TW201815278A - 加速生產胚癒合組織、體胚以及相關轉形方法 - Google Patents
加速生產胚癒合組織、體胚以及相關轉形方法 Download PDFInfo
- Publication number
- TW201815278A TW201815278A TW106135319A TW106135319A TW201815278A TW 201815278 A TW201815278 A TW 201815278A TW 106135319 A TW106135319 A TW 106135319A TW 106135319 A TW106135319 A TW 106135319A TW 201815278 A TW201815278 A TW 201815278A
- Authority
- TW
- Taiwan
- Prior art keywords
- embryo
- immature
- embryos
- plant
- tissue
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H4/00—Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
- A01H4/005—Methods for micropropagation; Vegetative plant propagation using cell or tissue culture techniques
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H4/00—Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H4/00—Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
- A01H4/008—Methods for regeneration to complete plants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
- C07K14/425—Zeins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8206—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8222—Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
- C12N15/823—Reproductive tissue-specific promoters
- C12N15/8234—Seed-specific, e.g. embryo, endosperm
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
- C12N5/0025—Culture media for plant cell or plant tissue culture
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Organic Chemistry (AREA)
- Cell Biology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Pregnancy & Childbirth (AREA)
- Reproductive Health (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Physiology (AREA)
Abstract
本發明提供一種大豆胚癒合組織(embryogenic callus)和體胚(somatic embryos)之生產方法。本發明進一步提供轉形外植體之方法,其包含生成體胚組織,產生之轉殖基因體胚可用於再生穩定的轉殖基因植物。
Description
本揭露一般地涉及植物組織培養之生產。特別是,該揭露之發明涉及胚癒合組織和體胚之更快速生產。所揭露之方法可用於大豆組織之轉形以及轉殖大豆和大豆產品之商業開發。
大豆(Glycine max)為最重要的農作物之一,年收穫量超過2億公噸,估計價值全球超過400億元。大豆佔全球所有油籽產量超過97%。因此,用於提升這種價值作物的品質和產量之可靠和有效的方法係有重大意義。
傳統的改良大豆育種方法受到限制,因為大多數大豆品種僅來自少數親系,導致窄的育種種原基礎。Christou et al.,TIBTECH 8:145-151(1990)。現代研究致力專注於植物基因工程技術以提升大豆生產。基因轉殖的方法被設計作為將所需基因引入作物植物的遺傳種系以生成優良植物系。該方法成功地增加幾種其他作物植物對疾病、昆蟲,和除草劑的抗性,同時提升營養價值。
兩種一般方法普遍地被用於將基因傳遞至大豆植物組織:農桿菌介 導(Agrobacterium-mediated)的基因轉形和基因槍轉形(如藉由高速微粒轟擊)。然而,大豆可以是一個用於基因轉殖工程之具有挑戰性的系統。大豆外植體的高效轉形和再生難以實現,並且經常難以重現。
根癌土壤桿菌(Agrobacterium tumefaciens,一種病原性土壤中細菌,具有將它的DNA(稱為T-DNA)轉移到宿主植物細胞並誘導宿主細胞產生對細菌營養有益之代謝物的能力。使用重組技術,以基因或感興趣之基因(genes of interest)取代一些或全部的T-DNA,創造一種用於轉形宿主植物的細菌載體。農桿菌介導(Agrobacterium-mediated)的基因轉移,為典型地針對於組織培養中的未分化細胞,但亦可針對於從植物的葉或莖取得的已分化細胞。與其他方法比較,農桿菌介導的大豆轉形可提供某些優點,包括較低數量的轉殖基因複製整合,低營運成本以及相對地簡單協定(protocols)。然而,農桿菌轉形可呈現之挑戰,包括較低的轉形率以及較低的轉形效率。此外,不同的大豆品種(cultivars)在對於農桿菌介導轉形的感受性上,展現很大的差異。一些品種被認為對於農桿菌介導的轉形頑固。參照例如,Wiebke-Strohm et al.,(2012)in Genetic Engineering-Basics,New Applications and Responsibilities,Barrera-Seldana(Ed.)(InTech),pp.145-172,at 159-160。
基因槍轉形涉及使用粒子穿刺植物細胞壁和膜並且在細胞內傳送核酸。基因槍轉形的方法包含特定組織之高速粒子轟擊,例如頂端分生組織或胚體組織(embryogenic tissue)培養。儘管用於頂端分生組織之基因槍轉形方法可在7至10個月內完成(Rech et al.(2008)Nature Protocols 3(3):410-418),但來自被轟擊之分生組織的器官形成是多細胞起源,因此可以產生具有轉殖基因和非轉殖基因部分的嵌合體植物(chimeric plant)(Cho et al.(1997)Plant Biotechnol.14(1):11-16)。相比之下,包含體胚癒合組織培養物及/或胚懸浮培養之基因槍轉形方法較可能產生非嵌合再生植物。然而,使 用胚癒合組織培養之方法可能相當耗時而且複雜。例如,俄亥俄州植物轉形實驗室,報導使用其胚體組織的「D20轉形」的粒子轟擊通常需要9至12個月才能恢復基因轉殖大豆植物。相同的實驗室已表示,使用胚懸浮培養,在技術上要求更高並且較「D20轉形」法更具挑戰性。另外,胚癒合組織衍生材料的轉形可導致低轉形率和不孕性(sterility)問題(Finer et al.(1991)In Vitro Cell Dev.Biol.,27P:175-182和Cho et al.(1997)15-16)。
因此,有一提升培養胚癒合組織之方法和其在大豆轉形之應用之需求。
本發明係部分地,基於發現對未成熟大豆胚外植體的非生物性逆境(abiotic stress)處理可提升其形成胚癒合組織的能力。在某些實施例,所揭露的發明可用於提升胚癒合組織形成、體胚形成和體胚再生。例如,所揭露的發明成功地誘導60%、70%或在一些情況下超過80%起始未成熟胚外植體的體胚發生(somatic embryogenesis)。另外,根據本發明被非生物性逆境威脅的未成熟外植體在14至18週內再生成生根植物。
本發明亦至少部分地,基於發現大豆胚的冷處理可被用於提升大豆組織的基因轉移,然後其可被用於再生基因轉殖的大豆組織及/或基因轉殖的大豆植物。在此所揭露的本發明的某些實施例中,以非生物性逆境處理的植物胚組織有利地提供一種用於產生轉殖基因體胚組織的更快,較不耗時的方法。本發明亦提供用於大豆品種轉形的改良方法,該大豆品種被認為係對於其他轉形方法「頑固的」。
在一方面,本發明提供對未成熟大豆胚外植體進行冷處理並產生胚癒合組織的方法。該未成熟的胚外植體可以是一完整合子的未成熟胚,或 它可以是其一部分,例如種子裂開的外植體、下胚軸、上胚軸、胚軸、子葉或能夠產生胚癒合組織的未成熟胚的任何其它部分。在這個方面的一個實施例中,本發明可以進一步包含在進行冷處理之後誘導體胚組織的形成。使用本發明的方法形成的體胚組織可以在,例如半固體培養基或液體培養系統中培養和/或繁殖。
另一方面,本發明提供了一種轉形方法,其包含對未成熟大豆胚外植體進行冷處理,產生體胚組織,以及使用一或多種外源的基因(「轉殖基因」)轉形體胚組織以產生基因轉殖的體胚組織。體胚組織的轉形可以藉由任何適合的方法,例如藉由農桿菌或基因槍介導的轉形。在某些實施例中,本發明的這方面可進一步包含將轉殖基因體胚組織再生成含有一或多種轉殖基因的穩定的轉殖基因植物。在其他實施例中,本發明的這方面可進一步包含培養轉形的體胚組織而不再生成穩定的轉殖基因植物,例如用於瞬時轉形。
在另一方面,本發明提供了一種方法,其包含對未成熟大豆胚外植體進行冷處理,用一或多種轉殖基因轉形胚外植體,且隨後從被轉形的胚外植體產生轉殖基因體胚組織。轉形可以藉由任何合適的方法進行,例如藉由農桿菌或基因槍介導的轉形。在某些實施中,本發明的這個方面可進一步包含將基因轉殖的體胚組織再生成含有一或多種轉殖基因的穩定的轉殖基因植物。在其他實施例中,本發明的這方面可進一步包含培養被轉形的體胚組織而不再生成穩定的轉殖基因植物,例如用於瞬時轉形。
另一方面,本發明提供一種轉形方法,其包含對未成熟大豆胚外植體進行冷處理和質離。在這方面的一個實施例中,本發明包含對未成熟大豆胚外植體進行冷處理,隨後使經冷處理的外植體進行質離,以產生二個非生物逆境的胚組織。在另一個實施例中,本發明包含對未成熟大豆胚外植體 進行質離,然後對其進行冷處理,因而產生二個非生物逆境的胚外植體。在這些實施例中的任一,本發明可進一步包含使用二個非生物逆境的胚外植體以產生體胚組織。任選地,體胚組織在培養系統中維持或繁殖。體胚組織可用一或多個轉殖基因轉形以產生轉殖基因的體胚組織。體胚組織的轉形可以藉由任何合適的方法進行,例如藉由農桿菌或基因槍介導的轉形。在某些實施例中,本發明的這個方面可進一步包含將轉殖基因的體胚組織再生成含有一或多種轉殖基因的穩定的轉殖基因植物。在其他實施例中,本發明的這個方面可進一步包含培養轉形的體胚組織而不再生成穩定的轉殖基因植物,例如用於瞬時轉形(transient transformation)。
在不同的另一方面,本發明提供一種轉形的方法,其包含對未成熟大豆胚外植體進行冷處理和質離,以產生二個非生物逆境胚外植體。將這個兩次非生物逆境的未成熟胚外植體用一或多種轉殖基因轉形,以產生二個非生物逆境的轉殖基因的胚外植體。轉形可以藉由任何合適的方法進行,例如藉由農桿菌或基因槍介導的轉形。在這個方面的某些實施例中,本發明可進一步包含隨後使用二個非生物逆境的轉殖基因外植體以開發轉殖基因的體胚組織。在這個方面的另外的實施例中,本發明進一步包含將轉殖基因的體胚組織再生成含有一或多種轉殖基因的穩定的轉殖基因植物。在這個方面的其它另外的實施例中,本發明進一步包含培養轉殖基因的體胚組織而不再生成穩定的轉殖基因植物,例如用於瞬時轉形。
在本發明的某些優選實施例中,將未成熟胚外植體進行冷處理,將外植體解剖以形成分裂的種子外植體,並且誘導分裂的種子外植體以形成胚癒合組織。此外,外植體可進一步用於形成體胚組織。這個體胚組織可以被轉形以產生轉殖基因的體胚組織。轉形可藉由任何合適的方法(例如農桿菌介導或基因槍介導)。轉殖基因的體胚可在半固體培養基或液體培養系統 中維持或繁殖。此外,該轉殖基因的體胚可以再生成含有一或多種轉殖基因的穩定的轉殖基因植物。
在其他優選實施例中,將未成熟胚外植體進行冷處理,然後將其解剖以形成分裂的種子外植體,並且將該分裂的種子外植體進行質離,因而產生二個非生物逆境的未成熟胚外植體。這二個非生物逆境的未成熟胚外植體用一或多個轉殖基因轉形,以產生二個非生物逆境的,轉殖基因的未成熟胚外植體。轉形可以藉由任何合適的方法(例如農桿菌介導的或基因槍介導的)。該轉殖基因的未成熟胚外植體然後可被用於產生轉殖基因的體胚。轉殖基因的體胚可在培養物中維持或繁殖,或再生成含有該一或多種轉殖基因的穩定的轉殖基因植物。
在另外優選的實施例中,將該未成熟胚外植體進行冷處理,然後將其解剖以形成分裂的種子外植體,並且將該分裂的種子外植體進行質離,從而產生二個非生物逆境的未成熟胚外植體。誘導這二個非生物逆境的未成熟胚外植體以形成胚癒合組織。此外,該外植體可進一步被用於形成體胚組織。該轉殖基因的體胚可以在半固體培養基或液體培養系統中維持或繁殖。在這個實施例的具體實施例中,因此產生的體胚組織用一或多個轉殖基因轉形以產生轉殖基因的體胚組織。轉形可以藉由任何合適的方法(例如農桿菌介導的或基因槍介導的)。轉殖基因的體胚可以在培養物中維持或繁殖,或再生成含有一或多種轉殖基因的穩定的轉殖基因植物。
另一方面,本發明提供用於未成熟胚的基因槍介導轉形的快速方法。在這方面,本發明包含使未成熟大豆胚外植體進行冷處理,使用基因槍介導的轉形,以包含可選擇標記基因的一或多個轉殖基因轉形胚外植體,且隨後從轉形的胚外植體產生轉殖基因的體胚組織。在優選的實施例中,該轉形的未成熟大豆胚外植體包含完整的胚軸。胚的出入口可以是基因槍轉形的 靶標,例如粒子轟擊的靶標。在本發明的這個方面的一些實施例中,可選擇標記基因提供對包含草銨膦(glufosinate)的選擇劑的抗性。例如,該可選擇標記基因可係為一PAT(草銨膦-N-乙醯基移轉酶)基因,一BAR(畢拉草抗性)基因或一DSM2(Dow可選擇標記)基因。在本發明這方面的某些實施例中,該可選擇標記基因提供對包含草甘膦(glyphosate)或抗生素如潮黴素(hygromycin)的選擇劑的抗性。例如,該可選擇標記基因可係為一DGT28(Dow草甘膦耐性)基因或一HPT(潮黴素磷酸轉移酶)基因。在本發明這個方面的進一步實施例中,該方法進一步包含將轉殖基因的體胚組織再生成含有一或多種轉殖基因的穩定的轉殖基因植物。在這樣的進一步實施例的一些實例中,該穩定的轉殖基因的植物可以有利地在基因槍介導的轉形後四至五個月的時間內,從體胚組織再生。
在描述和聲明本發明時,以下術語將根據下述的定義使用。除非另有說明,本文所用的術語「a」和「an」是指至少一個。
如本文所使用,「子葉」通常可指種子植物的胚的胚葉或「初生葉」。子葉在本領域也被稱為「種子葉」。雙子葉物種,如大豆,有兩個子葉。「子葉結節」是指子葉在種子或幼苗中對胚的附著點,並且通常可指與該附著點相關聯的組織。
術語「胚的軸」或「胚軸」是指植物胚的主要部分,並且通常包 含上胚軸和下胚軸。
術語「外植體」是指從供體植物(例如,從供體種子或未成熟胚))去除或分離的一塊大豆組織,在體外培養,並且能夠在合適的介質中生長。
「上胚軸」是植物胚的一部分或子葉上方的幼苗,並且在第一個真葉之下。在種子中,上胚軸位於子葉結節上方,可以不同地被稱為「胚芽(embryonic shoot)」或「未來的芽(future shoot)」。
「下胚軸」是植物胚的部分或子葉下方和根或胚根(胚的根)上方的幼苗。在種子中,下胚軸位於子葉結節下方,也可稱為「下胚莖(hypocotyledonous stem)」或「胚的莖(embryonic stem)」。如本文所使用,下胚軸可指如其中發現組織的位置。如本文所使用,上胚軸可指如所述的位置,或其中發現的組織。
術語「植物」是指全植物,植物組織、植物部分、包括花粉、種子或胚、植物種原,植物細胞或植物群。
術語「植物部分」係指植物的任何部分,包含(例如)且不限於:種子(包含成熟種子及未成熟種子);植物插條;植物細胞;植物細胞培養物;植物器官(例如花粉,胚、花、果實、芽、葉、根,莖和外植體)。植物組織或植物器官可為種子、植物癒合組織或組織成結構或功能單元之任何其他植物細胞群。植物細胞或組織培養物可能能夠再生一個具有獲得該細胞或組織之植物的生理及形態特徵的植物,且能夠再生一個具有與該植物實質上相同基因型之植物。相比之下,一些植物細胞不能夠再生以產生 植物。植物細胞或組織培養物中之可再生細胞係可為胚芽,原生質體、分生細胞、植物癒合組織、花粉、葉、花藥、根、根尖、穗絲、花、果仁、穗、穗軸,果殼或梗。
植物部分包含可收穫部分及適用於繁殖子代植物的部分。適用於繁殖的植物部分包含(例如)且不限於:種子;果實;插條;幼苗;塊莖;及根莖。植物之可收穫部分係可為植物之任何可用部分,包含(例如)且不限於:花;花粉;幼苗;塊莖;葉;莖;果實;種子;及根。
植物細胞係為植物的結構和生理單元。如本文所使用的植物細胞包括原生質體和具有細胞壁的原生質體。植物細胞係可呈經分離之單細胞或細胞聚集物(例如脆弱的植物癒合組織及經培養細胞),且可為較高級的組織單元(例如植物組織,植物器官及植物)的一部分。因此,植物細胞係可為原生質體、配子產生細胞或可再生成整株植物之細胞或細胞集合。因此,包括多個植物細胞且能夠再生成整株植物的種子在本文實施例中係視為「植物部分」。
術語「雙子葉植物(dicot)」或「有雙子葉的(dicotyledonous)」是指具有兩個子葉的植物。實例包含作物植物,例如大豆,向日葵、棉花籽(canola)、大油菜,和芥末。
術語「單子葉植物(monocot)」或「單子葉的(monocotyledonous)」是指具有單個子葉的植物。實例包含作物植物如玉米、大米、小麥、燕麥和大麥。
如本文所使用之術語「轉形」是指核酸或片段傳遞和整合至宿主 生物體中,導致基因穩定的遺傳。含有經轉形核酸片段之宿主生物體稱為「轉殖基因」或「重組」或「經轉形」生物體。已知的轉形方法包含農桿菌或蘋果毛根病細菌介導的轉形、磷酸鈣轉形、聚乙烯轉形、原生質體融合、電穿孔、超音波方法(例如超音波震盪)、脂質體轉形、顯微注射、裸DNA、脂質體載體、病毒載體、基因槍(微粒轟擊)、碳化矽WHISKERSTM介導的轉形、氣溶膠粒子束或PEG轉形以及其他可能的方法。
如本文所使用,術語「轉殖基因」指經基因修飾的植物細胞、植物組織、植物部分、植物種原或植物,例如包含藉由轉形或基因編輯技術被引入植物細胞的基因體、植物組織、植物部分、植物種原或植物的預選核酸序列中。
如本文所使用,術語「轉殖基因的」、「異源」、「引入」或「外來」核酸(例如DNA、RNA或基因)是指發生在植物的基因體中的非自然發生的重組核酸序列或基因;而是由於人類干預將重組核酸序列人工地併入生物體的基因組中。這種重組核酸序列可以是人工產生的重組核酸序列,其可以是來自不同物種的重組核酸序列,或是在發現於未轉形的、非轉殖基因的植物的基因組中的不同位置或群叢。
大豆類型。本發明提供一種在不同大豆品種中引起胚癒合組織之形成的方法。在一些實施例中,本發明所揭露的方法用於引起來自大豆,對胚發生(embryogenesis)誘導有反應的胚癒合組織。已經被確認為對體胚發生有反應的大豆品種的實例包含但不限於Jack、Kunitz、Council、Cisne、 Savoy和Maverick。在某些實施例中,本發明可用於從對胚發生(embryogenesis)誘導較弱或中度反應的大豆中引發胚癒合組織。已被確認為對體胚發生具有弱或中度反應的大豆品種的實例包括但不限於Olympus、Delsoy 500、NE3399、Benning和MN301。Ko et al.(2004)Crop Sci.44:1825-1831。在其它實施例中,本發明可用於引發已確認為對體胚發生的大豆的胚癒合組織「頑固的」,即非常弱或非胚發生的(non-embryogenic)。對體胚再生(somatic embryogenesis)頑固的的大豆品種的實例包含,但不限於:Stonewall、Pennyrile、Defiance、Glacier、Cook、MN1301、KS4895、Haskell和NC Roy。參見例如,Meurer et al.(2001)In Vitro Cell.Dev.Biol.-Plant 37:62-67。
另外,該揭露的轉形方法可用於轉形頑固的(具有弱反應性)的大豆品種以成就從轉殖基因的癒合組織再生轉形的植物一些大豆品種,像是Jack,在多種條件下產生體胚癒合組織,且這些品種的癒合組織可以藉由重複繼代培養而增殖。對比之下,那些這裡被稱為頑固的其它大豆品種,使用既定的方法,是弱的胚發生的或非胚發生的。參見例如,Meurer et al.(2001)。因此,本發明的方法可用於提升使用本文所揭露的非生物逆境處理,轉形和再生方法的頑固的大豆品種的反應性。
莢選擇和收穫。任何包含適合的未成熟胚的莢都可用於本發明的方法中。在一些實施例中,本發明的方法使用已從基於年齡、尺寸、胚的數目,或這些特徵的組合中選擇從大豆收穫的未成熟胚。例如,用於本發明的含有胚的莢可從種植四至六週,例如種植後五週的植物中收穫。在某些實施 例中,用於本發明的含有胚的莢在開花後約七至十四天從植物中收穫。另外,或可替代地,選擇具有寬度大於5mm、大於6mm、大於7mm或大於8mm的莢,其包含用於本發明方法的未成熟胚。在具體實施例中,選擇寬度大於9mm的莢,其包含用於本發明方法的未成熟胚。在進一步的實施例中,使用任何適合的胚檢測方法選擇含有合適數目的未成熟胚的莢。例如,透照(trans-illuminated)立體顯微鏡可用於確認用於本發明之具有兩個或三個未成熟胚的莢。
優選地,在與本發明相關之進一步使用之前,含有未成熟胚的莢被表面清潔或表面滅菌(例如藉由用乙醇和/或漂白劑溶液洗滌,然後用無菌水沖洗)。
使用冷的非生物性逆境處理胚。在本發明的方法中,未成熟胚使用冷的非生物性逆境處理(cold abiotic stress)。在本發明的一個實施例中,將含有未成熟胚的莢(優選表面清潔或消毒的莢)進行冷處理,隨後對癒合組織起始和誘導進行處理。在一個實例中,首先對含有胚的莢進行冷處理,隨後將一或多個未成熟胚外植體與剩餘的莢組織分離,並將一或多個胚外植體置於合適的培養基上以形成癒合組織。胚外植體可以是整個胚外植體,也可以是其任何部分,其適合用於癒合組織誘導和/或體胚形成。在這個實施例的進一步實例中,莢被冷凍處理,將一或多個未成熟的胚外植體與剩餘的莢組織分離,並且每個胚外植體被分裂以形成「分裂的種子」外植體,其保留至少一部分胚軸,更優選大多數胚軸,還更優選基本上全部或全部的胚軸。冷凍處理的未成熟胚外植體現在以其分裂的種子形式放置在合適的培養基上以 形成癒合組織。可以隨後處理前述癒合組織以產生根據本文揭露的本發明的體胚組織,轉形(例如,藉由農桿菌介導或基因槍介導的轉形)或兩者。
在本發明的另一個實施例中,首先從它們的莢中分離出一或多個未成熟胚外植體,隨後將分離的胚外植體進行冷的非生物性逆境。在這個實施例的某些實例中,一或多個未成熟胚是整個的,並且在進行冷處理時通常是完整的。在另一個實施例中,從它們的莢中取出後,將一或多種未成熟胚創傷並進行冷處理。在另一個實施例中,在去除它們的莢之後,將一或多個未成熟胚分裂以形成分裂的種子外植體,其優選地保留胚軸的一部分,更優選保留大部分胚軸,並且更優選保留基本上全部或全部胚軸。這種分裂的種子胚外植體受冷處理。
如本文所用,冷處理意指使未成熟胚外植體(在它的莢中或從它的莢中分離)在15℃或更低的溫度下持續兩天或更多天。
在本發明的一個實施例中,冷處理包含使未成熟胚在8℃或更低的溫度下,兩天或更多天的時間。在本發明的某些實施例中,未成熟胚受到0至8℃範圍內的溫度,例如約8℃、約7℃、約6℃、約5℃、約4℃、約3℃、約2℃、約1℃或約0℃持續2至12天。例如,未成熟的胚可以保持在4℃(±3℃)或5℃(±3℃)範圍內的溫度。冷處理的時間可以是兩天、三天、四天、五天、六天、七天、八天、九天、十天、十一天或十二天或更長。
在某些實施例中,將未成熟胚在4至8℃的溫度下進行冷處理,例如約8℃、約7℃、約6℃、約5℃或約4℃,冷處理時間可為2天、3天、 4天、5天、6天、7天、8天、9天、10天、11天或12天或更長。
在特別的實施例中,將未成熟胚在4至8℃的溫度下進行冷處理,例如約8℃、約7℃、約6℃、約5℃或約4℃,冷處理時間可以為7至9天或8至10天。
在其它實施例中,冷處理包含使未成熟胚受8℃至15℃的溫度,例如約14℃、約13℃、約12℃、約11℃、約10℃、約9℃或約8℃,處理期間為2至12天。因此,未成熟胚可以保持在8℃至15℃的任何上述溫度下,兩天、三天、四天、五天、六天、七天、八天、九天、十天、十一天或十二天或更長。
解剖莢,未成熟胚外植體的分離和選擇。使用任何合適的方法,未成熟的胚外植體可以從莢分離。可以使用例如反式照射顯微鏡(trans-illuminated microscope)的儀器,以確定莢內未成熟胚的位置和近似尺寸。可以選擇含有適當數目和尺寸的未成熟胚的莢以進行解剖。例如,藉由在兩端首先製作兩個切口,然後沿著莢的彎曲部分縱向切割,去除和拆卸足夠的莢組織以暴露內部莢腔,可以解剖莢。然後可以將含有未成熟胚的種子從莢組織中分離出來。
在本發明的某些實施例中,基於它們的長度選擇未成熟胚使用。在本發明的上下文中,未成熟胚的「長度」可以例如藉由使用卡尺或分析被分離胚的圖像以及確定該對象的最大Feret測量(Feret measurement)來決定。通常,Feret測量是指限制對象的兩條平行切線之間的最大距離。
在本發明的一些實施例中,選擇使用的未成熟胚的長度為2mm 或更長、長度為3mm或更長、長度為4mm或更長、長度為5mm或更長,長度為6mm或更長。在一些實施例中,被選擇使用的未成熟胚具有10mm或更小、9mm或更小的長度、8mm或更小的長度、7mm或更小的長度或6mm或更小的長度。
在本發明的進一步的實施例中,被選擇使用的未成熟胚具有2mm至10mm的長度。例如,可以選擇具有長度為3mm至10mm、長度為3mm至9mm、長度為3mm至8mm、長度為3mm至7mm、長度為3mm至6mm或長度為3mm至5mm的未成熟胚。在其它實例中,可以選擇具有長度為4mm至10mm、長度為4mm至9mm、長度為4mm至8mm、長度為4mm至7mm或長度為4mm至6mm的未成熟胚。在更其它實例中,可以選擇具有長度為5mm至10mm、長度為5mm至9mm、長度為5mm至8mm或長度為5mm至7mm的未成熟胚。在另外的實例中,可以選擇具有長度為6mm至10mm、長度為6mm至9mm或長度為6mm至8mm的未成熟胚。
分割胚形成分裂的種子和其他胚製劑。本文所用的術語「分裂的種子」或「分裂的未成熟胚」是指實行分離含胚種子。在本發明的一個實施例中,將種子從莢分離,並且任選地具有基於未成熟胚長度選擇的種子,大豆種子可被縱向地沿著大豆種子的種臍分裂,因而平分該種子。例如在美國專利申請公開2014.0173774(Pareddy et al.)和美國專利7,473,822(Paz et al.)中揭露平分種子的方法。因此,在該實施例的一個實例中,該大豆種子被分裂,使得胚軸保持連接到大豆種子的節結末端。與大豆種子保留的胚軸可包括胚軸種子結構的任何部分。因此,在分離大豆種子時保留的任何部分 或數目的胚軸在本揭露的範圍內。實施例包括與包含任何全長部分或任何局部部分或胚軸的大豆種子的分裂保留的胚軸的任何部分。例如,當分裂大豆種子時,胚軸的¼、、½,或¾可被保留。在另一例子,沒有一個胚軸被去除並且分裂的種子保留其全長。在分裂未成熟胚時,種子優選藉由沿著種臍分裂種子的子葉以分離該子葉,然後除去種皮而製備。胚軸(全長或保留部分)保持連接到該子葉上。
可替代地,種子可以其他方式準備。例如,雖然所揭露的方法不需大豆種子的創傷,但使用例如子葉結節(「cot node」)方法和用於農桿菌轉形的分生組織外植體方法以提升轉形效率的方法已被報導。參見U.S.Patent Nos.7,696,408(Olhoft,et al.)和6,384,301(Martinelli et al.)。植物材料的創傷可藉由切割、研磨、穿孔、音波處理、電漿創傷或真空滲入促成。此外,該方法的某些實施例中,創傷可與所揭露的分裂種子方法組合。
胚癒合組織開始。冷處理根據本發明的未成熟胚之後,在引發胚癒合組織形成的條件下將一個或多個受冷處理的未成熟胚置於培養基上。在一些實施例中,受冷處理的胚被製備,例如在胚癒合組織起始之前例如藉由創傷或分裂以形成分裂的種子胚外植體。
在本發明的方法中,使用任何合適的方法誘導冷處理的未成熟胚外植體以形成胚癒合組織。例如,冷處理後,未成熟胚可暴露於一或多種生長素,例如α-萘乙酸(alpha-naphthaleneacetic acid)(「NAA」),或更常見的,在生長基中生長的2,4-二氯苯氧乙酸(2,4-dichlorophenoxyacetic acid)(「2,4-D」)(參見例如Wiebke-Strohm et al.(2012)146-148)。冷處理 的未成熟胚外植體可在生長素例如包括NAA或含2,4-D的半固體培養基或液體培養基的存在下培養。例如,冷處理的未成熟胚可在含有濃度為20mg/L至40mg/L的2,4-D的半固體培養基中培養。參見例如Finer et al.(1988)Plant Cell,Tissue and Organ Culture,15:125-136,揭露由MS鹽、40mg/ml 2,4-D、Gamborg's B5維生素、6%蔗糖和15mM麩醯胺酸(pH 5.7)組成的半固體癒合組織誘導培養基。在另一個實例中,冷處理的未成熟胚可在含有較低濃度的2,4-D的液體懸浮培養基中培養。參見,例如,Finer et al.(1988)和Finer et al.(1991)In vitro Cell Dev.Biol.27P:175-182,揭露用於引發胚癒合組織的懸浮介質10A40N的使用,包括其變化和優化變體。揭露的10A40N懸浮培養基包括經修飾的的MS鹽(MS氮以10mM NH4NO3和30mM KNO3代替)、5mg/ml、2,4-D、Gamborg's B5維生素、6%蔗糖和15mM麩醯胺(glutamine)(pH 5.7)。
在特定實施例中,在放置在癒合組織起始培養基上之前,胚基於它們的尺寸被選擇。參見例如關於上述「解剖莢,未成熟胚胎外植體的分離和選擇」的揭露內容以及下述實施例證明尺寸選擇可以提升癒合組織形成的頻率。
如本文所揭露從冷處理胚產生的胚癒合組織可用於任何適合的應用。在本發明的一些實施例中,含癒合組織的未成熟胚使用外源DNA轉形,例如藉由基因槍或農桿菌介導的轉形。在本發明的其它實施例中,將含癒合組織的未成熟胚進行質離的處理,然後任選地用外源DNA轉形,例如藉由基因槍或農桿菌介導的轉形。用於質離處理的方法以及用於基因槍轉形和農桿 菌轉形的方法在本文中係已知和被描述。
在本發明的某些實施例中,含有癒合組織的未成熟胚進一步用於產生體胚。產生體胚的方法是本文所已知和描述的。在本發明的某些實施例中,含有癒合組織的未成熟胚進一步用於產生體胚。產生體胚的方法是本文所已知和描述的。
體胚發生、成熟和增殖。在一些實施例中,本發明的方法包含培養未成熟胚,至少可以在癒合組織起始培養基的數週(例如三週)內觀察到初體胚(「SE」)形成。在進一步的實施例中,本發明的方法包含在促進體胚的形成,即體胚發生的條件下進一步培養此類的胚。
在本發明的一些實施例中,從含有生長素的培養基中除去具有初體胚的未成熟胚,將未成熟的胚轉遞到缺乏生長素或2,4-D的體胚成熟培養基中。例如,此種培養基可為液體或半固體。不含生長素的成熟培養基被描述為例如Durham et al.的「MSO」培養基。(1992)Plant Cell Reports,11:122-125。另參見本文所述的體胚萌芽和成熟(SEGM)培養基和大豆組織分化和成熟(SHaM)培養基。
在本發明的其它實施例中,未成熟胚可以保持在和/或繼代培養在含有生長素,例如α-萘乙酸(NAA)或2,4-D的新鮮批次的培養基(例如液體或半固體培養基)上。例如在相同或較低濃度,存在含生長素培養基的情況下,持續培養和增殖胚發生材料。例如Meurer et al.(2001)In Vitro Cell Dev.Biol.,37:62-67揭露在含有40mg/ml 2,4-D的「SD40」培養基上的癒合組織起始之後,將癒合組織誘導的外植體轉移到含有20mg/L 2,4-D的 「SD20」用於體胚的發育和增殖。Hofmann et al.(2004)Plant,Cell Tissue and Organ Culture,77:157-163揭露在含有各種濃度的NAA或2,4-D的培養基上的癒合組織起始和體胚的形成。
在本發明的某些實施例中,在生長素或2,4-D存在下發育的體胚被轉移到懸浮培養基中。在進一步的實施例中,體胚懸浮培養物可以在例如10A40N的培養基中維持或傳代。參見例如Finer et al.(1988),描述體胚懸浮培養物的傳代和增殖的優化程序和培養基。另參見Santarem et al.(1998)Plant Cell Reports,17:752-759,其描述使用農桿菌將體胚從懸浮培養物轉形為瞬時表現。
根據本發明開發的體胚培養物可用於藉由農桿菌和/或例如粒子轟擊的基因槍方法轉形。參見例如Finer et al.(1991),Trick et al.,(1997)Plant Tissue Culture and Biotech,3(1):9-26;和Santarem et al.(1998)。
胚的質離處理。在本發明的一些方法中,除了冷處理以外,對未成熟胚外植體進行質離處理。質離涉及將未成熟胚置於高滲透壓的培養基中,其促進胚表面細胞的水分損失和降低膨脹壓力。在某些情況下,如果這種狀態繼續,原生質(質膜)可從細胞壁分離。因此,在本發明的一些實施例中,將未成熟胚暴露於高滲透壓培養基,例如含有一或多種張力劑的溶液或凝膠。張力劑包含鹽和糖。例如,質離的培養基可包含一或多種糖,例如蔗糖、甘露醇、山梨醇、乙二醇、甘油、肌醇及其組合溶液。可用於質離的培養基的其它糖包含例如丁四醇、蘇糖醇、阿拉伯糖醇、木糖醇、核糖醇、甜醇、艾杜糖醇、異麥芽糖醇、麥芽糖醇、乳糖醇及其組合。在某些實例 中,質離培養基可包含一或多種水溶性低聚物或聚合物,例如具有寬範圍分子量(MWs)的聚氧化乙烯(PEO)、聚氧乙烯(POE)或聚乙二醇(PEG))(例如,PEG MW3000-4000或PEG MW4000-8,000)。在另其他實例中,質離培養基可包括(i)一或多種糖和(ii)水溶性低聚物如PEG的混合物。用於植物細胞轉形的適合的質離培養基已在例如Wu et al.中所描述,(1999)Plant Cell Rep.18:381-386,Koscianska et al.(2001),Walke r et al.,(2001)Plant Cell Tissue Organ Cult.64:55-62,和Paz et al.,(2006)Plant Cell Rep 25:206-213(使用1.0M蔗糖的1/10MS液體培養基(Murashige and Skoog(1962))。
在某些實施例中,質離培養基可含有一或多種張力劑(例如,鹽或糖),莫爾濃度範圍為0.2M至2.0M、0.2M至1.5M、0.1M至1.0M、0.2M至0.8M、0.2M至0.6M、0.2M至0.4M、0.4M至2.0M、0.4M至1.0M、0.4M至1.5M、0.4M至0.8M、0.4M至0.6M、0.6M至2.0M、0.6M至1.5M、0.6M至1.0M、0.6M至0.8M。在特定的實施例中,質離溶液含有莫爾濃度為0.2M、0.3M、0.4M、0.5M、0.6M、0.7M、0.8M、0.9M、1.0M、1.1M、1.2M、1.3M、1.4M、1.5M、1.6M、1.7M、1.8M、1.9M或2.0M的至少一種張力劑。
根據本發明對未成熟胚外植體進行非生物逆境的處理可以包括在質離培養基上培養外植體5分鐘、10分鐘、15分鐘、20分鐘、30分鐘或45分鐘。在其他實施例中,根據本發明之未成熟胚外植體對非生物逆境的處理可包括在質離培養基上培養外植體1或2小時至24小時,例如2至16小 時、2至12小時、2至10小時、2至8小時、2至6小時或2至4小時。在一些實施例中,外植體可以在質離培養基中培養4至24小時、4至16小時、4至12小時、4至10小時、4至8小時或4至6小時。在特別實施例中,將外植體在質離培養基上培養1小時、2小時、3小時、4小時、5小時、6小時、7小時、8小時、9小時、10小時、11小時、12小時、13小時14小時、15小時、16小時、17小時、18小時、19小時、20小時、21小時、22小時、23小時、24小時或更長,因而將外植體以非生物逆境處理。
用於優化非生物逆境處理的方法。本發明提供優化非生物性逆境(abiotic stress)處理以產生期望結果的方法:在轉殖基因植物或植物部分中產生大多數體胚,大多數種系轉殖基因植物,或最高水平的瞬時表現。在某些實施例中,該方法用於優化對特定大豆品種的非生物性逆境的應用,例如,對從轉殖基因的癒合組織轉形的植物的再生具反應性的大豆型或頑固的大豆型。
一方面,本發明提供一種優化大豆胚進行冷處理以獲得期望結果的溫度,時間或溫度和時間兩者的方法。所希望的結果可以是(i)從初始數目的受冷處理的未成熟胚產生的體胚的可接受(或最高)數量或百分比,(ii)從初始數目的受冷處理的未成熟胚產生的穩定的生殖系列轉殖基因植物的可接受(或最高)數目或百分比,或(iii)從受冷處理的未成熟胚再生的轉殖基因植物或植物部分中發現的感興趣的基因的可接受(或最高)水平的瞬時表現。
因此,在本發明的一個實施例中,將不成熟大豆胚(例如,一或 多種預選大豆品種的胚)受冷處理不同的時間量,即在較短時間端點和較長的時間端點之間範圍的多次時段,並評估胚,以確定是否和/或它們產生期望結果的程度。該範圍的較短時間端點可以短至少於一小時、一小時或兩小時。例如,用於優化冷處理時間範圍的較短的端點可以是一小時、兩小時、三小時、四小時、五小時、六小時、七小時、八小時、九小時、十小時、十一小時、十二小時、十四小時、十六小時、十八小時、二十小時、二十二小時、二十四小時、二天或三天。上述較短的時間端點中的每一個可用於優化冷處理的範圍,其包括長達一周,十四天或幾週的較長時間端點。例如,每個揭露的範圍中的較短時間端點可用於優化冷處理的範圍,其包含以下較長時間端點之一:小於四天、四天、五天、六天、七天、八天、九天、十天、十一天或十二天以上。
在本發明的另一個實施例中,未成熟大豆胚(例如,一或多種預選擇大豆品種的胚)經受一不同冷處理溫度的範圍,例如,在約0℃至約15℃的多個溫度範圍內,胚被評估,以確定是否和/或它們產生期望結果的程度。用於優化溫度的範圍的較低端點可在介於約1℃至15℃間之任何範圍的兩倍。例如,用於優化溫度的範圍的較低端點可以是約1℃、2℃、3℃、4℃,5℃或6℃。前述較低端點溫度中的每一個可在用於優化溫度的範圍內使用,所述溫度包含以下較高端點之一:約7℃、8℃、9℃、10℃、11℃、12℃、13℃、14℃或15℃。
在前述實施例的每個另一實例中,大豆胚經受兩個變化的期間(例如,包括在上述任何時間範圍內的期間)和變化的溫度(例如,任何上 述溫度範圍),以確定產生期望結果的適當時間和溫度(例如,(i)從初始數目的受冷處理的未成熟胚產生的體胚的最高或可接受數目或百分比,(ii)最高或可接受數目或百分比之穩定的,從初始數量的冷處理的未成熟胚產生的生殖細胞系轉殖基因植物,或(iii)從受冷處理的未成熟胚再生的轉殖基因植物或植物部分中發現的感興趣基因的瞬時表現的最高或可接受水平)。可以使用組合矩陣研究以確定此種時間和溫度的優化。
另一方面,本發明提供一種用於優化質離處理以獲得期望結果的方法。在各種實施例中,期望的結果可以是(i)從初始數目的受冷處理的未成熟胚產生的體胚的可接受(或最高)數目或百分比,(ii)從初始數目的受冷處理的未成熟胚產生的穩定的生殖細胞系轉殖基因植物的可接受(或最高)數目或百分比,或(iii)從受冷處理的未成熟胚再生的轉殖基因植物或植物部分中發現的感興趣基因的瞬時表現的可接受(或最高)水平。
因此,在本發明的一個實施例中,將大豆胚(例如,預先選擇大豆品種的胚)進行不同時間量的質離,即多次在較短時間端點和較長時間端點間的範圍內,並且評估胚以確定是否和/或它們產生期望結果的程度。該範圍的較短的時間端點可以短到例如幾分鐘,一小時或數小時。該範圍的較長時間端點可以是大約四小時、五小時、六小時、七小時、八小時、九小時、十小時、十一小時、十二小時、十四小時、十六小時、十八小時、二十小時、二十二小時、二十四小時、二十六小時、二十八小時、三十小時、三十二小時、三十四小時、三十六小時或以上。
在本發明的另一個實施例中,使用不同的張力劑和/或不同濃度的 張力劑對大豆胚(例如,預先選擇的大豆品種的胚)進行質離,並評估胚以確定是否和/或它們如何產生所需的結果。
在一進一步方面,本發明提供一種優化冷處理和質離兩者以確定產生期望結果的最佳時間和溫度的方法。因此,該方法包括改變如本文所述的一或多種冷處理變數,以及亦改變本文所述的一或多種質離變數以確定期望的結果。期望的結果可以是(i)從初始數目的經冷處理的未成熟胚產生的體胚的可接受(或最高)數量或百分比,(ii)從初始數目的冷處理的未成熟胚產生的穩定的生殖細胞系轉殖基因植物的可接受(或最高)數目或百分比,或(iii)在從經冷處理的未成熟胚再生的轉殖基因植物或植物部分中發現的感興趣基因的瞬時表現的可接受(或最高)水平。冷處理和質離處理兩者的此種優化可以使用組合矩陣研究來確定。
轉形方法。由植物細胞轉形進行植物遺傳工程的方法是本領域已知的。已經開發了許多用於植物轉形的方法,包括雙子葉植物以及單子葉植物的生物和物理轉形方案(例如,Goto-Fumiyuki et al.,Nature Biotech 17:282-286(1999);Miki et al.,Methods in Plant Molecular Biology and Biotechnology,Glick,BRand Thompson,JE Eds,CRC Press,Inc.,Boca Raton,pp,67-88(1993))。此外,用於植物細胞或組織轉形和植物再生的載體和體外培養方法是可以獲得的,例如在Gruber et al.,Methods in Plant Molecular Biology and Biotechnology,Glick,B.R.和Thompson,J.E.Eds.,CRC Press,Inc.,Boca Raton(1993),第89-119頁。例如,可以使用諸如植物細胞原生質體的電穿孔和顯微注射的技術將DNA建構體直接引入植物細胞的基因體 DNA,或是可以使用諸如DNA粒子轟擊的基因槍方法,將DNA建構體直接引入植物組織(參見例如,Klein et al.(1987)Nature 327:70-73)。用於植物細胞轉形的其它方法包括經由碳化矽WHISKERSTM介導的DNA攝取的顯微注射(Kaeppler et al.(1990)Plant Cell Reporter 9:415-418)。或者,DNA建構體可經由奈米粒子轉形而導入至植物細胞中(參見,例如美國專利申請案第12/245,685號,其係以全文引用方式併入本文中)。
已知的基因槍方法是微彈介導的轉形,其中DNA承載在微彈表面。在這個方法中,該表現載體被引入植物組織中,其具有將微粒加速到足以穿透植物細胞壁和膜的速度的基因槍裝置。Sanford et al.(1987)Part.Sci.Technol.5:27;Sanford,J.C.(1988)Trends Biotech.6:299,Sanford,J.C.(1990)Physiol.Plant 79:206;Klein et al(1992)Biotechnology 10:268。
在Rech et al.中已經描述了使用微彈或微粒來轉形大豆胚發生組織,體胚懸浮培養物。(2008)Nature Protocols 3(3):410-418;Finer et al.(1991)In vitro Cell Dev.Biol.27P:175-182;和Finer et al.(1997)植物組織培養和生物科技3(1):9-26,例如於13-18。含有胚軸的分離大豆外植體的直接轉形已經在Christou(1992)Plant J.2(3)中被描述:275-281。
一種廣泛使用的將轉殖基因引入植物的方法是基於農桿菌的自然轉形系統。Horsch et al.(1985)Science227:1229。根癌土壤桿菌和毛根土壤桿菌為已知可用於基因轉形植物細胞的植物病原性土壤細菌。根癌土壤桿菌和毛根土壤桿菌的Ti和Ri質體分別攜帶負責植物基因轉形的基因。Kado,C.I.(1991)Crit.Rev.Plant.Sci.10:1.農桿菌載體系統的描述和農桿菌介導 的基因轉移的方法也可使用,例如Gruber et al.,supra,Miki et al.,supra,Moloney et al.(1989)Plant Cell Reports 8:238和美國專利號4,940,838和5,464,763。已經開發許多用於土壤桿菌介導的大豆轉形的程序,其可以基於經轉形的外植體組織鬆散地分類。美國專利號7,696,408(Olhoft et al.)揭露用於轉形單子葉植物和雙子葉植物的子葉結節(「cot node」)方法。美國專利號6,384,301(Martinelli et al.)揭露從大豆胚中將農桿菌介導的基因傳遞到分生組織。在「子葉結節(cot node)」和分生組織方法兩者中,外植體優選在感染之前受創傷。美國專利號7,473,822(Paz et al.)揭露一種稱為「半種子外植體」方法的改性子葉結節法,其中胚軸和芽在感染前被完全去除,但沒有其他創傷發生。土壤桿菌介導的轉形繼續進行,選擇潛在的轉形體,且外植體在選擇培養基上再生。
在Finer et al.中已經描述將土壤桿菌介導的基因轉移到懸浮培養物中的大豆體胚,然後再生成轉殖基因植物。(1997)於12,18-19,和21-22。使用農桿菌介導的基因轉移到未成熟的胚外植體中,然後被誘導形成體胚,並且隨後再生成轉殖基因植物,如Santarem et al.所述。(1999)In vitro Cell.Dev.Biol.Plant,35:451-455;Ko et al.(2004)In vitro Cell Dev.Biol.40:552-558;和Ko et al.(2004)Crop Science 44:1825-1831。音波處理輔助農桿菌轉形(「SAAT」)的進一步方法包含在農桿菌}感染期間音波處理未成熟胚外植體,此後使用體胚懸浮培養物發展穩定的轉形體,如Trick et al.所述。(1998)Plant Cell Reports 17:482-488。SAAT亦可用於體胚懸浮培養物的瞬時轉形,如Santarem et al.所述。(1998)Plant Cell Reports,17:752-759。
若土壤桿菌用於轉形,待插入的DNA必須被轉殖至特殊質體,即轉殖入一中間載體或轉殖入一二元載體。中間載體無法在農桿菌中自我複製。中間載體可藉由輔助質體轉移至根癌土壤桿菌Agrobacterium tumefaciens(接合)。日本煙草超級二元系統是如此系統的一個例子(reviewed by Komari et al.,at Methods in Molecular Biology No.343:Agrobacterium Protocols(K.Wang,ed.)(2nd Edition)HUMANA PRESS Inc.,Totowa,NJ,(2006),第1冊,第15-41頁;及Komori et al.(2007)Plant Physiol.145:1155-1160)。二元載體可在大腸桿菌E.coli和農桿菌兩者中自我複製。他們包括一選擇標記基因以及一被T-DNA左右邊界區域框定之連接物(linker)或多重選殖位(polylinker)。他們可直接轉形至農桿菌(Holsters et al.,1978)。作為宿主細胞之農桿菌Agrobacterium包括攜帶一致病基因表現區的質體。Ti或Ri亦包括含T-DNA轉移所必須之致病基因表現區(vir region)。致病基因表現區對將T-DNA轉移至該植物細胞而言是必須的。可含有額外的T-DNA。
當細胞被使用二元T DNA載體(Bevan(1984)Nuc.Acid Res.12:8711-8721)或共培養程序(Horsch et al.(1985)Science 227:1229-1231)的細菌感染時,根癌土壤桿菌宿主的致病力功能將引導含有建構體和相鄰標記的T股插入植物細胞DNA。通常,農桿菌轉形系統用於工程化雙子葉植物(Bevan et al.(1982)Ann.Rev.Genet 16:357 384;Rogers et al.(1986)Methods Enzymol.118:627 641)。該農桿菌轉形系統也可用於將DNA轉形並轉移至單子葉植物和植物細胞。參見美國專利號5,591,616;Hernalsteen et al.(1984)EMBO J 3:3039-3041;Hooykass Van Slogteren et al.(1984) Nature 311:763-764;Grimsley et al.(1987)Nature 325:1677-179;Boulton et al.(1989)Plant Mol.Biol.12:31-40;and Gould et al.(1991)Plant Physiol.95:426-434。
在基因建構體引入植物細胞後,植物細胞可以生長,並且在分化組織如芽和根出現之後,可以產生成熟植物。在一些實施例中,可生成多個植物。用於再生植物之方法為一般熟悉本技藝者所已知且可見於例如,在:Plant Cell and Tissue Culture,1994,Vasil及Thorpe Eds.Kluwer Academic Publishers及:Plant Cell Culture Protocols(Methods in Molecular Biology 111,1999 Hall Eds Humana Press)。本文所述的基因改造植物可在發酵培養基中培養或在合適的培養基如土壤中生長。在一些實施例中,適於高等植物之生長培養基可包含用於植物之任何生長培養基,包含(但不限於)土壤、砂石、支持根生長之任何其他顆粒培養基(例如蛭石、珍珠岩等)或水培培養物,以及使高等植物之生長達到最佳的適合光、水及營養補充劑。
用於根據本發明之冷處理的胚的轉形的替代技術包含磷酸鈣轉染、聚凝胺轉形、原生質體融合、藉由氯化鈣沉澱的原生質體轉形、電穿孔、超音波方法(例如,超音波穿孔)、脂質體轉形、顯微注射、裸DNA、質體載體、病毒載體、基因槍(微粒轟擊)、碳化矽WHISKERS介導的轉形、氣膠束或PEG以及其他可能的方法。可替代地,基因轉移和轉形方法包含但不限於聚乙二醇(PEG)介導的或電穿孔介導的裸DNA的攝取(參見Paszkowski et al.(1984)EMBO J 3:2717 2722,Potrykus et al.(1985)Molec.Gen.Genet.199:169-177;Fromm et al.(1985)Proc.Nat.Acad.Sci.USA 82: 5824-5828;和Shimamoto(1989)Nature 338:274 276)和植物組織的電穿孔(D'Halluin et al.(1992)Plant Cell 4:1495-1505)。
藉由任何上述轉型技術產生之經轉型植物細胞可經培養以再生整個植物,其具有經轉型基因型且因此具有所需表現型。此類再生技術依賴於組織培養生長培養基中某些植物激素之操縱,通常依賴於已與所需核苷酸序列一起引入之殺生物劑及/或除草劑標記物。Evans et al.描述了培養的原生質體的植物再生。(1983)「Protoplasts Isolation and Culture」in Handbook of Plant Cell Culture,pp.124-176,Macmillian Publishing Company,New York(1983);和Binding,Regeneration of Plants,Plant Protoplasts,pp.21-73,CRC Press,Boca Raton(1985)。亦可自植物癒合組織、外植體、器官、花粉、胚芽或其部分獲得再生。此類再生技術一般地描述於Klee et al.(1987)Ann.Rev.of Plant Phys.,38:467-486。
除非另外特定闡述,否則本文所用之所有技術及科學術語係具有如同本揭露所屬領域中具有通常知識者通常所理解的相同含義。分子生物學一般術語的定義可以在例如Lewin B.,Genes V,Oxford University Press,(1994)(ISBN 0-19-854287-9)中找到;Kendrew et al.(eds.),The Encyclopedia of Molecular Biology,Blackwell Science Ltd.(1994)(ISBN 0-632-02182-9);和Meyers R.A.(ed.),Molecular Biology and Biotechnology:A Comprehensive Desk Reference,VCH Publishers,Inc.(1995)(ISBN 1-56081-569-8)。
本領域技術人員將理解,使用報導基因或標記基因選擇轉形的細 胞或組織或植物部分或植物可包含在轉形載體或建構體中。可選擇標記的實例包含賦予抗代謝物如抗除草劑或抗生素的抗性的那些,例如二氫葉酸還原脢,其賦予對胺甲喋呤的抗性(Reiss,Plant Physiol.(Life Sci.Adv.)13:143-149;另見Herrera Estrella et al.(1983),Nature 303:209-213;Meijer et al.,Plant Mol.Biol.16:807-820,1991);新黴素磷酸,其賦予對胺基苷類新黴素,康黴素和帕若黴素的抗性(Herrera-Estrella(1983),EMBO J.2:987-995;和Fraley et al.(1983)Proc.Natl.Acad.Sci.USA,80:4803)和抗潮黴素磷酸轉移酶,其賦予潮黴素抗性(Marsh(1984),Gene32:481-485;另見Waldron et al.(1985),Plant Mol.Biol.,5:103-108,;Zhijian et al.(1995),Plant Science 108:219-227;trpB,其允許細胞利用吲哚代替色氨酸;hisD,其允許細胞利用組胺醇(histinol)代替組氨酸(Hartman(1988),Proc.Natl.Acad.Sci.,USA 85:8047)甘露糖-6-磷酸異構酶;其允許細胞利用甘露糖(WO 94/20627);鳥胺酸去羧酶,其賦予對鳥胺酸去羧酶抑製劑抗性,2(二氟甲基)-DL烏胺酸(DFMO(McConlogue(1987)in Current Communications in Molecular Biology,Cold Spring Harbor Laboratory);和來自土麴菌的脫胺酶,其賦予對殺稻瘟菌素S的抗性(Tamura(1995),Biosci.Biotechnol.Biochem.59:2336-2338)。
附加的可選擇標記包含,例如突變型乙醯乳酸合成酶,其賦予咪唑啉酮或磺醯尿素抗性(Lee et al.(1988),EMBO J.,7:1241-1248),突變種psbA,其賦予對草脫淨的抗性(Smeda et al.(1993),Plant Physiol.,103:911-917,1993)或突變型生原紫質的氧化酶(參見美國專利號5,767,373)或賦予對除草劑抗性的其它標記如草銨膦。合適的可選擇標記基 因的實例包含,但不限於:編碼抗氯黴素的基因(Herrera Estrella等(1983),EMBO J.,2:987-992,);鏈黴素(Jones et al.(1987)Mol.Gen.Genet.,210:86-91);觀黴素(Bretagne-Sagnard et al.(1996)Transgenic Res.,5:131-137);博來黴素(Hille et al.(1990)Plant Mol.Biol.,7:171-176);磺化醯胺(Guerineau et al.(1990)Plant Mol.Biol.,15:127-136);溴苯腈(Stalker et al.(1988)Science,242:419-423);草甘膦(Shaw et al.(1986),Science 233:478-481);草胺膦(DeBlock et al.(1987),EMBO J.,6:2513-2518)等等。
使用選擇性基因的一個選項是草銨膦抗性(glufosinate-resistance)編碼DNA,並且在一個實施例中可以是在木薯葉脈嵌紋(Cassava Vein Mosaic)病毒啟動子控制下的草胺膦乙醯轉移酶(phosphinothricin acetyl transferase)(pat),玉米優化的pat基因或bar基因。這些基因賦予對雙丙氨磷(bialaphos)的抗性。參見,(參見Wohlleben et al.(1988)Gene 70:25-37);Gordon-Kamm et al.(1990),Plant Cell,2:603;Uchimiya et al.(1993),BioTechnology 11:835,1993;White et al.(1990)Nucl.Acids Res.18:1062;Spencer et al.(1990),Theor.Appl.Genet.79:625-631;and Anzai et al.(1989)Mol.Gen.Gen.219:492)。pat基因的一個版本是美國專利號6,096,947中所描述的玉米優化的pat基因。
此外,可以使用促進鑑別含有編碼該標記的多核苷酸的植物細胞的標記。可刻記(Scorable)或可篩選的標記物是有用的,其中序列的存在產生可測量的產物並且可以產生產物而不破壞植物細胞。實例包括β-葡萄糖醛酸苷酶,或uidA基因(GUS),其編碼已知各種顯色底物的酶(例如,美國專利第5,268,463號和第5,599,670號);氯黴素乙醯轉移酶(Jefferson et al.(1987)EMBO J.6(13):3901-3907);和鹼性磷酸酶。在優選的實施例 中,所使用的標記物是β-胡蘿蔔素或原維生素A(Ye et al.(2000)Science 287:303-305)。該基因已用於增強稻米的營養,但是在這個例子,它被替代地作為可篩選標記,並且該連接至感興趣的基因的存在藉由所提供的金色檢測。不同於為了其對於植物的營養貢獻而使用該基因的情況,較少量的蛋白質足以用於標記目的。其他可篩選標記物一般包含花青素/類黃酮基因(參見Taylor和Briggs(1990)Plant Cell,2:115-127的討論),包括,例如R-locus基因,其編碼調節植物組織中花青素色素(紅色)生產的產物(Dellaporta et al.,染色體結構和功能,Kluwer Academic Publishers,Appels and Gustafson eds.,pp.263-282(1988));控制類黃酮色素的生物合成的基因,例如玉米C1基因(Kao et al.(1996)Plant Cell 8:1171-1179;Scheffler et al.(1994)Mol.Gen.Genet.242:40-48)和玉米C2(Wienand et al.,Mol.Gen.Genet.(1986)203:202-207);B基因(Chandler et al.(1989)Plant Cell 1:1175-1183),p1基因(Grotewold et al.(1991)Proc.Natl.Acad.Sci USA,88:4587-4591;Grotewold et al.,Cell(1994)76:543-553;Sidorenko et al.(1999)Plant Mol.Biol,39:11-19);bronze locus基因(Ralston et al.(1988)Genetics 119:185-197;Nash et al.(1990)Plant Cell 2(11):1039-1049)等。
適合標記的進一步實例包含藍螢光蛋白(CYP)基因(Bolte et al.(2004)J.Cell Science 117:943-54和Kato et al.(2002)Plant Physiol 129:913-42),黃色螢光蛋白基因(來自Evrogen的PHIYFPTM;參見Bolte et al.(2004)J.Cell Science117:943-54);一種螢光基因,其編碼螢光素酶,可以使用例如X射線膠片、閃爍計數、螢光分光光度法、低光照相機、光子計數照相機或多孔發光測定法以檢測其存在(Teeri et al.(1989)EMBO J.8:343);綠色螢光蛋白(GFP)基因(Sheen et al.,Plant J.(1995)8 (5):777-84);和DsRed2,其中用標記基因轉形的植物細胞是紅色,因此係可目檢選擇(Dietrich et al.(2002)Biotechniques 2(2):286-293)。另外的實例包含編碼其各種顯色底材已知的酶(例如PADAC,色原體的頭孢菌素)的β-內醯胺脢基因(Sutcliffe(1978)Proc.Nat'l.Acad.Sci.U.S.A.75:3737))。一種xylE基因(Zukowsky et al.(1983)Proc.Nat'l.Acad.Sci.U.S.A.80:1101),其編碼可以轉形生色兒茶酚的兒茶酚二氧合酶;α-澱粉酶基因(Ikuta et al.(1990),Biotech.8:241);和乾酪胺酸酶基因(Katz et al.(1983)J.Gen.Microbiol.129:2703),其編碼能將酪氨酸氧化成DOPA和多巴醌的酶,其依序冷凝形成易於檢測的化合物黑色素。顯然地,許多這樣的標記物是可獲得的並且是本領域技術人員所已知的。
在某些實施例中,核苷酸序列可任選地與另一個感興趣的核苷酸序列組合。術語「感興趣的核苷酸序列」係指核酸分子(其亦可稱為多核苷酸),其可為編碼用於所需多胜肽或蛋白質的轉錄的RNA分子以及DNA分子,亦可指不構成整個基因的核酸分子,並且其不需要編碼多胜肽或蛋白質(例如一啟動子)。例如,在某些實施例中,核酸分子可以與另一個結合或「堆疊」,其對草甘膦或另一種除草劑提供額外的抗性或耐受性,和/或提供對選擇的昆蟲或疾病和/或營養增強的抗性,和/或改良的農藝特性和/或蛋白質或其它可用於飼料、食品、工業、製藥或其它用途的產品。在植物基因體內的兩個或多個感興趣的核酸序列的「堆疊」可以藉由例如使用兩個或更多個事件的一般植物育種來達成,植物與含有感興趣序列的建構體的轉形,轉殖基因植物的再轉形,或經由同源重組的標靶整合來增加新的表徵。
感興趣的這種核苷酸序列包含,但不限於下述所提供的實施例:
1.賦予對害蟲或疾病抗性的基因或編碼序列(例如iRNA)
(A)植物抗病基因。植物防禦通常藉由植物中抗病基因(R) 的產物與病原體中相應的無毒素(Avr)基因的產物之間的特定相互作用而活化。可以用複製的抗性基因轉形植物品種以策畫對特定病原體菌株具有抗性的植物。這些基因的實例包含,用於對番茄葉黴(Jones et al.,1994 Science 266:789),番茄Pto基因有抗性的番茄Cf-9基因,其編碼蛋白質激酶,用於抵抗丁香假單胞桿菌pv。番茄(Martin et al.,1993 Science 262:1432)和用於對丁香假單胞菌(Mindrinos等,1994 Cell 78:1089)有抗性的擬南芥RSSP2基因。
(B)一種蘇力菌蛋白質,其衍生物或其上模建的合成多胜肽,例如Btδ-內毒素基因的核苷酸序列(Geiser et al.(1986)Gene 48:109)和植物性殺蟲(VIP)基因參見例如Estruch et al.(1996)Proc.Natl.Acad Sci 93:5389-94)。此外,編碼δ-內毒素基因的DNA分子可以購自American Type Culture Collection(Rockville,Md.),ATCC登錄號為40098,67136,31995和31998。
(C)一種凝集素,例如幾種Clivia miniata甘露糖-結合凝集素基因的核苷酸序列(Van Damme et al.(1994)Plant Molec.Biol.24:825)。
(D)維生素結合蛋白,例如抗生物素蛋白和抗生物素蛋白同系物,其可用作對抗害蟲的殺幼蟲藥。參見美國專利第5,659,026號。
(E)酶抑製劑,例如蛋白酶抑製劑或澱粉酶抑製劑。這些基因的實例包含稻米半胱胺酸蛋白酶抑製劑(Abe et al.(1987)J.Biol.Chem.262:16793),煙草蛋白酶抑製劑I(Huub et al.(1993)植物Molec.Biol.21:985)和α-澱粉酶抑製劑(Sumitani et al.(1993)Biosci.Biotech.Biochem 57:1243)。
(F)昆蟲特異性激素或費洛蒙如蛻皮素和其變體青春激素,基於其上的模擬物或其拮抗物或促效劑,例如複製的青春激素酯酶的桿狀病毒 表現,青春激素的去活劑(Hammock et al.(1990)Nature 344:458)。
(G)一種昆蟲特異性胜肽或神經胜肽,其在表現時破壞受感染害蟲的生理作用(J.Biol.Chem.269:9)。這些基因的實例包含昆蟲利尿激素受體(Regan,1994),在Diploptera punctata(Pratt,1989)中辨識的異史他汀(allostatin)和昆蟲特異性麻痺的神經毒素(美國專利號5,266,361)。
(H)由蛇,黃蜂等天然產生的昆蟲特異性毒液,例如蝎子昆蟲毒性胜肽(Pang(1992)Gene 116:165))。
(I)負責單萜類、倍半帖類、類固醇、羥胺酸、苯丙醇(phenylpropanoid)衍生物或具有殺蟲活性的其他非蛋白質分子的超量累積的酶。
(J)涉及生物活性分子的修飾,包括轉譯後修飾的酶;例如糖解酶、蛋白分解酶、脂解酶、核酸酶、環化酶、轉胺酶、酯酵素、水解酶、磷酸酶、激酶、磷酸化酶、聚合酶、彈力酶、甲殼素酶和聚葡萄糖酶,無論是天然或合成。此類基因的實例包含癒合組織基因(PCT公開的申請案WO 93/02197)、甲殼素酶編碼序列(例如,可以從登錄號3999637和67152之下的ATCC獲得)、煙草鉤蟲甲殼素酶(Kramer et al.(1993)Insect Molec.Biol.23:691)和香芹ubi4-2聚泛素基因(polyubiquitin gene)(Kawalleck et al.(1993)Plant Molec.Biol.21:673)。
(K)刺激訊息傳導的分子。這些分子的實例包含用於綠豆鈣調蛋白cDNA殖株的核苷酸序列(Botella et al.(1994)Plant Molec.Biol.24:757)和玉米調鈣素cDNA殖株的核苷酸序列(Griess et al.(1994)Plant Physiol.104:1467)。
(L)疏水性力矩胜肽。參見美國專利第5,659,026和5,607,914號;後者教示賦予抗病性的合成抗微生物胜肽。
(M)一種膜通透酶,通道形成體或通道阻斷劑,例如天蠶蛾素-β細胞溶素胜肽類似物(Jaynes et al.(1993)Plant Sci.89:43),其使得轉殖基因煙草植物對青枯病菌具有抗性。
(N)病毒侵入性蛋白或由其衍生的複合毒素。例如,轉形的植物細胞中的病毒外殼蛋白賦予由外殼蛋白基因來源的病毒以及相關病毒對病毒感染和/或疾病發展的抗性的累積。外殼蛋白介導的抗性已被賦予轉殖基因植物抗苜蓿花葉病毒、黃瓜花葉病毒、煙草線紋病毒、馬鈴薯病毒X、馬鈴薯病毒Y、煙草蝕刻病毒、煙草脆裂病毒(Tobacco rattle virus)和煙草花葉病毒(obacco mosaic virus)。參見,例如,Beachy et al.(1990)Ann.Rev.Phytopathol.28:451。
(O)由其衍生的昆蟲特異性抗體或免疫毒素。因此,靶向昆蟲腸道中關鍵代謝功能的抗體將使受影響的酶失活,而殺死昆蟲。例如,Taylor et al.(1994)Abstract #497,Seventh Int'l.分子植物-微生物相互作用經由產生單鏈抗體片段顯示轉基因煙草中的酶失活之研討會。
(P)病毒特異性抗體。參見,例如,Tavladoraki et al.(1993)Nature 266:469,其顯示表現重組抗體基因的轉殖基因植物被保護免受病毒攻擊。
(Q)藉由病原體或寄生蟲產生於自然的的發育阻滯蛋白。因此,真菌endo α-1,4-D多聚半乳醣醛酸酶(fungal endo α-1,4-D polygalacturonases)藉由溶解植物細胞壁homo-α-1,4-D-半乳醣醛酸酶(homo-α-1,4-D-galacturonase)促進真菌纏據和植物營養釋放(Lamb et al.(1992)Bio/Technology 10:1436)。編碼大豆內聚半乳醣醛酸酶抑制(endopolygalacturonase-inhibiting)蛋白的基因的植株和表徵由Toubart et al.描述(1992)Plant J.2:367。
(R)由植物自然產生的發育阻滯蛋白,例如提供對真菌疾病增加抗性的大麥核醣體去活基因Longemann et al.(1992)。Bio/Technology 10:3305。
(S)RNA干擾,其中RNA分子用於抑制標靶基因的表現。一個實例中的RNA分子是部分或完全雙鏈的,其引發沉默反應,導致dsRNA之裂解成小的干擾RNAs,然後將其併入破壞同源mRNAs的標靶複合物中。參見例如美國專利號6,506,559和6,573,099。
2.賦予除草劑抗性的基因
(A)編碼對抑制生長點或分生組織的除草劑的抗性或耐受性的基因,例如咪唑啉酮(imidazalinone),磺醯胺苯(sulfonanilide)或磺醯尿素(sulfonylurea)除草劑。該類別碼中的示例性基因代表突變體乙醯乳酸合成酶(acetolactate synthase)(ALS)(Lee et al.(1988)EMBO J.7:1241)也稱為乙醯乳酸還原合成酶(acetohydroxyacid synthase)(AHAS)酶(Miki et al.(1990)Theor.Appl.Genet.80:449)。
(B)編碼由突變種EPSP合成酶和aroA基因賦予的對草甘膦的抗性或耐受性的一種或多種附加基因,或通過由GAT(草甘膦乙醯轉移酶)或GOX(草甘膦氧化酶)等基因和其他膦醯基化合物如草銨膦(pat和bar基因;DSM-2)的代謝失活,和芳氧基苯氧基丙酸(aryloxyphenoxypropionic acids)和環己二酮(ACCase抑製劑編碼基因)。參見(例如)美國專利第4,940,835號,其揭露能賦予草甘膦抗性的EPSP形式的核苷酸序列。編碼突變種aroA基因的DNA分子可在ATCC登錄號39256獲得,突變基因的核苷酸序列揭露於美國專利第4,769,061號。歐洲專利申請案第0 333 033號和美國專利第4,975,374號揭露賦予除草劑如L-草胺膦(L-phosphinothricin)的抗性的麩醯胺合成酶(glutamine synthetase)基因的核苷酸序列。草胺膦乙醯轉移 酶基因的核苷酸序列在歐洲申請案第0242246號中提供。De Greef et al.(1989)Bio/Technology 7:61描述表現編碼草胺膦乙醯轉移酶活性的嵌合條(bar)基因的轉基因植物的生產。賦予對芳氧基苯氧基丙酸(aryloxyphenoxypropionic acids)和環己二酸抗性的基因的例子如氯藻胺(sethoxydim)和甲基合氯氟(haloxyfop),是Marshall et al.描述的Accl-S1、Accl-S2和Accl-S3基因。(1992)Theor.Appl.Genet.83:435。
(C)編碼對抑制光合作用的除草劑的抗性或耐受性的基因,例如三氮雜苯(triazine)(psbA和gs+基因)和苄腈(腈合成酶基因)。Przibilla et al.(1991)Plant Cell 3:169描述編碼突變種psbA基因的質體用於轉形單胞藻屬(Chlamydomonas)的用途。用於腈水解酶基因的核苷酸序列揭露在美國專利第4,810,648號,含有這些基因的DNA分子可在ATCC登錄號53435,67441和67442獲得。Hayes et al.描述編碼麩胱甘肽(glutathione)S-轉移酶的DNA的殖株和表現。(1992)Biochem.J.285:173。
(D)編碼對與羥基苯基丙酮酸鹽二加氧酶(HPPD)結合的除草劑的抗性或耐受性的基因,催化將對羥基苯基丙酮酸鹽二加氧酶(HPP)轉形為尿黑酸(homogentisate)的反應的酶。此包含除草劑如異噁唑(isoxazoles)(EP418175、EP470856、EP487352、EP527036、EP560482、EP682659、美國專利號5,424,276),特別是異惡草酮(isoxaflutole),其作為玉米的選擇性除草劑(EP496630,EP496631),特別是2-氰基-3-環丙基-1-(2-SO2CH3-4-CF3苯基)丙烷-1,3-二酮和2-氰基-3-環丙基-1-(2-SO2CH3-4-2,3-二氯苯基))丙烷-1,3-二酮、三酮(EP625505,EP625508,美國專利號5,506,195),特別是磺草酮(sulcotrione),和吡唑啉酸鹽(pyrazolinates)。在植物中產生過多的HPPD的基因可提供對此種除草劑的耐受性或抗性,例如美 國專利號6,268,549和6,245,968以及美國專利申請案公開號20030066102所描述的基因。
(E)編碼對苯氧基生長素除草劑的抗性或耐受性的基因,例如2,4-二氯苯氧基乙酸(2,4-D),且其亦可賦予對芳氧基苯氧基丙酸酯(AOPP)除草劑的抗性或耐受性。此類基因的實例包含美國專利號7,838,733中所述的α-酮戊二酸依賴性二氧酶(aad-1)基因。
(F)編碼對苯氧基生長素除草劑(例如2,4-二氯苯氧乙酸(2,4-D))的抗性或耐受性的基因,且其亦可賦予對吡啶氧基生長素除草劑,如氯氟吡氧乙酸(fluroxypyr)或三氯比(triclopyr)的抗性或耐受性。此種基因的實例包括WO 2007/053482 A2中描述的α-酮戊二酸依賴性二氧酶酶基因(aad-12)。
(G)編碼對麥草畏(dicamba)的抗性或耐受性的基因(參見例如美國專利公開號20030135879)。
(H)對抑制原紫質原氧化酶(PPO)的除草劑提供抗性或耐受性的基因(參見美國專利號5,767,373)。
(I)對光系統II反應中心(PS II)的核心蛋白結合的三氮雜苯除草劑(如草脫淨)和尿素衍生物(如敵草隆)除草劑提供抗性或耐受性的基因(參見Brussian et al.,(1989)EMBO J.8(4):1237-1245。
3.賦予或貢獻加值特徵的基因
(A)修飾的脂肪酸代謝,例如,藉由用反義寡核甘酸(antisense)基因或硬脂醯基-ACP去飽和酶轉形玉米或蕓苔屬植物(Brassica)以增加植物的硬脂酸含量(Knultzon et al.)(1992)Proc.Nat.Acad.Sci.USA 89:2624.
(B)植酸鹽含量降低
(1)植酸酶編碼基因的導入,例如黑麴菌(Aspergillus niger)植酸酶基因(Van Hartingsveldt et al.,(1993)Gene 127:87),提高植酸的分解,增加更多的游離磷酸鹽至轉形的植物。
(2)可引入降低植酸含量的基因。在玉米中,這個,例如,可藉由複製,然後再引入與單一等位基因有關的DNA,其負責特徵為低水平的植酸的玉米突變種而達成(Raboy et al.,(1990)Maydica 35:383)。
(C)修飾的碳水化合物組成物,例如,藉由具有用於改變澱粉分支模式的酶的基因編碼的轉形植物而作用。這些酶的實例包含鏈球菌粘液(Streptococcus mucus),果糖基轉移酶基因(Shiroza et al.(1988)J.Bacteriol.170:810),枯草桿菌(Bacillus subtilis)聚果糖生成(levansucrase)酶基因(Steinmetz et al.(1985)Mol.Gen.Genet 200:220),地衣芽孢桿菌α-澱粉酶(Pen et al.(1992)Bio/Technology 10:292),番茄轉形酶基因(Elliot et al.,1993),大麥澱粉酶基因(Sogaard et al.(1993)J.Biol.Chem.268:22480),和玉米胚乳澱粉分支酶II(Fisher et al.(1993)Plant Physiol.102:10450)。
感興趣的序列亦可以是通過同源重組引入植物基因體的預先決定區域的核苷酸序列。本技術領域已描述經由同源重組將多核苷酸序列穩定地整合到植物細胞的特定的染色體位置的方法。例如,如美國專利申請公開號2009/0111188 A1中所述的位置特異性整合涉及使用重組酶或整合酶介導將供體多核苷酸序列引入染色體標靶。此外,國際專利申請號WO2008/021207描述鋅指介導的同源重組以穩定地整合基因體的特定位置內的一個或多個供體多核苷酸序列。美國專利號6,720,475所述的重組酶如FLP/FRT的使用或美國專利號5,658,772中所述的CRE/LOX,可被用於將多核苷酸序列穩定整合到特定染色體位置。最後,在Puchta et al.中描述使用巨核酸酶 (meganucleases)將供體多核苷酸靶向特定染色體位置。(1996)Proc.Nat’l Acad.Sci.USA93:5055-5060。
植物細胞內用於位置特異性整合的其他各種方法通常是已知和可適用的(Kumar et al.(2001),Trends in Plant Sci.6(4):155-159)。此外,已經在幾種原核生物和低等真核生物中鑑別的位置特異性重組系統可應用於植物中。此種系統的例子包含但不限於;來自酵母鲁氏接合酵母的pSR1質體的R/RS重組酶系統(Araki et al.(1985)J.Mol.Biol182:191-203),和噬菌體Mu的Gin/gix系統(Maeser和Kahlmann(1991)Mol.Gen.Genet 230:170-176)。
雖然本文描述某些實例農桿菌屬菌種,但是所討論的新穎轉形方法的功能性可以相同的標準移到其他農桿菌屬菌種。可與本文所述的新穎轉形方法一起使用的其它菌株的實例包含但不限於農桿腫瘤菌(Agrobacterium tumefaciens)菌種C58、農桿腫瘤菌(Agrobacterium tumefaciens)菌種Chry5、農桿根群菌(Agrobacterium rhizogenes)菌種、農桿腫瘤菌(Agrobacterium tumefaciens)EHA101、農桿腫瘤菌菌種(Agrobacterium tumefaciens)EHA105、農桿腫瘤菌(Agrobacterium tumefaciens)菌種MOG101和農桿腫瘤菌(Agrobacterium tumefaciens)菌種T37。在國際專利申請案WO 2012/106222 A2中更具體地描述了這種菌種的修飾版本,其藉由引用併入本文。
在實施例中,成熟的大豆種子在感染之前滅菌。種子可以使用氯氣,氯化汞,浸入次氯酸鈉,浸入碳酸鈉中或本領域已知的其它合適方法進行滅菌。在實施例中,使用無菌水或其它合適的低滲壓溶液浸潤種子。將種子浸潤6-24小時,軟化種子,飽和子葉,並改善之後的生成嫩芽(shoot induction)。亦可使用較長的浸潤時間,例如長達48小時。
藉由將種子的子葉沿著種臍分裂以分離子葉,然後去除種皮以製 備分裂種子的大豆。在轉形之前,去除一部分胚軸,留下部分連接到子葉上的軸。典型地,胚軸的1/3到1/2之間留附在子葉的節端。
所揭露的方法不需要對裂開的大豆種子造成傷害,但被報導使用其他方法,包括子葉節法和分生組織外植體法以增加轉形效率。藉由切割、研磨、刺穿、音波處理、電漿傷害或真空滲入可以促進植物材料的傷害。包括一部分胚軸的分裂大豆種子典型地使用含有合適的基因建構體的農桿菌屬(Agrobacterium)培養物接種約0.5至3.0小時,更典型地接種約0.5小時,接著在合適的培養基上,長達至多約5天期間的共培養。推定地包括轉殖基因複本的外植體來自包含一部分胚軸的轉形的分裂大豆種子之培養。這些外植體被鑑別和分離以用於進一步的組織繁殖。
藉由在合適的誘導培養基中培養外植體約兩週的期間,接著在含有選擇劑,如草銨膦(glufosinate)的培養基中培養另外兩週,可以促進芽的誘導。交替於不具有和具有可選擇的媒介物的培養基之間是優選的,但是可成功地使用其中培養基總是包括可選擇的媒介物的其他方法。在芽誘導一段期間後,可以切除含有一部分胚軸的組織分離物,並轉移到合適的芽伸長培養基中。在實施例中,子葉可以被移除,並且可藉由在子葉的基部切割以切除包含胚軸的嫩芽墊(flush shoot pad)。參見實例2。
典型地,在轉形後將一或多種選擇性劑施用於分裂種子外植體。該選擇性劑殺死或延遲未轉形大豆細胞的生長,並可能有助於消除殘留的農桿菌(Agrobacterium)細胞。合適的劑包含草銨膦或雙丙胺膦(bialaphos)。其他合適的劑包含,但不限於除草劑草甘膦(glyphosate)或作為可選擇劑和芽誘導激素兩者的除草劑2,4-D。此外,取決於使用的可選擇標記,選擇性劑(selective agents)可包含各種抗生素,包括觀黴素、康黴素、新黴素、巴龍黴素、建它黴素和G418。根據使用的劑,選擇一到七天可能是適當的。
可以使用合適的試劑促進生根的伸長芽,包括但不限於不同濃度的生長素和細胞分裂素。例如可將生長素,吲哚-3-丁酸(IBA)摻入到細胞組織培養基,該培養基在植物材料轉移至合適的本領域技術人員已知的生根培養基之前已被使用。根部形成大約要1-4週,更典型地的是暴露於IBA後1-2週。
生長芽的培養可以藉由本領域通常已知的方法完成,促成成熟的轉殖基因大豆植物。參見,例如,實例2。
成功的轉殖基因事件的存在,可使用本領域已知的技術來確認,所述技術包括但不限於TAQMANTM、PCR分析、以及在感染和與農桿菌(Agrobacterium)共培養後的任何階段對大豆中的整合可選擇標記和/或報導基因建構體(constructs)進行南方雜交分析(Southern analysis);顯示報導建構體證據的植物或植物種原的表現型分析;或在合適的選擇培養基上選擇外植體。
在實施例中,所揭露方法可用於促成用於開發表現感興趣基因的自交大豆系和精英大豆栽培種的育種計畫。包括穩定整合的轉殖基因的近交大豆系可與其他近交大豆系雜交以產生表現感興趣基因的雜種植物。使用揭露的方法和本領域已知的方法可快速實現向精英大豆系和雜種漸滲入想要的表徵。
本文引用的所有參考文獻,包含出版物,專利和專利申請案,以其與這個揭露的明確細節一致的程度藉由參考併入本文。並且如同每個參考文獻被單獨且具體地指示藉由參考併入,並且在本文中被整體闡述的相同程度被併入。本文所討論的參考文獻僅為了在本申請案的申請日之前的公開內容而提供。本文中的任何內容都不應被解釋為承認發明人由於在先發明而無權先於這種揭露。
以下實例說明本揭露的特定特徵和/或觀點。這些實例不應被解釋 為將本揭露限制於其中描述的特定特徵或觀點。
以下實例證明根據本發明對具有未成熟胚的莢的鑑別和冷處理。為了生產未成熟合子胚,將大豆[Glycine max(L.)Merrill]栽培品種Maverick和Jack的種子在環境溫度下之溫室中生長,使用高壓鈉燈照射以維持理想的開花條件,以14小時光照。五種植物生長在10英寸盆中,該盆含有2:2:1土壤之混合物(Maury silt loam):PromixTM(Premier Brands,New Rochelle,NY):沙。該植物每周用Peter的20-20-20TM肥料(The Scotts Company,Marysville OH)施肥。
種植五週後或從開花後約7至14天,收穫大於0.9cm寬度的莢。在透射式立體鏡下篩選收穫的莢的未成熟胚的存在。選擇具有2-3個胚的莢並在4℃下冷藏7-9天。然後藉由以70%EtOH洗滌30秒,然後用含有TWEEN-20(Sigma-Aldrich,St.Louis MO)的10%漂白劑在溫和攪拌下將冷處理的莢表面滅菌10分鐘。倒入漂白劑,以輕輕攪拌用無菌水清洗滅菌的莢5分鐘。
以下實例證明整個未成熟胚和分裂胚對富含2,4-D培養基以形成癒合組織的易感性。
如實例1所述,將莢冷處理並滅菌。隨後在反式照明立體鏡上使用背光篩選莢以確定每個莢中的未成熟胚的位置。對於所選的每個莢,然後在每個端部進行兩個切割,然後沿著莢的彎曲部分縱向地進行一個長切割。當作長切割時,足夠的莢組織被切除以暴露莢腔的內部。接著,藉由抓住內部莢腔並從莢分離胚而將莢分解。當從莢移除時,每個胚都施加輕微的壓力。選擇長度為2mm至9mm的未成熟胚使用。
整個未成熟胚置於含有MS基底鹽4.33g/L(Murashige和Skoog,Physiol.Plant(1962)15(3):473-497)的富含2,4-D的半固體培養基(在此稱為「SE-40」)、Gamborg's B5維生素1ml/L(Gamborg et al.,Exp.Cell Res.(1968),50:151-158)、蔗糖30g/L、2,4-D 40mg/L、GEL-RITE 2g/L(Sigma-Aldrich)。放置在SE-40培養基上大約三週後觀察到癒合組織起始。通常,較小的未成熟胚被發現是較好的癒合組織生產者。對於Jack和Maverick品種,大多數癒合組織生產者是長度小於5mm的未成熟胚。此外,在該實例中,產生癒合組織的整個胚不產生體胚外植體。因此,產生癒合組織的整個未成熟胚不同於以下實例所描述的分裂的胚。
本實例提供根據本發明的用於縱向對分未成熟胚以形成分裂胚的方法以及使用分裂胚以產生胚癒合組織和體胚的方法的證明。以下亦證明外植體尺寸對癒合組織和體胚組織形成影響的實例。
如實例1和2所述,莢受冷處理並滅菌,從莢中分離未成熟的胚。選擇3至9mm的未成熟胚沿著種臍縱向對分兩個具有完整胚軸的子葉。這些具有其完整胚軸的這些分裂的未成熟胚外植體中的每一個,被置於富含2,4-D的半固體培養基(SE-40)上,使得其背軸側與半固體培養基接觸且其正軸(平的)側面朝上,遠離半固體培養基表面。在SE-40培養基上三至四周後,分裂的未成熟胚被測定其誘導胚癒合組織的能力。表1顯示了分裂未成熟胚外植體的以下資訊:栽培種名稱,未成熟胚尺寸範圍,在SE-40培養基上培養的分裂未成熟胚外植體的總數,以及形成胚癒合組織的分裂未成熟胚外植體的頻率,其頻率顯示為誘導胚癒合組織的外植體的數目,並且百分比等於([誘導癒合組織的胚數目]/[在CI培養基上培養的外植體的總數 目] * 100%)。表1中的結果證明癒合組織誘導頻率,隨著較大的分裂未成熟胚而增加,在Jack中最大為大於5mm到6mm(97%),在Maverick中大於6mm(99%)。
在SE-40培養基上四周後,分裂的胚被轉移到沒有2,4-D的體胚萌發培養基(SEGM)中。在癒合組織誘導培養基上培養16天後,使用Leica M165 FC TM立體顯微鏡(Leica Microsystems,Heerbrugg,Switzerland)使癒合組織的未成熟胚外植體成像。從收集的圖像,每個轉移的未成熟的胚對於體胚的存在被指定正分或負分,以研究未成熟胚尺寸和形成體胚組織的易感性之間的相關性。表2顯示未成熟胚的尺寸範圍,並且對於每個尺寸範圍,用於Jack和Maverick品種的培養的SEGM培養基的未成熟胚的總數,以及Jack和Maverick品種形成的體胚(SE)的頻率,其中頻率顯示為形成的SE的數目,且百分比等於([形成的SE數目]/[在SEGM培 養基上培養的未成熟胚的總數目]*100%)。表2中的結果證實了未成熟胚尺寸與SE形成之間的相關性。該體胚誘導的最高頻率被觀察於Jack(73%)中,為4mm至5mm尺寸的胚外植體,而在Maverick中,體胚的最高頻率是5mm至6mm尺寸的胚生成(69%)。
下面的實例證明根據本發明對於大豆莢中的未成熟胚使用冷處理以增加胚癒合組織的產生和體胚形成。這個例子亦證明冷處理對不同時間長度的影響,以及以冷處理誘導的組織完全能夠再生。
改變冷處理天數(4℃)以確定其對胚癒合組織誘導和體胚(SE)形成的影響,結果顯示在表3中。表3中的結果證明,對未成熟胚進行8天的儲存或冷處理,增加癒合組織和SE組織的生產和發育。在這個例子中,超過8天的冷處理降低癒合組織和SE組織的生產和發育。與未受冷處理相比(71%),在冷處理8天期間後,觀察到癒合組織產生的最高頻率(92%)。另外的冷處理天數(例如,9天或更長)減少癒合組織的增殖。癒合組織的最低頻率(57%)由11天的冷處理期間產生。同樣,與未受冷處理(21%)相比,體胚(SE)誘導(70%)以8天冷處理期最高。較長期 間的冷處理通常降低SE誘導。SE誘導的最低頻率(31%)由11天的冷處理期產生。然而,即使是這11天的冷處理期間頻率,亦高於沒有受冷處理的SE誘導頻率(21%)。在所測試的不同基因型中,未成熟胚的冷處理,導致癒合組織和SE產生的頻率增加,具有統計學上的顯著性,特別是在冷處理8天時的SE產生。
與Jack相比,Maverick確實顯示出更好的癒合組織誘導。然而,發現體胚組織生產是與基因型無關。發現用冷處理誘導的組織完全能夠再生。
以下實例證明使用根據本發明的質離處理以增加體胚形成。
在轉移至富含2,4-D的半固體培養基(SE-40)之前,將分裂的未成熟胚外植體在質離培養基(MS基質(Basal)培養基,含有4.4g/L維生素、 甘露糖醇0.4M、山梨糖醇0.4M、水晶洋菜2.3g/L、氯化鎂六水合物0.5mM)上培養0、4、或24小時。表4中顯示的結果證明,質離處理提高了體胚(SE)再生的百分比。在這個例子中,對於Jack大豆外植體,質離培養基上的4小時培養是最佳的,並且導致86%的體胚發育。對於Maverick大豆外植體,在質離培養基上24小時培養是最佳的,並導致67%的體胚發育。
以下實例證明使用根據本發明的冷處理製備的分裂的未成熟胚外植體的農桿菌(Agrobacterium)介導的轉形。這個例子亦證明從轉形的外植體再生穩定地轉形的植物。
命名為pDAB9381的單個二元載體構建為含有兩個植物轉錄單元(PTUs)。第一個PTU含有與黃色螢光蛋白YFP編碼序列(PhiYFP)可操作連接的阿拉伯芥(Arabidopsis thaliana)泛素-10啟動子(AtUbi10啟動 子)。YFP編碼序列含有從馬鈴薯(Solanum tuberosum)分離的內含子,即輕組織特異性誘導型LS-1基因(ST-LS1內含子;Genbank登錄號X04753),並藉由農桿腫瘤菌(Agrobacterium tumefaciens)開讀框-23 3'非轉譯區(AtuORF23 3'UTR)終止。第二個PTU含有異戊基轉移酶編碼序列(IPT CDS)(Genbank登錄號X00639.1),並且亦含有木薯葉脈嵌紋病毒(cassava vein mosaic virus)啟動子(CsVMV啟動子可操作地連接到除草劑抗性可選擇標記編碼序列,藉由A.根瘤農桿菌(A.tumefaciens)開讀框-1 3'非轉譯區(AtuORF1 3'UTR)終止。使用電穿孔將該雙元載體pDAB9381移動到EHA105的根瘤土壤桿菌(Agrobacterium tumefaciens)菌株(strains)中。鑑別在含有抗生素的觀黴素的YEP培養基上生長的單個菌落。分離單個菌落,並經由限制酶消化確認pDAB9381二元載體的存在。
如上所述製備具有完整胚發生軸的冷處理的分裂的未成熟胚,然後經由美國專利申請公開號2014/0173774 A1(Pareddy et al.)的農桿菌(Agrobacterium)介導的植物方法,使用pDAB9381轉形。更具體地,將Maverick和Jack品種的分裂的未成熟胚外植體被冷處理,置於含有二元載體的農桿菌(Agrobacterium)菌株EHA105轉形溶液中30分鐘,然後外植體被置於含有除草劑選擇劑的共培養培養基上5天。大部分較小的胚在這個選擇後,轉變成白色。較大的胚不會變白。隨後將農桿菌(Agrobacterium)處理的未成熟胚置於含有選擇劑的S-1培養基上4週以產生癒合組織。經由顯微鏡篩選得到的癒合組織的YFP表現,以及YFP表現的癒合組織被鑑別,並且確定其含有瞬時表現YFP編碼轉殖基因的複本。表5顯示放置在共培養(CC)培養基上的外植體的數目以及在S-1培養基上形成表現YFP的體胚(SE)組織的外植體的所得數目和百分比頻率,其中百分比頻率等於([在 S-1培養基上表現YFP的SE數目]/[在CC培養基上的外植體數目] * 100%])。
選擇穩定轉形的植物組織並在組織培養基組分上培養成完整的植物。使得到的T0全植物自交,並且使用分子確認分析T1代的植物以確認整合在植物基因體中的轉殖基因。
以下實例證實使用根據本發明,使用冷處理製備的分裂未成熟胚外植體的基因槍(粒子轟擊)介導的轉形。該實例亦證實根據本發明的穩定地轉形的轉殖基因植物的再生。
如以上實例1和2中所述製備具有完整胚發生軸之受冷處理的分裂未成熟胚。在質離處理4小時後,以建構體pDAB113639使用基因槍轉形法轉形外植體組織。基因槍轉形使用0.6μm的金粒子、900PSI的破裂盤和6cm的目標距離進行基因槍轟擊。pDAB 113639建構體含有RFP(紅色螢光蛋白)報導基因和HPT(潮黴素抗性轉殖基因)可選擇標記基因。
轟擊後,將外植體置於富含2,4-D的固體SE40培養基(MS基底鹽4.33g L-1、Gamborg B5維生素1000X1ml L-1、40mg L-12,4-D、3%蔗糖、0.2%水晶洋菜,pH 7)(Bailey et al.(1993)Plant Science,93:117-120)1週,然後轉移到富含2,4-D的半固體培養基(SE-40+10μg/ml潮黴 素)2週,富含2,4-D的半固體培養基(SE-40+25μg/ml潮黴素)1週,並且隨後置於體胚萌發和成熟(SEGM)培養基(MS基底鹽4.33g L-1、Gamborg B5維生素1000X1ml L-1,3%蔗糖、0.2%水晶洋菜)培養基(+25μg/ml潮黴素;Finer,1999)4週。經由螢光顯微鏡觀察RFP蛋白的表現,以確認再生植物組織的轉形。
在誘導階段具有應用選擇,未成熟的胚被轉移到SEGM培養基中2週,在此期間,體胚開始形成。測試體胚成熟的兩種替代方法為藉由(1)在固體SEGM培養基上連續培養(2)轉移至液體培養大豆組織分化和成熟(SHaM)培養基(MS微量營養素10×100ml L-1、3%蔗糖、3.5mM硫酸銨(Ammonium Sulfate)、2mM無水氯化鈣(Anhydrous Calcium Chloride)、1.4mM磷酸二氫鉀(Monobasic Potassium Phosphate)、10mM硝酸鉀(Potassium Nitrate)、1.5mM無水硫酸鎂(Anhydrous Magnesium Sulfate)、0.16M山梨醇(Sorbitol)、Gamborg B5維生素1000X 1ml L-1,30mM麩醯胺(Glutamine)、1mM甲硫胺酸(Methionine))(Schmidt et al.(2005)Plant Cell Reports,24:383-391)。表6顯示Jack和Maverick外植體的粒子轟擊結果。特別是,表6顯示測試的各種基因型和體胚成熟培養基的以下資訊:受轟擊的外植體的數目;形成體胚組織(SE)的外植體的數目;形成SE的百分數等於([形成的外植體的數目SE]/[受轟擊的外植體數目]*100%),產生的SE總數(表示未成熟胚的處理的生產力或胚發生潛力)。轉形百分比(表明有多少體胚轉形為小植物並且可以基於植物品種而變化),藉由定量聚合酶鍊式反應(quantitative polymerase chain reaction)(qPCR)確認的轉殖基因植物的數目,轉形頻率百分比等於([確認的轉殖基因植物數目]/[受轟擊的外植體數目]*100%)。
藉由本發明揭露方法所提供的,在誘導階段的改善可以藉由提升的SE生產總數和/或藉由每個未成熟胚的體胚數目的提升(「未成熟胚的生產力」)而追踪。如表6所示,通常地,在SHaM液體培養基中觀察到兩種栽培種體胚產生的頻率較高,並且每個未成熟胚外植體產生較高數目的體胚。
在組織培養基上培養轉形的植物組織,以產生具有穩定整合到其基因體中的轉殖基因(包括報導標記和pDAB 113639的可選擇標記)的完整轉殖基因植物。上述結果證明,藉由本發明提供的提升的體胚發生(somatic embryogenesis)與經由擴大的可轉形體胚組織池的提升的轉形頻率直接相關。
以下實例證明如實例7所述的產生的穩定轉殖基因事件的遺傳性,並確認轉殖基因事件在所有測試的大豆品種中適當分離。允許對測試轉殖基因正向的實例7的T0代事件設定種子。收穫種子,播種,然後在溫室中生長以產生T1代植物。當T1植物生長至V3營養期時,藉由qPCR分析 來自幼苗的葉樣品。該分析證明在T1植物基因體中存在RFP和HPT轉殖基因標記。Jack和Maverick兩者的轉殖基因事件都被發現是可遺傳和隔離的,如表7中的結果所示。
表7中的數據確認本發明的方法在不同的大豆基因型背景中產生各種遺傳的事件。
下面的例子證明在直接轉形方法中額外的可選擇標記的使用,該方法使用分裂的未成熟胚外植體的的基因槍介導的轉形。PAT(phosphinothricin-N-acetyltransferase)和DSM2(Dow可選擇標記)是對草銨膦(GLA)提供抗性的可選擇標記基因。DGT28(Dow glyphosate tolerance)是一種可選擇標記基因,能夠對草甘膦產生抗性。
如以上實例1和2中所述製備具有完整胚發生軸的受冷處理的分裂的未成熟胚。質離處理4小時後,將外植體組織以建構體pDAB938或pDAB126244或pDAB126276進行基因槍轉形。pDAB9381建構體包含YFP報導基因和PAT可選擇標記基因。pDAB126244建構體包含RFP報導基因和DGT28可選擇標記基因。pDAB126276建構體包含YFP(黃色螢光蛋白)報導基因和DSM2可選擇標記基因。基因槍轉形涉及使用0.6μm的金粒子、900PSI的破裂盤和6cm的目標距離的基因槍轟擊。
轟擊後,外植體被置於富含2,4-D的固體SE40培養基(MS基底 鹽4.33g L-1、Gamborg B5維生素1000X1m1 L-1、40mg L-12,4-D、3%蔗糖、0.2%水晶洋菜,pH7)(Bailey et al.(1993))1週,然後轉移到含有選擇劑(1.5mg/L草銨膦銨鹽)的富含2,4-D的半固體培養基(SE-40)(「GLA」)或0.25mM草甘膦)3週。隨後外植體被置於體胚萌發和成熟(SEGM)培養基(MS基底鹽4.33g L-1、Gamborg B5維生素1000X 1ml L-1,3%蔗糖、0.2%水晶洋菜)培養基4週。經由螢光顯微鏡觀察YFP/RFP蛋白的表現,以確認再生的植物組織的轉形。
表8顯示以下用於以每一含有可選擇標記PAT、DSM2或DGT28建構體轟擊的結果:被轟擊的外植體的數目,產生的轉殖基因體胚的數目以及轉形成小植株並在溫室中成功建立的轉殖基因體胚的數目。產生的轉殖基因體胚的百分比為([再生轉殖基因SE的外植體的數目/轟擊的外植體的數目]*100%。在溫室中建立的轉殖基因植物的數目百分比是([在溫室中建立的獨立的轉殖基因的事件數目/受轟擊的外植體的數目]*100%)。表8顯示使用的可選擇標記,選擇劑和施用濃度,轟擊的未成熟胚(IE)的數目,轟擊的IE產生的數目轉殖基因體胚(TSE)以及相應的(%TSE)IE轟擊]*100%),以及從TSE在溫室中再生的轉殖基因植物的數目以及相應的轉形頻率百分比或([溫室中再生的轉殖基因植物]/[IE轟擊]*100%)的「%TF」。
如表8所示,本發明的方法用於產生具有三種不同可選擇標記基因的轉殖基因體胚和植物,其提供對兩種不同的植物選擇劑的抗性。此外,轉殖基因體胚再生成含有每種可選擇標記的轉殖基因植物。
Claims (26)
- 一種用於胚癒合組織(embryogenic callus)生產之方法,其中該方法包括:選取一或多個未成熟大豆胚;使一或多個未成熟胚進行冷處理;以及誘導該經冷處理胚形成胚癒合組織。
- 如請求項1所述之方法,其中該未成熟胚在其豆莢中或從其他豆莢組織分離後進行冷處理;以及該被選取的未成熟胚的長度為6mm或更長。
- 如請求項1或2所述之方法,其中該一或多個被選取的未成熟胚從其豆莢中分離並且該一或多個被選取的未成熟胚外殖體被分為二部分以形成分裂的種子胚外殖體。
- 如請求項1至3中任一項所述之方法,其中該未成熟胚從一頑固性品種的大豆 (Glycine max)收穫。
- 如請求項1至5中任一項所述之方法,其中該方法包括使該一或多種未成熟胚胎進行冷處理長達8天。
- 如請求項1至6中任一項所述之方法,其中該方法更包括使所選取的一或多種未成熟胚進行質離(plasmolysis)處理。
- 如請求項6之任一項所述之方法,其中使該未成熟胚進行質離(plasmolysis)處理4至24小時。
- 如請求項1至7中任一項所述之方法,其中該方法更包括誘導該體胚(somatic embryo)組織之形成。
- 如請求項1至8中任一項所述之方法,其中該方法包括使用含有生長素的生長培養基誘導癒合組織形成。
- 如請求項1至9中任一項所述之方法,其中該被選取的一或多個未成熟胚為半透明綠色。
- 如請求項1至10中任一項所述之方法,其中該方法更包含開花後7至14天收穫一個或多個大豆莢;以及從該經收穫豆莢中選取一或多個被選取的未成熟胚。
- 如請求項11項所述之方法,其中包含一或多個被選取的未成熟胚之該經收穫豆莢的寬度是大於9mm。
- 一種用於大豆轉形之方法,其中該方法包括:選取多個未成熟大豆胚; 將該未成熟胚進行冷處理;以一或多個外源轉殖基因轉形該受冷處理之未成熟合子胚;以及誘導該被轉形的合子胚以形成體胚並且因此產生轉殖基因的體胚組織。
- 一種用於大豆轉形之方法,其中該方法包括:選取多個未成熟大豆胚;將該未成熟胚進行冷處理;誘導該受冷處理胚以形成體胚;以及以一或多個外源轉殖基因轉形該體胚而因此產生轉殖基因體胚組織。
- 如請求項13或14所述之方法,其中該基因轉殖體胚組織被瞬時地轉形。
- 如請求項15所述之方法,其中該方法更包括再生該基因轉殖體胚組織成為包括一或多個外源轉殖基因的基因轉殖大豆植物。
- 如請求項13至16中任一項所述之方法,其中該被選取的未成熟胚具有6mm或更長之長度。
- 如請求項13至17中任一項所述之方法,其中該被選取的未成熟胚從其豆莢中分離並且該一或多個被選取的胚外殖體被分為二部分以形成分裂的種子胚外殖體。
- 如請求項13至18中任一項所述之方法,其中該未成熟合子胚從一頑固性品種的大豆 (Glycine max)收穫。
- 如請求項13至19中任一項所述之方法,其中該方法包括將該一或多種未成熟胚進行一或多個以下之附加步驟:(i)冷處理長達8天,(ii)質離處理,或(iii)質離處理4至24小時。
- 如請求項13至20中任一項所述之方法,其中該方法包括使用含有生長素的生長培養基誘導癒合組織形成。
- 如請求項13至21中任一項所述之方法,其中該被選取的一或多個未成熟胚為半透明綠色。
- 如請求項13至22中任一項所述之方法,其中該方法更包含在開花後7至14天收穫一或多個大豆豆莢,其中可選擇地該含有一或多個被選取的未成熟胚之經收穫豆莢的寬度是大於9mm;以及從該經收穫豆莢選取一或多個被選取的未成熟胚。
- 如請求項13至23中任一項所述之方法,其中該轉形包括使用基因槍介導(biolistic-mediated)的轉形;以及該一或多個外源轉殖基因包括一可選擇標記基因。
- 如請求項24所述之方法,其中該可選擇標記基因提供對於草銨膦 (glufosinate)、草甘膦(glyphosate)或潮黴素(hygromycin)的抗性。
- 如請求項13至25中任一項所述之方法,其中該方法更包括使用大豆組織分化和成熟(SHaM)培養基或體胚萌芽和成熟(SEGM)培養基而使該轉殖基因體胚組織成熟。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662410526P | 2016-10-20 | 2016-10-20 | |
US62/410,526 | 2016-10-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201815278A true TW201815278A (zh) | 2018-05-01 |
Family
ID=61970883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106135319A TW201815278A (zh) | 2016-10-20 | 2017-10-16 | 加速生產胚癒合組織、體胚以及相關轉形方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180110196A1 (zh) |
EP (1) | EP3528610A1 (zh) |
AR (1) | AR109860A1 (zh) |
BR (1) | BR112019006760A2 (zh) |
CA (1) | CA3039205A1 (zh) |
TW (1) | TW201815278A (zh) |
WO (1) | WO2018075602A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3732295A1 (en) * | 2017-12-27 | 2020-11-04 | Pioneer Hi-Bred International, Inc. | Transformation of dicot plants |
CN110241069A (zh) * | 2019-06-04 | 2019-09-17 | 上海交通大学 | 一种大豆原生质体的制备和转化方法 |
CN116262931A (zh) * | 2021-12-14 | 2023-06-16 | 中国科学院分子植物科学卓越创新中心 | 一种黍属植物的遗传转化方法 |
CN116548307B (zh) * | 2023-05-12 | 2024-01-26 | 青岛农业大学 | 一种基于叶片诱导的紫花苜蓿再生的方法及其培养基 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5024944A (en) * | 1986-08-04 | 1991-06-18 | Lubrizol Genetics, Inc. | Transformation, somatic embryogenesis and whole plant regeneration method for Glycine species |
US4857465A (en) * | 1986-12-02 | 1989-08-15 | Lubrizol Genetics, Inc. | Whole plant regeneration via organogenesis and somaclonal variation in glycine species |
CA2396392C (en) * | 1999-11-29 | 2015-04-21 | Midwest Oilseeds, Inc. | Methods and compositions for the introduction of molecules into cells |
EP3051940A4 (en) * | 2013-10-04 | 2017-03-29 | Dow AgroSciences LLC | Soybean transformation method |
-
2017
- 2017-10-16 TW TW106135319A patent/TW201815278A/zh unknown
- 2017-10-18 EP EP17861539.9A patent/EP3528610A1/en not_active Withdrawn
- 2017-10-18 US US15/786,916 patent/US20180110196A1/en not_active Abandoned
- 2017-10-18 BR BR112019006760A patent/BR112019006760A2/pt not_active Application Discontinuation
- 2017-10-18 WO PCT/US2017/057120 patent/WO2018075602A1/en unknown
- 2017-10-18 CA CA3039205A patent/CA3039205A1/en not_active Abandoned
- 2017-10-20 AR ARP170102936A patent/AR109860A1/es unknown
Also Published As
Publication number | Publication date |
---|---|
BR112019006760A2 (pt) | 2019-07-02 |
WO2018075602A1 (en) | 2018-04-26 |
EP3528610A1 (en) | 2019-08-28 |
US20180110196A1 (en) | 2018-04-26 |
CA3039205A1 (en) | 2018-04-26 |
AR109860A1 (es) | 2019-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6990653B2 (ja) | 迅速な植物形質転換のための方法および組成物 | |
EP2935592B1 (en) | Improved split seed soybean transformation for efficient and high-throughput transgenic event production | |
US11999958B2 (en) | Methods of gene editing and transforming Cannabis | |
US20150307889A1 (en) | Haploid maize transformation | |
AU2007249385B2 (en) | Plant artificial chromosome platforms via telomere truncation | |
TW201815278A (zh) | 加速生產胚癒合組織、體胚以及相關轉形方法 | |
JP2023544016A (ja) | 単子葉外植片の迅速な形質転換 | |
Ahn et al. | Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.) | |
US8569582B2 (en) | Method for transformation of grasses | |
Nazila et al. | Agrobacterium mediated transformation of Fld and Gus genes into canola for Salinity stress | |
WO2024212216A1 (en) | Methods for rapid agrobacterium-mediated sunflower stable transformation | |
WO2022186295A1 (ja) | 受精を介さず種子植物の胚発生を誘導する方法、それに用いられるタンパク質、核酸、及びベクター、並びに受精を介さず胚を発生しうる組換え種子植物 | |
JP2009523021A (ja) | 陽性選択に基づくヒマワリおよび脂肪種子の新規で効果的な形質転換法 | |
WO2022079927A1 (ja) | 植物細胞の培養方法 | |
Liu | Transformation of microspores for generating doubled haploid transgenic wheat (Triticum aestivum L.) | |
Do | Genetic Engineering of Sorghum and Switchgrass for Improved Biofuel Production |