TW201742151A - Composite sheet for forming protective film, method for producing semiconductor chip with protective film, and method for producing semiconductor device - Google Patents

Composite sheet for forming protective film, method for producing semiconductor chip with protective film, and method for producing semiconductor device Download PDF

Info

Publication number
TW201742151A
TW201742151A TW106113627A TW106113627A TW201742151A TW 201742151 A TW201742151 A TW 201742151A TW 106113627 A TW106113627 A TW 106113627A TW 106113627 A TW106113627 A TW 106113627A TW 201742151 A TW201742151 A TW 201742151A
Authority
TW
Taiwan
Prior art keywords
protective film
forming
film
semiconductor wafer
meth
Prior art date
Application number
TW106113627A
Other languages
Chinese (zh)
Other versions
TWI772293B (en
Inventor
小橋力也
稻男洋一
米山裕之
Original Assignee
琳得科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 琳得科股份有限公司 filed Critical 琳得科股份有限公司
Publication of TW201742151A publication Critical patent/TW201742151A/en
Application granted granted Critical
Publication of TWI772293B publication Critical patent/TWI772293B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67712Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrate being handled substantially vertically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Abstract

A composite sheet for forming protective film, including an energy ray curable film for forming protective film provided on a support sheet, wherein the support sheet has a light shielding layer in a region in the vicinity of the peripheral edge portion of the support sheet.

Description

保護膜形成用複合片、附有保護膜的半導體晶片的製造方法以及半導體裝置的製造方法 Composite film for forming protective film, method for producing semiconductor wafer with protective film, and method for manufacturing semiconductor device

本發明係關於一種附有保護膜的半導體晶片的製造方法以及半導體裝置的製造方法。 The present invention relates to a method of manufacturing a semiconductor wafer with a protective film and a method of manufacturing a semiconductor device.

本申請案主張基於2016年4月28日在日本提出申請之日本特願2016-092012號的優先權,並將該申請案的內容引用至本文中。 The priority of Japanese Patent Application No. 2016-092012, filed on Jan. 28,,,,,,,,,,,,,

近年來,業界使用稱為所謂倒裝(face down)方式之安裝方法製造半導體裝置。倒裝方式中,使用於電路面上具有凸塊(bump)等電極之半導體晶片,將前述電極與基板接合。因此,會有半導體晶片中的與電路面為相反側的背面裸露之情形。 In recent years, the industry has manufactured semiconductor devices using a mounting method called a so-called face down method. In the flip-chip method, a semiconductor wafer having electrodes such as bumps on a circuit surface is used, and the electrodes are bonded to the substrate. Therefore, there is a case where the back surface of the semiconductor wafer opposite to the circuit surface is exposed.

會有於該裸露之半導體晶片的背面形成含有有機材 料之樹脂膜作為保護膜,從而以附有保護膜的半導體晶片之形式組入至半導體裝置之情形。 There will be organic materials on the back side of the bare semiconductor wafer. The resin film of the material is used as a protective film to be incorporated into a semiconductor device in the form of a semiconductor wafer with a protective film.

保護膜係用以防止在切割步驟或封裝之後半導體晶片產生龜裂。 The protective film is used to prevent cracking of the semiconductor wafer after the cutting step or packaging.

為了形成此種保護膜,例如使用於支持片上具備用以形成保護膜之保護膜形成用膜而成之保護膜形成用複合片。保護膜形成用複合片中,可藉由硬化使保護膜形成用膜形成保護膜,進而可將支持片用作切割片,從而可成為保護膜形成用膜與切割片(dicing sheet)形成為一體之保護膜形成用複合片。 In order to form such a protective film, for example, a composite sheet for forming a protective film having a film for forming a protective film for forming a protective film on a support sheet is used. In the composite sheet for forming a protective film, a protective film can be formed by curing the film for forming a protective film, and the support sheet can be used as a dicing sheet, whereby the film for forming a protective film can be formed integrally with a dicing sheet. A composite sheet for forming a protective film.

作為此種保護膜形成用複合片,例如至今主要利用具備熱硬化性之保護膜形成用膜之保護膜形成用複合片,前述熱硬化性之保護膜形成用膜藉由利用加熱進行硬化而形成保護膜。該情形時,例如於半導體晶圓的背面(與電極形成面為相反側的面)藉由熱硬化性之保護膜形成用膜貼附保護膜形成用複合片後,藉由加熱使保護膜形成用膜硬化而成為保護膜,藉由切割將半導體晶圓連同保護膜一起分割而製成半導體晶片。然後,將半導體晶片保持貼附有該保護膜之狀態下直接自支持片拉離而進行拾取。再者,保護膜形成用膜之硬化及切割有時亦以與上述相反之順序進行。 In the composite sheet for forming a protective film, for example, a composite sheet for forming a protective film having a film for forming a protective film having thermosetting properties is mainly used, and the film for forming a thermosetting protective film is formed by curing by heating. Protective film. In this case, for example, the back surface of the semiconductor wafer (the surface opposite to the surface on which the electrode is formed) is bonded to the film for forming a protective film by a thermosetting protective film, and then the protective film is formed by heating. The film is cured by a film to form a protective film, and the semiconductor wafer is formed by dividing the semiconductor wafer together with the protective film by dicing. Then, the semiconductor wafer is directly attached to the support sheet while being attached to the protective film, and is picked up. Further, the curing and cutting of the film for forming a protective film may be performed in the reverse order of the above.

但是,熱硬化性之保護膜形成用膜之加熱硬化通常需要數小時左右之長時間,因此期望縮短硬化時間。針對上述情形,業界正研究將可藉由照射紫外線等能量線而硬化之保護膜形成用膜用於形成保護膜。例如揭示有:形成於剝離膜上之能量線硬化型保護膜(參照專利文獻1);可形成高硬度且對半導體晶片之密接性優異之保護膜之能量線硬化型晶片保護用膜(參照專利文獻2)。 However, since the heat curing of the film for forming a thermosetting protective film usually takes about several hours, it is desirable to shorten the curing time. In view of the above, the industry is investigating a film for forming a protective film which can be cured by irradiation with an energy ray such as ultraviolet rays for forming a protective film. For example, an energy ray-curable protective film formed on a release film (see Patent Document 1) and an energy ray-curable wafer protective film which can form a protective film having high hardness and excellent adhesion to a semiconductor wafer (see Patent) Literature 2).

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

專利文獻1:日本特許第5144433號公報。 Patent Document 1: Japanese Patent No. 5144433.

專利文獻2:日本特開2010-031183號公報。 Patent Document 2: Japanese Laid-Open Patent Publication No. 2010-031183.

但是,於使用專利文獻1及專利文獻2中所揭示之能量線硬化性之保護膜形成用膜製造附有保護膜的半導體晶片並進行拾取之情形時,有時無法拾取特定的一個附有保護膜的半導體晶片,而產生拾取不良。 However, when a semiconductor wafer with a protective film is produced by using the energy ray-curable protective film forming film disclosed in Patent Document 1 and Patent Document 2, it is sometimes impossible to pick up a specific one. The semiconductor wafer of the film causes poor pickup.

因此,本發明之目的在於提供一種附有保護膜的半導體晶片及半導體裝置的製造方法、以及可用於這些製造方法之保護膜形成用複合片,前述附有保護膜的半導體晶片可於使用能量線硬化性之保護膜形成用膜製造附有保護 膜的半導體晶片並進行拾取時抑制拾取不良。 Accordingly, an object of the present invention is to provide a semiconductor wafer with a protective film, a method of manufacturing a semiconductor device, and a composite sheet for forming a protective film which can be used in the above-described manufacturing method, and the semiconductor wafer with the protective film can use an energy ray Curable film for protective film formation with protection The semiconductor wafer of the film suppresses pickup defects when it is picked up.

為了解決上述課題,本發明者等人進行銳意研究,結果發現以下情形。亦即,先前使用能量線硬化性之保護膜形成用膜製造附有保護膜的半導體晶片時,若於保護膜形成用膜貼附半導體晶圓,則於該保護膜形成用膜中,會於較半導體晶圓的外周更遠離半導體晶圓的區域(亦即保護膜形成用膜中的貼附有半導體晶圓的區域的外側)產生未貼附該半導體晶圓的區域。但是,照射能量線而使保護膜形成用膜硬化時,對該保護膜形成用膜中的貼附有半導體晶圓的區域、及該半導體晶圓的外周中未貼附該半導體晶圓的區域這兩區域照射能量線而使保護膜形成用膜硬化。並且,本發明者等人發現,產生延伸不良而導致拾取不良之原因在於:包含有較該半導體晶圓的外周更遠離半導體晶圓的區域的保護膜形成用膜(亦即保護膜形成用膜中的貼附有半導體晶圓的區域的外側的區域)在內會硬化。 In order to solve the above problems, the inventors of the present invention conducted intensive studies and found the following. In the case of manufacturing a semiconductor wafer with a protective film by using an energy ray-curable film for forming a protective film, when a semiconductor wafer is attached to a film for forming a protective film, the film for forming a protective film may be used in the film for forming a protective film. A region where the semiconductor wafer is not attached to a region farther from the semiconductor wafer than the outer periphery of the semiconductor wafer (that is, the outer side of the region where the semiconductor wafer is attached to the film for forming a protective film) is generated. However, when the film for forming a protective film is cured by irradiating the energy ray, the region where the semiconductor wafer is attached to the film for forming a protective film and the region where the semiconductor wafer is not attached to the outer periphery of the semiconductor wafer The two regions irradiate the energy rays to harden the film for forming a protective film. Further, the inventors of the present invention have found that the cause of the poor adhesion and the pickup failure is that the film for forming a protective film (that is, the film for forming a protective film) including the region farther from the semiconductor wafer than the outer periphery of the semiconductor wafer The area on the outer side of the region to which the semiconductor wafer is attached is hardened.

本發明之保護膜形成用複合片係於支持片上具備能量線硬化性之保護膜形成用膜而成,前述支持片於周緣部附近的區域具有遮光層。 The composite sheet for forming a protective film of the present invention is obtained by providing a film for forming a protective film having an energy ray-curable property on a support sheet, and the support sheet has a light-shielding layer in a region in the vicinity of the peripheral portion.

本發明之保護膜形成用複合片中,前述遮光層可由印刷層構成。 In the composite sheet for forming a protective film of the present invention, the light shielding layer may be composed of a printing layer.

本發明之一態樣之附有保護膜的半導體晶片的製造 方法如下:對依序具備有支持片、能量線硬化性之保護膜形成用膜及半導體晶圓之積層體中的前述半導體晶圓進行切割,接著,對前述保護膜形成用膜中除了周緣部附近的區域以外的前述保護膜形成用膜中前述半導體晶圓之貼附區域部分照射能量線而於前述支持片上形成附有保護膜的半導體晶片,對前述附有保護膜的半導體晶片進行拾取。 Manufacture of a semiconductor wafer with a protective film in one aspect of the invention The method of cutting a semiconductor wafer in a laminate of a protective film for forming a support sheet and an energy ray-curable film and a semiconductor wafer, and then forming a film for the protective film, except for the peripheral portion. In the film for forming a protective film other than the vicinity, a portion of the attachment region of the semiconductor wafer is irradiated with an energy ray, and a semiconductor wafer with a protective film is formed on the support sheet, and the semiconductor wafer with the protective film is picked up.

本發明之另一態樣之附有保護膜的半導體晶片的製造方法如下:準備依序具備有支持片、能量線硬化性之保護膜形成用膜及半導體晶圓之積層體,對前述保護膜形成用膜中除了周緣部附近的區域以外的前述保護膜形成用膜中前述半導體晶圓之貼附區域部分照射能量線後,對前述半導體晶圓進行切割而於前述支持片上形成附有保護膜的半導體晶片,對前述附有保護膜的半導體晶片進行拾取。 A method for producing a semiconductor wafer with a protective film according to another aspect of the present invention is as follows: a protective film for forming a protective film for forming a support sheet or an energy ray-curable layer, and a laminate of a semiconductor wafer, and the protective film are provided. In the film for forming a protective film, except for the region in the vicinity of the peripheral portion, the portion of the adhesion region of the semiconductor wafer is irradiated with an energy ray, and the semiconductor wafer is diced to form a protective film on the support sheet. The semiconductor wafer is picked up by the semiconductor wafer with the protective film attached thereto.

本發明之附有保護膜的半導體晶片的製造方法中,前述支持片亦可於周緣部附近的區域具有遮光層。 In the method for producing a semiconductor wafer with a protective film according to the present invention, the support sheet may have a light shielding layer in a region in the vicinity of the peripheral portion.

本發明之附有保護膜的半導體晶片的製造方法中,亦可對前述保護膜形成用膜中除了周緣部附近的區域以外的前述半導體晶圓之貼附區域部分隔著遮蔽板照射能量線。 In the method for producing a semiconductor wafer with a protective film according to the present invention, the protective film forming film may be irradiated with an energy ray via a shielding plate in a portion of the semiconductor wafer in a region other than a region in the vicinity of the peripheral portion.

本發明之半導體裝置的製造方法係將藉由上述任一項所記載之附有保護膜的半導體晶片的製造方法所獲得之附有保護膜的半導體晶片連接於基板。 In the method of manufacturing a semiconductor device of the present invention, the semiconductor wafer with a protective film obtained by the method for producing a semiconductor wafer with a protective film according to any one of the above is connected to the substrate.

亦即,本發明包含以下之態樣。 That is, the present invention encompasses the following aspects.

[1]一種保護膜形成用複合片,係於支持片上具備能量線硬化性之保護膜形成用膜而成,前述支持片於周緣部附近的區域具有遮光層。 [1] A composite sheet for forming a protective film, comprising a film for forming a protective film having an energy ray-curable property on a support sheet, wherein the support sheet has a light-shielding layer in a region in the vicinity of the peripheral portion.

[2]如[1]所記載之保護膜形成用複合片,其中前述遮光層由印刷層構成。 [2] The composite sheet for forming a protective film according to [1], wherein the light shielding layer is composed of a printed layer.

[3]一種附有保護膜的半導體晶片的製造方法,包含有:對依序具備有支持片、能量線硬化性之保護膜形成用膜及半導體晶圓之積層體中的前述半導體晶圓及前述保護膜形成用膜進行切割;對經切割之前述保護膜形成用膜中除了周緣部附近的區域以外的前述半導體晶圓之貼附區域部分照射能量線,藉此於前述支持片上形成附有保護膜的半導體晶片;以及對前述附有保護膜的半導體晶片進行拾取。 [3] A method of manufacturing a semiconductor wafer with a protective film, comprising: the semiconductor wafer in a laminate of a protective film for forming a support sheet, an energy ray-curable layer, and a semiconductor wafer; The film for forming a protective film is diced, and an energy ray is applied to a portion of the film for forming a protective film that is diced except for a region in the vicinity of the peripheral portion, thereby forming an attached surface on the support sheet. a semiconductor wafer of a protective film; and picking up the aforementioned semiconductor wafer with a protective film.

[4]一種附有保護膜的半導體晶片的製造方法,包含有:對依序具備有支持片、能量線硬化性之保護膜形成用膜及半導體晶圓之積層體中的前述保護膜形成用膜中除了周緣部附近的區域以外的前述半導體晶圓之貼附區域部分照射能量線;照射前述能量線後,切割前述半導體晶圓進行,於前述支持片上形成附有保護膜的半導體晶片;以及對前述附有保護膜的半導體晶片進行拾取。 [4] A method of producing a semiconductor wafer with a protective film, comprising: forming a protective film for a protective film forming film and a semiconductor wafer in which a support sheet, an energy ray-curable protective film, and a semiconductor wafer are sequentially provided; The portion of the film in which the semiconductor wafer is attached to the region other than the region near the peripheral portion is irradiated with an energy ray; after the illuminating the energy ray, the semiconductor wafer is diced, and a semiconductor wafer with a protective film is formed on the support sheet; The semiconductor wafer with the aforementioned protective film is picked up.

[5]如[3]或[4]所記載之附有保護膜的半導體晶片的製造方法,其中前述支持片於周緣部附近的區域具有遮光層 。 [5] The method for producing a semiconductor wafer with a protective film according to [3] or [4], wherein the support sheet has a light shielding layer in a region in the vicinity of the peripheral portion. .

[6]如[3]或[4]所記載之附有保護膜的半導體晶片的製造方法,其中包含有對前述保護膜形成用膜中除了周緣部附近的區域以外的前述半導體晶圓之貼附區域部分隔著遮蔽板照射能量線。 [6] The method for producing a semiconductor wafer with a protective film according to [3] or [4], wherein the film for the protective film is not included in the semiconductor wafer except for a region in the vicinity of the peripheral portion. The attached area partially illuminates the energy line through the shielding plate.

[7]一種半導體裝置的製造方法,包含有將藉由如[3]至[6]中任一項所記載之附有保護膜的半導體晶片的製造方法所獲得之附有保護膜的半導體晶片連接於基板。 [7] A semiconductor wafer with a protective film obtained by the method for producing a semiconductor wafer with a protective film according to any one of [3] to [6], Connected to the substrate.

根據本發明,提供一種附有保護膜的半導體晶片及半導體裝置的製造方法、以及用於這些製造方法之保護膜形成用複合片,前述附有保護膜的半導體晶片可於使用能量線硬化性之保護膜形成用膜製造附有保護膜的半導體晶片並進行拾取時抑制拾取不良。 According to the present invention, there is provided a semiconductor wafer with a protective film, a method of manufacturing a semiconductor device, and a composite sheet for forming a protective film for use in the above-described manufacturing method, wherein the semiconductor wafer with a protective film can be used for energy ray hardening. The film for protective film formation is manufactured by manufacturing a semiconductor wafer with a protective film, and picking up is suppressed at the time of picking up.

1A、1B、1C、1D、1E‧‧‧保護膜形成用複合片 1A, 1B, 1C, 1D, 1E‧‧‧ Composite film for protective film formation

2F‧‧‧保護膜形成用片 2F‧‧‧Protective film forming sheet

10‧‧‧支持片 10‧‧‧Support tablets

10a‧‧‧(支持片的)表面 10a‧‧‧ (supported) surface

11‧‧‧基材 11‧‧‧Substrate

11a‧‧‧(基材的)表面 11a‧‧‧ (substrate) surface

12‧‧‧黏著劑層 12‧‧‧Adhesive layer

12a‧‧‧(黏著劑層的)表面 12a‧‧‧ (adhesive layer) surface

13、23‧‧‧保護膜形成用膜 13, 23‧‧‧film for protective film formation

13'、23'‧‧‧保護膜 13', 23'‧‧‧ protective film

13a、23a‧‧‧(保護膜形成用膜的)表面 13a, 23a‧‧‧ (film for protective film formation)

13b‧‧‧(保護膜形成用膜中的與一方的表面相反的另一方的)表面 13b‧‧‧ (the other one of the films for forming a protective film, which is opposite to the other surface)

15‧‧‧剝離膜 15‧‧‧Release film

15'‧‧‧第一剝離膜 15'‧‧‧First peel film

15"‧‧‧第二剝離膜 15"‧‧‧Second release film

16‧‧‧治具用接著劑層 16‧‧‧Layer layer for fixtures

16a‧‧‧(治具用接著劑層的)表面 16a‧‧‧ (adhesive layer for the fixture) surface

17‧‧‧環狀框 17‧‧‧ ring frame

18‧‧‧半導體晶圓 18‧‧‧Semiconductor wafer

19‧‧‧半導體晶片 19‧‧‧Semiconductor wafer

20‧‧‧切割刀片 20‧‧‧Cutting Blade

21‧‧‧能量線照射裝置 21‧‧‧Energy line irradiation device

24‧‧‧遮光層 24‧‧‧ shading layer

圖1係以示意方式顯示本發明之保護膜形成用複合片的一實施形態之剖視圖。 Fig. 1 is a cross-sectional view showing an embodiment of a composite sheet for forming a protective film of the present invention in a schematic manner.

圖2係顯示圖1之保護膜形成用複合片的背面。 Fig. 2 is a view showing the back surface of the composite sheet for forming a protective film of Fig. 1.

圖3係以示意方式顯示本發明之保護膜形成用複合片的另一實施形態之剖視圖。 Fig. 3 is a cross-sectional view showing another embodiment of the composite sheet for forming a protective film of the present invention in a schematic manner.

圖4係以示意方式顯示本發明之保護膜形成用複合片的又一實施形態之剖視圖。 Fig. 4 is a cross-sectional view showing still another embodiment of the composite sheet for forming a protective film of the present invention.

圖5係以示意方式顯示本發明之保護膜形成用複合片的又一實施形態之剖視圖。 Fig. 5 is a cross-sectional view showing still another embodiment of the composite sheet for forming a protective film of the present invention.

圖6係以示意方式顯示本發明之保護膜形成用複合片的又一實施形態之剖視圖。 Fig. 6 is a cross-sectional view showing still another embodiment of the composite sheet for forming a protective film of the present invention.

圖7係以示意方式顯示可用於本發明之附有保護膜的半導體晶片的製造方法之保護膜形成用片的一實施形態之剖視圖。 Fig. 7 is a cross-sectional view showing an embodiment of a sheet for forming a protective film which can be used in the method for producing a semiconductor wafer with a protective film of the present invention.

圖8係顯示本發明之附有保護膜的半導體晶片的製造方法的一實施形態之概略圖。 Fig. 8 is a schematic view showing an embodiment of a method of manufacturing a semiconductor wafer with a protective film of the present invention.

圖9係顯示本發明之附有保護膜的半導體晶片的製造方法的另一實施形態之概略圖。 Fig. 9 is a schematic view showing another embodiment of a method for producing a semiconductor wafer with a protective film of the present invention.

◇保護膜形成用複合片 复合Protective film forming composite sheet

本發明之保護膜形成用複合片於支持片上具備能量線硬化性之保護膜形成用膜,前述支持片於前述支持片的周緣部附近的區域具有遮光層。 The composite sheet for forming a protective film of the present invention comprises an energy-curable protective film forming film on the support sheet, and the support sheet has a light-shielding layer in a region in the vicinity of the peripheral portion of the support sheet.

再者,本說明書中,所謂「保護膜形成用膜」意指硬化前的保護膜形成用膜,所謂「保護膜」意指保護膜形成用膜硬化後之膜。 In the present specification, the "film for forming a protective film" means a film for forming a protective film before curing, and the term "protective film" means a film obtained by curing a film for forming a protective film.

本說明書中,所謂「能量線」意指具有能量量子的電磁波或帶電粒子束;作為前述能量線的示例,可列舉紫外線、放射線、電子束等。 In the present specification, the term "energy line" means an electromagnetic wave or a charged particle beam having an energy quantum; and examples of the energy line include ultraviolet rays, radiation, an electron beam, and the like.

紫外線例如可利用高壓水銀燈,融合(Fusion)H型燈,氙氣燈,黑光燈或LED(Light-Emitting Diode;發光二極體)燈等作為紫外線源進行照射。電子束可照射藉由電子束加速器等產生之電子束。 For example, a high-pressure mercury lamp, a Fusion H-type lamp, a xenon lamp, a black light lamp, or an LED (Light-Emitting Diode) lamp can be used as the ultraviolet light source. The electron beam can illuminate an electron beam generated by an electron beam accelerator or the like.

本說明書中,所謂「能量線硬化性」意指藉由照射能量線而硬化之性質,所謂「非能量線硬化性」意指即便照射能量線亦不硬化之性質。 In the present specification, the term "energy ray hardenability" means a property of being hardened by irradiation with an energy ray, and "non-energy ray hardenability" means a property that does not harden even when irradiated with an energy ray.

前述保護膜形成用膜藉由照射能量線而硬化並成為保護膜。該保護膜用以保護半導體晶圓或半導體晶片的背面(與電極形成面為相反側的面)。保護膜形成用膜為軟質,可容易地貼附於貼附對象物。例如保護膜形成用膜的拉伸彈性率(楊氏率)為1×106Pa至1×108Pa左右。 The film for forming a protective film is cured by irradiation with an energy ray to form a protective film. The protective film serves to protect the back surface of the semiconductor wafer or the semiconductor wafer (the surface opposite to the electrode forming surface). The film for forming a protective film is soft and can be easily attached to an attached object. For example, the tensile modulus (Young's modulus) of the film for forming a protective film is about 1 × 10 6 Pa to about 1 × 10 8 Pa.

相對於此,對保護膜形成用膜照射能量線而獲得之保護膜的拉伸彈性率(楊氏率)變硬到1×108Pa至5.4×109Pa左右。 On the other hand, the tensile modulus (Young's modulus) of the protective film obtained by irradiating the energy-sensitive film to the film for forming a protective film is hardened to about 1×10 8 Pa to 5.4×10 9 Pa.

對本發明之保護膜形成用膜照射能量線而獲得之保護膜的拉伸彈性率(楊氏率)為1×108Pa以上,較佳為1.3×108Pa以上,更佳為1.6×108Pa以上,尤佳為1.9×108Pa以上。藉由前述保護膜的拉伸彈性率為前述下限值以上,抑制保護膜中殘存基於銷之頂出痕跡之功效變高。 The tensile modulus (Young's modulus) of the protective film obtained by irradiating the energy-shielding film of the film for forming a protective film of the present invention is 1 × 10 8 Pa or more, preferably 1.3 × 10 8 Pa or more, more preferably 1.6 × 10 8 Pa or more, particularly preferably 1.9 × 10 8 Pa or more. When the tensile modulus of the protective film is at least the above lower limit value, the effect of suppressing the occurrence of the pin-out of the pin in the protective film is increased.

另一方面,前述保護膜的拉伸彈性率的上限值並無特別限定,例如可設為6×109Pa、5.7×109Pa、及5.4×109Pa之任一者。 On the other hand, the upper limit of the tensile modulus of the protective film is not particularly limited, and may be, for example, any of 6 × 10 9 Pa, 5.7 × 10 9 Pa, and 5.4 × 10 9 Pa.

亦即,作為前述保護膜的拉伸彈性率的一態樣,為1×108Pa至6×109Pa,較佳為1.3×108Pa至5.7×109Pa,更佳為1.6×108Pa至5.7×109Pa,尤佳為1.9×108Pa至5.4×109Pa。 That is, as one aspect of the tensile modulus of the protective film, it is 1 × 10 8 Pa to 6 × 10 9 Pa, preferably 1.3 × 10 8 Pa to 5.7 × 10 9 Pa, more preferably 1.6 ×. 10 8 Pa to 5.7 × 10 9 Pa, particularly preferably 1.9 × 10 8 Pa to 5.4 × 10 9 Pa.

再者,保護膜形成用膜及保護膜的拉伸彈性率(楊氏率)可利用後述實施例中所記載之方法進行測定。 Further, the tensile modulus (Young's modulus) of the film for forming a protective film and the protective film can be measured by the method described in the examples below.

本發明之保護膜形成用複合片係於後述之附有保護膜的半導體晶片的製造方法中,貼附於半導體晶圓,準備依序具備有支持片、能量線硬化性之保護膜形成用膜及半導體晶圓之積層體時使用,(1)對前述半導體晶圓進行切割,接著,對前述保護膜形成用膜中除了周緣部附近的區域以外的前述半導體晶圓之貼附區域部分照射能量線,或者(2)照射能量線後,對前述半導體晶圓進行切割而於前述支持片上形成附有保護膜的半導體晶片,對前述積層體進行延伸,並且對前述附有保護膜的半導體晶片進行拾取。 The composite film for forming a protective film of the present invention is attached to a semiconductor wafer in a method for producing a semiconductor wafer with a protective film to be described later, and is provided with a film for forming a protective film having a support sheet and an energy ray-curable layer. (1) dicing the semiconductor wafer, and illuminating the adhesion region of the semiconductor wafer except for the region near the peripheral portion of the film for forming a protective film. After the line or (2) irradiates the energy line, the semiconductor wafer is diced to form a semiconductor wafer with a protective film on the support sheet, and the laminated body is extended, and the semiconductor wafer with the protective film is subjected to Pick up.

此時,保護膜形成用膜中,產生貼附有前述半導體晶圓的區域、及較前述半導體晶圓的外周更遠離半導體晶圓的區域中未貼附前述半導體晶圓的區域(例如保護膜形成用膜中貼附有半導體晶圓的區域的外側的區域)。本發明之保護膜形成用複合片中,前述支持片於前述支持片的周緣部附近的區域,較佳為前述支持片的周緣部附近的全部區域具有遮光層。因此,照射能量線而使保護膜形成用膜硬化時,該保護膜形成用膜中,貼附有半導體晶圓的區域 中,照射能量線而前述區域良好地硬化。相對於此,保護膜形成用膜中,半導體晶圓的外周(周圍)中未貼附該半導體晶圓的區域,且前述支持片的周緣部附近的區域(例如於保護膜形成用膜貼附半導體晶圓時為保護膜形成用膜中貼附有半導體晶圓的區域的外側區域,且為積層有支持片的周緣部附近的區域的區域)中能量線被遮蔽而產生未硬化的區域。 In this case, in the film for forming a protective film, a region where the semiconductor wafer is attached and a region where the semiconductor wafer is not attached to a region farther from the semiconductor wafer than the outer periphery of the semiconductor wafer (for example, a protective film) A region outside the region where the semiconductor wafer is attached to the film for formation). In the composite sheet for forming a protective film of the present invention, it is preferable that the support sheet has a light-shielding layer in a region in the vicinity of the peripheral portion of the support sheet in the vicinity of the peripheral portion of the support sheet. Therefore, when the film for forming a protective film is cured by irradiating the energy ray, the region where the semiconductor wafer is attached to the film for forming a protective film In the middle, the energy line is irradiated and the aforementioned region is well hardened. On the other hand, in the film for forming a protective film, a region in which the semiconductor wafer is not attached to the outer periphery (surrounding) of the semiconductor wafer, and a region in the vicinity of the peripheral portion of the support sheet (for example, a film for forming a protective film is attached) In the semiconductor wafer, the outer region of the region where the semiconductor wafer is bonded to the film for forming a protective film, and the region in the region in the vicinity of the peripheral portion of the support sheet is covered, the energy line is shielded to form an uncured region.

如此,與對保護膜形成用膜之整體照射能量線,使保護膜形成用膜之整體硬化之情形相比,保護膜形成用膜中未貼附半導體晶圓的區域中存在未硬化的區域,藉此使前述積層體延伸時延伸之作用無遺漏地遍佈貼附有半導體晶圓的區域,切口寬度(kerf width)亦可更良好地擴展,從而可改善拾取性。 In this manner, in the case where the entire surface of the film for forming a protective film is irradiated with an energy ray, and the entire film for forming a protective film is cured, an unhardened region exists in a region where the semiconductor wafer is not attached to the film for forming a protective film. Thereby, the effect of extending the laminate body over the semiconductor wafer is attached to the region where the semiconductor wafer is attached, and the kerf width can be expanded more favorably, thereby improving pick-up property.

再者,此處,所謂「外周」意指半導體晶圓的周圍區域。 Here, "outer circumference" means a peripheral area of a semiconductor wafer.

亦即,本發明之保護膜形成用複合片具有良好的拾取適性,例如可高選擇性地拾取目標半導體晶片。另外,此時半導體晶片之破裂及缺損得到抑制。 That is, the composite sheet for forming a protective film of the present invention has good pick-up suitability, for example, the target semiconductor wafer can be picked up with high selectivity. In addition, cracking and defect of the semiconductor wafer are suppressed at this time.

另外,本發明之保護膜形成用複合片中,前述保護膜形成用膜為能量線硬化性,藉此相較於具備熱硬化性之保護膜形成用膜之先前之保護膜形成用複合片之情形,可藉由短時間之硬化而形成保護膜。 Further, in the composite sheet for forming a protective film of the present invention, the film for forming a protective film is energy ray-curable, and the composite sheet for forming a protective film before the film for forming a film having a thermosetting protective film is used. In this case, the protective film can be formed by hardening for a short time.

前述積層體中的支持片與前述保護膜形成用膜之間的黏著力較佳為100mN/25mm以上,更佳為150mN/25mm以上,尤佳為220mN/25mm以上,另外,較佳為10000mN/25mm以下,更佳為8000mN/25mm以下,尤佳為7000mN/25mm以下。藉由調整為下限值以上,切割時矽晶片之飛散得到抑制,亦可防止切削水向保護膜形成用膜與支持片之間侵入。另外,藉由調整為上限值以下,可容易地適當調整隨後藉由照射能量線使之硬化而成為保護膜時的前述保護膜與前述支持片之間的黏著力。 The adhesive force between the support sheet in the laminate and the film for forming a protective film is preferably 100 mN/25 mm or more, more preferably 150 mN/25 mm or more, still more preferably 220 mN/25 mm or more, and further preferably 10000 mN/ 25 mm or less, more preferably 8000 mN/25 mm or less, and particularly preferably 7000 mN/25 mm or less. By adjusting to the lower limit or more, the scattering of the germanium wafer during the dicing is suppressed, and the intrusion of the cutting water into the film for forming the protective film and the support sheet can be prevented. In addition, by adjusting to the upper limit or less, it is possible to easily adjust the adhesion between the protective film and the support sheet when the protective film is subsequently cured by irradiation with an energy ray.

亦即,作為一態樣,前述積層體中的支持片與前述保護膜形成用膜之間的黏著力較佳為100mN/25mm至10000mN/25mm,更佳為150mN/25mm至8000mN/25mm,尤佳為220mN/25mm至7000mN/25mm以下。 In other words, the adhesion between the support sheet in the laminate and the film for forming a protective film is preferably from 100 mN/25 mm to 10000 mN/25 mm, more preferably from 150 mN/25 mm to 8000 mN/25 mm. Good for 220mN/25mm to 7000mN/25mm or less.

前述保護膜形成用膜藉由照射能量線進行硬化而成為保護膜。該保護膜用以對半導體晶圓或半導體晶片的背面(與電極形成面為相反側的面)進行保護。保護膜形成用膜為軟質,可容易地貼附於貼附對象物。並且,對前述保護膜形成用膜照射能量線而成為保護膜時,前述保護膜與前述支持片之間的黏著力較佳為50mN/25mm至1500mN/25mm,更佳為52mN/25mm至1450mN/25mm,尤佳為53mN/25mm至1430mN/25mm。藉由前述黏著力為前述下限值以上,拾取附有保護膜的半導體晶片時,目標外的附有保護膜的半導體晶片之拾取得到抑制,從而可高選擇性 地拾取目標之附有保護膜的半導體晶片。另外,藉由前述黏著力為前述上限值以下,拾取附有保護膜的半導體晶片時,半導體晶片之破裂及缺損得到抑制。如此,藉由前述黏著力為特定範圍內,保護膜形成用複合片具有良好的拾取適性。 The film for forming a protective film is cured by irradiation with an energy ray to form a protective film. The protective film protects the back surface of the semiconductor wafer or the semiconductor wafer (the surface opposite to the electrode forming surface). The film for forming a protective film is soft and can be easily attached to an attached object. Further, when the protective film forming film is irradiated with an energy ray to form a protective film, the adhesive force between the protective film and the support sheet is preferably 50 mN/25 mm to 1500 mN/25 mm, more preferably 52 mN/25 mm to 1450 mN/ 25mm, especially preferably 53mN/25mm to 1430mN/25mm. When the adhesion force is equal to or higher than the lower limit value and the semiconductor wafer with the protective film is picked up, the pickup of the semiconductor wafer with the protective film outside the target is suppressed, and the selectivity is high. A semiconductor wafer with a protective film attached to the target is picked up. In addition, when the semiconductor wafer with the protective film is picked up by the adhesion force being equal to or less than the above upper limit value, cracking and defect of the semiconductor wafer are suppressed. As described above, the composite sheet for forming a protective film has a good pick-up property by the aforementioned adhesive force within a specific range.

另外,可用於本發明之保護膜形成用複合片中,藉由前述保護膜形成用膜為能量線硬化性,相較於具備熱硬化性之保護膜形成用膜之先前之保護膜形成用複合片之情形而言,可藉由短時間內之硬化而形成保護膜。 Further, in the composite sheet for forming a protective film of the present invention, the film for forming a protective film is energy ray-curable, and is composited with the prior protective film for forming a film for forming a protective film having thermosetting properties. In the case of a sheet, a protective film can be formed by hardening in a short time.

作為本發明之保護膜形成用複合片之使用對象之半導體晶圓或半導體晶片的厚度並無特別限定,就獲得更顯著的本發明之功效而言,較佳為30μm至1000μm,更佳為100μm至300μm。 The thickness of the semiconductor wafer or the semiconductor wafer to be used as the composite sheet for forming a protective film of the present invention is not particularly limited, and from the viewpoint of obtaining more remarkable effects of the present invention, it is preferably from 30 μm to 1000 μm, more preferably 100 μm. Up to 300 μm.

再者,本說明書中,所謂「厚度」意指於任意的5個部位利用接觸式厚度計測定厚度所得之以平均表示之值。 In the present specification, the term "thickness" means an average value obtained by measuring the thickness by a contact thickness gauge at any five locations.

以下,對本發明之構成進行詳細說明。 Hereinafter, the configuration of the present invention will be described in detail.

◎支持片 ◎Support film

前述支持片於周緣部附近的區域具有遮光層。此處,所謂「遮光層」係指對能量線硬化性之保護膜形成用膜照射能量線而使保護膜形成用膜硬化時遮蔽該能量線之層。遮光層只要具有遮蔽使保護膜形成用膜硬化之紫外線、X射線、電子束等能量線之功能,則並無限定,最佳為完 全遮蔽能量線,尤其是可使能量線硬化性之保護膜形成用膜中的光聚合起始劑活化之能量線透過之層,較佳為可使該能量線的透過率成為50%以下之層,更佳為使該能量線的透過率成為10%以下之層。 The support sheet has a light shielding layer in a region in the vicinity of the peripheral portion. Here, the term "light-shielding layer" refers to a layer that shields the energy ray when the energy-curable protective film-forming film is irradiated with an energy ray to cure the film for forming a protective film. The light-shielding layer is not limited as long as it has a function of shielding energy rays such as ultraviolet rays, X-rays, and electron beams that cure the film for forming a protective film. The full-shielding energy ray, in particular, a layer through which the energy ray-activated energy source activated by the photo-polymerization initiator in the energy-curable protective film forming film is transmitted, preferably has a transmittance of 50% or less. The layer is more preferably a layer having a transmittance of the energy ray of 10% or less.

亦即,作為一態樣,所謂遮光層意指能量線之透過率為50%以下,較佳為10%以下,尤佳為0%之層。 That is, as one aspect, the light shielding layer means a layer having a transmittance of an energy ray of 50% or less, preferably 10% or less, and particularly preferably 0%.

作為遮光層,較佳為根據半導體晶圓的大小,而使內側挖空為圓形之形狀。所挖空之圓形的徑(直徑)較佳為半導體晶圓的外徑的95%至140%,更佳為98%至135%,尤佳為100%至130%。作為遮光層的形狀可為環狀。前述遮光層係位於前述支持片的周緣部附近的區域之層,用以於對前述保護膜形成用膜照射能量線時遮蔽前述保護膜形成用膜的周緣部附近的區域,從而對前述保護膜形成用膜中前述半導體晶圓之貼附區域部分照射能量線。當前述遮光層的內側為挖空為圓形之形狀時,將該挖空的圓形的直徑設為半導體晶圓的外徑的95%以上的原因在於:會有即便半導體晶圓的外周附近稍微被前述遮光層遮蔽,亦僅無法拾取半導體晶圓的端部的無用晶片(亦即三角晶片)而不會產生問題之情形。 As the light shielding layer, it is preferable that the inner side is hollowed out into a circular shape in accordance with the size of the semiconductor wafer. The diameter (diameter) of the hollowed out circular shape is preferably 95% to 140%, more preferably 98% to 135%, and even more preferably 100% to 130% of the outer diameter of the semiconductor wafer. The shape of the light shielding layer may be a ring shape. The light-shielding layer is a layer located in a region in the vicinity of the peripheral portion of the support sheet, and shields the region near the peripheral portion of the film for forming a protective film when the energy-sensitive film is applied to the film for forming a protective film. An energy ray is irradiated to a portion of the adhesion region of the semiconductor wafer in the film for formation. When the inner side of the light-shielding layer has a circular shape, the diameter of the hollowed-out circular shape is set to 95% or more of the outer diameter of the semiconductor wafer because there is a possibility that even the outer periphery of the semiconductor wafer is present. It is slightly shielded by the light shielding layer, and it is only impossible to pick up an unnecessary wafer (ie, a triangular wafer) at the end of the semiconductor wafer without causing a problem.

作為具有遮蔽前述能量線之功能之材料,較佳為根據光聚合起始劑的種類適宜選擇。具體而言,作為具有遮蔽前述能量線之功能之材料,並無特別限定,例如可列舉:含有CeO2、TiO2、ZnO、Fe2O3、V2O5、PbO等具有紫外線 吸收性之無機物之墨料(ink),或者鋁蒸鍍PET(polyethylene terephthalate;聚對苯二甲酸乙二酯)膜(鋁蒸鍍聚對苯二甲酸乙二酯膜)等。 As a material having a function of shielding the aforementioned energy rays, it is preferably selected in accordance with the kind of the photopolymerization initiator. Specifically, the material having a function of shielding the energy ray is not particularly limited, and examples thereof include ultraviolet absorbing properties such as CeO 2 , TiO 2 , ZnO, Fe 2 O 3 , V 2 O 5 , and PbO. Inorganic ink (ink), or aluminum vapor-deposited PET (polyethylene terephthalate (polyethylene terephthalate) film (aluminum vapor-deposited polyethylene terephthalate film).

前述遮光層可由印刷層構成。作為印刷法,並無特別限定,例如可列舉:凸版式印刷法、平版式印刷法、凹版印刷法、孔版印刷法。印刷層的厚度並無特別限定,通常為50μm以下,亦可為0.05μm至50μm,較佳為0.05μm至10μm,進而較佳為0.1μm至2μm左右。 The light shielding layer may be composed of a printed layer. The printing method is not particularly limited, and examples thereof include a relief printing method, a lithographic printing method, a gravure printing method, and a stencil printing method. The thickness of the printed layer is not particularly limited, but is usually 50 μm or less, and may be 0.05 μm to 50 μm, preferably 0.05 μm to 10 μm, and more preferably 0.1 μm to 2 μm.

亦即,作為前述印刷層的一態樣,可列舉包含含有CeO2、TiO2、ZnO、Fe2O3、V2O5、PbO等具有紫外線吸收性之無機物之墨料,藉由印刷法所形成之層。 In other words, as an aspect of the printing layer, an ink containing an ultraviolet absorbing inorganic substance such as CeO 2 , TiO 2 , ZnO, Fe 2 O 3 , V 2 O 5 , or PbO may be used. The layer formed.

前述所謂「支持片的周緣部附近的區域」意指於保護膜形成用膜貼附半導體晶圓時,自上方往下俯視保護膜形成用複合片所觀察到的前述保護膜形成用膜中,半導體晶圓的外周(周圍)中未貼附該半導體晶圓的區域,且與能量線被遮蔽而未硬化的區域一致的支持片中的區域。 In the case of the protective film forming film, the protective film forming film is observed from the upper side when the semiconductor film is attached to the protective film forming film. An area in the support sheet in which the semiconductor wafer is not attached to the periphery (surrounding) of the semiconductor wafer and the area where the energy line is shielded and not hardened.

作為另一態樣,前述所謂「支持片的周緣部附近的區域」意指於保護膜形成用膜貼附半導體晶圓時,前述支持片中除了與前述半導體晶圓的形狀相對應的區域(例如,與前述半導體晶圓的大小相對應的圓形區域)以外的區域。 In another aspect, the “region in the vicinity of the peripheral portion of the support sheet” means a region corresponding to the shape of the semiconductor wafer in the support sheet when the semiconductor wafer is attached to the film for forming a protective film ( For example, a region other than the circular region corresponding to the size of the aforementioned semiconductor wafer.

再者,所謂「外徑」定義為與物體的外側相切的兩條平行線之間的距離的最大值。亦即,所謂「半導體晶圓的 外徑」意指將半導體晶圓載置於平面並與前述半導體晶圓上表面相切的兩條平行線之間的距離的最大值。半導體晶圓的外徑可利用遊標卡尺等進行測定。 Further, the "outer diameter" is defined as the maximum value of the distance between two parallel lines that are tangent to the outer side of the object. That is, the so-called "semiconductor wafer "Outer diameter" means the maximum value of the distance between two parallel lines that place a semiconductor wafer on a plane and is tangent to the upper surface of the aforementioned semiconductor wafer. The outer diameter of the semiconductor wafer can be measured using a vernier caliper or the like.

另外,本說明書中,所謂「保護膜形成用膜的周緣部附近的區域」意指於保護膜形成用膜貼附半導體晶圓時前述保護膜形成用膜中的前述半導體晶圓的外周(周圍)中未貼附半導體晶圓的區域。 In the present invention, the "region in the vicinity of the peripheral portion of the film for forming a protective film" means the outer periphery of the semiconductor wafer in the film for forming a protective film when the semiconductor wafer is attached to the film for forming a protective film. The area where the semiconductor wafer is not attached.

前述支持片可由1層(單層)構成,亦可由2層以上之複數層構成。於支持片由複數層構成之情形時,這些複數層的構成材料及厚度相互可相同亦可不同,只要無損本發明之功效,則這些複數層之組合並無特別限定。 The support sheet may be composed of one layer (single layer) or may be composed of a plurality of layers of two or more layers. In the case where the support sheet is composed of a plurality of layers, the constituent materials and thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.

再者,本說明書中,不限於支持片之情形,所謂「複數層相互可相同亦可不同」意指「可全部層相同,亦可全部層皆不同,還可僅一部分層相同」,再者所謂「複數層相互不同」意指「各層之構成材料及厚度之至少一者相互不同」。 Furthermore, in the present specification, the present invention is not limited to the case of the support sheet, and the phrase "the plural layers may be the same or different from each other" means that "all layers may be the same, or all layers may be different, and only a part of the layers may be the same", and The phrase "the plural layers are different from each other" means that "at least one of the constituent materials and the thickness of each layer is different from each other".

作為較佳的支持片,例如可列舉:於基材上以直接接觸之方式積層黏著劑層而成之支持片、於基材上經由中間層積層黏著劑層而成之支持片、僅由基材構成之支持片等。 Preferred examples of the support sheet include a support sheet in which an adhesive layer is laminated on a substrate in a direct contact manner, and a support sheet formed by laminating an adhesive layer on the substrate. Support sheets for materials.

以下,按照上述支持片之每個種類,參照圖式說明本 發明之保護膜形成用複合片之示例。再者,以下之說明中所使用之圖中,為了易於理解本發明之特徵,方便起見有時將成為主要部分之部分放大表示而並不限於各構成要素的尺寸比率等與實際相同。 Hereinafter, according to each type of the above-mentioned support sheet, the description will be described with reference to the drawings. An example of the composite sheet for forming a protective film of the invention. In addition, in the drawings used in the following description, in order to facilitate the understanding of the features of the present invention, it is convenient to see a part that is a main part in an enlarged manner, and the size ratio of each component is not limited to the actual one.

圖1係以示意方式顯示本發明之保護膜形成用複合片的一實施形態之剖視圖。 Fig. 1 is a cross-sectional view showing an embodiment of a composite sheet for forming a protective film of the present invention in a schematic manner.

圖2係顯示圖1之保護膜形成用複合片的背面。 Fig. 2 is a view showing the back surface of the composite sheet for forming a protective film of Fig. 1.

此處所示之保護膜形成用複合片1A具有以下構成:於作為基材11、黏著劑層12、及遮光層24之積層體之支持片10的一方的表面10a上積層有保護膜形成用膜13。 The composite sheet 1A for forming a protective film has a configuration in which a protective film is formed on one surface 10a of the support sheet 10 which is a laminate of the substrate 11, the adhesive layer 12, and the light shielding layer 24. Membrane 13.

具體而言,保護膜形成用複合片1A中,於基材11上具備黏著劑層12,於黏著劑層12上具備保護膜形成用膜13,於基材11的下部(亦即基材11中的與具備黏著劑層12之側為相反側的面上)且前述支持片10的周緣部附近的區域具備由環狀之印刷層構成之遮光層24。另外,保護膜形成用複合片1A進一步於保護膜形成用膜13上具備剝離膜15。 Specifically, in the composite sheet 1A for forming a protective film, the adhesive layer 12 is provided on the substrate 11, and the protective film forming film 13 is provided on the adhesive layer 12, and the substrate 11 is provided on the lower portion of the substrate 11 (that is, the substrate 11). The region in the vicinity of the peripheral portion of the support sheet 10 and the light shielding layer 24 formed of an annular printed layer are provided on the surface on the opposite side to the side on which the adhesive layer 12 is provided. In addition, the protective film forming composite sheet 1A further includes a release film 15 on the protective film forming film 13.

圖1、圖2之保護膜形成用複合片中,於基材11的下部(亦即,基材11B中的與具備黏著劑層12之側為相反側的面上)具備由環狀之印刷層構成之遮光層24,但遮光層24可設置於基材11及黏著劑層12之間,亦可於黏著劑層12及保護膜形成用膜13之間設置為環狀。 In the composite sheet for forming a protective film of Figs. 1 and 2, the lower portion of the substrate 11 (i.e., the surface of the substrate 11B opposite to the side having the adhesive layer 12) is printed by a ring shape. The light shielding layer 24 is formed of a layer, but the light shielding layer 24 may be provided between the substrate 11 and the adhesive layer 12, or may be provided in a ring shape between the adhesive layer 12 and the film 13 for forming a protective film.

保護膜形成用複合片1A中,於基材11的一方的表面11a積層有黏著劑層12,於黏著劑層12的表面12a(亦即,黏著劑層12中的與和基材11接觸之面為相反側的面)的整個面積層有保護膜形成用膜13,於保護膜形成用膜13的表面13a(亦即,保護膜形成用膜13中的與和黏著劑層12接觸之面為相反側的面)的一部分亦即保護膜形成用膜13的周緣部附近的區域積層有治具用接著劑層16,於保護膜形成用膜13的表面13a中未積層治具用接著劑層16之面及治具用接著劑層16的表面16a(上表面,亦即治具用接著劑層16中的與和保護膜形成用膜13接觸之面為相反側的面以及治具用接著劑層16的側面)積層有剝離膜15。 In the composite sheet 1A for forming a protective film, an adhesive layer 12 is laminated on one surface 11a of the substrate 11, on the surface 12a of the adhesive layer 12 (that is, in the adhesive layer 12 and in contact with the substrate 11). The film 13 for forming a protective film is formed on the surface 13a of the film 13 for forming a protective film, that is, the surface of the film 13 for forming a protective film, which is in contact with the adhesive layer 12, in the entire area of the surface of the protective film forming film 13. The adhesive adhesive layer 16 is laminated in a region in the vicinity of the peripheral portion of the protective film forming film 13 in the vicinity of the peripheral surface of the protective film forming film 13 , and the adhesive for the jig is not laminated on the surface 13 a of the protective film forming film 13 . The surface of the layer 16 and the surface 16a of the adhesive layer 16 for the jig (the upper surface, that is, the surface on the side opposite to the surface in contact with the film 13 for forming a protective film in the adhesive layer 16 for the jig, and the jig for the jig Next, the side surface of the agent layer 16 is laminated with a release film 15.

保護膜形成用複合片1A中,硬化後之保護膜形成用膜13(亦即保護膜)與支持片10之間的黏著力,換言之保護膜與黏著劑層12之間的黏著力較佳為50mN/25mm至1500mN/25mm。 In the composite sheet 1A for forming a protective film, the adhesion between the cured protective film forming film 13 (i.e., the protective film) and the support sheet 10, in other words, the adhesive force between the protective film and the adhesive layer 12 is preferably 50mN/25mm to 1500mN/25mm.

治具用接著劑層16例如可為含有接著劑成分之單層結構,亦可為於成為芯材之片的雙面積層有含有接著劑成分之層之複數層結構。 The adhesive-use adhesive layer 16 may be, for example, a single-layer structure containing an adhesive component, or may have a multi-layer structure in which a double-layered layer of a core material has a layer containing an adhesive component.

圖1所示之保護膜形成用複合片1A係以下述方式使用:在移除剝離膜15之狀態下,於保護膜形成用膜13的表 面13a貼附半導體晶圓(省略圖示)的背面,並將治具用接著劑層16的表面16a中的上表面貼附於環狀框等治具。 The composite sheet 1A for forming a protective film shown in Fig. 1 is used in the following manner: in the state where the release film 15 is removed, the sheet of the protective film formation film 13 is used. The back surface of the semiconductor wafer (not shown) is attached to the surface 13a, and the upper surface of the surface 16a of the adhesive adhesive layer 16 is attached to a jig such as a ring frame.

圖3係以示意方式顯示本發明之保護膜形成用複合片的另一實施形態之剖視圖。再者,圖3以後之圖中,對於與既已說明之圖所示相同的構成要素,標附與該已說明之圖之情形相同的符號,並省略該符號的詳細說明。 Fig. 3 is a cross-sectional view showing another embodiment of the composite sheet for forming a protective film of the present invention in a schematic manner. In the drawings, the same components as those in the above-described drawings are denoted by the same reference numerals, and the detailed description of the symbols will be omitted.

關於此處所示之保護膜形成用複合片1B,除了不具備治具用接著劑層16之方面以外,與圖1及圖2所示之保護膜形成用複合片1A相同。亦即,保護膜形成用複合片1B為以下構成:於作為基材11、黏著劑層12、及遮光層24之積層體之支持片10的一方的表面10a上積層有保護膜形成用膜13。 The composite sheet 1B for forming a protective film shown here is the same as the composite sheet 1A for protective film formation shown in FIGS. 1 and 2 except that the adhesive layer 16 for a jig is not provided. In other words, the protective film-forming composite sheet 1B has a structure in which a protective film-forming film 13 is laminated on one surface 10a of the support sheet 10 which is a laminate of the substrate 11, the adhesive layer 12, and the light-shielding layer 24. .

具體而言,保護膜形成用複合片1B中,於基材11的一方的表面11a積層有黏著劑層12,於黏著劑層12的表面12a(亦即,黏著劑層12中的與和基材11接觸之面為相反側的面)的整個面積層有保護膜形成用膜13,於基材11的下部(亦即,基材11中的與具備黏著劑層12之側為相反側的面上)且前述支持片10的周緣部附近的區域積層有由環狀之印刷層構成之遮光層24;再者,於保護膜形成用膜13的表面13a的整個面積層有剝離膜15。 Specifically, in the composite sheet 1B for forming a protective film, the adhesive layer 12 is laminated on one surface 11a of the substrate 11 on the surface 12a of the adhesive layer 12 (that is, the conjugated layer in the adhesive layer 12). The protective film forming film 13 is formed over the entire area of the substrate 11 in the entire area of the surface on which the material 11 is in contact with the surface of the substrate 11 (that is, the side of the substrate 11 opposite to the side having the adhesive layer 12). In the surface of the protective sheet 10, a light-shielding layer 24 composed of a ring-shaped printed layer is laminated, and a peeling film 15 is formed over the entire surface 13a of the surface 13a of the protective film forming film 13.

圖3所示之保護膜形成用複合片1B係以下述方式使用 :在移除剝離膜15之狀態下,於保護膜形成用膜13的表面13a中的中央側的一部分區域貼附半導體晶圓(省略圖示)的背面,並將保護膜形成用膜13的周緣部附近的區域貼附於環狀框等治具。 The composite sheet 1B for forming a protective film shown in Fig. 3 is used in the following manner. In the state in which the peeling film 15 is removed, the back surface of the semiconductor wafer (not shown) is attached to a part of the center side of the surface 13a of the film 13 for forming a protective film, and the film for protective film formation 13 is attached. The area near the peripheral portion is attached to a jig such as a ring frame.

圖4係以示意方式顯示本發明之保護膜形成用複合片的又一實施形態之剖視圖。 Fig. 4 is a cross-sectional view showing still another embodiment of the composite sheet for forming a protective film of the present invention.

關於此處所示之保護膜形成用複合片1C,除了不具備黏著劑層12之方面以外,與圖1及圖2所示之保護膜形成用複合片1A相同。亦即,保護膜形成用複合片1C中,支持片10僅由基材11及遮光層24構成。 The composite sheet 1C for forming a protective film shown here is the same as the composite sheet 1A for protective film formation shown in FIGS. 1 and 2 except that the adhesive layer 12 is not provided. In other words, in the composite sheet 1C for forming a protective film, the support sheet 10 is composed only of the base material 11 and the light shielding layer 24.

並且,於基材11的一方的表面11a(支持片10的一方的表面10a)積層有保護膜形成用膜13,於基材11的下部(亦即,基材11中的與具備保護膜形成用膜13之側為相反側的面上)且前述支持片10的周緣部附近的區域積層有由環狀之印刷層構成之遮光層24;再者,於保護膜形成用膜13的表面13a(亦即,保護膜形成用膜13中的與具備基材11之側為相反側的面)的一部分亦即保護膜形成用膜13的周緣部附近的區域積層有治具用接著劑層16,於保護膜形成用膜13的表面13a中未積層治具用接著劑層16之面及治具用接著劑層16的表面16a(上表面,亦即治具用接著劑層16中的與和保護膜形成用膜13接觸之面為相反側的面以及治具用接著劑層16中的側面)積層有剝離膜15。 In addition, a film 13 for forming a protective film is laminated on one surface 11a of the substrate 11 (one surface 10a of the support sheet 10), and is formed on the lower portion of the substrate 11 (that is, the substrate 11 is provided with a protective film). The surface on the opposite side of the film 13 is a region in the vicinity of the peripheral portion of the support sheet 10, and a light-shielding layer 24 composed of an annular printed layer is laminated; and the surface 13a of the film 13 for protective film formation is further laminated. (a portion of the protective film forming film 13 on the side opposite to the side including the substrate 11), that is, a region in the vicinity of the peripheral portion of the protective film forming film 13 is laminated with the adhesive layer 16 for the jig. In the surface 13a of the film 13 for forming a protective film, the surface of the adhesive layer 16 for the fixture and the surface 16a of the adhesive layer 16 for the jig are not laminated (the upper surface, that is, the adhesive layer 16 for the jig) The release film 15 is laminated on the surface on the opposite side to the surface on which the film for protective film formation 13 is contacted and the side surface in the adhesive layer 16 for the jig.

保護膜形成用複合片1C中,硬化後之保護膜形成用膜13(亦即保護膜)與支持片10之間的黏著力,換言之保護膜與基材11之間的黏著力較佳為50mN/25mm至1500mN/25mm。 In the composite sheet 1C for forming a protective film, the adhesion between the film 13 for protective film formation (that is, the protective film) and the support sheet 10 after curing, in other words, the adhesion between the protective film and the substrate 11 is preferably 50 mN. /25mm to 1500mN/25mm.

圖4所示之保護膜形成用複合片1C係以下述方式使用:與圖1所示之保護膜形成用複合片1A同樣地,在移除剝離膜15之狀態下,於保護膜形成用膜13的表面13a貼附半導體晶圓(省略圖示)的背面,並將治具用接著劑層16的表面16a中的上表面貼附於環狀框等治具。 The composite sheet 1C for forming a protective film shown in Fig. 4 is used in the form of a film for forming a protective film in a state in which the release film 15 is removed, similarly to the composite sheet 1A for protective film formation shown in Fig. 1 . The back surface of the semiconductor wafer (not shown) is attached to the surface 13a of the 13 and the upper surface of the surface 16a of the adhesive adhesive layer 16 is attached to a jig such as a ring frame.

圖5係以示意方式顯示本發明之保護膜形成用複合片的又一實施形態之剖視圖。 Fig. 5 is a cross-sectional view showing still another embodiment of the composite sheet for forming a protective film of the present invention.

關於此處所示之保護膜形成用複合片1D,除了不具備治具用接著劑層16之方面以外,與圖4所示之保護膜形成用複合片1C相同。亦即,保護膜形成用複合片1D中,於基材11的一方的表面11a積層有保護膜形成用膜13,於基材11的下部(亦即,基材11中的與具備保護膜形成用膜13之側為相反側的面上)且前述支持片10的周緣部附近的區域具備由環狀之印刷層構成之遮光層24,於保護膜形成用膜13的表面13a(亦即,保護膜形成用膜13中的與具備基材11之側為相反側的面)的整個面積層有剝離膜15。 The composite sheet 1D for forming a protective film shown here is the same as the composite sheet 1C for protective film formation shown in FIG. 4 except that the adhesive layer 16 for a jig is not provided. In the composite sheet 1D for forming a protective film, the protective film forming film 13 is laminated on one surface 11a of the substrate 11, and is formed on the lower portion of the substrate 11 (that is, the protective film is formed on the substrate 11). The surface in the vicinity of the peripheral portion of the support sheet 10 is provided with a light-shielding layer 24 composed of a ring-shaped printing layer on the surface 13a of the film 13 for protective film formation (that is, A release film 15 is provided over the entire area of the protective film forming film 13 on the side opposite to the side on which the substrate 11 is provided.

圖5所示之保護膜形成用複合片1D係以下述方式使 用:與圖3所示之保護膜形成用複合片1B同樣地,在移除剝離膜15之狀態下,於保護膜形成用膜13的表面13a中的中央側的一部分區域貼附半導體晶圓(省略圖示)的背面,並將保護膜形成用膜13的周緣部附近的區域貼附於環狀框等治具。 The composite sheet 1D for forming a protective film shown in Fig. 5 is made in the following manner In the same manner as the composite sheet 1B for protective film formation shown in FIG. 3, a semiconductor wafer is attached to a part of the center side of the surface 13a of the film 13 for forming a protective film in a state where the release film 15 is removed. The back surface (not shown) is attached to a jig such as a ring frame by a region in the vicinity of the peripheral edge portion of the film 13 for forming a protective film.

圖6係以示意方式顯示本發明之保護膜形成用複合片的又一實施形態之剖視圖。 Fig. 6 is a cross-sectional view showing still another embodiment of the composite sheet for forming a protective film of the present invention.

關於此處所示之保護膜形成用複合片1E,除了保護膜形成用膜之形狀不同之方面以外,與圖1所示之保護膜形成用複合片1A相同。亦即,保護膜形成用複合片1E具有以下構成:於作為基材11及黏著劑層12與遮光層24之積層體之支持片10的一方的表面10a上積層有保護膜形成用膜23。 The composite sheet 1E for forming a protective film shown here is the same as the composite sheet 1A for protective film formation shown in FIG. 1 except that the shape of the film for forming a protective film is different. In other words, the protective film-forming composite sheet 1E has a structure in which a protective film forming film 23 is laminated on one surface 10a of the support sheet 10 which is a laminate of the substrate 11 and the adhesive layer 12 and the light-shielding layer 24.

具體而言,保護膜形成用複合片1E中,於基材11上具備黏著劑層12,於黏著劑層12上具備保護膜形成用膜23,於基材11的下部(亦即,基材11中的與具備黏著劑層12之側為相反側的面上)且前述支持片10的周緣部附近的區域具備由環狀之印刷層構成之遮光層24。另外,保護膜形成用複合片1E中,進一步於保護膜形成用膜23上具備剝離膜15。 Specifically, in the composite sheet 1E for forming a protective film, the adhesive layer 12 is provided on the substrate 11, and the protective film forming film 23 is provided on the adhesive layer 12 at the lower portion of the substrate 11 (that is, the substrate). A region in the vicinity of the peripheral edge portion of the support sheet 10 in the region of 11 on the side opposite to the side on which the adhesive layer 12 is provided includes a light shielding layer 24 composed of an annular printed layer. Further, in the composite sheet 1E for forming a protective film, the release film 15 is further provided on the film 23 for forming a protective film.

保護膜形成用複合片1E中,於基材11的一方的表面11a積層有黏著劑層12,於黏著劑層12的表面12a(亦即,黏 著劑層12中的與具備基材11之側為相反側的面)的一部分亦即表面12a的中央側的區域積層有保護膜形成用膜23。並且,黏著劑層12的表面12a中未積層保護膜形成用膜23之面及保護膜形成用膜23的表面23a(上表面,亦即保護膜形成用膜23中的與和黏著劑層12接觸之面為相反側的面;及保護膜形成用膜23的側面)上積層有剝離膜15。 In the composite sheet 1E for forming a protective film, an adhesive layer 12 is laminated on one surface 11a of the substrate 11, on the surface 12a of the adhesive layer 12 (that is, sticky A film for forming a protective film 23 is laminated on a portion of the center side of the surface 12a which is a part of the surface of the primer layer 12 on the side opposite to the side on which the substrate 11 is provided. Further, the surface of the protective film forming film 23 and the surface 23a of the protective film forming film 23 are not laminated on the surface 12a of the adhesive layer 12 (the upper surface, that is, the adhesive and adhesive layer 12 in the protective film forming film 23). The release film 15 is laminated on the surface on the opposite side and the side surface of the film 23 for forming a protective film.

自上方往下俯視保護膜形成用複合片1E時,保護膜形成用膜23的表面積小於黏著劑層12,並例如具有圓形狀等形狀。 When the protective film forming composite sheet 1E is viewed from above, the surface area of the protective film forming film 23 is smaller than the adhesive layer 12, and has a circular shape or the like, for example.

保護膜形成用複合片1E中,硬化後之保護膜形成用膜23(亦即保護膜)與支持片10之間的黏著力,換言之保護膜與黏著劑層12之間的黏著力較佳為50mN/25mm至1500mN/25mm。 In the composite sheet 1E for forming a protective film, the adhesion between the cured protective film forming film 23 (that is, the protective film) and the support sheet 10, in other words, the adhesive force between the protective film and the adhesive layer 12 is preferably 50mN/25mm to 1500mN/25mm.

圖6所示之保護膜形成用複合片1E係以下述方式使用:在移除剝離膜15之狀態下,於保護膜形成用膜23的表面23a貼附半導體晶圓(省略圖示)的背面,並將黏著劑層12的表面12a中未積層保護膜形成用膜23之面貼附於環狀框等治具。 The composite sheet 1E for forming a protective film shown in Fig. 6 is used in a state in which a back surface of a semiconductor wafer (not shown) is attached to the surface 23a of the film 23 for forming a protective film in a state where the release film 15 is removed. The surface of the surface 12a of the adhesive layer 12 on which the protective film forming film 23 is not laminated is attached to a jig such as a ring frame.

再者,圖6所示之保護膜形成用複合片1E中,於黏著劑層12的表面12a中未積層保護膜形成用膜23之面,亦可 與圖1及圖4所示同樣地積層治具用接著劑層(省略圖示)。具備此種治具用接著劑層之保護膜形成用複合片1E係以下述方式使用:與圖1及圖4所示之保護膜形成用複合片同樣地,將治具用接著劑層的表面貼附於環狀框等治具。 Further, in the composite sheet 1E for forming a protective film shown in FIG. 6, the surface of the protective film forming film 23 is not laminated on the surface 12a of the adhesive layer 12, and An adhesive layer (not shown) for the jig is laminated in the same manner as shown in Figs. 1 and 4 . The composite sheet 1E for protective film formation having such an adhesive layer for a jig is used in the following manner: similarly to the composite sheet for forming a protective film shown in Figs. 1 and 4, the surface of the adhesive layer for a jig is used. Attached to a fixture such as a ring frame.

如此,本發明之保護膜形成用複合片中,無論支持片及保護膜形成用膜為何種形態,均可具備治具用接著劑層。但是,通常如圖1及圖4所示,作為具備治具用接著劑層之本發明之保護膜形成用複合片,較佳為於保護膜形成用膜上具備治具用接著劑層。 In the composite sheet for forming a protective film of the present invention, the adhesive sheet for a jig can be provided regardless of the form of the support sheet and the film for forming a protective film. However, as shown in FIG. 1 and FIG. 4, the composite sheet for forming a protective film of the present invention having the adhesive layer for a jig is preferably provided with an adhesive layer for a protective film on the film for forming a protective film.

本發明之保護膜形成用複合片並不限定於圖1至圖6所示之保護膜形成用複合片,在無損本發明之功效之範圍內,亦可變更或刪除圖1至圖6所示之保護膜形成用複合片的一部分構成,或者對前文所說明之保護膜形成用複合片進一步追加其他構成。 The composite sheet for forming a protective film of the present invention is not limited to the composite sheet for forming a protective film shown in FIGS. 1 to 6, and may be modified or deleted as shown in FIGS. 1 to 6 within the scope of the effect of the present invention. The composite film for forming a protective film is partially formed, or another structure is added to the composite sheet for forming a protective film described above.

例如,圖4及圖5所示之保護膜形成用複合片中,亦可於基材11與保護膜形成用膜13之間設置中間層。作為中間層,可根據目的選擇任意中間層。 For example, in the composite sheet for forming a protective film shown in FIG. 4 and FIG. 5, an intermediate layer may be provided between the substrate 11 and the film 13 for forming a protective film. As the intermediate layer, any intermediate layer can be selected depending on the purpose.

另外,圖1、圖3、及圖6所示之保護膜形成用複合片中,亦可於基材11與黏著劑層12之間設置中間層。亦即,本發明之保護膜形成用複合片中,支持片亦可由基材、中間層及黏著劑層依序積層而成。此處,所謂中間層係與圖 4及圖5所示之保護膜形成用複合片中可設置之中間層相同。 Further, in the composite sheet for forming a protective film shown in FIG. 1, FIG. 3, and FIG. 6, an intermediate layer may be provided between the substrate 11 and the adhesive layer 12. In other words, in the composite sheet for forming a protective film of the present invention, the support sheet may be formed by sequentially laminating a substrate, an intermediate layer, and an adhesive layer. Here, the so-called intermediate layer and diagram 4 and the intermediate layer which can be provided in the composite sheet for forming a protective film shown in Fig. 5 is the same.

另外,圖1至圖6所示之保護膜形成用複合片中,亦可將前述中間層以外之層設置於任意部位。 Further, in the composite sheet for forming a protective film shown in FIG. 1 to FIG. 6, a layer other than the intermediate layer may be provided at an arbitrary position.

另外,本發明之保護膜形成用複合片中,亦可於剝離膜和與該剝離膜直接接觸之層之間產生一部分間隙。 Further, in the composite sheet for forming a protective film of the present invention, a part of the gap may be formed between the release film and the layer directly in contact with the release film.

另外,本發明之保護膜形成用複合片中,各層之大小或形狀可根據目的任意調節。 Further, in the composite sheet for forming a protective film of the present invention, the size or shape of each layer can be arbitrarily adjusted according to the purpose.

如後述般,本發明之保護膜形成用複合片中較佳為黏著劑層等支持片中的與保護膜形成用膜直接接觸之層為非能量線硬化性。此種保護膜形成用複合片可使背面具備保護膜之半導體晶片更容易地拾取。 In the composite sheet for forming a protective film of the present invention, it is preferable that the layer directly contacting the film for forming a protective film in the support sheet such as the adhesive layer is non-energy line curable. Such a composite sheet for forming a protective film can more easily pick up a semiconductor wafer having a protective film on its back surface.

支持片可為透明亦可為不透明,還可根據目的而著色。 The support sheet can be transparent or opaque, and can be colored according to the purpose.

其中,保護膜形成用膜具有能量線硬化性之本發明中,支持片較佳為使能量線透過之支持片。 In the invention in which the film for forming a protective film has energy ray curability, the support sheet is preferably a support sheet through which energy rays are transmitted.

例如,支持片中,波長375nm之光之透過率較佳為30%以上,更佳為50%以上,尤佳為70%以上。藉由前述光之透過率為此種範圍,經由支持片對保護膜形成用膜照射能量線(紫外線)時,保護膜形成用膜之硬化度進一步提高。 For example, in the support sheet, the transmittance of light having a wavelength of 375 nm is preferably 30% or more, more preferably 50% or more, and particularly preferably 70% or more. When the transmittance of the light is in such a range and the energy ray (ultraviolet rays) is applied to the film for forming a protective film via the support sheet, the degree of hardening of the film for forming a protective film is further improved.

另一方面,支持片中,波長375nm之光之透過率的上限值並無特別限定,例如可設為95%。 On the other hand, in the support sheet, the upper limit of the transmittance of light having a wavelength of 375 nm is not particularly limited, and may be, for example, 95%.

亦即,作為一態樣,支持片中,波長375nm之光之透過率較佳為30%至95%,更佳為50%至95%,尤佳為70%至95%。 That is, as a mode, the transmittance of light having a wavelength of 375 nm in the support sheet is preferably from 30% to 95%, more preferably from 50% to 95%, particularly preferably from 70% to 95%.

另外,支持片中,波長532nm之光之透過率較佳為30%以上,更佳為50%以上,尤佳為70%以上。 Further, in the support sheet, the transmittance of light having a wavelength of 532 nm is preferably 30% or more, more preferably 50% or more, and particularly preferably 70% or more.

藉由前述光之透過率為此種範圍,經由支持片對保護膜形成用膜或保護膜照射雷射光而於這些進行印字時,可更清晰地進行印字。 When the transmittance of the light is in such a range, the protective film forming film or the protective film is irradiated with the laser light through the support sheet, and when printing is performed, the printing can be performed more clearly.

另一方面,支持片中,波長532nm之光之透過率的上限值並無特別限定,例如可設為95%。 On the other hand, in the support sheet, the upper limit of the transmittance of light having a wavelength of 532 nm is not particularly limited, and may be, for example, 95%.

亦即,作為一態樣,支持片中,波長532nm之光之透過率較佳為30%至95%,更佳為50%至95%,尤佳為70%至95%。 That is, as a mode, the transmittance of light having a wavelength of 532 nm in the support sheet is preferably from 30% to 95%, more preferably from 50% to 95%, particularly preferably from 70% to 95%.

另外,支持片中,波長1064nm之光之透過率較佳為30%以上,更佳為50%以上,尤佳為70%以上。藉由前述光之透過率為此種範圍,經由支持片對保護膜形成用膜或保護膜照射雷射光而於這些進行印字時,可更清晰地進行印字。 Further, in the support sheet, the transmittance of light having a wavelength of 1064 nm is preferably 30% or more, more preferably 50% or more, and particularly preferably 70% or more. When the transmittance of the light is in such a range, the protective film forming film or the protective film is irradiated with the laser light through the support sheet, and when printing is performed, the printing can be performed more clearly.

另一方面,支持片中,波長1064nm之光之透過率的上限值並無特別限定,例如可設為95%。 On the other hand, in the support sheet, the upper limit of the transmittance of light having a wavelength of 1064 nm is not particularly limited, and may be, for example, 95%.

亦即,作為一態樣,支持片中,波長1064nm之光之透過率較佳為30%至95%,更佳為50%至95%,尤佳為70%至95%。 That is, as a mode, the transmittance of light having a wavelength of 1064 nm in the support sheet is preferably from 30% to 95%, more preferably from 50% to 95%, particularly preferably from 70% to 95%.

其次,對構成支持片之各層進行更詳細的說明。 Next, each layer constituting the support sheet will be described in more detail.

○基材 ○Substrate

前述基材為片狀或膜狀,作為前述基材的構成材料例如可列舉各種樹脂。 The base material is in the form of a sheet or a film, and examples of the constituent material of the substrate include various resins.

作為前述樹脂,例如可列舉:低密度聚乙烯(簡稱為LDPE;low density polyethylene)、直鏈低密度聚乙烯(簡稱為LLDPE;linear low density polyethylene)、高密度聚乙烯(簡稱為HDPE;high density polyethylene)等聚乙烯;聚丙烯、聚丁烯、聚丁二烯、聚甲基戊烯、冰片烯樹脂等聚乙烯以外的聚烯烴;乙烯-乙酸乙烯酯共聚物、乙烯-(甲基)丙烯酸共聚物、乙烯-(甲基)丙烯酸酯共聚物、乙烯-冰片烯共聚物等乙烯系共聚物(使用乙烯作為單體而獲得之共聚物);聚氯乙烯、氯乙烯共聚物等氯乙烯系樹脂(使用氯乙烯作為單體而獲得之樹脂);聚苯乙烯;聚環烯烴;聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚對苯二甲酸丁二酯、聚間苯二甲酸乙二酯、聚2,6-萘二羧酸乙二酯、全部結構單元具有芳香族環式基之全芳香族聚酯等聚酯;2種以上之前述聚酯之共聚物;聚(甲基)丙烯酸酯;聚胺基甲酸酯;聚丙烯酸胺基甲酸酯;聚醯亞胺;聚醯胺;聚碳酸酯;氟樹脂;聚縮醛;改質聚苯醚;聚苯硫醚;聚碸; 聚醚酮等。 Examples of the resin include low density polyethylene (abbreviated as LDPE; low density polyethylene), linear low density polyethylene (abbreviated as LLDPE; linear low density polyethylene), and high density polyethylene (referred to as HDPE; high density). Polyethylene; polyethylene other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene, norbornene resin; ethylene-vinyl acetate copolymer, ethylene-(meth)acrylic acid Vinyl copolymers such as copolymers, ethylene-(meth)acrylate copolymers and ethylene-bornene copolymers (copolymers obtained by using ethylene as a monomer); vinyl chlorides such as polyvinyl chloride and vinyl chloride copolymers Resin (resin obtained using vinyl chloride as a monomer); polystyrene; polycycloolefin; polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, poly a polyester such as ethylene phthalate or polyethylene-2,6-naphthalenedicarboxylate; a polyester such as a wholly aromatic polyester having an aromatic ring group; and a copolymer of two or more of the foregoing polyesters; Poly(meth)acrylate; polyamine Acid ester; polyacrylic acid urethane; polyimine; polyamine; polycarbonate; fluororesin; polyacetal; modified polyphenylene ether; polyphenylene sulfide; Polyether ketone and the like.

另外,作為前述樹脂,例如亦可列舉前述聚酯與前述聚酯以外的樹脂之混合物等聚合物合金。前述聚酯與前述聚酯以外的樹脂之聚合物合金較佳為聚酯以外的樹脂之量為相對較少量。 In addition, as the resin, for example, a polymer alloy such as a mixture of the polyester and a resin other than the polyester may be used. The polymer alloy of the polyester and the resin other than the polyester is preferably a relatively small amount of the resin other than the polyester.

另外,作為前述樹脂,例如亦可列舉:前文所例示之前述樹脂之1種或2種以上交聯而成之交聯樹脂;使用前文所例示之前述樹脂之1種或2種以上之離子聚合物等改質樹脂。 In addition, as the resin, for example, one or two or more kinds of the above-exemplified resins may be used as a cross-linking resin, and one or two or more kinds of ionic polymerizations of the above-exemplified resins may be used. Remodeling resin such as matter.

再者,本說明書中,「(甲基)丙烯酸」的概念係包含有「丙烯酸」及「甲基丙烯酸」兩者。關於與(甲基)丙烯酸類似之用語亦相同。 Further, in the present specification, the concept of "(meth)acrylic acid" includes both "acrylic acid" and "methacrylic acid". The same is true for terms similar to (meth)acrylic acid.

構成基材之樹脂可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The resin constituting the substrate may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

基材可由1層(單層)構成,亦可由2層以上之複數層構成;於由複數層構成之情形時,這些複數層相互可相同亦可不同,這些複數層之組合並無特別限定。 The base material may be composed of one layer (single layer) or a plurality of layers of two or more layers. In the case of a plurality of layers, the plurality of layers may be the same or different, and the combination of the plurality of layers is not particularly limited.

基材的厚度較佳為50μm至300μm,更佳為60μm至100μm。藉由基材的厚度為此種範圍,前述保護膜形成用複合片的可撓性、及對半導體晶圓或半導體晶片之貼 附性進一步提高。 The thickness of the substrate is preferably from 50 μm to 300 μm, more preferably from 60 μm to 100 μm. By the thickness of the substrate being such a range, the flexibility of the composite sheet for forming a protective film, and the adhesion to a semiconductor wafer or a semiconductor wafer The appendage is further improved.

此處,所謂「基材的厚度」意指基材整體的厚度,例如所謂由複數層構成之基材的厚度意指構成基材之全部層的合計厚度。 Here, the "thickness of the base material" means the thickness of the entire base material. For example, the thickness of the base material composed of a plurality of layers means the total thickness of all the layers constituting the base material.

基材較佳為厚度精度高,亦即任何部位均可抑制厚度不均。上述之構成材料中,作為可用於構成此種厚度精度高的基材之材料,例如可列舉:聚乙烯、聚乙烯以外的聚烯烴、聚對苯二甲酸乙二酯、乙烯-乙酸乙烯酯共聚物等。 The substrate preferably has a high thickness precision, that is, any portion can suppress thickness unevenness. Among the above-mentioned constituent materials, examples of the material which can be used to constitute such a substrate having high thickness precision include polyolefin, polyethylene, polyethylene terephthalate, and ethylene-vinyl acetate copolymerization. Things and so on.

基材中,除了前述樹脂等主要構成材料以外,亦可含有填充材料、著色劑、抗靜電劑、抗氧化劑、有機潤滑劑、觸媒、軟化劑(塑化劑)等公知的各種添加劑。 The base material may contain various additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softener (plasticizer) in addition to the main constituent materials such as the above resin.

基材的光學特性滿足前文所說明之支持片的光學特性即可。亦即,基材可為透明亦可為不透明,還可根據目的而著色,也可蒸鍍其他層。 The optical characteristics of the substrate may satisfy the optical characteristics of the support sheet described above. That is, the substrate may be transparent or opaque, may be colored according to the purpose, or may be vapor-deposited.

並且,保護膜形成用膜具有能量線硬化性之本發明中,基材較佳為使能量線透過之基材。 Further, in the invention in which the film for forming a protective film has energy ray curability, the substrate is preferably a substrate through which energy rays are transmitted.

基材的表面亦可經實施以下處理以提高與設置於該基材上之黏著劑層等其他層之密接性:利用噴砂處理、溶劑處理等之凹凸化處理;或者電暈放電處理、電子束照射 處理、電漿處理、臭氧/紫外線照射處理、火焰處理、鉻酸處理、熱風處理等氧化處理等。 The surface of the substrate may be subjected to the following treatment to improve adhesion to other layers such as an adhesive layer provided on the substrate: by embossing treatment such as blasting or solvent treatment; or corona discharge treatment or electron beam treatment Irradiation Treatment, plasma treatment, ozone/ultraviolet irradiation treatment, flame treatment, chromic acid treatment, hot air treatment, etc.

另外,基材的表面亦可經實施底塗(primer)處理。 Alternatively, the surface of the substrate may be subjected to a primer treatment.

另外,基材亦可具有抗靜電塗層或以下用途之層等:將保護膜形成用複合片重疊保存時,防止基材接著於其他片或基材接著於吸附台。 Further, the substrate may have an antistatic coating layer or a layer for the following use. When the composite sheet for forming a protective film is stacked and stored, the substrate is prevented from adhering to the other sheet or substrate to the adsorption stage.

這些之中,就抑制因切割時刀片摩擦而導致基材產生斷片之方面而言,基材尤佳為表面經實施電子束照射處理。 Among these, the substrate is preferably subjected to electron beam irradiation treatment in terms of suppressing the occurrence of fragmentation of the substrate due to blade rubbing during cutting.

基材可利用公知的方法進行製造。例如,含有樹脂之基材可藉由使含有前述樹脂之樹脂組成物成形而進行製造。 The substrate can be produced by a known method. For example, the resin-containing substrate can be produced by molding a resin composition containing the above resin.

○黏著劑層 ○Adhesive layer

前述黏著劑層為片狀或膜狀,並含有黏著劑。 The adhesive layer is in the form of a sheet or a film and contains an adhesive.

作為前述黏著劑,例如可列舉:丙烯酸系樹脂、胺基甲酸酯系樹脂、橡膠系樹脂、聚矽氧系樹脂、環氧系樹脂、聚乙烯醚、聚碳酸酯、酯系樹脂等黏著性樹脂,較佳為丙烯酸系樹脂。 Examples of the pressure-sensitive adhesive include adhesion of an acrylic resin, an urethane resin, a rubber resin, a polyoxyn resin, an epoxy resin, a polyvinyl ether, a polycarbonate, and an ester resin. The resin is preferably an acrylic resin.

再者,本說明書中,「黏著性樹脂」的概念係包含有具有黏著性之樹脂及具有接著性之樹脂兩者,例如不僅包含本身具有黏著性之樹脂,亦包含藉由與添加劑等其他成 分併用而顯示黏著性之樹脂、或者藉由存在熱或水等觸發劑而顯示接著性之樹脂等。 In addition, in the present specification, the term "adhesive resin" includes both an adhesive resin and a resin having adhesive properties, and for example, not only a resin having adhesiveness but also an additive and the like. A resin which exhibits adhesion or a resin which exhibits adhesion by a triggering agent such as heat or water is used in combination.

黏著劑層可由1層(單層)構成,亦可由2層以上之複數層構成;於由複數層構成之情形時,這些複數層相互可相同亦可不同,這些複數層之組合並無特別限定。 The adhesive layer may be composed of one layer (single layer) or two or more layers. In the case of a plurality of layers, the plurality of layers may be the same or different, and the combination of the plurality of layers is not particularly limited. .

黏著劑層的厚度較佳為1μm至100μm,更佳為1μm至60μm,尤佳為1μm至30μm。 The thickness of the adhesive layer is preferably from 1 μm to 100 μm, more preferably from 1 μm to 60 μm, still more preferably from 1 μm to 30 μm.

此處,所謂「黏著劑層的厚度」意指黏著劑層整體的厚度,例如所謂由複數層構成之黏著劑層的厚度意指構成黏著劑層之全部層的合計厚度。 Here, the "thickness of the adhesive layer" means the thickness of the entire adhesive layer. For example, the thickness of the adhesive layer composed of a plurality of layers means the total thickness of all the layers constituting the adhesive layer.

黏著劑層的光學特性滿足前文所說明之支持片的光學特性即可。亦即,黏著劑層可為透明亦可為不透明,還可根據目的而著色。 The optical properties of the adhesive layer can satisfy the optical characteristics of the support sheet described above. That is, the adhesive layer may be transparent or opaque, and may be colored according to the purpose.

並且,保護膜形成用膜具有能量線硬化性之本發明中,黏著劑層較佳為使能量線透過之黏著劑層。 Further, in the invention in which the film for forming a protective film has energy ray curability, the pressure-sensitive adhesive layer is preferably an adhesive layer through which energy rays pass.

黏著劑層可使用能量線硬化性黏著劑而形成,亦可使用非能量線硬化性黏著劑而形成。使用能量線硬化性之黏著劑所形成之黏著劑層可容易地調節硬化前及硬化後的物性。 The adhesive layer can be formed using an energy ray-curable adhesive, or can be formed using a non-energetic curable adhesive. The adhesive layer formed by the energy ray-curable adhesive can easily adjust the physical properties before and after hardening.

<<黏著劑組成物>> <<Adhesive composition>>

黏著劑層可由含有黏著劑之黏著劑組成物形成。例如於黏著劑層之形成對象面塗敷黏著劑組成物,視需要使黏著劑組成物乾燥,藉此可於目標部位形成黏著劑層。關於黏著劑層的更具體的形成方法,與其他層的形成方法一起隨後詳細地進行說明。黏著劑組成物中的常溫下不會氣化的成分彼此的含量比率,通常與黏著劑層中的前述成分彼此的含量比率相同。再者,本說明書中,所謂「常溫」意指不特別冷或特別熱的溫度,亦即平常的溫度,例如可列舉15℃至25℃之溫度等。 The adhesive layer may be formed of an adhesive composition containing an adhesive. For example, an adhesive composition is applied to the surface of the target layer of the adhesive layer, and the adhesive composition is dried as needed, whereby an adhesive layer can be formed at the target portion. A more specific method of forming the adhesive layer will be described in detail later together with the formation method of the other layers. The content ratio of the components which are not vaporized at normal temperature in the adhesive composition is usually the same as the content ratio of the aforementioned components in the adhesive layer. In the present specification, the term "normal temperature" means a temperature which is not particularly cold or particularly hot, that is, a normal temperature, and examples thereof include a temperature of 15 ° C to 25 ° C.

利用公知的方法塗敷黏著劑組成物即可,例如可列舉使用以下各種塗佈機之方法:氣刀塗佈機、刮刀塗佈機、棒式塗佈機、凹版塗佈機、輥式塗佈機、輥刀塗佈機、簾幕式塗佈機、模具塗佈機、刀式塗佈機、絲網塗佈機、繞線棒(Meyer bar)式塗佈機、接觸式塗佈機等。 The adhesive composition may be applied by a known method, and examples thereof include the following various coaters: air knife coater, knife coater, bar coater, gravure coater, and roll coater. Cloth machine, roll coater, curtain coater, die coater, knife coater, screen coater, Meyer bar coater, contact coater Wait.

黏著劑組成物的乾燥條件並無特別限定,於黏著劑組成物含有後述溶劑之情形時,較佳為進行加熱乾燥;該情形時,較佳為於例如70℃至130℃且10秒至5分鐘之條件下進行乾燥。 The drying conditions of the adhesive composition are not particularly limited. When the adhesive composition contains a solvent to be described later, it is preferably dried by heating; in this case, it is preferably, for example, 70 ° C to 130 ° C and 10 seconds to 5 seconds. Dry under minute conditions.

於黏著劑層為能量線硬化性之情形時,作為含有能量線硬化性黏著劑之黏著劑組成物亦即能量線硬化性之黏 著劑組成物,例如可列舉以下黏著劑組成物等:黏著劑組成物(I-1),含有非能量線硬化性之黏著性樹脂(I-1a)(以下,有時簡稱為「黏著性樹脂(I-1a)」)、及能量線硬化性化合物;黏著劑組成物(I-2),含有能量線硬化性之黏著性樹脂(I-2a)(以下,有時簡稱為「黏著性樹脂(I-2a)」),該黏著性樹脂(I-2a)於非能量線硬化性之黏著性樹脂(I-1a)的側鏈導入有不飽和基;黏著劑組成物(I-3),含有前述黏著性樹脂(I-2a)、及能量線硬化性化合物。 When the adhesive layer is energy sclerosing, the adhesive composition containing the energy ray-curable adhesive, that is, the energy ray hardening viscosity The adhesive composition is, for example, the following adhesive composition: the adhesive composition (I-1), and the non-energy-curable adhesive resin (I-1a) (hereinafter, simply referred to as "adhesiveness" Resin (I-1a)") and an energy ray-curable compound; an adhesive composition (I-2) containing an energy ray-curable adhesive resin (I-2a) (hereinafter sometimes referred to simply as "adhesiveness") Resin (I-2a)"), the adhesive resin (I-2a) is introduced with an unsaturated group in the side chain of the non-energy-curable adhesive resin (I-1a); the adhesive composition (I-3) The adhesive resin (I-2a) and the energy ray-curable compound are contained.

<黏著劑組成物(I-1)> <Adhesive Composition (I-1)>

如上所述,前述黏著劑組成物(I-1)含有非能量線硬化性之黏著性樹脂(I-1a)、及能量線硬化性化合物。 As described above, the pressure-sensitive adhesive composition (I-1) contains a non-energy-curable adhesive resin (I-1a) and an energy ray-curable compound.

[黏著性樹脂(I-1a)] [Adhesive resin (I-1a)]

前述黏著性樹脂(I-1a)較佳為丙烯酸系樹脂。 The adhesive resin (I-1a) is preferably an acrylic resin.

作為前述丙烯酸系樹脂,例如可列舉:至少具有源自(甲基)丙烯酸烷基酯之結構單元之丙烯酸系聚合物。 The acrylic resin may, for example, be an acrylic polymer having at least a structural unit derived from an alkyl (meth)acrylate.

前述丙烯酸系樹脂所具有之結構單元可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The structural unit of the acrylic resin may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

本說明書中,所謂「源自」意指化學結構發生變化以進行聚合。 In the present specification, "derived from" means that the chemical structure changes to carry out polymerization.

作為前述(甲基)丙烯酸烷基酯,例如可列舉:構成烷 基酯之烷基的碳數為1至20之(甲基)丙烯酸烷基酯,前述烷基較佳為直鏈狀或支鏈狀。 As the alkyl (meth)acrylate, for example, an alkane is exemplified The alkyl group of the base ester has an alkyl group having 1 to 20 carbon atoms, and the alkyl group is preferably linear or branched.

作為(甲基)丙烯酸烷基酯,更具體而言,可列舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第二丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸庚酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸異辛酯、(甲基)丙烯酸正辛酯、(甲基)丙烯酸正壬酯、(甲基)丙烯酸異壬酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸十一烷基酯、(甲基)丙烯酸十二烷基酯(亦稱為(甲基)丙烯酸月桂酯)、(甲基)丙烯酸十三烷基酯、(甲基)丙烯酸十四烷基酯(亦稱為(甲基)丙烯酸肉豆蔻酯)、(甲基)丙烯酸十五烷基酯、(甲基)丙烯酸十六烷基酯(亦稱為(甲基)丙烯酸棕櫚酯)、(甲基)丙烯酸十七烷基酯、(甲基)丙烯酸十八烷基酯(亦稱為(甲基)丙烯酸硬脂酯)、(甲基)丙烯酸十九烷基酯、(甲基)丙烯酸二十烷基酯等。 Specific examples of the (meth)acrylic acid alkyl ester include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and isopropyl (meth)acrylate. Ester, n-butyl (meth)acrylate, isobutyl (meth)acrylate, second butyl (meth)acrylate, tert-butyl (meth)acrylate, amyl (meth)acrylate, (A) Ethyl acrylate, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, n-octyl (meth)acrylate, (meth)acrylic acid Anthracene ester, isodecyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate (also known as (meth)acrylic acid) Lauryl ester), tridecyl (meth)acrylate, tetradecyl (meth)acrylate (also known as myristyl (meth)acrylate), pentadecyl (meth)acrylate, Cetyl (meth) acrylate (also known as palmityl (meth) acrylate), heptadecyl (meth) acrylate, octadecyl (meth) acrylate (also known as (A) (poly) stearyl acrylate), (meth) acrylate Nine alkyl ester, (meth) acrylate, eicosyl acrylate.

就黏著劑層的黏著力提高之方面而言,前述丙烯酸系聚合物較佳為具有源自前述烷基的碳數為4以上之(甲基)丙烯酸烷基酯之結構單元。並且,就黏著劑層的黏著力進一步提高之方面而言,前述烷基的碳數較佳為4至12,更佳為4至8。另外,前述烷基的碳數為4以上之(甲基)丙烯酸烷基酯較佳為丙烯酸烷基酯。 The acrylic polymer is preferably a structural unit having an alkyl (meth)acrylate having a carbon number of 4 or more derived from the alkyl group, in terms of improving the adhesion of the adhesive layer. Further, the alkyl group preferably has a carbon number of 4 to 12, more preferably 4 to 8, in terms of further improving the adhesion of the adhesive layer. Further, the alkyl (meth)acrylate having a carbon number of 4 or more in the alkyl group is preferably an alkyl acrylate.

前述丙烯酸系聚合物中,較佳為除了源自(甲基)丙烯酸烷基酯之結構單元以外,進一步具有源自含官能基之單體之結構單元。 In the acrylic polymer, it is preferred to further have a structural unit derived from a functional group-containing monomer in addition to a structural unit derived from an alkyl (meth)acrylate.

作為前述含官能基之單體,例如可列舉以下單體:可藉由前述官能基與後述之交聯劑反應而成為交聯的起點,或者可藉由前述官能基與後述之含不飽和基之化合物中的不飽和基反應,而於丙烯酸系聚合物的側鏈導入不飽和基。 Examples of the functional group-containing monomer include a monomer which can be reacted with a crosslinking agent to be described later to form a starting point for crosslinking, or a functional group and an unsaturated group to be described later. The unsaturated group in the compound reacts, and an unsaturated group is introduced into the side chain of the acrylic polymer.

作為含官能基之單體中的前述官能基,例如可列舉:羥基、羧基、胺基、環氧基等。 Examples of the functional group in the functional group-containing monomer include a hydroxyl group, a carboxyl group, an amine group, and an epoxy group.

亦即,作為含官能基之單體,例如可列舉:含羥基之單體、含羧基之單體、含胺基之單體、含環氧基之單體等。 That is, examples of the functional group-containing monomer include a hydroxyl group-containing monomer, a carboxyl group-containing monomer, an amine group-containing monomer, and an epoxy group-containing monomer.

作為前述含羥基之單體,例如可列舉:(甲基)丙烯酸羥基甲酯、(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基丙酯、(甲基)丙烯酸3-羥基丙酯、(甲基)丙烯酸2-羥基丁酯、(甲基)丙烯酸3-羥基丁酯、(甲基)丙烯酸4-羥基丁酯等(甲基)丙烯酸羥基烷基酯;乙烯醇、烯丙醇等非(甲基)丙烯酸系不飽和醇(亦即,不具有(甲基)丙烯醯基骨架之不飽和醇)等。 Examples of the hydroxyl group-containing monomer include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and (meth)acrylic acid 3- Hydroxypropyl ester, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, etc.; hydroxyalkyl (meth)acrylate; vinyl alcohol, A non-(meth)acrylic unsaturated alcohol such as allyl alcohol (that is, an unsaturated alcohol having no (meth)acryl fluorenyl skeleton).

作為前述含羧基之單體,例如可列舉:(甲基)丙烯酸、丁烯酸等乙烯性不飽和單羧酸(亦即,具有乙烯性不飽和鍵之單羧酸);反丁烯二酸、衣康酸、順丁烯二酸、檸康酸等乙烯性不飽和二羧酸(亦即,具有乙烯性不飽和鍵之二羧酸);前述乙烯性不飽和二羧酸之酐;甲基丙烯酸2-羧基乙酯等(甲基)丙烯酸羧基烷基酯等。 Examples of the carboxyl group-containing monomer include an ethylenically unsaturated monocarboxylic acid such as (meth)acrylic acid or crotonic acid (that is, a monocarboxylic acid having an ethylenically unsaturated bond); fumaric acid; An ethylenically unsaturated dicarboxylic acid such as itaconic acid, maleic acid or citraconic acid (that is, a dicarboxylic acid having an ethylenically unsaturated bond); an anhydride of the above ethylenically unsaturated dicarboxylic acid; A carboxyalkyl (meth)acrylate such as 2-carboxyethyl acrylate.

含官能基之單體較佳為含羥基之單體、含羧基之單體,更佳為含羥基之單體。 The functional group-containing monomer is preferably a hydroxyl group-containing monomer, a carboxyl group-containing monomer, more preferably a hydroxyl group-containing monomer.

構成前述丙烯酸系聚合物之含官能基之單體可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The functional group-containing monomer constituting the acrylic polymer may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

前述丙烯酸系聚合物中,源自含官能基之單體之結構單元的含量相對於構成前述丙烯酸系聚合物之結構單元的總質量,較佳為1質量%至35質量%,更佳為2質量%至32質量%,尤佳為3質量%至30質量%。 In the acrylic polymer, the content of the structural unit derived from the functional group-containing monomer is preferably from 1% by mass to 35% by mass, more preferably 2%, based on the total mass of the structural unit constituting the acrylic polymer. The mass% to 32% by mass, particularly preferably 3% by mass to 30% by mass.

前述丙烯酸系聚合物中,亦可除了源自(甲基)丙烯酸烷基酯之結構單元、及源自含官能基之單體之結構單元以外,進一步具有源自其他單體之結構單元。 In addition to the structural unit derived from the alkyl (meth)acrylate and the structural unit derived from the functional group-containing monomer, the acrylic polymer may further have a structural unit derived from another monomer.

前述其他單體只要為可與(甲基)丙烯酸烷基酯等進行共聚合之單體,則並無特別限定。 The other monomer is not particularly limited as long as it is a monomer copolymerizable with an alkyl (meth)acrylate or the like.

作為前述其他單體,例如可列舉:苯乙烯、α-甲基苯乙烯、乙烯基甲苯、甲酸乙烯酯、乙酸乙烯酯、丙烯腈、丙烯醯胺等。 Examples of the other monomer include styrene, α-methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, and acrylamide.

構成前述丙烯酸系聚合物之前述其他單體可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The other monomer constituting the acrylic polymer may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

前述丙烯酸系聚合物可用作上述之非能量線硬化性之黏著性樹脂(I-1a)。 The acrylic polymer can be used as the above non-energy-curable adhesive resin (I-1a).

另一方面,使前述丙烯酸系聚合物中的官能基與具有能量線聚合性不飽和基(亦稱為能量線聚合性基)之含不飽和基之化合物反應而成之化合物可用作上述之能量線硬化性之黏著性樹脂(I-2a)。 On the other hand, a compound obtained by reacting a functional group in the acrylic polymer with an unsaturated group-containing compound having an energy ray polymerizable unsaturated group (also referred to as an energy ray polymerizable group) can be used as the above. Energy line hardenable adhesive resin (I-2a).

再者,本說明書中,所謂「能量線聚合性」意指藉由照射能量線而聚合之性質。 In the present specification, the term "energy ray polymerizability" means a property of polymerization by irradiation of an energy ray.

黏著劑組成物(I-1)所含有之黏著性樹脂(I-1a)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The adhesive resin (I-1a) contained in the adhesive composition (I-1) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-1)中,黏著性樹脂(I-1a)的含量相對於黏著劑組成物(I-1)的總質量,較佳為5質量%至99質量%,更佳為10質量%至95質量%,尤佳為15質量%至90質量% 。 In the adhesive composition (I-1), the content of the adhesive resin (I-1a) is preferably from 5% by mass to 99% by mass based on the total mass of the adhesive composition (I-1), more preferably 10% by mass to 95% by mass, particularly preferably 15% by mass to 90% by mass .

[能量線硬化性化合物] [Energy curing compound]

作為黏著劑組成物(I-1)所含有之前述能量線硬化性化合物,可列舉具有能量線聚合性不飽和基且可藉由照射能量線而硬化之單體或低聚物。 The energy ray-curable compound contained in the adhesive composition (I-1) includes a monomer or oligomer which has an energy ray polymerizable unsaturated group and can be cured by irradiation with an energy ray.

能量線硬化性化合物中,作為單體,例如可列舉:三羥甲基丙烷三(甲基)丙烯酸酯、季戊四醇(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯、1,6-己二醇(甲基)丙烯酸酯等多元(甲基)丙烯酸酯;(甲基)丙烯酸胺基甲酸酯;聚酯(甲基)丙烯酸酯;聚醚(甲基)丙烯酸酯;環氧(甲基)丙烯酸酯等。 In the energy ray-curable compound, examples of the monomer include trimethylolpropane tri(meth)acrylate, pentaerythritol (meth)acrylate, pentaerythritol tetra(meth)acrylate, and dipentaerythritol VI (A). Poly(meth)acrylates such as acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol (meth)acrylate; amine (meth)acrylate Ester; polyester (meth) acrylate; polyether (meth) acrylate; epoxy (meth) acrylate, and the like.

能量線硬化性化合物中,作為低聚物,例如可列舉:上述所例示之單體進行聚合而成之低聚物等。 In the energy ray-curable compound, examples of the oligomer include an oligomer obtained by polymerizing the above-exemplified monomers.

就分子量相對較大,不易使黏著劑層的儲存彈性率降低之方面而言,能量線硬化性化合物較佳為(甲基)丙烯酸胺基甲酸酯、(甲基)丙烯酸胺基甲酸酯低聚物。 The energy ray-curable compound is preferably a (meth)acrylic acid urethane or a (meth)acrylic acid urethane in terms of a relatively large molecular weight and a tendency to lower the storage modulus of the adhesive layer. Oligomer.

黏著劑組成物(I-1)所含有之前述能量線硬化性化合物可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The energy ray-curable compound to be contained in the adhesive composition (I-1) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

前述黏著劑組成物(I-1)中,前述能量線硬化性化合物 的含量相對於前述黏著劑組成物(I-1)的總質量,較佳為1質量%至95質量%,更佳為5質量%至90質量%,尤佳為10質量%至85質量%。 In the above adhesive composition (I-1), the aforementioned energy ray-curable compound The content is preferably from 1% by mass to 95% by mass, more preferably from 5% by mass to 90% by mass, even more preferably from 10% by mass to 85% by mass, based on the total mass of the aforementioned adhesive composition (I-1). .

[交聯劑] [crosslinking agent]

於使用除了源自(甲基)丙烯酸烷基酯之結構單元以外,進一步具有源自含官能基之單體之結構單元之前述丙烯酸系聚合物作為黏著性樹脂(I-1a)之情形時,黏著劑組成物(I-1)較佳為進一步含有交聯劑。 When the acrylic polymer further having a structural unit derived from a functional group-containing monomer is used as the adhesive resin (I-1a), in addition to the structural unit derived from the alkyl (meth)acrylate, The adhesive composition (I-1) preferably further contains a crosslinking agent.

前述交聯劑例如與前述官能基反應而使黏著性樹脂(I-1a)彼此進行交聯。 The crosslinking agent reacts with the aforementioned functional group to crosslink the adhesive resin (I-1a) with each other.

作為交聯劑,例如可列舉:甲苯二異氰酸酯、六亞甲基二異氰酸酯、苯二甲基二異氰酸酯、這些二異氰酸酯之加合物等異氰酸酯系交聯劑(亦即,具有異氰酸酯基之交聯劑);乙二醇縮水甘油醚等環氧系交聯劑(亦即,具有縮水甘油基之交聯劑);六[1-(2-甲基)-氮丙啶基]三膦三嗪等氮丙啶系交聯劑(亦即,具有氮丙啶基之交聯劑);鋁螯合物等金屬螯合物系交聯劑(亦即,具有金屬螯合物結構之交聯劑);異氰脲酸酯系交聯劑(亦即,具有異氰脲酸骨架之交聯劑)等。 Examples of the crosslinking agent include isocyanate crosslinking agents such as toluene diisocyanate, hexamethylene diisocyanate, benzodimethyl diisocyanate, and an adduct of these diisocyanates (that is, crosslinking having an isocyanate group). Epoxy crosslinking agent such as ethylene glycol glycidyl ether (that is, a crosslinking agent having a glycidyl group); hexa[1-(2-methyl)-aziridine]triphosphine triazine An aziridine-based crosslinking agent (that is, a crosslinking agent having an aziridine group); a metal chelate-based crosslinking agent such as an aluminum chelate compound (that is, a crosslinking agent having a metal chelate structure) An isocyanurate-based crosslinking agent (that is, a crosslinking agent having an isocyanuric acid skeleton) or the like.

就提高黏著劑的凝聚力而提高黏著劑層的黏著力之方面、及容易獲取等方面而言,交聯劑較佳為異氰酸酯系交聯劑。 The crosslinking agent is preferably an isocyanate crosslinking agent in terms of improving the cohesive force of the adhesive, improving the adhesion of the adhesive layer, and facilitating the acquisition.

黏著劑組成物(I-1)所含有之交聯劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The amount of the crosslinking agent contained in the adhesive composition (I-1) may be one or two or more. When two or more types are used, these combinations and ratios may be arbitrarily selected.

前述黏著劑組成物(I-1)中,交聯劑的含量相對於黏著性樹脂(I-1a)的含量100質量份,較佳為0.01質量份至50質量份,更佳為0.1質量份至20質量份,尤佳為0.3質量份至15質量份。 In the above-mentioned adhesive composition (I-1), the content of the crosslinking agent is preferably from 0.01 part by mass to 50 parts by mass, more preferably from 0.1 part by mass, per 100 parts by mass of the content of the adhesive resin (I-1a). It is especially preferably from 0.3 part by mass to 15 parts by mass to 20 parts by mass.

[光聚合起始劑] [Photopolymerization initiator]

黏著劑組成物(I-1)亦可進一步含有光聚合起始劑。對於含有光聚合起始劑之黏著劑組成物(I-1),即便照射紫外線等相對較低能量之能量線,亦充分地進行硬化反應。 The adhesive composition (I-1) may further contain a photopolymerization initiator. The adhesive composition (I-1) containing a photopolymerization initiator is sufficiently subjected to a hardening reaction even when irradiated with a relatively low energy energy line such as ultraviolet rays.

作為前述光聚合起始劑,例如可列舉:安息香、安息香甲醚、安息香乙醚、安息香異丙醚、安息香異丁醚、安息香苯甲酸、安息香苯甲酸甲酯、安息香二甲基縮酮等安息香化合物;苯乙酮、2-羥基-2-甲基-1-苯基-丙烷-1-酮、2,2-二甲氧基-1,2-二苯基乙烷-1-酮等苯乙酮化合物;雙(2,4,6-三甲基苯甲醯基)苯基氧化膦、2,4,6-三甲基苯甲醯基二苯基氧化膦等醯基氧化膦化合物;苄基苯基硫化物、一硫化四甲基秋蘭姆等硫化物化合物;1-羥基環己基苯基酮等α-酮醇化合物;偶氮雙異丁腈等偶氮化合物;二茂 鈦等二茂鈦化合物;噻噸酮等噻噸酮化合物;過氧化物化合物;二乙醯等二酮化合物;苯偶醯;二苯偶醯;二苯甲酮;2,4-二乙基噻噸酮;1,2-二苯基甲烷;2-羥基-2-甲基-1-[4-(1-甲基乙烯基)苯基]丙酮;2-氯蒽醌等。 Examples of the photopolymerization initiator include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal. Acetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, etc. a ketone compound; a fluorenylphosphine oxide compound such as bis(2,4,6-trimethylbenzylidene)phenylphosphine oxide or 2,4,6-trimethylbenzimidyldiphenylphosphine oxide; a thiol compound such as a phenyl sulfide or a tetramethyl thiuram monosulfide; an α-keto alcohol compound such as 1-hydroxycyclohexyl phenyl ketone; an azo compound such as azobisisobutyronitrile; Titanocene compound such as titanium; thioxanthone compound such as thioxanthone; peroxide compound; diketone compound such as diethyl hydrazine; benzoin; diphenyl oxime; benzophenone; 2,4-diethyl Thioxanthone; 1,2-diphenylmethane; 2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]acetone; 2-chloroindole and the like.

另外,作為前述光聚合起始劑,例如亦可使用1-氯蒽醌等醌化合物;胺等光增感劑等。 In addition, as the photopolymerization initiator, for example, a ruthenium compound such as 1-chloroindole or a photo sensitizer such as an amine can be used.

黏著劑組成物(I-1)所含有之光聚合起始劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The photopolymerization initiator contained in the adhesive composition (I-1) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-1)中,光聚合起始劑的含量相對於前述能量線硬化性化合物的含量100質量份,較佳為0.01質量份至20質量份,更佳為0.03質量份至10質量份,尤佳為0.05質量份至5質量份。 In the adhesive composition (I-1), the content of the photopolymerization initiator is preferably from 0.01 part by mass to 20 parts by mass, more preferably from 0.03 part by mass, per 100 parts by mass of the content of the energy ray-curable compound. 10 parts by mass, particularly preferably from 0.05 parts by mass to 5 parts by mass.

[其他添加劑] [Other additives]

黏著劑組成物(I-1)中,在無損本發明之功效之範圍內,亦可含有不屬於上述之任一種成分之其他添加劑。 In the adhesive composition (I-1), other additives not belonging to any of the above components may be contained within the range which does not impair the effects of the present invention.

作為前述其他添加劑,例如可列舉:抗靜電劑、抗氧化劑、軟化劑(塑化劑)、填充材料(填料)、防鏽劑、著色劑(顏料、染料)、增感劑、黏著賦予劑、反應延遲劑、交聯促進劑(觸媒)等公知的添加劑。 Examples of the other additives include an antistatic agent, an antioxidant, a softener (plasticizer), a filler (filler), a rust preventive, a colorant (pigment, dye), a sensitizer, and an adhesion-imparting agent. A known additive such as a reaction retarder or a crosslinking accelerator (catalyst).

再者,所謂反應延遲劑,例如抑制因混入至黏著劑組 成物(I-1)中之觸媒之作用而導致保存中之黏著劑組成物(I-1)中進行目的外的交聯反應。作為反應延遲劑,例如可列舉藉由針對觸媒之螯合物而形成螯合物錯合物之化合物,更具體而言,可列舉:於1分子中具有2個以上之羰基(-C(=O)-)之化合物。 Further, the reaction retardant is, for example, inhibited from being mixed into the adhesive group. The action of the catalyst in the product (I-1) causes the cross-linking reaction outside the target in the adhesive composition (I-1) in storage. The reaction retardation agent is, for example, a compound which forms a chelate complex by a chelate compound, and more specifically, has two or more carbonyl groups (-C (in one molecule). Compound of =O)-).

黏著劑組成物(I-1)所含有之其他添加劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The other additives contained in the adhesive composition (I-1) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-1)中,其他添加劑的含量並無特別限定,根據該其他添加劑的種類適宜選擇即可。 In the adhesive composition (I-1), the content of the other additives is not particularly limited, and may be appropriately selected depending on the type of the other additives.

[溶劑] [solvent]

黏著劑組成物(I-1)亦可含有溶劑。黏著劑組成物(I-1)藉由含有溶劑,對塗敷對象面之塗敷適性提高。 The adhesive composition (I-1) may also contain a solvent. The adhesive composition (I-1) has an applicability to the coating target surface by containing a solvent.

前述溶劑較佳為有機溶劑,作為前述有機溶劑,例如可列舉:甲基乙基酮、丙酮等酮;乙酸乙酯等酯(例如,羧酸酯);四氫呋喃、二噁烷(dioxane)等醚;環己烷、正己烷等脂肪族烴;甲苯、二甲苯等芳香族烴;1-丙醇、2-丙醇等醇等。 The solvent is preferably an organic solvent, and examples of the organic solvent include a ketone such as methyl ethyl ketone or acetone; an ester such as ethyl acetate (for example, a carboxylic acid ester); and an ether such as tetrahydrofuran or dioxane. An aliphatic hydrocarbon such as cyclohexane or n-hexane; an aromatic hydrocarbon such as toluene or xylene; an alcohol such as 1-propanol or 2-propanol; and the like.

作為前述溶劑,例如可將製造黏著性樹脂(I-1a)時所 使用之溶劑不自黏著性樹脂(I-1a)中去除而直接於黏著劑組成物(I-1)中使用,亦可於製造黏著劑組成物(I-1)時另行添加與製造黏著性樹脂(I-1a)時所使用之溶劑相同種類或不同種類之溶劑。 As the solvent, for example, when the adhesive resin (I-1a) is produced, The solvent to be used is not directly removed from the adhesive resin (I-1a) but used directly in the adhesive composition (I-1), and may be additionally added and manufactured for adhesion when the adhesive composition (I-1) is produced. The solvent used in the resin (I-1a) is the same type or a different type of solvent.

黏著劑組成物(I-1)所含有之溶劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The solvent contained in the adhesive composition (I-1) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-1)中,溶劑的含量並無特別限定,適宜調節即可。 In the adhesive composition (I-1), the content of the solvent is not particularly limited, and may be appropriately adjusted.

<黏著劑組成物(I-2)> <Adhesive Composition (I-2)>

如上所述,前述黏著劑組成物(I-2)含有能量線硬化性之黏著性樹脂(I-2a),該黏著性樹脂(I-2a)於非能量線硬化性之黏著性樹脂(I-1a)的側鏈導入有不飽和基。 As described above, the adhesive composition (I-2) contains an energy ray-curable adhesive resin (I-2a) which is a non-energy-curable adhesive resin (I). The side chain of -1a) is introduced with an unsaturated group.

[黏著性樹脂(I-2a)] [Adhesive resin (I-2a)]

前述黏著性樹脂(I-2a)例如藉由使黏著性樹脂(I-1a)中的官能基與具有能量線聚合性不飽和基之含不飽和基之化合物反應而獲得。 The above-mentioned adhesive resin (I-2a) is obtained, for example, by reacting a functional group in the adhesive resin (I-1a) with an unsaturated group-containing compound having an energy ray polymerizable unsaturated group.

前述含不飽和基之化合物除了具有前述能量線聚合性不飽和基以外,進一步具有以下基,該基藉由與黏著性 樹脂(I-1a)中的官能基反應,可與黏著性樹脂(I-1a)鍵結。 The unsaturated group-containing compound further has, in addition to the energy ray polymerizable unsaturated group, a group having a bond The functional group in the resin (I-1a) reacts to bond with the adhesive resin (I-1a).

作為前述能量線聚合性不飽和基,例如可列舉:(甲基)丙烯醯基、乙烯基(亦稱為次乙基)、烯丙基(亦稱為2-丙烯基)等,較佳為(甲基)丙烯醯基。 Examples of the energy ray polymerizable unsaturated group include a (meth)acryl fluorenyl group, a vinyl group (also referred to as a secondary ethyl group), an allyl group (also referred to as a 2-propenyl group), and the like. (Methyl) acrylonitrile.

作為可與黏著性樹脂(I-1a)中的官能基鍵結之基,例如可列舉:可與羥基或胺基鍵結之異氰酸酯基及縮水甘油基、以及可與羧基或環氧基鍵結之羥基及胺基等。 The group which can be bonded to the functional group in the adhesive resin (I-1a) may, for example, be an isocyanate group and a glycidyl group which may be bonded to a hydroxyl group or an amine group, and may be bonded to a carboxyl group or an epoxy group. Hydroxyl groups and amine groups.

作為前述含不飽和基之化合物,例如可列舉:異氰酸(甲基)丙烯醯氧基乙酯、(甲基)丙烯醯基異氰酸酯、(甲基)丙烯酸縮水甘油酯等。 Examples of the unsaturated group-containing compound include (meth)acryloxyethyl isocyanate, (meth)acryl decyl isocyanate, and glycidyl (meth)acrylate.

黏著劑組成物(I-2)所含有之黏著性樹脂(I-2a)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The adhesive resin (I-2a) contained in the adhesive composition (I-2) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-2)中,黏著性樹脂(I-2a)的含量相對於黏著劑組成物(I-2)的總質量,較佳為5質量%至99質量%,更佳為10質量%至95質量%,尤佳為10質量%至90質量%。 In the adhesive composition (I-2), the content of the adhesive resin (I-2a) is preferably from 5% by mass to 99% by mass based on the total mass of the adhesive composition (I-2), more preferably 10% by mass to 95% by mass, particularly preferably 10% by mass to 90% by mass.

[交聯劑] [crosslinking agent]

於使用例如與黏著性樹脂(I-1a)中相同的具有源自含官能基之單體之結構單元之前述丙烯酸系聚合物作為黏 著性樹脂(I-2a)之情形時,黏著劑組成物(I-2)亦可進一步含有交聯劑。 For example, the same acrylic polymer having a structural unit derived from a functional group-containing monomer is used as the adhesive in the adhesive resin (I-1a). In the case of the resin (I-2a), the adhesive composition (I-2) may further contain a crosslinking agent.

作為黏著劑組成物(I-2)中的前述交聯劑,可列舉與黏著劑組成物(I-1)中的交聯劑相同的化合物。 The crosslinking agent in the adhesive composition (I-2) is the same as the crosslinking agent in the adhesive composition (I-1).

黏著劑組成物(I-2)所含有之交聯劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The amount of the crosslinking agent contained in the adhesive composition (I-2) may be one or two or more. When two or more kinds are used, these combinations and ratios may be arbitrarily selected.

前述黏著劑組成物(I-2)中,交聯劑的含量相對於黏著性樹脂(I-2a)的含量100質量份,較佳為0.01質量份至50質量份,更佳為0.1質量份至20質量份,尤佳為0.3質量份至15質量份。 In the above-mentioned adhesive composition (I-2), the content of the crosslinking agent is preferably 0.01 parts by mass to 50 parts by mass, more preferably 0.1 part by mass, per 100 parts by mass of the content of the adhesive resin (I-2a). It is especially preferably from 0.3 part by mass to 15 parts by mass to 20 parts by mass.

[光聚合起始劑] [Photopolymerization initiator]

黏著劑組成物(I-2)亦可進一步含有光聚合起始劑。對於含有光聚合起始劑之黏著劑組成物(I-2),即便照射紫外線等相對較低能量之能量線,亦充分地進行硬化反應。 The adhesive composition (I-2) may further contain a photopolymerization initiator. The adhesive composition (I-2) containing a photopolymerization initiator is sufficiently subjected to a hardening reaction even when irradiated with a relatively low energy energy line such as ultraviolet rays.

作為黏著劑組成物(I-2)中的前述光聚合起始劑,可列舉與黏著劑組成物(I-1)中的光聚合起始劑相同的化合物。 The photopolymerization initiator in the adhesive composition (I-2) is the same as the photopolymerization initiator in the adhesive composition (I-1).

黏著劑組成物(I-2)所含有之光聚合起始劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The photopolymerization initiator contained in the adhesive composition (I-2) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-2)中,光聚合起始劑的含量相對於黏著性樹脂(I-2a)的含量100質量份,較佳為0.01質量份至20質量份,更佳為0.03質量份至10質量份,尤佳為0.05質量份至5質量份。 In the adhesive composition (I-2), the content of the photopolymerization initiator is preferably from 0.01 part by mass to 20 parts by mass, more preferably from 0.03 part by mass, based on 100 parts by mass of the content of the adhesive resin (I-2a). The portion is preferably 10 parts by mass, particularly preferably 0.05 parts by mass to 5 parts by mass.

[其他添加劑] [Other additives]

黏著劑組成物(I-2)中,在無損本發明之功效之範圍內,亦可含有不屬於上述之任一種成分之其他添加劑。 In the adhesive composition (I-2), other additives not belonging to any of the above components may be contained within the range which does not impair the effects of the present invention.

作為黏著劑組成物(I-2)中的前述其他添加劑,可列舉與黏著劑組成物(I-1)中的其他添加劑相同的化合物。 The other additives mentioned above in the adhesive composition (I-2) include the same compounds as the other additives in the adhesive composition (I-1).

黏著劑組成物(I-2)所含有之其他添加劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The other additives contained in the adhesive composition (I-2) may be one type or two or more types. When two or more types are used, these combinations and ratios may be arbitrarily selected.

黏著劑組成物(I-2)中,其他添加劑的含量並無特別限定,根據該其他添加劑的種類適宜選擇即可。 In the adhesive composition (I-2), the content of the other additives is not particularly limited, and may be appropriately selected depending on the type of the other additives.

[溶劑] [solvent]

以與黏著劑組成物(I-1)之情形相同之目的,黏著劑組成物(I-2)亦可含有溶劑。 The adhesive composition (I-2) may also contain a solvent for the same purpose as in the case of the adhesive composition (I-1).

作為黏著劑組成物(I-2)中的前述溶劑,可列舉與黏著劑組成物(I-1)中的溶劑相同的溶劑。 The solvent mentioned in the adhesive composition (I-2) is the same solvent as the solvent in the adhesive composition (I-1).

黏著劑組成物(I-2)所含有之溶劑可僅為1種,亦可為 2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The adhesive composition (I-2) may contain only one solvent or may be Two or more types; in the case of two or more types, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-2)中,溶劑的含量並無特別限定,適宜調節即可。 In the adhesive composition (I-2), the content of the solvent is not particularly limited, and may be appropriately adjusted.

<黏著劑組成物(I-3)> <Adhesive Composition (I-3)>

如上所述,前述黏著劑組成物(I-3)含有前述黏著性樹脂(I-2a)、及能量線硬化性化合物。 As described above, the pressure-sensitive adhesive composition (I-3) contains the above-mentioned adhesive resin (I-2a) and an energy ray-curable compound.

黏著劑組成物(I-3)中,黏著性樹脂(I-2a)的含量相對於黏著劑組成物(I-3)的總質量,較佳為5質量%至99質量%,更佳為10質量%至95質量%,尤佳為15質量%至90質量%。 In the adhesive composition (I-3), the content of the adhesive resin (I-2a) is preferably from 5% by mass to 99% by mass based on the total mass of the adhesive composition (I-3), more preferably 10% by mass to 95% by mass, particularly preferably 15% by mass to 90% by mass.

[能量線硬化性化合物] [Energy curing compound]

作為黏著劑組成物(I-3)所含有之前述能量線硬化性化合物,可列舉具有能量線聚合性不飽和基且可藉由照射能量線而硬化之單體及低聚物,可列舉與黏著劑組成物(I-1)所含有之能量線硬化性化合物相同的化合物。 The energy ray-curable compound to be contained in the adhesive composition (I-3) includes a monomer and an oligomer which have an energy ray polymerizable unsaturated group and can be cured by irradiation with an energy ray, and examples thereof include The same compound as the energy ray-curable compound contained in the adhesive composition (I-1).

黏著劑組成物(I-3)所含有之前述能量線硬化性化合物可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The energy ray-curable compound to be contained in the adhesive composition (I-3) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

前述黏著劑組成物(I-3)中,前述能量線硬化性化合物 的含量相對於黏著性樹脂(I-2a)的含量100質量份,較佳為0.01質量份至300質量份,更佳為0.03質量份至200質量份,尤佳為0.05質量份至100質量份。 In the above adhesive composition (I-3), the aforementioned energy ray-curable compound The content is preferably from 0.01 part by mass to 300 parts by mass, more preferably from 0.03 part by mass to 200 parts by mass, even more preferably from 0.05 part by mass to 100 parts by mass, per 100 parts by mass of the adhesive resin (I-2a). .

[光聚合起始劑] [Photopolymerization initiator]

黏著劑組成物(I-3)亦可進一步含有光聚合起始劑。對於含有光聚合起始劑之黏著劑組成物(I-3),即便照射紫外線等相對較低能量之能量線,亦充分地進行硬化反應。 The adhesive composition (I-3) may further contain a photopolymerization initiator. The adhesive composition (I-3) containing a photopolymerization initiator is sufficiently subjected to a hardening reaction even when irradiated with a relatively low energy energy line such as ultraviolet rays.

作為黏著劑組成物(I-3)中的前述光聚合起始劑,可列舉與黏著劑組成物(I-1)中的光聚合起始劑相同的化合物。 The photopolymerization initiator in the adhesive composition (I-3) is the same as the photopolymerization initiator in the adhesive composition (I-1).

黏著劑組成物(I-3)所含有之光聚合起始劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The photopolymerization initiator contained in the adhesive composition (I-3) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-3)中,光聚合起始劑的含量相對於黏著性樹脂(I-2a)及前述能量線硬化性化合物的合計含量100質量份,較佳為0.01質量份至20質量份,更佳為0.03質量份至10質量份,尤佳為0.05質量份至5質量份。 In the adhesive composition (I-3), the content of the photopolymerization initiator is preferably 0.01 parts by mass to 100 parts by mass based on 100 parts by mass of the total of the adhesive resin (I-2a) and the energy ray-curable compound. The parts by mass are more preferably 0.03 parts by mass to 10 parts by mass, particularly preferably 0.05 parts by mass to 5 parts by mass.

[其他添加劑] [Other additives]

黏著劑組成物(I-3)中,在無損本發明之功效之範圍內,亦可含有不屬於上述之任一種成分之其他添加劑。 In the adhesive composition (I-3), other additives not belonging to any of the above components may be contained within the range which does not impair the effects of the present invention.

作為前述其他添加劑,可列舉與黏著劑組成物(I-1) 中的其他添加劑相同的化合物。 Examples of the other additives include an adhesive composition (I-1). Other additives in the same compound.

黏著劑組成物(I-3)所含有之其他添加劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The other additives contained in the adhesive composition (I-3) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-3)中,其他添加劑的含量並無特別限定,根據該其他添加劑的種類適宜選擇即可。 In the adhesive composition (I-3), the content of the other additives is not particularly limited, and may be appropriately selected depending on the type of the other additives.

[溶劑] [solvent]

以與黏著劑組成物(I-1)之情形相同之目的,黏著劑組成物(I-3)亦可含有溶劑。 The adhesive composition (I-3) may also contain a solvent for the same purpose as in the case of the adhesive composition (I-1).

作為黏著劑組成物(I-3)中的前述溶劑,可列舉與黏著劑組成物(I-1)中的溶劑相同的溶劑。 The solvent in the adhesive composition (I-3) is the same solvent as the solvent in the adhesive composition (I-1).

黏著劑組成物(I-3)所含有之溶劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The solvent contained in the adhesive composition (I-3) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-3)中,溶劑的含量並無特別限定,適宜調節即可。 In the adhesive composition (I-3), the content of the solvent is not particularly limited, and may be appropriately adjusted.

<黏著劑組成物(I-1)至黏著劑組成物(I-3)以外之黏著劑組成物> <Adhesive composition other than the adhesive composition (I-1) to the adhesive composition (I-3)>

前文主要對黏著劑組成物(I-1)、黏著劑組成物(I-2)及黏著劑組成物(I-3)進行了說明,但對於這些3種黏著劑組成物以外之全部黏著劑組成物(本說明書中,稱為「黏著 劑組成物(I-1)至黏著劑組成物(I-3)以外之黏著劑組成物」),亦可同樣地使用作為這些的含有成分所說明之成分。 The adhesive composition (I-1), the adhesive composition (I-2), and the adhesive composition (I-3) are mainly described above, but all the adhesives other than these three adhesive compositions are described. Composition (in this specification, it is called "adhesive" The component (I-1) to the adhesive composition other than the adhesive composition (I-3) can be similarly used as the component described as the component.

作為黏著劑組成物(I-1)至黏著劑組成物(I-3)以外之黏著劑組成物,除了能量線硬化性之黏著劑組成物以外,亦可列舉非能量線硬化性之黏著劑組成物。 As the adhesive composition other than the adhesive composition (I-1) to the adhesive composition (I-3), in addition to the energy ray-curable adhesive composition, a non-energy curing adhesive may be cited. Composition.

作為非能量線硬化性之黏著劑組成物,例如可列舉:含有丙烯酸系樹脂、胺基甲酸酯系樹脂、橡膠系樹脂、聚矽氧系樹脂、環氧系樹脂、聚乙烯醚、聚碳酸酯、酯系樹脂等非能量線硬化性之黏著性樹脂(I-1a)之黏著劑組成物(I-4),較佳為含有丙烯酸系樹脂之黏著劑組成物。 Examples of the non-energy-curable adhesive composition include an acrylic resin, an urethane resin, a rubber resin, a polyoxyn resin, an epoxy resin, a polyvinyl ether, and a polycarbonate. The adhesive composition (I-4) of the non-energy-curable adhesive resin (I-1a) such as an ester or an ester resin is preferably an adhesive composition containing an acrylic resin.

黏著劑組成物(I-1)至黏著劑組成物(I-3)以外之黏著劑組成物較佳為含有1種或2種以上之交聯劑,該交聯劑的含量可設為與上述之黏著劑組成物(I-1)等情形相同。 The adhesive composition other than the adhesive composition (I-1) to the adhesive composition (I-3) preferably contains one or more kinds of crosslinking agents, and the content of the crosslinking agent can be set to The above adhesive composition (I-1) and the like are the same.

<黏著劑組成物(I-4)> <Adhesive Composition (I-4)>

作為較佳的黏著劑組成物(I-4),例如可列舉:含有前述黏著性樹脂(I-1a)、及交聯劑之黏著劑組成物。 The preferred adhesive composition (I-4) is, for example, an adhesive composition containing the above-mentioned adhesive resin (I-1a) and a crosslinking agent.

[黏著劑組成物(I-4)中的黏著性樹脂(I-1a)] [Adhesive resin (I-1a) in the adhesive composition (I-4)]

作為黏著劑組成物(I-4)中的黏著性樹脂(I-1a),可列舉與黏著劑組成物(I-1)中的黏著性樹脂(I-1a)相同的黏著性樹脂。 The adhesive resin (I-1a) in the adhesive composition (I-4) is the same as the adhesive resin (I-1a) in the adhesive composition (I-1).

黏著劑組成物(I-4)所含有之黏著性樹脂(I-1a)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The adhesive resin (I-1a) contained in the adhesive composition (I-4) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-4)中,黏著性樹脂(I-1a)的含量相對於黏著劑組成物(I-4)的總質量,較佳為5質量%至99質量%,更佳為10質量%至95質量%,尤佳為15質量%至90質量%。 In the adhesive composition (I-4), the content of the adhesive resin (I-1a) is preferably from 5% by mass to 99% by mass based on the total mass of the adhesive composition (I-4), more preferably 10% by mass to 95% by mass, particularly preferably 15% by mass to 90% by mass.

[交聯劑] [crosslinking agent]

於使用除了源自(甲基)丙烯酸烷基酯之結構單元以外,進一步具有源自含官能基之單體之結構單元之前述丙烯酸系聚合物作為前述黏著性樹脂(I-1a)之情形時,黏著劑組成物(I-4)較佳為進一步含有交聯劑。 In the case where the above-mentioned acrylic polymer having a structural unit derived from a functional group-containing monomer is further used as the above-mentioned adhesive resin (I-1a), in addition to the structural unit derived from the alkyl (meth)acrylate The adhesive composition (I-4) preferably further contains a crosslinking agent.

作為黏著劑組成物(I-4)中的交聯劑,可列舉與黏著劑組成物(I-1)中的交聯劑相同的化合物。 The crosslinking agent in the adhesive composition (I-4) is the same as the crosslinking agent in the adhesive composition (I-1).

黏著劑組成物(I-4)所含有之交聯劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The amount of the crosslinking agent contained in the adhesive composition (I-4) may be one or two or more. When two or more kinds are used, these combinations and ratios may be arbitrarily selected.

前述黏著劑組成物(I-4)中,交聯劑的含量相對於黏著性樹脂(I-1a)的含量100質量份,較佳為0.01質量份至50質量份,更佳為0.1質量份至20質量份,尤佳為0.3質量份至 15質量份。 In the above-mentioned adhesive composition (I-4), the content of the crosslinking agent is preferably from 0.01 part by mass to 50 parts by mass, more preferably from 0.1 part by mass, per 100 parts by mass of the content of the adhesive resin (I-1a). Up to 20 parts by mass, particularly preferably 0.3 parts by mass to 15 parts by mass.

[其他添加劑] [Other additives]

黏著劑組成物(I-4)中,在無損本發明之功效之範圍內,亦可含有不屬於上述之任一種成分之其他添加劑。 In the adhesive composition (I-4), other additives not belonging to any of the above components may be contained within the range which does not impair the effects of the present invention.

作為前述其他添加劑,可列舉與黏著劑組成物(I-1)中的其他添加劑相同的化合物。 Examples of the other additives include the same compounds as the other additives in the adhesive composition (I-1).

黏著劑組成物(I-4)所含有之其他添加劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The other additives contained in the adhesive composition (I-4) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-4)中,其他添加劑的含量並無特別限定,根據該其他添加劑的種類適宜選擇即可。 In the adhesive composition (I-4), the content of the other additives is not particularly limited, and may be appropriately selected depending on the type of the other additives.

[溶劑] [solvent]

以與黏著劑組成物(I-1)之情形相同之目的,黏著劑組成物(I-4)亦可含有溶劑。 The adhesive composition (I-4) may also contain a solvent for the same purpose as in the case of the adhesive composition (I-1).

作為黏著劑組成物(I-4)中的前述溶劑,可列舉與黏著劑組成物(I-1)中的溶劑相同的溶劑。 The solvent in the adhesive composition (I-4) is the same solvent as the solvent in the adhesive composition (I-1).

黏著劑組成物(I-4)所含有之溶劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The solvent contained in the adhesive composition (I-4) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

黏著劑組成物(I-4)中,溶劑的含量並無特別限定,適宜調節即可。 In the adhesive composition (I-4), the content of the solvent is not particularly limited, and may be appropriately adjusted.

本發明之保護膜形成用複合片中,黏著劑層較佳為非能量線硬化性。原因在於:若黏著劑層為能量線硬化性,則會有無法抑制於藉由照射能量線而使保護膜形成用膜硬化時黏著劑層亦同時硬化之情形。若黏著劑層與保護膜形成用膜同時硬化,則會有硬化後之保護膜形成用膜及黏著劑層於這些之界面黏附至無法剝離之程度之情形。該情形時,難以將背面具備硬化後之保護膜形成用膜亦即保護膜之半導體晶片(本說明書中,有時稱為「附有保護膜的半導體晶片」)自具備硬化後之黏著劑層之支持片剝離,無法正常拾取附有保護膜的半導體晶片。藉由本發明中的支持片中的黏著劑層設為非能量線硬化性,可確實地避免此種不良情形,從而可更容易地拾取附有保護膜的半導體晶片。 In the composite sheet for forming a protective film of the present invention, the adhesive layer is preferably non-energy line curable. The reason is that if the adhesive layer is energy ray-curable, there is a case where the adhesive layer cannot be simultaneously cured when the film for forming a protective film is cured by irradiation of the energy ray. When the adhesive layer and the film for forming a protective film are simultaneously cured, the film for forming a protective film after curing and the adhesive layer adhere to the interface to such an extent that they cannot be peeled off. In this case, it is difficult to provide a semiconductor wafer having a protective film for forming a protective film on the back surface (in this specification, a "semiconductor wafer with a protective film" in the present specification). The support sheet is peeled off, and the semiconductor wafer with the protective film cannot be picked up normally. Since the adhesive layer in the support sheet of the present invention is made non-energy line hardenability, such a problem can be surely avoided, and the semiconductor wafer with the protective film can be more easily picked up.

本文對黏著劑層為非能量線硬化性之情形之功效進行了說明,但即便支持片中的與保護膜形成用膜直接接觸之層為黏著劑層以外之層,只要該層為非能量線硬化性,則亦發揮同樣的功效。 The effect of the case where the adhesive layer is non-energy hardening is described herein, but even if the layer in the supporting sheet which is in direct contact with the film for forming a protective film is a layer other than the adhesive layer, as long as the layer is a non-energy line The hardening property also exerts the same effect.

<<黏著劑組成物的製造方法>> <<Manufacturing method of adhesive composition>>

黏著劑組成物(I-1)至黏著劑組成物(I-3)、或者黏著劑組成物(I-4)等黏著劑組成物(I-1)至黏著劑組成物(I-3)以外的黏著劑組成物可藉由將用以構成前述黏著劑組成物之 各成分,亦即前述黏著劑與視需要之前述黏著劑以外的成分加以調配而獲得。 Adhesive composition (I-1) to adhesive composition (I-3), or adhesive composition (I-4), and other adhesive composition (I-1) to adhesive composition (I-3) The adhesive composition other than the adhesive composition can be used to constitute the aforementioned adhesive composition Each component, that is, the above-mentioned adhesive is prepared by blending a component other than the above-mentioned adhesive as needed.

調配各成分時的添加順序並無特別限定,亦可同時添加2種以上之成分。 The order of addition of each component is not particularly limited, and two or more components may be added at the same time.

於使用溶劑之情形時,可藉由下述方式使用:將溶劑與溶劑以外的任一種調配成分混合而將該調配成分預先稀釋;亦可藉由下述方式使用:不將溶劑以外的任一種調配成分預先稀釋而將溶劑與這些調配成分混合。 In the case of using a solvent, it may be used by mixing a solvent with any of the formulation components other than the solvent to preliminarily dilute the formulation component; or by using any of the following solvents: The formulated ingredients are pre-diluted to mix the solvent with these formulated ingredients.

調配時混合各成分之方法並無特別限定,自以下公知的方法中適宜選擇即可:使攪拌子或攪拌翼等旋轉而進行混合之方法;使用混合機而進行混合之方法;施加超音波而進行混合之方法等。 The method of mixing the components at the time of preparation is not particularly limited, and may be appropriately selected from the following known methods: a method of mixing by stirring a stirring blade or a stirring blade, a method of mixing using a mixer, and applying ultrasonic waves. The method of mixing, etc.

關於添加及混合各成分時的溫度及時間,只要不使各調配成分劣化,則並無特別限定,適宜調節即可,溫度較佳為15℃至30℃。 The temperature and time when the components are added and mixed are not particularly limited as long as the respective components are not deteriorated, and it is preferably adjusted, and the temperature is preferably from 15 ° C to 30 ° C.

◎保護膜形成用膜 ◎ Protective film forming film

本發明中,保護膜形成用膜硬化而獲得之保護膜與支持片之間的黏著力為50mN/25mm至1500mN/25mm,較佳為52mN/25mm至1450mN/25mm,更佳為53mN/25mm至1430mN/25mm。藉由前述黏著力為前述下限值以上,拾取附有保護膜的半導體晶片時,目標外的附有保護膜的半導體晶片之拾取得到抑制,從而可高選擇性地拾取目標之附有保護膜的半導體晶片。另外,藉由前述黏著力為前述上 限值以下,拾取附有保護膜的半導體晶片時,半導體晶片之破裂及缺損得到抑制。如此,藉由前述黏著力為特定範圍內,保護膜形成用複合片具有良好的拾取適性。 In the present invention, the adhesion between the protective film obtained by curing the film for forming a protective film and the support sheet is 50 mN/25 mm to 1500 mN/25 mm, preferably 52 mN/25 mm to 1450 mN/25 mm, more preferably 53 mN/25 mm to 1430mN/25mm. When the semiconductor wafer with the protective film is picked up by the adhesive force being at least the above-described lower limit value, the semiconductor wafer with the protective film outside the target is picked up and suppressed, and the target-attached protective film can be picked up with high selectivity. Semiconductor wafer. In addition, by the aforementioned adhesive force, the foregoing Below the limit value, when the semiconductor wafer with the protective film is picked up, the crack and the defect of the semiconductor wafer are suppressed. As described above, the composite sheet for forming a protective film has a good pick-up property by the aforementioned adhesive force within a specific range.

再者,本說明書中,即便保護膜形成用膜硬化後,亦只要維持支持片及保護膜形成用膜之硬化物(換言之,支持片及保護膜)之積層結構,則將該積層結構體稱為「保護膜形成用複合片」。 In the present invention, even if the film for forming a protective film is cured, the laminated structure of the cured product (in other words, the support sheet and the protective film) of the support sheet and the film for forming a protective film is maintained. It is a "composite sheet for forming a protective film".

保護膜與支持片之間的黏著力可利用以下之方法進行測定。 The adhesion between the protective film and the support sheet can be measured by the following method.

亦即,將寬度為25mm且長度為任意之保護膜形成用複合片藉由該保護膜形成用複合片之保護膜形成用膜貼附於被接著體。 In other words, the composite sheet for forming a protective film having a width of 25 mm and having a predetermined length is attached to the adherend by the film for forming a protective film of the composite sheet for forming a protective film.

接著,照射能量線而使保護膜形成用膜硬化,形成保護膜後,自貼附於被接著體之該保護膜將支持片以剝離速度300mm/min剝離。此時的剝離係設為以下所謂180°剝離:以保護膜及支持片相互接觸之面彼此成為180°之角度之方式,使支持片沿該支持片的長度方向(保護膜形成用複合片的長度方向)剝離。並且,測定該180°剝離時的荷重(剝離力),將該荷重(剝離力)的測定值設為前述黏著力(mN/25mm)。 Then, the film for forming a protective film was cured by irradiation with an energy ray, and after forming a protective film, the support sheet was peeled off at a peeling speed of 300 mm/min from the protective film attached to the adherend. In this case, the peeling system is a so-called 180° peeling in which the surface of the protective film and the support sheet are in contact with each other at an angle of 180°, and the support sheet is along the longitudinal direction of the support sheet (the composite sheet for forming a protective film) Stripped in the length direction. Then, the load (peeling force) at the time of 180° peeling was measured, and the measured value of the load (peeling force) was defined as the above-described adhesive force (mN/25 mm).

供於測定之保護膜形成用複合片的長度只要為可穩 定地檢測出黏著力之範圍,則並無特別限定,較佳為100mm至300mm。另外,較佳為於測定時,使保護膜形成用複合片成為貼附於被接著體之狀態,使保護膜形成用複合片的貼附狀態穩定化。 The length of the composite sheet for forming a protective film for measurement is stable as long as it is stable The range in which the adhesion is detected is not particularly limited, and is preferably 100 mm to 300 mm. In addition, it is preferable to stabilize the attached state of the composite sheet for forming a protective film by attaching the composite sheet for forming a protective film to the adherend.

本發明中,保護膜形成用膜與前述支持片之間的黏著力並無特別限定,例如可為80mN/25mm以上等,較佳為100mN/25mm以上,更佳為150mN/25mm以上,尤佳為200mN/25mm以上。藉由前述黏著力為100mN/25mm以上,切割時保護膜形成用膜與支持片之剝離得到抑制,例如背面具備保護膜形成用膜之半導體晶片自支持片之飛散得到抑制。 In the present invention, the adhesive force between the film for forming a protective film and the support sheet is not particularly limited, and may be, for example, 80 mN/25 mm or more, preferably 100 mN/25 mm or more, more preferably 150 mN/25 mm or more. It is 200mN/25mm or more. When the adhesive force is 100 mN/25 mm or more, the peeling of the film for forming a protective film and the support sheet at the time of dicing is suppressed, and for example, the scattering of the semiconductor wafer having the film for forming a protective film on the back surface from the support sheet is suppressed.

另一方面,保護膜形成用膜與前述支持片之間的黏著力的上限值並無特別限定,例如可設為4000mN/25mm、3500mN/25mm、3000mN/25mm等之任一者。但是,這些為一例。 On the other hand, the upper limit of the adhesive force between the film for forming a protective film and the support sheet is not particularly limited, and may be, for example, any of 4000 mN/25 mm, 3500 mN/25 mm, and 3000 mN/25 mm. However, these are examples.

亦即,作為一態樣,保護膜形成用膜與前述支持片之間的黏著力可為80mN/25mm至4000mN/25mm,較佳為100mN/25mm至3500mN/25mm,進而較佳為150mN/25mm至3500mN/25mm,尤佳為200mN/25mm至3000mN/25mm。 That is, as an aspect, the adhesion between the film for forming a protective film and the support sheet may be 80 mN/25 mm to 4000 mN/25 mm, preferably 100 mN/25 mm to 3500 mN/25 mm, and more preferably 150 mN/25 mm. Up to 3500mN/25mm, especially 200mN/25mm to 3000mN/25mm.

關於保護膜形成用膜與支持片之間的黏著力,除了不藉由照射能量線而使供於測定之保護膜形成用膜硬化之方面以外,可利用與上述之保護膜與支持片之間的黏著力 相同的方法進行測定。 The adhesion between the film for forming a protective film and the support sheet can be utilized between the protective film and the support sheet described above, except that the film for forming a protective film to be measured is not cured by irradiation of the energy ray. Adhesion The same method was used for the measurement.

關於上述之保護膜與支持片之間的黏著力、及保護膜形成用膜與支持片之間的黏著力,例如可藉由調節保護膜形成用膜的含有成分的種類及量、支持片中的設置保護膜形成用膜之層的構成材料、該層的表面狀態等而適宜調節。 The adhesion between the protective film and the support sheet and the adhesive force between the film for forming a protective film and the support sheet can be adjusted, for example, by the type and amount of the component contained in the film for forming a protective film, and in the support sheet. The constituent material of the layer of the film for forming a protective film, the surface state of the layer, and the like are appropriately adjusted.

例如,保護膜形成用膜的含有成分的種類及量可藉由後述之保護膜形成用組成物的含有成分的種類及量進行調節。並且,藉由調節保護膜形成用組成物的含有成分中,例如不具有能量線硬化性基之聚合物(b)的種類及含量、填充材料(d)的含量、或交聯劑(f)的含量,可更容易地調節保護膜或保護膜形成用膜與支持片之間的黏著力。 For example, the type and amount of the component contained in the film for forming a protective film can be adjusted by the type and amount of the component contained in the protective film forming composition to be described later. Further, by adjusting the content of the component of the protective film-forming composition, for example, the type and content of the polymer (b) having no energy ray-curable group, the content of the filler (d), or the crosslinking agent (f) The content of the protective film or the film for forming a protective film and the support sheet can be more easily adjusted.

另外,例如,於支持片中的設置保護膜形成用膜之層為黏著劑層之情形時,該層的構成材料可藉由調節黏著劑層的含有成分的種類及量而適宜調節。並且,黏著劑層的含有成分的種類及量可藉由上述黏著劑組成物的含有成分的種類及量而調節。 In the case where the layer of the film for forming a protective film in the support sheet is an adhesive layer, the constituent material of the layer can be appropriately adjusted by adjusting the kind and amount of the component contained in the adhesive layer. Further, the type and amount of the component contained in the adhesive layer can be adjusted by the type and amount of the component contained in the above-mentioned adhesive composition.

另一方面,於支持片中的設置保護膜形成用膜之層為基材之情形時,保護膜或保護膜形成用膜與支持片之間的黏著力,除了利用基材的構成材料以外亦可利用基材的表面狀態進行調節。並且,基材的表面狀態例如可藉由實施 前文作為提高基材與其他層之密接性之處理所列舉之表面處理而進行調節,亦即利用噴砂處理、溶劑處理等之凹凸化處理;電暈放電處理、電子束照射處理、電漿處理、臭氧/紫外線照射處理、火焰處理、鉻酸處理、熱風處理等氧化處理;底塗處理等任一處理。 On the other hand, when the layer of the film for forming a protective film in the support sheet is a substrate, the adhesion between the film for forming the protective film or the protective film and the support sheet is not limited to the constituent material of the substrate. The surface state of the substrate can be adjusted. And, the surface state of the substrate can be implemented, for example, by The foregoing has been adjusted as a surface treatment exemplified by the treatment for improving the adhesion between the substrate and the other layer, that is, by the embossing treatment such as blasting or solvent treatment; corona discharge treatment, electron beam irradiation treatment, plasma treatment, Ozone/ultraviolet irradiation treatment, flame treatment, chromic acid treatment, hot air treatment, etc., oxidation treatment; primer treatment or the like.

保護膜形成用膜可列舉:具有能量線硬化性,例如含有能量線硬化性成分(a)之保護膜形成用膜。 The film for forming a protective film includes a film for forming a protective film having energy ray-curable properties, for example, an energy ray-curable component (a).

能量線硬化性成分(a)較佳為未硬化,較佳為具有黏著性,更佳為未硬化且具有黏著性。 The energy ray-curable component (a) is preferably uncured, preferably adhesive, more preferably uncured and adhesive.

保護膜形成用膜可僅為1層(單層),亦可為2層以上之複數層;於為複數層之情形時,這些複數層相互可相同亦可不同,這些複數層之組合並無特別限定。 The film for forming a protective film may be only one layer (single layer), or may be a plurality of layers of two or more layers; in the case of a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not Specially limited.

保護膜形成用膜的厚度較佳為1μm至100μm,更佳為5μm至75μm,尤佳為5μm至50μm。藉由保護膜形成用膜的厚度為前述下限值以上,可形成保護能力更高的保護膜。另外,藉由保護膜形成用膜的厚度為前述上限值以下,可抑制厚度過厚。 The thickness of the film for forming a protective film is preferably from 1 μm to 100 μm, more preferably from 5 μm to 75 μm, still more preferably from 5 μm to 50 μm. When the thickness of the film for forming a protective film is at least the above lower limit value, a protective film having a higher protective ability can be formed. In addition, when the thickness of the film for forming a protective film is equal to or less than the above upper limit value, the thickness can be suppressed from being too thick.

此處,所謂「保護膜形成用膜的厚度」意指保護膜形成用膜整體的厚度,例如所謂由複數層構成之保護膜形成用膜的厚度意指構成保護膜形成用膜之全部層的合計厚度。 Here, the "thickness of the film for forming a protective film" means the thickness of the entire film for forming a protective film. For example, the thickness of the film for forming a protective film composed of a plurality of layers means the entire layer of the film for forming a protective film. Total thickness.

關於使保護膜形成用膜硬化而形成保護膜時的硬化條件,只要保護膜成為充分發揮該保護膜的功能之程度的硬化度,則並無特別限定,根據保護膜形成用膜的種類適宜選擇即可。 The curing condition when the protective film forming film is cured to form a protective film is not particularly limited as long as the protective film has a degree of hardening that sufficiently exhibits the function of the protective film, and is appropriately selected depending on the type of the protective film forming film. Just fine.

例如,保護膜形成用膜之硬化時,能量線之照度較佳為4mW/cm2至280mW/cm2。並且,前述硬化時,能量線之光量較佳為3mJ/cm2至1000mJ/cm2For example, when the film for forming a protective film is cured, the illuminance of the energy ray is preferably from 4 mW/cm 2 to 280 mW/cm 2 . Further, in the hardening, the amount of light of the energy ray is preferably from 3 mJ/cm 2 to 1000 mJ/cm 2 .

<<保護膜形成用組成物>> <<Constituent for forming a protective film>>

保護膜形成用膜可使用含有該保護膜形成用膜的構成材料之保護膜形成用組成物而形成。例如,於保護膜形成用膜之形成對象面塗敷保護膜形成用組成物,視需要使保護膜形成用組成物乾燥,藉此可於目標部位形成保護膜形成用膜。保護膜形成用組成物中的常溫下不會氣化的成分彼此的含量比率,通常與保護膜形成用膜中的前述成分彼此的含量比率相同。此處,所謂「常溫」如前文所說明。 The film for forming a protective film can be formed using a composition for forming a protective film containing a constituent material of the film for forming a protective film. For example, a composition for forming a protective film is applied to a surface to be formed of a film for forming a protective film, and if necessary, a composition for forming a protective film is dried, whereby a film for forming a protective film can be formed at a target portion. The content ratio of the components which are not vaporized at normal temperature in the composition for forming a protective film is usually the same as the content ratio of the components in the film for forming a protective film. Here, the "normal temperature" is as described above.

利用公知的方法塗敷保護膜形成用組成物即可,例如可列舉使用以下各種塗佈機之方法:氣刀塗佈機、刮刀塗佈機、棒式塗佈機、凹版塗佈機、輥式塗佈機、輥刀塗佈機、簾幕式塗佈機、模具塗佈機、刀式塗佈機、絲網塗佈機、繞線棒式塗佈機、接觸式塗佈機等。 The protective film-forming composition may be applied by a known method, and examples thereof include the following various coaters: air knife coater, knife coater, bar coater, gravure coater, and roll. Coating machine, roll coater, curtain coater, die coater, knife coater, screen coater, wire bar coater, contact coater, and the like.

保護膜形成用組成物的乾燥條件並無特別限定,於保護膜形成用組成物含有後述之溶劑之情形時,較佳為進行加熱乾燥;該情形時,較佳為於例如70℃至130℃且10秒至5分鐘之條件下進行乾燥。 The drying condition of the protective film-forming composition is not particularly limited. When the protective film-forming composition contains a solvent to be described later, it is preferably heated and dried. In this case, it is preferably, for example, 70 ° C to 130 ° C. Drying is carried out for 10 seconds to 5 minutes.

<保護膜形成用組成物(IV-1)> <Construction film forming composition (IV-1)>

作為保護膜形成用組成物,例如可列舉含有前述能量線硬化性成分(a)之保護膜形成用組成物(IV-1)等。 The protective film-forming composition (IV-1) or the like containing the energy ray-curable component (a) is exemplified as the protective film-forming composition.

[能量線硬化性成分(a)] [Energy line hardening component (a)]

能量線硬化性成分(a)係藉由照射能量線而硬化之成分,該成分用以對保護膜形成用膜賦予造膜性或可撓性等。 The energy ray-curable component (a) is a component which is cured by irradiation with an energy ray, and this component is used to impart film-forming property or flexibility to the film for forming a protective film.

作為能量線硬化性成分(a),例如可列舉:具有能量線硬化性基且重量平均分子量為80000至2000000之聚合物(a1)、及具有能量線硬化性基且分子量為100至80000之化合物(a2)。前述聚合物(a1)可至少一部分藉由後述之交聯劑(f)進行交聯,亦可不進行交聯。 Examples of the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2,000,000, and a compound having an energy ray-curable group and having a molecular weight of 100 to 80,000. (a2). At least a part of the polymer (a1) may be crosslinked by a crosslinking agent (f) to be described later, or may not be crosslinked.

再者,本說明書中,所謂「重量平均分子量」只要無特別說明則意指藉由凝膠滲透層析(GPC;Gel Permeation Chromatography)法所測定之聚苯乙烯換算值。 In the present specification, the "weight average molecular weight" means a polystyrene equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.

(具有能量線硬化性基且重量平均分子量為80000至 2000000之聚合物(a1)) (having an energy ray-hardening group and having a weight average molecular weight of 80,000 to 2,000,000 polymer (a1))

作為具有能量線硬化性基且重量平均分子量為80000至2000000之聚合物(a1),例如可列舉丙烯酸系樹脂(a1-1),該丙烯酸系樹脂(a1-1)係丙烯酸系聚合物(a11)與能量線硬化性化合物(a12)聚合而成,前述丙烯酸系聚合物(a11)具有可與其他化合物所具有之基反應之官能基,前述能量線硬化性化合物(a12)具有與前述官能基反應之基及能量線硬化性雙鍵等能量線硬化性基。 Examples of the polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2,000,000 include an acrylic resin (a1-1), and the acrylic resin (a1-1) is an acrylic polymer (a11). And an energy ray-curable compound (a12) having a functional group reactive with a group of another compound, wherein the energy ray-curable compound (a12) has a functional group An energy ray-curable group such as a reaction group and an energy ray-hardening double bond.

作為可與丙烯酸系聚合物(a11)中的其他化合物所具有之基反應之前述官能基,例如可列舉:羥基、羧基、胺基、取代胺基(胺基中的1個或2個氫原子由氫原子以外的基取代而成之基)、環氧基等。但是,就防止半導體晶圓或半導體晶片等的電路腐蝕之方面而言,前述官能基較佳為羧基以外的基。 Examples of the functional group reactive with the other compound in the acrylic polymer (a11) include a hydroxyl group, a carboxyl group, an amine group, and a substituted amine group (one or two hydrogen atoms in the amine group). A group obtained by substituting a group other than a hydrogen atom, an epoxy group or the like. However, in terms of preventing corrosion of a circuit such as a semiconductor wafer or a semiconductor wafer, the functional group is preferably a group other than a carboxyl group.

這些之中,前述官能基較佳為羥基。 Among these, the aforementioned functional group is preferably a hydroxyl group.

.具有官能基之丙烯酸系聚合物(a11) . Acrylic polymer having functional groups (a11)

前述具有官能基之丙烯酸系聚合物(a11)例如可列舉:使前述具有官能基之丙烯酸系單體與前述不具有官能基之丙烯酸系單體進行共聚合而成之聚合物,亦可為除這些單體以外,進而使丙烯酸系單體以外的單體(非丙烯酸系單體)進行共聚合而成之聚合物。 The acrylic polymer (a11) having a functional group may, for example, be a polymer obtained by copolymerizing the acrylic monomer having a functional group and the acrylic monomer having no functional group, or may be a polymer. In addition to these monomers, a polymer obtained by copolymerizing a monomer other than the acrylic monomer (non-acrylic monomer) is further used.

另外,前述丙烯酸系聚合物(a11)可為無規共聚物,亦 可為嵌段共聚物。 In addition, the acrylic polymer (a11) may be a random copolymer, It can be a block copolymer.

作為前述具有官能基之丙烯酸系單體,例如可列舉:含羥基之單體、含羧基之單體、含胺基之單體、含取代胺基之單體、含環氧基之單體等。 Examples of the acrylic monomer having a functional group include a hydroxyl group-containing monomer, a carboxyl group-containing monomer, an amine group-containing monomer, a substituted amine group-containing monomer, and an epoxy group-containing monomer. .

作為前述含羥基之單體,例如可列舉:(甲基)丙烯酸羥基甲酯、(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基丙酯、(甲基)丙烯酸3-羥基丙酯、(甲基)丙烯酸2-羥基丁酯、(甲基)丙烯酸3-羥基丁酯、(甲基)丙烯酸4-羥基丁酯等(甲基)丙烯酸羥基烷基酯;乙烯醇、烯丙醇等非(甲基)丙烯酸系不飽和醇(亦即,不具有(甲基)丙烯醯基骨架之不飽和醇)等。 Examples of the hydroxyl group-containing monomer include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and (meth)acrylic acid 3- Hydroxypropyl ester, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, etc.; hydroxyalkyl (meth)acrylate; vinyl alcohol, A non-(meth)acrylic unsaturated alcohol such as allyl alcohol (that is, an unsaturated alcohol having no (meth)acryl fluorenyl skeleton).

作為前述含羧基之單體,例如可列舉:(甲基)丙烯酸、丁烯酸等乙烯性不飽和單羧酸(亦即,具有乙烯性不飽和鍵之單羧酸);富馬酸、衣康酸、馬來酸、檸康酸等乙烯性不飽和二羧酸(亦即,具有乙烯性不飽和鍵之二羧酸);前述乙烯性不飽和二羧酸的酐;甲基丙烯酸2-羧基乙酯等(甲基)丙烯酸羧基烷基酯等。 Examples of the carboxyl group-containing monomer include an ethylenically unsaturated monocarboxylic acid such as (meth)acrylic acid or crotonic acid (that is, a monocarboxylic acid having an ethylenically unsaturated bond); fumaric acid and clothing; An ethylenically unsaturated dicarboxylic acid such as a benic acid, a maleic acid or a citraconic acid (that is, a dicarboxylic acid having an ethylenically unsaturated bond); an anhydride of the aforementioned ethylenically unsaturated dicarboxylic acid; A carboxyalkyl (meth)acrylate such as carboxyethyl ester.

具有前述官能基之丙烯酸系單體較佳為含羥基之單體、含羧基之單體,更佳為含羥基之單體。 The acrylic monomer having the aforementioned functional group is preferably a hydroxyl group-containing monomer or a carboxyl group-containing monomer, more preferably a hydroxyl group-containing monomer.

構成前述丙烯酸系聚合物(a11)之前述具有官能基之丙烯酸系單體可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The acrylic monomer having the functional group constituting the acrylic polymer (a11) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

作為不具有前述官能基之丙烯酸系單體,較佳為構成烷基酯之烷基為碳數為1至18之鏈狀結構之(甲基)丙烯酸烷基酯等,例如可列舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第二丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸庚酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸異辛酯、(甲基)丙烯酸正辛酯、(甲基)丙烯酸正壬酯、(甲基)丙烯酸異壬酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸十一烷基酯、(甲基)丙烯酸十二烷基酯(亦稱為(甲基)丙烯酸月桂酯)、(甲基)丙烯酸十三烷基酯、(甲基)丙烯酸十四烷基酯(亦稱為(甲基)丙烯酸肉豆蔻酯)、(甲基)丙烯酸十五烷基酯、(甲基)丙烯酸十六烷基酯(亦稱為(甲基)丙烯酸棕櫚酯)、(甲基)丙烯酸十七烷基酯、(甲基)丙烯酸十八烷基酯(亦稱為(甲基)丙烯酸硬脂酯)等。 The acrylic monomer having no such functional group is preferably an alkyl (meth)acrylate having an alkyl group of an alkyl ester and having a chain structure of from 1 to 18, and examples thereof include, for example, Methyl acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, Dibutyl (meth)acrylate, tert-butyl (meth)acrylate, amyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, (meth)acrylic acid 2 -ethylhexyl ester, isooctyl (meth)acrylate, n-octyl (meth)acrylate, n-decyl (meth)acrylate, isodecyl (meth)acrylate, decyl (meth)acrylate, Undecyl (meth)acrylate, dodecyl (meth)acrylate (also known as lauryl (meth)acrylate), tridecyl (meth)acrylate, (meth)acrylic acid Tetradecyl ester (also known as myristyl (meth)acrylate), pentadecyl (meth)acrylate, cetyl (meth)acrylate (also known as (meth)acrylic palm Ester), (meth)acrylic acid Heptadecyl ester, octadecyl (meth) acrylate (also known as stearyl (meth) acrylate), and the like.

另外,作為前述不具有官能基之丙烯酸系單體,例如亦可列舉:(甲基)丙烯酸甲氧基甲酯、(甲基)丙烯酸甲氧基乙酯、(甲基)丙烯酸乙氧基甲酯、(甲基)丙烯酸乙氧基乙酯等含烷氧基烷基之(甲基)丙烯酸酯;包含(甲基)丙烯 酸苯酯等(甲基)丙烯酸芳基酯等之具有芳香族基之(甲基)丙烯酸酯;非交聯性的(甲基)丙烯醯胺及其衍生物;(甲基)丙烯酸N,N-二甲胺基乙酯、(甲基)丙烯酸N,N-二甲胺基丙酯等非交聯性的具有三級胺基之(甲基)丙烯酸酯等。 Further, examples of the acrylic monomer having no functional group include methoxymethyl (meth)acrylate, methoxyethyl (meth)acrylate, and ethoxylated (meth)acrylate. (A) alkoxyalkyl-containing (meth) acrylate such as ester, ethoxyethyl (meth) acrylate; containing (meth) propylene (meth)acrylate having an aromatic group such as aryl (meth)acrylate; non-crosslinkable (meth)acrylamide and its derivative; (meth)acrylic acid N, A non-crosslinkable (meth) acrylate having a tertiary amino group such as N-dimethylaminoethyl ester or N,N-dimethylaminopropyl (meth)acrylate.

構成前述丙烯酸系聚合物(a11)之前述不具有官能基之丙烯酸系單體可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The acrylic monomer having no functional group in the acrylic polymer (a11) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

作為前述非丙烯酸系單體,例如可列舉:乙烯、降冰片烯等烯烴;乙酸乙烯酯;苯乙烯等。 Examples of the non-acrylic monomer include olefins such as ethylene and norbornene; vinyl acetate; and styrene.

構成前述丙烯酸系聚合物(a11)之前述非丙烯酸系單體可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The non-acrylic monomer constituting the acrylic polymer (a11) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

前述丙烯酸系聚合物(a11)中,相對於構成前述丙烯酸系聚合物(a11)之結構單元的總質量,由具有前述官能基之丙烯酸系單體衍生之結構單元之比例(含量)較佳為0.1質量%至50質量%,更佳為1質量%至40質量%,尤佳為3質量%至30質量%。藉由前述比例為此種範圍,可藉由前述丙烯酸系聚合物(a11)與前述能量線硬化性化合物(a12)之共聚合所獲得之前述丙烯酸系樹脂(a1-1)中的能量線硬化性基的含量,將第1保護膜的硬化程度容易地調節為較佳範圍。 In the acrylic polymer (a11), the ratio (content) of the structural unit derived from the acrylic monomer having the functional group is preferably the total mass of the structural unit constituting the acrylic polymer (a11). From 0.1% by mass to 50% by mass, more preferably from 1% by mass to 40% by mass, even more preferably from 3% by mass to 30% by mass. By the above ratio being such a range, the energy ray hardening in the acrylic resin (a1-1) obtained by copolymerization of the acrylic polymer (a11) and the energy ray-curable compound (a12) can be achieved. The content of the base is easily adjusted to a preferred range by the degree of hardening of the first protective film.

構成前述丙烯酸系樹脂(a1-1)之前述丙烯酸系聚合物(a11)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The acrylic polymer (a11) constituting the acrylic resin (a1-1) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

.能量線硬化性化合物(a12) . Energy line hardening compound (a12)

前述能量線硬化性化合物(a12)較佳為具有選自由異氰酸酯基、環氧基及羧基所組成之群組中的1種或2種以上作為可與前述丙烯酸系聚合物(a11)所具有之官能基反應之基,更佳為具有異氰酸酯基作為前述基。於前述能量線硬化性化合物(a12)例如具有異氰酸酯基作為前述基之情形時,該異氰酸酯基與前述具有羥基作為官能基之丙烯酸系聚合物(a11)的該羥基容易反應。 The energy ray-curable compound (a12) preferably has one or more selected from the group consisting of an isocyanate group, an epoxy group, and a carboxyl group, and is compatible with the acrylic polymer (a11). The group of the functional group reaction is more preferably an isocyanate group as the above group. When the energy ray-curable compound (a12) has, for example, an isocyanate group as the above-mentioned group, the isocyanate group is easily reacted with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as a functional group.

前述能量線硬化性化合物(a12)較佳為於1分子中具有1個至5個前述能量線硬化性基,更佳為具有1個至3個前述能量線硬化性基。 The energy ray-curable compound (a12) preferably has one to five of the energy ray-curable groups in one molecule, and more preferably has one to three energy ray-curable groups.

作為前述能量線硬化性化合物(a12),例如可列舉:異氰酸2-甲基丙烯醯氧基乙酯、間-異丙烯基-α,α-二甲基苄基異氰酸酯、甲基丙烯醯基異氰酸酯、異氰酸烯丙酯、異氰酸1,1-(雙丙烯醯氧基甲基)乙酯;藉由二異氰酸酯化合物或多異氰酸酯化合物與(甲基)丙烯酸羥基乙酯之反應而獲得之丙烯醯基單異氰酸酯化合物;藉由二異氰酸酯 化合物或多異氰酸酯化合物、多元醇化合物及(甲基)丙烯酸羥基乙酯之反應而獲得之丙烯醯基單異氰酸酯化合物等。 Examples of the energy ray-curable compound (a12) include 2-methylpropenyloxyethyl isocyanate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, and methacryl Isocyanate, allyl isocyanate, 1,1-(bispropenyloxymethyl)ethyl isocyanate; by reaction of a diisocyanate compound or a polyisocyanate compound with hydroxyethyl (meth)acrylate Acrylate-based monoisocyanate compound obtained; by diisocyanate An acrylonitrile monoisocyanate compound obtained by a reaction of a compound or a polyisocyanate compound, a polyol compound, and a hydroxyethyl (meth)acrylate.

這些之中,前述能量線硬化性化合物(a12)較佳為異氰酸2-甲基丙烯醯氧基乙酯。 Among these, the energy ray-curable compound (a12) is preferably 2-methylpropenyloxyethyl isocyanate.

構成前述丙烯酸系樹脂(a1-1)之前述能量線硬化性化合物(a12)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The energy ray-curable compound (a12) constituting the acrylic resin (a1-1) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

丙烯酸系樹脂(a1-1)的含量相對於保護膜形成用組成物(IV-1)中的溶劑以外的總質量,較佳為1質量%至40質量%,更佳為2質量%至30質量%,尤佳為3質量%至20質量%。 The content of the acrylic resin (a1-1) is preferably from 1% by mass to 40% by mass, and more preferably from 2% by mass to 30%, based on the total mass of the solvent in the protective film-forming composition (IV-1). The mass% is particularly preferably from 3% by mass to 20% by mass.

前述丙烯酸系樹脂(a1-1)中,源自前述能量線硬化性化合物(a12)之能量線硬化性基的含量相對於源自前述丙烯酸系聚合物(a11)之前述官能基的含量之比例較佳為20莫耳%至120莫耳%,更佳為35莫耳%至100莫耳%,尤佳為50莫耳%至100莫耳%。藉由前述含量比例為此種範圍,由硬化所形成之保護膜的接著力變得更大。再者,於前述能量線硬化性化合物(a12)為一官能(於1分子中具有1個前述基)化合物之情形時,前述含量之比例的上限值成為100莫耳%,但於前述能量線硬化性化合物(a12)為多官能(於1分 子中具有2個以上前述基)化合物之情形時,前述含量之比例的上限值有時超過100莫耳%。 In the acrylic resin (a1-1), the ratio of the content of the energy ray-curable group derived from the energy ray-curable compound (a12) to the content of the aforementioned functional group derived from the acrylic polymer (a11) It is preferably from 20 mol% to 120 mol%, more preferably from 35 mol% to 100 mol%, still more preferably from 50 mol% to 100 mol%. By the above content ratio being such a range, the adhesion force of the protective film formed by hardening becomes larger. In the case where the energy ray-curable compound (a12) is a monofunctional compound (having one of the above-mentioned groups in one molecule), the upper limit of the ratio of the content is 100 mol%, but the energy is The linear curable compound (a12) is polyfunctional (in 1 minute) In the case where the compound has two or more of the above-mentioned groups, the upper limit of the ratio of the above content may exceed 100 mol%.

前述聚合物(a1)的重量平均分子量(Mw)較佳為100000至2000000,更佳為300000至1500000。 The weight average molecular weight (Mw) of the aforementioned polymer (a1) is preferably from 100,000 to 2,000,000, more preferably from 300,000 to 1,500,000.

於前述聚合物(a1)的至少一部分藉由交聯劑(f)進行交聯之情形時,前述聚合物(a1)可使不符合上述說明之構成前述丙烯酸系聚合物(a11)之任一單體且具有與交聯劑(f)反應之基之單體進行聚合,在與上述交聯劑(f)反應之基中進行交聯,亦可在源自前述能量線硬化性化合物(a12)之與前述官能基反應之基中進行交聯。 When at least a part of the polymer (a1) is crosslinked by a crosslinking agent (f), the polymer (a1) may be any one of the acrylic polymers (a11) which does not conform to the above description. The monomer having a monomer reactive with the crosslinking agent (f) is polymerized, crosslinked in a group reactive with the above crosslinking agent (f), or may be derived from the aforementioned energy ray-curable compound (a12) Crosslinking is carried out in the group reactive with the aforementioned functional groups.

保護膜形成用組成物(IV-1)及保護膜形成用膜所含有之前述聚合物(a1)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The polymer (a1) to be contained in the protective film-forming composition (IV-1) and the film for forming a protective film may be one type or two or more types. When two or more types are used, these combinations may be used. And the ratio can be arbitrarily chosen.

(具有能量線硬化性基且分子量為100至80000之化合物(a2)) (Compound (a2) having an energy ray-hardening group and having a molecular weight of 100 to 80,000)

作為具有能量線硬化性基且分子量為100至80000之化合物(a2)所具有之能量線硬化性基,可列舉包含能量線硬化性雙鍵之基,作為較佳的該基,可列舉(甲基)丙烯醯基、乙烯基等。 Examples of the energy ray-curable group of the compound (a2) having an energy ray-curable group and having a molecular weight of from 100 to 80,000 include a group containing an energy ray-curable double bond, and preferred examples of the group include (A) Base) acrylonitrile, vinyl, and the like.

作為前述化合物(a2),只要滿足上述條件,則並無特別限定,可列舉:具有能量線硬化性基之低分子量化合物、具有能量線硬化性基之環氧樹脂、具有能量線硬化性基之酚樹脂等。 The compound (a2) is not particularly limited as long as it satisfies the above conditions, and examples thereof include a low molecular weight compound having an energy ray-curable group, an epoxy resin having an energy ray-curable group, and an energy ray-curable group. Phenolic resin, etc.

前述化合物(a2)中,作為具有能量線硬化性基之低分子量化合物,例如可列舉多官能之單體或低聚物等,較佳為具有(甲基)丙烯醯基之丙烯酸酯系化合物。 In the compound (a2), the low molecular weight compound having an energy ray-curable group may, for example, be a polyfunctional monomer or oligomer, and is preferably an acrylate-based compound having a (meth) acrylonitrile group.

作為前述丙烯酸酯系化合物,例如可列舉:甲基丙烯酸2-羥基-3-(甲基)丙烯醯氧基丙酯、聚乙二醇二(甲基)丙烯酸酯、丙氧基化乙氧基化雙酚A二(甲基)丙烯酸酯、2,2-雙[4-((甲基)丙烯醯氧基聚乙氧基)苯基]丙烷、乙氧基化雙酚A二(甲基)丙烯酸酯、2,2-雙[4-((甲基)丙烯醯氧基二乙氧基)苯基]丙烷、9,9-雙[4-(2-(甲基)丙烯醯氧基乙氧基)苯基]茀、2,2-雙[4-((甲基)丙烯醯氧基聚丙氧基)苯基]丙烷、三環癸烷二甲醇二(甲基)丙烯酸酯(亦稱為三環癸烷二羥甲基二(甲基)丙烯酸酯)、1,10-癸二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、二丙二醇二(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、聚丁二醇二(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、2,2-雙[4-((甲基)丙烯醯氧基乙氧基)苯基]丙烷、新戊二醇二(甲基)丙烯酸酯、乙氧基化聚丙二醇二(甲基)丙烯酸酯、2-羥基-1,3-二 (甲基)丙烯醯氧基丙烷等2官能(甲基)丙烯酸酯;異氰脲酸三(2-(甲基)丙烯醯氧基乙基)酯、ε-己內酯改性異氰脲酸三-(2-(甲基)丙烯醯氧基乙基)酯、乙氧基化甘油三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、二-三羥甲基丙烷四(甲基)丙烯酸酯、乙氧基化季戊四醇四(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇聚(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯等多官能(甲基)丙烯酸酯;(甲基)丙烯酸胺基甲酸酯低聚物等多官能(甲基)丙烯酸酯低聚物等。 Examples of the acrylate-based compound include 2-hydroxy-3-(meth)acryloxypropyl methacrylate, polyethylene glycol di(meth)acrylate, and propoxylated ethoxylate. Bisphenol A di(meth)acrylate, 2,2-bis[4-((meth)propenyloxypolyethoxy)phenyl]propane, ethoxylated bisphenol A di(methyl) Acrylate, 2,2-bis[4-((meth)propenyloxydiethoxy)phenyl]propane, 9,9-bis[4-(2-(methyl)propenyloxy) Ethoxy)phenyl]anthracene, 2,2-bis[4-((meth)propenyloxypolypropoxy)phenyl]propane, tricyclodecane dimethanol di(meth)acrylate (also It is called tricyclodecane dimethylol di(meth) acrylate), 1,10-nonanediol di(meth) acrylate, 1,6-hexanediol di(meth) acrylate, 1 , 9-decanediol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, polybutylene glycol di( Methyl) acrylate, ethylene glycol di(meth) acrylate, diethylene glycol di(meth) acrylate, triethylene glycol di(meth) acrylate, 2,2-bis [4-( (Meth) propylene methoxy ethoxy) phenyl] propane, neopentyl glycol di (meth) acrylate, ethoxylated polypropylene glycol di (meth) acrylate, 2-hydroxy-1, 3 -two Bifunctional (meth) acrylate such as (meth) propylene decyloxypropane; tris(2-(methyl) propylene oxyethyl) isocyanurate, ε-caprolactone modified isocyanurate Tris-(2-(methyl)propenyloxyethyl) acid, ethoxylated glycerol tri(meth) acrylate, pentaerythritol tri(meth) acrylate, trimethylolpropane tris(methyl) Acrylate, di-trimethylolpropane tetra(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol poly(meth)acrylate A polyfunctional (meth) acrylate oligomer such as dipentaerythritol hexa(meth) acrylate or a polyfunctional (meth) acrylate oligomer such as a (meth) acrylate urethane oligomer.

前述化合物(a2)中,作為具有能量線硬化性基之環氧樹脂、具有能量線硬化性基之酚樹脂,例如可使用「日本特開2013-194102號公報」中的段落0043等中所記載之樹脂。此種樹脂亦符合構成後述之熱硬化性成分(h)之樹脂,但本發明中視作前述化合物(a2)。 In the above-mentioned compound (a2), as the epoxy resin having an energy ray-curable group or a phenol resin having an energy ray-curable group, for example, paragraph 0043 in "Japanese Patent Laid-Open Publication No. 2013-194102" can be used. Resin. Such a resin also conforms to the resin constituting the thermosetting component (h) to be described later, but in the present invention, the compound (a2) is regarded.

前述化合物(a2)較佳為重量平均分子量為100至30000,更佳為300至10000。 The aforementioned compound (a2) preferably has a weight average molecular weight of from 100 to 30,000, more preferably from 300 to 10,000.

保護膜形成用組成物(IV-1)及保護膜形成用膜所含有之前述化合物(a2)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The compound (a2) to be contained in the protective film-forming composition (IV-1) and the film for forming a protective film may be one type or two or more types. In the case of two or more types, these combinations and The ratio can be arbitrarily chosen.

[不具有能量線硬化性基之聚合物(b)] [Polymer without energy line hardening group (b)]

於保護膜形成用組成物(IV-1)及保護膜形成用膜含有前述化合物(a2)作為前述能量線硬化性成分(a)之情形時,較佳為進而亦含有不具有能量線硬化性基之聚合物(b)。 When the protective film-forming composition (IV-1) and the film for forming a protective film contain the compound (a2) as the energy ray-curable component (a), it is preferable to further contain no energy ray curability. Base polymer (b).

前述聚合物(b)可至少一部分藉由交聯劑(f)進行交聯,亦可不進行交聯。 The polymer (b) may be crosslinked at least in part by the crosslinking agent (f) or may not be crosslinked.

作為不具有能量線硬化性基之聚合物(b),例如可列舉:丙烯酸系聚合物、苯氧基樹脂、胺基甲酸酯樹脂、聚酯、橡膠系樹脂、丙烯酸胺基甲酸酯樹脂、聚乙烯醇(PVA)、丁醛樹脂、聚酯胺基甲酸酯樹脂等。 Examples of the polymer (b) having no energy ray-curable group include an acrylic polymer, a phenoxy resin, a urethane resin, a polyester, a rubber resin, and an urethane urethane resin. , polyvinyl alcohol (PVA), butyral resin, polyester urethane resin, and the like.

這些之中,前述聚合物(b)較佳為丙烯酸系聚合物(以下,有時簡稱為「丙烯酸系聚合物(b-1)」)。 Among these, the polymer (b) is preferably an acrylic polymer (hereinafter, simply referred to as "acrylic polymer (b-1)").

丙烯酸系聚合物(b-1)可為公知的聚合物,例如可為1種丙烯酸系單體的均聚物,亦可為2種以上丙烯酸系單體的共聚物,還可為1種或2種以上丙烯酸系單體與1種或2種以上除丙烯酸系單體以外的單體(非丙烯酸系單體)之共聚物。 The acrylic polymer (b-1) may be a known polymer, and may be, for example, a homopolymer of one type of acrylic monomer, or a copolymer of two or more types of acrylic monomers, or one type or A copolymer of two or more kinds of acrylic monomers and one or more monomers (non-acrylic monomers) other than the acrylic monomers.

作為構成丙烯酸系聚合物(b-1)之前述丙烯酸系單體,例如可列舉:(甲基)丙烯酸烷基酯、具有環狀骨架之(甲基)丙烯酸酯、含縮水甘油基之(甲基)丙烯酸酯、含羥基之(甲基)丙烯酸酯、含取代胺基之(甲基)丙烯酸酯等。此 處,所謂「取代胺基」意指胺基中的1個或2個氫原子由氫原子以外的基取代而成之基。 Examples of the acrylic monomer constituting the acrylic polymer (b-1) include an alkyl (meth)acrylate, a (meth)acrylate having a cyclic skeleton, and a glycidyl group (A). Acrylate, hydroxyl group-containing (meth) acrylate, substituted amino group-containing (meth) acrylate, and the like. this The term "substituted amino group" means a group in which one or two hydrogen atoms in the amine group are substituted by a group other than a hydrogen atom.

作為前述(甲基)丙烯酸烷基酯,較佳為構成烷基酯之烷基為碳數為1至18之鏈狀結構之(甲基)丙烯酸烷基酯等,例如可列舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第二丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸庚酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸異辛酯、(甲基)丙烯酸正辛酯、(甲基)丙烯酸正壬酯、(甲基)丙烯酸異壬酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸十一烷基酯、(甲基)丙烯酸十二烷基酯(亦稱為(甲基)丙烯酸月桂酯)、(甲基)丙烯酸十三烷基酯、(甲基)丙烯酸十四烷基酯(亦稱為(甲基)丙烯酸肉豆蔻酯)、(甲基)丙烯酸十五烷基酯、(甲基)丙烯酸十六烷基酯(亦稱為(甲基)丙烯酸棕櫚酯)、(甲基)丙烯酸十七烷基酯、(甲基)丙烯酸十八烷基酯(亦稱為(甲基)丙烯酸硬脂酯)等。 The alkyl (meth)acrylate is preferably an alkyl (meth)acrylate having an alkyl group of an alkyl ester and having a chain structure of from 1 to 18, and examples thereof include (meth) ) methyl acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, ( Dibutyl methacrylate, tert-butyl (meth)acrylate, amyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, 2-(meth)acrylate Ethylhexyl ester, isooctyl (meth)acrylate, n-octyl (meth)acrylate, n-decyl (meth)acrylate, isodecyl (meth)acrylate, decyl (meth)acrylate, ( Undecyl (meth) acrylate, lauryl (meth) acrylate (also known as lauryl (meth) acrylate), tridecyl (meth) acrylate, (meth) acrylate Tetraalkyl ester (also known as myristyl (meth)acrylate), pentadecyl (meth)acrylate, cetyl (meth)acrylate (also known as palmityl (meth)acrylate ), heptadecyl (meth) acrylate , (Meth) acrylate, stearyl acrylate (also known as (meth) acrylate, stearyl acrylate) and the like.

作為前述具有環狀骨架之(甲基)丙烯酸酯,例如可列舉:(甲基)丙烯酸異冰片酯、(甲基)丙烯酸二環戊酯等(甲基)丙烯酸環烷基酯;(甲基)丙烯酸苄酯等(甲基)丙烯酸芳烷基酯;(甲基)丙烯酸二環戊烯酯等(甲基)丙烯酸環烯基酯;(甲基)丙烯酸二環戊烯氧基乙酯等(甲基)丙烯酸環烯 氧基烷基酯等。 Examples of the (meth) acrylate having a cyclic skeleton include (meth)acrylic acid cycloalkyl esters such as isobornyl (meth)acrylate and dicyclopentanyl (meth)acrylate; Arylalkyl (meth)acrylate such as benzyl acrylate; cycloalkenyl (meth) acrylate such as dicyclopentenyl (meth)acrylate; dicyclopentenyloxyethyl (meth)acrylate (meth)acrylic acid cycloolefin Oxyalkyl esters and the like.

作為前述含縮水甘油基之(甲基)丙烯酸酯,例如可列舉(甲基)丙烯酸縮水甘油酯等。 Examples of the glycidyl group-containing (meth) acrylate include glycidyl (meth)acrylate and the like.

作為前述含羥基之(甲基)丙烯酸酯,例如可列舉:(甲基)丙烯酸羥基甲酯、(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基丙酯、(甲基)丙烯酸3-羥基丙酯、(甲基)丙烯酸2-羥基丁酯、(甲基)丙烯酸3-羥基丁酯、(甲基)丙烯酸4-羥基丁酯等。 Examples of the hydroxyl group-containing (meth) acrylate include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and (methyl). 3 - hydroxypropyl acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like.

作為前述含取代胺基之(甲基)丙烯酸酯,例如可列舉(甲基)丙烯酸N-甲基胺基乙酯等。 Examples of the (meth) acrylate containing a substituted amino group include N-methylaminoethyl (meth) acrylate and the like.

作為構成丙烯酸系聚合物(b-1)之前述非丙烯酸系單體,例如可列舉:乙烯、降冰片烯等烯烴;乙酸乙烯酯;苯乙烯等。 The non-acrylic monomer constituting the acrylic polymer (b-1) may, for example, be an olefin such as ethylene or norbornene; vinyl acetate; styrene or the like.

作為至少一部分藉由交聯劑(f)進行交聯且不具有前述能量線硬化性基之聚合物(b),例如可列舉:前述聚合物(b)中的反應性官能基與交聯劑(f)反應之聚合物。 As the polymer (b) which is crosslinked by at least a part of the crosslinking agent (f) and does not have the aforementioned energy ray-curable group, for example, a reactive functional group and a crosslinking agent in the above polymer (b) (f) a polymer of the reaction.

前述反應性官能基根據交聯劑(f)之種類等適宜選擇即可,並無特別限定。例如於交聯劑(f)為多異氰酸酯化合物之情形時,作為前述反應性官能基,可列舉羥基、羧基、胺基等;這些之中,較佳為與異氰酸酯基之反應性高之羥基。另外,於交聯劑(f)為環氧系化合物之情形時,作為 前述反應性官能基,可列舉羧基、胺基、醯胺基等,這些之中,較佳為與環氧基之反應性高之羧基。但是,就防止半導體晶圓或半導體晶片的電路腐蝕之方面而言,前述反應性官能基較佳為羧基以外的基。 The reactive functional group is appropriately selected depending on the type of the crosslinking agent (f), and the like, and is not particularly limited. For example, when the crosslinking agent (f) is a polyisocyanate compound, the reactive functional group may, for example, be a hydroxyl group, a carboxyl group or an amine group; and among these, a hydroxyl group having high reactivity with an isocyanate group is preferred. Further, when the crosslinking agent (f) is an epoxy compound, Examples of the reactive functional group include a carboxyl group, an amine group, and a guanamine group. Among them, a carboxyl group having high reactivity with an epoxy group is preferred. However, in terms of preventing corrosion of a circuit of a semiconductor wafer or a semiconductor wafer, the reactive functional group is preferably a group other than a carboxyl group.

作為具有前述反應性官能基且不具有能量線硬化性基之聚合物(b),例如可列舉:至少使具有前述反應性官能基之單體進行聚合而獲得之聚合物。於丙烯酸系聚合物(b-1)之情形時,作為構成該丙烯酸系聚合物(b-1)之單體所列舉之前述丙烯酸系單體及非丙烯酸系單體的任一者或兩者,使用具有前述反應性官能基之單體即可。例如作為具有羥基作為反應性官能基之前述聚合物(b),例如可列舉使含羥基之(甲基)丙烯酸酯進行聚合而獲得之聚合物;除此以外,亦可列舉使上文所列舉之前述丙烯酸系單體或非丙烯酸系單體中1個或2個以上氫原子被前述反應性官能基取代而成之單體進行聚合而獲得之聚合物。 The polymer (b) having the reactive functional group and having no energy ray-curable group may, for example, be a polymer obtained by polymerizing at least a monomer having the reactive functional group. In the case of the acrylic polymer (b-1), either or both of the acrylic monomer and the non-acrylic monomer exemplified as the monomer constituting the acrylic polymer (b-1) A monomer having the aforementioned reactive functional group may be used. For example, as the polymer (b) having a hydroxyl group as a reactive functional group, for example, a polymer obtained by polymerizing a hydroxyl group-containing (meth) acrylate may be mentioned, and other examples thereof may be mentioned. A polymer obtained by polymerizing a monomer in which one or two or more hydrogen atoms of the acrylic monomer or non-acrylic monomer are substituted with the reactive functional group.

具有反應性官能基之前述聚合物(b)中,相對於構成前述聚合物(b)之結構單元的總質量,由具有反應性官能基之單體衍生之結構單元之比例(含量)較佳為1質量%至25質量%,更佳為2質量%至20質量%。藉由前述比例為此種範圍,前述聚合物(b)中,交聯程度成為更佳的範圍。 In the above polymer (b) having a reactive functional group, the ratio (content) of the structural unit derived from the monomer having a reactive functional group is preferably relative to the total mass of the structural unit constituting the polymer (b). It is 1% by mass to 25% by mass, more preferably 2% by mass to 20% by mass. By the above ratio being such a range, in the polymer (b), the degree of crosslinking is in a more preferable range.

就保護膜形成用組成物(IV-1)的造膜性更良好之方面 而言,不具有能量線硬化性基之聚合物(b)的重量平均分子量(Mw)較佳為10000至2000000,更佳為100000至1500000。 The film forming property of the protective film forming composition (IV-1) is more excellent. The weight average molecular weight (Mw) of the polymer (b) having no energy ray-curable group is preferably from 10,000 to 2,000,000, more preferably from 100,000 to 1,500,000.

保護膜形成用組成物(IV-1)及保護膜形成用膜所含有之不具有能量線硬化性基之聚合物(b)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The polymer (b) having no energy ray-curable group contained in the protective film-forming composition (IV-1) and the film for forming a protective film may be used alone or in combination of two or more kinds; In the above cases, these combinations and ratios can be arbitrarily selected.

作為保護膜形成用組成物(IV-1),可列舉含有前述聚合物(a1)及前述化合物(a2)的任一者或兩者之組成物。並且,於保護膜形成用組成物(IV-1)含有前述化合物(a2)之情形時,較佳為亦進一步含有不具有能量線硬化性基之聚合物(b);該情形時,亦較佳為進一步含有前述(a1)。另外,保護膜形成用組成物(IV-1)亦可不含有前述化合物(a2),且一併含有前述聚合物(a1)及不具有能量線硬化性基之聚合物(b)。 The composition (IV-1) for forming a protective film includes a composition containing either or both of the polymer (a1) and the compound (a2). Further, when the protective film-forming composition (IV-1) contains the compound (a2), it is preferred to further contain the polymer (b) having no energy ray-curable group; in this case, Jia further contains the aforementioned (a1). In addition, the protective film-forming composition (IV-1) may not contain the compound (a2), and may contain the polymer (a1) and the polymer (b) having no energy ray-curable group.

於保護膜形成用組成物(IV-1)含有前述聚合物(a1)、前述化合物(a2)及不具有能量線硬化性基之聚合物(b)之情形時,保護膜形成用組成物(IV-1)中的前述化合物(a2)的含量相對於前述聚合物(a1)及不具有能量線硬化性基之聚合物(b)的合計含量100質量份,較佳為10質量份至400質量份,更佳為30質量份至350質量份。 When the protective film-forming composition (IV-1) contains the polymer (a1), the compound (a2), and the polymer (b) having no energy ray-curable group, the protective film-forming composition ( The content of the compound (a2) in the above IV-1) is preferably from 10 parts by mass to 100 parts by mass based on 100 parts by mass of the total of the polymer (a1) and the polymer (b) having no energy ray-curable group. The parts by mass are more preferably from 30 parts by mass to 350 parts by mass.

保護膜形成用組成物(IV-1)中,相對於溶劑以外的成分的合計含量之前述能量線硬化性成分(a)及不具有能量線硬化性基之聚合物(b)的合計含量(亦即,相對於保護膜形成用膜的總質量之前述能量線硬化性成分(a)及不具有能量線硬化性基之聚合物(b)的合計含量(質量))較佳為5質量%至90質量%,更佳為10質量%至80質量%,尤佳為15質量%至70質量%。藉由前述合計含量之比例為此種範圍,保護膜形成用膜的能量線硬化性變得更良好。 In the protective film-forming composition (IV-1), the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group in terms of the total content of components other than the solvent ( In other words, the total content (mass) of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group with respect to the total mass of the film for forming a protective film is preferably 5% by mass. It is 90% by mass, more preferably 10% by mass to 80% by mass, and particularly preferably 15% by mass to 70% by mass. When the ratio of the total content is in such a range, the energy ray hardenability of the film for forming a protective film becomes better.

於保護膜形成用組成物(IV-1)含有前述能量線硬化性成分(a)及不具有能量線硬化性基之聚合物(b)之情形時,保護膜形成用組成物(IV-1)及保護膜形成用膜中,前述聚合物(b)的含量相對於能量線硬化性成分(a)的含量100質量份,較佳為3質量份至160質量份,更佳為6質量份至130質量份。藉由前述聚合物(b)的前述含量為此種範圍,保護膜形成用膜的能量線硬化性變得更良好。 When the protective film-forming composition (IV-1) contains the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group, the protective film-forming composition (IV-1) In the film for forming a protective film, the content of the polymer (b) is preferably from 3 parts by mass to 160 parts by mass, more preferably 6 parts by mass, per 100 parts by mass of the content of the energy ray-curable component (a). Up to 130 parts by mass. When the content of the polymer (b) is in such a range, the energy ray hardenability of the film for forming a protective film becomes better.

保護膜形成用組成物(IV-1)中,除了能量線硬化性成分(a)及不具有能量線硬化性基之聚合物(b)以外,亦可根據目的含有選自由光聚合起始劑(c)、填充材料(d)、偶合劑(e)、交聯劑(f)、著色劑(g)、熱硬化性成分(h)、及通用添加劑(z)所組成之群組中的1種或2種以上。例如藉由使用含有前述能量線硬化性成分(a)及熱硬化性成分(h)之保護 膜形成用組成物(IV-1),所形成之保護膜形成用膜藉由加熱而對被接著體之接著力提高,由該保護膜形成用膜形成之保護膜的強度亦提高。 In the protective film-forming composition (IV-1), in addition to the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group, it may be selected from a photopolymerization initiator according to the purpose. (c), a filler (d), a coupling agent (e), a crosslinking agent (f), a coloring agent (g), a thermosetting component (h), and a general additive (z) One or two or more. For example, by using the protection containing the aforementioned energy ray hardening component (a) and thermosetting component (h) In the film-forming composition (IV-1), the film for forming a protective film to be formed is improved in adhesion to the adherend by heating, and the strength of the protective film formed of the film for forming a protective film is also improved.

[光聚合起始劑(c)] [Photopolymerization initiator (c)]

作為光聚合起始劑(c),例如可列舉:安息香、安息香甲醚、安息香乙醚、安息香異丙醚、安息香異丁醚、安息香苯甲酸、安息香苯甲酸甲酯、安息香二甲基縮酮等安息香化合物;苯乙酮、2-羥基-2-甲基-1-苯基-丙烷-1-酮、2,2-二甲氧基-1,2-二苯基乙烷-1-酮等苯乙酮化合物;雙(2,4,6-三甲基苯甲醯基)苯基氧化膦、2,4,6-三甲基苯甲醯基二苯基氧化膦等醯基氧化膦化合物;苄基苯基硫化物、一硫化四甲基秋蘭姆等硫化物化合物;1-羥基環己基苯基酮等α-酮醇化合物;偶氮雙異丁腈等偶氮化合物;二茂鈦等二茂鈦化合物;噻噸酮等噻噸酮化合物;二苯甲酮、2-(二甲基胺基)-1-(4-嗎啉(morpholine)基苯基)-2-苄基-1-丁酮、乙酮,1-[9-乙基-6-(2-甲基苯甲醯基)-9H-咔唑-3-基]-,1-(O-乙醯基肟)等二苯甲酮化合物;過氧化物化合物;二乙醯等二酮化合物;苯偶醯;二苯偶醯;2,4-二乙基噻噸酮:1,2-二苯基甲烷;2-羥基-2-甲基-1-[4-(1-甲基乙烯基)苯基]丙酮;2-氯蒽醌等。 Examples of the photopolymerization initiator (c) include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin benzoic acid methyl ester, benzoin dimethyl ketal, and the like. Benzoin compounds; acetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, etc. Acetophenone compound; fluorenylphosphine oxide compound such as bis(2,4,6-trimethylbenzylidene)phenylphosphine oxide or 2,4,6-trimethylbenzimidyldiphenylphosphine oxide a sulfonate compound such as benzyl phenyl sulfide or tetramethyl thiuram monosulfide; an α-keto alcohol compound such as 1-hydroxycyclohexyl phenyl ketone; an azo compound such as azobisisobutyronitrile; Isoferrocene compound; thioxanthone compound such as thioxanthone; benzophenone, 2-(dimethylamino)-1-(4-morpholineylphenyl)-2-benzyl- 1-butanone, ethyl ketone, 1-[9-ethyl-6-(2-methylbenzhydryl)-9H-indazol-3-yl]-, 1-(O-ethylindenyl) Equivalent benzophenone compound; peroxide compound; diketone compound such as diethyl hydrazine; benzoin; diphenyl oxime; 2,4-diethyl Thioxanthone: 1,2-diphenyl methane; hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone; 2-chloro-anthraquinone.

另外,作為光聚合起始劑(c),例如亦可使用1-氯蒽醌等醌化合物;胺等光增感劑等。 Further, as the photopolymerization initiator (c), for example, a ruthenium compound such as 1-chloroindole or a photosensitizer such as an amine can be used.

保護膜形成用組成物(IV-1)所含有之光聚合起始劑(c)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The photopolymerization initiator (c) contained in the protective film-forming composition (IV-1) may be one type or two or more types. When two or more types are used, these combinations and ratios may be arbitrary. select.

於使用光聚合起始劑(c)之情形時,保護膜形成用組成物(IV-1)中,光聚合起始劑(c)的含量相對於能量線硬化性化合物(a)的含量100質量份,較佳為0.01質量份至20質量份,更佳為0.03質量份至10質量份,尤佳為0.05質量份至5質量份。 In the case of using the photopolymerization initiator (c), the content of the photopolymerization initiator (c) in the composition for forming a protective film (IV-1) relative to the content of the energy ray-curable compound (a) is 100. The parts by mass are preferably from 0.01 part by mass to 20 parts by mass, more preferably from 0.03 part by mass to 10 parts by mass, still more preferably from 0.05 part by mass to 5 parts by mass.

[填充材料(d)] [filler (d)]

藉由保護膜形成用膜含有填充材料(d),保護膜形成用膜硬化而獲得之保護膜容易調整熱膨脹係數,使該熱膨脹係數對於保護膜之形成對象物而言最佳化,藉此使用保護膜形成用複合片所獲得之封裝的可靠性進一步提高。另外,藉由保護膜形成用膜含有填充材料(d),可降低保護膜的吸濕率,或提高散熱性。 When the film for forming a protective film contains the filler (d), the protective film obtained by curing the film for forming a protective film is easily adjusted in thermal expansion coefficient, and the coefficient of thermal expansion is optimized for the object to be formed of the protective film. The reliability of the package obtained by the composite sheet for forming a protective film is further improved. Further, when the film for forming a protective film contains the filler (d), the moisture absorption rate of the protective film can be lowered or the heat dissipation property can be improved.

作為填充材料(d),例如可列舉由導熱性材料構成之材料。 As the filler (d), for example, a material composed of a thermally conductive material can be cited.

填充材料(d)可為有機填充材料及無機填充材料之任一者,較佳為無機填充材料。 The filler (d) may be any of an organic filler and an inorganic filler, and is preferably an inorganic filler.

作為較佳的無機填充材料,例如可列舉:二氧化矽、氧化鋁、滑石、碳酸鈣、鈦白、鐵丹、碳化矽、氮化硼等 的粉末;將這些無機填充材料球形化而成之珠粒;這些無機填充材料的表面改質品;這些無機填充材料的單晶纖維;玻璃纖維等。 Examples of preferred inorganic fillers include cerium oxide, aluminum oxide, talc, calcium carbonate, titanium white, iron oxide, tantalum carbide, boron nitride, and the like. Powder; beads obtained by spheroidizing these inorganic filler materials; surface modification products of these inorganic filler materials; single crystal fibers of these inorganic filler materials; glass fibers and the like.

這些之中,無機填充材料較佳為二氧化矽或氧化鋁。 Among these, the inorganic filler is preferably cerium oxide or aluminum oxide.

填充材料(d)的平均粒徑並無特別限定,較佳為0.01μm至20μm,更佳為0.1μm至15μm,尤佳為0.3μm至10μm。藉由填充材料(d)的平均粒徑為此種範圍,可維持對保護膜之形成對象物之接著性,並且可抑制保護膜之光之透過率之降低。 The average particle diameter of the filler (d) is not particularly limited, but is preferably from 0.01 μm to 20 μm, more preferably from 0.1 μm to 15 μm, still more preferably from 0.3 μm to 10 μm. When the average particle diameter of the filler (d) is in such a range, the adhesion to the object to be formed of the protective film can be maintained, and the decrease in the transmittance of light of the protective film can be suppressed.

再者,本說明書中,所謂「平均粒徑」只要無特別說明則意指藉由雷射繞射散射法所求出之粒度分佈曲線中累計值50%下的粒徑(D50)之值。 In the present specification, the "average particle diameter" means the value of the particle diameter (D 50 ) at an integrated value of 50% in the particle size distribution curve obtained by the laser diffraction scattering method unless otherwise specified. .

保護膜形成用組成物(IV-1)及保護膜形成用膜所含有之填充材料(d)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The filler (d) which is contained in the protective film-forming composition (IV-1) and the film for forming a protective film may be used alone or in combination of two or more kinds; in the case of two or more types, these combinations and The ratio can be arbitrarily chosen.

於使用填充材料(d)之情形時,保護膜形成用組成物(IV-1)中,相對於溶劑以外的全部成分的總含量(總質量)之填充材料(d)的含量(亦即,相對於保護膜形成用膜的總質量之填充材料(d)的含量)較佳為5質量%至83質量%,更佳為7質量%至78質量%。藉由填充材料(d)的含量為此種範圍,更容易調整上述熱膨脹係數。 In the case of using the filler (d), the content of the filler (d) in the total amount (total mass) of all the components other than the solvent in the protective film-forming composition (IV-1) (that is, The content of the filler (d) relative to the total mass of the film for forming a protective film is preferably from 5% by mass to 83% by mass, more preferably from 7% by mass to 78% by mass. By the content of the filler (d) being such a range, it is easier to adjust the above thermal expansion coefficient.

[偶合劑(e)] [coupler (e)]

藉由使用具有可與無機化合物或有機化合物反應之官能基之偶合劑作為偶合劑(e),可提高保護膜形成用膜對被接著體之接著性及密接性。另外,藉由使用偶合劑(e),保護膜形成用膜硬化而獲得之保護膜無損耐熱性而耐水性提高。 By using a coupling agent having a functional group reactive with an inorganic compound or an organic compound as the coupling agent (e), the adhesion of the film for forming a protective film to the adherend and the adhesion can be improved. In addition, by using the coupling agent (e), the protective film obtained by curing the film for protective film formation is not resistant to heat resistance and water resistance is improved.

偶合劑(e)較佳為具有可與能量線硬化性成分(a)、不具有能量線硬化性基之聚合物(b)等所具有之官能基反應之官能基之化合物,更佳為矽烷偶合劑。 The coupling agent (e) is preferably a compound having a functional group reactive with a functional group having an energy ray-curable component (a) and a polymer (b) having no energy ray-curable group, and more preferably a decane. Coupling agent.

作為較佳的前述矽烷偶合劑,例如可列舉:3-縮水甘油氧基丙基三甲氧基矽烷、3-縮水甘油氧基丙基甲基二乙氧基矽烷、3-縮水甘油氧基丙基三乙氧基矽烷、3-縮水甘油氧基甲基二乙氧基矽烷、2-(3,4-環氧環己基)乙基三甲氧基矽烷、3-甲基丙烯醯氧基丙基三甲氧基矽烷、3-胺基丙基三甲氧基矽烷、3-(2-胺基乙基胺基)丙基三甲氧基矽烷、3-(2-胺基乙基胺基)丙基甲基二乙氧基矽烷、3-(苯基胺基)丙基三甲氧基矽烷、3-苯胺基丙基三甲氧基矽烷、3-脲基丙基三乙氧基矽烷、3-巰基丙基三甲氧基矽烷、3-巰基丙基甲基二甲氧基矽烷、雙(3-三乙氧基矽烷基丙基)四硫化物、甲基三甲氧基矽烷、甲基三乙氧基矽烷、乙烯基三甲氧基矽烷、乙烯基三乙醯氧基矽烷、咪唑矽烷等。 Preferred examples of the decane coupling agent include 3-glycidoxypropyltrimethoxydecane, 3-glycidoxypropylmethyldiethoxydecane, and 3-glycidoxypropyl group. Triethoxy decane, 3-glycidoxymethyl diethoxy decane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, 3-methylpropenyloxypropyltrimethyl Oxydecane, 3-aminopropyltrimethoxydecane, 3-(2-aminoethylamino)propyltrimethoxydecane, 3-(2-aminoethylamino)propylmethyl Diethoxydecane, 3-(phenylamino)propyltrimethoxydecane, 3-anilinopropyltrimethoxydecane, 3-ureidopropyltriethoxydecane, 3-mercaptopropyltrimethyl Oxydecane, 3-mercaptopropylmethyldimethoxydecane, bis(3-triethoxydecylpropyl)tetrasulfide, methyltrimethoxydecane, methyltriethoxydecane, ethylene Trimethoxy decane, vinyl triethoxy decane, imidazolium, and the like.

保護膜形成用組成物(IV-1)及保護膜形成用膜所含有之偶合劑(e)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The coupling agent (IV) and the protective film forming film may be used alone or in combination of two or more kinds. The ratio can be arbitrarily chosen.

於使用偶合劑(e)之情形時,保護膜形成用組成物(IV-1)及保護膜形成用膜中,偶合劑(e)的含量相對於能量線硬化性成分(a)及不具有能量線硬化性基之聚合物(b)的合計含量100質量份,較佳為0.03質量份至20質量份,更佳為0.05質量份至10質量份,尤佳為0.1質量份至5質量份。藉由偶合劑(e)的前述含量為前述下限值以上,可獲得更顯著的以下由使用偶合劑(e)所帶來之功效:填充材料(d)於樹脂中的分散性提高等,或保護膜形成用膜與被接著體之接著性提高等。另外,藉由偶合劑(e)的前述含量為前述上限值以下,可進一步抑制產生逸氣。 In the case of using the coupling agent (e), the protective film-forming composition (IV-1) and the film for forming a protective film have a content of the coupling agent (e) with respect to the energy ray-curable component (a) and The total content of the energy ray-curable group-containing polymer (b) is 100 parts by mass, preferably 0.03 parts by mass to 20 parts by mass, more preferably 0.05 parts by mass to 10 parts by mass, still more preferably 0.1 part by mass to 5 parts by mass. . When the content of the coupling agent (e) is at least the above lower limit value, it is possible to obtain a more remarkable effect by using the coupling agent (e): the dispersibility of the filler (d) in the resin is improved, and the like. Or the adhesion between the film for forming a protective film and the adherend is improved. Further, when the content of the coupling agent (e) is at most the above upper limit value, generation of outgas can be further suppressed.

[交聯劑(f)] [crosslinking agent (f)]

藉由使用交聯劑(f),使上述之能量線硬化性成分(a)或不具有能量線硬化性基之聚合物(b)進行交聯,可調節保護膜形成用膜的初期接著力及凝聚力。 By using the crosslinking agent (f), the energy ray-curable component (a) or the polymer (b) having no energy ray-curable group is crosslinked, whereby the initial adhesion of the film for forming a protective film can be adjusted. And cohesion.

作為交聯劑(f),例如可列舉:有機多元異氰酸酯化合物、有機多元亞胺化合物、金屬螯合物系交聯劑(具有金屬螯合物結構之交聯劑)、氮丙啶系交聯劑(具有氮丙啶基之交聯劑)等。 Examples of the crosslinking agent (f) include an organic polyvalent isocyanate compound, an organic polyimine compound, a metal chelate crosslinking agent (a crosslinking agent having a metal chelate structure), and an aziridine crosslinking. A reagent (a cross-linking agent having an aziridine group) or the like.

作為前述有機多元異氰酸酯化合物,例如可列舉:芳香族多元異氰酸酯化合物、脂肪族多元異氰酸酯化合物及脂環族多元異氰酸酯化合物(以下,有時將這些化合物統一簡稱為「芳香族多元異氰酸酯化合物等」);前述芳香族多元異氰酸酯化合物等的三聚物、異氰脲酸酯體及加合物;使前述芳香族多元異氰酸酯化合物等與多元醇化合物反應而獲得之末端異氰酸酯胺基甲酸酯預聚物等。前述「加合物」意指前述芳香族多元異氰酸酯化合物、脂肪族多元異氰酸酯化合物或脂環族多元異氰酸酯化合物,與乙二醇、丙二醇、新戊二醇、三羥甲基丙烷或蓖麻油等含低分子活性氫之化合物之反應物,作為前述加合物的示例,可列舉如後述之三羥甲基丙烷之苯二甲基二異氰酸酯加成物等。另外,所謂「末端異氰酸酯胺基甲酸酯預聚物」,意指具有胺基甲酸酯鍵,並且於分子末端部具有異氰酸酯基之預聚物。 Examples of the organic polyvalent isocyanate compound include an aromatic polyisocyanate compound, an aliphatic polyisocyanate compound, and an alicyclic polyisocyanate compound (hereinafter, these compounds may be collectively referred to simply as "aromatic polyisocyanate compounds"); a trimer such as an aromatic polyisocyanate compound, an isocyanurate body or an adduct, a terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyisocyanate compound or the like with a polyol compound, and the like . The term "adduct" means the aforementioned aromatic polyisocyanate compound, aliphatic polyisocyanate compound or alicyclic polyisocyanate compound, and is contained in ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. The reactant of the compound of the low molecular weight active hydrogen, as an example of the above-mentioned adduct, may be a benzodimethyl diisocyanate adduct of trimethylolpropane mentioned later. Further, the term "terminal isocyanate urethane prepolymer" means a prepolymer having a urethane bond and having an isocyanate group at a terminal portion of the molecule.

作為前述有機多元異氰酸酯化合物,更具體而言,例如可列舉:2,4-甲苯二異氰酸酯;2,6-甲苯二異氰酸酯;1,3-苯二甲基二異氰酸酯;1,4-二甲苯二異氰酸酯;二苯基甲烷-4,4'-二異氰酸酯;二苯基甲烷-2,4'-二異氰酸酯;3-甲基二苯基甲烷二異氰酸酯;六亞甲基二異氰酸酯;異佛爾酮二異氰酸酯;二環己基甲烷-4,4'-二異氰酸酯;二環己基甲烷-2,4'-二異氰酸酯;對三羥甲基丙烷等多元醇 的全部或一部分羥基,加成甲苯二異氰酸酯、六亞甲基二異氰酸酯及苯二甲基二異氰酸酯的任1種或2種以上而成之化合物;離胺酸二異氰酸酯等。 As the above-mentioned organic polyvalent isocyanate compound, more specifically, for example, 2,4-toluene diisocyanate; 2,6-toluene diisocyanate; 1,3-benzenedimethyl diisocyanate; 1,4-dimethylbenzene Isocyanate; diphenylmethane-4,4'-diisocyanate; diphenylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone Diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; polyhydric alcohol such as trimethylolpropane A compound obtained by adding one or two or more kinds of toluene diisocyanate, hexamethylene diisocyanate, and benzene dimethyl diisocyanate; or a dibasic acid diisocyanate.

作為前述有機多元亞胺化合物,例如可列舉:N,N'-二苯基甲烷-4,4'-雙(1-氮丙啶甲醯胺)、三羥甲基丙烷-三-β-氮丙啶基丙酸酯、四羥甲基甲烷-三-β-氮丙啶基丙酸酯、N,N'-甲苯-2,4-雙(1-氮丙啶甲醯胺)三伸乙基三聚氰胺等。 The organic polyimine compound may, for example, be N,N'-diphenylmethane-4,4'-bis(1-aziridinecarboxamide) or trimethylolpropane-tri-beta-nitrogen. Propidyl propionate, tetramethylolmethane-tri-β-aziridine propionate, N,N'-toluene-2,4-bis(1-aziridinecarbamamine) Based on melamine and the like.

於使用有機多元異氰酸酯化合物作為交聯劑(f)之情形時,作為能量線硬化性成分(a)或不具有能量線硬化性基之聚合物(b),較佳為使用含羥基之聚合物。於交聯劑(f)具有異氰酸酯基,能量線硬化性成分(a)或不具有能量線硬化性基之聚合物(b)具有羥基之情形時,藉由交聯劑(f)與能量線硬化性成分(a)或不具有能量線硬化性基之聚合物(b)之反應,可將交聯結構簡便地導入至保護膜形成用膜中。 When an organic polyvalent isocyanate compound is used as the crosslinking agent (f), it is preferred to use a hydroxyl group-containing polymer as the energy ray-curable component (a) or the polymer (b) having no energy ray-curable group. . When the crosslinking agent (f) has an isocyanate group, and the energy ray-curable component (a) or the polymer (b) having no energy ray-curable group has a hydroxyl group, the crosslinking agent (f) and the energy ray are used. The reaction of the curable component (a) or the polymer (b) having no energy ray-curable group can easily introduce the crosslinked structure into the film for forming a protective film.

保護膜形成用組成物(IV-1)及保護膜形成用膜所含有之交聯劑(f)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The crosslinking agent (f) contained in the protective film-forming composition (IV-1) and the film for forming a protective film may be one type or two or more types. When two or more types are used, these combinations may be used. And the ratio can be arbitrarily chosen.

於使用交聯劑(f)之情形時,保護膜形成用組成物 (IV-1)中,交聯劑(f)的含量相對於能量線硬化性成分(a)及不具有能量線硬化性基之聚合物(b)的合計含量100質量份,較佳為0.01質量份至20質量份,更佳為0.1質量份至10質量份,尤佳為0.5質量份至5質量份。藉由交聯劑(f)的前述含量為前述下限值以上,可獲得更顯著的由使用交聯劑(f)所帶來之功效。另外,藉由交聯劑(f)的前述含量為前述上限值以下,可抑制交聯劑(f)之過量使用。 When the crosslinking agent (f) is used, the protective film forming composition In (IV-1), the content of the crosslinking agent (f) is preferably 0.01 by mass based on 100 parts by mass of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group. The parts by mass are 20 parts by mass, more preferably 0.1 parts by mass to 10 parts by mass, still more preferably 0.5 parts by mass to 5 parts by mass. When the content of the crosslinking agent (f) is at least the above lower limit value, a more remarkable effect by the use of the crosslinking agent (f) can be obtained. Further, when the content of the crosslinking agent (f) is at most the above upper limit value, excessive use of the crosslinking agent (f) can be suppressed.

[著色劑(g)] [coloring agent (g)]

作為著色劑(g),例如可列舉:無機系顏料、有機系顏料、有機系染料等公知的著色劑。 Examples of the colorant (g) include known coloring agents such as inorganic pigments, organic pigments, and organic dyes.

作為前述有機系顏料及有機系染料,例如可列舉:銨系色素、花青系色素、部花青系色素、克酮鎓(croconium)系色素、方酸鎓(squalilium)系色素、薁鎓系色素、聚次甲基系色素、萘醌系色素、吡喃鎓系色素、酞菁系色素、萘酞菁系色素、萘內醯胺系色素、偶氮系色素、縮合偶氮系色素、靛藍系色素、紫環酮(perinone)系色素、並系色素、二噁烷系色素、喹吖啶酮系色素、異吲哚啉酮系色素、喹啉黃(quinophthalone)系色素、吡咯系色素、硫代靛藍系色素、金屬錯合物系色素(金屬錯鹽染料)、二硫醇金屬錯合物系色素、吲哚酚系色素、三烯丙基甲烷系色素、蒽醌系色素、萘酚系色素、次甲基偶氮系色素、苯并咪唑酮系色素、皮蒽酮系色素及士林(threne)系色素等。 Examples of the organic pigment and the organic dye include an ammonium dye, a cyanine dye, a merocyanine dye, a croconium dye, a squalilium dye, and an anthraquinone. Pigment, polymethine dye, naphthoquinone dye, pyryl quinone dye, phthalocyanine dye, naphthalocyanine dye, naphthalene amide dye, azo dye, condensed azo dye, indigo a pigment, a perinone dye, a merging dye, a dioxane dye, a quinacridone dye, an isoindolinone dye, a quinophthalone pigment, a pyrrole dye, A thioindigo dye, a metal complex dye (metal stear salt dye), a dithiol metal complex dye, a nonylphenol dye, a triallylmethane dye, an anthraquinone dye, a naphthol A coloring matter, a methine azo dye, a benzimidazolone dye, a swainone pigment, and a threne pigment.

作為前述無機系顏料,例如可列舉:碳黑、鈷系色素、鐵系色素、鉻系色素、鈦系色素、釩系色素、鋯系色素、鉬系色素、釕系色素、鉑系色素、ITO(Indium Tin Oxide;氧化銦錫)系色素、ATO(Antimony Tin Oxide;氧化銻錫)系色素等。 Examples of the inorganic pigment include carbon black, a cobalt dye, an iron dye, a chromium dye, a titanium dye, a vanadium dye, a zirconium dye, a molybdenum dye, an anthraquinone dye, a platinum dye, and ITO. (Indium Tin Oxide; indium tin oxide) dye, ATO (Antimony Tin Oxide) pigment, and the like.

保護膜形成用組成物(IV-1)及保護膜形成用膜所含有之著色劑(g)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The coloring agent (g) contained in the film for forming a protective film (IV-1) and the film for forming a protective film may be one type or two or more types. When two or more types are used, these combinations and The ratio can be arbitrarily chosen.

於使用著色劑(g)之情形時,保護膜形成用膜中的著色劑(g)的含量根據目的適宜調節即可。例如會有藉由雷射照射對保護膜實施印字之情形,藉由調節保護膜形成用膜中的著色劑(g)的含量並調節保護膜的透光性,可調節印字視認性。該情形時,保護膜形成用組成物(IV-1)中,相對於溶劑以外的全部成分的合計含量之著色劑(g)的含量(亦即,相對於保護膜形成用膜的總質量之著色劑(g)的含量)較佳為0.1質量%至10質量%,更佳為0.4質量%至7.5質量%,尤佳為0.8質量%至5質量%。藉由著色劑(g)的前述含量為前述下限值以上,可獲得更顯著的由使用著色劑(g)所帶來之功效。另外,藉由著色劑(g)的前述含量為前述上限值以下,可抑制著色劑(g)之過量使用。 In the case of using the coloring agent (g), the content of the coloring agent (g) in the film for forming a protective film may be appropriately adjusted depending on the purpose. For example, in the case where printing is applied to the protective film by laser irradiation, the print visibility can be adjusted by adjusting the content of the coloring agent (g) in the film for forming a protective film and adjusting the light transmittance of the protective film. In this case, the content of the coloring agent (g) in the total content of all the components other than the solvent in the protective film-forming composition (IV-1) (that is, the total mass of the film for forming a protective film) The content of the colorant (g) is preferably from 0.1% by mass to 10% by mass, more preferably from 0.4% by mass to 7.5% by mass, even more preferably from 0.8% by mass to 5% by mass. When the content of the coloring agent (g) is at least the above lower limit value, a more remarkable effect by the use of the coloring agent (g) can be obtained. In addition, when the content of the coloring agent (g) is at most the above upper limit value, excessive use of the coloring agent (g) can be suppressed.

[熱硬化性成分(h)] [thermosetting component (h)]

保護膜形成用組成物(IV-1)及保護膜形成用膜所含有之熱硬化性成分(h)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The thermosetting component (h) contained in the protective film-forming composition (IV-1) and the film for forming a protective film may be one type or two or more types. When two or more types are used, these are Combinations and ratios can be arbitrarily chosen.

作為熱硬化性成分(h),例如可列舉:環氧系熱硬化性樹脂、熱硬化性聚醯亞胺、聚胺基甲酸酯、不飽和聚酯、聚矽氧樹脂等,較佳為環氧系熱硬化性樹脂。 Examples of the thermosetting component (h) include an epoxy thermosetting resin, a thermosetting polyimide, a polyurethane, an unsaturated polyester, a polyoxyl resin, and the like. Epoxy thermosetting resin.

(環氧系熱硬化性樹脂) (epoxy thermosetting resin)

環氧系熱硬化性樹脂係由環氧樹脂(h1)及熱硬化劑(h2)構成。 The epoxy thermosetting resin is composed of an epoxy resin (h1) and a thermosetting agent (h2).

保護膜形成用組成物(IV-1)及保護膜形成用膜所含有之環氧系熱硬化性樹脂可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The epoxy-based thermosetting resin contained in the protective film-forming composition (IV-1) and the film for forming a protective film may be one type or two or more types. When two or more types are used, these are Combinations and ratios can be arbitrarily chosen.

.環氧樹脂(h1) . Epoxy resin (h1)

作為環氧樹脂(h1),可列舉公知的環氧樹脂,例如可列舉:多官能系環氧樹脂、聯苯化合物、雙酚A二縮水甘油醚及其氫化物、鄰甲酚酚醛清漆環氧樹脂、二環戊二烯型環氧樹脂、聯苯型環氧樹脂、雙酚A型環氧樹脂、雙酚F型環氧樹脂、伸苯基骨架型環氧樹脂等2官能以上之環氧化合物。 Examples of the epoxy resin (h1) include known epoxy resins, and examples thereof include polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, and o-cresol novolac epoxy. Two or more epoxy resins such as resin, dicyclopentadiene type epoxy resin, biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenyl skeleton type epoxy resin Compound.

作為環氧樹脂(h1),亦可使用具有不飽和烴基之環氧樹脂。具有不飽和烴基之環氧樹脂相較於不具有不飽和烴基之環氧樹脂而言,與丙烯酸系樹脂之相容性較高。因此,藉由使用具有不飽和烴基之環氧樹脂,使用保護膜形成用複合片所獲得之封裝的可靠性提高。 As the epoxy resin (h1), an epoxy resin having an unsaturated hydrocarbon group can also be used. The epoxy resin having an unsaturated hydrocarbon group has higher compatibility with the acrylic resin than the epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the package obtained by using the composite sheet for forming a protective film is improved by using an epoxy resin having an unsaturated hydrocarbon group.

作為具有不飽和烴基之環氧樹脂,例如可列舉:多官能系環氧樹脂的一部分環氧基更換為具有不飽和烴基之基而成之化合物。此種化合物例如藉由使(甲基)丙烯酸或其衍生物與環氧基進行加成反應而獲得。 Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound in which a part of the epoxy group of the polyfunctional epoxy resin is replaced with a group having an unsaturated hydrocarbon group. Such a compound is obtained, for example, by subjecting (meth)acrylic acid or a derivative thereof to an addition reaction with an epoxy group.

另外,作為具有不飽和烴基之環氧樹脂,例如可列舉:於構成環氧樹脂之芳香環等上直接鍵結有具有不飽和烴基之基之化合物等。 In addition, examples of the epoxy resin having an unsaturated hydrocarbon group include a compound in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.

不飽和烴基為具有聚合性之不飽和基,作為該不飽和烴基的具體例,可列舉:次乙基(亦稱為乙烯基)、2-丙烯基(亦稱為烯丙基)、(甲基)丙烯醯基、(甲基)丙烯醯胺基等,較佳為丙烯醯基。 The unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples of the unsaturated hydrocarbon group include a secondary ethyl group (also referred to as a vinyl group), a 2-propenyl group (also referred to as an allyl group), and (a). The acrylonitrile group, the (meth) acrylamide group, and the like are preferably an acrylonitrile group.

環氧樹脂(h1)的數量平均分子量並無特別限定,就保護膜形成用膜的硬化性、以及保護膜的強度及耐熱性之方面而言,較佳為300至30000,更佳為400至10000,尤佳為500至3000。 The number average molecular weight of the epoxy resin (h1) is not particularly limited, and is preferably from 300 to 30,000, more preferably from 400 to 3, in terms of the curability of the film for forming a protective film and the strength and heat resistance of the protective film. 10,000, especially 500 to 3000.

本說明書中,所謂「數量平均分子量」只要無特別說明則意指藉由凝膠滲透層析(GPC)法所測定且以標準聚苯 乙烯換算之值表示之數量平均分子量。 In the present specification, the term "number average molecular weight" means, unless otherwise specified, a gel permeation chromatography (GPC) method and standard polyphenylene. The value in terms of ethylene indicates the number average molecular weight.

環氧樹脂(h1)的環氧當量較佳為100g/eq至1000g/eq,更佳為150g/eq至800g/eq。 The epoxy equivalent of the epoxy resin (h1) is preferably from 100 g/eq to 1000 g/eq, more preferably from 150 g/eq to 800 g/eq.

本說明書中,所謂「環氧當量」意指包含1克當量的環氧基之環氧化合物的克數(g/eq),可依據JIS K 7236:2001之方法進行測定。 In the present specification, the term "epoxy equivalent" means the number of grams (g/eq) of an epoxy compound containing 1 gram equivalent of an epoxy group, which can be measured in accordance with the method of JIS K 7236:2001.

環氧樹脂(h1)可單獨使用1種,亦可併用2種以上;於併用2種以上之情形時,這些組合及比率可任意選擇。 The epoxy resin (h1) may be used singly or in combination of two or more. When two or more kinds are used in combination, these combinations and ratios may be arbitrarily selected.

.熱硬化劑(h2) . Thermal hardener (h2)

熱硬化劑(h2)發揮作為針對環氧樹脂(h1)之硬化劑的功能。 The heat hardener (h2) functions as a hardener for the epoxy resin (h1).

作為熱硬化劑(h2),例如可列舉:1分子中具有2個以上可與環氧基反應之官能基之化合物。作為前述官能基,例如可列舉:酚性羥基、醇性羥基、胺基、羧基、酸基經酐化而成之基等,較佳為酚性羥基、胺基、或酸基經酐化而成之基,更佳為酚性羥基或胺基。 The thermosetting agent (h2) is, for example, a compound having two or more functional groups reactive with an epoxy group in one molecule. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amine group, a carboxyl group, and a group in which an acid group is anhydride-formed. Preferably, the phenolic hydroxyl group, the amine group, or the acid group is anhydride-treated. More preferably, it is a phenolic hydroxyl group or an amine group.

熱硬化劑(h2)中,作為具有酚性羥基之酚系硬化劑,例如可列舉:多官能酚樹脂、聯苯酚、酚醛清漆型酚樹脂、二環戊二烯系酚樹脂、芳烷基酚樹脂等。 In the thermosetting agent (h2), examples of the phenolic curing agent having a phenolic hydroxyl group include a polyfunctional phenol resin, a biphenol, a novolak type phenol resin, a dicyclopentadiene type phenol resin, and an aralkylphenol. Resin, etc.

熱硬化劑(h2)中,作為具有胺基之胺系硬化劑,例如可列舉:二氰二胺(以下,有時簡稱為「DICY」)等。 In the thermosetting agent (h2), examples of the amine-based curing agent having an amine group include dicyandiamide (hereinafter sometimes abbreviated as "DICY").

熱硬化劑(h2)亦可具有不飽和烴基。 The heat hardener (h2) may also have an unsaturated hydrocarbon group.

作為具有不飽和烴基之熱硬化劑(h2),例如可列舉:酚樹脂的一部分羥基被具有不飽和烴基之基取代而成之化合物、酚樹脂的芳香環上直接鍵結具有不飽和烴基之基而成之化合物等。 Examples of the thermosetting agent (h2) having an unsaturated hydrocarbon group include a compound in which a part of the hydroxyl group of the phenol resin is substituted with a group having an unsaturated hydrocarbon group, and a group in which an aromatic ring of the phenol resin is directly bonded to have an unsaturated hydrocarbon group. Compounds and the like.

熱硬化劑(h2)中的前述不飽和烴基與上述之具有不飽和烴基之環氧樹脂中的不飽和烴基相同。 The aforementioned unsaturated hydrocarbon group in the heat hardener (h2) is the same as the unsaturated hydrocarbon group in the above epoxy resin having an unsaturated hydrocarbon group.

於使用酚系硬化劑作為熱硬化劑(h2)之情形時,就保護膜自支持片之剝離性提高之方面而言,熱硬化劑(h2)較佳為軟化點或玻璃轉移溫度高的酚系硬化劑。 When a phenolic curing agent is used as the thermosetting agent (h2), the thermosetting agent (h2) is preferably a phenol having a softening point or a high glass transition temperature in terms of improving the peeling property of the protective film from the support sheet. A hardener.

熱硬化劑(h2)中,例如多官能酚樹脂、酚醛清漆型酚樹脂、二環戊二烯系酚樹脂、芳烷基酚樹脂等樹脂成分的數量平均分子量較佳為300至30000,更佳為400至10000,尤佳為500至3000。 In the thermal curing agent (h2), the resin component such as a polyfunctional phenol resin, a novolac type phenol resin, a dicyclopentadiene phenol resin, or an aralkyl phenol resin preferably has a number average molecular weight of 300 to 30,000, more preferably It is 400 to 10,000, and particularly preferably 500 to 3,000.

熱硬化劑(h2)中,例如聯苯酚、二氰二胺等非樹脂成分的分子量並無特別限定,例如較佳為60至500。 In the thermal curing agent (h2), the molecular weight of the non-resin component such as biphenol or dicyandiamide is not particularly limited, and is, for example, preferably 60 to 500.

熱硬化劑(h2)可單獨使用1種,亦可併用2種以上;於併用2種以上之情形時,這些組合及比率可任意選擇。 The heat-hardening agent (h2) can be used singly or in combination of two or more kinds. When two or more types are used in combination, these combinations and ratios can be arbitrarily selected.

於使用熱硬化性成分(h)之情形時,保護膜形成用組 成物(IV-1)及保護膜形成用膜中,熱硬化劑(h2)的含量相對於環氧樹脂(h1)的含量100質量份,較佳為0.01質量份至20質量份。 When the thermosetting component (h) is used, the protective film forming group In the film (IV-1) and the film for forming a protective film, the content of the thermosetting agent (h2) is preferably 0.01 parts by mass to 20 parts by mass based on 100 parts by mass of the epoxy resin (h1).

於使用熱硬化性成分(h)之情形時,保護膜形成用組成物(IV-1)及保護膜形成用膜中,熱硬化性成分(h)的含量(例如,環氧樹脂(h1)及熱硬化劑(h2)的合計含量)相對於不具有能量線硬化性基之聚合物(b)的含量100質量份,較佳為1質量份至500質量份。 When the thermosetting component (h) is used, the content of the thermosetting component (h) in the protective film-forming composition (IV-1) and the film for forming a protective film (for example, epoxy resin (h1)) The content of the total amount of the thermosetting agent (h2) is preferably from 1 part by mass to 500 parts by mass based on 100 parts by mass of the polymer (b) having no energy ray-curable group.

[通用添加劑(z)] [General Additives (z)]

通用添加劑(z)可為公知的通用添加劑,可根據目的而任意選擇,並無特別限定,作為較佳的通用添加劑,例如可列舉:塑化劑、抗靜電劑、抗氧化劑、吸氣劑等。 The general-purpose additive (z) can be a known general-purpose additive, and can be arbitrarily selected according to the purpose, and is not particularly limited. Examples of preferred general-purpose additives include plasticizers, antistatic agents, antioxidants, getters, and the like. .

保護膜形成用組成物(IV-1)及保護膜形成用膜所含有之通用添加劑(z)可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The general additive (z) contained in the protective film-forming composition (IV-1) and the film for forming a protective film may be one type or two or more types. When two or more types are used, these combinations and The ratio can be arbitrarily chosen.

於使用通用添加劑(z)之情形時,保護膜形成用組成物(IV-1)及保護膜形成用膜中的通用添加劑(z)的含量並無特別限定,根據目的適宜選擇即可。 In the case of using the general-purpose additive (z), the content of the general-purpose additive (z) in the protective film-forming composition (IV-1) and the film for forming a protective film is not particularly limited, and may be appropriately selected according to the purpose.

[溶劑] [solvent]

保護膜形成用組成物(IV-1)較佳為進一步含有溶劑。 含有溶劑之保護膜形成用組成物(IV-1)的操作性良好。 The protective film-forming composition (IV-1) preferably further contains a solvent. The handling property (IV-1) for forming a protective film containing a solvent is excellent in handleability.

前述溶劑並無特別限定,作為較佳的前述溶劑,例如可列舉:甲苯、二甲苯等烴;甲醇、乙醇、2-丙醇、異丁醇(2-甲基丙烷-1-醇)、1-丁醇等醇;乙酸乙酯等酯;丙酮、甲基乙基酮等酮;四氫呋喃等醚;二甲基甲醯胺、N-甲基吡咯啶酮等醯胺(具有醯胺鍵之化合物)等。 The solvent is not particularly limited, and examples of preferred solvents include hydrocarbons such as toluene and xylene; methanol, ethanol, 2-propanol, isobutanol (2-methylpropan-1-ol), and 1 - an alcohol such as butanol; an ester such as ethyl acetate; a ketone such as acetone or methyl ethyl ketone; an ether such as tetrahydrofuran; a decylamine such as dimethylformamide or N-methylpyrrolidone (a compound having a guanamine bond) )Wait.

保護膜形成用組成物(IV-1)所含有之溶劑可僅為1種,亦可為2種以上;於為2種以上之情形時,這些組合及比率可任意選擇。 The solvent contained in the protective film-forming composition (IV-1) may be one type or two or more types. When two or more types are used, these combinations and ratios can be arbitrarily selected.

就可將保護膜形成用組成物(IV-1)中的含有成分更均勻地混合之方面而言,保護膜形成用組成物(IV-1)所含有之溶劑較佳為甲基乙基酮、甲苯或乙酸乙酯等。 The solvent contained in the protective film-forming composition (IV-1) is preferably methyl ethyl ketone, in that the component contained in the protective film-forming composition (IV-1) is more uniformly mixed. , toluene or ethyl acetate.

<<保護膜形成用組成物的製造方法>> <<Method for Producing Composition for Protective Film Formation>>

保護膜形成用組成物(IV-1)等保護膜形成用組成物係藉由將用以構成該保護膜形成用組成物之各成分加以調配而獲得。 The protective film forming composition such as the protective film-forming composition (IV-1) is obtained by blending the components constituting the protective film-forming composition.

調配各成分時的添加順序並無特別限定,亦可同時添加2種以上之成分。 The order of addition of each component is not particularly limited, and two or more components may be added at the same time.

於使用溶劑之情形時,可藉由下述方式使用:將溶劑與溶劑以外的任一種調配成分混合而將該調配成分預先稀釋;亦可藉由下述方式使用:不將溶劑以外的任一種調配成分預先稀釋而將溶劑與這些調配成分混合。 In the case of using a solvent, it may be used by mixing a solvent with any of the formulation components other than the solvent to preliminarily dilute the formulation component; or by using any of the following solvents: The formulated ingredients are pre-diluted to mix the solvent with these formulated ingredients.

調配時混合各成分之方法並無特別限定,自以下公知的方法中適宜選擇即可:使攪拌子或攪拌翼等旋轉而進行混合之方法;使用混合機進行混合之方法;施加超音波進行混合之方法等。 The method of mixing the components at the time of preparation is not particularly limited, and may be appropriately selected from the following known methods: a method of mixing by stirring a stirring blade or a stirring blade, a method of mixing using a mixer, and applying ultrasonic waves for mixing. Method and so on.

關於添加及混合各成分時的溫度及時間,只要不使各調配成分劣化,則並無特別限定,適宜調節即可,溫度較佳為15℃至30℃。 The temperature and time when the components are added and mixed are not particularly limited as long as the respective components are not deteriorated, and it is preferably adjusted, and the temperature is preferably from 15 ° C to 30 ° C.

與本發明之保護膜形成用複合片同樣地,作為貼附於半導體晶圓或半導體晶片中的與電路面為相反側的背面且於支持片上具備顯示接著性之層之複合片,有切晶黏晶片。 In the same manner as the composite sheet for forming a protective film of the present invention, it is a composite sheet which is attached to a back surface of a semiconductor wafer or a semiconductor wafer which is opposite to the circuit surface and which has a layer which exhibits adhesion on the support sheet. Sticky wafer.

但是,切晶黏晶片所具備之接著劑層發揮以下功能:與半導體晶片一起自支持片拾取後,將該半導體晶片安裝於基板、引線框架、或其他半導體晶片等時,作為接著劑之功能。另一方面,關於本發明之保護膜形成用複合片中的保護膜形成用膜,就與半導體晶片一起自支持片拾取之方面而言,與前述接著劑層相同,但最終藉由硬化而成為保護膜,具有保護經貼附之半導體晶片的背面之功能。如此,本發明中的保護膜形成用膜的用途與切晶黏晶片中的接著劑層不同,當然所要求之性能亦不同。並且,反映該用途之差異,通常若與切晶黏晶片中的接著劑層進行比較,則保護膜形成用膜存在較硬且不易拾取之傾向。因此,通常難以將切晶黏晶片中的接著劑層直接轉用作保護膜 形成用複合片中的保護膜形成用膜。本發明之保護膜形成用複合片具備能量線硬化性之保護膜形成用膜,關於附有保護膜的半導體晶片的拾取適性,空前之極其優異。 However, the adhesive layer provided in the diced wafer has a function of being used as an adhesive when the semiconductor wafer is mounted on a substrate, a lead frame, or another semiconductor wafer, together with the semiconductor wafer. On the other hand, the film for forming a protective film in the composite sheet for forming a protective film of the present invention is the same as the above-mentioned adhesive layer in terms of picking up from the support sheet together with the semiconductor wafer, but is finally cured by curing. The protective film has the function of protecting the back side of the attached semiconductor wafer. As described above, the use of the film for forming a protective film in the present invention is different from that of the adhesive layer in the diced bonded wafer, and of course the required performance is also different. Further, in general, when the difference in the application is compared with the adhesive layer in the crystal-cut wafer, the film for forming a protective film tends to be hard and difficult to pick up. Therefore, it is often difficult to directly transfer the adhesive layer in the crystal-cut wafer to the protective film. A film for forming a protective film in the composite sheet for forming. The composite sheet for forming a protective film of the present invention is provided with an energy ray-curable film for forming a protective film, and the pick-up property of the semiconductor wafer with the protective film is extremely excellent.

◇保護膜形成用複合片的製造方法 Method for producing ruthenium film for forming protective film

本發明之保護膜形成用複合片可藉由將上述各層以成為對應的位置關係之方式依序積層而製造。各層之形成方法如前文所說明。 The composite sheet for forming a protective film of the present invention can be produced by sequentially laminating the above layers in a corresponding positional relationship. The formation method of each layer is as described above.

例如,製造支持片時,於基材上積層黏著劑層之情形時,於基材上塗敷上述黏著劑組成物,視需要使黏著劑組成物乾燥即可。另外,亦可預先於基材上藉由印刷法等設置遮光層。 For example, when the support sheet is produced, when the adhesive layer is laminated on the substrate, the adhesive composition is applied onto the substrate, and the adhesive composition may be dried as needed. Further, a light shielding layer may be provided on the substrate in advance by a printing method or the like.

另一方面,例如於已積層於基材上之黏著劑層上進而積層保護膜形成用膜之情形時,可於黏著劑層上塗敷保護膜形成用組成物,直接形成保護膜形成用膜。保護膜形成用膜以外之層亦可使用用以形成該層之組成物,利用同樣的方法於黏著劑層上積層該層。如此,於使用任一種組成物形成連續之2層之積層結構之情形時,可於由前述組成物形成之層上進一步塗敷組成物而新形成層。 On the other hand, for example, when a film for forming a protective film is laminated on an adhesive layer which is laminated on a substrate, a film for forming a protective film can be applied onto the adhesive layer to directly form a film for forming a protective film. A layer other than the film for forming a protective film may be used to form a composition of the layer, and the layer may be laminated on the adhesive layer by the same method. Thus, in the case where a laminated structure of two consecutive layers is formed using any of the compositions, the composition can be further coated on the layer formed of the above composition to newly form a layer.

但是,較佳為藉由下述方式而形成連續之2層之積層結構:於另一剝離膜上使用前述組成物預先形成這些2層中後積層之層,將該已形成之層中的與和前述剝離膜接觸之側為相反側的露出面與既已形成之其餘層的露出面貼 合。此時,前述組成物較佳為塗敷於剝離膜的剝離處理面。形成積層結構後,視需要移除剝離膜即可。 However, it is preferable to form a continuous two-layer laminated structure by previously forming a layer of the two-layer back-layered layer on the other release film using the above-mentioned composition, and to form the layer in the formed layer. The exposed side opposite to the side on which the peeling film is in contact with the exposed side of the remaining layer formed Hehe. In this case, the composition is preferably applied to the release-treated surface of the release film. After forming the laminate structure, the release film may be removed as needed.

例如於製造於基材上積層黏著劑層,於前述黏著劑層上積層保護膜形成用膜而成之保護膜形成用複合片(支持片為基材及黏著劑層之積層物之保護膜形成用複合片)之情形時,於基材上塗敷黏著劑組成物,視需要使黏著劑組成物乾燥,藉此於基材上預先積層黏著劑層;另外於剝離膜上塗敷保護膜形成用組成物,視需要使保護膜形成用組成物乾燥,藉此於剝離膜上預先形成保護膜形成用膜。然後,將該保護膜形成用膜的露出面與已積層於基材上之黏著劑層的露出面貼合,於黏著劑層上積層保護膜形成用膜,藉此獲得保護膜形成用複合片。 For example, a composite sheet for forming a protective film formed by laminating an adhesive layer on a substrate and a film for forming a protective film on the adhesive layer (the support sheet is formed of a protective film of a laminate of a substrate and an adhesive layer). In the case of a composite sheet), an adhesive composition is applied to a substrate, and the adhesive composition is dried as needed to preliminarily deposit an adhesive layer on the substrate; and a protective film is formed on the release film to form a composition. The film for the protective film formation is dried as needed, and a film for forming a protective film is formed in advance on the release film. Then, the exposed surface of the film for forming a protective film is bonded to the exposed surface of the adhesive layer deposited on the substrate, and a film for forming a protective film is laminated on the adhesive layer to obtain a composite sheet for forming a protective film. .

再者,於基材上積層黏著劑層之情形時,如上所述,亦可代替於基材上塗敷黏著劑組成物之方法,於剝離膜上塗敷黏著劑組成物,視需要使黏著劑組成物乾燥,藉此於剝離膜上預先形成黏著劑層,將該層的露出面與基材的一方的表面貼合,藉此於基材上積層黏著劑層。 Further, when the adhesive layer is laminated on the substrate, as described above, the adhesive composition may be applied to the release film instead of applying the adhesive composition on the substrate, and the adhesive may be composed as needed. The material is dried, whereby an adhesive layer is formed in advance on the release film, and the exposed surface of the layer is bonded to one surface of the substrate, whereby an adhesive layer is laminated on the substrate.

任一種方法中,均於形成目標積層結構後的任意時間點移除剝離膜即可。 In either method, the release film may be removed at any point after the formation of the target laminate structure.

如此,構成保護膜形成用複合片之基材以外的層均可利用以下方法積層:預先形成於剝離膜上,再貼合於目標 層的表面,因此視需要適宜選擇採用此種步驟之層,製造保護膜形成用複合片即可。 In this way, the layer other than the base material constituting the composite sheet for forming a protective film can be laminated by the following method: it is formed on the release film in advance, and is then bonded to the target. Since the surface of the layer is appropriately selected as needed, a composite sheet for forming a protective film can be produced.

再者,保護膜形成用複合片通常以如下狀態保管:於該保護膜形成用複合片中的與支持片為相反側的最表層(例如保護膜形成用膜)的表面貼合有剝離膜之狀態。因此,亦可藉由下述方式而獲得保護膜形成用複合片:於該剝離膜(較佳為該剝離膜的剝離處理面)上,塗敷保護膜形成用組成物等用以形成構成最表層之層之組成物,視需要使組成物乾燥,藉此於剝離膜上預先形成構成最表層之層,於該層中的與和剝離膜接觸之側為相反側的露出面上,利用上述任一種方法積層其餘各層,不移除剝離膜而保持貼合狀態不變。 In addition, the composite sheet for forming a protective film is usually stored in a state in which a peeling film is bonded to the surface of the outermost layer (for example, a film for forming a protective film) on the opposite side of the support sheet in the composite sheet for forming a protective film. status. Therefore, a composite sheet for forming a protective film can be obtained by coating a protective film forming composition or the like on the release film (preferably, a release-treated surface of the release film) to form a composition. The composition of the layer of the surface layer is dried, and the layer constituting the outermost layer is formed in advance on the release film, and the exposed surface on the opposite side to the side in contact with the release film in the layer is used. Either way, the remaining layers are laminated, and the peeling film is not removed to maintain the bonding state.

再者,本發明中,即便為保護膜形成用膜硬化後,亦只要維持支持片及保護膜形成用膜之硬化物(換言之,支持片及保護膜)之積層結構,則將該積層結構體稱為「保護膜形成用複合片」。 In the present invention, even if the film for forming a protective film is cured, the laminated structure of the cured product (in other words, the support sheet and the protective film) of the support sheet and the film for forming a protective film is maintained. It is called "composite sheet for forming a protective film".

與可用於本發明之保護膜形成用複合片同樣地,作為貼附於半導體晶圓或半導體晶片中的與電路面為相反側的背面且於支持片上具備顯示接著性之層之複合片,有切晶黏晶片。 In the same manner as the composite sheet for forming a protective film of the present invention, a composite sheet which is attached to a back surface of a semiconductor wafer or a semiconductor wafer opposite to the circuit surface and has a layer on the support sheet which exhibits adhesion is provided. Cut crystal bonded wafers.

但是,關於切晶黏晶片所具備之接著劑層係與半導體 晶片一起自支持片拾取後,將該半導體晶片安裝於基板、引線框架、或其他半導體晶片等時,發揮作為接著劑之功能。另一方面,關於可用於本發明之保護膜形成用複合片中的保護膜形成用膜,就與半導體晶片一起自支持片拾取之方面而言,與前述接著劑層相同,但最終藉由硬化而成為保護膜,具有保護被貼附之半導體晶片的背面之功能。如此,本發明中的保護膜形成用膜的用途與切晶黏晶片中的接著劑層不同,所要求之性能當然亦不同。並且,反映該用途之差異,通常若將保護膜形成用膜與切晶黏晶片中的接著劑層進行比較,則存在較硬,難以拾取之傾向。因此,通常難以將切晶黏晶片中的接著劑層直接轉用作保護膜形成用複合片中的保護膜形成用膜。作為可用於本發明之具備能量線硬化性之保護膜形成用膜之保護膜形成用複合片,要求附有保護膜的半導體晶片的拾取適性優異的保護膜形成用複合片。 However, regarding the adhesive layer and semiconductor of the die-cut adhesive wafer After the wafer is picked up from the support sheet, the semiconductor wafer is mounted on a substrate, a lead frame, or another semiconductor wafer, and the like functions as an adhesive. On the other hand, the film for forming a protective film which can be used in the composite sheet for forming a protective film of the present invention is the same as the above-mentioned adhesive layer in terms of picking up from the support sheet together with the semiconductor wafer, but is finally hardened. The protective film has a function of protecting the back surface of the attached semiconductor wafer. As described above, the use of the film for forming a protective film in the present invention is different from that of the adhesive layer in the diced bonded wafer, and the required performance is of course different. Further, in general, when the film for forming a protective film is compared with the adhesive layer in the crystal-cut bonded wafer, it is difficult to pick up the difference in the use. Therefore, it is generally difficult to directly convert the adhesive layer in the crystal-cut wafer to the film for forming a protective film in the composite sheet for forming a protective film. The composite sheet for forming a protective film which can be used in the film for forming an energy ray-curable protective film of the present invention is required to have a composite sheet for forming a protective film which is excellent in pick-up property of a semiconductor wafer to which a protective film is attached.

◎保護膜形成用片 ◎ Protective film forming sheet

本發明中,保護膜形成用膜除了以上述之保護膜形成用複合片之形式使用以外,亦可於後述之附有保護膜的半導體晶片的製造方法中,以於剝離膜上設置有保護膜形成用膜之保護膜形成用片之形式貼附於前述半導體晶圓的背面後,貼附支持片而使用。 In the present invention, the film for forming a protective film may be used in the form of the above-mentioned composite sheet for forming a protective film, or may be provided with a protective film on the release film in the method for producing a semiconductor wafer with a protective film to be described later. After the film for forming a protective film for forming a film is attached to the back surface of the semiconductor wafer, a support sheet is attached and used.

此處可使用之保護膜形成用膜如上述之保護膜形成用複合片之項目中所說明。 The film for forming a protective film which can be used herein is as described in the item of the above-mentioned composite sheet for forming a protective film.

圖7係以示意方式顯示後述之附有保護膜的半導體晶片的製造方法中可使用之保護膜形成用片2F的一實施形態之剖視圖。 FIG. 7 is a cross-sectional view showing an embodiment of the protective film forming sheet 2F which can be used in the method for producing a semiconductor wafer with a protective film to be described later.

此處所示之保護膜形成用片2F係於第1剝離膜15'上具備保護膜形成用膜13並於保護膜形成用膜13上具備第2剝離膜15"而成。 The protective film forming sheet 2F is provided with a protective film forming film 13 on the first release film 15' and a second release film 15" on the protective film forming film 13.

圖7所示之保護膜形成用片2F係以下述方式使用:在移除第2剝離膜15"之狀態下,於保護膜形成用膜13的表面13a(亦即,保護膜形成用膜13中的具備第2剝離膜15"之側的面)的中央側的一部分區域貼附半導體晶圓(省略圖示)的背面,進一步在移除第1剝離膜15'之狀態下,於保護膜形成用膜13中的與表面13a相反的表面13b(亦即,保護膜形成用膜13中的具備第1剝離膜15'之側的面)貼附基材片,並將保護膜形成用膜13的周緣部附近的區域貼附於環狀框等治具。 The protective film forming sheet 2F shown in Fig. 7 is used in the surface 13a of the protective film forming film 13 in a state where the second peeling film 15" is removed (that is, the protective film forming film 13). A part of the center side of the surface on the side of the second peeling film 15" is attached to the back surface of the semiconductor wafer (not shown), and the protective film is further removed in a state where the first peeling film 15' is removed. The surface 13b opposite to the surface 13a of the formation film 13 (that is, the surface on the side of the protective film formation film 13 on the side including the first release film 15') is attached to the substrate sheet, and the film for forming a protective film is formed. A region near the peripheral portion of the 13 is attached to a jig such as a ring frame.

◇附有保護膜的半導體晶片的製造方法 Method for manufacturing semiconductor wafer with protective film

藉由圖8說明本發明之一態樣之附有保護膜的半導體晶片的製造方法。 A method of manufacturing a semiconductor wafer with a protective film according to an aspect of the present invention will be described with reference to FIG.

本發明之一態樣之附有保護膜的半導體晶片的製造方法如下:對依序具備有支持片10、能量線硬化性之保護膜形成用膜13及半導體晶圓18之積層體中的半導體晶圓18進行切割,接著,對保護膜形成用膜13中除了周緣部附近的區域以外的半導體晶圓18之貼附區域部分照射能量 線,於支持片10上形成附有保護膜的半導體晶片19,對附有保護膜的半導體晶片19進行拾取。 A method of manufacturing a semiconductor wafer with a protective film according to an aspect of the present invention is as follows: a semiconductor in a laminated body including a support sheet 10, an energy ray-curable protective film forming film 13 and a semiconductor wafer 18; The wafer 18 is diced, and then the portion of the adhesion film of the semiconductor wafer 18 other than the region near the peripheral portion of the film 13 for forming a protective film is irradiated with energy. On the support sheet 10, a semiconductor wafer 19 with a protective film is formed on the support sheet 10, and the semiconductor wafer 19 with the protective film is picked up.

支持片10由基材11、黏著劑層12及遮光層24構成,於基材11的下部(亦即,基材11中的具備黏著劑層之側的相反側)且前述支持片10的周緣部附近的區域具備有由環狀之印刷層構成之遮光層24。 The support sheet 10 is composed of a substrate 11, an adhesive layer 12, and a light shielding layer 24, and is formed on the lower portion of the substrate 11 (that is, on the side opposite to the side of the substrate 11 on which the adhesive layer is provided) and the periphery of the support sheet 10. A region near the portion is provided with a light shielding layer 24 composed of a circular printed layer.

亦即,於半導體晶圓的背面(與電極形成面為相反側的面)貼附保護膜形成用複合片後,藉由切割將半導體晶圓連同保護膜形成用膜一起分割而製成半導體晶片。接著,對已分割之保護膜形成用膜中除了周緣部附近的區域以外的前述半導體晶圓之貼附區域部分照射能量線,使保護膜形成用膜硬化而成為保護膜。並且,使由支持片及保護膜構成之積層體於該積層體的表面方向(沿表面之方向)上擴展亦即所謂延伸(expand),並且將前述附有保護膜的半導體晶片在保持貼附有該保護膜之狀態下直接(亦即以附有保護膜的半導體晶片之形式)自支持片拉離而進行拾取。 In other words, after the composite sheet for forming a protective film is attached to the back surface of the semiconductor wafer (the surface opposite to the surface on which the electrode is formed), the semiconductor wafer is separated from the film for forming a protective film by dicing to form a semiconductor wafer. . Then, in the film for forming a protective film to be divided, the portion of the semiconductor wafer to be adhered to the region other than the region in the vicinity of the peripheral portion is irradiated with an energy ray, and the film for forming a protective film is cured to form a protective film. Further, the laminate formed of the support sheet and the protective film is expanded in the surface direction (in the direction of the surface) of the laminate, that is, so-called expansion, and the semiconductor wafer with the protective film attached thereon is kept attached. In the state of the protective film, it is directly (that is, in the form of a semiconductor wafer with a protective film) pulled away from the support sheet and picked up.

或者,可不使用保護膜形成用複合片,而將保護膜形成用膜與基材片分別貼附於半導體晶圓,此時的保護膜形成用膜及基材片可適宜使用上述之保護膜形成用複合片之說明中所說明之保護膜形成用膜及基材片。 Alternatively, the protective film forming film and the base material sheet may be attached to the semiconductor wafer without using the composite sheet for forming a protective film. In this case, the protective film forming film and the base material sheet may be formed by using the protective film described above. The film for forming a protective film and the substrate sheet described in the description of the composite sheet.

另外,圖8的一實施形態之附有保護膜的半導體晶片 的製造方法中,支持片10係具備由環狀之印刷層構成之遮光層24,但並不限定於此,亦可對保護膜形成用膜13中除了周緣部附近的區域以外的半導體晶圓18之貼附區域部分隔著遮蔽板照射能量線。 In addition, a semiconductor wafer with a protective film according to an embodiment of FIG. In the manufacturing method, the support sheet 10 includes the light-shielding layer 24 which is formed of a ring-shaped printing layer. However, the present invention is not limited thereto, and a semiconductor wafer other than the region near the peripheral portion of the protective film forming film 13 may be used. The attachment area of the 18 is irradiated with energy rays through the shielding plate.

作為遮蔽板,較佳為內側挖空為圓形之形狀。所挖空之圓形的直徑較佳為半導體晶圓的外徑的95%至140%,更佳為98%至135%,尤佳為100%至130%。作為遮蔽板,例如可使用SUS(stainless steel;不鏽鋼)製之環狀之遮蔽板。 As the shielding plate, it is preferable that the inner side is hollowed out to have a circular shape. The diameter of the hollowed out circle is preferably from 95% to 140%, more preferably from 98% to 135%, and even more preferably from 100% to 130% of the outer diameter of the semiconductor wafer. As the shielding plate, for example, an annular shielding plate made of SUS (stainless steel) can be used.

前述遮蔽板係用以於對前述保護膜形成用膜照射能量線時遮蔽前述保護膜形成用膜的周緣部附近的區域,從而對前述保護膜形成用膜中前述半導體晶圓之貼附區域部分照射能量線。當前述遮蔽板的內側為挖空為圓形之形狀時,將該挖空的圓形的直徑設為半導體晶圓的外徑的95%以上的原因在於:會有即便半導體晶圓的外周附近稍微被前述遮蔽板遮擋,僅無法拾取半導體晶圓的端部的無用晶片(亦即三角晶片)而不會產生問題之情形。 The shielding plate is used to shield a region in the vicinity of a peripheral portion of the film for forming a protective film when the energy-sensitive film is applied to the film for forming a protective film, and to attach a portion of the semiconductor wafer to the film for forming a protective film. Irradiate the energy line. When the inner side of the shielding plate has a circular shape, the diameter of the hollowed out circular is set to be 95% or more of the outer diameter of the semiconductor wafer because there is a possibility that even if the outer periphery of the semiconductor wafer is present It is slightly blocked by the shielding plate, and it is only impossible to pick up an unnecessary wafer (ie, a triangular wafer) at the end of the semiconductor wafer without causing a problem.

藉由圖9說明本發明之另一態樣之附有保護膜的半導體晶片的製造方法。 A method of manufacturing a semiconductor wafer with a protective film according to another aspect of the present invention will be described with reference to FIG.

本發明之另一態樣之附有保護膜的半導體晶片的製造方法如下:準備依序具備有支持片、能量線硬化性之保護膜形成用膜及半導體晶圓之積層體,對前述保護膜形成用膜中除了周緣部附近的區域以外的前述半導體晶圓之貼附區域部分照射能量線後,對前述半導體晶圓進行切割 而於前述支持片上形成附有保護膜的半導體晶片,對前述附有保護膜的半導體晶片進行拾取。 A method for producing a semiconductor wafer with a protective film according to another aspect of the present invention is as follows: a protective film for forming a protective film for forming a support sheet or an energy ray-curable layer, and a laminate of a semiconductor wafer, and the protective film are provided. The semiconductor wafer is cut after irradiating the energy line with the portion of the adhesion region of the semiconductor wafer other than the region near the peripheral portion in the film for formation On the support sheet, a semiconductor wafer with a protective film is formed thereon, and the semiconductor wafer with the protective film is picked up.

亦即,將由支持片10及能量線硬化性之保護膜形成用膜13構成之保護膜形成用複合片,藉由該保護膜形成用複合片之保護膜形成用膜13貼附於半導體晶圓18的背面(與電極形成面為相反側的面)。接著,對保護膜形成用膜13照射能量線,使保護膜形成用膜13硬化而成為保護膜13'。 In other words, the protective film forming composite sheet comprising the protective film forming film 13 and the protective film forming film 13 is attached to the semiconductor wafer by the protective film forming film 13 of the protective film forming composite sheet. The back surface of 18 (the surface opposite to the electrode forming surface). Then, the film 13 for forming a protective film is irradiated with an energy ray, and the film 13 for forming a protective film is cured to form a protective film 13'.

接著,藉由切割,將半導體晶圓18連同保護膜13'一起分割而製成附有保護膜的半導體晶片19。然後,進行所謂延伸,亦即使由支持片及保護膜構成之積層體於該積層體的表面方向(沿表面之方向)擴展,並且將前述附有保護膜的半導體晶片在保持貼附有該保護膜之狀態下直接(亦即,以附有保護膜的半導體晶片19之形式)自支持片10拉離而進行拾取。 Next, by cutting, the semiconductor wafer 18 is divided together with the protective film 13' to form a semiconductor wafer 19 with a protective film. Then, the so-called stretching is performed, and even the laminated body composed of the supporting sheet and the protective film is spread in the surface direction (in the direction of the surface) of the laminated body, and the protective film-attached semiconductor wafer is attached and protected. In the state of the film, it is directly (that is, in the form of a semiconductor wafer 19 with a protective film) pulled away from the support sheet 10 to be picked up.

或者,可不使用保護膜形成用複合片,而將保護膜形成用膜與基材片分別貼附於半導體晶圓,此時的保護膜形成用膜及基材片可適宜使用上述之保護膜形成用複合片之說明中所說明之保護膜形成用膜及基材片。 Alternatively, the protective film forming film and the base material sheet may be attached to the semiconductor wafer without using the composite sheet for forming a protective film. In this case, the protective film forming film and the base material sheet may be formed by using the protective film described above. The film for forming a protective film and the substrate sheet described in the description of the composite sheet.

另外,圖9之實施形態之附有保護膜的半導體晶片的製造方法中,支持片10係具備由環狀之印刷層構成之遮光層24,但並不限定於此,亦可對保護膜形成用膜13中除了周緣部附近的區域以外的半導體晶圓18之貼附區域部分 經由遮蔽板照射能量線。 Further, in the method of manufacturing a semiconductor wafer with a protective film according to the embodiment of FIG. 9, the support sheet 10 includes the light shielding layer 24 composed of a ring-shaped printing layer, but the invention is not limited thereto, and the protective film may be formed. The portion of the attachment region of the semiconductor wafer 18 other than the region near the peripheral portion of the film 13 The energy lines are illuminated via a shield.

作為遮蔽板,較佳為內側挖空為圓形之形狀。所挖空之圓形的直徑的較佳大小與上述相同。作為遮蔽板,例如可使用SUS製之環狀之遮蔽板。 As the shielding plate, it is preferable that the inner side is hollowed out to have a circular shape. The preferred size of the diameter of the hollowed out circle is the same as described above. As the shielding plate, for example, an annular shielding plate made of SUS can be used.

◇半導體裝置的製造方法 ◇Semiconductor device manufacturing method

以下,利用與先前法相同的方法,將所獲得之附有保護膜的半導體晶片在保持貼附有該保護膜之狀態下直接自支持片拉離而進行拾取,將所獲得之附有保護膜的半導體晶片的半導體晶片倒裝晶片連接於基板的電路面後,製成半導體封裝。然後,使用該半導體封裝製作目標半導體裝置即可。 In the following, the obtained semiconductor wafer with the protective film is directly pulled out from the support sheet while being attached to the protective film by the same method as in the prior art, and the obtained protective film is attached. The semiconductor wafer of the semiconductor wafer is flip-chip bonded to the circuit surface of the substrate to form a semiconductor package. Then, the target semiconductor device can be fabricated using the semiconductor package.

本發明的一實施形態之保護膜形成用複合片之一態樣可列舉以下保護膜形成用複合片,於支持片上具備有能量線硬化性之保護膜形成用膜;前述支持片為基材、黏著劑層、及遮光層之積層體;前述遮光層為環狀之印刷層,且設置於前述支持片中的周緣部附近的區域。 In one aspect of the composite sheet for forming a protective film according to the embodiment of the present invention, the composite sheet for forming a protective film is provided, and the film for protective film formation having an energy ray-curable property is provided on the support sheet; and the support sheet is a substrate. a layered body of the pressure-sensitive adhesive layer and the light-shielding layer; wherein the light-shielding layer is an annular printed layer and is provided in a region in the vicinity of the peripheral portion of the support sheet.

再者,前述保護膜形成用複合片中,亦可為:前述基材為聚丙烯系膜或聚氯乙烯系膜;前述遮光層之能量線之透過率為50%以下,較佳為10%以下,尤佳為0%;前述保護膜形成用膜為以下保護膜形成用膜:包含能量線硬化性成分(a)、不具有能量線硬化性基之聚合物(b)、光聚合起始劑(c)、及視需要的其他成分,且前述能量線硬化性成 分(a)為三環癸烷二羥甲基二丙烯酸酯,不具有能量線硬化性基之聚合物(b)為使選自由丙烯酸丁酯、丙烯酸甲酯、甲基丙烯酸縮水甘油酯、及丙烯酸-2-羥基乙酯所組成之群組中的至少一種單體進行共聚合而成之丙烯酸系樹脂,光聚合起始劑(c)為選自由2-(二甲基胺基)-1-(4-嗎啉基苯基)-2-苄基-1-丁酮及乙酮,1-[9-乙基-6-(2-甲基苯甲醯基)-9H-咔唑-3-基]-,1-(O-乙醯基肟)所組成之群組中的至少一種,前述其其他成分為選自由填充材料、偶合劑及著色劑所構成之群組中的至少一種;前述能量線硬化性成分(a)的含量相對於前述保護膜形成用膜的總質量亦可為18質量%至20質量%;前述不具有能量線硬化性基之聚合物(b)的含量相對於前述保護膜形成用膜的總質量亦可為20質量%至23質量%;前述光聚合起始劑(c)的含量相對於前述保護膜形成用膜的總質量亦可為0.5質量%至0.7質量%;前述其其他成分的含量相對於前述保護膜形成用膜的總質量亦可為56質量%至59質量%。 Further, in the composite sheet for forming a protective film, the substrate may be a polypropylene film or a polyvinyl chloride film; and the light transmittance of the light shielding layer may be 50% or less, preferably 10%. In the following, the film for forming a protective film is a film for forming a protective film comprising an energy ray-curable component (a), a polymer having no energy ray-curable group (b), and a photopolymerization initiation. Agent (c), and other components as needed, and the aforementioned energy ray hardening The component (a) is tricyclodecane dimethylol diacrylate, and the polymer (b) having no energy ray-curable group is selected from the group consisting of butyl acrylate, methyl acrylate, glycidyl methacrylate, and An acrylic resin obtained by copolymerizing at least one monomer in a group consisting of 2-hydroxyethyl acrylate, and the photopolymerization initiator (c) is selected from the group consisting of 2-(dimethylamino)-1 -(4-morpholinylphenyl)-2-benzyl-1-butanone and ethyl ketone, 1-[9-ethyl-6-(2-methylbenzylidene)-9H-carbazole- At least one of the group consisting of 3-yl]-, 1-(O-ethenylhydrazine), the other component of the foregoing is at least one selected from the group consisting of a filler, a coupling agent, and a coloring agent. The content of the energy ray-curable component (a) may be 18% by mass to 20% by mass based on the total mass of the film for forming a protective film; the content of the polymer (b) having no energy ray-curable group The total mass of the film for forming a protective film may be 20% by mass to 23% by mass; and the content of the photopolymerization initiator (c) may be 0.5% by mass based on the total mass of the film for forming a protective film. To 0.7% by mass; The content of said other component relative to the total mass of the protective film formation film may also be 56 mass% to 59 mass%.

[實施例] [Examples]

以下,藉由具體的實施例對本發明進行更詳細的說明。但是,本發明並不受以下所示之實施例之任何限定。 Hereinafter, the present invention will be described in more detail by way of specific examples. However, the present invention is not limited by the examples shown below.

以下表示用於製造保護膜形成用組成物之成分。 The components for producing a composition for forming a protective film are shown below.

.能量線硬化性成分 . Energy line hardening component

(a2)-1:三環癸烷二羥甲基二丙烯酸酯(日本化藥公司 製造之「KAYARAD R-684」,2官能紫外線硬化性化合物,分子量304)。 (a2)-1: tricyclodecane dihydroxymethyl diacrylate (Nippon Chemical Co., Ltd. "KAYARAD R-684", a bifunctional ultraviolet curable compound, molecular weight 304).

.不具有能量線硬化性基之聚合物 . Polymer without energy line hardening group

(b)-1:使丙烯酸丁酯(以下,簡稱為「BA」)(10質量份)、丙烯酸甲酯(以下,簡稱為「MA」)(70質量份)、甲基丙烯酸縮水甘油酯(以下,簡稱為「GMA」)(5質量份)及丙烯酸-2-羥基乙酯(以下,簡稱為「HEA」)(15質量份)進行共聚合而成之丙烯酸系樹脂(重量平均分子量300000,玻璃轉移溫度-1℃)。 (b)-1: butyl acrylate (hereinafter abbreviated as "BA") (10 parts by mass), methyl acrylate (hereinafter abbreviated as "MA") (70 parts by mass), and glycidyl methacrylate ( Hereinafter, an acrylic resin (weight average molecular weight: 300,000, which is simply referred to as "GMA") (5 parts by mass) and 2-hydroxyethyl acrylate (hereinafter abbreviated as "HEA") (15 parts by mass) is copolymerized. Glass transfer temperature -1 ° C).

.光聚合起始劑 . Photopolymerization initiator

(c)-1:2-(二甲基胺基)-1-(4-嗎啉基苯基)-2-苄基-1-丁酮(BASF公司製造之「Irgacure(註冊商標)369」)。 (c)-1: 2-(Dimethylamino)-1-(4-morpholinylphenyl)-2-benzyl-1-butanone (Irgacure (registered trademark) 369, manufactured by BASF Corporation) ).

(c)-2:乙酮,1-[9-乙基-6-(2-甲基苯甲醯基)-9H-咔唑-3-基]-,1-(O-乙醯基肟)(BASF公司製造之「Irgacure(註冊商標)OXE02」)。 (c)-2: Ethylketone, 1-[9-ethyl-6-(2-methylbenzhydryl)-9H-indazol-3-yl]-, 1-(O-ethylindenyl) (Irgacure (registered trademark) OXE02" manufactured by BASF Corporation).

.填充材料 . Filler

(d)-1:二氧化矽填料(溶融石英填料,平均粒徑8μm)。 (d)-1: cerium oxide filler (melted quartz filler, average particle diameter 8 μm).

.偶合劑 . Coupler

(e)-1:3-甲基丙烯醯氧基丙基三甲氧基矽烷(信越化學工業公司製造之「KBM-503」,矽烷偶合劑)。 (e)-1: 3-methacryloxypropyltrimethoxydecane ("KBM-503" manufactured by Shin-Etsu Chemical Co., Ltd., decane coupling agent).

.著色劑 . Colorant

(g)-1:將酞菁系藍色色素(Pigment Blue 15:3)32質量份、異吲哚啉酮系黃色色素(Pigment Yellow 139)18質量份、及蒽醌系紅色色素(Pigment Red 177)50質量份進行混合 ,以前述3種色素的合計量/苯乙烯丙烯酸樹脂量=1/3(質量比)之方式進行顏料化而獲得之顏料。 (g)-1: 32 parts by mass of a phthalocyanine-based blue pigment (Pigment Blue 15:3), 18 parts by mass of an isoindolinone-based yellow pigment (Pigment Yellow 139), and a lanthanide red pigment (Pigment Red) 177) 50 parts by mass for mixing A pigment obtained by pigmenting the total amount of the above three kinds of dyes/the amount of styrene acrylic resin = 1/3 (mass ratio).

[實施例1] [Example 1]

<保護膜形成用複合片之製造> <Manufacture of composite sheet for forming a protective film>

(保護膜形成用組成物(IV-1)之製造) (Manufacture of protective film forming composition (IV-1))

使能量線硬化性成分(a2)-1、聚合物(b)-1、光聚合起始劑(c)-1、光聚合起始劑(c)-2、填充材料(d)-1、偶合劑(e)-1及著色劑(g)-1,以這些的含量(固形物成分量,質量份)成為表1所示之值之方式,溶解或分散於甲基乙基酮中,於23℃下進行攪拌,藉此製備固形物成分濃度為50質量%之保護膜形成用組成物(IV-1)。再者,表1中的含有成分一欄記載為「-」時,表示保護膜形成用組成物(IV-1)不含有該成分。 The energy ray curable component (a2)-1, the polymer (b)-1, the photopolymerization initiator (c)-1, the photopolymerization initiator (c)-2, the filler (d)-1, The coupling agent (e)-1 and the coloring agent (g)-1 are dissolved or dispersed in methyl ethyl ketone so that the content (solid content, mass part) is a value shown in Table 1 The mixture was stirred at 23 ° C to prepare a protective film-forming composition (IV-1) having a solid content concentration of 50% by mass. In addition, when the column containing the component in Table 1 is described as "-", it means that the protective film-forming composition (IV-1) does not contain the component.

(黏著劑組成物(I-4)之製造) (Manufacture of adhesive composition (I-4))

製備固形物成分濃度為30質量%之非能量線硬化性之黏著劑組成物(I-4),該黏著劑組成物(I-4)含有丙烯酸系聚合物(100質量份,固形物成分)、及3官能苯二甲基二異氰酸酯系交聯劑(三井武田化學公司製造之「Takenate D110N」)(10.7質量份,固形物成分),進一步含有作為溶劑之甲基乙基酮。前述丙烯酸系聚合物係使丙烯酸-2-乙基己酯(以下,簡稱為「2EHA」)(36質量份)、BA(59質量份)、及HEA(5質量份)進行共聚合而成,且重量平均分子 量為600000。 A non-energy-curable adhesive composition (I-4) having a solid content concentration of 30% by mass, wherein the adhesive composition (I-4) contains an acrylic polymer (100 parts by mass, a solid content) And a trifunctional phthalic diisocyanate-based crosslinking agent ("Takenate D110N" manufactured by Mitsui Takeda Chemical Co., Ltd.) (10.7 parts by mass, solid content component), and further contains methyl ethyl ketone as a solvent. The acrylic polymer is obtained by copolymerizing 2-ethylhexyl acrylate (hereinafter abbreviated as "2EHA") (36 parts by mass), BA (59 parts by mass), and HEA (5 parts by mass). Weight average molecule The amount is 600,000.

(支持片之製造) (Support for the manufacture of tablets)

於聚對苯二甲酸乙二酯製膜的單面經聚矽氧處理進行剝離處理之剝離膜(Lintec公司製造之「SP-PET381031」,厚度38μm)的前述剝離處理面塗敷上述所獲得之黏著劑組成物(I-4),於120℃下加熱乾燥2分鐘,藉此形成厚度10μm之非能量線硬化性之黏著劑層。 The release treatment surface of the release film ("SP-PET381031" manufactured by Lintec Co., Ltd., thickness: 38 μm) which was subjected to a release treatment on a single side of a film made of polyethylene terephthalate, was coated with the above-mentioned obtained The adhesive composition (I-4) was dried by heating at 120 ° C for 2 minutes to form a non-energy-curable adhesive layer having a thickness of 10 μm.

接著,於該黏著劑層的露出面貼合作為基材之聚丙烯系膜(楊氏率(400MPa),厚度80μm),藉此獲得於前述基材的一方的表面上具備前述黏著劑層之支持片(10)-1。 Then, a polypropylene film (Young's modulus (400 MPa), thickness: 80 μm) adhered to the exposed surface of the adhesive layer is provided, and the adhesive layer is provided on one surface of the substrate. Support slice (10)-1.

(保護膜形成用複合片之製造) (Manufacture of composite sheet for forming a protective film)

於聚對苯二甲酸乙二酯製膜的單面經聚矽氧處理進行剝離處理之剝離膜(Lintec公司製造之「SP-PET381031」,厚度38μm)的前述剝離處理面,藉由刀式塗佈機塗敷上述所獲得之保護膜形成用組成物(IV-1),於100℃下乾燥2分鐘,藉此製作厚度25μm之能量線硬化性之保護膜形成用膜(13)-1。 The release-treated surface of the release film ("SP-PET381031" manufactured by Lintec Co., Ltd., thickness: 38 μm) which was subjected to a release treatment on a single side of a polyethylene terephthalate film by a polyphthalic acid treatment, was coated by a knife The protective film-forming composition (IV-1) obtained above was applied to a cloth machine and dried at 100 ° C for 2 minutes to prepare a film (13)-1 for protective film formation having an energy ray curability of 25 μm.

接著,自上述所獲得之支持片(10)-1中的黏著劑層移除剝離膜,於該黏著劑層的露出面貼合上述所獲得之保護膜形成用膜(13)-1的露出面,製作基材、黏著劑層、保護膜形成用膜(13)-1及剝離膜於這些的厚度方向上依序積層 而成之保護膜形成用複合片。所獲得之保護膜形成用複合片之構成示於表2。 Next, the release film is removed from the adhesive layer in the support sheet (10)-1 obtained above, and the exposed surface of the protective film formation film (13)-1 obtained by adhering to the exposed surface of the adhesive layer is bonded to the exposed surface of the adhesive layer. In the surface, the substrate, the adhesive layer, the protective film forming film (13)-1, and the release film are sequentially laminated in the thickness direction of these layers. A composite sheet for forming a protective film. The composition of the obtained composite sheet for forming a protective film is shown in Table 2.

<保護膜形成用複合片之評價> <Evaluation of composite sheet for forming a protective film>

(保護膜形成用膜與支持片之間的黏著力) (Adhesion between the film for forming a protective film and the support sheet)

將上述所獲得之保護膜形成用複合片裁斷成25mm×140mm之大小,自保護膜形成用複合片移除剝離膜使保護膜形成用膜(13)-1的一方的表面露出,作為硬化前試片。另一方面,準備於SUS(不鏽鋼)製支持板(70mm×150mm)的表面貼合有雙面黏著帶之試片。然後,使用貼合機(Fuji公司製造之「LAMIPACKER LPD3214」),將硬化前試片之保護膜形成用膜(13)-1的露出面貼附於支持板上的前述雙面黏著帶,藉此於支持板經由雙面黏著帶貼附硬化前試片。 The composite sheet for forming a protective film obtained as described above is cut into a size of 25 mm × 140 mm, and the release film is removed from the composite sheet for forming a protective film to expose one surface of the film for protective film formation (13)-1. Audition. On the other hand, a test piece of a double-sided adhesive tape was attached to the surface of a SUS (stainless steel) support plate (70 mm × 150 mm). Then, using the laminating machine ("LAMIPACKER LPD3214" manufactured by Fuji Co., Ltd.), the exposed surface of the film (13)-1 for protective film formation of the pre-hardened test piece is attached to the double-sided adhesive tape on the support plate. The support plate is attached to the pre-hardened test piece via a double-sided adhesive tape.

著,使用精密萬能試驗機(島津製作所製造之「Autograph AG-IS」)進行拉伸試驗,該拉伸試驗係於剝離角度180°、測定溫度23℃、拉伸速度300mm/min之條件下將支持片(10)-1(硬化前之黏著劑層與基材之積層物)自保護膜形成用膜(13)-1剝離,測定此時的荷重(剝離力),設為保護膜形成用膜(13)-1與支持片(10)-1之間的黏著力。再者,作為前述荷重之測定值,採用以下述方式獲得之值:將支持片(10)-1跨越長度100mm剝離時的測定值中,將最初剝離剛好長度10mm時及最後剝離剛好長度10mm時各 自的測定值自有效值中排除在外。結果示於表2。 The tensile test was carried out using a precision universal testing machine ("Autograph AG-IS" manufactured by Shimadzu Corporation) under the conditions of a peeling angle of 180°, a measuring temperature of 23 ° C, and a tensile speed of 300 mm/min. The support sheet (10)-1 (the laminate of the adhesive layer before the curing and the substrate) was peeled off from the film for protective film formation (13)-1, and the load (peeling force) at this time was measured to form a protective film. The adhesion between the film (13)-1 and the support sheet (10)-1. Further, as the measured value of the load, a value obtained by peeling the support sheet (10)-1 over a length of 100 mm was used, and the first peeling was performed immediately after the length of 10 mm and the final peeling was just 10 mm. each Self-measured values are excluded from the effective value. The results are shown in Table 2.

(保護膜形成用膜的拉伸彈性率) (Tensile modulus of film for forming a protective film)

以下述方式對保護膜形成用膜(13)-1的拉伸彈性率(楊氏率)進行評價。 The tensile modulus (Young's rate) of the film for protective film formation (13)-1 was evaluated in the following manner.

亦即,藉由將保護膜形成用片(厚度:25μm)積層2層,藉此成為厚度50μm,將該樣品以15mm×100mm之尺寸進行拉伸試驗(拉伸速度:50mm/min),根據拉伸初期之應力-應變線之斜率,算出保護膜形成用膜(13)-1的拉伸彈性率。 In other words, a thickness of 50 μm was formed by laminating two sheets of a film for forming a protective film (thickness: 25 μm), and the sample was subjected to a tensile test (tensile speed: 50 mm/min) in a size of 15 mm × 100 mm, according to The tensile modulus of the film for protective film formation (13)-1 was calculated from the slope of the stress-strain line at the initial stage of stretching.

將上述所獲得之保護膜形成用膜(13)-1裁斷而製作試片。 The film (13)-1 for protective film formation obtained above was cut off to prepare a test piece.

接著,依據JIS K7161:1994,測定23℃下的前述試片的拉伸彈性率(楊氏率)。此時,將試片之測定時之寬度設為15mm,夾具間距離設為10mm,拉伸速度設為50mm/min。 Next, the tensile modulus (Young's modulus) of the test piece at 23 ° C was measured in accordance with JIS K7161:1994. At this time, the width of the test piece was set to 15 mm, the distance between the jigs was set to 10 mm, and the stretching speed was set to 50 mm/min.

評價結果示於表2。 The evaluation results are shown in Table 2.

(保護膜與支持片之間的黏著力) (adhesion between the protective film and the support sheet)

利用與上述之硬化前試片之黏著力之測定時相同的方法,製作硬化前試片,經由雙面黏著帶,將該硬化前試片貼附於SUS製支持板。 The test piece before hardening was produced in the same manner as in the measurement of the adhesive force of the test piece before hardening described above, and the test piece before hardening was attached to a support plate made of SUS via a double-sided adhesive tape.

接著,使用紫外線照射裝置(Lintec公司製造之「 RAD2000m/8」),於照度195mW/cm2、光量170mJ/cm2之條件下對硬化前試片照射紫外線,藉此使保護膜形成用膜(13)-1硬化,獲得硬化後試片。 Then, an ultraviolet irradiation apparatus ("RAD2000m/8" manufactured by Lintec Co., Ltd.) was used to irradiate the test specimen with ultraviolet rays under the conditions of an illuminance of 195 mW/cm 2 and a light amount of 170 mJ/cm 2 to thereby form a film for forming a protective film ( 13)-1 hardening, obtaining a test piece after hardening.

接著,針對該硬化後試片,利用與上述之硬化前試片之情形相同的方法,測定保護膜形成用膜(13)-1硬化而成之保護膜與支持片(10)-1之間的黏著力。結果示於表2。 Then, the cured test piece was measured between the protective film obtained by curing the film for protective film (13)-1 and the support sheet (10)-1 by the same method as in the case of the test piece before curing described above. Adhesion. The results are shown in Table 2.

<保護膜的拉伸彈性率> <Tensile modulus of protective film>

將上述所獲得之保護膜形成用膜(13)-1裁斷而製作試片。 The film (13)-1 for protective film formation obtained above was cut off to prepare a test piece.

接著,使用紫外線照射裝置(Lintec公司製造之「RAD2000m/8」),於照度195mW/cm2、光量170mJ/cm2之條件下對前述試片照射紫外線,藉此使保護膜形成用膜(13)-1硬化,獲得保護膜試片。 Then, the test piece was irradiated with ultraviolet rays under the conditions of an illuminance of 195 mW/cm 2 and a light amount of 170 mJ/cm 2 using an ultraviolet irradiation device ("RAD2000m/8" manufactured by Lintec Co., Ltd.) to thereby form a film for forming a protective film (13). )-1 hardens to obtain a protective film test piece.

接著,依據JIS K7161:1994,測定23℃下的前述保護膜試片的拉伸彈性率(楊氏率)。此時,將保護膜試片之測定時之寬度設為15mm,夾具間距離設為10mm,拉伸速度設為50mm/min。 Next, the tensile modulus (Young's modulus) of the protective film test piece at 23 ° C was measured in accordance with JIS K7161:1994. At this time, the width at the time of measurement of the protective film test piece was set to 15 mm, the distance between the jigs was set to 10 mm, and the tensile speed was set to 50 mm/min.

評價結果示於表2。 The evaluation results are shown in Table 2.

(切割評價) (cutting evaluation)

將上述所獲得之保護膜形成用複合片,藉由該保護膜形成用複合片之保護膜形成用膜(13)-1,貼附於8吋矽晶圓(厚度100μm)之#2000研磨面,進而將該片固定於環狀框 ,靜置30分鐘。 The protective film forming composite sheet obtained as described above was attached to a #2000 polished surface of a 8 Å wafer (thickness: 100 μm) by the protective film forming film (13)-1 of the protective film forming composite sheet. And fixing the piece to the ring frame , let stand for 30 minutes.

接著,使用紫外線照射裝置(Lintec公司製造之「RAD2000m/8」),於UV光源與支持片(10)-1之間與支持片(10)-1相接觸地設置外徑12吋內徑8吋之環狀且厚度10mm之SUS製的遮蔽板,於照度195mW/cm2、光量170mJ/cm2之條件下,經由該遮蔽板自支持片(10)-1側對保護膜形成用複合片照射紫外線,藉此使保護膜形成用膜(13)-1中除了周緣部附近的區域以外的半導體晶圓之貼附區域部分的保護膜形成用膜(13)-1硬化,而成為保護膜。 Next, an ultraviolet ray irradiation device ("RAD2000m/8" manufactured by Lintec Co., Ltd.) was used to provide an outer diameter of 12 吋 inner diameter 8 in contact with the support sheet (10)-1 between the UV light source and the support sheet (10)-1. A shielding sheet made of SUS having a ring shape and a thickness of 10 mm is used to form a composite sheet for forming a protective film from the side of the support sheet (10)-1 via the shielding plate under the conditions of an illuminance of 195 mW/cm 2 and a light amount of 170 mJ/cm 2 . By irradiating the ultraviolet ray, the film for protective film formation (13)-1 of the attachment region of the semiconductor wafer other than the region in the vicinity of the peripheral portion of the film (13)-1 for protective film formation is cured to become a protective film. .

接著,使用切割刀片,將矽晶圓連同保護膜一起切割而單片化,獲得3mm×3mm之矽晶片。 Next, using a dicing blade, the ruthenium wafer was cut together with the protective film to be singulated, and a 3 mm × 3 mm ruthenium wafer was obtained.

接著,使用黏晶機(Canon Machinery公司製造之「BESTEM-D02」),於延伸量3mm之條件下,拾取20個附有保護膜之矽晶片。 Next, using a die bonder ("BESTEM-D02" manufactured by Canon Machinery Co., Ltd.), 20 wafers with a protective film were picked up under an extension of 3 mm.

此時,若能夠無失誤而拾取則判定為「A」,若有失誤則判定為「B」,對拾取適性進行評價。結果示於表2。另外,此時之延伸後之切口寬度之測定結果示於表2。 In this case, if it can be picked up without error, it is judged as "A", and if there is a mistake, it is judged as "B", and the pickup suitability is evaluated. The results are shown in Table 2. In addition, the measurement results of the slit width after the extension at this time are shown in Table 2.

[實施例2] [Embodiment 2]

<保護膜形成複合用片之製造及評價> <Manufacture and Evaluation of Protective Film Forming Composite Sheet>

(支持片之製造) (Support for the manufacture of tablets)

於聚對苯二甲酸乙二酯製膜的單面經聚矽氧處理進行剝離處理之剝離膜(Lintec公司製造之「SP-PET381031」,厚度38μm)的前述剝離處理面,塗敷上述所獲得之黏著 劑組成物(I-4),於120℃下加熱乾燥2分鐘,藉此形成厚度10μm之非能量線硬化性之黏著劑層。 The above-mentioned peeling-treated surface of a release film ("SP-PET381031" manufactured by Lintec Co., Ltd., thickness: 38 μm) which was subjected to a release treatment on a single side of a polyethylene terephthalate film by a polyphthalic acid treatment was applied as described above. Adhesive The agent composition (I-4) was dried by heating at 120 ° C for 2 minutes to form a non-energy-curable adhesive layer having a thickness of 10 μm.

接著,於作為基材之聚丙烯系膜(楊氏率(400MPa),厚度80μm)的一方的表面上,設置由印刷層構成之遮光層,前述印刷層為外徑12吋內徑8吋之環狀,厚度為2μm,且具有遮光性。 Next, a light-shielding layer made of a printed layer was provided on one surface of a polypropylene-based film (Young's ratio (400 MPa), thickness: 80 μm) as a substrate, and the printed layer had an outer diameter of 12 吋 and an inner diameter of 8 Å. It has a ring shape, a thickness of 2 μm, and is light-shielding.

然後,於上述所獲得之黏著劑層的露出面貼合上述所獲得之基材的另一面,藉此獲得於前述基材的另一方的表面上具備前述黏著劑層之支持片(10)-2。 Then, the other surface of the substrate obtained above is bonded to the exposed surface of the adhesive layer obtained above, thereby obtaining a support sheet (10) having the above-mentioned adhesive layer on the other surface of the substrate- 2.

(保護膜形成用複合片之製造及評價) (Manufacture and evaluation of composite sheet for forming a protective film)

使用上述所獲得之支持片(10)-2,除此方面以外,以與實施例1相同的方式,製作保護膜形成用片。 A sheet for forming a protective film was produced in the same manner as in Example 1 except that the support sheet (10)-2 obtained above was used.

並且,使用該支持片(10)-2代替支持片(10)-1,除此方面以外,利用與實施例1相同的方法,製造保護膜形成用複合片。所獲得之保護膜形成用複合片之構成示於表2。 In addition, the support sheet (10)-2 was used instead of the support sheet (10)-1, and a composite sheet for forming a protective film was produced in the same manner as in Example 1 except for the above. The composition of the obtained composite sheet for forming a protective film is shown in Table 2.

保護膜形成用膜與支持片之間的黏著力、保護膜形成用膜的拉伸彈性率、保護膜與支持片之間的黏著力、保護膜的拉伸彈性率的評價結果與實施例1相同。 Evaluation results of the adhesion between the film for forming a protective film and the support sheet, the tensile modulus of the film for forming a protective film, the adhesion between the protective film and the support sheet, and the tensile modulus of the protective film, and Example 1 the same.

(切割評價) (cutting evaluation)

將上述所獲得之保護膜形成用複合片,藉由該保護膜形成用複合片之保護膜形成用膜(13)-1,貼附於8吋矽晶圓(厚度100μm)之#2000研磨面,進而將該片固定於環狀框 ,靜置30分鐘。 The protective film forming composite sheet obtained as described above was attached to a #2000 polished surface of a 8 Å wafer (thickness: 100 μm) by the protective film forming film (13)-1 of the protective film forming composite sheet. And fixing the piece to the ring frame , let stand for 30 minutes.

接著,使用紫外線照射裝置(Lintec公司製造之「RAD2000m/8」),於照度195mW/cm2、光量170mJ/cm2之條件下,隔著由印刷層構成之遮光層自支持片(10)-1側對保護膜形成用複合片照射紫外線,藉此使保護膜形成用膜(13)-1中除了周緣部附近的區域以外的半導體晶圓之貼附區域部分的保護膜形成用膜(13)-1硬化,而成為保護膜。 Next, using a UV irradiation device ("RAD2000m/8" manufactured by Lintec Co., Ltd.), a light-shielding layer self-supporting sheet (10) composed of a printed layer was formed under the conditions of an illuminance of 195 mW/cm 2 and a light amount of 170 mJ/cm 2 . The film for protective film formation of the attachment region of the semiconductor wafer other than the region in the vicinity of the peripheral portion of the film (13)-1 in the protective film forming film (13)-1 is irradiated with ultraviolet rays on the first side. )-1 hardens and becomes a protective film.

接著,使用切割刀片,將矽晶圓連同保護膜一起切割而單片化,獲得3mm×3mm之矽晶片。 Next, using a dicing blade, the ruthenium wafer was cut together with the protective film to be singulated, and a 3 mm × 3 mm ruthenium wafer was obtained.

接著,使用黏晶機(Canon Machinery公司製造之「BESTEM-D02」),於延伸量3mm之條件下,拾取20個附有保護膜之矽晶片。 Next, using a die bonder ("BESTEM-D02" manufactured by Canon Machinery Co., Ltd.), 20 wafers with a protective film were picked up under an extension of 3 mm.

此時,若能夠無失誤而拾取則判定為「A」,若有失誤則判定為「B」,對拾取適性進行評價。結果示於表2。另外,此時之延伸後之切口寬度之測定結果示於表2。 In this case, if it can be picked up without error, it is judged as "A", and if there is a mistake, it is judged as "B", and the pickup suitability is evaluated. The results are shown in Table 2. In addition, the measurement results of the slit width after the extension at this time are shown in Table 2.

[實施例3] [Example 3]

<保護膜形成用複合片之製造及評價> <Manufacture and Evaluation of Composite Sheet for Forming Protective Film>

(保護膜形成用複合片之製造) (Manufacture of composite sheet for forming a protective film)

將實施例1中用作基材之聚丙烯系膜(厚度80μm)替換而使用聚氯乙烯系膜(楊氏率(280MPa),厚度80μm),除此方面以外,以與實施例1相同的方式,製作支持片(10)-3。 A polypropylene film (thickness: 80 μm) used as a substrate in Example 1 was replaced with a polyvinyl chloride film (Young's ratio (280 MPa), thickness: 80 μm), and the same as Example 1 except for the above. In the way, support piece (10)-3 is produced.

並且,使用該支持片(10)-3代替支持片(10)-1,除此方 面以外,利用與實施例1相同的方法,製造保護膜形成用複合片。所獲得之保護膜形成用複合片之構成示於表2。 And, the support piece (10)-3 is used instead of the support piece (10)-1, except for this side. A composite sheet for forming a protective film was produced in the same manner as in Example 1 except for the surface. The composition of the obtained composite sheet for forming a protective film is shown in Table 2.

保護膜形成用膜與支持片之間的黏著力、保護膜形成用膜的拉伸彈性率、保護膜與支持片之間的黏著力、保護膜的拉伸彈性率的評價結果與實施例1相同。 Evaluation results of the adhesion between the film for forming a protective film and the support sheet, the tensile modulus of the film for forming a protective film, the adhesion between the protective film and the support sheet, and the tensile modulus of the protective film, and Example 1 the same.

(切割評價) (cutting evaluation)

將實施例1中所使用之支持片(10)-1替換為支持片(10)-3,除此方面以外,以與實施例1相同的方式,進行切割評價。 The support sheet (10)-1 used in Example 1 was replaced with the support sheet (10)-3, and in addition to this, the cut evaluation was performed in the same manner as in Example 1.

結果示於表2。 The results are shown in Table 2.

[實施例4] [Example 4]

<保護膜形成用複合片之製造及評價> <Manufacture and Evaluation of Composite Sheet for Forming Protective Film>

(保護膜形成用複合片之製造) (Manufacture of composite sheet for forming a protective film)

將實施例1中用作基材之聚丙烯系膜(厚度80μm)替換而使用聚氯乙烯系膜(楊氏率(280MPa),厚度80μm),除此方面以外,以與實施例2相同的方式,製作支持片(10)-4。 A polypropylene film (thickness: 80 μm) used as a substrate in Example 1 was replaced with a polyvinyl chloride film (Young's ratio (280 MPa), thickness: 80 μm), and the same as Example 2 except for this. Way, make support piece (10)-4.

並且,使用該支持片(10)-4代替支持片(10)-1,除此方面以外,利用與實施例1相同的方法,製造保護膜形成用複合片。所獲得之保護膜形成用複合片之構成示於表2。 In addition, the support sheet (10)-4 was used instead of the support sheet (10)-1, and a composite sheet for forming a protective film was produced in the same manner as in Example 1 except for the above. The composition of the obtained composite sheet for forming a protective film is shown in Table 2.

保護膜形成用膜與支持片之間的黏著力、保護膜形成用膜的拉伸彈性率、保護膜與支持片之間的黏著力、保護 膜的拉伸彈性率的評價結果與實施例1相同。 Adhesion between the film for forming a protective film and the support sheet, tensile modulus of the film for forming a protective film, adhesion between the protective film and the support sheet, and protection The evaluation results of the tensile modulus of the film were the same as in Example 1.

(切割評價) (cutting evaluation)

將實施例1中所使用之支持片(10)-1替換為支持片(10)-4,除此方面以外,以與實施例1相同的方式,進行切割評價。 The support sheet (10)-1 used in Example 1 was replaced with the support sheet (10)-4, and in addition to this, the cut evaluation was performed in the same manner as in Example 1.

結果示於表2。 The results are shown in Table 2.

[比較例1] [Comparative Example 1]

<保護膜形成用複合片之製造及評價> <Manufacture and Evaluation of Composite Sheet for Forming Protective Film>

(保護膜形成用複合片之製造) (Manufacture of composite sheet for forming a protective film)

以與實施例1相同的方式,製作支持片(10)-1。 The support sheet (10)-1 was produced in the same manner as in the first embodiment.

保護膜形成用膜與支持片之間的黏著力、保護膜形成用膜的拉伸彈性率、保護膜與支持片之間的黏著力、保護膜的拉伸彈性率的評價結果與實施例1相同。 Evaluation results of the adhesion between the film for forming a protective film and the support sheet, the tensile modulus of the film for forming a protective film, the adhesion between the protective film and the support sheet, and the tensile modulus of the protective film, and Example 1 the same.

(切割評價) (cutting evaluation)

不使用實施例1中所使用之SUS製的遮蔽板,除此方面以外,以與實施例1相同的方式,自支持片(10)-1側對保護膜形成用複合片之整體照射紫外線,進行切割評價。 In the same manner as in the first embodiment, the entire composite sheet for forming a protective film was irradiated with ultraviolet rays from the side of the support sheet (10)-1, except that the shield plate made of SUS used in the first embodiment was not used. Perform the cutting evaluation.

結果示於表2。 The results are shown in Table 2.

[比較例2] [Comparative Example 2]

<保護膜形成用複合片之製造及評價> <Manufacture and Evaluation of Composite Sheet for Forming Protective Film>

(保護膜形成用複合片之製造) (Manufacture of composite sheet for forming a protective film)

以與實施例3相同的方式,製作支持片(10)-3。 The support sheet (10)-3 was produced in the same manner as in the third embodiment.

保護膜形成用膜與支持片之間的黏著力、保護膜形成用膜的拉伸彈性率、保護膜與支持片之間的黏著力、保護膜的拉伸彈性率的評價結果與實施例1相同。 Evaluation results of the adhesion between the film for forming a protective film and the support sheet, the tensile modulus of the film for forming a protective film, the adhesion between the protective film and the support sheet, and the tensile modulus of the protective film, and Example 1 the same.

(切割評價) (cutting evaluation)

不使用實施例1中所使用之SUS製的遮蔽板,除此方面以外,以與實施例3相同的方式,自支持片(10)-3側對保護膜形成用複合片之整體照射紫外線,進行切割評價。 In the same manner as in the third embodiment, the entire composite sheet for forming a protective film is irradiated with ultraviolet rays from the side of the support sheet (10)-3, except that the shield plate made of SUS used in the first embodiment is not used. Perform the cutting evaluation.

結果示於表2。 The results are shown in Table 2.

根據實施例1至實施例4之結果可明確,對保護膜形成用膜中除了周緣部附近的區域以外的半導體晶圓之貼附區域部分照射能量線後,對半導體晶圓進行切割之情形時,可改善拾取性。推定對保護膜形成用膜中的前述半導體晶圓之貼附區域部分照射能量線,並且於支持片的周緣部附近的區域存在保護膜形成用膜未硬化的區域,藉此將積層體進行延伸時,延伸之作用無遺漏地遍佈保護膜形成用膜中貼附有半導體晶圓的區域,切口寬度可更良好地擴展,藉此可改善拾取性。 According to the results of the first embodiment to the fourth embodiment, it is clear that when the semiconductor wafer is diced by irradiating the energy line to the portion of the semiconductor wafer other than the region near the peripheral portion of the film for forming a protective film. Can improve picking. It is estimated that the portion of the adhesion region of the semiconductor wafer in the film for forming a protective film is irradiated with an energy ray, and a region where the film for protective film formation is not cured is present in a region in the vicinity of the peripheral portion of the support sheet, thereby extending the laminate. In this case, the effect of the stretching is spread over the region where the semiconductor wafer is adhered to the film for forming a protective film, and the slit width can be expanded more favorably, whereby the pickup property can be improved.

相對於此,比較例1至比較例2中,推測自支持片(10)-1側對保護膜形成用複合片之整體照射紫外線,保護膜形成用膜中包含有半導體晶圓之貼附區域的外周部分在內的整體硬化,故而將積層體延伸時,保護膜形成用膜中未貼附半導體晶圓之外周的區域的硬保護膜成為障礙,延伸之作用未能良好地遍佈中央部分的半導體晶圓之貼附區域,導致拾取性不良。 On the other hand, in Comparative Example 1 to Comparative Example 2, it is estimated that the entire protective film forming composite sheet is irradiated with ultraviolet rays from the side of the support sheet (10)-1, and the protective film forming film contains the attached region of the semiconductor wafer. When the laminate is extended as a whole, the hard protective film in the region of the protective film forming film in which the outer periphery of the semiconductor wafer is not attached is an obstacle, and the effect of the extension does not spread well over the central portion. The attachment area of the semiconductor wafer causes poor pickup.

(產業可利用性) (industry availability)

本發明可用於製造半導體裝置。 The invention can be used to fabricate semiconductor devices.

1A‧‧‧保護膜形成用複合片 1A‧‧‧Composite film for protective film formation

10‧‧‧支持片 10‧‧‧Support tablets

10a‧‧‧(支持片的)表面 10a‧‧‧ (supported) surface

11‧‧‧基材 11‧‧‧Substrate

11a‧‧‧(基材的)表面 11a‧‧‧ (substrate) surface

12‧‧‧黏著劑層 12‧‧‧Adhesive layer

12a‧‧‧(黏著劑層的)表面 12a‧‧‧ (adhesive layer) surface

13‧‧‧保護膜形成用膜 13‧‧‧film for protective film formation

13a‧‧‧(保護膜形成用膜的)表面 13a‧‧‧ (film for protective film formation)

15‧‧‧剝離膜 15‧‧‧Release film

16‧‧‧治具用接著劑層 16‧‧‧Layer layer for fixtures

16a‧‧‧(治具用接著劑層的)表面 16a‧‧‧ (adhesive layer for the fixture) surface

24‧‧‧遮光層 24‧‧‧ shading layer

Claims (7)

一種保護膜形成用複合片,係於支持片上具備能量線硬化性之保護膜形成用膜而成,前述支持片於周緣部附近的區域具有遮光層。 A composite sheet for forming a protective film is formed by a film for forming a protective film having an energy ray-curable property on a support sheet, and the support sheet has a light-shielding layer in a region in the vicinity of the peripheral portion. 如請求項1所記載之保護膜形成用複合片,其中前述遮光層由印刷層構成。 The composite sheet for forming a protective film according to claim 1, wherein the light shielding layer is composed of a printed layer. 一種附有保護膜的半導體晶片的製造方法,係包含有:對依序具備有支持片、能量線硬化性之保護膜形成用膜及半導體晶圓之積層體中的前述半導體晶圓及前述保護膜形成用膜進行切割;對經切割之前述保護膜形成用膜中除了周緣部附近的區域以外的前述半導體晶圓之貼附區域部分照射能量線,藉此於前述支持片上形成附有保護膜的半導體晶片;以及對前述附有保護膜的半導體晶片進行拾取。 A method for producing a semiconductor wafer with a protective film, comprising: the semiconductor wafer and the protection in a laminate of a protective film forming film and a semiconductor wafer which are provided with a support sheet, an energy ray-curable layer, and a semiconductor wafer; The film for film formation is diced, and an energy ray is applied to the affixed portion of the film for forming a protective film, except for a region in the vicinity of the peripheral portion, to form a protective film on the support sheet. a semiconductor wafer; and picking up the aforementioned semiconductor wafer with a protective film. 一種附有保護膜的半導體晶片的製造方法,係包含有:對依序具備有支持片、能量線硬化性之保護膜形成用膜及半導體晶圓之積層體中的前述保護膜形成用膜中除了周緣部附近的區域以外的前述半導體晶圓之貼附區域部分照射能量線;照射前述能量線後,切割前述半導體晶圓,於前述支持片上形成附有保護膜的半導體晶片;以及對前述附有保護膜的半導體晶片進行拾取。 A method for producing a semiconductor wafer with a protective film, comprising: a film for forming a protective film in a laminate for a protective film for forming a support sheet or an energy ray-curable film and a semiconductor wafer; Irradiating the energy line with the attachment region of the semiconductor wafer except for the region near the peripheral portion; after irradiating the energy line, cutting the semiconductor wafer to form a semiconductor wafer with a protective film on the support sheet; The semiconductor wafer with the protective film is picked up. 如請求項3或4所記載之附有保護膜的半導體晶片的製造方法,其中前述支持片於周緣部附近的區域具有遮光層。 The method for producing a semiconductor wafer with a protective film according to claim 3 or 4, wherein the support sheet has a light shielding layer in a region in the vicinity of the peripheral portion. 如請求項3或4所記載之附有保護膜的半導體晶片的製造方法,其中包含有對前述保護膜形成用膜中除了周緣部附近的區域以外的前述半導體晶圓之貼附區域部分隔著遮蔽板照射能量線。 The method for producing a semiconductor wafer with a protective film according to claim 3 or 4, wherein a portion of the film for forming a protective film other than a region near a peripheral portion of the protective film is partially interposed The shielding plate illuminates the energy line. 一種半導體裝置的製造方法,係包含有將藉由如請求項3至6中任一項所記載之附有保護膜的半導體晶片的製造方法所獲得之附有保護膜的半導體晶片連接於基板。 A method of manufacturing a semiconductor device, comprising: attaching a semiconductor wafer with a protective film obtained by the method for producing a semiconductor wafer with a protective film according to any one of claims 3 to 6 to a substrate.
TW106113627A 2016-04-28 2017-04-24 Method for producing semiconductor chip with protective film, and method for producing semiconductor device TWI772293B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-092012 2016-04-28
JP2016092012 2016-04-28

Publications (2)

Publication Number Publication Date
TW201742151A true TW201742151A (en) 2017-12-01
TWI772293B TWI772293B (en) 2022-08-01

Family

ID=60161522

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106113627A TWI772293B (en) 2016-04-28 2017-04-24 Method for producing semiconductor chip with protective film, and method for producing semiconductor device

Country Status (5)

Country Link
JP (1) JP6902530B2 (en)
KR (1) KR102376021B1 (en)
CN (1) CN109075047B (en)
TW (1) TWI772293B (en)
WO (1) WO2017188197A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7192249B2 (en) * 2018-05-25 2022-12-20 昭和電工マテリアルズ株式会社 Resin composition, cured product, semiconductor device and manufacturing method thereof
JP2022152296A (en) 2021-03-29 2022-10-12 リンテック株式会社 Protective coat formation film, composite sheet for forming protective coat, and manufacturing method of chip having protective coat
JP2023148425A (en) 2022-03-30 2023-10-13 リンテック株式会社 Protective film forming film, roll body, and use of protective film forming film
JP2023148426A (en) 2022-03-30 2023-10-13 リンテック株式会社 Protective film-forming film, protective film-forming composite sheet, kit, and use of protective film-forming film
CN114603961A (en) * 2022-04-12 2022-06-10 芊惠半导体科技(苏州)有限公司 Protective film base material for cutting integrated circuit packaging substrate

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144433B1 (en) 1970-02-02 1976-11-29
JP3097619B2 (en) * 1997-10-02 2000-10-10 日本電気株式会社 Method of manufacturing field emission cold cathode
JP2002043251A (en) * 2000-07-25 2002-02-08 Fujitsu Ltd Semiconductor device and method of manufacturing
JP4195646B2 (en) * 2002-07-26 2008-12-10 日東電工株式会社 MULTILAYER SHEET, ITS MANUFACTURING METHOD, AND ADHESIVE SHEET USING THE MULTILAYER SHEET
JP4364508B2 (en) 2002-12-27 2009-11-18 リンテック株式会社 Protective film forming sheet for chip back surface and manufacturing method of chip with protective film
US20050244631A1 (en) * 2004-04-28 2005-11-03 Mitsui Chemicals, Inc. Surface protecting film for semiconductor wafer and method of protecting semiconductor wafer using the same
KR20110010601A (en) 2008-03-31 2011-02-01 헨켈 코포레이션 Multilayer uv-curable adhesive film
JP2010031183A (en) 2008-07-30 2010-02-12 Furukawa Electric Co Ltd:The Energy ray hardening type chip protecting film
JP5456440B2 (en) * 2009-01-30 2014-03-26 日東電工株式会社 Dicing tape integrated wafer back surface protection film
JP2011204806A (en) 2010-03-24 2011-10-13 Nitto Denko Corp Processing method of wafer
JP5439264B2 (en) 2010-04-19 2014-03-12 日東電工株式会社 Dicing tape integrated semiconductor backside film
JP5840830B2 (en) * 2010-06-10 2016-01-06 株式会社ブリヂストン Heat ray shielding double-glazed glass
JP5419226B2 (en) * 2010-07-29 2014-02-19 日東電工株式会社 Flip chip type film for semiconductor back surface and use thereof
JP5036887B1 (en) * 2011-03-11 2012-09-26 日東電工株式会社 Dicing film with protective film
CN104541360B (en) * 2012-08-23 2019-10-01 琳得科株式会社 Manufacturing method with protective film cambial cutting sheet and chip
JP6091955B2 (en) * 2013-03-26 2017-03-08 リンテック株式会社 Adhesive sheet, composite sheet for forming protective film, and method for producing chip with protective film
CN105339168B (en) * 2013-03-28 2018-05-29 琳得科株式会社 The manufacturing method of protective film formation composite sheet, the chip with protective film and the chip with protective film
JP6334197B2 (en) * 2014-02-25 2018-05-30 リンテック株式会社 Composite sheet for forming protective film, chip with protective film, and method for manufacturing chip with protective film

Also Published As

Publication number Publication date
TWI772293B (en) 2022-08-01
WO2017188197A1 (en) 2017-11-02
KR102376021B1 (en) 2022-03-17
JPWO2017188197A1 (en) 2019-03-07
KR20180134926A (en) 2018-12-19
CN109075047A (en) 2018-12-21
JP6902530B2 (en) 2021-07-14
CN109075047B (en) 2023-08-08

Similar Documents

Publication Publication Date Title
TW201742151A (en) Composite sheet for forming protective film, method for producing semiconductor chip with protective film, and method for producing semiconductor device
KR102303923B1 (en) A film for forming a protective film, a composite sheet for forming a protective film, and a method for manufacturing a semiconductor chip
TW201808606A (en) Complex sheet for forming protective film
TW201806980A (en) Complex sheet for forming protective film
TWI774672B (en) Method of manufacturing semiconductor chip having protective film and method of manufacturing semiconductor device
TW201741349A (en) Protective film-forming film and complex sheet for forming protective film
TW201806767A (en) Protective film forming film and composite sheet for forming protective film
KR102328791B1 (en) Composite sheet for forming a protective film
TWI731964B (en) Complex sheet for forming protective film
TWI782911B (en) Film for forming protective film, method of treating the same, and composite sheet for forming protective film
KR102455685B1 (en) A film for forming a protective film and a composite sheet for forming a protective film
KR102429046B1 (en) A film for forming a protective film and a composite sheet for forming a protective film
KR102410096B1 (en) Manufacturing method of semiconductor chip with protective film and manufacturing method of semiconductor device
TWI770021B (en) Composite sheet for forming protective film
TW202409235A (en) Protective film forming films, protective film forming composite sheets, kits, and uses of protective film forming films
TW201732002A (en) Composite sheet for forming protective film