TW201824530A - Display device - Google Patents

Display device Download PDF

Info

Publication number
TW201824530A
TW201824530A TW106130411A TW106130411A TW201824530A TW 201824530 A TW201824530 A TW 201824530A TW 106130411 A TW106130411 A TW 106130411A TW 106130411 A TW106130411 A TW 106130411A TW 201824530 A TW201824530 A TW 201824530A
Authority
TW
Taiwan
Prior art keywords
mirror structure
light
bragg mirror
emitting elements
doped semiconductor
Prior art date
Application number
TW106130411A
Other languages
Chinese (zh)
Other versions
TWI622167B (en
Inventor
李允立
賴育弘
林子暘
Original Assignee
錼創科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 錼創科技股份有限公司 filed Critical 錼創科技股份有限公司
Priority to TW106130411A priority Critical patent/TWI622167B/en
Application granted granted Critical
Publication of TWI622167B publication Critical patent/TWI622167B/en
Publication of TW201824530A publication Critical patent/TW201824530A/en

Links

Abstract

A display device including a backplane, a plurality of light-emitting devices, a first distributed Bragg reflector structure and a second distributed Bragg reflector structure is provided. The light-emitting devices are arranged to be disposed on the backplane. The first distributed Bragg reflector structure is disposed between the backplane and the light-emitting devices. The light-emitting devices are disposed between the first distributed Bragg reflector structure and the second distributed Bragg reflector structure. A projected area of the first distributed Bragg reflector structure or the second distributed Bragg reflector structure on the backplane is larger than a projected area of a light-emitting device on the backplane.

Description

顯示裝置Display device

本發明是有關於一種顯示裝置。The present invention relates to a display device.

隨著光電科技的進步,許多光電元件的體積逐漸往小型化發展。近幾年來由於發光二極體(Light-Emitting Diode, LED)製作尺寸上的突破,將發光二極體以陣列排列製作的微型發光二極體(micro-LED)顯示器亦已被開發出來。微型發光二極體顯示器屬於主動式發光元件顯示器,其除了相較於有機發光二極體(Organic Light-Emitting Diode, OLED)顯示器而言更為省電以外,也具備更佳優異的對比度表現,而可以在陽光下具有可視性。此外,由於微型發光二極體顯示器採用無機材料,其相較於有機發光二極體顯示器而言具備更佳優良的可靠性以及更長的使用壽命。因此,目前微型發光二極體顯示器在市場上已逐步證明其價值,其各項開發議題例如是降低製作難度或提升亮度、色彩表現等議題亦受到相當的重視。With the advancement of optoelectronic technology, the volume of many optoelectronic components has gradually grown to miniaturization. In recent years, due to the breakthrough in the size of light-emitting diodes (LEDs), micro-LED displays in which arrays of light-emitting diodes are arranged in an array have also been developed. The miniature light-emitting diode display is an active light-emitting element display, which has better contrast performance than the Organic Light-Emitting Diode (OLED) display. It can be visible in the sun. In addition, since the miniature light-emitting diode display uses an inorganic material, it has better reliability and a longer service life than the organic light-emitting diode display. Therefore, the current miniature light-emitting diode display has gradually proved its value in the market, and various development issues such as reducing the difficulty of production or improving brightness and color performance have also received considerable attention.

本發明提供一種顯示裝置,其顯示畫面的色純度較高。另外,顯示裝置較容易進行製作,且具有較佳的成本效益。The present invention provides a display device having a high color purity of a display screen. In addition, the display device is easier to manufacture and is more cost effective.

本發明的顯示裝置包括背板、多個發光元件、第一布拉格反射鏡結構以及第二布拉格反射鏡結構。多個發光元件排列設置於背板上。第一布拉格反射鏡結構配置於背板與發光元件之間。發光元件配置於第一布拉格反射鏡結構與第二布拉格反射鏡結構之間。第一布拉格反射鏡結構或第二布拉格反射鏡結構於背板上的投影面積大於發光元件於背板上的投影面積。各發光元件包括第一型摻雜半導體層、發光層以及第二型摻雜半導體層。發光層配置於第一型摻雜半導體層與第二型摻雜半導體層之間。第一型摻雜半導體層配置於發光層與第一布拉格反射鏡結構之間。第二型摻雜半導體層配置於第二布拉格反射鏡結構與發光層之間。第一布拉格反射鏡結構不導電,且第二布拉格反射鏡結構導電。第一布拉格反射鏡結構包括多個第一導電貫孔。各發光元件的第一型摻雜半導體層與第一導電貫孔連接,且發光元件的第二型摻雜半導體層共同電性連接於第二布拉格反射鏡結構。The display device of the present invention includes a back plate, a plurality of light emitting elements, a first Bragg mirror structure, and a second Bragg mirror structure. A plurality of light emitting elements are arranged on the back plate. The first Bragg mirror structure is disposed between the back plate and the light emitting element. The light emitting element is disposed between the first Bragg mirror structure and the second Bragg mirror structure. The projected area of the first Bragg mirror structure or the second Bragg mirror structure on the backplane is larger than the projected area of the light emitting element on the backplane. Each of the light emitting elements includes a first type doped semiconductor layer, a light emitting layer, and a second type doped semiconductor layer. The light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The first type doped semiconductor layer is disposed between the light emitting layer and the first Bragg mirror structure. The second type doped semiconductor layer is disposed between the second Bragg mirror structure and the light emitting layer. The first Bragg mirror structure is non-conductive and the second Bragg mirror structure is electrically conductive. The first Bragg mirror structure includes a plurality of first conductive vias. The first type doped semiconductor layer of each of the light emitting elements is connected to the first conductive via, and the second type doped semiconductor layer of the light emitting element is electrically connected to the second Bragg mirror structure.

在本發明一實施例中,上述的第二布拉格反射鏡結構包括多個彼此分離的子布拉格反射鏡結構。每一子布拉格反射鏡結構在背板上的投影面積大於對應的發光元件在背板上的投影面積。In an embodiment of the invention, the second Bragg mirror structure comprises a plurality of sub-Bragd mirror structures separated from each other. The projected area of each sub-Bragd mirror structure on the backplane is greater than the projected area of the corresponding illuminating element on the backplane.

在本發明一實施例中,上述的發光元件是水平式結構的微型發光二極體晶片。第一布拉格反射鏡結構還包括多個第二導電貫孔。各發光元件的第二型摻雜半導體層與第二導電貫孔連接。In an embodiment of the invention, the light-emitting element is a micro-light-emitting diode wafer having a horizontal structure. The first Bragg mirror structure further includes a plurality of second conductive vias. The second type doped semiconductor layer of each of the light emitting elements is connected to the second conductive via.

在本發明一實施例中,上述的第一布拉格反射鏡結構的反射率不同於第二布拉格反射鏡結構的反射率。In an embodiment of the invention, the reflectivity of the first Bragg mirror structure is different from the reflectivity of the second Bragg mirror structure.

在本發明一實施例中,上述各發光元件為微型發光二極體晶片。各發光元件的對角線長度落在2微米至150微米的範圍內。In an embodiment of the invention, each of the light-emitting elements is a micro-light-emitting diode wafer. The diagonal length of each of the light-emitting elements falls within the range of 2 micrometers to 150 micrometers.

本發明的顯示裝置包括背板、多個發光元件、第一布拉格反射鏡結構以及第二布拉格反射鏡結構。發光元件排列設置於背板上。第一布拉格反射鏡結構配置於背板與發光元件之間。第二布拉格反射鏡結構發光元件配置於第一布拉格反射鏡結構與第二布拉格反射鏡結構之間。第一布拉格反射鏡結構或第二布拉格反射鏡結構於背板上的投影面積大於發光元件於背板上的投影面積。各發光元件包括第一型摻雜半導體層、發光層以及第二型摻雜半導體層。發光層配置於第一型摻雜半導體層與第二型摻雜半導體層之間。第一型摻雜半導體層配置於發光層與第一布拉格反射鏡結構之間。第二型摻雜半導體層配置於第二布拉格反射鏡結構與發光層之間。第一布拉格反射鏡結構與第二布拉格反射鏡結構不導電。The display device of the present invention includes a back plate, a plurality of light emitting elements, a first Bragg mirror structure, and a second Bragg mirror structure. The light emitting elements are arranged on the back plate. The first Bragg mirror structure is disposed between the back plate and the light emitting element. The second Bragg mirror structure light-emitting element is disposed between the first Bragg mirror structure and the second Bragg mirror structure. The projected area of the first Bragg mirror structure or the second Bragg mirror structure on the backplane is larger than the projected area of the light emitting element on the backplane. Each of the light emitting elements includes a first type doped semiconductor layer, a light emitting layer, and a second type doped semiconductor layer. The light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The first type doped semiconductor layer is disposed between the light emitting layer and the first Bragg mirror structure. The second type doped semiconductor layer is disposed between the second Bragg mirror structure and the light emitting layer. The first Bragg mirror structure and the second Bragg mirror structure are non-conductive.

在本發明一實施例中,上述的第一布拉格反射鏡結構包括多個第一導電貫孔以及多個第二導電貫孔。各發光元件的第一型摻雜半導體層與第一導電貫孔連接。各發光元件的第二型摻雜半導體層與第二導電貫孔連接。In an embodiment of the invention, the first Bragg mirror structure includes a plurality of first conductive vias and a plurality of second conductive vias. The first type doped semiconductor layer of each of the light emitting elements is connected to the first conductive via. The second type doped semiconductor layer of each of the light emitting elements is connected to the second conductive via.

在本發明一實施例中,上述的第二布拉格反射鏡結構包括多個第一導電貫孔以及多個第二導電貫孔。各發光元件的第一型摻雜半導體層與第一導電貫孔連接。各發光元件的第二型摻雜半導體層與第二導電貫孔連接。In an embodiment of the invention, the second Bragg mirror structure includes a plurality of first conductive vias and a plurality of second conductive vias. The first type doped semiconductor layer of each of the light emitting elements is connected to the first conductive via. The second type doped semiconductor layer of each of the light emitting elements is connected to the second conductive via.

在本發明一實施例中,上述的第一布拉格反射鏡結構包括多個第一導電貫孔。各發光元件的第一型摻雜半導體層與第一導電貫孔電性連接。第二布拉格反射鏡結構包括多個第二導電貫孔。各發光元件的第二型摻雜半導體層與第二導電貫孔電性連接。In an embodiment of the invention, the first Bragg mirror structure includes a plurality of first conductive vias. The first type doped semiconductor layer of each of the light emitting elements is electrically connected to the first conductive via. The second Bragg mirror structure includes a plurality of second conductive vias. The second type doped semiconductor layer of each of the light emitting elements is electrically connected to the second conductive via.

在本發明一實施例中,上述各發光元件為微型發光二極體晶片。各發光元件的對角線長度落在2微米至150微米的範圍內。In an embodiment of the invention, each of the light-emitting elements is a micro-light-emitting diode wafer. The diagonal length of each of the light-emitting elements falls within the range of 2 micrometers to 150 micrometers.

基於上述,本發明實施例的顯示裝置的第一布拉格反射鏡結構配置於背板與這些發光元件之間,且這些發光元件配置於第一布拉格反射鏡結構與第二布拉格反射鏡結構之間。由於這些發光元件所發出的光線在第一布拉格反射鏡結構以及第二布拉格反射鏡結構上發生反射後,其光譜的半高寬得以縮減,因此當這些發光元件所發出的光線離開顯示裝置時,這些發光元件所發出的光線所形成的顯示畫面的色純度較高。另外,第一布拉格反射鏡結構或第二布拉格反射鏡結構於背板的投影面積大於發光元件於背板的投影面積,使得第一布拉格反射鏡結構或第二布拉格反射鏡結構可以整面地進行製作,並且直接搭配這些發光元件來進行應用,而不必分別製作第一布拉格反射鏡結構或第二布拉格反射鏡結構於每一個發光元件上。因此,顯示裝置較容易進行製作,且具有較佳的成本效益。Based on the above, the first Bragg mirror structure of the display device of the embodiment of the present invention is disposed between the back plate and the light emitting elements, and the light emitting elements are disposed between the first Bragg mirror structure and the second Bragg mirror structure. Since the light emitted by the light-emitting elements is reflected on the first Bragg mirror structure and the second Bragg mirror structure, the full width at half maximum of the spectrum is reduced, so that when the light emitted by the light-emitting elements leaves the display device, The color of the display screen formed by the light emitted by these light-emitting elements is high. In addition, the projected area of the first Bragg mirror structure or the second Bragg mirror structure on the backplane is larger than the projected area of the light-emitting element on the backplane, so that the first Bragg mirror structure or the second Bragg mirror structure can be performed over the entire surface. It is fabricated and directly used with these light-emitting elements for application without separately forming a first Bragg mirror structure or a second Bragg mirror structure on each of the light-emitting elements. Therefore, the display device is easier to manufacture and is more cost effective.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1A繪示本發明一實施例的顯示裝置的剖面示意圖,請參考圖1A。在本實施例中,顯示裝置100包括背板110、多個發光元件120、第一布拉格反射鏡結構(Distributed Bragg Reflector, DBR)130以及第二布拉格反射鏡結構140。這些發光元件120排列設置於背板110上。第一布拉格反射鏡結構130配置於背板110與這些發光元件120之間,且這些發光元件120配置於第一布拉格反射鏡結構130與第二布拉格反射鏡結構140之間。具體而言,第一布拉格反射鏡結構130或第二布拉格反射鏡結構140於背板110上的投影面積大於一發光元件120於背板110上的投影面積。詳細而言,本實施例的第一布拉格反射鏡結構130以及第二布拉格反射鏡結構140於背板110上的投影面積皆大於一發光元件120於背板110上的投影面積。在本實施例中,這些發光元件120夾設於第一布拉格反射鏡結構130以及整片的第二布拉格反射鏡結構140之間。FIG. 1A is a schematic cross-sectional view of a display device according to an embodiment of the invention. Please refer to FIG. 1A. In the present embodiment, the display device 100 includes a back plate 110, a plurality of light emitting elements 120, a first Bragg Reflector (DBR) 130, and a second Bragg mirror structure 140. The light emitting elements 120 are arranged on the back plate 110. The first Bragg reflector structure 130 is disposed between the back plate 110 and the light emitting elements 120, and the light emitting elements 120 are disposed between the first Bragg mirror structure 130 and the second Bragg mirror structure 140. Specifically, the projected area of the first Bragg mirror structure 130 or the second Bragg mirror structure 140 on the backplane 110 is larger than the projected area of the light-emitting element 120 on the backplane 110. In detail, the projected areas of the first Bragg reflector structure 130 and the second Bragg mirror structure 140 on the backplane 110 of the present embodiment are both larger than the projected area of the light-emitting component 120 on the backplane 110. In the present embodiment, the light-emitting elements 120 are interposed between the first Bragg mirror structure 130 and the entire second Bragg mirror structure 140.

在本實施例中,這些發光元件120在背板110上排列以形成顯示裝置100的多個畫素P。顯示裝置100藉由這些發光元件120發光,以顯示出顯示畫面。另外,這些發光元件120亦可以運用於投影系統,以投影的方式,投射出彩色的投影畫面。具體而言,這些發光元件120包括多個發光元件120a、發光元件120b以及發光元件120c,且一畫素P包括三個子畫素,一發光元件120a、一發光元件120b以及一發光元件120c分別位於三個子畫素中,且發光元件120a、發光元件120b以及發光元件120c例如是具有多種不同的發光顏色。舉例而言,發光元件120a的發光顏色、發光元件120b的發光顏色以及發光元件120c的發光顏色例如分別為紅色、綠色以及藍色。然而,在其他實施例中,各畫素P中的這些發光元件120亦可以包括其他顏色,例如是黃色,或者這些發光元件120亦可以依據實際顯示需求,而以其他的排列順序進行排列。或者,在其他實施例中,可以由一發光元件120發出單一顏色的光,亦可以由一發光元件120發出不同顏色的光,本發明並不以此為限。除此之外,各畫素P亦可以包括其他數量的子畫素以及其他數量的發光元件120,用以實現多色顯示、單色顯示或是其他的顯示效果,本發明並不以此為限。In the present embodiment, these light emitting elements 120 are arranged on the back sheet 110 to form a plurality of pixels P of the display device 100. The display device 100 emits light by these light emitting elements 120 to display a display screen. In addition, these light-emitting elements 120 can also be applied to a projection system to project a color projection image in a projected manner. Specifically, the light-emitting elements 120 include a plurality of light-emitting elements 120a, light-emitting elements 120b, and light-emitting elements 120c, and one pixel P includes three sub-pixels, one light-emitting element 120a, one light-emitting element 120b, and one light-emitting element 120c are respectively located. Among the three sub-pixels, the light-emitting element 120a, the light-emitting element 120b, and the light-emitting element 120c have, for example, a plurality of different light-emitting colors. For example, the illuminating color of the illuminating element 120a, the illuminating color of the illuminating element 120b, and the illuminating color of the illuminating element 120c are, for example, red, green, and blue, respectively. However, in other embodiments, the light-emitting elements 120 in each pixel P may also include other colors, such as yellow, or the light-emitting elements 120 may be arranged in other order according to actual display requirements. Alternatively, in other embodiments, light of a single color may be emitted by a light-emitting element 120, or light of a different color may be emitted by a light-emitting element 120, and the invention is not limited thereto. In addition, each pixel P may also include other numbers of sub-pixels and other numbers of light-emitting elements 120 for implementing multi-color display, monochrome display or other display effects, and the present invention does not limit.

在本實施例中,這些發光元件120(發光元件120a、光元件120b、發光元件120c)例如是發光二極體(Light-Emitting Diode, LED)晶片。具體而言,這些發光元件120例如是尺寸微小化的微型發光二極體(micro-LED, µLED)晶片,且各發光元件120的對角線長度落在2微米至150微米的範圍內。在相關的實施例中,這些不同顏色的發光元件120可以透過適當的排列和顏色選擇,而實現全彩的顯示或投影效果。本發明並不對發光元件120的顏色選擇以及排列方式設限。這些發光元件120的顏色選擇,以及其於背板110上的排列方式可以依據不同的使用需求、設計規範以及產品定位而調整。In the present embodiment, the light-emitting elements 120 (light-emitting elements 120a, 120a, 120c) are, for example, light-emitting diode (LED) wafers. Specifically, these light-emitting elements 120 are, for example, micro-LED (μLED) wafers having a small size, and the diagonal length of each of the light-emitting elements 120 falls within a range of 2 μm to 150 μm. In a related embodiment, these differently colored light-emitting elements 120 can achieve full color display or projection effects through proper alignment and color selection. The present invention does not limit the color selection and arrangement of the light-emitting elements 120. The color selection of these light-emitting elements 120, as well as their arrangement on the backsheet 110, can be adjusted according to different usage requirements, design specifications, and product positioning.

圖1B繪示圖1A實施例的區域A1的放大示意圖,請參考圖1B。在本實施例中,發光元件120a、發光元件120b以及發光元件120c具有類似的結構,這些發光元件120基於材料選擇的差異而具有不同的發光顏色。在此以發光元件120a作為代表,以示例性地說明本實施例中各個發光元件120的結構。具體而言,各發光元件120包括第一型摻雜半導體層122、發光層126以及第二型摻雜半導體層124,且發光層126配置於第一型摻雜半導體層122與第二型摻雜半導體層124之間。詳細而言,第一型摻雜半導體層122、第二型摻雜半導體層124以及發光層126的材料可以例如是Ⅱ-Ⅵ族材料(例如:鋅化硒(ZnSe))或Ⅲ-Ⅴ氮族化物材料(例如:氮化鎵(GaN)、氮化鋁(AlN)、氮化銦(InN)、氮化銦鎵(InGaN)、氮化鋁鎵(AlGaN)或氮化鋁銦鎵(AlInGaN))或者是其他適於電致發光的半導體材料,本發明並不以此為限。另外,第一型摻雜半導體層122與第二型摻雜半導體層124的其中一者為P型摻雜半導體層,且第一型摻雜半導體層122與第二型摻雜半導體層124的其中另一者為N型摻雜半導體層。也就是說,第一型摻雜半導體層122與第二型摻雜半導體層124為具有不同摻雜型態的兩個半導體層。由於摻雜型態不同,第一型摻雜半導體層122與第二型摻雜半導體層124具有不同的厚度,以本實施例而言,厚度較薄的作為第一型摻雜半導體層122,而厚度較厚的作為第二型摻雜半導體層124。藉此,發光層126較接近背板110,使得發光元件120具有較佳的散熱效果。舉例而言,第一型摻雜半導體層122例如是P型摻雜半導體層,而第二型摻雜半導體層124例如是N型摻雜半導體層。除此之外,發光層126例如包括多重量子井(multiple quantum well, MQW)結構或是量子井(quantum well, QW)結構,本發明並不以此為限。FIG. 1B is an enlarged schematic view of a region A1 of the embodiment of FIG. 1A. Please refer to FIG. 1B. In the present embodiment, the light-emitting element 120a, the light-emitting element 120b, and the light-emitting element 120c have similar structures, and these light-emitting elements 120 have different light-emitting colors based on the difference in material selection. Here, the light-emitting element 120a is taken as a representative to exemplarily describe the structure of each of the light-emitting elements 120 in the present embodiment. Specifically, each of the light emitting elements 120 includes a first type doped semiconductor layer 122, a light emitting layer 126, and a second type doped semiconductor layer 124, and the light emitting layer 126 is disposed on the first type doped semiconductor layer 122 and the second type doped Between the semiconductor layers 124. In detail, the materials of the first type doped semiconductor layer 122, the second type doped semiconductor layer 124, and the light emitting layer 126 may be, for example, a group II-VI material (eg, zinc selenide (ZnSe)) or III-V nitrogen. Grouping materials (eg, gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), indium gallium nitride (InGaN), aluminum gallium nitride (AlGaN), or aluminum indium gallium nitride (AlInGaN) )) or other semiconductor materials suitable for electroluminescence, the invention is not limited thereto. In addition, one of the first type doped semiconductor layer 122 and the second type doped semiconductor layer 124 is a P type doped semiconductor layer, and the first type doped semiconductor layer 122 and the second type doped semiconductor layer 124 The other of them is an N-type doped semiconductor layer. That is, the first type doped semiconductor layer 122 and the second type doped semiconductor layer 124 are two semiconductor layers having different doping types. The first type doped semiconductor layer 122 and the second type doped semiconductor layer 124 have different thicknesses due to different doping patterns. In the present embodiment, the thinner layer is the first type doped semiconductor layer 122. The thicker one is the second type doped semiconductor layer 124. Thereby, the light-emitting layer 126 is closer to the back plate 110, so that the light-emitting element 120 has a better heat dissipation effect. For example, the first type doped semiconductor layer 122 is, for example, a P type doped semiconductor layer, and the second type doped semiconductor layer 124 is, for example, an N type doped semiconductor layer. In addition, the luminescent layer 126 includes, for example, a multiple quantum well ( MQW) structure or a quantum well (QW) structure, and the invention is not limited thereto.

請同時參考圖1A以及圖1B。在本實施例中,第一型摻雜半導體層122配置於發光層126與第一布拉格反射鏡結構130之間,且第二型摻雜半導體層124配置於第二布拉格反射鏡結構140與發光層126之間。第一布拉格反射鏡結構130與第二布拉格反射鏡結構140的至少其中之一導電。具體而言,第一布拉格反射鏡結構130具有導電性,且第一布拉格反射鏡結構130包括彼此分離的多個子布拉格反射鏡結構130a,各子布拉格反射鏡結構130a於背板110上的投影面積大於一個發光元件120於背板110上的投影面積。各發光元件120的第一型摻雜半導體層122與一子布拉格反射鏡結構130a電性連接,也就是說每個子畫素的發光元件120與其底下的子布拉格反射鏡結構130a在背板110上是彼此分離設置。另外,這些發光元件120之間的空隙以及這些子布拉格反射鏡結構130a之間的空隙填充以填充材F,且填充材F用以電性絕緣相鄰二個發光元件120以及電性絕緣相鄰二個子布拉格反射鏡結構130a,填充材F可以是透光、半透光或不透光的膠材,亦可以是光阻材料,本發明並不以此為限。Please refer to FIG. 1A and FIG. 1B at the same time. In this embodiment, the first type doped semiconductor layer 122 is disposed between the light emitting layer 126 and the first Bragg mirror structure 130, and the second type doped semiconductor layer 124 is disposed in the second Bragg mirror structure 140 and emits light. Between layers 126. The first Bragg mirror structure 130 is electrically conductive with at least one of the second Bragg reflector structures 140. Specifically, the first Bragg mirror structure 130 is electrically conductive, and the first Bragg mirror structure 130 includes a plurality of sub-Brag mirror structures 130a separated from each other, and a projected area of each sub-Bragd mirror structure 130a on the back plate 110 More than one projected area of the light emitting element 120 on the backing plate 110. The first type doped semiconductor layer 122 of each of the light emitting elements 120 is electrically connected to a sub-Bragd mirror structure 130a, that is, the light-emitting element 120 of each sub-pixel and the sub-Bragd mirror structure 130a underneath on the back plate 110. They are separated from each other. In addition, the gap between the light-emitting elements 120 and the gap between the sub-Brag mirror structures 130a are filled with a filler F, and the filler F is used to electrically insulate adjacent two light-emitting elements 120 and electrically insulated adjacent to each other. The two sub-Bragd mirror structures 130a, the filler F may be a light-transmitting, semi-transparent or opaque adhesive material, or may be a photoresist material, and the invention is not limited thereto.

另外,在本實施例中,第二布拉格反射鏡結構140亦具有導電性,且這些發光元件120的這些第二型摻雜半導體124層共同電性連接於第二布拉格反射鏡結構140。具體而言,第一布拉格反射鏡結構130與第二布拉格反射鏡結構140的至少其中之一的材料包括銀。或者,第一布拉格反射鏡結構130與第二布拉格反射鏡結構140的材料亦可以是其他的導電材料。另外,在本實施例中,背板110包括電路結構(未繪示),而這些發光元件120透過導電的這些子布拉格反射鏡結構130a而與電路結構上的多個接點電性連接。另外,第二布拉格反射鏡結構140亦可與背板110上的電路結構連接。因此,設置在背板110上的這些發光元件120的發光層126可以分別藉由電路結構所傳遞的電流而驅動發光。具體而言,具有不同電路結構設計的背板110可以是半導體(Semiconductor)基板、次黏著基台(Submount)、互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor, CMOS)電路基板、矽基液晶(Liquid Crystal on Silicon, LCOS)基板或者是其他類型的基板。背板110的形式以及背板110對應的電路結構可以依據不同的使用需求、設計規範以及產品定位而調整,本發明並不以此設限。In addition, in the present embodiment, the second Bragg mirror structure 140 is also electrically conductive, and the layers of the second type doped semiconductors 124 of the light-emitting elements 120 are electrically connected to the second Bragg mirror structure 140. In particular, the material of at least one of the first Bragg reflector structure 130 and the second Bragg mirror structure 140 comprises silver. Alternatively, the material of the first Bragg mirror structure 130 and the second Bragg mirror structure 140 may also be other conductive materials. In addition, in the embodiment, the backplane 110 includes a circuit structure (not shown), and the light-emitting elements 120 are electrically connected to the plurality of contacts on the circuit structure through the conductive sub-Brag mirror structures 130a. Additionally, the second Bragg reflector structure 140 can also be coupled to a circuit structure on the backplane 110. Therefore, the light-emitting layers 126 of the light-emitting elements 120 disposed on the backplane 110 can respectively drive light by the current transmitted by the circuit structure. Specifically, the backplane 110 having different circuit structure designs may be a semiconductor substrate, a submount, a complementary metal-oxide-semiconductor (CMOS) circuit substrate, and a germanium base. Liquid crystal on silicon (LCOS) substrates or other types of substrates. The form of the backplane 110 and the corresponding circuit structure of the backplane 110 can be adjusted according to different use requirements, design specifications, and product positioning, and the present invention is not limited thereto.

在本實施例中,第一布拉格反射鏡結構130以及第二布拉格反射鏡結構140分別由折射率不相同的二種材料堆疊而成,且第一布拉格反射鏡結構130的反射率不同於第二布拉格反射鏡結構140的反射率。具體而言,第一布拉格反射鏡結構130的反射率大於第二布拉格反射鏡結構140的反射率。舉例而言,第一布拉格反射鏡結構130的反射率例如是99%,而第二布拉格反射鏡結構140的反射率例如是40%。這些發光元件120發出的光會在第一布拉格反射鏡結構130以及第二布拉格反射鏡結構140之間反射,並且由第二布拉格反射鏡結構140方向離開顯示裝置100。透過第一布拉格反射鏡結構130以及第二布拉格反射鏡結構140的堆疊材料的折射率設計以及厚度設計,這些發光元件120發出的光於第一布拉格反射鏡結構130以及第二布拉格反射鏡結構140上發生反射後,其波長會受到調整。具體而言,這些發光元件120發出的光線的光譜的半高寬會在此經過一次或多次反射後逐漸縮減。因此,當這些發光元件120發出的光線離開顯示裝置100後,其光譜的半高寬較窄,且其所形成的顯示畫面的色純度較高。舉例而言,這些發光元件120發出的光線的光譜的半高寬例如是落在30奈米至40奈米的範圍內。當這些發光元件120發出的光線在第一布拉格反射鏡結構130以及第二布拉格反射鏡結構140之間發生共振效應並且離開顯示裝置100後,於顯示裝置100外部的所量測到的光線光譜的半高寬例如是縮減為落在10奈米至25奈米的範圍內。換言之,透過第一布拉格反射鏡結構130以及第二布拉格反射鏡結構140,可縮減至少16%至75%的發光元件120的光譜的半高寬,以增加發光元件120的直向光線強度與色純度。然而在其他實施例中,這些發光元件120發出的光線的光譜的半高寬亦可以具有其他的數值。較佳地,可透過第一布拉格反射鏡結構130以及第二布拉格反射鏡結構140縮減至少40%~90%的發光元件120的光譜的半高寬,且在這些實施例中,可以透過其他適當的結構設計而調整顯示裝置100的出光表現,本發明並不以此為限。In this embodiment, the first Bragg mirror structure 130 and the second Bragg mirror structure 140 are respectively stacked by two materials having different refractive indices, and the reflectivity of the first Bragg mirror structure 130 is different from the second. The reflectivity of the Bragg mirror structure 140. In particular, the reflectivity of the first Bragg reflector structure 130 is greater than the reflectivity of the second Bragg mirror structure 140. For example, the reflectivity of the first Bragg reflector structure 130 is, for example, 99%, and the reflectivity of the second Bragg reflector structure 140 is, for example, 40%. Light emitted by these illuminating elements 120 is reflected between the first Bragg mirror structure 130 and the second Bragg mirror structure 140 and exits the display device 100 by the second Bragg mirror structure 140. The light emitted by the light emitting elements 120 is transmitted through the first Bragg mirror structure 130 and the second Bragg mirror structure 140 through the refractive index design and the thickness design of the stacked materials of the first Bragg reflector structure 130 and the second Bragg mirror structure 140. After the reflection occurs, its wavelength is adjusted. Specifically, the full width at half maximum of the spectrum of the light emitted by the light-emitting elements 120 is gradually reduced after one or more reflections. Therefore, when the light emitted by the light-emitting elements 120 leaves the display device 100, the full width at half maximum of the spectrum is narrow, and the color purity of the display screen formed by the light is high. For example, the full width at half maximum of the spectrum of the light emitted by these light-emitting elements 120 falls, for example, in the range of 30 nm to 40 nm. When the light emitted by the light-emitting elements 120 resonates between the first Bragg reflector structure 130 and the second Bragg mirror structure 140 and exits the display device 100, the measured light spectrum outside the display device 100 The full width at half maximum is, for example, reduced to fall within the range of 10 nm to 25 nm. In other words, by the first Bragg reflector structure 130 and the second Bragg mirror structure 140, the full width at half maximum of the spectrum of the light-emitting element 120 can be reduced by at least 16% to 75% to increase the direct light intensity and color of the light-emitting element 120. purity. In other embodiments, however, the full width at half maximum of the spectrum of the light emitted by the light-emitting elements 120 may have other values. Preferably, the first half-width of the spectrum of the light-emitting element 120 is reduced by at least 40% to 90% through the first Bragg mirror structure 130 and the second Bragg mirror structure 140, and in these embodiments, other suitable The structural design of the display device 100 adjusts the light output performance, and the invention is not limited thereto.

具體而言,本發明實施例的顯示裝置100的第一布拉格反射鏡結構130或第二布拉格反射鏡結構140於背板上的投影面積大於一發光元件120於背板上的投影面積。也就是說,第一布拉格反射鏡結構130或第二布拉格反射鏡結構140是整面地進行製作,並且直接搭配這些發光元件120來進行應用,而不必分別製作第一布拉格反射鏡結構130或第二布拉格反射鏡結構140於每一個發光元件120上。因此,顯示裝置100較容易進行製作,且具有較佳的成本效益。以本實施例來說,第二布拉格反射鏡結構140是整層的製作於發光元件120與填充材F上。另外,每一子布拉格反射鏡結構130a在背板110上的投影面積則不同於設置在此子布拉格反射鏡結構130a上的發光元件120a在背板110上的投影面積。具體而言,子布拉格反射鏡結構130a在背板110上的投影面積會大於發光元件120a在背板110上的投影面積。Specifically, the projected area of the first Bragg reflector structure 130 or the second Bragg mirror structure 140 of the display device 100 of the embodiment of the present invention on the backplane is larger than the projected area of the light-emitting element 120 on the backplane. That is, the first Bragg mirror structure 130 or the second Bragg mirror structure 140 is fabricated over the entire surface and directly applied with the light-emitting elements 120 without having to fabricate the first Bragg mirror structure 130 or the first A two Bragg mirror structure 140 is on each of the light emitting elements 120. Therefore, the display device 100 is easier to manufacture and has better cost effectiveness. In the present embodiment, the second Bragg reflector structure 140 is formed entirely on the light-emitting element 120 and the filler F. In addition, the projected area of each sub-Bragd mirror structure 130a on the backplane 110 is different from the projected area of the light-emitting elements 120a disposed on the sub-Bragd mirror structure 130a on the backplane 110. In particular, the projected area of the sub-Bragd mirror structure 130a on the backplane 110 will be greater than the projected area of the light-emitting element 120a on the backplane 110.

圖2繪示本發明另一實施例的顯示裝置的剖面示意圖,請參考圖2。圖2實施例的顯示裝置200類似於圖1A至圖1B實施例的顯示裝置100。顯示裝置200的構件以及相關敘述可以參考圖1A至圖1B實施例的顯示裝置100,在此不再贅述。顯示裝置200與顯示裝置100的差異如下所述。在本實施例中,顯示裝置200的第二布拉格反射鏡結構240不導電。第二布拉格反射鏡結構240包括多個填充以導電材料244的導電貫孔242,且各發光元件120的第二型摻雜半導體層124與一導電貫孔242中的導電材料244電性連接。另外,這些導電貫孔242的導電材料244可以例如是共同電性連接至背板110上的電路結構(未繪示)或是其他外部電路。2 is a cross-sectional view of a display device according to another embodiment of the present invention. Please refer to FIG. 2 . The display device 200 of the embodiment of FIG. 2 is similar to the display device 100 of the embodiment of FIGS. 1A-1B. For the components of the display device 200 and related descriptions, reference may be made to the display device 100 of the embodiment of FIG. 1A to FIG. 1B, and details are not described herein again. The difference between the display device 200 and the display device 100 is as follows. In the present embodiment, the second Bragg mirror structure 240 of the display device 200 is not electrically conductive. The second Bragg reflector structure 240 includes a plurality of conductive vias 242 filled with a conductive material 244, and the second type doped semiconductor layer 124 of each of the light emitting elements 120 is electrically connected to the conductive material 244 in a conductive via 242. In addition, the conductive material 244 of the conductive vias 242 may be, for example, a circuit structure (not shown) that is electrically connected to the backplane 110 or other external circuitry.

具體而言,顯示裝置200的這些發光元件120透過導電的這些子布拉格反射鏡結構130a而與背板110的電路結構電性連接,而這些發光元件120亦透過這些導電貫孔242與導電材料244而與背板110的電路結構電性連接。因此,設置在背板110上的這些發光元件120的發光層126可以分別藉由背板110的電路結構所傳遞的電流而驅動發光。在本實施例中,由於顯示裝置200包括第一布拉格反射鏡結構130以及第二布拉格反射鏡結構240,且第一布拉格反射鏡結構130或第二布拉格反射鏡結構240於背板110上的投影面積大於一發光元件120於背板110上的投影面積,具體來說一子布拉格反射鏡結構130a於背板110上的投影面積大於相對應的發光元件120於背板110上的投影面積。因此,顯示裝置200至少可以獲致如圖1A至圖1B實施例的顯示裝置100所述的功效。顯示裝置200的顯示畫面的色純度較高,其較容易進行製作,且具有較佳的成本效益。Specifically, the light-emitting elements 120 of the display device 200 are electrically connected to the circuit structure of the back plate 110 through the conductive sub-Brag mirror structures 130a, and the light-emitting elements 120 also pass through the conductive vias 242 and the conductive material 244. The electrical structure of the backplane 110 is electrically connected. Therefore, the light-emitting layers 126 of the light-emitting elements 120 disposed on the backplane 110 can respectively drive light by the current transmitted by the circuit structure of the backplane 110. In the present embodiment, since the display device 200 includes the first Bragg mirror structure 130 and the second Bragg mirror structure 240, and the projection of the first Bragg mirror structure 130 or the second Bragg mirror structure 240 on the back plate 110 The area is larger than the projected area of the light-emitting element 120 on the back plate 110. Specifically, the projected area of the sub-Bragd mirror structure 130a on the back plate 110 is larger than the projected area of the corresponding light-emitting element 120 on the back plate 110. Accordingly, the display device 200 can at least achieve the effects described by the display device 100 of the embodiment of FIGS. 1A-1B. The display screen of the display device 200 has a higher color purity, is easier to manufacture, and is more cost effective.

圖3繪示本發明又一實施例的顯示裝置的剖面示意圖,請參考圖3。圖3實施例的顯示裝置300類似於圖1A至圖1B實施例的顯示裝置100。顯示裝置300的構件以及相關敘述可以參考圖1A至圖1B實施例的顯示裝置100,在此不再贅述。顯示裝置300與顯示裝置100的差異如下所述。在本實施例中,顯示裝置300的第一布拉格反射鏡結構330不導電,第二布拉格反射鏡結構140導電。另外,第一布拉格反射鏡結構330包括多個間隔設置的導電貫孔332分別對應這些發光元件120,且各發光元件120的第一型摻雜半導體層122與一導電貫孔332中的導電材料334電性連接。另外,這些導電貫孔332的導電材料334例如是分別電性連接至背板110上的電路結構(未繪示)。3 is a cross-sectional view of a display device according to still another embodiment of the present invention. Please refer to FIG. 3. The display device 300 of the embodiment of FIG. 3 is similar to the display device 100 of the embodiment of FIGS. 1A-1B. For the components of the display device 300 and related descriptions, reference may be made to the display device 100 of the embodiment of FIG. 1A to FIG. 1B, and details are not described herein again. The difference between the display device 300 and the display device 100 is as follows. In the present embodiment, the first Bragg mirror structure 330 of the display device 300 is non-conductive and the second Bragg mirror structure 140 is electrically conductive. In addition, the first Bragg mirror structure 330 includes a plurality of spaced-apart conductive vias 332 respectively corresponding to the light-emitting elements 120, and the first-type doped semiconductor layer 122 of each of the light-emitting elements 120 and the conductive material in a conductive via 332. 334 electrical connection. In addition, the conductive material 334 of the conductive vias 332 is, for example, a circuit structure (not shown) electrically connected to the backplane 110, respectively.

具體而言,顯示裝置300的這些發光元件120透過這些導電貫孔332和導電材料334而與背板110的電路結構電性連接,而這些發光元件120亦透過第二布拉格反射鏡結構140而與背板110的電路結構電性連接。因此,設置在背板110上的這些發光元件120的發光層126可以分別藉由背板110的電路結構所傳遞的電流而驅動發光。在本實施例中,由於顯示裝置300包括第一布拉格反射鏡結構330以及第二布拉格反射鏡結構140,且第一布拉格反射鏡結構330或第二布拉格反射鏡結構140於背板上的投影面積大於一發光元件120於背板上的投影面積。因此,顯示裝置300至少可以獲致如圖1A至圖1B實施例的顯示裝置100所述的功效。顯示裝置300的顯示畫面的色純度較高,其較容易進行製作,且具有較佳的成本效益。Specifically, the light-emitting elements 120 of the display device 300 are electrically connected to the circuit structure of the back plate 110 through the conductive vias 332 and the conductive material 334, and the light-emitting elements 120 are also transmitted through the second Bragg mirror structure 140. The circuit structure of the backplane 110 is electrically connected. Therefore, the light-emitting layers 126 of the light-emitting elements 120 disposed on the backplane 110 can respectively drive light by the current transmitted by the circuit structure of the backplane 110. In the present embodiment, since the display device 300 includes the first Bragg mirror structure 330 and the second Bragg mirror structure 140, and the projected area of the first Bragg mirror structure 330 or the second Bragg mirror structure 140 on the back panel It is larger than the projected area of a light-emitting element 120 on the backplane. Accordingly, the display device 300 can at least achieve the effects described by the display device 100 of the embodiment of FIGS. 1A-1B. The display screen of the display device 300 has a higher color purity, is easier to manufacture, and is more cost effective.

圖4繪示本發明再一實施例的顯示裝置的剖面示意圖,請參考圖4。圖4實施例的顯示裝置400類似於圖3實施例的顯示裝置300。顯示裝置400的構件以及相關敘述可以參考圖3實施例的顯示裝置300,在此不再贅述。顯示裝置400與顯示裝置300的差異如下所述。在本實施例中,顯示裝置400的第一布拉格反射鏡結構430與第二布拉格反射鏡結構440皆不導電。另外,第一布拉格反射鏡結構430與第二布拉格反射鏡結構440的至少其中之一包括多層膜。然而在一些實施例中,第一布拉格反射鏡結構430與第二布拉格反射鏡結構440亦可以包括其他不導電的材料或結構,本發明並不以此為限。另外,在本實施例中,第一布拉格反射鏡結構430包括多個第一導電貫孔432,且各發光元件120的第一型摻雜半導體層122與一第一導電貫孔432中的導電材料434電性連接。第二布拉格反射鏡結構440包括多個第二導電貫孔442,且各發光元件120的第二型摻雜半導體層124與一第二導電貫孔442中的導電材料444電性連接。另外,這些第一導電貫孔432的導電材料434可以例如是分別電性連接至背板110上的電路結構(未繪示),且這些第二導電貫孔442中的導電材料444亦可例如是分別電性連接至背板110上的電路結構。4 is a cross-sectional view of a display device according to still another embodiment of the present invention. Please refer to FIG. 4 . The display device 400 of the embodiment of FIG. 4 is similar to the display device 300 of the embodiment of FIG. For the components of the display device 400 and related descriptions, reference may be made to the display device 300 of the embodiment of FIG. 3, and details are not described herein again. The difference between the display device 400 and the display device 300 is as follows. In the present embodiment, the first Bragg mirror structure 430 and the second Bragg mirror structure 440 of the display device 400 are not electrically conductive. Additionally, at least one of the first Bragg mirror structure 430 and the second Bragg mirror structure 440 includes a multilayer film. In some embodiments, the first Bragg reflector structure 430 and the second Bragg reflector structure 440 may also include other non-conductive materials or structures, and the invention is not limited thereto. In addition, in the embodiment, the first Bragg reflector structure 430 includes a plurality of first conductive vias 432, and the first type doped semiconductor layer 122 of each of the light emitting elements 120 and the first conductive via 432 are electrically conductive. Material 434 is electrically connected. The second Bragg reflector structure 440 includes a plurality of second conductive vias 442, and the second type doped semiconductor layer 124 of each of the light emitting elements 120 is electrically connected to the conductive material 444 in a second conductive via 442. In addition, the conductive material 434 of the first conductive vias 432 may be, for example, electrically connected to the circuit structure (not shown) on the backplane 110, and the conductive material 444 in the second conductive vias 442 may also be, for example. They are electrically connected to the circuit structure on the backplane 110, respectively.

具體而言,顯示裝置400的這些發光元件120透過這些第一導電貫孔432和導電材料434而與背板110的電路結構電性連接,而這些發光元件120亦透過這些第二導電貫孔442和導電材料444而與背板110的電路結構電性連接。因此,設置在背板110上的這些發光元件120的發光層126可以分別藉由背板110的電路結構所傳遞的電流而驅動發光。在本實施例中,由於顯示裝置400包括第一布拉格反射鏡結構430以及第二布拉格反射鏡結構440的製程都是整面形成後再進行開孔。因此不必分別將第一布拉格反射鏡結構430以及第二布拉格反射鏡結構440製作在發光元件120上之後再進行後續的製程(例如切割或接合背板110等製程)等。詳細而言,顯示裝置400至少可以獲致如圖1A至圖1B實施例的顯示裝置100所述的功效。顯示裝置400的顯示畫面的色純度較高,其較容易進行製作,且具有較佳的成本效益。Specifically, the light-emitting elements 120 of the display device 400 are electrically connected to the circuit structure of the back plate 110 through the first conductive vias 432 and the conductive material 434, and the light-emitting elements 120 also pass through the second conductive vias 442. And the conductive material 444 is electrically connected to the circuit structure of the back plate 110. Therefore, the light-emitting layers 126 of the light-emitting elements 120 disposed on the backplane 110 can respectively drive light by the current transmitted by the circuit structure of the backplane 110. In the present embodiment, since the display device 400 includes the first Bragg mirror structure 430 and the second Bragg mirror structure 440, the entire surface is formed and then opened. Therefore, it is not necessary to separately fabricate the first Bragg mirror structure 430 and the second Bragg mirror structure 440 on the light-emitting element 120, and then perform subsequent processes (for example, cutting or bonding the back sheet 110 and the like). In detail, the display device 400 can at least achieve the effects described by the display device 100 of the embodiment of FIGS. 1A-1B. The display screen of the display device 400 has a higher color purity, is easier to manufacture, and is more cost effective.

圖5A繪示本發明另一實施例的顯示裝置的剖面示意圖,而圖5B繪示圖5A實施例的區域A2的放大示意圖。圖5A至圖5B實施例的顯示裝置500類似於圖1A至圖1B實施例的顯示裝置100。顯示裝置500的構件以及相關敘述可以參考圖1A至圖1B實施例的顯示裝置100,在此不再贅述。顯示裝置500與顯示裝置100的差異如下所述。在本實施例中,顯示裝置500的這些發光元件520(包括發光元件520a、發光元件520b以及發光元件520c)包括第一型摻雜半導體層522、發光層526以及第二型摻雜半導體層524,且發光層526配置於第一型摻雜半導體層522與第二型摻雜半導體層524之間。另外,發光元件520還包括第一電極527、第二電極528以及絕緣層IS。第一電極527與第一型摻雜半導體層522接觸並電性連接,且第二電極528與第二型摻雜半導體層524接觸並電性連接。另外,絕緣層IS形成於第一型摻雜半導體層522、發光層526以及第二型摻雜半導體層524表面,以使第一電極527與第二型摻雜半導體層524以及發光層526電性隔絕,絕緣層IS可以是與填充材F相同材料並一起形成,或另外製作。詳細而言,各發光元件520的第一型摻雜半導體層522具有面對發光層526的表面S。表面S包括表面S1以及表面S2,表面S1為表面S的第一部分,而表面S2為表面S的第二部分。另外,發光層526覆蓋表面S1(表面S的第一部分)而暴露出表面S2(表面S的第二部分)。在本實施例中,這些發光元件520例如是水平式結構(horizontal structured)的微型發光二極體晶片,而不同於圖1A至圖1B實施例的發光元件120(微型發光二極體晶片)的垂直式結構(vertical structured)。FIG. 5A is a schematic cross-sectional view of a display device according to another embodiment of the present invention, and FIG. 5B is an enlarged schematic view of a region A2 of the embodiment of FIG. 5A. The display device 500 of the embodiment of FIGS. 5A through 5B is similar to the display device 100 of the embodiment of FIGS. 1A through 1B. For the components of the display device 500 and related descriptions, reference may be made to the display device 100 of the embodiment of FIG. 1A to FIG. 1B, and details are not described herein again. The difference between the display device 500 and the display device 100 is as follows. In the present embodiment, the light-emitting elements 520 (including the light-emitting element 520a, the light-emitting element 520b, and the light-emitting element 520c) of the display device 500 include a first-type doped semiconductor layer 522, a light-emitting layer 526, and a second-type doped semiconductor layer 524. The light emitting layer 526 is disposed between the first type doped semiconductor layer 522 and the second type doped semiconductor layer 524. In addition, the light emitting element 520 further includes a first electrode 527, a second electrode 528, and an insulating layer IS. The first electrode 527 is in contact with and electrically connected to the first type doped semiconductor layer 522, and the second electrode 528 is in contact with and electrically connected to the second type doped semiconductor layer 524. In addition, the insulating layer IS is formed on the surfaces of the first type doped semiconductor layer 522, the light emitting layer 526, and the second type doped semiconductor layer 524 to electrically connect the first electrode 527 and the second type doped semiconductor layer 524 and the light emitting layer 526. Sexually isolated, the insulating layer IS may be formed of the same material as the filler F and formed separately or separately. In detail, the first type doped semiconductor layer 522 of each of the light emitting elements 520 has a surface S facing the light emitting layer 526. Surface S includes surface S1 and surface S2, surface S1 is the first portion of surface S, and surface S2 is the second portion of surface S. In addition, the light-emitting layer 526 covers the surface S1 (the first portion of the surface S) to expose the surface S2 (the second portion of the surface S). In the present embodiment, the light-emitting elements 520 are, for example, a horizontally structured micro-light-emitting diode wafer, and are different from the light-emitting element 120 (micro-light-emitting diode wafer) of the embodiment of FIGS. 1A to 1B. Vertical structured.

在本實施例中,第二布拉格反射鏡結構540不導電,且第二布拉格反射鏡結構540包括多個填充導電材料546的第一導電貫孔542以及多個填充導電材料546的第二導電貫孔544。各發光元件520的第一型摻雜半導體層522透過第一電極527與第一導電貫孔542中的導電材料546電性連接,且各發光元件520的第二型摻雜半導體層524透過第二電極528與第二導電貫孔544中的導電材料546電性連接。透過這些第一導電貫孔542的設置可以例如是將這些發光元件520的第一電極527分別電性連接至背板110上的電路結構(未繪示),且這些第二導電貫孔544的設置亦可例如是將這些發光元件520的第二電極528分別電性連接至背板110上的電路結構。另外,這些第一導電貫孔542以及這些第二導電貫孔544皆位於這些發光元件520的同一側。在本實施例中,位於這些發光元件520的另一側的第一布拉格反射鏡結構530例如是採用不導電的材料製作。舉例而言,第一布拉格反射鏡結構530可以具有不導電的多層膜,本發明並不以此為限。In the present embodiment, the second Bragg reflector structure 540 is non-conductive, and the second Bragg mirror structure 540 includes a plurality of first conductive vias 542 filled with conductive material 546 and a plurality of second conductive vias filled with conductive material 546. Hole 544. The first type doped semiconductor layer 522 of each of the light emitting elements 520 is electrically connected to the conductive material 546 of the first conductive via 542 through the first electrode 527, and the second type doped semiconductor layer 524 of each of the light emitting elements 520 passes through the first The two electrodes 528 are electrically connected to the conductive material 546 in the second conductive via 544. The arrangement of the first conductive vias 542 may be, for example, a circuit structure (not shown) electrically connecting the first electrodes 527 of the light-emitting elements 520 to the backplane 110, and the second conductive vias 544 The arrangement may also be, for example, a circuit structure in which the second electrodes 528 of the light-emitting elements 520 are electrically connected to the back plate 110, respectively. In addition, the first conductive vias 542 and the second conductive vias 544 are located on the same side of the light-emitting elements 520. In the present embodiment, the first Bragg mirror structure 530 on the other side of the light-emitting elements 520 is made of, for example, a non-conductive material. For example, the first Bragg reflector structure 530 may have a non-conductive multilayer film, and the invention is not limited thereto.

具體而言,顯示裝置500的這些發光元件520透過這些第一導電貫孔542中的導電材料546而與背板110的電路結構電性連接,而這些發光元件520亦透過這些第二導電貫孔544而與背板110的電路結構電性連接。因此,設置在背板110上的這些發光元件520的發光層526可以分別藉由背板110的電路結構所傳遞的電流而驅動發光。在本實施例中,顯示裝置500包括第一布拉格反射鏡結構530以及第二布拉格反射鏡結構540,且第一布拉格反射鏡結構530或第二布拉格反射鏡結構540是整面製作且設置於發光元件520的兩側。因此,第一布拉格反射鏡結構530或第二布拉格反射鏡結構540於背板110上的投影面積大於一發光元件520於背板110上的投影面積。因此,顯示裝置500至少可以獲致如圖1A至圖1B實施例的顯示裝置100所述的功效。顯示裝置500的顯示畫面的色純度較高,其較容易進行製作,且具有較佳的成本效益。Specifically, the light-emitting elements 520 of the display device 500 are electrically connected to the circuit structure of the back plate 110 through the conductive material 546 of the first conductive vias 542, and the light-emitting elements 520 also pass through the second conductive vias. 544 is electrically connected to the circuit structure of the backplane 110. Therefore, the light-emitting layers 526 of the light-emitting elements 520 disposed on the back plate 110 can drive the light by the current transmitted by the circuit structure of the back plate 110, respectively. In the present embodiment, the display device 500 includes a first Bragg mirror structure 530 and a second Bragg mirror structure 540, and the first Bragg mirror structure 530 or the second Bragg mirror structure 540 is fabricated on the entire surface and disposed in the light. Both sides of element 520. Therefore, the projected area of the first Bragg mirror structure 530 or the second Bragg mirror structure 540 on the backplane 110 is larger than the projected area of the light-emitting element 520 on the backplane 110. Accordingly, the display device 500 can at least achieve the effects described by the display device 100 of the embodiment of FIGS. 1A-1B. The display screen of the display device 500 has a high color purity, is easier to manufacture, and is more cost effective.

圖5C繪示圖5A實施例的另一種發光元件結構態樣於一區域的放大示意圖,請參考圖5C。發光元件520’類似於圖5B所繪示的發光元件520。發光元件520’與發光元件520的差異如下所述。發光元件520’包括第一型摻雜半導體層522’、發光層526’、第二型摻雜半導體層524’、第一電極527’、第二電極528’以及絕緣層IS’。 絕緣層IS’用以使第一電極527’與第二型摻雜半導體層524’以及發光層526’電性隔絕。具體而言,第一電極527’例如是透過穿孔而與第一型摻雜半導體層522’電性連接,使得第一型摻雜半導體層522’透過第一電極527’與第一導電貫孔542’中的導電材料546’電性連接。另外,第二型摻雜半導體層524’透過第二電極528’與第二導電貫孔544’中的導電材料546’電性連接。FIG. 5C is an enlarged schematic view showing another structural aspect of the light-emitting element of the embodiment of FIG. 5A in an area, please refer to FIG. 5C. Light-emitting element 520' is similar to light-emitting element 520 depicted in Figure 5B. The difference between the light-emitting element 520' and the light-emitting element 520 is as follows. The light emitting element 520' includes a first type doped semiconductor layer 522', a light emitting layer 526', a second type doped semiconductor layer 524', a first electrode 527', a second electrode 528', and an insulating layer IS'. The insulating layer IS' serves to electrically isolate the first electrode 527' from the second type doped semiconductor layer 524' and the light emitting layer 526'. Specifically, the first electrode 527 ′ is electrically connected to the first type doped semiconductor layer 522 ′ through the through holes, such that the first type doped semiconductor layer 522 ′ passes through the first electrode 527 ′ and the first conductive through hole. The conductive material 546' in 542' is electrically connected. In addition, the second type doped semiconductor layer 524' is electrically connected to the conductive material 546' in the second conductive via 544' through the second electrode 528'.

圖6A繪示本發明又一實施例的顯示裝置的剖面示意圖,而圖6B繪示圖6A實施例的區域A3的放大示意圖。圖6A至圖6B實施例的顯示裝置600類似於圖5A至圖5B實施例的顯示裝置500。顯示裝置600的構件以及相關敘述可以參考圖5A至圖5B實施例的顯示裝置500,在此不再贅述。顯示裝置600與顯示裝置500的差異如下所述。在本實施例中,顯示裝置600的這些發光元件620(包括發光元件620a、發光元件620b以及發光元件620c)包括第一型摻雜半導體層622、發光層626以及第二型摻雜半導體層624,且發光層626配置於第一型摻雜半導體層622與第二型摻雜半導體層624之間。另外,發光元件620還包括第一電極627、第二電極628以及絕緣層IS。第一電極627與第一型摻雜半導體層622接觸並電性連接,且第二電極628與第二型摻雜半導體層624接觸並電性連接。另外,絕緣層IS形成於第一型摻雜半導體層622、發光層626以及第二型摻雜半導體層624表面,以使第一電極627與第二型摻雜半導體層624以及發光層626電性隔絕。詳細而言,各發光元件620的第一型摻雜半導體層622具有面對發光層626的表面S。表面S包括表面S1以及表面S2,表面S1為表面S的第一部分,而表面S2為表面S的第二部分。另外,發光層626覆蓋表面S1(表面S的第一部分)而暴露出表面S2(表面S的第二部分)。在本實施例中,第一布拉格反射鏡結構630不導電,且第一布拉格反射鏡結構630包括多個填充導電材料636的第一導電貫孔632以及多個填充導電材料636的第二導電貫孔634。各發光元件620的第一型摻雜半導體層622透過第一電極627與第一導電貫孔632電性連接,且各發光元件620的第二型摻雜半導體624層透過第二電極628與第二導電貫孔634電性連接。這些第一導電貫孔632的設置可以例如是將這些發光元件620的第一電極627分別電性連接至背板110上的電路結構(未繪示),且這些第二導電貫孔634的設置亦可例如是將這些發光元件620的第二電極628分別電性連接至背板110上的電路結構。另外,這些第一導電貫孔632以及這些第二導電貫孔634皆位於這些發光元件620的同一側。在本實施例中,位於這些發光元件620的另一側的第二布拉格反射鏡結構640例如是採用不導電的材料製作。舉例而言,第二布拉格反射鏡結構640可以具有不導電的多層膜,本發明並不以此為限。FIG. 6A is a schematic cross-sectional view of a display device according to another embodiment of the present invention, and FIG. 6B is an enlarged schematic view of a region A3 of the embodiment of FIG. 6A. The display device 600 of the embodiment of Figures 6A-6B is similar to the display device 500 of the embodiment of Figures 5A-5B. For the components of the display device 600 and related descriptions, reference may be made to the display device 500 of the embodiment of FIG. 5A to FIG. 5B, and details are not described herein again. The difference between the display device 600 and the display device 500 is as follows. In the present embodiment, the light-emitting elements 620 (including the light-emitting element 620a, the light-emitting element 620b, and the light-emitting element 620c) of the display device 600 include a first-type doped semiconductor layer 622, a light-emitting layer 626, and a second-type doped semiconductor layer 624. The light emitting layer 626 is disposed between the first type doped semiconductor layer 622 and the second type doped semiconductor layer 624. In addition, the light emitting element 620 further includes a first electrode 627, a second electrode 628, and an insulating layer IS. The first electrode 627 is in contact with and electrically connected to the first type doped semiconductor layer 622, and the second electrode 628 is in contact with and electrically connected to the second type doped semiconductor layer 624. In addition, the insulating layer IS is formed on the surfaces of the first type doped semiconductor layer 622, the light emitting layer 626, and the second type doped semiconductor layer 624 to electrically connect the first electrode 627 and the second type doped semiconductor layer 624 and the light emitting layer 626. Sexual isolation. In detail, the first type doped semiconductor layer 622 of each of the light emitting elements 620 has a surface S facing the light emitting layer 626. Surface S includes surface S1 and surface S2, surface S1 is the first portion of surface S, and surface S2 is the second portion of surface S. In addition, the light-emitting layer 626 covers the surface S1 (the first portion of the surface S) to expose the surface S2 (the second portion of the surface S). In the present embodiment, the first Bragg mirror structure 630 is non-conductive, and the first Bragg mirror structure 630 includes a plurality of first conductive vias 632 filled with conductive material 636 and a plurality of second conductive vias filled with conductive material 636. Hole 634. The first type doped semiconductor layer 622 of each of the light emitting elements 620 is electrically connected to the first conductive via 632 through the first electrode 627, and the second type doped semiconductor 624 layer of each of the light emitting elements 620 is transmitted through the second electrode 628 and the first The two conductive through holes 634 are electrically connected. The arrangement of the first conductive vias 632 can be, for example, a circuit structure (not shown) for electrically connecting the first electrodes 627 of the light-emitting elements 620 to the back plate 110, and the settings of the second conductive vias 634. For example, the second electrode 628 of the light-emitting elements 620 can be electrically connected to the circuit structure on the back plate 110, respectively. In addition, the first conductive vias 632 and the second conductive vias 634 are located on the same side of the light-emitting elements 620. In the present embodiment, the second Bragg mirror structure 640 on the other side of the light-emitting elements 620 is made, for example, of a non-conductive material. For example, the second Bragg reflector structure 640 can have a multilayer film that is not electrically conductive, and the invention is not limited thereto.

具體而言,顯示裝置600的這些發光元件620透過這些第一導電貫孔632中的導電材料636而與背板110的電路結構電性連接,而這些發光元件620亦透過這些第二導電貫孔634中的導電材料636而與背板110的電路結構電性連接。因此,設置在背板110上的這些發光元件620的發光層626可以分別藉由背板110的電路結構所傳遞的電流而驅動發光。在本實施例中,顯示裝置600包括第一布拉格反射鏡結構630以及第二布拉格反射鏡結構640,且第一布拉格反射鏡結構630或第二布拉格反射鏡結構640是整面製作且設置於發光元件620的兩側。因此,第一布拉格反射鏡結構630或第二布拉格反射鏡結構640於背板110上的投影面積大於一發光元件620於背板110上的投影面積。因此,顯示裝置600至少可以獲致如圖1A至圖1B實施例的顯示裝置100所述的功效。顯示裝置600的顯示畫面的色純度較高,其較容易進行製作,且具有較佳的成本效益。Specifically, the light-emitting elements 620 of the display device 600 are electrically connected to the circuit structure of the back plate 110 through the conductive material 636 of the first conductive vias 632, and the light-emitting elements 620 also pass through the second conductive vias. The conductive material 636 in 634 is electrically connected to the circuit structure of the back plate 110. Therefore, the light-emitting layers 626 of the light-emitting elements 620 disposed on the backplane 110 can respectively drive light by the current transmitted by the circuit structure of the backplane 110. In the present embodiment, the display device 600 includes a first Bragg mirror structure 630 and a second Bragg mirror structure 640, and the first Bragg mirror structure 630 or the second Bragg mirror structure 640 is fabricated on the entire surface and disposed on the light. Both sides of the component 620. Therefore, the projected area of the first Bragg mirror structure 630 or the second Bragg mirror structure 640 on the backplane 110 is greater than the projected area of the light-emitting element 620 on the backplane 110. Accordingly, the display device 600 can at least achieve the effects described by the display device 100 of the embodiment of FIGS. 1A-1B. The display screen of the display device 600 has a higher color purity, is easier to manufacture, and is more cost effective.

圖6C繪示圖6A實施例的另一種發光元件結構態樣於一區域的放大示意圖,請參考圖6C。發光元件620’類似於圖6B所繪示的發光元件620。發光元件620’與發光元件620的差異如下所述。發光元件620’包括第一型摻雜半導體層622’、發光層626’、第二型摻雜半導體層624’、第一電極627’、第二電極628’以及絕緣層IS’。 絕緣層IS’用以使第一電極627’與第二型摻雜半導體層624’以及發光層626’電性隔絕。具體而言,第一電極627’例如是透過穿孔而與第一型摻雜半導體層622’電性連接,使得第一型摻雜半導體層622’透過第一電極627’與第一導電貫孔632’中的導電材料636’電性連接。另外,第二型摻雜半導體層624’透過第二電極628’與第二導電貫孔634’中的導電材料636’電性連接。FIG. 6C is an enlarged schematic view showing another structural aspect of the light-emitting element of the embodiment of FIG. 6A in an area, please refer to FIG. 6C. Light-emitting element 620' is similar to light-emitting element 620 depicted in Figure 6B. The difference between the light-emitting element 620' and the light-emitting element 620 is as follows. The light emitting element 620' includes a first type doped semiconductor layer 622', a light emitting layer 626', a second type doped semiconductor layer 624', a first electrode 627', a second electrode 628', and an insulating layer IS'. The insulating layer IS' serves to electrically isolate the first electrode 627' from the second type doped semiconductor layer 624' and the light emitting layer 626'. Specifically, the first electrode 627 ′ is electrically connected to the first type doped semiconductor layer 622 ′ through the through hole, such that the first type doped semiconductor layer 622 ′ passes through the first electrode 627 ′ and the first conductive through hole. The conductive material 636' in 632' is electrically connected. In addition, the second type doped semiconductor layer 624' is electrically connected to the conductive material 636' in the second conductive via 634' through the second electrode 628'.

綜上所述,本發明實施例的顯示裝置的第一布拉格反射鏡結構配置於背板與這些發光元件之間,且這些發光元件配置於第一布拉格反射鏡結構與第二布拉格反射鏡結構之間。由於這些發光元件所發出的光線在第一布拉格反射鏡結構以及第二布拉格反射鏡結構上發生反射後,其光譜的半高寬得以縮減,因此當這些發光元件所發出的光線離開顯示裝置時,這些發光元件所發出的光線所形成的顯示畫面的色純度較高。另外,第一布拉格反射鏡結構或第二布拉格反射鏡結構於背板上的投影面積大於一發光元件於背板上的投影面積,使得第一布拉格反射鏡結構或第二布拉格反射鏡結構可以整面地進行製作,並且直接搭配這些發光元件來進行應用,而不必分別製作第一布拉格反射鏡結構或第二布拉格反射鏡結構於每一個發光元件上。因此,顯示裝置較容易進行製作,且具有較佳的成本效益。In summary, the first Bragg mirror structure of the display device of the embodiment of the present invention is disposed between the back plate and the light emitting elements, and the light emitting elements are disposed in the first Bragg mirror structure and the second Bragg mirror structure. between. Since the light emitted by the light-emitting elements is reflected on the first Bragg mirror structure and the second Bragg mirror structure, the full width at half maximum of the spectrum is reduced, so that when the light emitted by the light-emitting elements leaves the display device, The color of the display screen formed by the light emitted by these light-emitting elements is high. In addition, the projected area of the first Bragg mirror structure or the second Bragg mirror structure on the backplane is larger than the projected area of the light-emitting element on the backplane, so that the first Bragg mirror structure or the second Bragg mirror structure can be completed. The fabrication is performed in a face-to-face manner and directly applied with these light-emitting elements without separately forming a first Bragg mirror structure or a second Bragg mirror structure on each of the light-emitting elements. Therefore, the display device is easier to manufacture and is more cost effective.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100、200、300、400、500、600‧‧‧顯示裝置100, 200, 300, 400, 500, 600‧‧‧ display devices

110‧‧‧背板110‧‧‧ Backboard

120、120a、120b、120c、520、520’、520a、520b、520c、620、620’、620a、620b、620c‧‧‧發光元件120, 120a, 120b, 120c, 520, 520', 520a, 520b, 520c, 620, 620', 620a, 620b, 620c‧ ‧ luminescent elements

122、522、522’、622、622’‧‧‧第一型摻雜半導體層122, 522, 522', 622, 622'‧‧‧ first type doped semiconductor layer

124、524、524’、624、624’‧‧‧第二型摻雜半導體層124, 524, 524', 624, 624'‧‧‧ second type doped semiconductor layer

126、526、526’、626、626’‧‧‧發光層126, 526, 526', 626, 626' ‧ ‧ luminescent layer

130、330、430、530、630‧‧‧第一布拉格反射鏡結構130, 330, 430, 530, 630‧‧‧ first Bragg mirror structure

130a‧‧‧子布拉格反射鏡結構130a‧‧‧Sub-Bragd Mirror Structure

140、240、440、540、640‧‧‧第二布拉格反射鏡結構140, 240, 440, 540, 640‧‧‧second Bragg mirror structure

242、332‧‧‧導電貫孔242, 332‧‧‧ conductive through holes

244、334、434、444、546、546’、636、636’‧‧‧導電材料244, 334, 434, 444, 546, 546', 636, 636'‧‧‧ conductive materials

432、542、542’、632、632’‧‧‧第一導電貫孔432, 542, 542', 632, 632'‧‧‧ first conductive through holes

442、544、544’、634、634’‧‧‧第二導電貫孔442, 544, 544', 634, 634' ‧ ‧ second conductive through holes

527、527’、627、627’‧‧‧第一電極527, 527', 627, 627' ‧ ‧ first electrode

528、528’、628、628’‧‧‧第二電極528, 528', 628, 628' ‧ ‧ second electrode

A1、A2、A3‧‧‧區域A1, A2, A3‧‧‧ areas

F‧‧‧填充材F‧‧‧Filling materials

IS、IS’‧‧‧絕緣層IS, IS’‧‧‧Insulation

P‧‧‧畫素P‧‧‧ pixels

S、S1、S2‧‧‧表面S, S1, S2‧‧‧ surface

圖1A繪示本發明一實施例的顯示裝置的剖面示意圖。 圖1B繪示圖1A實施例的區域A1的放大示意圖。 圖2繪示本發明另一實施例的顯示裝置的剖面示意圖。 圖3繪示本發明又一實施例的顯示裝置的剖面示意圖。 圖4繪示本發明再一實施例的顯示裝置的剖面示意圖。 圖5A繪示本發明另一實施例的顯示裝置的剖面示意圖。 圖5B繪示圖5A實施例的區域A2的放大示意圖。 圖5C繪示圖5A實施例的另一種結構態樣於一區域的放大示意圖。 圖6A繪示本發明又一實施例的顯示裝置的剖面示意圖。 圖6B繪示圖6A實施例的區域A3的放大示意圖。 圖6C繪示圖6A實施例的另一種結構態樣於一區域的放大示意圖。1A is a cross-sectional view of a display device in accordance with an embodiment of the present invention. FIG. 1B is an enlarged schematic view of a region A1 of the embodiment of FIG. 1A. 2 is a cross-sectional view showing a display device according to another embodiment of the present invention. 3 is a cross-sectional view showing a display device according to still another embodiment of the present invention. 4 is a cross-sectional view showing a display device according to still another embodiment of the present invention. FIG. 5A is a cross-sectional view of a display device according to another embodiment of the present invention. FIG. 5B is an enlarged schematic view of a region A2 of the embodiment of FIG. 5A. FIG. 5C is an enlarged schematic view showing another structural aspect of the embodiment of FIG. 5A in a region. 6A is a cross-sectional view of a display device according to still another embodiment of the present invention. FIG. 6B is an enlarged schematic view of a region A3 of the embodiment of FIG. 6A. FIG. 6C is an enlarged schematic view showing another structural aspect of the embodiment of FIG. 6A in a region.

Claims (10)

一種顯示裝置,包括: 一背板; 多個發光元件,排列設置於該背板上; 一第一布拉格反射鏡結構,配置於該背板與該些發光元件之間;以及 一第二布拉格反射鏡結構,該些發光元件配置於該第一布拉格反射鏡結構與該第二布拉格反射鏡結構之間,其中該第一布拉格反射鏡結構或該第二布拉格反射鏡結構於該背板上的投影面積大於一該發光元件於該背板上的投影面積, 其中各該發光元件包括一第一型摻雜半導體層、一發光層以及一第二型摻雜半導體層,該發光層配置於該第一型摻雜半導體層與該第二型摻雜半導體層之間,該第一型摻雜半導體層配置於該發光層與該第一布拉格反射鏡結構之間,且該第二型摻雜半導體層配置於該第二布拉格反射鏡結構與該發光層之間, 其中該第一布拉格反射鏡結構不導電,且該第二布拉格反射鏡結構導電,該第一布拉格反射鏡結構包括多個第一導電貫孔,各該發光元件的該第一型摻雜半導體層與一該第一導電貫孔連接,且該些發光元件的該些第二型摻雜半導體層共同電性連接於該第二布拉格反射鏡結構。A display device comprising: a back plate; a plurality of light emitting elements arranged on the back plate; a first Bragg mirror structure disposed between the back plate and the light emitting elements; and a second Bragg reflection Mirror structure, the light emitting elements are disposed between the first Bragg mirror structure and the second Bragg mirror structure, wherein the first Bragg mirror structure or the projection of the second Bragg mirror structure on the back panel An area greater than a projected area of the light emitting element on the backplane, wherein each of the light emitting elements includes a first type doped semiconductor layer, a light emitting layer, and a second type doped semiconductor layer, wherein the light emitting layer is disposed on the first Between the doped semiconductor layer and the second doped semiconductor layer, the first doped semiconductor layer is disposed between the luminescent layer and the first Bragg mirror structure, and the second doped semiconductor a layer is disposed between the second Bragg mirror structure and the light emitting layer, wherein the first Bragg mirror structure is non-conductive, and the second Bragg mirror structure is electrically conductive, the first The Rag mirror structure includes a plurality of first conductive vias, and the first type doped semiconductor layer of each of the light emitting elements is connected to a first conductive via, and the second type doping of the light emitting elements The semiconductor layers are electrically coupled to the second Bragg mirror structure. 如申請專利範圍第1項所述的顯示裝置,其中該第二布拉格反射鏡結構包括多個彼此分離的子布拉格反射鏡結構,每一子布拉格反射鏡結構在該背板上的投影面積大於對應的一該發光元件在背板上的投影面積。The display device of claim 1, wherein the second Bragg mirror structure comprises a plurality of sub-Brag mirror structures separated from each other, and a projected area of each sub-Brag mirror structure on the back plate is larger than corresponding The projected area of one of the light-emitting elements on the backplane. 如申請專利範圍第1項所述的顯示裝置,其中該些發光元件是水平式結構的微型發光二極體晶片,該第一布拉格反射鏡結構還包括多個第二導電貫孔,各該發光元件的該第二型摻雜半導體層與一該第二導電貫孔連接。The display device of claim 1, wherein the light emitting elements are horizontally structured micro light emitting diode chips, the first Bragg mirror structure further comprising a plurality of second conductive through holes, each of the light emitting The second type doped semiconductor layer of the device is connected to a second conductive via. 如申請專利範圍第1項所述的顯示裝置,其中該第一布拉格反射鏡結構的反射率不同於該第二布拉格反射鏡結構的反射率。The display device of claim 1, wherein the reflectance of the first Bragg mirror structure is different from the reflectivity of the second Bragg mirror structure. 如申請專利範圍第1項所述的顯示裝置,其中各該發光元件為微型發光二極體晶片,且各該發光元件的對角線長度落在2微米至150微米的範圍內。The display device of claim 1, wherein each of the light-emitting elements is a micro-light-emitting diode wafer, and a diagonal length of each of the light-emitting elements falls within a range of 2 micrometers to 150 micrometers. 一種顯示裝置,包括: 一背板; 多個發光元件,排列設置於該背板上; 一第一布拉格反射鏡結構,配置於該背板與該些發光元件之間;以及 一第二布拉格反射鏡結構,該些發光元件配置於該第一布拉格反射鏡結構與該第二布拉格反射鏡結構之間,其中該第一布拉格反射鏡結構或該第二布拉格反射鏡結構於該背板上的投影面積大於一該發光元件於該背板上的投影面積, 其中各該發光元件包括一第一型摻雜半導體層、一發光層以及一第二型摻雜半導體層,該發光層配置於該第一型摻雜半導體層與該第二型摻雜半導體層之間,該第一型摻雜半導體層配置於該發光層與該第一布拉格反射鏡結構之間,且該第二型摻雜半導體層配置於該第二布拉格反射鏡結構與該發光層之間, 其中該第一布拉格反射鏡結構與該第二布拉格反射鏡結構不導電。A display device comprising: a back plate; a plurality of light emitting elements arranged on the back plate; a first Bragg mirror structure disposed between the back plate and the light emitting elements; and a second Bragg reflection Mirror structure, the light emitting elements are disposed between the first Bragg mirror structure and the second Bragg mirror structure, wherein the first Bragg mirror structure or the projection of the second Bragg mirror structure on the back panel An area greater than a projected area of the light emitting element on the backplane, wherein each of the light emitting elements includes a first type doped semiconductor layer, a light emitting layer, and a second type doped semiconductor layer, wherein the light emitting layer is disposed on the first Between the doped semiconductor layer and the second doped semiconductor layer, the first doped semiconductor layer is disposed between the luminescent layer and the first Bragg mirror structure, and the second doped semiconductor A layer is disposed between the second Bragg mirror structure and the luminescent layer, wherein the first Bragg mirror structure and the second Bragg mirror structure are non-conductive. 如申請專利範圍第6項所述的顯示裝置,其中該第一布拉格反射鏡結構包括多個第一導電貫孔以及多個第二導電貫孔,各該發光元件的該第一型摻雜半導體層與一該第一導電貫孔連接,且各該發光元件的該第二型摻雜半導體層與一該第二導電貫孔連接。The display device of claim 6, wherein the first Bragg mirror structure comprises a plurality of first conductive vias and a plurality of second conductive vias, the first type doped semiconductor of each of the light emitting elements The layer is connected to the first conductive via, and the second doped semiconductor layer of each of the light emitting elements is connected to a second conductive via. 如申請專利範圍第6項所述的顯示裝置,其中該第二布拉格反射鏡結構包括多個第一導電貫孔以及多個第二導電貫孔,各該發光元件的該第一型摻雜半導體層與一該第一導電貫孔連接,且各該發光元件的該第二型摻雜半導體層與一該第二導電貫孔連接。The display device of claim 6, wherein the second Bragg mirror structure comprises a plurality of first conductive vias and a plurality of second conductive vias, the first type doped semiconductor of each of the light emitting elements The layer is connected to the first conductive via, and the second doped semiconductor layer of each of the light emitting elements is connected to a second conductive via. 如申請專利範圍第6項所述的顯示裝置,其中該第一布拉格反射鏡結構包括多個第一導電貫孔,且各該發光元件的該第一型摻雜半導體層與一該第一導電貫孔電性連接,該第二布拉格反射鏡結構包括多個第二導電貫孔,且各該發光元件的該第二型摻雜半導體層與一該第二導電貫孔電性連接。The display device of claim 6, wherein the first Bragg mirror structure comprises a plurality of first conductive vias, and the first type doped semiconductor layer of each of the light emitting elements and the first conductive layer The through-hole is electrically connected. The second Bragg mirror structure includes a plurality of second conductive vias, and the second-type doped semiconductor layer of each of the light-emitting elements is electrically connected to a second conductive via. 如申請專利範圍第6項所述的顯示裝置,其中各該發光元件為微型發光二極體晶片,且各該發光元件的對角線長度落在2微米至150微米的範圍內。The display device according to claim 6, wherein each of the light-emitting elements is a micro-light-emitting diode wafer, and a diagonal length of each of the light-emitting elements falls within a range of 2 micrometers to 150 micrometers.
TW106130411A 2016-12-30 2016-12-30 Display device TWI622167B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106130411A TWI622167B (en) 2016-12-30 2016-12-30 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106130411A TWI622167B (en) 2016-12-30 2016-12-30 Display device

Publications (2)

Publication Number Publication Date
TWI622167B TWI622167B (en) 2018-04-21
TW201824530A true TW201824530A (en) 2018-07-01

Family

ID=62640107

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130411A TWI622167B (en) 2016-12-30 2016-12-30 Display device

Country Status (1)

Country Link
TW (1) TWI622167B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI680602B (en) * 2018-09-28 2019-12-21 丁肇誠 Micro led device for enhancing production yield of mass transfer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005062389A2 (en) * 2003-12-24 2005-07-07 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, lighting module, lighting apparatus, display element, and manufacturing method for semiconductor light emitting device
WO2005064695A2 (en) * 2003-12-29 2005-07-14 Universiteit Gent Low refractive index gap for enhanced light extraction from a display or lighting element
US7400665B2 (en) * 2004-11-05 2008-07-15 Hewlett-Packard Developement Company, L.P. Nano-VCSEL device and fabrication thereof using nano-colonnades
US7687812B2 (en) * 2007-06-15 2010-03-30 Tpo Displays Corp. Light-emitting diode arrays and methods of manufacture
TW201227942A (en) * 2010-08-27 2012-07-01 Ind Tech Res Inst Light emitting unit array and projection system
TWI544471B (en) * 2014-06-19 2016-08-01 光芯科技股份有限公司 Light-emitting modules and lighting modules

Also Published As

Publication number Publication date
TWI622167B (en) 2018-04-21

Similar Documents

Publication Publication Date Title
TWI636562B (en) Display device
US20210257528A1 (en) Light emitting diode
JP5591487B2 (en) LIGHT EMITTING DEVICE, PACKAGE AND SYSTEM INCLUDING THE SAME, AND MANUFACTURING METHOD THEREOF
KR102197082B1 (en) Light emitting device and light emitting device package including the same
KR101476207B1 (en) Display device using semiconductor light emitting device
TWI607558B (en) Micro light-emitting diode chip
US11978832B2 (en) Light emitting diode package
TW202123503A (en) Micro light emitting diode display panel
KR101559601B1 (en) Radiation-emitting device
JP2010041057A (en) Semiconductor device and method of manufacturing the same
TW201826517A (en) Display panel
US20140209930A1 (en) Multi-Vertical LED Packaging Structure
KR20140083488A (en) Display device using semiconductor light emitting device
TW202226633A (en) Systems and methods for coaxial multi-color led
TWI622167B (en) Display device
TWI619271B (en) Light emitting device
JP7206629B2 (en) Light-emitting device and projector
KR102509061B1 (en) Light emitting device package
US20240113150A1 (en) Light emitting device and light emitting module having the same
TWI708104B (en) Display array
CN108269821A (en) Show equipment
US20230402437A1 (en) Light emitting device for display and led display apparatus having the same
KR20120088985A (en) Light Emitting device
KR100956106B1 (en) Transparent display apparatus using chip level light emitting diode package
KR20240029579A (en) Display device and method for fabricating the same