TW201227942A - Light emitting unit array and projection system - Google Patents

Light emitting unit array and projection system Download PDF

Info

Publication number
TW201227942A
TW201227942A TW100129591A TW100129591A TW201227942A TW 201227942 A TW201227942 A TW 201227942A TW 100129591 A TW100129591 A TW 100129591A TW 100129591 A TW100129591 A TW 100129591A TW 201227942 A TW201227942 A TW 201227942A
Authority
TW
Taiwan
Prior art keywords
light
layer
emitting
array
micro
Prior art date
Application number
TW100129591A
Other languages
Chinese (zh)
Inventor
Chen-Yang Huang
Chia-Hsin Chao
Wen-Yung Yeh
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to CN201110245631.6A priority Critical patent/CN102386200B/en
Priority to US13/218,479 priority patent/US8931906B2/en
Publication of TW201227942A publication Critical patent/TW201227942A/en

Links

Landscapes

  • Led Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

A light emitting unit array including a plurality of micro-light emitting diodes (μ -LEDs) is provided. The μ -LEDs are arranged in an array on a substrate. Each of the μ -LEDs includes a reflector layer, a light emitting layer, and a light collimation structure. The light emitting structure is disposed on the reflector layer and includes a first type doped semiconductor layer, an active layer, and a second type doped semiconductor layer, while the first type doped semiconductor layer, the active layer, and the second type doped semiconductor layer are sequentially stacked. The first type doped semiconductor layer, the active layer, and at least a portion of the second type doped semiconductor layer are sandwiched between the reflector layer and the light collimation structure.

Description

201227942 六、發明說明: 【發明所屬之技術領域】 本揭露是有關於一種發光單元陣列及顯示裝置,且特 別是有關於一種微型發光二極體陣列(micro_light_emitting diode, μ-LED )及使用此微型發光二極體陣列作為投影成 像源的投影裝置。 ’ 【先前技術】 發光二極體具有高效率、長壽命...等等的特性,使目 前LED光源使用相當廣泛。其中,led微型投影系統讓 投影與顯示產品產生革命性的變化。目前微型投影系統分 為獨立型(Stand alone)及嵌入型(Embedded)兩大類。欲入型 是指將微型投影系統内建於原本即存在的裝置中,例如: 手機、數位相機、掌上型遊戲機…等等。 然而’要將投影機嵌入行動式的電子產品内,必須先 克服的問題就是小型化的問題。目前的微型投影技術不論 疋數位光學處理(Digital Light Processing, DLP)投影機、液 日曰才又影機(Liquid Crystal Projector,LCP)與反射式液晶 (Liquid Crystal On Silicon,LCOS)投影顯示裝置均須設置 有光機引擎。因此,這樣的產品要同時兼顧投影亮度與縮 小體積的考量,例如形成超微小(<3ec)的投影系統,有其 設計的極限與困難。 有鑑於此,μ-LED陣列顯示型光源所發展的微型投影 系統因應而生。μ-LED陣列顯示型光源即是投影成像源, 201227942 所以此類型設計的微型投影系統無須光機引擎。—般來 說,只需將μ-LED陣列顯示型光源搭配一投影鏡頭,即可 構成一高效率、超小型之投影系統,且總體積有潛力小於 3cc。整體而言’此類型的投影系統可以達成嵌入式微型投 影的目的,是目前所有微型投影技術無法達到的門播。 圖1繪示為一種已知的使用微型發光二極體陣列顯示 型光源的投影系統。由圖1可知,投影系統1〇〇包括有配 置於基板10上的微型發光二極體陣列110、微透鏡陣列12〇 以及投影鏡頭130。微型發光二極體陣列ι10是由多個微 型發光二極體所構成的陣列結構,且每一微型發光二極體 可視為一個晝素而作為顯示之用。微透鏡陣列120配置於 微型發光二極體陣列110上,且包括有多個微型透鏡。每 個微型透鏡可以對應一個晝素(也就是一個微型發光二極 體)而設置。投影鏡頭130則設置於微型發光二極體陣列 110所發出的光線的光徑上。 圖2繪示為圖1的投影系統中,微型發光二極體陣列 的光線追跡圖’而圖3繪示為圖1的投影系統中,微型發 光二極體陣列的遠場(far field)光線強度分布。請同時參照 圖2與圖3,微透鏡陣列120設置於微型發光二極體陣列 110上會使微型發光二極體陣列11〇所發出的光線大致上 分成三個族群A、B、C。 當微型發光二極體陣列110顯示影像時,相鄰的兩個 微型發光二極體可顯示不同的受度及/或顏色以構成所需 的顯示影像。然而,由圖2與圖3可知,每個微型發光二 201227942 極體所發出的光線中屬於族群B以及族群C的部份是傾斜 地射出’而與鄰近的微型發光二極體所發出的光線彼此干 擾,此一現象通常稱為光學串音(cross talk)現象。此時, 投影系統100將因為這樣的光學串音現象而導致成像品質 不佳,如:影像對比度下降及投影亮度減弱等。所以,如何 使微型發光二極體陣列110的光線更加準直地射出是微型 發光二極體陣列顯示型光源影用於投影系統時必須克服的 一項問題。 【發明内容】 本揭露提出一種發光單元陣列,包括多個微型發光二 極體。這些微型發光二極體於基板上排列成陣列,且各微 型發光二極體包括反射層、發光結構以及光線準直結構。 發光結構配置於反射層上,發光結構包括依序堆疊的第一 型摻雜半導體層、主動層以及第二型摻雜半導體層。第一 型摻雜半導體層、主動層以及至少部份第二型摻雜半導體 層夾於反射層與光線準直結構之間。 本揭露又提出一種發光單元陣列,包括多個微型發光 二極體,其於基板上排列成陣列。各微型發光二極體包括 反射層、發光結構以及第一光子晶體結構層。發光結構配 置於反射層上,且發光結構包括依序堆疊的第一型摻雜半 導體層、主動層以及第二型摻雜半導體層。第一型摻雜半 導體層、线層以及第二型摻雜半導體層夾於反射層與第 一光子晶體結構層之間。 201227942 揭露另提出-種投料統,包括顯示單錯列以及 投影鏡頭。顯示單元陣列包括多個微型發光二極體,其於 基板上排列成陣列。各微型發光二極體包括反射層、發光 結構以及光線準直結構。發光結構配置於反射層上,發光 結構包括依序堆疊㈣—型摻雜半導體層、线層以及第 -型換雜半導體層。苐—型掺雜半導體層、主動層以及至 少部份第二型_半導體層纽反射層與光鮮直結構之 間。投=透鏡組位於顯示單元陣列的顯示光線的光徑上。 —為讓本揭露之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 為了使投影系統的總體積縮小又要具有理想的成像 品質,用以顯示晝面的微型發光二極體陣列中,各個微型 發光二極體必須提供準直的出光效果。也就是說 ,以顯示 面的法線方向為零度角方向而言,微型發光二極體所發出 的光線理想上都要沿著零度角或是小出光角度(例如士3 〇 度)射出。然而’已知的設計中,如圖2與圖3所示,即使 搭配微透鏡陣列,微型發光二極體所發出的光線中仍有斜 向射出之族群B與族群c的光線。因此,要達到準直的出 光效果 <政型發光一極體所構成的發光單元陣列仍有改良 之必要。以下將舉例說明數種發光單元陣列的設計,使發 光單元陣列中的微型發光二極體具有準直的出光效果及理 想的發光效率。將這些發光單元陣列應用於投影系統有助 201227942 於U投影系統的成像品質。當然,以下實施例所描 發光單元_雖以應祕投料統進行影像_示為例來 說明,但本發明不特別地以此為限。亦即,凡是需要具有201227942 VI. Description of the Invention: [Technical Field] The present disclosure relates to an array of light-emitting units and a display device, and more particularly to a micro-light emitting diode array (μ-LED) and using the same A light emitting diode array is used as a projection device for a projection imaging source. [Prior Art] The characteristics of the LEDs with high efficiency, long life, etc. make the current LED light source widely used. Among them, led micro projection system makes revolutionary changes in projection and display products. At present, the micro projection system is divided into two types: Stand alone and Embedded. Intended type refers to the built-in micro-projection system in the original device, such as: mobile phones, digital cameras, handheld game consoles, etc. However, the problem that must be overcome before embedding the projector in a mobile electronic product is the problem of miniaturization. The current micro-projection technology, regardless of digital light processing (DLP) projectors, liquid crystal projector (LCP) and reflective liquid crystal (LCOS) projection display devices A light machine engine must be provided. Therefore, such a product must take into consideration both the projection brightness and the reduced volume, such as the formation of a super-small (<3 ec) projection system, which has its design limitations and difficulties. In view of this, the micro-projection system developed by the μ-LED array display type light source has been born. The μ-LED array display type light source is the projection imaging source, 201227942. Therefore, this type of micro-projection system does not require a optomechanical engine. In general, a μ-LED array display source can be combined with a projection lens to form a high-efficiency, ultra-small projection system with a total potential of less than 3 cc. Overall, this type of projection system can achieve the purpose of embedded micro-projection, which is the door-to-air that all micro-projection technologies cannot currently achieve. Figure 1 illustrates a known projection system using a miniature light emitting diode array display type light source. As can be seen from Fig. 1, the projection system 1 includes a miniature light emitting diode array 110, a microlens array 12A, and a projection lens 130 disposed on the substrate 10. The miniature light-emitting diode array ι10 is an array structure composed of a plurality of micro-light-emitting diodes, and each of the micro-light-emitting diodes can be regarded as a single element for display. The microlens array 120 is disposed on the miniature light emitting diode array 110 and includes a plurality of microlenses. Each microlens can be placed corresponding to a single element (i.e., a miniature light emitting diode). The projection lens 130 is disposed on the optical path of the light emitted by the micro LED array 110. 2 is a ray tracing diagram of a miniature illuminating diode array in the projection system of FIG. 1 and FIG. 3 is a far field ray of a micro illuminating diode array in the projection system of FIG. Intensity distribution. Referring to FIG. 2 and FIG. 3 simultaneously, the arrangement of the microlens array 120 on the micro LED array 110 causes the light emitted by the micro LED array 11 to be roughly divided into three groups A, B, and C. When the miniature light emitting diode array 110 displays an image, the adjacent two miniature light emitting diodes can display different degrees of acceptance and/or color to form a desired display image. However, as can be seen from FIG. 2 and FIG. 3, the portion of the light emitted by each of the micro-light-emitting diodes 201227942 belonging to the group B and the group C is obliquely emitted' while the light emitted by the adjacent miniature light-emitting diodes is mutually Interference, this phenomenon is often referred to as optical cross talk. At this time, the projection system 100 will cause poor image quality due to such an optical crosstalk phenomenon, such as a decrease in image contrast and a decrease in projection brightness. Therefore, how to make the light of the miniature light-emitting diode array 110 more collimated is a problem that must be overcome when the miniature light-emitting diode array display type light source is used in a projection system. SUMMARY OF THE INVENTION The present disclosure provides an array of light emitting cells including a plurality of miniature light emitting diodes. The miniature light emitting diodes are arranged in an array on the substrate, and each of the micro LEDs comprises a reflective layer, a light emitting structure and a light collimating structure. The light emitting structure is disposed on the reflective layer, and the light emitting structure comprises a first type doped semiconductor layer, an active layer and a second type doped semiconductor layer which are sequentially stacked. The first type doped semiconductor layer, the active layer, and at least a portion of the second type doped semiconductor layer are sandwiched between the reflective layer and the light collimating structure. The present disclosure further provides an array of light emitting cells comprising a plurality of miniature light emitting diodes arranged in an array on a substrate. Each of the micro-light emitting diodes includes a reflective layer, a light emitting structure, and a first photonic crystal structure layer. The light emitting structure is disposed on the reflective layer, and the light emitting structure comprises a first type doped semiconductor layer, an active layer, and a second type doped semiconductor layer which are sequentially stacked. The first type of doped semiconductor layer, the line layer, and the second type doped semiconductor layer are sandwiched between the reflective layer and the first photonic crystal structure layer. 201227942 discloses another type of feeding system, including display single staggered column and projection lens. The display unit array includes a plurality of micro-light emitting diodes arranged in an array on a substrate. Each of the miniature light-emitting diodes includes a reflective layer, a light-emitting structure, and a light collimating structure. The light emitting structure is disposed on the reflective layer, and the light emitting structure comprises sequentially stacking the (four)-type doped semiconductor layer, the line layer and the first-type semiconductor layer. The 苐-type doped semiconductor layer, the active layer, and at least a portion of the second-type semiconductor layer between the reflective layer and the glazed straight structure. The projection = lens group is located on the optical path of the display light of the display unit array. The above described features and advantages of the present invention will become more apparent from the following description. [Embodiment] In order to reduce the total volume of the projection system and to have an ideal imaging quality, in the micro-light emitting diode array for displaying the pupil surface, each of the micro-light-emitting diodes must provide a collimated light-emitting effect. That is to say, in the direction of the zero angle of the normal direction of the display surface, the light emitted by the miniature light-emitting diode is ideally emitted along a zero angle or a small light exit angle (for example, a ±3 degree). However, in the known design, as shown in Figs. 2 and 3, even with the microlens array, the light emitted by the micro-light emitting diode has oblique rays of the group B and the group c. Therefore, to achieve the collimated light-emitting effect <the light-emitting unit array formed by the political light-emitting body is still necessary for improvement. The design of several types of light-emitting unit arrays will be exemplified below, so that the miniature light-emitting diodes in the light-emitting unit array have a collimated light-emitting effect and an ideal luminous efficiency. Applying these arrays of illumination units to the projection system helps to achieve the imaging quality of the 201227 42U projection system. Of course, the illumination unit described in the following embodiments is described by taking the image as an example, but the invention is not particularly limited thereto. That is, everything that needs to have

準直出光效果的產品或設計都可以應用本發明的發光^元 陣列。 X 圖4a至圖4i繪示為本揭露第一實施例的發光單元陣 列的製作方法。請參照圖4a,於基板22〇上形成摻雜半導 體材料薄層222a以及多個光線準直結構224。在本實施例 中基板220例如為藍實石基板或其他適合應用於蟲晶製 程的基板。這些光線準直結構224陣列排列於摻雜半導^ 材料薄層222a上’並且相鄰兩個光線準直結構224之間相 隔一間隙G。各個光線準直結構224例如是藉由光學贫膜 製程製作於掺雜半導體材料薄層222a上。 Λ、 以本實施例而言,光線準直結構224可以是分佈式分 佈布拉格反射鏡(distributed Bragg reflector,DBR)。也 就疋说,光線準直結構224是不同折射率的材料層構成之 多層膜’例如TaA/SiO2的多層膜、Nb2〇5/Si〇2的多層膜、 Ti02/Si〇2的多層膜、Al203/Si〇2的多層膜、iT〇/si〇2的多 層膜。光線準直結構224所具有的反射率可以由多層膜的 疊層數目以及各材料層的厚度來決定。此外,光線準直結 構224也可以是全方位反射鏡(omni_ directional reflector, ODR)’其例如是金屬材料層與氧化物材料層所構成的多層 膜,例如Al/Si〇2的多層膜、Ag/Si02的多層膜等。 接著’請參照圖4b至圖4d,利用橫向蠢晶技術,由The illuminating element array of the present invention can be applied to a product or design that collimates the light-emitting effect. FIG. 4a to FIG. 4i illustrate a method of fabricating an array of light emitting cells according to a first embodiment of the present disclosure. Referring to FIG. 4a, a thin layer 222a of doped semiconductor material and a plurality of light collimating structures 224 are formed on the substrate 22A. In the present embodiment, the substrate 220 is, for example, a blue stone substrate or other substrate suitable for use in a process for insect crystals. The array of light collimating structures 224 is arranged on the doped semiconducting material layer 222a and the adjacent two light collimating structures 224 are separated by a gap G. Each of the light collimating structures 224 is fabricated, for example, on a thin layer 222a of doped semiconductor material by an optical thin film process. In the present embodiment, the light collimating structure 224 may be a distributed Bragg reflector (DBR). In other words, the light collimation structure 224 is a multilayer film composed of a material layer having different refractive indices, such as a multilayer film of TaA/SiO2, a multilayer film of Nb2〇5/Si〇2, a multilayer film of Ti02/Si〇2, A multilayer film of Al203/Si〇2, a multilayer film of iT〇/si〇2. The reflectivity of the light collimating structure 224 can be determined by the number of laminations of the multilayer film and the thickness of each material layer. In addition, the light collimating structure 224 may also be an omni-directional reflector (ODR), which is, for example, a multilayer film composed of a metal material layer and an oxide material layer, such as a multilayer film of Al/Si〇2, Ag. /Si02 multilayer film, etc. Then, please refer to Figure 4b to Figure 4d, using the lateral stray crystal technology,

S 201227942 摻雜半導體材料薄層222a被間隙G暴露出來的部份成長 半導體材料SM,並持續增加半導體材料SM的厚度以^ 成圖4d所示的摻雜半導體材料薄層22办。在此,摻雜半 導體材料薄層222a與摻雜半導體材料薄層22几例如由相 同摻雜型態的半導體材料SM所構成而定義出第一型摻雜 半導體層222。由圖4d可知,光線準直結構224係内嵌於 第一型摻雜半導體層222中。 入、 然後,請參照圖4e,於第一型摻雜半導體層222上形 成主動層226以及第二型摻雜半導體層228,其中主動層 226位於第一型摻雜半導體層222與第二型摻雜半導體層 228之間以構成發光結構層230。主動層226例如是多重量 子井(multiple quantum well,MQW)層,但不以此為限。另 外,第一型摻雜半導體層222與第二型摻雜半導體層228 的材質例如分別為η型摻雜半導體材料以及p型摻雜半導 體材料,或是相反。在本實施例所採用的η型摻雜半導體 材料以及ρ型摻雜半導體材料例如分別為η型氮化鎵以及 Ρ型氮化鎵。不過,在其他的實施例中,η型摻雜半導體材 料以及Ρ型換雜半導體材料可以是不同捧雜型態的其他半 導體材料,諸如氮化銘鎵(GaAIN)、氮化銦鎵(GalnN)等其 他的瓜-V族氮化合物。 之後,請參照圖4f’於發光結構層230上依序形成接 觸層232以及反射層234,並將發光結構層230、接觸層 232以及反射層234所構成的疊層圖案化成陣列排列的多 個微型發光二極體236。在此,反射層234的材質可以是 201227942 鋁、銀、金或上述材質之組合,而接觸層232的材質可以 疋鎳/金、鎳/鋁/銀、鎳/銀等。隨之,形成保護層238覆蓋 住這些微型發光二極體236的側表面,並且形成電極24〇 於各個微型發光二極體236的反射層234上。在本實施例 中,接觸層232例如是歐姆接觸層,而反射層234例如金 屬反射層。因此,反射層34除了可以提供反射的作用外, 也可以提供導電的作用。另外,接觸層232配置於反射層 234與第二型摻雜半導體層228之間,所以接觸層的 摻雜型態可以與第二型摻雜半導體層228的摻雜型態相 同。 具體而言,這些微型發光二極體236的第一型摻雜半 導體層222例如部分地連接在一起。也就是說,第一型摻 雜半導體層222並未在圖案化的過程中被完全斷開而是連 續的膜層。因此,保護層238僅覆蓋第一型摻雜半導體層 222的側表面之一部份、主動層226的侧表面、第二型摻 雜半導體層228的側表面、接觸層232的側表面、反射層 234的側表面以及反射層234遠離接觸層幻2的上表面之 一部分。 然後,請參照圖4g,進行一接合製程將各微型發光二 極體236上的電極240接合至另一基板242,其中電極240 例如藉由金屬接點244接合至基板242,金屬接點244可 以疋金、銅、錫、銦等金屬,或其堆疊組合或合金。在本 實施例中,基板242例如是設置有電路元件(例如金氧半導 體元件、電晶體等)的矽基板。 201227942 接著,明參肊圖4h,將基板220自微型發光二極體 236上移除,其中移除基板22〇的方法可以是雷射剝離法。 基板220自微型發光二極體236上移除後,第一型摻雜半 導體層222遠離主動層226的表面例如被暴露出來。隨後, 請參照圖4i,於暴露出來的第一型摻雜半導體層222上形 成透明導電層246以構成發光單元陣列2〇〇。透明導電層 246的材質包括銦錫氧化物(Indium 丁迅〇^和,ιτ〇)、銦鋅 氧化物(Indium Zinc 0xide, ΙΖΟ)、紹鋅氧化物(Aluminum Zinc Oxide, AZO)、摻雜鎵的氧化鋅(Gallium d〇ped zinc Oxide,GZO)、鎳/金等。 發光單元陣列200是由配置於基板242上的多個微型 發光一極體236所構成,也就是說每一個微型發光二極體 236即為個發光平元^在本貫施例中,基板242上設置 有電路元件,因此各微型發光二極體236可以獨立地驅動 而發出不同亮度及/或顏色的光線,藉以使得發光單元陣列 200可以直接地進行影像的顯示。換言之,發光單元陣列 200可以直接作為顯示面板,而非僅提供光源。 以本實施例而言,各個微型發光二極體236的部分第 一型摻雜半導體層222、主動層226以及第二型摻雜半導 體層228夾於反射層234以及光線準直結構224之間。光 線準直結構224具有反射光線的性質,且可發出光線的主 動層226位於反射層234以及光線準直結構224之間。因 此’微型發光一極體236的厚度設計在合適的條件下,反 射層234以及光線準直結構224可以構成共振腔使得主動 201227942 層226所發出的光線於反射層234以及光線準直結構224 之間發生共振而準直地射出。在一實施例中,微型發光二 極體236在反射層234以及光線準直結構224之間的厚度 L與主動層226的發光波長λ符合:L=n/2X,n為正整數 且3<η<20。此時’主動層226所發出的光線可以準直地射 出微型發光二極體236。 具體而言,圖5a與圖5b分別為習知微型發光二極體 的遠場分佈圖以及本實施例之微型發光二極體的遠場分佈 圖。由圖5a與圖5b可知,習知微型發光二極體的遠場分 佈近似為圓形(出光半角約在<± 6 0 ◦範圍内),而本實施例的 食次型發光一極體236的遠場分佈相對狹窄(出光半角可以 在<土30°範圍内)。可以見得’本實施例的微型發光二極體 236的出光角度相對縮小許多,也就是達到較佳的準直度。 另外,圖6繪示為本揭露第一實施例的發光單元陣列 中微型發光二極體搭配了微型透鏡所呈現的遠場光線強度 在不同視角下的分布。由圖6可知,在搭配有微型透鏡的 條件下,本實施例的微型發光二極體236所發出的光線皆 集中在0度視角附近。相較於圖3所繪示的習知設計而言, 本實施例的設計大幅地降低了圖3中族群B與族群C之光 線的強度。也就是說,本實施例的微型發光二極體236明 顯地具有較為準直的出光效果’且大幅地降低了斜向射出 的光線的強度。 進一步而言,表1表示本實施例的微型發光二極體與 習知微型發光二極體構成的發光單元陣列的出光效率。 11 201227942 微型發光二極 體之間的間距 (pitch) 微型發光 二極體之 尺寸 出光光形 —'丨 是否搭配 微透鏡陣 列 ----_ 出光致 率 30μιη 15μπι 習知微型發光二極體(發散 角度120〇) 丨丨丨丨— 否 6.2% 本實施例的微型發光二極 體(發散角度60°) 否 8-6% 習知微型發光二極體(發散 角度120°) 21.7% 本實施例的微型發光二極 體(發散角度60°) 是 38.9% 由表1可知,無論是否搭配微透鏡陣列,本實 微型發光二極體236相較於習知設計都具有更好的出光= 圖7繪示為本揭露第一實施例的發光單元陣列應用於 投影系統的示意圖。請參照圖7,投影系統3〇〇包^有發 光單元陣列200、微透鏡陣列3〇2以及投影鏡頭3〇4。微^ 鏡陣列302例如配置於發光單元陣列2〇〇上,其中微透鏡 陣列302由多個微型透鏡3〇2A所組成,且每一微型透鏡 302A對應一個微型發光二極體236。投影鏡頭3〇4即配置 於發光單元陣列200(顯示單元陣列)的顯示光線的光徑上。 發光單元陣列200中的微型發光二極體236可以各自 獨立地發出不同顏色及/或強度的光線而作為顯示晝面用 的晝素,所以發光單元陣列2〇〇可以視為顯示單元陣列。 12 201227942 因此’在本實施例+,投影系、統· +需包含額外的顯示 面板,而有助於_整體體積。另外,由圖5a、5b、圖6 及表1可知,發光單元陣列·具有準直性佳且高效率的 出光效果,所以投影系統_不容易有光學串音現象且具 有理想的成像品質。換言之,將本實闕的發光單元陣列 200應用於投影緖_巾可以提供更理想的成像品質。 田然本發明並不限定將發光單元陣列200應用於投影系 統300的設計,發光單元陣列2〇〇也可以應用於其他的產 品或是其他需要準直以效果的設計巾。另外,本實施例 的設計使得微型發光二極體236的光線準直結構224内埋 於第-型摻雜半導體層222中,但在其他實施例中,光線 準直結構224可以有其他的配置方式。 圖8a至圖8e繪示為本揭露第二實施例的發光單元陣 列的製作流程示意圖。值得一提的是,本實施例的各元件 所採用的材質及製作的方法可以參照第一實施例的内容, 而不再贅述於此。請參照圖8a,於基板41〇上形成多個發 光結構420、多個接觸層428、多個反射層43〇、多個第一 電極440、多個第二電極45〇以及保護層46〇。各發光結構 42〇包括由基板410向外依序堆疊的第一型摻雜半導體層 422、主動層424以及第二型摻雜半導體層426,而接觸層 428配置於第二型摻雜半導體層426上,其中這些發光結 構420的第一型摻雜半導體層422部分地連接在一起而構 成連續的膜層。各反射層430配置於其中一個接觸層428 上。各個第一電極440配置於其中一反射層430上,而各 13 201227942 第二電極450接觸於其中一個發光結構42〇的第一型摻雜 半導體層422。保護層460則覆蓋住發光結構的側= 面、接觸層428的側表面以及反射層43〇的側表面。在本 實施例中,基板410例如是藍寶石基板或其他適當的磊晶 基板。 ★接著,請參照圖8b,進行接合製程使得第一電極44〇 與第二電極450接合至基板470上。此外,發光結構42〇 之間的間隙可以填充有填充層480。基板470例如是矽基 板,其上設置有電路元件472,且電路元件472電性連接 於第一電極440與第二電極450藉以驅動發光結構42〇〇 在此,發光結構420各自獨立地被驅動而可以發出不同亮 度及/或顏色的光線,所以可以視為顯示晝面用的晝素。也 就疋δ兑,發光結構420所構成的陣列可以視為晝素陣列或 是顯示單元陣列而顯示晝面。 然後’請參照圖8c,剝除基板410以暴露出第一型摻 雜半導體層422所構成的連續膜層,並且參照圖8(1與圖 8e,依序於此連續膜層的表面上形成透明導電層49〇以及 光線準直結構492而構成發光單元陣列4〇〇,其中這些發 光結構420、接觸層428、反射層430、透明導電層490以 及光線準直結構492共同構成多個微型發光二極體494。 在本實施例中,光線準直結構492為連續地形成於這些發 光結構420上的分佈式分佈布拉格反射層或是全方位反射 層,且各發光結構420夾於光線準直結構492與反射層430 之間。由於光線準直結構492具有反射作用,當發光結構 201227942 420的厚度設置於合適條件時,發光結構42〇所發出的光 線可以在光線準直結構492與反射層430之間發生共振, 以達到近減等同於第-實施例的準直的出光效果。也就 ,說,本實施例的發光單元陣列4〇〇與第一實施例的發光 單元陣列200可以具有相同的優點(至少包括高準直的出 光效果以及更佳的出光效率),而當發光單元陣列應用 於圖7之投影系統3〇〇時有利於提升投影系統綱的成像 品質也有助於縮減投影系統3〇〇的體積。 圖9a至圖9g緣不為本揭露第三實施例的發光單元陣 列的製作流程示意圖。請參照圖9a,於基板51〇上依序形 成第-型摻雜半導體層522、主動層—以及第二型換雜 ^導體層526。基板51G例如是藍寶石基板或是其他可以 晶製程的基板。第—型摻雜半導體層522例如是 的半導體層’而第二型換雜半導體層526例如是p 、"-導體層。在本實施例所採㈣η型摻雜半導體材 型摻雜半導體材料例如分別為η型氮化嫁以及ρ 粗L 不過在其他的實施例中,η型摻雜半導體材 導體材料導體材射以是不同態的其他半 ’诸如氮化紹鎵(GaA1N)、氮化銦蘇((ΜηΝ)等其 共^錢化合物。另外,主動層524可以是多重量子 幵禮。 序地參照圖外,於第二型摻雜半導體層526上依 網#momΓ導電層530以及金屬網格540,其中金屬 、,祠才。540具有多個開口 542。S 201227942 The portion of the doped semiconductor material thin layer 222a exposed by the gap G grows the semiconductor material SM, and continuously increases the thickness of the semiconductor material SM to form the thin layer 22 of the doped semiconductor material shown in FIG. 4d. Here, the doped semiconductor material thin layer 222a and the doped semiconductor material thin layer 22 are, for example, composed of the same doped type semiconductor material SM to define the first type doped semiconductor layer 222. As can be seen from Figure 4d, the light collimating structure 224 is embedded in the first doped semiconductor layer 222. Referring to FIG. 4e, an active layer 226 and a second type doped semiconductor layer 228 are formed on the first type doped semiconductor layer 222, wherein the active layer 226 is located in the first type doped semiconductor layer 222 and the second type. The semiconductor layers 228 are doped to form a light emitting structure layer 230. The active layer 226 is, for example, a multiple quantum well (MQW) layer, but is not limited thereto. Further, the materials of the first type doped semiconductor layer 222 and the second type doped semiconductor layer 228 are, for example, an n-type doped semiconductor material and a p-type doped semiconductor material, respectively, or vice versa. The n-type doped semiconductor material and the p-type doped semiconductor material used in the present embodiment are, for example, n-type gallium nitride and germanium-type gallium nitride, respectively. However, in other embodiments, the n-type doped semiconductor material and the germanium-type semiconductor material may be other semiconductor materials of different types, such as GaN (GaAIN), indium gallium nitride (GalnN). Other melon-V family nitrogen compounds. Then, referring to FIG. 4f', the contact layer 232 and the reflective layer 234 are sequentially formed on the light-emitting structure layer 230, and the stack of the light-emitting structure layer 230, the contact layer 232, and the reflective layer 234 is patterned into a plurality of arrays. Miniature LED 236. Here, the material of the reflective layer 234 may be 201227942 aluminum, silver, gold or a combination of the above materials, and the contact layer 232 may be made of nickel/gold, nickel/aluminum/silver, nickel/silver or the like. Accordingly, a protective layer 238 is formed to cover the side surfaces of the micro-light-emitting diodes 236, and electrodes 24 are formed on the reflective layer 234 of each of the micro-light-emitting diodes 236. In the present embodiment, the contact layer 232 is, for example, an ohmic contact layer, and the reflective layer 234 is, for example, a metal reflective layer. Therefore, in addition to providing reflection, the reflective layer 34 can also provide electrical conduction. In addition, the contact layer 232 is disposed between the reflective layer 234 and the second type doped semiconductor layer 228, so that the doping pattern of the contact layer can be the same as that of the second type doped semiconductor layer 228. In particular, the first type doped semiconductor layers 222 of these miniature light emitting diodes 236 are, for example, partially connected together. That is, the first type doped semiconductor layer 222 is not completely broken during the patterning process but is a continuous film layer. Therefore, the protective layer 238 covers only a portion of the side surface of the first type doped semiconductor layer 222, the side surface of the active layer 226, the side surface of the second type doped semiconductor layer 228, the side surface of the contact layer 232, and the reflection The side surface of layer 234 and the reflective layer 234 are remote from a portion of the upper surface of the contact layer. Then, referring to FIG. 4g, a bonding process is performed to bond the electrodes 240 on each of the micro LEDs 236 to another substrate 242, wherein the electrodes 240 are bonded to the substrate 242, for example, by metal contacts 244, and the metal contacts 244 may be Metals such as gold, copper, tin, indium, or stacked combinations or alloys thereof. In the present embodiment, the substrate 242 is, for example, a germanium substrate provided with circuit elements (e.g., metal oxide semiconductor elements, transistors, etc.). 201227942 Next, in FIG. 4h, the substrate 220 is removed from the micro-light-emitting diode 236, and the method of removing the substrate 22〇 may be a laser stripping method. After the substrate 220 is removed from the micro-light-emitting diode 236, the surface of the first-type doped semiconductor layer 222 away from the active layer 226 is exposed, for example. Subsequently, referring to Fig. 4i, a transparent conductive layer 246 is formed on the exposed first type doped semiconductor layer 222 to constitute an array of light emitting cells. The material of the transparent conductive layer 246 includes indium tin oxide (Indium Zinc®, ιτ〇), indium zinc oxide (Indium Zinc 0xide, ΙΖΟ), aluminum zinc oxide (Aluminium Zinc Oxide, AZO), doped gallium Zinc oxide (Gallium d〇ped zinc Oxide, GZO), nickel/gold, and the like. The light-emitting unit array 200 is composed of a plurality of micro-light-emitting diodes 236 disposed on the substrate 242, that is, each of the micro-light-emitting diodes 236 is a light-emitting unit. In the present embodiment, the substrate 242 Circuit elements are disposed thereon, so that each of the micro-light-emitting diodes 236 can be independently driven to emit light of different brightness and/or color, so that the light-emitting unit array 200 can directly display images. In other words, the light emitting unit array 200 can be directly used as a display panel instead of only providing a light source. In this embodiment, a portion of the first type doped semiconductor layer 222 , the active layer 226 , and the second type doped semiconductor layer 228 of each of the micro LEDs 236 are sandwiched between the reflective layer 234 and the light collimating structure 224 . . The light line collimating structure 224 has the property of reflecting light, and the active layer 226 that emits light is located between the reflective layer 234 and the light collimating structure 224. Therefore, the thickness of the miniature light-emitting diode 236 is designed under suitable conditions, and the reflective layer 234 and the light collimating structure 224 can form a resonant cavity such that the light emitted by the active layer 2012 226 226 is reflected by the reflective layer 234 and the light collimating structure 224. Resonance occurs and collimates. In one embodiment, the thickness L of the micro-light-emitting diode 236 between the reflective layer 234 and the light collimating structure 224 is consistent with the emission wavelength λ of the active layer 226: L=n/2X, n is a positive integer and 3< η < 20. At this time, the light emitted by the active layer 226 can collimate the micro-light-emitting diode 236. Specifically, Fig. 5a and Fig. 5b are respectively a far field distribution map of a conventional micro light emitting diode and a far field distribution diagram of the micro light emitting diode of the present embodiment. 5a and 5b, the far-field distribution of the conventional micro-light-emitting diode is approximately circular (the light-emitting half-angle is in the range of < ± 60 ◦), and the food-substance light-emitting body of the present embodiment The far field distribution of 236 is relatively narrow (the exit half angle can be in the range of < soil 30°). It can be seen that the light-emitting diode 236 of the present embodiment has a relatively large light-emitting angle, that is, a better degree of collimation. In addition, FIG. 6 illustrates the distribution of the far-field light intensity exhibited by the miniature light-emitting diodes in the light-emitting unit array according to the first embodiment of the present invention at different viewing angles. As can be seen from Fig. 6, the light emitted from the micro-light-emitting diode 236 of the present embodiment is concentrated near the 0-degree angle of view under the condition of being equipped with a microlens. Compared to the conventional design illustrated in Fig. 3, the design of this embodiment substantially reduces the intensity of the light of group B and group C in Fig. 3. That is, the micro-light-emitting diode 236 of the present embodiment clearly has a relatively collimated light-emitting effect' and greatly reduces the intensity of the obliquely emitted light. Further, Table 1 shows the light-emitting efficiency of the light-emitting unit array constituted by the micro-light-emitting diode of the present embodiment and the conventional micro-light-emitting diode. 11 201227942 Pitch between miniature light-emitting diodes Size of miniature light-emitting diodes - Light beam shape - '丨 with microlens array----_ Light-emitting rate 30μιη 15μπι Conventional miniature light-emitting diode ( Divergence angle 120〇) 丨丨丨丨—No 6.2% The miniature light-emitting diode of this embodiment (diverging angle 60°) No 8-6% Conventional miniature light-emitting diode (diverging angle 120°) 21.7% This implementation The miniature light-emitting diode (diffusion angle 60°) is 38.9%. As can be seen from Table 1, the true miniature light-emitting diode 236 has better light output than the conventional design regardless of whether it is matched with the microlens array. 7 is a schematic diagram of the light emitting unit array of the first embodiment applied to the projection system. Referring to Fig. 7, the projection system 3 includes a light emitting unit array 200, a microlens array 3〇2, and a projection lens 3〇4. The micro mirror array 302 is disposed, for example, on the light emitting unit array 2A, wherein the microlens array 302 is composed of a plurality of micro lenses 3〇2A, and each of the micro lenses 302A corresponds to one micro light emitting diode 236. The projection lens 3〇4 is disposed on the optical path of the display light of the light-emitting unit array 200 (display unit array). The micro-light-emitting diodes 236 in the light-emitting unit array 200 can independently emit light of different colors and/or intensities as the pixels for displaying the pupils, so that the light-emitting unit array 2 can be regarded as a display cell array. 12 201227942 Therefore, in this embodiment, the projection system and system need to include an additional display panel to contribute to the overall volume. Further, as is apparent from Figs. 5a, 5b, 6 and Table 1, the light-emitting unit array has a light-collecting effect of high collimation and high efficiency, so that the projection system _ does not easily have an optical crosstalk phenomenon and has an ideal image quality. In other words, applying the actual light-emitting unit array 200 to the projection pattern can provide a more desirable image quality. Tian Ran does not limit the design of the light-emitting unit array 200 to the projection system 300. The light-emitting unit array 2 can also be applied to other products or other design towels that need to be collimated. In addition, the design of the present embodiment is such that the light collimating structure 224 of the micro LED 236 is buried in the first-type doped semiconductor layer 222, but in other embodiments, the light collimating structure 224 may have other configurations. the way. 8a to 8e are schematic diagrams showing a manufacturing process of an array of light emitting units according to a second embodiment of the present disclosure. It is to be noted that the materials used in the components of the embodiment and the method of fabricating the same can be referred to the contents of the first embodiment, and will not be described again. Referring to Fig. 8a, a plurality of light emitting structures 420, a plurality of contact layers 428, a plurality of reflective layers 43A, a plurality of first electrodes 440, a plurality of second electrodes 45A, and a protective layer 46A are formed on the substrate 41A. Each of the light emitting structures 42A includes a first type doped semiconductor layer 422, an active layer 424, and a second type doped semiconductor layer 426 which are sequentially stacked outwardly from the substrate 410, and the contact layer 428 is disposed on the second type doped semiconductor layer. At 426, the first type doped semiconductor layers 422 of the light emitting structures 420 are partially joined together to form a continuous film layer. Each of the reflective layers 430 is disposed on one of the contact layers 428. Each of the first electrodes 440 is disposed on one of the reflective layers 430, and each of the 13 201227942 second electrodes 450 is in contact with the first type doped semiconductor layer 422 of one of the light emitting structures 42A. The protective layer 460 covers the side = face of the light emitting structure, the side surface of the contact layer 428, and the side surface of the reflective layer 43A. In the present embodiment, substrate 410 is, for example, a sapphire substrate or other suitable epitaxial substrate. Next, referring to Fig. 8b, a bonding process is performed such that the first electrode 44A and the second electrode 450 are bonded to the substrate 470. Further, the gap between the light emitting structures 42A may be filled with the filling layer 480. The substrate 470 is, for example, a germanium substrate on which a circuit component 472 is disposed, and the circuit component 472 is electrically connected to the first electrode 440 and the second electrode 450 to drive the light emitting structure 42. Here, the light emitting structures 420 are independently driven. It can emit light of different brightness and/or color, so it can be regarded as a pixel for displaying the surface. Also, in the case of 疋δ, the array of light-emitting structures 420 can be regarded as a pixel array or a display cell array to display a facet. Then, referring to FIG. 8c, the substrate 410 is stripped to expose a continuous film layer composed of the first type doped semiconductor layer 422, and is formed on the surface of the continuous film layer sequentially with reference to FIG. 8 (1 and FIG. 8e). The transparent conductive layer 49A and the light collimating structure 492 constitute the light emitting unit array 4〇〇, wherein the light emitting structure 420, the contact layer 428, the reflective layer 430, the transparent conductive layer 490, and the light collimating structure 492 together constitute a plurality of miniature light emitting The diode 494. In this embodiment, the light collimating structure 492 is a distributed distributed Bragg reflection layer or an omnidirectional reflection layer continuously formed on the light emitting structures 420, and each of the light emitting structures 420 is sandwiched by the light collimation. Between the structure 492 and the reflective layer 430. Since the light collimation structure 492 has a reflection effect, when the thickness of the illumination structure 201227942 420 is set under suitable conditions, the light emitted by the illumination structure 42 can be in the light collimation structure 492 and the reflective layer. Resonance occurs between 430 to achieve near-minus the light-emitting effect equivalent to the collimation of the first embodiment. In other words, the light-emitting unit array 4 of the present embodiment is compared with the first embodiment. The light-emitting unit array 200 can have the same advantages (including at least a high-collimation light-emitting effect and a better light-emitting efficiency), and is advantageous for upgrading the projection system when the light-emitting unit array is applied to the projection system 3 of FIG. The imaging quality also helps to reduce the volume of the projection system. FIG. 9a to FIG. 9g are not schematic diagrams showing the manufacturing process of the light-emitting unit array according to the third embodiment. Referring to FIG. 9a, the substrate 51 is sequentially formed. The first-type doped semiconductor layer 522, the active layer-and the second-type impurity-conducting layer 526. The substrate 51G is, for example, a sapphire substrate or other substrate which can be crystallized. The first-type doped semiconductor layer 522 is, for example, a semiconductor. The layer '' and the second type semiconductor layer 526 are, for example, p, "-conductor layers. In the present embodiment, the (n) n-type doped semiconductor material type doped semiconductor material is, for example, n-type nitriding and ρ coarse L, respectively. However, in other embodiments, the n-type doped semiconductor material conductor material conductor is incident on the other half of the different states, such as gallium nitride (GaA1N), indium nitride ((ΜηΝ), etc. In addition, the active layer 524 may be a multiple quantum device. In addition to the external reference layer, the second type doped semiconductor layer 526 is on the mesh #momΓ conductive layer 530 and the metal mesh 540, wherein the metal, 祠. 540 has a plurality of openings 542.

S 15 201227942 然後’請參照圖9c,於金屬網格“ο的開口 542中形 成多個光線準直結構550 ’其中各個光線準直結構55〇可 以是分佈布拉格反射鏡或是全方位反射鏡。 接著,請參照圖9d,透過一填充層56〇將金屬網格 540與光線準直結構550接合至另一基板57〇上,其中基 板570為一透明基板。經過此一接合步驟後,可以如圖% 所示地將基板510剝離第一型摻雜半導體層522。然後, 如圖9f所示,將第一型摻雜半導體層522、主動層524以 及第二型摻雜半導體層526圖案化成多個發光結構52〇, 於發光結構520的側表面形成保護層58〇並於發光結構的 第一型摻雜半導體層522上形成電極582以構成多個微型 發光一極體M。各個微型發光二極體M的電極582與透明 基板570之間配置有發光結構520、透明導電声、全屬 網請以及光線準直攀〇。二二電極3 的材質可以是金屬,所以電極582可以同時地提供反射以 及導電的魏而可視為反射層。科,紐準直結構55〇 由分佈布拉格反射鏡或是全方位反射鏡所構成,因此在發 光結構520的厚度處於適合的條件下,發光結構52〇所發 出的光線將會在電極582與光線準直結構55〇之間發生共 振。如此一來,如第一實施例所述,微型發光二極體M提 供準直的出光效果並且具有理想的出光效率。 之後,請參照圖9g ’透過多個金屬接點584將這些微 型發光二極體Μ上的電極582接合至基板上以構成發 光單元陣列500,其中基板590具有多個諸如M〇s的電路 16 201227942 元件592。此外,微型發光二極體M之間的間隙可以填充 有另一填充層586。在本實施例中,每個微型發光二極體 Μ例如可以透過對應的電路元件592來驅動,所以不同的 微型發光二極體Μ可以發出不同亮度及/或顏色的光以提 供顯不晝面的功能。也就是說,本實施例的這些微型發光 二極體Μ可以視為顯示晝面用的畫素。所以,發光單元陣 列500可以與圖7所示的投影系統3〇〇中發光單元陣列2〇〇 具有相同的功能。 另外,由於每個微型發光二極體Μ都包括具有反射特 性的電極582以及光線準直結構55〇,微型發光二極體Μ 所發出的級可以在這兩個元件之間發生共振而準直地射 出、’其出紐性可以參照第—實施例中圖5a、5b及圖6 H。因此’發光單元陣列5〇〇可以具有發光單元陣列2〇〇 的^。當發光單⑽列綱應用於圖7所示的投影系統 時’有助於縮減整體體積並改善成像品質。 以上實_所描賴製作流雜是舉舰明之用,並 限,發明。凡是可以在微型發光二極體中利用具 使r if件或是其他類似特性的構件形成共振腔, 作用後準直地射出賴計都符合本發明之 二也不限定利用共振的作用使得微型發 极體财準直出光效果的技射段。因此, 八他實施例進一步說明本發明之精神。 圖10緣示為本揭露第四實施例的發S 15 201227942 Then 'please refer to FIG. 9 c to form a plurality of light collimating structures 550 ' in the openings 542 of the metal grid ο , wherein each of the light collimating structures 55 〇 may be a distributed Bragg reflector or an omnidirectional mirror. Next, referring to FIG. 9d, the metal mesh 540 and the light collimating structure 550 are bonded to the other substrate 57 through a filling layer 56, wherein the substrate 570 is a transparent substrate. After the bonding step, The substrate 510 is stripped of the first type doped semiconductor layer 522 as shown in Fig. %. Then, as shown in Fig. 9f, the first type doped semiconductor layer 522, the active layer 524, and the second type doped semiconductor layer 526 are patterned into The plurality of light emitting structures 52A, the protective layer 58 is formed on the side surface of the light emitting structure 520, and the electrode 582 is formed on the first type doped semiconductor layer 522 of the light emitting structure to form a plurality of miniature light emitting bodies M. The light-emitting structure 520, the transparent conductive sound, the entire network, and the light collimation are disposed between the electrode 582 of the diode M and the transparent substrate 570. The material of the second electrode 3 may be metal, so the electrode 582 may be The reflection layer and the conductive layer can be regarded as a reflection layer at the same time. The collinear structure 55 〇 is composed of a distributed Bragg reflector or an omnidirectional mirror, so that the thickness of the light-emitting structure 520 is suitable, The light emitted by the light emitting structure 52A will resonate between the electrode 582 and the light collimating structure 55. Thus, as described in the first embodiment, the miniature light emitting diode M provides a collimated light emitting effect and The light-emitting efficiency is ideal. After that, the electrodes 582 on the micro-light-emitting diodes are bonded to the substrate through a plurality of metal contacts 584 to form the light-emitting unit array 500, wherein the substrate 590 has a plurality of M 〇 s circuit 16 201227942 element 592. In addition, the gap between the miniature light-emitting diodes M may be filled with another filling layer 586. In this embodiment, each of the micro-light-emitting diodes Μ may be correspondingly The circuit component 592 is driven, so that different miniature light-emitting diodes can emit light of different brightness and/or color to provide a display function. The miniature light-emitting diodes of the example can be regarded as pixels for displaying the pupils. Therefore, the light-emitting unit array 500 can have the same function as the light-emitting unit array 2 of the projection system 3 shown in FIG. In addition, since each of the micro-light-emitting diodes includes an electrode 582 having a reflective property and a light collimating structure 55A, the stage emitted by the micro-light-emitting diode 可以 can resonate and collimate between the two elements. For the purpose of the grounding, refer to FIG. 5a, 5b and FIG. 6H in the first embodiment. Therefore, the 'light-emitting unit array 5' may have the light-emitting unit array 2〇〇. When the luminous single (10) is applied In the projection system shown in Figure 7, 'helps to reduce the overall volume and improve image quality. The above-mentioned actual _ is based on the use of the ship, and is limited to invention. Any member that can use r if or other similar features can form a resonant cavity in a miniature light-emitting diode, and the collimation of the device after the action is in accordance with the invention is not limited to the use of resonance. The technical section of the polar body is straight out of the light effect. Accordingly, the eight embodiments further illustrate the spirit of the invention. Figure 10 is a view showing the hair of the fourth embodiment of the present disclosure

透鏡障列的示意圖。請參照圖 ’、A 、圖10,在本實施例+,微透鏡Schematic diagram of the lens barrier. Please refer to the figures ', A, and FIG. 10, in this embodiment, the microlens

S 17 201227942 =歹J 7〇〇配置,發光單元陣列細上,並具有多個微型透 Γ 〇ί。發光單元陣歹,J 600包括多個陣列排列於基板610 極體62。,並且各個微型發光二極體62〇 目對兩U有電極64G以及透明導電層⑽以電性連 妾,外部。各個電極_更例如透過對應的接點_接合 至基板610的電路元件612上。 具體而s ’各個微型發光二極體62〇包括反射層622、 接觸層624、發光結構626以及光線準直結構628。發光結 構626包括依序堆疊的第一型捧雜半導體層626八、主動層 626B以及帛二雜料導體層απ,其巾第―型換雜半 導耻層626A以及第二型摻雜半導體層626c分別為n型換 ^半導體材料以及Ρ型摻雜半導體材料,或是相反。在本 實施例所採㈣η型摻雜半導體材料以及ρ型摻雜半導體 材料例如分別為11型氮化鎵以及Ρ型氮化鎵。不過,在其 他的實施例中,η型摻雜半導體材料以及ρ型摻雜半導體 =料可以是不畴雜型態的其他半導體材料,諸如氮化銘 鎵(GaAIN)、氮化銦鎵(GaInN)等其他的m_v族氮化合物。 另外,光線準直結構628具有多個凹穴628A。各凹 八628A的深度可以為5〇nm至25〇nm<j在一實施例中,凹 穴f28A内可選擇性地不填充其他材料、填充有介電材料 或是填充有分佈布拉格反射鏡,且所填充之材料的折射率 不同於第二型摻雜半導體層626C的折射率。此時,光線 準直結構628可以改變發光結構626所發出光線之光路 徑,使得微型發光二極體620具有準直的出光效果。具體 18 201227942 來°兒,發光單元陣列600可以具有第一實施例之發光單元 陣列200所具有的功能與優點。 在本實施例中,光線準直結構628的凹穴628A呈現 ,期性排列時可以視為一光子晶體結構層。也就是說,本 實施例可利用光子晶體結構的設計來調整微型發光二極體 620的出光效果,以實現理想的出光準直性。一般來說, 光子晶體結構的排列週期性與微型發光二極體62〇的發光 波長以及所欲獲得的出光角度有關。圖U為微型發光二極 體的色散關係圖(dispersion diagram),其表示為微型發光二 極體所發出光線之出光光向量與光子晶體結構之節距對應 出光波長的比值之關係。圖u中,Γ表示為出光向量平行 於出光面之法線方向,也就是準直的出光方向(零度角)。χ 與Μ分別表示平行出光面的兩個方向。由圖η的關係可 知’ Μ型發光二極體所發出的光線在色散關係圖中對應於 Γ處有許多個節點。光子晶體結構之節距對應出光波長的 比值落在這些節點時,表示著微型發光二極體可以具有準 直的出光效果。因此,利用圖Η所呈現的關係以及已知微 型發光二極體所發出的波長來決定光子晶體結構的節距, Ζ以使得微型發光二極體具有準直的出光效果。也就是 5兒,可以依據圖11中的這些節點決定圖1〇中光線準直結 構628的這些凹穴628Α的節距就可以使微型發光二極^ 620具有理想的出光效果,以降低發光單元陣列6〇〇中相 鄰微型發光二極體620之間發生光學串音現象。 圖12繪示為本揭露第五實施例的發光單元陣列搭配S 17 201227942 = 歹 J 7〇〇 configuration, the light-emitting unit array is fine, and has a plurality of micro-transmissions. The light emitting cell array, J 600 includes a plurality of arrays arranged on the substrate 610 pole body 62. And each of the micro-light-emitting diodes 62 is electrically connected to the two U-electrode 64G and the transparent conductive layer (10), and is external. The individual electrodes _ are bonded to the circuit component 612 of the substrate 610, for example, via corresponding contacts. Specifically, each of the micro-light emitting diodes 62A includes a reflective layer 622, a contact layer 624, a light emitting structure 626, and a light collimating structure 628. The light emitting structure 626 includes a first type of doped semiconductor layer 626 eight, an active layer 626B, and a second impurity conductive layer απ, and a second-type doped semiconductor layer 626A and a second type doped semiconductor layer. 626c is an n-type semiconductor material and a germanium-doped semiconductor material, respectively, or vice versa. In the present embodiment, the (iv) n-type doped semiconductor material and the p-type doped semiconductor material are, for example, type 11 gallium nitride and germanium type gallium nitride, respectively. However, in other embodiments, the n-type doped semiconductor material and the p-type doped semiconductor material may be other semiconductor materials that are non-domain-type, such as GaN (GaAIN), indium gallium nitride (GaInN). And other m_v group nitrogen compounds. Additionally, the light collimating structure 628 has a plurality of pockets 628A. Each recess 628A may have a depth of 5 〇 nm to 25 〇 nm. In one embodiment, the recess f28A may optionally be filled with other materials, filled with a dielectric material or filled with a distributed Bragg mirror. And the refractive index of the filled material is different from the refractive index of the second type doped semiconductor layer 626C. At this time, the light collimating structure 628 can change the optical path of the light emitted by the light emitting structure 626, so that the micro light emitting diode 620 has a collimated light emitting effect. Specifically, the light-emitting unit array 600 may have the functions and advantages of the light-emitting unit array 200 of the first embodiment. In the present embodiment, the recess 628A of the light collimating structure 628 is presented as a photonic crystal structure layer. That is to say, the present embodiment can utilize the design of the photonic crystal structure to adjust the light-emitting effect of the miniature light-emitting diode 620 to achieve an ideal light-collecting collimation. In general, the arrangement of the photonic crystal structure is periodically related to the wavelength of the light emitted from the micro-light-emitting diode 62 and the angle of light to be obtained. Figure U is a dispersion diagram of a miniature light-emitting diode, which is expressed as a relationship between the ratio of the light-emitting light vector of the light emitted by the micro-light-emitting diode to the wavelength of the photonic crystal structure corresponding to the wavelength of the light. In Fig. u, Γ is expressed as the direction in which the light vector is parallel to the normal direction of the light exit surface, that is, the collimated light exit direction (zero angle). χ and Μ respectively indicate the two directions of the parallel exit surface. It can be seen from the relationship of the graph η that the light emitted by the Μ-type light-emitting diode has many nodes corresponding to the Γ in the dispersion relation diagram. When the ratio of the pitch of the photonic crystal structure corresponding to the wavelength of the light falls on these nodes, it means that the micro-light emitting diode can have a collimated light-emitting effect. Therefore, the relationship between the photonic crystal structure and the wavelength emitted by the known micro-light emitting diode is used to determine the pitch of the photonic crystal structure, so that the micro-light emitting diode has a collimated light-emitting effect. That is to say, according to the nodes in FIG. 11, the pitch of the recesses 628Α of the light collimating structure 628 in FIG. 1 can be determined to make the micro-lighting diode 620 have an ideal light-emitting effect to reduce the light-emitting unit. Optical crosstalk occurs between adjacent micro-light emitting diodes 620 in the array 6A. FIG. 12 is a schematic diagram of a light unit array according to a fifth embodiment of the present disclosure.

S 19 201227942 微透鏡陣列的示意圖。請參照圖12,本實施例的設計與四 實施例大致相同,因此兩實施例中相同的構件將使用相同 的元件符號標示,在此不另贅述。具體而言,本實施例與 第四實施例的主要差異在於本實施例的發光單元陣列8〇〇 中,每個微型發光二極體820中的光線準直結構628為光 子晶體結構層’並且每個微型發光二極體82〇除了具有微 型發光二極體620的所有構件外’還具有另一光子晶體結 構層810,其配置於各微型發光二極體82〇的發光結構626 與反射層622之間。也就是說,本實施例的各微型發光二 極體820具有兩個光子晶體結構層(光子晶體結構層81〇與 以光子晶體結構層為實施方式的光線準直結構628),且發 光結構626位於這兩個光子晶體結構層之間。光子晶體結 構層810同樣地具有多個凹穴81 〇A,凹穴810A的節距可 以參照圖11所呈現的關係來決定。另外 ,凹穴628A中可 選擇性地不填充其他材料或是填充有反射材料,其中凹穴 810A内所填充的反射材料可以相同於反射層622的材 質。也就是說’凹穴810A内所填充的反射材料可與反射 層622為一體成型地形成,但本揭露不限於此。光子晶體 結構層810與光線準直結構628同樣地可以改變微型發光 二極體820所發出光線的光路徑而有助於使微型發光二極 體820具有準直的出光效果。因此,發光單元陣列8〇〇可 以具有第一實施例之發光單元陣列2〇〇所達成之相同的功 效及優點,而可以應用於投影系統中。 綜上所述’本揭露利用具有反射特性或是具有改變光 20 201227942 路徑特性的紐準錄構設置於發光單元_的微型發光 -極體中。因此’發光單元陣列的每個微型發光二極體可 σο 一 . 匕 亨 ,當本揭露的發光 早元陣列顧於投㈣統時,發光單_列可以直接顯示 影像’不需額外的顯示面板而達到縮減整體體積的效果。 同時」發光單元_不易發生光學串音縣而有助於改善 投影系統的成像品質。進一步而言,發光單元陣列具有良 好的出光效率也有助於使投影系統的成像品質更為優越。 雖然本揭露已以實施例揭露如上,然其並非用以限定 本揭露,任何所屬技術領域中具有通常知識者,在不脫離 本揭露之精神和範圍内’當可作些許之更動與潤飾,故本 揭路之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1繪示為一種已知的使用微型發光二極體陣列顯示 型光源的投影系統。 圖2繪示為圖1的投影系統中,微型發光二極體陣列 的光線追跡圖。 圖3繪示為圖1的投影系統中,微型發光二極體陣列 的遠場(far field)光線強度分布。 圖4a至圖4i繪示為本揭露第一實施例的發光單元陣 列的製作方法。 圖5a與圖5b分別為習知微型發光二極體的遠場分佈 圖以及本實施例之微型發光二極體的遠場分佈圖。S 19 201227942 Schematic diagram of a microlens array. Referring to FIG. 12, the design of the embodiment is substantially the same as that of the four embodiments. Therefore, the same components in the two embodiments will be denoted by the same reference numerals, and will not be further described herein. Specifically, the main difference between the present embodiment and the fourth embodiment is that in the light-emitting unit array 8 of the present embodiment, the light collimating structure 628 in each of the micro-light-emitting diodes 820 is a photonic crystal structure layer 'and Each of the micro-light-emitting diodes 82 has a photonic crystal structure layer 810 in addition to all the components of the micro-light-emitting diode 620, and is disposed on the light-emitting structure 626 and the reflective layer of each of the micro-light-emitting diodes 82A. Between 622. That is, each of the micro-light-emitting diodes 820 of the present embodiment has two photonic crystal structure layers (the photonic crystal structure layer 81 and the light-collimation structure 628 having the photonic crystal structure layer as an embodiment), and the light-emitting structure 626 Located between the two photonic crystal structure layers. The photonic crystal structure layer 810 likewise has a plurality of recesses 81 〇 A, and the pitch of the recesses 810A can be determined with reference to the relationship presented in FIG. In addition, the recess 628A can be selectively filled with other materials or filled with a reflective material, wherein the reflective material filled in the recess 810A can be the same as the reflective layer 622. That is, the reflective material filled in the recess 810A may be integrally formed with the reflective layer 622, but the disclosure is not limited thereto. The photonic crystal structure layer 810, like the light collimation structure 628, can change the light path of the light emitted by the micro-light-emitting diode 820 to help the micro-light-emitting diode 820 have a collimated light-emitting effect. Therefore, the light-emitting unit array 8 can have the same effects and advantages as those of the light-emitting unit array 2 of the first embodiment, and can be applied to a projection system. In summary, the present disclosure is disposed in the micro-light-emitting body of the light-emitting unit_ using a tracking structure having a reflection characteristic or having a path characteristic of changing light 20 201227942. Therefore, each of the micro-light-emitting diodes of the illuminating unit array can be σο. 匕 ,, when the illuminating early-earth array of the present disclosure is in accordance with the projection (four) system, the illuminating single column can directly display the image 'no additional display panel And to achieve the effect of reducing the overall volume. At the same time, the "lighting unit" is less prone to optical crosstalk and helps to improve the imaging quality of the projection system. Further, the light-emitting unit array has a good light-emitting efficiency and also contributes to superior imaging quality of the projection system. The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any person skilled in the art can make some changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of this disclosure is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram showing a known projection system using a miniature light-emitting diode array display type light source. 2 is a ray tracing diagram of a miniature light emitting diode array in the projection system of FIG. 1. 3 is a diagram showing the far field light intensity distribution of the miniature light emitting diode array in the projection system of FIG. 1. 4a to 4i illustrate a method of fabricating an array of light emitting cells according to a first embodiment of the present disclosure. 5a and 5b are respectively a far-field distribution diagram of a conventional micro-light-emitting diode and a far-field distribution diagram of the micro-light-emitting diode of the present embodiment.

S 21 201227942 圖6繪示為本揭露第—實施例的發光單元陣列中微型 發光二極體搭配了微型透鏡所呈現的遠場光線強度在 視角下的分布。 圖7繪示為本揭露第一實施例的發光單元陣列應用於 投影系統的示意圖。 ' 圖8a至圖8e繪示為本揭露第二實施例的發光單元陣 列的製作流程示意圖。 圖9a至圖9g繪示為本揭露第三實施例的發光單元陣 列的製作流程示意圖。 圖10繪示為本揭露第四實施例的發光單元陣列與微 透鏡陣列的示意圖。 η 圖11為微型發光二極體的射散關係圖,其表示為微 型發光二極體所發出光線之出光光向量與光子晶體結構之 節距對應出光波長的比值之關係。 圖12繪示為本揭露第五實施例的發光單元陣列搭配 微透鏡陣列的示意圖。 【主要元件符號說明】 10、220、242、410、470、510、570、590、610 :基 板 100、300 :投影系統 110 :微型發光二極體陣列 120、302、700 :微透鏡陣列 130、304 :投影鏡頭 22 201227942 200、400、600、800 :發光單元陣列 222、422、522、626A :第一型摻雜半導體層 222a、222b :摻雜半導體材料薄層 224、492、550、628 :光線準直結構 226、424、524、626B :主動層 228、426、526、626C :第二型掺雜半導體層 230 :發光結構層 232、428、624 :接觸層 234、430、622 :反射層 236、494、620、820、Μ :微型發光二極體 238、460、580 :保護層 240、582、640 :電極 242 :基板 244、584 :金屬接點 246、490、530、650 :透明導電層 302Α、702 :微型透鏡 420、520、626 :發光結構 440 :第一電極 450 :第二電極 472、592、612 :電路元件 480、560、586 :填充層 540 :金屬網格 542 :開口 628Α、810Α :凹穴S 21 201227942 FIG. 6 is a diagram showing the distribution of the far-field light intensity exhibited by the micro-light-emitting diode in combination with the micro-lens in the light-emitting unit array according to the first embodiment of the present disclosure. FIG. 7 is a schematic diagram of a light emitting unit array according to a first embodiment of the present disclosure applied to a projection system. 8a to 8e are schematic diagrams showing the manufacturing process of the array of light emitting units according to the second embodiment of the present disclosure. 9a to 9g are schematic diagrams showing a manufacturing process of an array of light emitting units according to a third embodiment of the present disclosure. FIG. 10 is a schematic diagram of a light emitting unit array and a microlens array according to a fourth embodiment of the present disclosure. η Figure 11 is a diagram showing the relationship between the light-emitting diodes of the micro-light-emitting diodes and the ratio of the wavelengths of the light-emitting light rays emitted by the micro-light-emitting diodes to the wavelengths of the photonic crystal structures. FIG. 12 is a schematic diagram of a light-emitting unit array with a microlens array according to a fifth embodiment of the present disclosure. [Main component symbol description] 10, 220, 242, 410, 470, 510, 570, 590, 610: substrate 100, 300: projection system 110: micro LED array 120, 302, 700: microlens array 130, 304: projection lens 22 201227942 200, 400, 600, 800: light emitting unit array 222, 422, 522, 626A: first type doped semiconductor layer 222a, 222b: doped semiconductor material thin layer 224, 492, 550, 628: Light collimating structure 226, 424, 524, 626B: active layer 228, 426, 526, 626C: second type doped semiconductor layer 230: light emitting structure layer 232, 428, 624: contact layer 234, 430, 622: reflective layer 236, 494, 620, 820, Μ: miniature light-emitting diodes 238, 460, 580: protective layers 240, 582, 640: electrodes 242: substrates 244, 584: metal contacts 246, 490, 530, 650: transparent conductive Layers 302Α, 702: microlenses 420, 520, 626: light emitting structure 440: first electrode 450: second electrodes 472, 592, 612: circuit elements 480, 560, 586: fill layer 540: metal grid 542: opening 628Α , 810Α: pocket

23 201227942 660 :接點 810 :光子晶體結構層 A、B、C :族群 G :間隙 L :厚度 SM :半導體材料 2423 201227942 660 : Contact 810 : Photonic crystal structure layer A, B, C : Group G: Gap L : Thickness SM : Semiconductor material 24

Claims (1)

201227942 七、申請專利範園: 1. 一種發光單元陣列,包括·· 多個微型發光二極體,陣列排列於一基板上,且各該 微型發光二極體包括: Λ 一反射層; 一發,結構,配置於該反射層上,該發光結構包 括依序堆疊的一第一型摻雜半導體層、一主動層以及 一第二型摻雜半導體層;以及 曰 一光線準直結構,其中至少部份該第一型摻雜半 導體層、邊主動層以及該第二型摻雜半導體層夾於該 反射層與該光線準直結構之間。 2·如申請專利範圍第1項所述之發光單元陣列,其 中各該微型發光一極體的該光線準直結構包括一分佈布拉 格反射鏡或是一全方位反射鏡。 3. 如申請專利範圍第2項所述之發光單元陣列,其 中各5亥被型發光一極體的該光線準直結構内埋於該第一型 摻雜半導體層中。 4. 如申請專利範圍第2項所述之發光單元陣列,其 中各該微型發光二極體的該發光結構在該光線準直結構與 該反射層之間的厚度L與該主動層的發光波長又符合了 L=n/2 λ,η為正整數且3<η<2〇。 5·如申請專利範圍第1項所述之發光單元陣列,其 中該些微型發光二極體的該些光線準直結構連接成連續的 一分佈布拉格反射層。 S 25 201227942 6. 如申請專利範圍第1項所述之發光單元陣列,其 中各該微型發光二極體的該光線準直結構具有多個凹穴。 7·如申請專利範圍第6項所述之發光單元陣列,更 包括多個分佈布拉格反射鏡,各該分佈布拉格反射鏡填充 於其中一個凹穴中。 8. 如申請專利範圍第6項所述之發光單元陣列,其 中該光線準直結構的該些凹穴呈現週期性排列以構成為一 第一光子晶體結構層。 9. 如申請專利範圍第8項所述之發光單元陣列,其 中該第一光子晶體結構層的該些凹穴中填有介電材料。 10. 如申請專利範圍第8項所述之發光單元陣列,其 中各該微型發光二極體更包括一第二光子晶體結構層,配 置於該微型發光二極體的該發光結構與該反射層之間。 11. 如申請專利範圍第1〇項所述之發光單元陣列, 其中该弟一光子晶體結構層所具有的多個凹穴中填充有反 射材料,且該反射材料與該反射層為相同材質。 12. —種投影系統,包括: 一顯示單元陣列,包括多個微型發光二極體,於一基 板上排列成陣列’且各該微型發光二極體包括: 一反射層; 一發光結構,配置於該反射層上,該發光結構包 括依序堆疊的一第一型摻雜半導體層、一主動層以及 一第二型摻雜半導體層;以及 曰 一光線準直結構,其中至少部份該第一型摻雜半 26 201227942 導體層、該主動層以及該第二型掺雜半導體層夾於該 反射層與該光線準直結構之間;以及 一投影透鏡組,位於該顯示單元陣列的顯示光線的光 徑上。 13.如申請專利範圍第12項所述之投影系統,其中 各該微型發光二極體的該光線準直結構包括一分佈布拉格 反射鏡或是一全方位反射鏡。 14·如申請專利範圍第13項所述之投影系統,其中 各該微型發光二極體的該光線準直結構内埋於該第一型摻 雜半導體層中。 > 15. 如申請專利範圍第13項所述之投影系統,其中 各該微型發光二極體的該發光結構在該光線準直結構與該 反射層之間的厚度L與該主動層的發光波長a符合:L=n/2 λ ’ η為正整數且3<n<2〇。 16. 如申請專利範圍第12項所述之投影系統,其中 各該微型發光二極體的該光線準直結構具有多個凹穴。 17. 如申請專利範圍第%項所述之投影系統,更包 括多個分佈布拉格反射鏡,各該分佈布拉格反射鏡填充於 其中一個凹穴中。 18. 如申請專利範圍第π項所述之投影系統,其中 s亥光線準直結構的該些凹穴呈現週期性排列以構成為一第 一光子晶體結構層。 19. 如申請專利範圍第18項所述之投影系統,其中 5亥第一光子晶體結構層的該些凹六中填有介電材料。 S 27 201227942 20. 如申請專利範圍第18項所述之投影系統,其中 各該微型發光二極體更包括一第二光子晶體結構層,配置 於該微型發光二極體的該發光結構與該反射層之間。 21. 如申請專利範圍第20項所述之投影系統,其中 該第二光子晶體結構層所具有的多個凹穴中填充有反射材 料,且該反射材料與該反射層為相同材質。 22. 如申請專利範圍第12項所述之投影系統,更包 括多個微型透鏡所構成的一微透鏡陣列,各該透鏡配置於 其中一個微型發光二極體上。 28201227942 VII. Patent application garden: 1. An array of light-emitting units, comprising: a plurality of miniature light-emitting diodes, the array is arranged on a substrate, and each of the miniature light-emitting diodes comprises: a reflective layer; The light emitting structure includes a first type doped semiconductor layer, an active layer, and a second type doped semiconductor layer stacked in sequence; and a first light collimating structure, wherein at least A portion of the first doped semiconductor layer, the active side layer, and the second doped semiconductor layer are sandwiched between the reflective layer and the light collimating structure. 2. The array of light-emitting units according to claim 1, wherein the light collimating structure of each of the micro-light-emitting bodies comprises a distributed Bragg mirror or an omnidirectional mirror. 3. The light-emitting unit array of claim 2, wherein the light collimating structure of each of the five-type light-emitting diodes is buried in the first-type doped semiconductor layer. 4. The illuminating unit array according to claim 2, wherein a thickness L of the illuminating structure of each of the micro illuminating diodes between the ray collimating structure and the reflective layer and an illuminating wavelength of the active layer It also conforms to L = n / 2 λ, η is a positive integer and 3 < η < 2 〇. 5. The array of light-emitting units of claim 1, wherein the light collimating structures of the miniature light-emitting diodes are connected in a continuous distributed Bragg reflector layer. 6. The light-emitting unit array of claim 1, wherein the light collimating structure of each of the micro-light emitting diodes has a plurality of recesses. 7. The array of light-emitting units of claim 6, further comprising a plurality of distributed Bragg mirrors, each of the distributed Bragg mirrors being filled in one of the pockets. 8. The array of light-emitting units of claim 6, wherein the recesses of the light collimating structure are periodically arranged to form a first photonic crystal structure layer. 9. The array of light-emitting units of claim 8, wherein the recesses of the first photonic crystal structure layer are filled with a dielectric material. 10. The light-emitting unit array of claim 8, wherein each of the micro-light-emitting diodes further comprises a second photonic crystal structure layer, the light-emitting structure disposed on the micro-light-emitting diode and the reflective layer between. 11. The array of light-emitting units according to claim 1, wherein the photonic crystal structure layer has a plurality of recesses filled with a reflective material, and the reflective material and the reflective layer are of the same material. 12. A projection system, comprising: a display unit array comprising a plurality of miniature light emitting diodes arranged in an array on a substrate and each of the miniature light emitting diodes comprises: a reflective layer; a light emitting structure, configured On the reflective layer, the light emitting structure comprises a first type doped semiconductor layer, an active layer and a second type doped semiconductor layer stacked in sequence; and a first light collimating structure, wherein at least part of the first a type doped half 26 201227942 conductor layer, the active layer and the second type doped semiconductor layer are sandwiched between the reflective layer and the light collimating structure; and a projection lens group, the display light of the display unit array On the light path. 13. The projection system of claim 12, wherein the light collimating structure of each of the miniature light emitting diodes comprises a distributed Bragg reflector or an omnidirectional mirror. The projection system of claim 13, wherein the light collimating structure of each of the micro LEDs is embedded in the first type doped semiconductor layer. The projection system of claim 13, wherein the light-emitting structure of each of the micro-light-emitting diodes has a thickness L between the light collimating structure and the reflective layer and a light emission of the active layer The wavelength a corresponds to: L = n / 2 λ ' η is a positive integer and 3 < n < 2 〇. 16. The projection system of claim 12, wherein the light collimating structure of each of the micro-light emitting diodes has a plurality of recesses. 17. The projection system of claim 1 further comprising a plurality of distributed Bragg mirrors, each of the distributed Bragg mirrors being filled in one of the pockets. 18. The projection system of claim π, wherein the recesses of the s-light collimating structure are periodically arranged to form a first photonic crystal structure layer. 19. The projection system of claim 18, wherein the recesses of the first photonic crystal structure layer are filled with a dielectric material. The projection system of claim 18, wherein each of the micro-light-emitting diodes further comprises a second photonic crystal structure layer, the light-emitting structure disposed on the micro-light-emitting diode and the Between reflective layers. 21. The projection system of claim 20, wherein the second photonic crystal structure layer has a plurality of recesses filled with a reflective material, and the reflective material and the reflective layer are of the same material. 22. The projection system of claim 12, further comprising a microlens array of a plurality of microlenses, each of the lenses being disposed on one of the miniature light emitting diodes. 28
TW100129591A 2010-08-27 2011-08-18 Light emitting unit array and projection system TW201227942A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110245631.6A CN102386200B (en) 2010-08-27 2011-08-25 Light emitting unit array and projection system
US13/218,479 US8931906B2 (en) 2010-08-27 2011-08-26 Light emitting unit array and projection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37746210P 2010-08-27 2010-08-27

Publications (1)

Publication Number Publication Date
TW201227942A true TW201227942A (en) 2012-07-01

Family

ID=46933448

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100129591A TW201227942A (en) 2010-08-27 2011-08-18 Light emitting unit array and projection system

Country Status (1)

Country Link
TW (1) TW201227942A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622167B (en) * 2016-12-30 2018-04-21 錼創科技股份有限公司 Display device
TWI672808B (en) * 2017-07-07 2019-09-21 鴻海精密工業股份有限公司 Micro-led display panel and method for making same
US10522062B2 (en) 2016-10-13 2019-12-31 Industrial Technology Research Institute Three-dimensional display module
TWI766632B (en) * 2021-03-30 2022-06-01 錼創顯示科技股份有限公司 Micro led display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522062B2 (en) 2016-10-13 2019-12-31 Industrial Technology Research Institute Three-dimensional display module
TWI622167B (en) * 2016-12-30 2018-04-21 錼創科技股份有限公司 Display device
TWI672808B (en) * 2017-07-07 2019-09-21 鴻海精密工業股份有限公司 Micro-led display panel and method for making same
TWI766632B (en) * 2021-03-30 2022-06-01 錼創顯示科技股份有限公司 Micro led display device
US12009461B2 (en) 2021-03-30 2024-06-11 PlayNitride Display Co., Ltd. Micro LED display device including refraction structure

Similar Documents

Publication Publication Date Title
US8931906B2 (en) Light emitting unit array and projection system
US11804511B2 (en) Light emitting device with LED stack for display and display apparatus having the same
US11824145B2 (en) Light emitting device and display apparatus including the same
US11804512B2 (en) Light emitting stacked structure and display device having the same
US8097502B2 (en) Semiconductor light emitting device and method of manufacturing the same
US11569414B2 (en) Self-aligned ITO DBR based p-contact for small pitch micro-LED
TW201122708A (en) Light-emitting unit array, mothod for fabricating the same and projection apparatus
CN114361194A (en) Display apparatus and method of manufacturing the same
TW201227942A (en) Light emitting unit array and projection system
TW202349647A (en) Microdisplay architecture with light extraction efficiency enhancement
CN115274748A (en) Display device
JP7206629B2 (en) Light-emitting device and projector
TWI622167B (en) Display device
WO2024164619A1 (en) Light-emitting apparatus, display module, and electronic device
US20240313166A1 (en) Light-emitting element, display device including the same and method of fabricating the same
US20230163262A1 (en) Light emitting diode array containing metamaterial light collimating features and methods for forming the same
CN118380456A (en) Display panel and electronic device
KR20240133878A (en) Display device
JP2024529517A (en) Light-emitting module and display device using the same
CN117693826A (en) Light emitting device and image display apparatus
JP2021086929A (en) Light-emitting device and projector