%以上為{100}面。根據本發明之二氧化鈰研磨粒,可提昇研磨速度。 [二氧化鈰(ceria)研磨粒] 作為本發明之二氧化鈰研磨粒之形狀,例如可列舉球狀、多面體狀,就提昇研磨速度之觀點而言,較佳為由四邊形所圍成之六面體形狀,更佳為平行六面體形狀,進而較佳為長方體形狀,進而較佳為立方體形狀。 關於研磨時與被研磨基板接觸之二氧化鈰研磨粒之面,就提昇研磨速度之觀點而言,較佳為{100}面,且二氧化鈰研磨粒表面之{100}面之露出量越高越好。關於本發明之二氧化鈰研磨粒,就提昇研磨速度之觀點而言,二氧化鈰研磨粒表面之{100}面之露出量為30%以上,較佳為45%以上,更佳為60%以上,進而較佳為100%。{100}面之露出量變得越高,二氧化鈰研磨粒之形狀越近於由四邊形所圍成之六面體形狀,露出量為100%時之二氧化鈰研磨粒之形狀為由四邊形所圍成之六面體形狀(參照圖1)。於本發明中,{100}面之露出量例如可根據藉由SEM觀察等所進行之圖像分析而算出,具體而言,可針對1個或隨機選出之複數個粒子利用SEM等進行觀察並根據四邊形部分之面積相對於觀察圖像中之1個粒子之表面積之比率、或四邊形部分之面積相對於複數個各粒子各者之總表面積之比率的平均值而算出,更具體而言,可藉由實施例中所記載之方法進行測定。於本發明中,可將藉由SEM觀察等而獲得之圖像中之粒子之四邊形部分視為{100}面。 作為上述{100}面之露出量之控制方法,例如可採用J. Phys. Chem. B 2005, 109, p24380-24385或Crystal Growth & Design, Vol. 9, N0. 12, p5297-5303, 2009中所記載之方法。例如可列舉藉由在高濃度且強鹼條件下之水熱處理而生成特定結晶形狀之二氧化鈰的方法、或預先使由鈰原料與鹼所生成之氫氧化物於超臨界條件(例如,400℃、38 MPa)下結晶化而生成二氧化鈰的方法。由於藉由在結晶生長過程中適當添加選自癸酸或十二烷酸等單羧酸、己二酸或庚二酸等二羧酸、聚丙烯酸等羧酸系聚合物、磷酸三鈉等磷氧化合物中之至少1種化合物,該等化合物會吸附於特定結晶面,故而認為關於最終獲得之結晶之形狀,吸附有該等化合物之面會選擇性地得到保護而殘存,變得能夠進行結晶形狀之控制。 關於本發明之二氧化鈰研磨粒之平均一次粒徑,就提昇研磨速度之觀點而言,較佳為10 nm以上,更佳為20 nm以上,進而較佳為30 nm以上,並且就降低刮痕之觀點而言,較佳為150 nm以下,更佳為130 nm以下,進而較佳為100 nm以下。更具體而言,本發明之二氧化鈰研磨粒之平均一次粒徑較佳為10 nm以上且150 nm以下,更佳為10 nm以上且130 nm以下,進而較佳為10 nm以上且100 nm以下,進而較佳為20 nm以上且100 nm以下,進而較佳為30 nm以上且100 nm以下。於本發明中,二氧化鈰研磨粒之平均一次粒徑可藉由實施例所記載之方法進行測定。 關於本發明之二氧化鈰研磨粒,就提昇研磨速度之觀點而言,較佳為膠體二氧化鈰。膠體二氧化鈰例如可藉由如日本專利特表2010-505735號公報所記載之增層製程而獲得。 本發明之二氧化鈰研磨粒可為單獨包含二氧化鈰之二氧化鈰粒子,亦可為二氧化鈰研磨粒中之鈰原子(Ce)之一部分被置換為其他原子之複合氧化物粒子。作為其他原子,例如可列舉鋯原子(Zr)。即,作為本發明之二氧化鈰研磨粒,例如可列舉二氧化鈰研磨粒中之Ce之一部分被置換為Zr之複合氧化物粒子、包含Ce及Zr之複合氧化物粒子、或於二氧化鈰(CeO2 )晶格中固溶有Zr之複合氧化物粒子。於本發明之二氧化鈰研磨粒為該研磨粒中之Ce之一部分被置換為Zr之複合氧化物粒子之情形時,就提昇研磨速度之觀點而言,二氧化鈰研磨粒中之Zr之含量(莫耳%)相對於Ce與Zr之合計量(100莫耳%)較佳為15莫耳%以上,更佳為20莫耳%以上,並且較佳為35莫耳%以下,更佳為30莫耳%以下。更具體而言,本發明之二氧化鈰研磨粒中之Zr之含量(莫耳%)相對於Ce與Zr之合計量(100莫耳%)較佳為15莫耳%以上且35莫耳%以下,更佳為20莫耳%以上且30莫耳%以下。作為上述複合氧化物粒子之製造方法,例如可採用日本專利特開2009-007543號所記載之方法。 本發明之二氧化鈰研磨粒於一實施形態中可用作研磨粒子。又,本發明之二氧化鈰研磨粒於一實施形態中可用於研磨。 [研磨液組合物] 本發明係關於一種包含本發明之二氧化鈰研磨粒、及水系介質之研磨液組合物(以下,亦稱為「本發明之研磨液組合物」)。 關於本發明之研磨液組合物中之二氧化鈰研磨粒之含量,就提昇研磨速度之觀點而言,較佳為0.05質量%以上,更佳為0.1質量%以上,進而較佳為0.2質量%以上,並且就相同之觀點而言,較佳為5質量%以下,更佳為2.5質量%以下,進而較佳為1質量%以下。更具體而言,本發明之研磨液組合物中之二氧化鈰研磨粒之含量較佳為0.05質量%以上且5質量%以下,更佳為0.1質量%以上且2.5質量%以下,進而較佳為0.2質量%以上且1質量%以下。 作為本發明之研磨液組合物所包含之水系介質,例如可列舉水、及水與可溶於水之溶劑之混合物等。作為可溶於水之溶劑,可列舉甲醇、乙醇、異丙醇等低級醇,就於研磨步驟中之安全性之觀點而言,較佳為乙醇。作為水系介質,就提昇半導體基板之品質之觀點而言,更佳為包含離子交換水、蒸餾水、超純水等水。關於本發明之研磨液組合物中之水系介質之含量,若將二氧化鈰研磨粒、下述任意成分、及水系介質之合計質量設為100質量%,則可設為除去二氧化鈰研磨粒及下文所述之任意成分後之剩餘量。 [任意成分] 關於本發明之研磨液組合物,就提昇研磨速度之觀點而言,較佳為含有具有陰離子性基之化合物(以下,亦簡稱為「化合物A」)作為研磨助劑。 作為化合物A之陰離子性基,可列舉:羧酸基、磺酸基、硫酸酯基、磷酸酯基、膦酸基等。該等陰離子性基可採用經中和之鹽之形態。作為陰離子性基採用鹽之形態之情形時之抗衡離子,可列舉金屬離子、銨離子、烷基銨離子等,就提昇半導體基板之品質之觀點而言,較佳為銨離子。 作為化合物A,例如可列舉選自檸檬酸及陰離子性聚合物中之至少1種。作為化合物A為陰離子性聚合物之情形時之具體例,可列舉選自聚丙烯酸、聚甲基丙烯酸、聚苯乙烯磺酸、(甲基)丙烯酸與單甲氧基聚乙二醇單(甲基)丙烯酸酯之共聚物、具有陰離子基之(甲基)丙烯酸酯與單甲氧基聚乙二醇單(甲基)丙烯酸酯之共聚物、(甲基)丙烯酸烷基酯與(甲基)丙烯酸及單甲氧基聚乙二醇單(甲基)丙烯酸酯之共聚物、該等之鹼金屬鹽、及該等之銨鹽中之至少1種,就提昇半導體基板之品質之觀點而言,較佳為選自聚丙烯酸及其銨鹽中之至少1種。 關於化合物A之重量平均分子量,就提昇研磨速度之觀點而言,較佳為1,000以上,更佳為10,000以上,進而較佳為20,000以上,並且較佳為550萬以下,更佳為100萬以下,進而較佳為10萬以下。更具體而言,化合物A之重量平均分子量較佳為1,000以上且550萬以下,更佳為10,000以上且100萬以下,進而較佳為20,000以上且10萬以下。 於本發明中,化合物A之重量平均分子量可使用液相層析儀(日立製作作所股份有限公司製造,L-6000型高效液相層析儀),並藉由凝膠滲透層析法(GPC)於下述條件下進行測定。 <測定條件> 檢測器:Shodex RI SE-61示差折射率檢測器 管柱:使用將Tosoh股份有限公司製造之G4000PWXL與G2500PWXL串聯地連接而成者。 溶析液:利用0.2 M磷酸緩衝液/乙腈=90/10(容量比)調整至0.5 g/100 mL之濃度,使用20 μL。 管柱溫度:40℃ 流速:1.0 mL/min 標準聚合物:已知分子量之單分散聚乙二醇 關於本發明之研磨液組合物中之化合物A之含量,就提昇研磨速度之觀點而言,相對於二氧化鈰研磨粒100質量份,較佳為0.01質量份以上,更佳為0.05質量份以上,進而較佳為0.1質量份以上,並且就相同之觀點而言,較佳為100質量份以下,更佳為10質量份以下,進而較佳為1質量份以下。更具體而言,關於本發明之研磨液組合物中之化合物A之含量,相對於二氧化鈰研磨粒100質量份,較佳為0.01質量份以上且100質量份以下,更佳為0.05質量份以上且10質量份以下,進而較佳為0.1質量份以上且1質量份以下。 關於本發明之研磨液組合物中之化合物A之含量,就提昇研磨速度之觀點而言,較佳為0.001質量%以上,更佳為0.0015質量%以上,進而較佳為0.0025質量%以上,並且較佳為1質量%以下,更佳為0.8質量%以下,進而較佳為0.6質量%以下。更具體而言,本發明之研磨液組合物中之化合物A之含量較佳為0.001質量%以上且1質量%以下,更佳為0.0015質量%以上且0.8質量%以下,進而較佳為0.0025質量%以上且0.6質量%以下。 本發明之研磨液組合物可於無損本發明之效果之範圍內含有pH值調整劑、除化合物A以外之研磨助劑等其他任意成分。關於本發明之研磨液組合物中之上述其他任意成分之含量,就確保研磨速度之觀點而言,較佳為0.001質量%以上,更佳為0.0025質量%以上,進而較佳為0.01質量%以上,並且較佳為1質量%以下,更佳為0.5質量%以下,進而較佳為0.1質量%以下。更具體而言,本發明之研磨液組合物中之上述其他任意成分之含量較佳為0.001質量%以上且1質量%以下,更佳為0.0025質量%以上且0.5質量%以下,進而較佳為0.01質量%以上且0.1質量%以下。 作為pH值調整劑,例如可列舉酸性化合物及鹼性化合物。作為酸性化合物,例如可列舉:鹽酸、硝酸、硫酸等無機酸;乙酸、草酸、檸檬酸、及蘋果酸等有機酸等。其中,就通用性之觀點而言,較佳為選自鹽酸、硝酸及乙酸中之至少1種,更佳為選自鹽酸及乙酸中之至少1種。作為鹼性化合物,例如可列舉:氨、及氫氧化鉀等無機鹼性化合物;烷基胺、及烷醇胺等有機鹼性化合物等。其中,就提昇半導體基板之品質之觀點而言,較佳為選自氨及烷基胺中之至少1種,更佳為氨。 作為除化合物A以外之研磨助劑,可列舉除化合物A以外之陰離子性界面活性劑及非離子性界面活性劑等。作為除化合物A以外之陰離子性界面活性劑,例如可列舉:烷基醚乙酸鹽、烷基醚磷酸鹽、及烷基醚硫酸鹽等。作為非離子性界面活性劑,例如可列舉:聚丙烯醯胺等非離子性聚合物、聚氧伸烷基烷基醚、聚氧乙烯二苯乙烯化苯基醚等。 本發明之研磨液組合物可藉由包括如下步驟之製造方法而製造:將本發明之二氧化鈰研磨粒、水系介質、以及視需要之上述化合物A及其他任意成分藉由公知方法加以調配。例如,本發明之研磨液組合物可設為至少調配本發明之二氧化鈰研磨粒及水系介質而成者。於本發明中,所謂「調配」,包括將本發明之二氧化鈰研磨粒、水系介質、以及視需要之上述任意成分同時或依序進行混合。混合之順序並無特別限定。上述調配例如可使用均質攪拌機(homo mixer)、均質機(homogenizer)、超音波分散機及濕式球磨機等混合器而進行。本發明之研磨液組合物之製造方法中之各成分之調配量可設為與上述本發明之研磨液組合物中之各成分之含量相同。 本發明之研磨液組合物之實施形態可為以所有成分預先混合之狀態供於市場之所謂一液型,亦可為於使用時進行混合之所謂二液型。 關於本發明之研磨液組合物之pH值,就提昇研磨速度之觀點而言,較佳為3.5以上,更佳為4以上,進而較佳為4.5以上,並且較佳為10以下,更佳為9以下,進而較佳為8以下。更具體而言,本發明之研磨液組合物之pH值較佳為3.5以上且10以下,更佳為4以上且9以下,進而較佳為4.5以上且8以下。於本發明中,研磨液組合物之pH值係25℃下之值,且係使用pH計所測得之值。本發明之研磨液組合物之pH值具體而言可藉由實施例中所記載之方法進行測定。 於本發明中,所謂「研磨液組合物中之各成分之含量」係指將研磨液組合物用於研磨之時間點、即開始將研磨液組合物用於研磨之時間點的上述各成分之含量。本發明之研磨液組合物可於無損其穩定性之範圍內以濃縮之狀態進行保存及供給。於該情形時,於可降低製造、運輸成本之方面而言較佳。並且,該濃縮液可視需要利用上述水系介質適當進行稀釋而於研磨步驟中使用。作為稀釋比例,較佳為5~100倍。 作為本發明之研磨液組合物之研磨對象,例如可列舉二氧化矽膜。因此,本發明之研磨液組合物可用於需要進行二氧化矽膜之研磨之步驟,例如可適宜地用於在形成半導體基板之元件分離構造之步驟中所進行之二氧化矽膜之研磨、於形成層間絕緣膜之步驟中所進行之二氧化矽膜之研磨、於形成埋入金屬配線之步驟中所進行之二氧化矽膜之研磨、或於形成埋入電容器之步驟中所進行之二氧化矽膜之研磨等。 [研磨液套組] 本發明係關於一種研磨液套組,其係用以製造研磨液組合物者,並且包含將含有本發明之二氧化鈰研磨粒之分散液收納至容器中之研磨粒分散液。根據本發明之研磨液套組,可提供一種可獲得能夠提昇研磨速度之研磨液組合物的研磨液套組。 作為本發明之研磨液套組之一實施形態,例如可列舉如下研磨液套組(二液型研磨液組合物):以未相互混合之狀態包含含有本發明之二氧化鈰研磨粒及水系介質之分散液(第1液)、及包含添加劑及水系介質之溶液(第2液),且於使用時將該等混合,視需要利用水系介質進行稀釋。作為添加劑,例如可列舉:研磨助劑、酸、氧化劑、雜環芳香族化合物、脂肪族胺化合物、脂環式胺化合物、醣類化合物等。上述第1液及上述第2液中分別可視需要包含pH值調整劑、增黏劑、分散劑、防銹劑、鹼性物質、研磨速度改善劑等。上述第1液與上述第2液之混合可在供向研磨對象之表面之前進行,亦可分別供給並於被研磨基板之表面上進行混合。 [半導體基板之製造方法] 本發明係關於一種半導體基板之製造方法(以下,亦稱為「本發明之半導體基板之製造方法」),其包括使用本發明之研磨液組合物對被研磨基板進行研磨之步驟(以下,亦稱為「使用本發明之研磨液組合物之研磨步驟」)。根據本發明之半導體基板之製造方法,由於藉由使用本發明之研磨液組合物可提昇研磨步驟之研磨速度,故而可發揮出能夠高效率地製造半導體基板之效果。 作為被研磨基板,於一個或複數個實施形態中,可列舉:於基板表面具有被研磨膜之基板、於基板表面形成有被研磨膜之基板、或於被研磨膜下具有與該被研磨膜接觸而配置之研磨擋止膜的基板等。作為被研磨膜,例如可列舉二氧化矽膜。作為研磨擋止膜,可列舉氮化矽膜或多晶矽膜。作為上述基板,例如可列舉半導體基板。作為上述半導體基板,例如可列舉矽基板等,此外亦可列舉以Si、或Ge等元素半導體、GaAs、InP、或CdS等化合物半導體、InGaAs、HgCdTe等混晶半導體等作為材料之基板。 作為本發明之半導體基板之製造方法之具體例,首先,藉由使矽基板於氧化爐內暴露於氧氣而於其表面生長二氧化矽層,繼而,藉由例如CVD法(化學氣相沈積法)於該二氧化矽層上形成氮化矽(Si3 N4 )膜或多晶矽膜等研磨擋止膜。其次,於包含矽基板及配置於上述矽基板之一主面側之研磨擋止膜之基板、例如於矽基板之二氧化矽層上形成有研磨擋止膜之基板上,使用光微影技術形成溝槽。繼而,例如藉由使用矽烷氣體及氧氣之CVD法形成溝槽埋入用之被研磨膜即二氧化矽(SiO2 )膜,而獲得利用被研磨膜(二氧化矽膜)覆蓋研磨擋止膜之被研磨基板。藉由形成二氧化矽膜,上述溝槽被二氧化矽膜之氧化矽填滿,研磨擋止膜之上述矽基板側之面之相反面被二氧化矽膜被覆。如此而形成之二氧化矽膜之矽基板側之面之相反面具有與下層之凸凹相對應而形成之階差。繼而,藉由CMP法對二氧化矽膜進行研磨直至使至少研磨擋止膜之矽基板側之面之相反面露出,更佳為對二氧化矽膜進行研磨直至二氧化矽膜之表面與研磨擋止膜之表面成為同一平面。本發明之研磨液組合物可用於進行藉由該CMP法所進行之研磨之步驟。 藉由CMP法所進行之研磨係藉由在使被研磨基板之表面與研磨墊接觸之狀態下,一邊將本發明之研磨液組合物供給至該等接觸部位,一邊使被研磨基板及研磨墊相對地移動,而使被研磨基板之表面之凹凸部分平坦化。於本發明之半導體基板之製造方法中,可於矽基板之二氧化矽層與研磨擋止膜之間形成有其他絕緣膜,亦可於被研磨膜(例如,二氧化矽膜)與研磨擋止膜(例如,氮化矽膜)之間形成有其他絕緣膜。 於使用有本發明之研磨液組合物之研磨步驟中,研磨墊之轉數例如可設定為30~200 r/min,被研磨基板之轉數例如可設定為30~200 r/min,具備研磨墊之研磨裝置所設定之研磨負重例如可設定為20~500 g重/cm2 ,研磨液組合物之供給速度例如可設定為10~500 mL/min以下。於研磨液組合物為二液型研磨液組合物之情形時,可藉由對第1液及第2液各自之供給速度(或供給量)進行調整,而調整被研磨膜及研磨擋止膜各自之研磨速度、或被研磨膜與研磨擋止膜之研磨速度比(研磨選擇性)。 於使用有本發明之研磨液組合物之研磨步驟中,關於被研磨膜(例如,二氧化矽膜)之研磨速度,就提昇生產性之觀點而言,較佳為800 Å/min以上,更佳為2,000 Å/min以上,進而較佳為3,000 Å/min以上。 於使用有本發明之研磨液組合物之研磨步驟中,關於研磨擋止膜(例如,氮化矽膜)之研磨速度,就提昇研磨選擇性及縮短研磨時間之觀點而言,較佳為500 Å/min以下,更佳為300 Å/min以下,進而較佳為150 Å/min以下。 於使用有本發明之研磨液組合物之研磨步驟中,關於研磨速度比(被研磨膜之研磨速度/研磨擋止膜之研磨速度),就縮短研磨時間之觀點而言,較佳為5以上,更佳為10以上,進而較佳為20以上,進而更佳為40以上。於本發明中,研磨選擇性可藉由被研磨膜之研磨速度相對於研磨擋止之研磨速度之比(被研磨膜之研磨速度/研磨擋止膜之研磨速度)進行評價,所謂研磨選擇性較高意指研磨速度比較大。 [研磨方法] 本發明係關於一種包括使用本發明之研磨液組合物對被研磨基板進行研磨之步驟(研磨步驟)的基板之研磨方法(以下,亦稱為本發明之研磨方法),較佳為關於一種用於製造半導體基板的基板之研磨方法。由於藉由使用本發明之研磨方法,可提昇研磨步驟之研磨速度,故而可發揮出能夠高效率地製造半導體基板之效果。關於本發明之研磨方法中之上述研磨步驟,於一個或複數個實施形態中係如下步驟:於使被研磨基板之表面與研磨墊接觸之狀態下,一邊將本發明之研磨液組合物供給至上述被研磨基板與上述研磨墊之間,一邊使被研磨基板及/或研磨墊相對地移動,藉此對被研磨基板之表面進行研磨。具體之研磨之方法及條件可設為與上述本發明之半導體基板之製造方法相同。 [半導體裝置之製造方法] 本發明係關於一種半導體裝置之製造方法(以下,亦稱為「本發明之半導體裝置之製造方法」),其於一態樣中包括使用本發明之研磨液組合物對被研磨基板進行研磨之步驟(研磨步驟)。關於本發明之半導體裝置之製造方法中之上述研磨步驟,於一個或複數個實施形態中係於選自元件分離構造之形成步驟、層間絕緣膜之形成步驟、埋入金屬配線之形成步驟、及埋入電容器之形成步驟中之至少1個步驟中所進行之研磨步驟。作為半導體裝置,例如可列舉記憶體IC(Integrated Circuit,積體電路)、邏輯IC及系統LSI(Large-Scale Integration,大型積體電路)等。 根據本發明之半導體裝置之製造方法,可發揮出能夠高效率地獲得半導體基板而提昇半導體裝置之生產性之效果。研磨步驟之具體之研磨方法及條件可設為與上述本發明之半導體基板之製造方法相同。 本發明進而係關於以下之組合物、製造方法。 <1>一種二氧化鈰研磨粒,其係用於研磨劑者,並且二氧化鈰研磨粒表面之{100}面之露出量為30%以上。 <2>如<1>所記載之二氧化鈰研磨粒,其中二氧化鈰研磨粒表面之{100}面之露出量為30%以上,較佳為45%以上,更佳為60%以上,進而較佳為100%。 <3>如<1>或<2>所記載之二氧化鈰研磨粒,其中二氧化鈰研磨粒之平均一次粒徑較佳為10 nm以上,更佳為20 nm以上,進而較佳為30 nm以上。 <4>如<1>至<3>中任一項所記載之二氧化鈰研磨粒,其中二氧化鈰研磨粒之平均一次粒徑較佳為150 nm以下,更佳為130 nm以下,進而較佳為100 nm以下。 <5>如<1>至<4>中任一項所記載之二氧化鈰研磨粒,其中二氧化鈰研磨粒之平均一次粒徑為10 nm以上且150 nm以下。 <6>如<1>至<5>中任一項所記載之二氧化鈰研磨粒,其中二氧化鈰研磨粒為二氧化鈰研磨粒中之鈰原子(Ce)之一部分被置換為鋯原子(Zr)之複合氧化物粒子。 <7>如<6>所記載之二氧化鈰研磨粒,其中二氧化鈰研磨粒中之Zr之含量相對於Ce與Zr之合計量(100莫耳%)較佳為15莫耳%以上,更佳為20莫耳%以上。 <8>如<6>或<7>所記載之二氧化鈰研磨粒,其中二氧化鈰研磨粒中之Zr之含量相對於Ce與Zr之合計量(100莫耳%)較佳為35莫耳%以下,更佳為30莫耳%以下。 <9>一種如<1>至<8>中任一項所記載之二氧化鈰研磨粒之用途,其係用作研磨粒子。 <10>一種如<1>至<8>中任一項所記載之二氧化鈰研磨粒之用途,其用於研磨。 <11>一種研磨液組合物,其包含如<1>至<8>中任一項所記載之二氧化鈰研磨粒、及水系介質。 <12>如<11>所記載之研磨液組合物,其中二氧化鈰研磨粒之含量較佳為0.05質量%以上,更佳為0.1質量%以上,進而較佳為0.2質量%以上。 <13>如<11>或<12>所記載之研磨液組合物,其中二氧化鈰研磨粒之含量較佳為5質量%以下,更佳為2.5質量%以下,進而較佳為1質量%以下。 <14>如<11>至<13>中任一項所記載之研磨液組合物,其中二氧化鈰研磨粒之含量為0.05質量%以上且5質量%以下。 <15>如<11>至<14>中任一項所記載之研磨液組合物,其進而含有具有陰離子性基之化合物A。 <16>如<15>所記載之研磨液組合物,其中化合物A之重量平均分子量較佳為1,000以上,更佳為10,000以上,進而較佳為20,000以上。 <17>如<15>或<16>所記載之研磨液組合物,其中化合物A之重量平均分子量較佳為550萬以下,更佳為100萬以下,進而較佳為10萬以下。 <18>如<15>至<17>中任一項所記載之研磨液組合物,其中化合物A之含量相對於二氧化鈰研磨粒100質量份較佳為0.01質量份以上,更佳為0.05質量份以上,進而較佳為0.1質量份以上。 <19>如<15>至<18>中任一項所記載之研磨液組合物,其中化合物A之含量相對於二氧化鈰研磨粒100質量份較佳為100質量份以下,更佳為10質量份以下,進而較佳為1質量份以下。 <20>如<15>至<19>中任一項所記載之研磨液組合物,其中研磨液組合物中之化合物A之含量較佳為0.001質量%以上,更佳為0.0015質量%以上,進而較佳為0.0025質量%以上。 <21>如<15>至<20>中任一項所記載之研磨液組合物,其中研磨液組合物中之化合物A之含量較佳為1質量%以下,更佳為0.8質量%以下,進而較佳為0.6質量%以下。 <22>如<11>至<21>中任一項所記載之研磨液組合物,其進而含有選自pH值調整劑及除化合物A以外之研磨助劑中之1種以上之其他任意成分。 <23>如<22>所記載之研磨液組合物,其中研磨液組合物中之上述其他任意成分之含量較佳為0.001質量%以上,更佳為0.0025質量%以上,進而較佳為0.01質量%以上。 <24>如<22>或<23>所記載之研磨液組合物,其中研磨液組合物中之上述其他任意成分之含量較佳為1質量%以下,更佳為0.5質量%以下,進而較佳為0.1質量%以下。 <25>如<11>至<24>中任一項所記載之研磨液組合物,其中研磨液組合物之pH值較佳為3.5以上,更佳為4以上,進而較佳為4.5以上。 <26>如<11>至<25>中任一項所記載之研磨液組合物,其中研磨液組合物之pH值較佳為10以下,更佳為9以下,進而較佳為8以下。 <27>如<11>至<26>中任一項所記載之研磨液組合物,其係用於二氧化矽膜之研磨。 <28>一種研磨液套組,其係用以製造研磨液組合物之套組,並且包含將含有如<1>至<8>中任一項所記載之二氧化鈰研磨粒之分散液收納於容器中的容器裝之研磨粒分散液。 <29>一種半導體基板之製造方法,其包括使用如<11>至<27>中任一項所記載之研磨液組合物對被研磨基板進行研磨之步驟。 <30>一種基板之研磨方法,其係包括使用如<11>至<27>中任一項所記載之研磨液組合物對被研磨基板進行研磨之步驟者,並且較佳為用於製造半導體基板。 <31>如<30>所記載之研磨方法,其中上述對被研磨基板進行研磨之步驟係藉由在使被研磨基板之表面與研磨墊接觸之狀態下,一邊將如<11>至<27>中任一項所記載之研磨液組合物供給至上述被研磨基板與上述研磨墊之間,一邊使被研磨基板及/或研磨墊相對地移動,而對被研磨基板之表面進行研磨的步驟。 <32>一種半導體裝置之製造方法,其包括使用如<11>至<27>中任一項所記載之研磨液組合物對被研磨基板進行研磨之步驟。 <33>如<32>所記載之半導體裝置之製造方法,其中上述對被研磨基板進行研磨之步驟係於選自元件分離構造之形成步驟、層間絕緣膜之形成步驟、埋入金屬配線之形成步驟、及埋入電容器之形成步驟中之至少1個步驟中進行之研磨步驟。 [實施例] 以下,藉由實施例對本發明進一步詳細地進行說明,但該等為例示,本發明並不受該等實施例所限制。 1.各參數之測定 [研磨液組合物之pH值] 研磨液組合物於25℃下之pH值係使用pH計(東亞電波工業公司製造,「HM-30G」)所測得之值,係將pH計之電極於研磨液組合物中浸漬1分鐘後之數值。 [二氧化鈰研磨粒之平均一次粒徑] 二氧化鈰研磨粒之平均一次粒徑(nm)係藉由從穿透式電子顯微鏡(TEM)觀察所獲得之圖像而算出。具體而言,以二氧化鈰研磨粒濃度成為0.01質量%之方式使二氧化鈰研磨粒分散於離子交換水中,將所獲得之分散漿料滴加至砂粒上,將其風乾後利用TEM進行觀察,計測所獲得之圖像中之各粒子之外接圓之直徑100個,將所獲得之平均值設為一次粒徑。 [二氧化鈰之結晶面方位分析] 利用穿透式電子顯微鏡(TEM)進行二氧化鈰之結晶面方位分析。具體而言,根據利用TEM所獲得之電子繞射影像,確認二氧化鈰之結晶結構為螢石型結構,對晶格間距離(面間隔)進行鑑定。其次,對利用TEM所獲得之晶格影像應用傅立葉濾波器(fourier filter)進行加強,根據所獲得之晶格影像與結晶軸方位、及其晶格間距離(面間隔)之關係,製作結晶面方位圖。所製作之結晶面方位圖中之粒子之四邊形部分為{100}面。 [{100}面之露出量] 二氧化鈰研磨粒之{100}面之露出量係藉由以下之方法進行測定。以二氧化鈰研磨粒濃度成為0.01質量%之方式使二氧化鈰研磨粒分散於離子交換水中,將所獲得之分散漿料滴加至砂粒上並進行風乾,針對隨機選擇之100個粒子,利用掃描型電子顯微鏡(SEM)進行觀察。將所獲得之圖像中之粒子表面之四邊形部分設為{100}面,算出四邊形部分之面積相對於SEM觀察圖像中之100個各粒子各者之總表面積之比率,並算出其平均值作為{100}面之露出量。 再者,SEM觀察圖像中之粒子之形狀為僅從一方向觀察之形狀,此處,粒子之形狀假定為對稱形狀,即,假定藉由SEM僅從一方向觀察之粒子之形狀(表面形狀)與從和該一方向相反之方向觀察之粒子之形狀(背面形狀)相同,而算出上述露出量。 2.二氧化鈰研磨粒之製造方法或其詳細情況 <實施例1之二氧化鈰研磨粒之製造例> 將作為鈰原料之硝酸鈰(III)六水合物0.868 g(0.002 mol)溶解於離子交換水:5 mL。其次,將氫氧化鈉8.5 g(0.2125 mol)溶解於離子交換水:35 mL(約6 mol/L)。將先前之硝酸鈰水溶液一邊攪拌一邊添加至該氫氧化鈉水溶液體中,繼續攪拌30分鐘以上而生成沈澱。於包含沈澱之漿料中添加與沈澱生成量相同之0.002 mol結晶控制劑(己二酸或庚二酸),並實施攪拌30分鐘以上。其後,同樣地移入至50 mL之Teflon(註冊商標)製容器中,將該Teflon(註冊商標)容器放入至不鏽鋼製反應容器(三愛科學製造之高壓釜處理)中並進行密封,與不鏽鋼容器一併放入至送風乾燥機中,於180℃下實施24小時水熱處理。水熱處理結束後,冷卻至室溫,將沈澱物利用離子交換水充分洗淨後,於100℃之送風乾燥機中進行乾燥,而獲得粉體(實施例1之二氧化鈰研磨粒)。 對所獲得之粉體進行X射線繞射,結果確認為二氧化鈰。進而,使少量粉體分散於離子交換水中,進行TEM觀察及SEM觀察,結果確認所獲得之粉體為立方-八面體(cubo-octahedral)形狀之二氧化鈰。 又,於實施例1之二氧化鈰研磨粒之研磨粒表面吸附有結晶控制劑(己二酸或庚二酸)。因此,實施例1之二氧化鈰研磨粒係進而於250℃之電爐中進行1小時熱處理,去除研磨粒表面所吸附之結晶控制劑後,用於下文所述之研磨液組合物之製備。再者,無因熱處理引起之二氧化鈰研磨粒之形狀變化。 <實施例2之二氧化鈰研磨粒之製造例> 將作為鈰原料之硝酸鈰(III)六水合物0.868 g(0.002 mol)溶解於離子交換水:5 mL。其次,將氫氧化鈉8.5 g(0.2125 mol)溶解於離子交換水:35 mL(約6 mol/L)。將先前之硝酸鈰水溶液一邊攪拌一邊添加至該氫氧化鈉水溶液體中,繼續攪拌30分鐘以上,而生成沈澱。其後,將包含沈澱之漿料移入至50 mL之Teflon(註冊商標)製容器中,將該Teflon(註冊商標)容器放入至不鏽鋼製反應容器(三愛科學製造之高壓釜處理)中並進行密封,與不鏽鋼容器一併放入至送風乾燥機中,於180℃下實施24小時水熱處理。水熱處理結束後,冷卻至室溫,將沈澱物利用離子交換水充分洗淨後,於100℃之送風乾燥機中進行乾燥,而獲得粉體(實施例2之二氧化鈰研磨粒)。 對所獲得之粉體進行X射線繞射,結果確認為二氧化鈰。進而,使少量粉體分散於離子交換水中,進行TEM觀察及SEM觀察,結果確認所獲得之粉體為僅露出{100}面之由四邊形所圍成之六面體形狀之二氧化鈰。圖1係實施例2之二氧化鈰研磨粒之SEM觀察圖像,結晶結構分析之結果為,露出之結晶面全部為{100}面。 <實施例3之二氧化鈰研磨粒之製造例> 將180℃下之水熱處理時間設為12小時,除此以外,進行與實施例2相同之操作,而獲得實施例3之二氧化鈰研磨粒。 <實施例4之二氧化鈰研磨粒之製造例> 將結晶控制劑(己二酸或庚二酸)之添加量設為沈澱生成量之1/2莫耳(0.001 mol),除此以外,進行與實施例1相同之操作,而獲得實施例4之二氧化鈰研磨粒。 <實施例5之二氧化鈰研磨粒之製造例> 將結晶控制劑(己二酸或庚二酸)之添加量設為沈澱生成量之1/10莫耳(0.0002 mol),除此以外,進行與實施例1相同之操作,而獲得實施例5之二氧化鈰研磨粒。 <實施例6之二氧化鈰研磨粒之製造例> 使用硝酸鈰(III)六水合物:0.651 g(0.0015 mol)、硝酸氧鋯二水合物:0.134 g(0.0005 mol)作為鈰原料,除此以外,進行與實施例2相同之操作,而獲得實施例6之二氧化鈰研磨粒。 對所獲得之實施例6之二氧化鈰研磨粒之乾燥粉體藉由X射線繞射進行分析,結果未觀察到除二氧化鈰以外之結晶波峰,進而觀察到位移至較二氧化鈰之理論波峰更靠高角度側之波峰。又,對所獲得之粉末:0.1 g加入硝酸:10 mL,利用滴管加入5~6滴過氧化氫水。加入超純水使之成為約30 mL並加入轉子,利用Teflon(註冊商標)製錶玻璃進行封蓋。進而,於附帶加熱機之攪拌器上一邊逐滴加入過氧化氫一邊進行加熱溶解直至成為透明。其後,放置冷卻後移入至100 mL塑膠容量瓶中,利用超純水洗淨石英燒杯並轉移該液體。重複3次該洗淨操作並利用超純水進行定容,作為試樣溶液,利用ICP實施元素分析,結果Ce:Zr之比為74.5:25.5(莫耳比)。 <實施例7之二氧化鈰研磨粒之製造例> 使用硝酸鈰(III)六水合物:0.608 g(0.0014 mol)、硝酸氧鋯二水合物:0.161 g(0.0006 mol)作為鈰原料,除此以外,進行與實施例2相同之操作,而獲得實施例7之二氧化鈰研磨粒。 對所獲得之實施例7之二氧化鈰研磨粒之乾燥粉體藉由X射線繞射進行分析,結果未觀察到除二氧化鈰以外之結晶波峰,進而觀察到位移至較二氧化鈰之理論波峰更靠高角度側之波峰。與實施例6同樣地實施元素分析,結果Ce:Zr之比為69.7:30.3(莫耳比)。 <實施例8之二氧化鈰研磨粒之製造例> 將水熱處理時間設為120小時,除此以外,進行與實施例2相同之操作,而獲得實施例8之二氧化鈰研磨粒。 <比較例1~3之二氧化鈰研磨粒> 比較例1之二氧化鈰研磨粒係使用粉碎二氧化鈰(昭和電工公司製造,「GPL-C1010」)。比較例2之二氧化鈰研磨粒係使用阿南化成公司製造之「HC60」。比較例3之二氧化鈰研磨粒係使用Adcon公司製造之「Nano Ceria」。 3.研磨液組合物之製備(實施例1~8及比較例1~3) 將實施例1~8及比較例1~3二氧化鈰研磨粒及水系介質(超純水)進行混合,並視需要添加pH值調整劑,而獲得25℃下之pH值為4.5之實施例1~8及比較例1~3之研磨液組合物。研磨液組合物之pH值調整係使用氨或者鹽酸而進行。將各研磨液組合物中之各成分之含量示於表1。 4.研磨液組合物(實施例1~8及比較例1~3)之評價 [試片之製作] 於矽晶圓之單面,藉由TEOS-電漿CVD法形成厚度2,000 nm之二氧化矽膜後,切取40 mm×40 mm之正方形片,而獲得二氧化矽膜試片。 [二氧化矽膜(被研磨膜)之研磨速度之測定] 作為研磨裝置,使用壓盤直徑為380 mm之Techno Rise公司製造之「TR15M-TRK1」。又,作為研磨墊,使用NITTA HAAS公司製造之硬質胺基甲酸酯墊「IC-1000/Suba400」。於上述研磨裝置之壓盤貼附上述研磨墊。將上述試片設置於固持器,以試片之形成有二氧化矽膜之面朝下之方式(以二氧化矽膜面向研磨墊之方式)將固持器載置於研磨墊。進而,以對試片施加之負重成為300 g重/cm2 之方式將鉛垂載直於固持器。於貼附有研磨墊之壓盤之中心,一邊以50 mL/min之速度滴加研磨液組合物,一邊使壓盤及固持器各自向相同旋轉方向以90 r/min旋轉1分鐘,進行二氧化矽膜試片之研磨。研磨後,使用超純水進行洗淨,並進行乾燥,將二氧化矽膜試片作為下述光干涉式膜厚測定裝置之測定對象。 於研磨前及研磨後,使用光干涉式膜厚測定裝置(Dainippon Screen公司製造之「Lambda ACE VM-1000」)對二氧化矽膜之膜厚進行測定。二氧化矽膜之研磨速度係藉由下述式而算出,並示於下述表1。 二氧化矽膜之研磨速度(Å/min) =[研磨前之二氧化矽膜厚度(Å)-研磨後之二氧化矽膜厚度(Å)]/研磨時間(分鐘) [表1] 如表1所示,含有{100}面之露出量為30%以上之二氧化鈰研磨粒之實施例1~8之研磨液組合物之研磨速度較比較例1~3有所提昇。 [產業上之可利用性] 本發明之研磨液組合物於高密度化或高積體化用之半導體基板之製造方法中有用。
圖1係表示實施例2之二氧化鈰研磨粒之掃描型電子顯微鏡(SEM)觀察圖像之一例的圖。

Claims (11)

  1. 一種二氧化鈰研磨粒,其係用於研磨劑者,並且 二氧化鈰研磨粒表面之{100}面之露出量為30%以上。
  2. 如請求項1之二氧化鈰研磨粒,其中二氧化鈰研磨粒之平均一次粒徑為10 nm以上且150 nm以下。
  3. 如請求項1或2之二氧化鈰研磨粒,其中二氧化鈰研磨粒為二氧化鈰研磨粒中之鈰原子之一部分被置換為鋯原子之複合氧化物粒子。
  4. 一種如請求項1至3中任一項之二氧化鈰研磨粒之用途,其係用作研磨粒子。
  5. 一種如請求項1至3中任一項之二氧化鈰研磨粒之用途,其係用於研磨。
  6. 一種研磨液組合物,其包含如請求項1至3中任一項之二氧化鈰研磨粒、及水系介質。
  7. 如請求項6之研磨液組合物,其中二氧化鈰研磨粒之含量為0.05質量%以上且5質量%以下。
  8. 如請求項6或7之研磨液組合物,其係用於二氧化矽膜之研磨。
  9. 一種半導體基板之製造方法,其包括使用如請求項6至8中任一項之研磨液組合物對被研磨基板進行研磨之步驟。
  10. 一種基板之研磨方法,其包括使用如請求項6至8中任一項之研磨液組合物對被研磨基板進行研磨之步驟。
  11. 一種半導體裝置之製造方法,其包括使用如請求項6至8中任一項之研磨液組合物對被研磨基板進行研磨之步驟。
TW106146209A 2016-12-28 2017-12-28 二氧化鈰研磨粒 TW201829678A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016256308A JP6761339B2 (ja) 2016-12-28 2016-12-28 酸化セリウム砥粒
JP2016-256308 2016-12-28

Publications (1)

Publication Number Publication Date
TW201829678A true TW201829678A (zh) 2018-08-16

Family

ID=62709570

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106146209A TW201829678A (zh) 2016-12-28 2017-12-28 二氧化鈰研磨粒

Country Status (6)

Country Link
US (1) US20190322899A1 (zh)
JP (1) JP6761339B2 (zh)
KR (1) KR20190102202A (zh)
CN (1) CN110168040A (zh)
TW (1) TW201829678A (zh)
WO (1) WO2018124013A1 (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610548B1 (en) * 1999-03-26 2003-08-26 Sony Corporation Crystal growth method of oxide, cerium oxide, promethium oxide, multi-layered structure of oxides, manufacturing method of field effect transistor, manufacturing method of ferroelectric non-volatile memory and ferroelectric non-volatile memory
WO2005000003A2 (en) * 2003-06-25 2005-01-06 Universal Electronics Inc. System and method for monitoring remote control transmissions
JP5248096B2 (ja) * 2006-12-28 2013-07-31 花王株式会社 研磨液組成物
EP2107093B1 (en) * 2006-12-28 2013-02-13 Kao Corporation Polishing liquid composition
JP2009136926A (ja) 2007-12-03 2009-06-25 Allied Material Corp コンディショナおよびコンディショニング方法
EP2242717A1 (en) * 2008-02-08 2010-10-27 Umicore Doped ceria abrasives with controlled morphology and preparation thereof
JP5326492B2 (ja) 2008-02-12 2013-10-30 日立化成株式会社 Cmp用研磨液、基板の研磨方法及び電子部品
JP5403956B2 (ja) * 2008-07-01 2014-01-29 花王株式会社 研磨液組成物
KR20100004181A (ko) * 2008-07-03 2010-01-13 삼성전자주식회사 화학 기계적 연마용 슬러리 조성물, 이의 제조 방법 및화학 기계적 연마방법
JP2010083741A (ja) * 2008-10-03 2010-04-15 Mitsui Mining & Smelting Co Ltd 酸化セリウム及びその製造方法
CN101745429A (zh) * 2009-12-16 2010-06-23 南京大学 C12~c18羧酸根保护的氧化铈纳米晶及其制法和用途
US20130168348A1 (en) 2010-09-08 2013-07-04 Basf Se Aqueous polishing composition and process for chemically mechanically polishing substrates containing silicon oxide dielectric and polysilicon films
KR101773543B1 (ko) * 2015-06-30 2017-09-01 유비머트리얼즈주식회사 연마 입자, 연마 슬러리 및 연마 입자의 제조 방법

Also Published As

Publication number Publication date
CN110168040A (zh) 2019-08-23
WO2018124013A1 (ja) 2018-07-05
JP2018110146A (ja) 2018-07-12
JP6761339B2 (ja) 2020-09-23
US20190322899A1 (en) 2019-10-24
KR20190102202A (ko) 2019-09-03

Similar Documents

Publication Publication Date Title
KR101277029B1 (ko) Cmp 연마액, 기판의 연마 방법 및 전자 부품
JP2021509768A (ja) 改善されたトポグラフィーを有するタングステンバフ研磨組成物
TWI731207B (zh) 二氧化鈰研磨粒
JP2012146975A (ja) 研磨液及びこの研磨液を用いた基板の研磨方法
CN101311205A (zh) Cmp研磨剂以及衬底的研磨方法
JP5088452B2 (ja) Cmp研磨液、基板の研磨方法及び電子部品
TW201518488A (zh) 研磨用組成物及其製造方法
JP7236270B2 (ja) 研磨液組成物
KR102444552B1 (ko) 높은 제거 속도 및 낮은 결함성을 갖는, 폴리실리콘 및 질화물에 비해 산화물에 대해 선택적인 cmp 조성물
JP6811090B2 (ja) 酸化珪素膜用研磨液組成物
TW201829678A (zh) 二氧化鈰研磨粒
WO2016021325A1 (ja) Cmp用研磨液及びこれを用いた研磨方法
JP2018053138A (ja) 金属酸化物粒子分散液
JP6551053B2 (ja) Cmp用研磨液及びこれを用いた研磨方法
JP2019071366A (ja) 酸化セリウム含有複合研磨材
JP6797665B2 (ja) 研磨液組成物
WO2021161462A1 (ja) Cmp研磨液及び研磨方法
JP7019379B2 (ja) 複合砥粒
KR20180068425A (ko) 화학 기계적 연마 슬러리 조성물 및 반도체 소자의 제조방법
TWI700358B (zh) 用於高效率拋光含鍺基材的化學機械拋光(cmp)組成物
JP6627283B2 (ja) 研磨液及び研磨方法
JP2017210497A (ja) Cmp用研磨液及びこれを用いた研磨方法