TW201824593A - Light emitting element mounting substrate, method for manufacturing same, and light emitting element mounting package - Google Patents
Light emitting element mounting substrate, method for manufacturing same, and light emitting element mounting package Download PDFInfo
- Publication number
- TW201824593A TW201824593A TW106125690A TW106125690A TW201824593A TW 201824593 A TW201824593 A TW 201824593A TW 106125690 A TW106125690 A TW 106125690A TW 106125690 A TW106125690 A TW 106125690A TW 201824593 A TW201824593 A TW 201824593A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- emitting element
- aluminum nitride
- substrate
- nitride substrate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 120
- 238000000034 method Methods 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 64
- 239000011521 glass Substances 0.000 claims description 47
- 239000003566 sealing material Substances 0.000 claims description 22
- 239000002241 glass-ceramic Substances 0.000 claims description 12
- 238000007789 sealing Methods 0.000 claims description 10
- 230000001747 exhibiting effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 74
- 239000000843 powder Substances 0.000 description 14
- 239000011347 resin Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 238000010304 firing Methods 0.000 description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 229910052709 silver Inorganic materials 0.000 description 10
- 239000004332 silver Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 238000001354 calcination Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004887 air purification Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000009970 fire resistant effect Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000005394 sealing glass Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- -1 yttrium compound Chemical class 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- IHWJXGQYRBHUIF-UHFFFAOYSA-N [Ag].[Pt] Chemical compound [Ag].[Pt] IHWJXGQYRBHUIF-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052642 spodumene Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 150000003658 tungsten compounds Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
- 229910000500 β-quartz Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
Description
本發明係關於一種用以搭載發光二極體等發光元件之發光元件搭載用基板及其製造方法、以及使用該發光元件搭載用基板之搭載有發光元件之封裝體。The present invention relates to a light-emitting element mounting substrate for mounting a light-emitting element such as a light-emitting diode, a manufacturing method thereof, and a light-emitting element-mounted package using the light-emitting element mounting substrate.
先前,為了搭載發光元件,而使用發光元件搭載用基板。作為搭載於發光元件搭載用基板之發光元件之一例的LED(Light Emitting Diode,發光二極體)為小型且消耗電力較低之光源。其中,白色LED作為代替白熾燈泡、或螢光燈之照明而受到關注。又,紫外LED於殺菌、空氣淨化、癌治療、或樹脂硬化等用途中作為紫外線光源而受到關注。 於下述專利文獻1中揭示有一種於氮化鋁基板上設置光反射層而成之發光元件搭載用基板。於專利文獻1中,在氮化鋁基板內設置有填孔。上述填孔將正面側電極與背面側電極連接。 又,於專利文獻1中揭示有一種於上述發光元件搭載用基板上搭載發光元件而成之發光裝置。上述發光元件連接於上述正面側電極。於專利文獻1中,以覆蓋上述發光元件之方式設置有樹脂,藉此將發光元件密封。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2015-144210號公報Conventionally, in order to mount a light emitting element, a light emitting element mounting substrate is used. An LED (Light Emitting Diode), which is an example of a light emitting element mounted on a substrate for mounting a light emitting element, is a light source with a small size and low power consumption. Among them, white LEDs have attracted attention as lighting for replacing incandescent bulbs or fluorescent lamps. In addition, ultraviolet LEDs have attracted attention as ultraviolet light sources in applications such as sterilization, air purification, cancer treatment, and resin curing. The following Patent Document 1 discloses a substrate for mounting a light emitting element in which a light reflecting layer is provided on an aluminum nitride substrate. In Patent Document 1, a via hole is provided in an aluminum nitride substrate. The hole filling connects the front-side electrode and the back-side electrode. Further, Patent Document 1 discloses a light emitting device in which a light emitting element is mounted on the light emitting element mounting substrate. The light-emitting element is connected to the front-side electrode. In Patent Document 1, a resin is provided so as to cover the light-emitting element, thereby sealing the light-emitting element. [Prior Art Literature] [Patent Literature] [Patent Literature 1] Japanese Patent Laid-Open No. 2015-144210
[發明所欲解決之問題] 近年來,就更進一步提高殺菌或空氣淨化、或者樹脂硬化等性能之觀點而言,對深紫外線LED之關注不斷提高。於將深紫外線LED用作發光元件之情形時,需要進而更高之氣密性。 然而,專利文獻1之發光裝置係以發出可見光線之發光元件為前提,氣密性不充分。 本發明之目的在於提供一種於搭載並密封發光元件時能夠表現較高之氣密性之發光元件搭載用基板、該發光元件搭載用基板之製造方法、及使用該發光元件搭載用基板之搭載有發光元件之封裝體。 [解決問題之技術手段] 本發明之發光元件搭載用基板之特徵在於:其係用以搭載發光元件者,且具備:氮化鋁基板,其具有相互對向之第1及第2主面;配線電極,其設置於上述氮化鋁基板之上述第1主面上,用以與上述發光元件連接;端子電極,其設置於上述氮化鋁基板之上述第2主面上;通孔電極,其設置於上述氮化鋁基板內,並將上述配線電極與上述端子電極連接;及框狀之光反射層,其設置於上述氮化鋁基板之上述第1主面上;且以自上述第1主面至上述第2主面之方式於上述氮化鋁基板設置有通孔,於上述通孔內配置有上述通孔電極,上述通孔由上述光反射層密封。 本發明之發光元件搭載用基板較佳為上述光反射層由玻璃陶瓷構成。 本發明之發光元件搭載用基板之製造方法之特徵在於:其係按照本發明而構成之發光元件搭載用基板之製造方法,且包括以下步驟:於上述氮化鋁基板形成上述通孔;於上述氮化鋁基板中,在上述通孔內形成上述通孔電極,在上述第1及第2主面上分別形成上述配線電極及上述端子電極;以及於上述氮化鋁基板之上述第1主面上,以將上述通孔密封之方式形成上述光反射層。 本發明之搭載有發光元件之封裝體之特徵在於:其係用以將發光元件搭載並密封於內部者,且具備:發光元件搭載用基板,其按照本發明而構成;發光元件,其搭載於上述發光元件搭載用基板;玻璃蓋,其配置於上述發光元件搭載用基板中之上述光反射層之上部,將上述搭載有發光元件之封裝體內密封;及封接材料層,其配置於上述光反射層與上述玻璃蓋之間。 [發明之效果] 根據本發明,可提供一種於搭載並密封發光元件時能夠表現較高之氣密性之發光元件搭載用基板。[Problems to be Solved by the Invention] In recent years, from the viewpoint of further improving performance such as sterilization, air purification, and resin hardening, attention has been paid to deep ultraviolet LEDs. When a deep-ultraviolet LED is used as a light-emitting element, further higher air-tightness is required. However, the light-emitting device of Patent Document 1 is premised on a light-emitting element that emits visible light, and has insufficient air-tightness. An object of the present invention is to provide a light-emitting element mounting substrate capable of exhibiting high air-tightness when mounting and sealing a light-emitting element, a method for manufacturing the light-emitting element mounting substrate, and a mounting using the light-emitting element mounting substrate Package of light emitting element. [Technical means for solving the problem] The light-emitting element mounting substrate of the present invention is characterized in that it is used for mounting light-emitting elements and includes an aluminum nitride substrate having first and second main surfaces facing each other; A wiring electrode provided on the first main surface of the aluminum nitride substrate to connect with the light emitting element; a terminal electrode provided on the second main surface of the aluminum nitride substrate; a through-hole electrode, It is provided in the aluminum nitride substrate, and connects the wiring electrode and the terminal electrode; and a frame-shaped light reflection layer is provided on the first main surface of the aluminum nitride substrate; The method of 1 main surface to the second main surface is provided with a through hole in the aluminum nitride substrate, the through hole electrode is arranged in the through hole, and the through hole is sealed by the light reflection layer. In the light-emitting element mounting substrate of the present invention, it is preferable that the light reflection layer is made of glass ceramic. The method for manufacturing a substrate for mounting a light-emitting element according to the present invention is characterized in that it is a method for manufacturing a substrate for mounting a light-emitting element constructed in accordance with the present invention, and includes the following steps: forming the above-mentioned through hole on the aluminum nitride substrate; and In the aluminum nitride substrate, the through-hole electrode is formed in the through-hole, and the wiring electrode and the terminal electrode are formed on the first and second main surfaces, respectively; and the first main surface of the aluminum nitride substrate. The light reflecting layer is formed so as to seal the through hole. The light-emitting element-equipped package of the present invention is characterized in that it is used for mounting and sealing the light-emitting element inside, and includes: a light-emitting element mounting substrate configured according to the present invention; and a light-emitting element mounted on The light-emitting element mounting substrate; a glass cover disposed on the light-reflecting layer in the light-emitting element mounting substrate; and sealing the light-emitting element-mounted package; and a sealing material layer disposed on the light Between the reflective layer and the glass cover. [Effects of the Invention] According to the present invention, it is possible to provide a light-emitting element mounting substrate that can exhibit high airtightness when the light-emitting element is mounted and sealed.
以下,對較佳之實施形態進行說明。但是,以下之實施形態僅為例示,本發明並不限定於以下之實施形態。又,於各圖式中,存在具有實質上相同之功能之構件係以相同之符號進行參照之情形。 [發光元件搭載用基板] 圖1係表示本發明之一實施形態之發光元件搭載用基板之模式性剖視圖。又,圖2係本發明之一實施形態之發光元件搭載用基板之模式性仰視圖。 如圖1所示,發光元件搭載用基板1具備氮化鋁基板2、光反射層3、配線電極4a、4b、通孔電極5a、5b及端子電極6a、6b。再者,發光元件搭載用基板1係用以搭載深紫外線LED等發光元件之基板。 氮化鋁基板2具有第1及第2主面2a、2b。第1及第2主面2a、2b相互對向。於氮化鋁基板2之第1主面2a上設置有配線電極4a、4b。配線電極4a、4b係用以與發光元件連接之電極。另一方面,於氮化鋁基板2之第2主面2b上設置有端子電極6a、6b。端子電極6a、6b係用以與外部連接之電極。 於氮化鋁基板2設置有通孔7a、7b。通孔7a、7b係以自第1主面2a至第2主面2b之方式設置。又,於通孔7a、7b內設置有通孔電極5a、5b。通孔電極5a、5b將配線電極4a、4b及端子電極6a、6b連接。 於氮化鋁基板2之第1主面2a設置有用以搭載發光元件之發光元件搭載區域2c。於第1主面2a上,以包圍該發光元件搭載區域2c之方式設置有框狀之光反射層3。光反射層3係以覆蓋通孔7a、7b之方式設置。更具體而言,光反射層3係以將通孔7a、7b密封之方式設置。再者,光反射層3例如可由玻璃陶瓷構成。 於本實施形態之發光元件搭載用基板1中,由於使用有氮化鋁基板2,故而散熱性優異。又,由於具有光反射層3,故而具有較高之反射率。進而,於發光元件搭載用基板1中,以覆蓋氮化鋁基板2之通孔7a、7b之方式設置有光反射層3,藉由光反射層3將通孔7a、7b密封。因此,能夠於搭載並密封發光元件時提高氣密性。關於該方面,於下述搭載有發光元件之封裝體之欄中詳細地進行說明。 再者,如圖1所示,於發光元件搭載用基板1中,光反射層3之內側面3a係以沿相對於氮化鋁基板2大致垂直之方向延伸之方式形成。但是,於本發明中,如圖3之變化例所示般,光反射層3之內側面3a亦可具有自下表面3c朝向上表面3b擴大之錐形狀。 又,於本發明中,亦可於光反射層3之內側面3a上設置有透光性之功能層。作為功能層,例如,可列舉:針對損傷或污漬或者化學性腐蝕等之保護塗層、波長過濾層、光擴散層、或干擾層等。 以下,對構成發光元件搭載用基板1等本發明之發光元件搭載用基板之各構件的詳細內容進行說明。 氮化鋁基板; 氮化鋁基板包含氮化鋁。氮化鋁基板亦可包含釔化合物、或鎢化合物等對氮化鋁進行燒結時之燒結助劑。 光反射層; 光反射層例如可由玻璃陶瓷構成。作為玻璃陶瓷之材料,可使用玻璃粉末及陶瓷粉末之混合粉末、或晶質玻璃粉末。 作為玻璃粉末,可使用SiO2 -B3 O3 系玻璃、SiO2 -RO系玻璃(R表示鹼土類金屬)、SiO2 -Al2 O3 系玻璃、SiO2 -ZnO系玻璃、SiO2 -R2 O系玻璃(R表示鹼金屬)、或SiO2 -TiO2 系玻璃等。該等玻璃粉末可單獨使用,亦可併用複數種。 作為陶瓷粉末,可使用氧化鋁、氧化鋯或氧化鈦等。該等陶瓷粉末可單獨使用,亦可併用複數種。 功能層; 作為功能層之材料,並無特別限定,可列舉:矽酸系玻璃等玻璃、氧化矽、氧化鋁、氧化鋯、氧化鉭、或氧化鈮等金屬氧化物、聚甲基丙烯酸甲酯、聚碳酸酯、或聚丙烯酸酯等樹脂。該等材料可單獨使用,亦可併用複數種。 [發光元件搭載用基板之製造方法] 以下,參照圖4(a)~(d),對發光元件搭載用基板1之製造方法進行說明。 首先,如圖4(a)所示,準備煅燒前之氮化鋁基板2A。繼而,如圖4(b)所示,於所準備之煅燒前之氮化鋁基板2A形成通孔7a、7b。作為通孔7a、7b之形成方法,並無特別限定,例如,可藉由利用鑽孔器之機械加工、或雷射加工而形成。 其次,如圖4(c)所示,形成配線電極4a、4b、通孔電極5a、5b及端子電極6a、6b。 作為各電極之形成方法,並無特別限定,例如,可藉由印刷而形成。作為印刷所使用之糊劑,並無特別限定,例如,可使用銀、銅、金、銀鈀合金、或銀鉑合金等糊劑。其等可單獨使用,亦可併用複數種。 再者,糊劑之印刷可藉由以下方法進行:首先,於通孔7a、7b內填充通孔電極5a、5b形成用糊劑,繼而,於煅燒前之氮化鋁基板2A印刷配線電極4a、4b形成用糊劑及端子電極6a、6b形成用糊劑。 其次,對煅燒前之氮化鋁基板2A及各糊劑進行煅燒。藉此,形成氮化鋁基板2、配線電極4a、4b、通孔電極5a、5b及端子電極6a、6b。此時,於對構成各糊劑之材料使用銅之情形時,於氮氣環境下進行煅燒。另一方面,於對構成各糊劑之材料使用金、銀、或包含銀之合金之情形時,於大氣中進行煅燒。於在大氣中進行煅燒之情形時,較佳為將煅燒溫度設為1200℃以下。若煅燒溫度超過1200℃,則存在氮化鋁之表面氧化而熱導率下降之情形。再者,各糊劑之煅燒亦可與形成下述光反射層3時之煅燒同時進行。 又,於對各電極進行鍍覆之情形時,例如可實施鍍金。作為鍍覆之方法,例如可列舉無電鍍、或電鍍,可根據鍍層之厚度適當選擇。 其次,如圖4(d)所示,於氮化鋁基板2上形成光反射層3。此時,光反射層3係以覆蓋通孔7a、7b之方式形成。藉此,可將通孔7a、7b密封,而獲得發光元件搭載用基板1。 光反射層3較佳為由玻璃陶瓷形成。於此情形時,能夠更進一步提高光之反射率,且能夠更進一步提高與氮化鋁基板2之接著性。 作為形成光反射層3之方法,並無特別限定,例如,可列舉網版印刷法或坯片積層法等。 於使用玻璃陶瓷並藉由網版印刷法形成光反射層3之情形時,可藉由以下方法進行:使用網版印刷機將藉由向玻璃陶瓷粉末中添加樹脂黏合劑及溶劑並進行混練而製作之高黏性之糊劑印刷至氮化鋁基板2。 又,於使用玻璃陶瓷並藉由坯片積層法形成光反射層3之情形時,首先,向玻璃陶瓷粉末中添加樹脂黏合劑、塑化劑及溶劑並進行混練,藉此製作漿料。繼而,使用刮刀等片材成形機將所製作之漿料成形為坯片。其次,將所獲得之坯片衝壓成光反射層3之形狀,並藉由壓接使其積層於氮化鋁基板2。 由於在網版印刷法及坯片積層法之任一方法中均使用有樹脂黏合劑,故而煅燒可以脫樹脂黏合劑以及使玻璃陶瓷粉末燒結之正式煅燒之2個階段進行。 於使用丙烯酸系樹脂及丁醛樹脂作為樹脂黏合劑之情形時,例如可於400℃~600℃下進行脫樹脂黏合劑。又,正式煅燒例如可於850℃~1000℃下進行。 再者,於需要進行錐形加工之情形時,利用鑽孔加工機等將煅燒前之光反射層3斜向切取,藉此能夠加工成錐形狀。 於發光元件搭載用基板1之製造方法中,由於使用氮化鋁基板2,故而散熱性優異。又,由於設置有光反射層3,故而具有較高之反射率。進而,於發光元件搭載用基板1中,由於以將氮化鋁基板2之通孔7a、7b密封之方式形成有光反射層3,故而於搭載並密封發光元件時能夠提高氣密性。關於該方面,於下述搭載有發光元件之封裝體之欄中詳細地進行說明。 [搭載有發光元件之封裝體] 圖5係表示本發明之一實施形態之搭載有發光元件之封裝體之模式性剖視圖。 如圖5所示,搭載有發光元件之封裝體21具備發光元件搭載用基板1、玻璃蓋8、封接材料層9及發光元件10。發光元件搭載用基板1係上述本發明之一實施形態之發光元件搭載用基板。 發光元件10係搭載於發光元件搭載用基板1。發光元件10連接於發光元件搭載用基板1之配線電極4a、4b。作為發光元件10,可列舉:深紫外線LED、或組合藍色LED與黃色蛍光體所得之白色LED。 又,於發光元件搭載用基板1中之光反射層3之上表面3b上配置有玻璃蓋8。玻璃蓋8係用以將搭載有發光元件之封裝體21內密封之構件。再者,在光反射層3與玻璃蓋8之間設置有封接材料層9。藉由封接材料層9將光反射層3與玻璃蓋8接合。 於搭載有發光元件之封裝體21中,由於在發光元件搭載用基板1使用有氮化鋁基板2,故而散熱性優異。又,由於在發光元件搭載用基板1使用有光反射層3,故而提高反射率。進而,於搭載有發光元件之封裝體21中,由於並非藉由樹脂而藉由玻璃蓋8進行密封,故而不會如樹脂般因紫外線而劣化,從而氣密性下降。又,由於以覆蓋氮化鋁基板2之通孔7a、7b之方式設置有光反射層3,故而通孔7a、7b被密封,而更進一步提高氣密性。進而,於搭載有發光元件之封裝體21中,由於構成材料全部為無機材料,故而對紫外線之耐久性優異。 再者,關於藉由利用光反射層3將通孔7a、7b密封而提高氣密性之理由,可以如下方式進行說明。 圖7係表示比較例之搭載有發光元件之封裝體之模式性剖視圖。 如圖7所示,於比較例之搭載有發光元件之封裝體101中,於俯視下,通孔107a、107b未設置於與光反射層103重疊之位置。更具體而言,通孔107a、107b未被光反射層103密封。因此,既便於藉由玻璃蓋108將發光元件搭載用基板100密封之情形時,亦存在水分經由通孔107a、107b而滲入之情況。更具體而言,存在如下情況:於通孔107a、107b內,水分自氮化鋁基板102與通孔電極105a、105b之界面滲入。因此,於比較例之搭載有發光元件之封裝體101中,未充分地提高氣密性。 相對於此,於本實施形態之搭載有發光元件之封裝體21中,通孔7a、7b由光反射層3密封。因此,可藉由光反射層3防止水分經由通孔7a、7b滲入。更具體而言,可藉由光反射層3防止水分自氮化鋁基板2與通孔電極5a、5b之界面滲入。如此,於搭載有發光元件之封裝體21中,由於能夠藉由光反射層3防止水分之滲入,故而提高了氣密性。 以下,對搭載有發光元件之封裝體21之製造方法之一例進行說明。 (製造方法) 圖6(a)~(d)係用以說明本發明之一實施形態之搭載有發光元件之封裝體之製造方法的模式性剖視圖。 於搭載有發光元件之封裝體21之製造方法中,首先,利用上述方法準備圖6(a)所示之發光元件搭載用基板1。繼而,如圖6(b)所示,於發光元件搭載用基板1上搭載發光元件10。發光元件10與發光元件搭載用基板1之連接例如可藉由利用焊料球之連接、或利用導線結合之連接而進行。 其次,於光反射層3之上表面3b上印刷封接材料。於印刷封接材料後,使其乾燥,並進行熱處理而使封接材料燒結,從而形成圖6(c)所示之封接材料層9。再者,封接材料層9亦可形成於玻璃蓋8側,或者亦可形成於玻璃蓋8側及光反射層3側兩者。 其次,如圖6(d)所示,於光反射層3之上表面3b上設置有封接材料層9之部分,配置玻璃蓋8。再者,玻璃蓋8係只要以於俯視下至少一部分與設置有封接材料層9之部分重疊之方式配置即可。但是,玻璃蓋8較佳為以於俯視下與設置有封接材料層9之部分完全重疊之方式配置。 其次,於在光反射層3之上表面3b上經由封接材料層9而配置有玻璃蓋8之狀態下,自雷射光源照射雷射,使封接材料層9軟化,從而使光反射層3及玻璃蓋8接合。藉此,將內部氣密式密封,而獲得搭載有發光元件之封裝體21。根據該方法,可僅對封接材料層9局部性地進行加熱,故而可不使深紫外線LED等耐熱性較低之發光元件10劣化地將封裝體內氣密式密封。作為上述雷射,例如,可使用波長為600 nm~1600 nm之雷射。 以下,對構成搭載有發光元件之封裝體21等本發明之搭載有發光元件之封裝體之各構件的詳細內容進行說明。 玻璃蓋; 作為構成玻璃蓋之玻璃,較佳為紫外線透過玻璃。作為構成玻璃蓋之玻璃之具體例,可列舉:SiO2 -B2 O3 -RO(R為Mg、Ca、Sr或Ba)系玻璃、SiO2 -B2 O3 -R'2 O(R'為Li、Na或Ka)系玻璃、SiO2 -B2 O3 -RO-R'2 O(R'為Li、Na或Ka)系玻璃等。 封接材料層; 用以形成封接材料層之封接材料較佳為包含Bi2 O3 系玻璃粉末、SnO-P2 O5 系玻璃粉末、V2 O5 -TeO2 系玻璃粉末等低熔點之封接玻璃。尤其是於照射雷射而進行密封之情形時,就以進而更短時間之加熱使封接材料軟化之必要性及更進一步提高接合強度之觀點而言,更佳為對封接玻璃使用軟化點較低之鉍系玻璃粉末。又,亦可於封接材料中包含低膨脹耐火性填料、或雷射吸收材等。作為低膨脹耐火性填料,例如可列舉:堇青石、矽鋅礦、氧化鋁、磷酸鋯系化合物、鋯英石、氧化鋯、氧化錫、石英玻璃、β-石英固溶體、β-鋰霞石、鋰輝石。又,作為雷射吸收材,例如可列舉選自Fe、Mn、Cu等之至少1種金屬或包含該金屬之氧化物等化合物。 以下,基於具體之實施例,對本發明進一步詳細地進行說明,但本發明不受以下實施例任何限定,可於不變更其主旨之範圍內適當進行變更而實施。 (實施例1) 於實施例1中,製作圖5所示之搭載有發光元件之封裝體21。 更具體而言,首先,於厚度0.3 mm之氮化鋁基板2之2個部位,使用半導體雷射形成直徑0.2 mm之通孔7a、7b。其次,經由金屬遮罩將銀糊劑填充至通孔7a、7b內,以0.2 mm之配線寬度印刷銀糊劑,並於氮化鋁基板2之第1及第2主面2a、2b進行電連接。其次,於第1主面2a印刷配線電極4a、4b形成用之銀糊劑。又,於第2主面2b印刷端子電極6a、6b形成用之銀糊劑。其次,將塗佈有各銀糊劑之氮化鋁基板2於大氣中以850℃之溫度煅燒20分鐘。 其次,將成為光反射層3之厚度200 μm之坯片衝壓成所需圖案,以積層6層之狀態即1200 μm之厚度且以80℃之溫度熱壓接至氮化鋁基板2。此時,於通孔7a、7b被光反射層3完全密封之位置進行熱壓接。 其次,於在氮化鋁基板2上形成有坯片之狀態下,使用電爐進行煅燒。為了使銀糊劑及坯片所包含之樹脂黏合劑氣化,而以500℃保持2小時,其後,為了使銀與玻璃陶瓷燒結,而以850℃保持1小時。 其次,對所獲得之發光元件搭載用基板1實施鍍鎳及鍍金,使用焊料球將作為發光元件10之深紫外線LED封裝。繼而,於光反射層3之上表面3b塗佈玻璃料,安裝作為玻璃蓋8之紫外線透過玻璃並進行雷射密封,藉此獲得封裝有深紫外線LED之搭載有發光元件之封裝體21。 (比較例1) 於比較例1中,製作圖7所示之搭載有發光元件之封裝體101。 具體而言,如圖7所示,於不與光反射層103重疊之位置形成通孔107a、107b,除此以外,以與實施例1相同之方式製作搭載有發光元件之封裝體101。 (評價) 關於實施例1及比較例1中所獲得之搭載有發光元件之封裝體21、101,分別於121℃、2氣壓及濕度100%之條件下,於壓力容器內保持24小時。其結果,於實施例1中未觀察到變化,但於比較例1中在封裝體內部觀察到結露。藉此,可確認:實施例1之搭載有發光元件之封裝體21與比較例1之搭載有發光元件之封裝體101相比氣密性提高。Hereinafter, a preferred embodiment will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. In each drawing, components having substantially the same function may be referred to by the same reference numerals. [Light-Emitting Element Mounting Board] FIG. 1 is a schematic cross-sectional view showing a light-emitting element mounting board according to an embodiment of the present invention. FIG. 2 is a schematic bottom view of a light emitting element mounting substrate according to an embodiment of the present invention. As shown in FIG. 1, the light emitting element mounting substrate 1 includes an aluminum nitride substrate 2, a light reflection layer 3, wiring electrodes 4 a and 4 b, via electrodes 5 a and 5 b, and terminal electrodes 6 a and 6 b. The light-emitting element mounting substrate 1 is a substrate for mounting light-emitting elements such as deep ultraviolet LEDs. The aluminum nitride substrate 2 includes first and second main surfaces 2a and 2b. The first and second main surfaces 2a, 2b face each other. Wiring electrodes 4a and 4b are provided on the first main surface 2a of the aluminum nitride substrate 2. The wiring electrodes 4a and 4b are electrodes for connecting with a light emitting element. On the other hand, terminal electrodes 6a, 6b are provided on the second main surface 2b of the aluminum nitride substrate 2. The terminal electrodes 6a and 6b are electrodes for external connection. Through holes 7a and 7b are provided in the aluminum nitride substrate 2. The through holes 7a and 7b are provided from the first main surface 2a to the second main surface 2b. Moreover, through-hole electrodes 5a and 5b are provided in the through-holes 7a and 7b. The via electrodes 5a and 5b connect the wiring electrodes 4a and 4b and the terminal electrodes 6a and 6b. A light-emitting element mounting region 2c is provided on the first main surface 2a of the aluminum nitride substrate 2 for mounting a light-emitting element. A frame-shaped light reflection layer 3 is provided on the first main surface 2a so as to surround the light-emitting element mounting region 2c. The light reflection layer 3 is provided so as to cover the through holes 7a and 7b. More specifically, the light reflection layer 3 is provided so as to seal the through holes 7 a and 7 b. The light reflection layer 3 may be made of glass ceramic, for example. In the light-emitting element mounting substrate 1 of this embodiment, since the aluminum nitride substrate 2 is used, it has excellent heat dissipation properties. Moreover, since it has the light reflection layer 3, it has a high reflectance. Further, in the light-emitting element mounting substrate 1, a light reflection layer 3 is provided so as to cover the through holes 7 a and 7 b of the aluminum nitride substrate 2, and the through holes 7 a and 7 b are sealed by the light reflection layer 3. Therefore, airtightness can be improved when a light emitting element is mounted and sealed. This aspect will be described in detail in the column of the package on which the light emitting element is mounted below. As shown in FIG. 1, in the light-emitting element mounting substrate 1, the inner surface 3 a of the light reflection layer 3 is formed so as to extend in a direction substantially perpendicular to the aluminum nitride substrate 2. However, in the present invention, as shown in a modified example of FIG. 3, the inner side surface 3a of the light reflection layer 3 may have a tapered shape that is enlarged from the lower surface 3c toward the upper surface 3b. In the present invention, a light-transmissive functional layer may be provided on the inner side surface 3a of the light reflection layer 3. Examples of the functional layer include a protective coating against damage, stains, or chemical corrosion, a wavelength filter layer, a light diffusion layer, or an interference layer. Hereinafter, details of each member constituting the light emitting element mounting substrate of the present invention such as the light emitting element mounting substrate 1 will be described. Aluminum nitride substrate; aluminum nitride substrate contains aluminum nitride. The aluminum nitride substrate may include a sintering aid when sintering aluminum nitride, such as a yttrium compound or a tungsten compound. Light reflecting layer; The light reflecting layer may be made of glass ceramic, for example. As a material for glass ceramics, a mixed powder of glass powder and ceramic powder, or a crystalline glass powder can be used. As the glass powder, SiO 2 -B 3 O 3 based glass, SiO 2 -RO based glass (R is an alkaline earth metal), SiO 2 -Al 2 O 3 based glass, SiO 2 -ZnO based glass, SiO 2- R 2 O-based glass (R represents an alkali metal), SiO 2 -TiO 2 -based glass, or the like. These glass powders may be used alone or in combination. As the ceramic powder, alumina, zirconia, or titanium oxide can be used. These ceramic powders may be used alone or in combination. Functional layer; The material of the functional layer is not particularly limited, and examples thereof include glass such as silicate glass, silicon oxide, aluminum oxide, zirconia, tantalum oxide, or metal oxide such as niobium oxide, and polymethyl methacrylate. , Polycarbonate, or polyacrylate. These materials can be used alone or in combination. [Manufacturing method of light-emitting element mounting substrate] Hereinafter, a manufacturing method of the light-emitting element mounting substrate 1 will be described with reference to Figs. 4 (a) to (d). First, as shown in FIG. 4 (a), an aluminum nitride substrate 2A before firing is prepared. Then, as shown in FIG. 4 (b), through holes 7a, 7b are formed on the prepared aluminum nitride substrate 2A before firing. The method for forming the through holes 7a and 7b is not particularly limited, and can be formed by, for example, mechanical processing using a drill or laser processing. Next, as shown in FIG. 4 (c), wiring electrodes 4a, 4b, via electrodes 5a, 5b, and terminal electrodes 6a, 6b are formed. The method for forming each electrode is not particularly limited, and for example, it can be formed by printing. The paste used for printing is not particularly limited, and for example, pastes such as silver, copper, gold, silver-palladium alloy, or silver-platinum alloy can be used. These can be used alone or in combination. Furthermore, the printing of the paste can be performed by the following method: First, the through-hole electrodes 5a, 5b are filled with a paste for forming the through-hole electrodes 5a, 5b, and then the wiring electrode 4a is printed on the aluminum nitride substrate 2A before firing. , 4b forming paste, and terminal electrode 6a, 6b forming paste. Next, the aluminum nitride substrate 2A and each paste before firing are fired. Thereby, the aluminum nitride substrate 2, the wiring electrodes 4a, 4b, the via electrodes 5a, 5b, and the terminal electrodes 6a, 6b are formed. In this case, when copper is used as a material constituting each paste, the firing is performed in a nitrogen atmosphere. On the other hand, when gold, silver, or an alloy containing silver is used as a material constituting each of the pastes, firing is performed in the atmosphere. When firing in the atmosphere, the firing temperature is preferably set to 1200 ° C or lower. If the calcination temperature exceeds 1200 ° C, the surface of aluminum nitride may be oxidized and the thermal conductivity may decrease. In addition, the calcination of each paste may be performed simultaneously with the calcination when forming the light reflection layer 3 described below. When plating each electrode, for example, gold plating may be performed. Examples of the plating method include electroless plating and electroplating, and they can be appropriately selected according to the thickness of the plating layer. Next, as shown in FIG. 4 (d), a light reflection layer 3 is formed on the aluminum nitride substrate 2. At this time, the light reflection layer 3 is formed so as to cover the through holes 7a and 7b. Thereby, the through holes 7a and 7b can be sealed, and the light emitting element mounting substrate 1 can be obtained. The light reflection layer 3 is preferably formed of glass ceramic. In this case, the reflectance of light can be further improved, and the adhesion to the aluminum nitride substrate 2 can be further improved. The method for forming the light reflection layer 3 is not particularly limited, and examples thereof include a screen printing method and a green sheet lamination method. When a glass ceramic is used and the light reflecting layer 3 is formed by a screen printing method, it can be performed by the following method: using a screen printing machine will add a resin binder and a solvent to the glass ceramic powder and knead it. The produced highly viscous paste is printed on the aluminum nitride substrate 2. In the case of using glass ceramics and forming the light reflection layer 3 by the green sheet lamination method, first, a resin binder, a plasticizer, and a solvent are added to the glass ceramic powder and kneaded to prepare a slurry. Then, the produced slurry is formed into a green sheet using a sheet forming machine such as a doctor blade. Next, the obtained green sheet is punched into the shape of the light reflection layer 3 and laminated on the aluminum nitride substrate 2 by compression bonding. Since a resin binder is used in either the screen printing method or the green sheet lamination method, the calcination can be performed in two stages: the resin binder is removed and the glass ceramic powder is sintered by the formal calcination. When using an acrylic resin and a butyral resin as a resin adhesive, a resin removal adhesive can be performed at 400 to 600 degreeC, for example. The main calcination can be performed at, for example, 850 ° C to 1000 ° C. When tapered processing is required, the light reflecting layer 3 before firing is cut obliquely by a drilling machine or the like, whereby the tapered shape can be processed. In the manufacturing method of the board | substrate 1 for mounting light emitting elements, since the aluminum nitride substrate 2 is used, it is excellent in heat radiation. Moreover, since the light reflection layer 3 is provided, it has a high reflectance. Furthermore, since the light reflection layer 3 is formed in the light emitting element mounting substrate 1 so as to seal the through holes 7 a and 7 b of the aluminum nitride substrate 2, airtightness can be improved when the light emitting element is mounted and sealed. This aspect will be described in detail in the column of the package on which the light emitting element is mounted below. [Package with Light-Emitting Element Mounted] FIG. 5 is a schematic cross-sectional view showing a package with a light-emitting element according to an embodiment of the present invention. As shown in FIG. 5, the package 21 on which the light emitting element is mounted includes a light emitting element mounting substrate 1, a glass cover 8, a sealing material layer 9, and a light emitting element 10. The light emitting element mounting substrate 1 is a light emitting element mounting substrate according to an embodiment of the present invention described above. The light emitting element 10 is mounted on the light emitting element mounting substrate 1. The light emitting element 10 is connected to the wiring electrodes 4 a and 4 b of the light emitting element mounting substrate 1. Examples of the light-emitting element 10 include a deep ultraviolet LED or a white LED obtained by combining a blue LED and a yellow phosphor. A glass cover 8 is disposed on the upper surface 3 b of the light reflection layer 3 in the light-emitting element mounting substrate 1. The glass cover 8 is a member for sealing the inside of the package 21 on which the light emitting element is mounted. Furthermore, a sealing material layer 9 is provided between the light reflection layer 3 and the glass cover 8. The light reflection layer 3 and the glass cover 8 are joined by a sealing material layer 9. In the package 21 on which the light emitting element is mounted, since the aluminum nitride substrate 2 is used as the light emitting element mounting substrate 1, the heat dissipation is excellent. Moreover, since the light reflection layer 3 is used in the light emitting element mounting substrate 1, the reflectance is improved. Furthermore, in the package 21 on which the light-emitting element is mounted, since the glass cover 8 is not used for sealing with resin, it is not deteriorated by ultraviolet rays like resin, and the airtightness is lowered. In addition, since the light reflection layer 3 is provided so as to cover the through holes 7a and 7b of the aluminum nitride substrate 2, the through holes 7a and 7b are sealed and the airtightness is further improved. Furthermore, in the package 21 on which the light-emitting element is mounted, since all constituent materials are inorganic materials, they have excellent durability against ultraviolet rays. The reason why the airtightness is improved by sealing the through holes 7 a and 7 b with the light reflection layer 3 can be described as follows. FIG. 7 is a schematic cross-sectional view showing a package in which a light-emitting element is mounted in a comparative example. As shown in FIG. 7, in the package 101 on which the light-emitting element is mounted in the comparative example, the through holes 107 a and 107 b are not provided at positions overlapping the light reflection layer 103 in a plan view. More specifically, the through holes 107 a and 107 b are not sealed by the light reflection layer 103. Therefore, when the light-emitting element mounting substrate 100 is easily sealed by the glass cover 108, water may penetrate through the through holes 107a and 107b. More specifically, there is a case where moisture penetrates through the interfaces of the aluminum nitride substrate 102 and the via electrodes 105a and 105b in the via holes 107a and 107b. Therefore, in the package 101 in which the light emitting element is mounted in the comparative example, the airtightness is not sufficiently improved. On the other hand, in the package 21 with the light emitting element mounted in this embodiment, the through holes 7 a and 7 b are sealed by the light reflection layer 3. Therefore, the light reflection layer 3 can prevent moisture from penetrating through the through holes 7 a and 7 b. More specifically, the light reflection layer 3 can prevent moisture from penetrating from the interface between the aluminum nitride substrate 2 and the via electrodes 5 a and 5 b. As described above, in the package 21 on which the light-emitting element is mounted, since the infiltration of moisture can be prevented by the light reflection layer 3, airtightness is improved. Hereinafter, an example of a manufacturing method of the package 21 in which a light emitting element is mounted is demonstrated. (Manufacturing Method) FIGS. 6 (a) to 6 (d) are schematic cross-sectional views for explaining a manufacturing method of a package including a light-emitting element according to an embodiment of the present invention. In the manufacturing method of the package 21 on which a light emitting element is mounted, first, the light emitting element mounting substrate 1 shown in FIG. 6 (a) is prepared by the above method. Next, as shown in FIG. 6 (b), the light emitting element 10 is mounted on the light emitting element mounting substrate 1. The light emitting element 10 and the light emitting element mounting substrate 1 can be connected, for example, by a connection using a solder ball or a connection by wire bonding. Next, a sealing material is printed on the upper surface 3b of the light reflection layer 3. After the sealing material is printed, it is dried and heat-treated to sinter the sealing material to form a sealing material layer 9 as shown in FIG. 6 (c). In addition, the sealing material layer 9 may be formed on the glass cover 8 side, or may be formed on both the glass cover 8 side and the light reflection layer 3 side. Next, as shown in FIG. 6 (d), a portion of the sealing material layer 9 is provided on the upper surface 3b of the light reflection layer 3, and a glass cover 8 is disposed. In addition, the glass cover 8 may be arrange | positioned so that at least one part may overlap with the part provided with the sealing material layer 9 in planar view. However, the glass cover 8 is preferably arranged so as to completely overlap with a portion where the sealing material layer 9 is provided in a plan view. Next, in a state where a glass cover 8 is disposed on the upper surface 3b of the light reflection layer 3 through the sealing material layer 9, the laser light is irradiated from the laser light source to soften the sealing material layer 9 to make the light reflection layer. 3 and the glass cover 8 are joined. Thereby, the inside is hermetically sealed, and a package 21 on which a light emitting element is mounted is obtained. According to this method, since only the sealing material layer 9 can be locally heated, the package body can be hermetically sealed without deteriorating the light-emitting element 10 having low heat resistance such as a deep ultraviolet LED. As the laser, for example, a laser having a wavelength of 600 nm to 1600 nm can be used. Hereinafter, details of each member constituting the light-emitting element-equipped package of the present invention such as the light-emitting-element-equipped package 21 will be described. Glass cover; As the glass constituting the glass cover, ultraviolet transmitting glass is preferred. Specific examples of the glass constituting the glass cover include SiO 2 -B 2 O 3 -RO (R is Mg, Ca, Sr, or Ba) -based glass, and SiO 2 -B 2 O 3 -R ' 2 O (R 'Is Li, Na, or Ka) -based glass, SiO 2 -B 2 O 3 -RO-R' 2 O (R 'is Li, Na, or Ka) -based glass, and the like. Sealing material layer; The sealing material used to form the sealing material layer preferably includes Bi 2 O 3 based glass powder, SnO-P 2 O 5 based glass powder, V 2 O 5 -TeO 2 based glass powder, etc. Sealing glass with melting point. Especially in the case of sealing by irradiating a laser, it is more preferable to use a softening point for the sealing glass from the viewpoint of the necessity of further softening the sealing material by heating in a shorter time and further improving the bonding strength. Lower bismuth glass powder. In addition, the sealing material may contain a low-expansion fire-resistant filler, a laser absorbing material, or the like. Examples of the low-expansion fire-resistant filler include cordierite, wurtzite, alumina, zirconium phosphate-based compounds, zircon, zirconia, tin oxide, quartz glass, β-quartz solid solution, and β-lithia Stone, spodumene. Examples of the laser absorbing material include at least one metal selected from the group consisting of Fe, Mn, Cu, and the like, and compounds including oxides of the metal. Hereinafter, the present invention will be described in more detail based on specific examples. However, the present invention is not limited to the following examples, and can be implemented by appropriately changing the scope without changing the gist thereof. (Embodiment 1) In Embodiment 1, a package 21 including a light-emitting element as shown in FIG. 5 was produced. More specifically, first, through two portions of the aluminum nitride substrate 2 having a thickness of 0.3 mm, semiconductor lasers are used to form through holes 7a and 7b having a diameter of 0.2 mm. Next, the silver paste is filled into the through holes 7a and 7b through a metal mask, the silver paste is printed with a wiring width of 0.2 mm, and the first and second main surfaces 2a and 2b of the aluminum nitride substrate 2 are electrically charged. connection. Next, a silver paste for forming wiring electrodes 4a, 4b is printed on the first main surface 2a. Further, a silver paste for forming the terminal electrodes 6a, 6b is printed on the second main surface 2b. Next, the aluminum nitride substrate 2 coated with each silver paste was calcined in the air at a temperature of 850 ° C for 20 minutes. Next, a 200 μm-thick green sheet that becomes the light reflection layer 3 is punched into a desired pattern, and 6 layers are laminated, that is, a thickness of 1200 μm and thermally bonded to the aluminum nitride substrate 2 at a temperature of 80 ° C. At this time, thermocompression bonding is performed at a position where the through holes 7a, 7b are completely sealed by the light reflection layer 3. Next, in a state in which a green sheet is formed on the aluminum nitride substrate 2, firing is performed using an electric furnace. In order to vaporize the resin paste contained in the silver paste and the green sheet, it was kept at 500 ° C for 2 hours, and thereafter, it was kept at 850 ° C for 1 hour in order to sinter the silver and glass ceramic. Next, the obtained light emitting element mounting substrate 1 was subjected to nickel plating and gold plating, and a deep ultraviolet LED as the light emitting element 10 was packaged using a solder ball. Next, a glass frit is coated on the upper surface 3b of the light reflection layer 3, and an ultraviolet transmitting glass serving as a glass cover 8 is mounted and laser-sealed, thereby obtaining a package 21 equipped with a light-emitting element that is packaged with a deep ultraviolet LED. (Comparative Example 1) In Comparative Example 1, a package 101 including a light-emitting element as shown in FIG. 7 was produced. Specifically, as shown in FIG. 7, except that through-holes 107 a and 107 b are formed at positions that do not overlap with the light reflection layer 103, a package 101 on which a light-emitting element is mounted is manufactured in the same manner as in Example 1. (Evaluation) Regarding the packages 21 and 101 equipped with the light emitting elements obtained in Example 1 and Comparative Example 1, they were kept in a pressure vessel at 121 ° C., 2 atmospheres, and 100% humidity for 24 hours. As a result, no change was observed in Example 1, but in Comparative Example 1, condensation was observed inside the package. From this, it can be confirmed that the package 21 in which the light-emitting element is mounted in Example 1 has a higher airtightness than the package 101 in which the light-emitting element is mounted in Comparative Example 1.
1‧‧‧發光元件搭載用基板 1‧‧‧ Substrate for mounting light-emitting elements
2‧‧‧氮化鋁基板 2‧‧‧Aluminum nitride substrate
2A‧‧‧煅燒前之氮化鋁基板 2A‧‧‧Aluminum nitride substrate before firing
2a‧‧‧第1主面 2a‧‧‧1st main face
2b‧‧‧第2主面 2b‧‧‧ 2nd main face
2c‧‧‧發光元件搭載區域 2c‧‧‧Light-emitting element mounting area
3‧‧‧光反射層 3‧‧‧light reflecting layer
3a‧‧‧內側面 3a‧‧‧ inside
3b‧‧‧上表面 3b‧‧‧ Top surface
3c‧‧‧下表面 3c‧‧‧ lower surface
4a‧‧‧配線電極 4a‧‧‧Wiring electrode
4b‧‧‧配線電極 4b‧‧‧Wiring electrode
5a‧‧‧通孔電極 5a‧‧‧through hole electrode
5b‧‧‧通孔電極 5b‧‧‧through hole electrode
6a‧‧‧端子電極 6a‧‧‧Terminal electrode
6b‧‧‧端子電極 6b‧‧‧Terminal electrode
7a‧‧‧通孔 7a‧‧‧through hole
7b‧‧‧通孔 7b‧‧‧through hole
8‧‧‧玻璃蓋 8‧‧‧ glass cover
9‧‧‧封接材料層 9‧‧‧Sealing material layer
10‧‧‧發光元件 10‧‧‧Light-emitting element
21‧‧‧搭載有發光元件之封裝體 21‧‧‧Package with light emitting element
100‧‧‧發光元件搭載用基板 100‧‧‧Light-emitting element mounting substrate
101‧‧‧搭載有發光元件之封裝體 101‧‧‧ Package with light emitting element
102‧‧‧氮化鋁基板 102‧‧‧Aluminum nitride substrate
103‧‧‧光反射層 103‧‧‧light reflecting layer
105a‧‧‧通孔電極 105a‧‧‧through hole electrode
105b‧‧‧通孔電極 105b‧‧‧through hole electrode
107a‧‧‧通孔 107a‧‧‧through hole
107b‧‧‧通孔 107b‧‧‧through hole
108‧‧‧玻璃蓋 108‧‧‧ glass cover
圖1係表示本發明之一實施形態之發光元件搭載用基板的模式性剖視圖。 圖2係本發明之一實施形態之發光元件搭載用基板之模式性仰視圖。 圖3係表示本發明之一實施形態之發光元件搭載用基板之變化例的模式性剖視圖。 圖4(a)~(d)係用以說明本發明之一實施形態之發光元件搭載用基板之製造方法的模式性剖視圖。 圖5係表示本發明之一實施形態之搭載有發光元件之封裝體之模式性剖視圖。 圖6(a)~(d)係用以說明本發明之一實施形態之搭載有發光元件之封裝體之製造方法的模式性剖視圖。 圖7係表示比較例之搭載有發光元件之封裝體之模式性剖視圖。FIG. 1 is a schematic cross-sectional view showing a light-emitting element mounting substrate according to an embodiment of the present invention. FIG. 2 is a schematic bottom view of a substrate for mounting a light emitting element according to an embodiment of the present invention. FIG. 3 is a schematic cross-sectional view showing a modified example of a substrate for mounting a light-emitting element according to an embodiment of the present invention. 4 (a) to 4 (d) are schematic cross-sectional views for describing a method for manufacturing a substrate for mounting a light-emitting element according to an embodiment of the present invention. FIG. 5 is a schematic cross-sectional view showing a light-emitting element-mounted package according to an embodiment of the present invention. 6 (a) to (d) are schematic cross-sectional views for explaining a method for manufacturing a package in which a light-emitting element is mounted according to an embodiment of the present invention. FIG. 7 is a schematic cross-sectional view showing a package in which a light-emitting element is mounted in a comparative example.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016185747A JP2018049991A (en) | 2016-09-23 | 2016-09-23 | Light-emitting element-mounting board, method for manufacturing the same, and light-emitting element-containing package |
JP??2016-185747 | 2016-09-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201824593A true TW201824593A (en) | 2018-07-01 |
Family
ID=61690907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106125690A TW201824593A (en) | 2016-09-23 | 2017-07-31 | Light emitting element mounting substrate, method for manufacturing same, and light emitting element mounting package |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2018049991A (en) |
TW (1) | TW201824593A (en) |
WO (1) | WO2018055846A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI840397B (en) * | 2018-08-22 | 2024-05-01 | 日商Ady股份有限公司 | Ultraviolet device package |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020057736A (en) * | 2018-10-04 | 2020-04-09 | 日本電気硝子株式会社 | Airtight package |
DE102021109968A1 (en) * | 2021-04-20 | 2022-10-20 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelectronic semiconductor component |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4659421B2 (en) * | 2004-09-30 | 2011-03-30 | 株式会社トクヤマ | Manufacturing method of light emitting element storage package |
JP4747067B2 (en) * | 2006-03-20 | 2011-08-10 | 株式会社住友金属エレクトロデバイス | White ceramics and reflector, semiconductor light emitting element mounting substrate and semiconductor light emitting element storage package |
US9056788B2 (en) * | 2011-06-29 | 2015-06-16 | Kyocera Corporation | Glass ceramic sinter, reflective member and substrate for mounting a light-emitting-element, and light-emitting device |
EP3038173B1 (en) * | 2014-12-23 | 2019-05-22 | LG Innotek Co., Ltd. | Light emitting device |
-
2016
- 2016-09-23 JP JP2016185747A patent/JP2018049991A/en active Pending
-
2017
- 2017-06-09 WO PCT/JP2017/021410 patent/WO2018055846A1/en active Application Filing
- 2017-07-31 TW TW106125690A patent/TW201824593A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI840397B (en) * | 2018-08-22 | 2024-05-01 | 日商Ady股份有限公司 | Ultraviolet device package |
Also Published As
Publication number | Publication date |
---|---|
WO2018055846A1 (en) | 2018-03-29 |
JP2018049991A (en) | 2018-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10505089B2 (en) | Method of manufacturing light emitting device | |
JP5490876B2 (en) | LIGHT REFLECTIVE SUBSTRATE, LIGHT EMITTING ELEMENT MOUNTING BOARD, LIGHT EMITTING DEVICE, AND LIGHT EMITTING ELEMENT MOUNTING BOARD | |
JP5989268B2 (en) | Phosphor ceramics, sealed optical semiconductor element, circuit board, optical semiconductor device, and light emitting device | |
JP4661147B2 (en) | Semiconductor device | |
JP5307364B2 (en) | Method for producing phosphor-containing glass and method for producing solid-state device | |
JP2015109483A (en) | Optoelectronic semiconductor component and manufacturing method thereof | |
JP2008109079A (en) | Wiring board for surface mounting type light-emitting element, and light-emitting device | |
TW201824593A (en) | Light emitting element mounting substrate, method for manufacturing same, and light emitting element mounting package | |
JP4924012B2 (en) | Light emitting device and manufacturing method thereof | |
KR20120108914A (en) | Light-emitting device | |
JP2016072475A (en) | Ceramic package, light-emitting device and manufacturing method thereof | |
US20140138724A1 (en) | Substrate for mounting optical semiconductor element, method for manufacturing the substrate, and optical semiconductor device | |
JP2007149810A (en) | Wiring board for light-emitting element, and light-emitting device | |
JP4163932B2 (en) | Light emitting element storage package and light emitting device | |
JP6627495B2 (en) | Substrate for deep ultraviolet light emitting element, connecting substrate for deep ultraviolet light emitting element, and deep ultraviolet light emitting device | |
JP2007123481A (en) | Light emitting device and wiring board for light emitting element | |
JP2006066409A (en) | Wiring board for light emitting element, manufacturing method thereof and light emitting device | |
JP2008131011A (en) | Package for storing light-emitting element, and manufacturing method thereof | |
TW201909210A (en) | Laminated ceramic substrate and laminated ceramic package | |
JP4331585B2 (en) | Light emitting element storage package and manufacturing method thereof | |
JP5773630B2 (en) | Light-emitting element mounting substrate and manufacturing method thereof | |
JP5546390B2 (en) | Light-emitting element mounting substrate and manufacturing method thereof | |
JP4667982B2 (en) | Light emitting element module, sterilizing lamp device, ultraviolet curable resin curing lamp device, lighting device, display device, and traffic signal device | |
JP2006066631A (en) | Wiring board, electric device, and light emitting device | |
JP2006041454A (en) | Wiring board, electrical device, and light-emitting device |