TW201730212A - Ror1-結合分子及其使用方法 - Google Patents

Ror1-結合分子及其使用方法 Download PDF

Info

Publication number
TW201730212A
TW201730212A TW106104961A TW106104961A TW201730212A TW 201730212 A TW201730212 A TW 201730212A TW 106104961 A TW106104961 A TW 106104961A TW 106104961 A TW106104961 A TW 106104961A TW 201730212 A TW201730212 A TW 201730212A
Authority
TW
Taiwan
Prior art keywords
ror1
binding
seq
domain
molecule
Prior art date
Application number
TW106104961A
Other languages
English (en)
Inventor
巴斯娃緹 巴拉特
萊斯利 強生
保羅 摩爾
佛曼 安德森瑞夫
愛利歐 波維尼
Original Assignee
宏觀基因股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏觀基因股份有限公司 filed Critical 宏觀基因股份有限公司
Publication of TW201730212A publication Critical patent/TW201730212A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2815Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD8
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本發明涉及優化的ROR1-結合分子,其相對於現有的ROR1-結合分子具有增強的親和力和介導對腫瘤細胞的重定向細胞毒性的更好的能力。更具體地,本發明涉及包括可變輕鏈和/或可變重鏈(VH)結構域的優化的ROR1-結合分子,所述可變輕鏈和/或可變重鏈(VH)結構域已經被優化以結合存在於人ROR1多肽上的表位元,以便顯示出對人ROR1增強的結合親和力和/或在施用於接受受試者後降低的免疫原性。本發明特別涉及雙特異性,三特異性或多特異性ROR1-結合分子,包括雙特異性雙抗體、BiTEs、雙特異性抗體、三價結合分子等,其包括:(i)這樣的優化的結合 ROR1的可變結構域和(ii)能夠結合存在於效應細胞表面上的分子的表位元的結構域。本發明還涉及包含任何這樣的ROR1-結合分子的藥物組合物,以及涉及包括在癌症和其它疾病和狀況的治療中使用任何這樣的ROR1-結合分子的方法。

Description

ROR1-結合分子及其使用方法
[相關申請的交叉引用]
本申請要求美國專利申請系列號62/296,267 (2016年2月17日提交;待決)的優先權,該申請以其整體併入本文。
[序列表的参考]
根據37 C.F.R. 1.821以及下面的條款,本申請包括一個或多個序列表,其以電腦-可讀介質(檔案名:1301_0139PCT_ST25.txt,2017年1月11日創建,並且大小為159,339位元組)公開,該檔通過引用以其整體併入本文。
本發明涉及優化的ROR1-結合分子,其相對於現有的ROR1-結合分子具有增強的親和力和介導對腫瘤細胞的重定向細胞毒性的更好的能力。更具體地,本發明涉及包括可變輕鏈和/或可變重鏈(VH)結構域的優化的ROR1-結合分子,所述可變輕鏈和/或可變重鏈(VH)結構域已經被優化以結合存在於人ROR1多肽上的表位元,以便顯示出對人ROR1增強的結合親和力和/或在施用於接受受試者後降低的免疫原性。本發明特別涉及雙特異性,三特異性或多特異性ROR1-結合分子,包括雙特異性雙抗體、BiTEs、雙特異性抗體、三價結合分子等,其包括:(i)這樣的優化的結合ROR1的可變結構域和(ii)能夠結合存在於效應細胞表面上的分子的表位元的結構域。本發明還涉及含有任何這類ROR1-結合分子的藥物組合物,以及涉及包括在癌症和其它疾病和狀況的治療中使用任何這類ROR1-結合分子的方法。
受體酪氨酸激酶樣孤兒受體1(“ROR1”)是屬於細胞表面受體的ROR亞家族的I型膜蛋白(Masiakowski, P.等(1992). “A Novel Family Of Cell Surface Receptors With Tyrosine Kinase-Like Domain ,” J. Biol. Chem. 267:26181-26190)。 ROR1是在胚胎發育過程中由許多組織表達的癌-胚(onco-embryonic)抗原,其在大多數成熟組織中不存在(Paganoni, S.等(2005) “Neurite Extension In Central Neurons: A Novel Role For The Receptor Tyrosine Kinases ROR1 And ROR2 ,” J. Cell Sci. 118:433-446),並且在許多血液和實體惡性腫瘤包括卵巢、結腸、肺、淋巴瘤、皮膚、胰腺、睾丸、膀胱、子宮、前列腺、腎上腺、乳腺、B-細胞惡性腫瘤以及一些癌幹細胞中表達(Zhang, S.等(2012) “The Onco-Embryonic Antigen ROR1 Is Expressed by a Variety of Human Cancers, ” Am. J. Pathol. 6:1903-1910;Zhang, S.等(2012) “ROR1 Is Expressed In Human Breast Cancer And Associated With Enhanced Tumor-Cell Growth ,” PLoS One 7:e31127;Daneshmanesh, A.H.等(2008) “ROR1, A Cell Surface Receptor Tyrosine Kinase Is Expressed In Chronic Lymphocytic Leukemia And May Serve As A Putative Target For Therapy ,” Int. J. Cancer 123:1190-1195;Zhang, S.等(2014) “Ovarian Cancer Stem Cells Express ROR1, Which Can Be Targeted For Anti-Cancer-Stem-Cell Therapy ,” Proc. Natl. Acad. Sci. (U.S.A.) 111:17266-71)。ROR1表達與顯示較低分化形態的高級腫瘤有關,以及與不良的臨床結果相關(Zhang, S.等(2012) “The Onco-Embryonic Antigen ROR1 Is Expressed by a Variety of Human Cancers, ” Am. J. Pathol. 6:1903-1910;Zhang, H.等(2014) “ROR1 Expression Correlated With Poor Clinical Outcome In Human Ovarian Cancer ,” Sci. Rep. 4:5811,第1-7頁)。
鑒於ROR1癌-胚抗原的受限制的表達,已經探索了許多針對靶ROR1的不同的基於免疫的策略,包括抗體、抗體藥物綴合物、表達T細胞的嵌合抗原受體(CAR)和靶向ROR1的納米顆粒(Choi, M.Y.,等(2015) “Pre-clinical Specificity and Safety of UC-961, a First-In-Class Monoclonal Antibody Targeting ROR1 ,” Clin Lymphoma Myeloma Leuk 15(Suppl):S167-S169;Daneshmanesh, A.H.,等(2012) “Monoclonal Antibodies Against ROR1 Induce Apoptosis Of Chronic Lymphocytic Leukemia (CLL) cells ,” Leukemia 26:1348-1355;Yang, J.等(2011) “Therapeutic Potential And Challenges Of Targeting Receptor Tyrosine Kinase ROR1 With Monoclonal Antibodies In B-Cell Malignancies ,” PLoS One 6:e21018;Baskar, S.等(2012) “Targeting Malignant B Cells With An Immunotoxin Against ROR1, ” MAbs 4:349-361;Berger, C.等(2015) “Safety Of Targeting ROR1 In Primates With Chimeric Antigen Receptor-Modified T Cells ,” Cancer Immunol. Res. 3:206-216;Hudecek, M.等(2010) “The B-Cell Tumor-Associated Antigen ROR1 Can Be Targeted With T Cells Modified To Express A ROR1-Specific Chimeric Antigen Receptor ,” Blood. 116:4532-4541;Mani, R.等(2015) “Tumor Antigen ROR1 Targeted Drug Delivery Mediated Selective Leukemic But Not Normal B-Cell Cytotoxicity In Chronic Lymphocytic Leukemia ,” Leukemia 29:346-355)。
然而,儘管所有現有技術的進步,仍然需要具有增強的抗腫瘤活性和/或降低的免疫原性的高親和力的ROR1-結合分子。本發明滿足了這種需要和對於癌症的改進療法的需要。
本發明涉及優化的ROR1-結合分子,其相對於現有的ROR1-結合分子具有增強的親和力和介導對腫瘤細胞的重定向細胞毒性的更好的能力。更具體地,本發明涉及包括可變輕鏈和/或可變重鏈(VH)結構域的優化的ROR1-結合分子,所述可變輕鏈和/或可變重鏈(VH)結構域已經被優化以結合存在於人ROR1多肽上的表位元,以便顯示出對人ROR1增強的結合親和力和/或在施用於接受受試者後降低的免疫原性。本發明特別涉及雙特異性,三特異性或多特異性ROR1-結合分子,包括雙特異性雙抗體、BiTEs、雙特異性抗體、三價結合分子等,其包括:(i)這樣的優化的結合ROR1的可變結構域和(ii)能夠結合存在於效應細胞表面上的分子的表位元的結構域。本發明還涉及含有任何這類ROR1-結合分子的藥物組合物,以及涉及包括在癌症和其它疾病和狀況的治療中使用任何這類ROR1-結合分子的方法。
詳細地,本發明提供了這樣的優化的ROR1-結合分子,其包括可變輕鏈結構域和可變重鏈結構域,其中所述可變輕鏈結構域具有SEQ ID NO:8 :的氨基酸序列(CDRL 殘基以底線表示): QLVLTQSPSASASLGX1 SVX2 LTC TLSSGHKT DTID WYQQQPGKAPRYLMX3 LEGSGSYNKGS GVPDRFX4 SGX5 SSGADX6 YLTISSLQSEDEADYYC GTDX7 PGNYL FGGGTQLTVLG 其中X6 為W,並且其中: (a)X1 為S或G,X2 為K、I或N,X3 為K或N,X4 為G或不存在,X5 為S或I,X7 為Y或N; (b)X1 為S,X2 為K,X3 為K,X4 為G或不存在,X5 為S,並且X7 為N; (c)X1 為S,X2 為K,X3 為K,X4 為G或不存在,X5 為I,並且X7 為Y; (d)X1 為S,X2 為K,X3 為K,X4 為G或不存在,X5 為I,並且X7 為N;或 (e)X1 為S,X2 為K,X3 為K,X4 為G或不存在,X5 為S,並且X7 為Y。
本發明還提供了包括可變輕鏈結構域和可變重鏈結構域的優化的ROR1-結合分子,其中所述可變重鏈結構域具有SEQ ID NO:9 :的氨基酸序列(CDRH 殘基以底線表示): QEQLVESGGGLVQPGGSLRLSCAASGFTFS DYYMS WX1 RQAPGKGLEWVAT IYPSSGKTYYADSX2 KG RX3 TISSDNAKX4 SLYLQMNSLRAEDTAVYYCX5 R DSYADDAALFDI WGQGTTVTVSS 其中: (a)X1 為V或I,X2 為V或A,X3 為L,X4 為N、D或Y,並且X5 為A或T; (b)X1 為V或I,X2 為V或A,X3 為F或L,X4 為D或Y,並且X5 為A或T; (c)X1 為V或I,X2 為V或A,X3 為F或L,X4 為N、D或Y,並且X5 為T; (d)X1 為V或I,X2 為V或A,X3 為L,X4 為N,並且X5 為A; (e)X1 為V或I,X2 為V或A,X3 為F,X4 為D,並且X5 為A; (f)X1 為V或I,X2 為V或A,X3 為F,X4 為N,並且X5 為T; (g)X1 為V或I,X2 為V或A,X3 為L,X4 為D,並且X5 為T; (h)X1 為I,X2 為A,X3 為F或L,X4 為N、D或Y,並且 X5 為A或T; (i)X1 為I,X2 為A,X3 為F,X4 為N,並且X5 為A; (j)X1 為I,X2 為A,X3 為L,X4 為N,並且X5 為A; (k)X1 為I,X2 為A,X3 為F,X4 為D,並且X5 為A; (l)X1 為I,X2 為A,X3 為F,X4 為N,並且X5 為T;或 (m)X1 為I,X2 為A,X3 為L,X4 為D,並且X5 為T。
本發明進一步涉及這類ROR1-結合分子的實施方案,其中: (a)    這類分子的VL結構域包括SEQ ID NO:11SEQ ID NO:20 SEQ ID NO:21SEQ ID NO:22SEQ ID NO:23 的氨基酸序列;和 (b)   這類分子的VH結構域包括SEQ ID NO:24 SEQ ID NO:25SEQ ID NO:26SEQ ID NO:30SEQ ID NO:31SEQ ID NO:32 的氨基酸序列。
本發明進一步涉及這類ROR1-結合分子的實施方案,其中所述分子是抗體或其表位-結合片段。在本發明中,還涉及這類ROR1-結合分子的實施方案,其中所述分子是雙特異性抗體或雙抗體,特別是雙抗體或雙抗體複合物,其包括兩條、三條、四條或五條多肽鏈,每條多肽鏈各具有N-末端和C-末端,其中這些多肽鏈通過一個或多個共價鍵,特別是一個或多個共價二硫鍵締合在一起。本發明另外涉及這樣的ROR1-結合分子的實施方案,其中所述分子是三價結合分子,尤其地,其中所述三價結合分子是包括三條、四條、五條或更多條多肽鏈的共價結合的複合物。本發明還涉及這類ROR1-結合分子的實施方案,其中所述分子包括Fc區域。本發明另外涉及這類ROR1-結合分子的實施方案,其中所述分子是雙抗體並且包括白蛋白-結合結構域,尤其是去免疫化的白蛋白-結合結構域。
本發明進一步涉及另外包括Fc區域的所有這類ROR1-結合分子的實施方案,尤其地,其中所述Fc區域是包括一個或多個氨基酸修飾的變異的Fc區域,所述氨基酸修飾降低變異Fc區域對FcγR的親和力和/或增強ROR1-結合分子的血清半衰期,更具體地,其中所述修飾包括選自由以下組成的組的至少一個取代: (a)    L234A; (b)   L235A; (c)    L234A和L235A; (d)   M252Y;M252Y和S254T; (e)    M252Y和T256E; (f)    M252Y、S254T和T256E;和 (g)   K288D和H435K; 其中編號是如Kabat中的EU索引的編號。
本發明進一步涉及這類ROR1-結合分子的實施方案,其中所述分子是雙特異性的,並且尤其涉及這樣的實施方案:其中所述分子包括能夠與ROR1的表位免疫特異性結合的兩個表位-結合位點和能夠與存在於效應細胞表面上的分子的表位免疫特異性結合的兩個表位-結合位點,或這樣的實施方案:其中所述分子包括能夠與ROR1的表位免疫特異性結合的一個表位-結合位點和能夠與存在於效應細胞表面上的分子的表位免疫特異性結合的一個表位-結合位點。
本發明另外涉及這類ROR1-結合分子的實施方案,其中所述分子是三價結合分子,尤其涉及這樣的實施方案:其中所述分子包括能夠與ROR1的表位免疫特異性結合的一個表位-結合位點、能夠與存在於效應細胞表面上的第一分子的表位免疫特異性結合的一個表位-結合位點;和能夠與存在於效應細胞表面上的第二分子的表位免疫特異性結合的一個表位-結合位點,其中所述第一和第二分子不是ROR1。
本發明進一步涉及這類ROR1-結合分子的實施方案,其中所述分子能夠同時結合至ROR1和結合至第二表位,尤其涉及其中所述第二表位是存在於效應細胞表面上的第二分子的表位的實施方案(尤其是其中第二表位是CD2、CD3、CD8、CD16、TCR或NKG2D的表位,並且最特別地,其中第二表位是CD3的表位)。本發明另外涉及這類ROR1-結合分子的實施方案,其中效應細胞是細胞毒性T-細胞或自然殺傷(NK)細胞。本發明另外涉及這類ROR1-結合分子的實施方案,其中所述分子還能夠結合第三表位,尤其涉及其中第三表位是CD8的表位的實施方案。本發明還涉及這樣的分子的實施方案,其中分子介導表達ROR1的細胞和細胞毒性T細胞的協調結合。
本發明進一步涉及這類ROR1-結合分子的實施方案,其中所述分子包括第一多肽鏈、第二多肽鏈和第三多肽鏈,並且其中: (a)    所述第一多肽鏈包括SEQ ID NO:98 SEQ ID NO:101SEQ ID NO:102 ; (b)   所述第二多肽鏈包括SEQ ID NO:99 SEQ ID NO:103SEQ ID NO:104 ;並且 (c)    所述第三多肽鏈包括SEQ ID NO:100
本發明進一步提供了包括有效量的任何上述ROR1-結合分子和藥學上可接受的載體、賦形劑或稀釋劑的藥物組合物。
本發明另外涉及任何上述ROR1-結合分子在治療與ROR1的表達相關或以ROR1的表達為特徵的疾病或狀況中的用途,或涉及任何上述ROR1-結合分子在治療以ROR1的表達為特徵的疾病或狀況的方法中的用途,尤其地,其中與ROR1的表達相關或以ROR1的表達為特徵的疾病或狀況是癌症,更具體地,其中所述癌症選自:腎上腺腫瘤、AIDS相關的癌症、軟組織腺泡狀肉瘤、星形細胞瘤、腎上腺癌、膀胱癌、骨癌、腦和脊髓癌、轉移性腦腫瘤、B細胞癌、乳腺癌、頸動脈體瘤、宮頸癌、軟骨肉瘤、脊索瘤、嫌色細胞腎細胞癌、透明細胞癌、結腸癌、結直腸癌、皮膚良性纖維組織細胞瘤、促結締組織增生小圓細胞瘤、室管膜細胞瘤、尤文氏瘤、骨外黏液樣軟骨肉瘤、不完全性骨纖維生成、骨的纖維發育異常、膽囊癌或膽管癌、胃癌、妊娠滋養層疾病、生殖細胞瘤、頭頸癌、肝細胞癌、胰島細胞腫瘤、卡波西氏肉瘤、腎癌、白血病、脂肪肉瘤/惡性的脂肪瘤、肝癌、淋巴瘤、肺癌、成神經管細胞瘤、黑素瘤、腦膜瘤、多發性內分泌瘤、多發性骨髓瘤、骨髓增生異常綜合征、成神經細胞瘤、神經內分泌腫瘤、卵巢癌、胰腺癌、甲狀腺乳頭狀癌、甲狀旁腺腫瘤、兒科癌症、周圍神經鞘瘤、嗜鉻細胞瘤、垂體瘤、前列腺癌、眼色素層後黑素瘤(posterious uveal melanoma)、罕見血液學病症、腎轉移性癌症、橫紋肌樣瘤、橫紋肌肉瘤、肉瘤、皮膚癌、軟組織肉瘤、鱗狀細胞癌、胃癌、滑膜肉瘤、睾丸癌、胸腺癌、胸腺瘤、甲狀腺轉移性癌和子宮癌。
本發明涉及優化的ROR1-結合分子,其相對於現有的ROR1-結合分子具有增強的親和力和介導對腫瘤細胞的重定向細胞毒性的更好的能力。更具體地,本發明涉及包括可變輕鏈和/或可變重鏈(VH)結構域的優化的ROR1-結合分子,所述可變輕鏈和/或可變重鏈(VH)結構域已經被優化以結合存在於人ROR1多肽上的表位元,以便顯示出對人ROR1增強的結合親和力和/或在施用於接受受試者後降低的免疫原性。本發明特別涉及雙特異性,三特異性或多特異性ROR1-結合分子,包括雙特異性雙抗體、BiTEs、雙特異性抗體、三價結合分子等,其包括:(i)這樣的優化的結合ROR1的可變結構域和(ii)能夠結合存在於效應細胞表面上的分子的表位元的結構域。本發明還涉及含有任何這樣的ROR1-結合分子的藥物組合物,以及涉及包括在癌症和其它疾病和狀況的治療中使用任何這樣的ROR1-結合分子的方法。
I . 抗體及其結合結構域
本發明所述的抗體是能夠通過位於免疫球蛋白分子的可變結構域中的至少一個抗原識別位點,特異性結合靶標例如碳水化合物、多核苷酸、脂質、多肽等的免疫球蛋白分子。如本文所用的術語“抗體”(“antibody ”和“antibodies ”)指單克隆抗體、多特異性抗體、人抗體、人源化抗體、合成抗體、嵌合抗體、多克隆抗體、駱駝源化(camelized)、單鏈Fvs(scFv)、單鏈抗體、Fab片段、F(ab')片段、二硫鍵連接的雙特異性Fvs(sdFv)、胞內抗體和任何上述抗體的表位-結合片段。尤其地,術語“抗體”包括免疫球蛋白分子和免疫球蛋白分子的免疫活性片段,即含有表位-結合位點的分子。免疫球蛋白分子可以是任何類型(例如IgG、IgE、IgM、IgD、IgA和IgY)、類別(例如IgG1 、IgG2 、IgG3 、IgG4 、IgA1 和IgA2 )或亞類。抗體能夠免疫特異性結合多肽或蛋白質或非蛋白質分子,因為在這樣的分子上存在特定的結構域或部分或構象(“表位 ”)。包含表位的分子可具有免疫原性活性,以便其在動物中引起抗體產生反應;這類分子稱為“抗原 ”。最近數十年已經看到對抗體的治療潛能的興趣的復興,並且抗體已經成為一種主要類型的生物技術衍生的藥物(Chan, C.E.等(2009) “The Use Of Antibodies In The Treatment Of Infectious Diseases ,” Singapore Med. J. 50(7):663-666)。超過200種基於抗體的藥物已經被批准使用或正在開發。
術語“單克隆抗體”(“monoclonal antibody ”) 指同質型(homogeneous)抗體群體,其中單克隆抗體包括參與抗原的選擇性結合的氨基酸(天然產生的或非天然產生的)。單克隆抗體是高度特異性的,直接針對單個表位(或抗原位點)。術語“單克隆抗體”不僅僅包括完整的單克隆抗體和全長單克隆抗體,而且也包括其片段(比如Fab、Fab'、F(ab')2 Fv)、單鏈(scFv)、其突變體、包括抗體部分的融合蛋白、人源化的單克隆抗體、嵌合單克隆抗體和包括具有結合抗原的必要的特異性和能力的抗原識別位點的免疫球蛋白分子的任何其他修飾構造(configuration)。就抗體的來源或製備其的方式(例如,通過雜交瘤、噬菌體選擇、重組表達、轉基因動物等)而言,不旨在是限制性的。術語包括完整的免疫球蛋白以及上面根據“抗體”的定義描述的片段等。製備單克隆抗體的方法是本領域已知的。可採用的一種方法是Kohler, G.等(1975) “Continuous Cultures Of Fused Cells Secreting Antibody Of Predefined Specificity ,” Nature 256:495-497的方法或其改良。典型地,單克隆抗體在小鼠、大鼠或兔子中開發。通過用免疫原性量的細胞、細胞提取物或包含期望的表位的蛋白質製品免疫動物而產生抗體。免疫原可以是但不限於原代細胞、培養細胞系、癌細胞、蛋白質、肽、核酸或組織。用於免疫的細胞可被培養一段時間(例如,至少24小時),然後將它們用作免疫原。細胞它們本身或聯合非變性佐劑,比如Ribi,可用作免疫原(見,例如,Jennings, V.M. (1995) “Review of Selected Adjuvants Used in Antibody Production ,” ILAR J. 37(3):119-125)。一般而言,在用作免疫原時,細胞應保持完整並且優選地有活性。相比於破裂的細胞,完整的細胞可允許抗原被免疫的動物更好地檢測。變性或烈性佐劑,例如,弗氏佐劑的使用,可使細胞破裂,因此,其應用受阻。免疫原可以週期性間隔被多次施用,諸如兩週一次或一週一次,或者可以以維持在動物(例如,在組織重組體中)中的生存力這樣的方式被施用。可選地,對於期望的致病表位是免疫特異性的現有單克隆抗體和任意其他等價抗體可被測序,並通過本領域中已知的任意手段重組產生。在一個實施方式中,對這樣的抗體測序,然後將多核苷酸序列克隆至載體用於表達或增殖。編碼感興趣的抗體的序列可在宿主細胞中保持在載體中,並且,可然後擴展和冷凍宿主細胞,用於將來的使用。這樣的抗體的多核苷酸序列可用於基因操作,以產生本發明的單特異性或多特異性(例如,雙特異性、三特異性和四特異性)分子以及親和力優化的嵌合抗體、人源化抗體和/或犬源化(caninized)抗體,以改善抗體的親和力或其他特徵。人源化抗體的一般原理涉及保留抗體的抗原結合的部分的基本序列,同時用人抗體序列交換抗體的非人剩餘部分。
天然抗體(例如IgG抗體)是由兩條“輕鏈”和兩條“重鏈”複合而構成的。每條輕鏈包括可變結構域(“VL” )和恒定結構域(“CL” )。每條重鏈包括可變結構域(“VH” )、三個恒定結構域(“CH1” “CH2” “CH3” )和位於CH1CH2 結構域之間的“鉸鏈 ”區域(“H” )。天然產生的免疫球蛋白(例如,IgG)的基本結構單元因此是具有兩條輕鏈和兩條重鏈的四聚體,通常作為約150,000 Da的糖蛋白被表達。每條鏈的氨基端(“N- 末端 ”)部分包括主要負責抗原識別的約100至110或更多氨基酸的可變結構域。每條鏈的羧基端(“C- 末端 ”)部分限定了恒定區,其中輕鏈具有單個恒定結構域而重鏈通常具有三個恒定結構域和鉸鏈區。因此,IgG分子的輕鏈的結構是n-VL-CL-c並且IgG重鏈的結構是n-VH-CH1-H-CH2-CH3-c (其中n和c分別表示多肽的N-末端和C-末端)。IgG分子的可變結構域由互補決定區(“CDR ”)和稱為框架區段(“FR ”)的非CDR區段組成,所述互補決定區(CDR)包含與表位接觸的殘基,所述框架區段一般維持結構和決定CDR環的定位,以便允許這類接觸(儘管某些框架殘基也可接觸抗原)。因此,VL和VH結構域具有結構n-FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4-c 是(或可用作)抗體的輕鏈的第一、第二和第三CDR的多肽在本文分別命名為CDRL 1 結構域、 CDRL 2 結構域和 CDRL 3 結構域 。類似地,是(或可用作)抗體的重鏈的第一、第二和第三CDR的多肽在本文分別命名為CDRH 1 結構域、 CDR H 2 結構域和 CDR H 3 結構域 。因此,術語CDRL 1結構域、CDRL 2結構域、CDRL 3結構域、CDRH 1結構域、CDRH 2結構域和CDRH 3結構域指當併入到蛋白質中時使得該蛋白質能夠結合特異性表位的多肽,無論這樣的蛋白質是否是具有輕鏈和重鏈的抗體或是雙抗體或單鏈結合分子(例如,scFv、BiTe等)或是另一類型的蛋白質。因此,如本文所使用,術語“表位結合片段 ”表示能夠免疫特異性結合表位的分子的片段。表位-結合片段可以包括抗體的任何1、2、3、4或5個CDR結構域,或者可以包括抗體的所有6個CDR結構域,並且儘管能夠免疫特異性結合這類表位,但可展示對與這樣的抗體的表位不同的這樣的表位的免疫特異性、親和力或選擇性。但是,優選地,表位結合片段將包含這類抗體的所有6個CDR結構域。抗體的表位結合片段可以是單個多肽鏈(例如,scFv),或可包括兩條或更多條多肽鏈,每條鏈均具有氨基末端和羧基末端(例如,雙抗體、Fab片段、Fab2 片段等)。除非具體指出,否則本文所述的蛋白質分子的結構域的順序是從“N-末端至C-末端”方向。
本發明尤其包括包含本發明優化的抗-ROR1-VL結構域和/或VH結構域的單鏈可變結構域片段( scFv )和包含本發明優化的抗-ROR1-VL結構域和/或VH結構域的多特異性結合分子。單鏈可變結構域片段包括利用短的“連接體”肽連接在一起的VL和VH結構域。這樣的連接體可以被修飾以提供另外的功能,例如允許藥物的附著或允許附著到固體載體。可經重組或合成產生單鏈變體。為了合成產生scFv,可使用自動合成儀。為了重組產生scFv,可將包含編碼scFv的多核苷酸的適當的質粒引入到適當的宿主細胞中,所述宿主細胞是真核細胞,比如酵母細胞、植物細胞、昆蟲細胞或哺乳動物細胞,或原核細胞,比如大腸埃希氏菌(E. coli )。可通過常規操作比如多核苷酸的連接製備編碼感興趣的scFv的多核苷酸。可使用本領域已知的標準蛋白質純化技術分離所得scFv。
本發明還尤其包括包含人源化抗體的抗-ROR1-VL結構域和/或VH結構域的優化的ROR1-結合分子。術語“人源化 抗體指一般使用重組技術製備的嵌合分子,其具有來自非人物種的免疫球蛋白的表位結合位點和基於人免疫球蛋白的結構和/或序列的分子的剩餘免疫球蛋白結構。這類抗體的可變結構域的多核苷酸序列可用於遺傳操作,以產生這類衍生物和改善這類抗體的親和力或其他特徵。人源化抗體的一般原則涉及保留抗體的表位元結合部分的基本序列,同時用人抗體序列交換抗體的非人剩餘部分。人源化單克隆抗體有四個基本步驟。這些是:(1)確定開始抗體輕鏈和重鏈可變結構域的核苷酸和預測的氨基酸序列;(2)設計人源化抗體或犬源化抗體,即,決定在人源化或犬源化過程中使用哪種抗體框架區域;(3)實際人源化或犬源化方法/技術;和(4)轉染和表達人源化抗體。見,例如,美國專利號4,816,567、5,807,715、5,866,692和6,331,415。
表位-結合位點可包括融合到恒定結構域融合上的完整的可變結構域或僅僅包括移植至適當框架區的這類可變結構域的互補決定區(CDR)。表位結合位點可以是野生型或通過一個或多個氨基酸取代被修飾。這消除了人個體中作為免疫原的恒定區,但是仍保留對外源可變結構域的免疫應答的可能性(LoBuglio, A.F.等(1989) “Mouse/Human Chimeric Monoclonal Antibody In Man: Kinetics And Immune Response ,” Proc. Natl. Acad. Sci. (U.S.A.) 86:4220-4224)。另一種方法不僅僅關注提供源自人的恒定區,而且也修飾可變結構域,以便重塑它們使其盡可能地與人形式接近。已知重鏈和輕鏈的可變結構域都包含三個互補決定區(CDR),側翼是四個框架區(FR),所述互補決定區(CDR)對所討論的抗原回應不同並且決定結合能力,所述框架區(FR)在給定物種中相對保守並且推定其為CDR提供支架。當針對特定抗原製備非人抗體時,通過將源自非人抗體的CDR移植在待修飾的人抗體中存在的FR上可“重塑”或“人源化”可變結構域。已經報導了該方法應用於各種抗體:Sato, K.等(1993) Cancer Res 53:851-856. Riechmann, L.等(1988) “Reshaping Human Antibodies for Therapy ,” Nature 332:323-327;Verhoeyen, M.等(1988) “Reshaping Human Antibodies: Grafting An Antilysozyme Activity ,” Science 239:1534-1536;Kettleborough, C. A.等(1991) “Humanization Of A Mouse Monoclonal Antibody By CDR-Grafting: The Importance Of Framework Residues On Loop Conformation ,” Protein Engineering 4:773-3783;Maeda, H.等(1991) “Construction Of Reshaped Human Antibodies With HIV-Neutralizing Activity ,” Human Antibodies Hybridoma 2:124-134;Gorman, S. D.等(1991) “Reshaping A Therapeutic CD4 Antibody ,” Proc. Natl. Acad. Sci. (U.S.A.) 88:4181-4185;Tempest, P.R.等(1991) “Reshaping A Human Monoclonal Antibody To Inhibit Human Respiratory Syncytial Virus Infection in vivo ,” Bio/Technology 9:266-271;Co, M. S.等(1991) “Humanized Antibodies For Antiviral Therapy ,” Proc. Natl. Acad. Sci. (U.S.A.) 88:2869-2873;Carter, P.等(1992) “Humanization Of An Anti-p185her2 Antibody For Human Cancer Therapy ,” Proc. Natl. Acad. Sci. (U.S.A.) 89:4285-4289;和Co, M.S.等(1992) “Chimeric And Humanized Antibodies With Specificity For The CD33 Antigen ,” J. Immunol. 148:1149-1154。在一些實施方式中,人源化抗體保留所有的CDR序列(例如,人源化鼠抗體,其包含來自小鼠抗體的所有六個CDR)。在其他實施方式中,人源化抗體具有一個或多個CDR (一個、兩個、三個、四個、五個或六個),其序列相對於初始抗體不同。
已經描述了包括源自非人免疫球蛋白的表位結合位點的許多人源化抗體分子,包括具有齧齒動物或修飾的齧齒動物可變結構域和它們與人恒定結構域融合的相關的互補決定區(CDR)的嵌合抗體(見,例如,Winter等(1991) “Man-made Antibodies ,” Nature 349:293-299;Lobuglio等(1989) “Mouse/Human Chimeric Monoclonal Antibody In Man: Kinetics And Immune Response ,” Proc. Natl. Acad. Sci. (U.S.A.) 86:4220-4224 (1989), Shaw等(1987) “Characterization Of A Mouse/Human Chimeric Monoclonal Antibody (17-1A) To A Colon Cancer Tumor-Associated Antigen ,” J. Immunol. 138:4534-4538, and Brown等(1987) “Tumor-Specific Genetically Engineered Murine/Human Chimeric Monoclonal Antibody ,” Cancer Res. 47:3577-3583)。其他參考文獻描述了移植至人支撐框架區(FR)的齧齒動物CDR,其然後與適當的人抗體恒定結構域融合(見,例如,Riechmann, L.等(1988) “Reshaping Human Antibodies for Therapy ,” Nature 332:323-327;Verhoeyen, M.等(1988) “Reshaping Human Antibodies: Grafting An Antilysozyme Activity ,” Science 239:1534-1536;和Jones等(1986) “Replacing The Complementarity-Determining Regions In A Human Antibody With Those From A Mouse ,” Nature 321:522-525)。另外的參考文獻描述了由重組修飾的齧齒動物框架區支撐的齧齒動物CDR。見,例如,歐洲專利公開號519,596。這些“人源化的”分子被設計,以使對齧齒動物抗人抗體分子的不利免疫應答最小化,所述不利免疫應答限制了這些部分在人接受者中治療應用的持續時間和效力。也可使用的人源化抗體的其他方法,其公開在以下文獻中:Daugherty等(1991) “Polymerase Chain Reaction Facilitates The Cloning, CDR-Grafting, And Rapid Expression Of A Murine Monoclonal Antibody Directed Against The CD18 Component Of Leukocyte Integrins ,” Nucl. Acids Res. 19:2471-2476和美國專利號6,180,377、6,054,297、5,997,867和5,866,692。
II .Fcγ 受體 (FcγRs)
兩條重鏈的CH2和CH3結構域相互作用形成“Fc 區域 ”,其是被細胞Fc受體(包括但不限於Fcγ受體(FcγRs))識別的結構域。如本文所用,術語“Fc區域”用於定義IgG重鏈的C-末端區域。如果Fc區域的氨基酸序列相對於其它IgG同種型與特定的同種型最同源,則認為該Fc區域屬於該IgG同種型、類或亞類。除了它們在診斷中的已知用途,已經顯示抗體可用作治療劑。
示例性的人IgG1的CH2-CH3結構域的氨基酸序列是(SEQ ID NO:1 ): 231       240          250         260          270          280 APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD            290          300         310          320         330 GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA            340          350         360          370         380 PIEKTISKAK GQPREPQVYT LPPSREEMTK NQVSLTCLVK GFYPSDIAVE            390         400          410          420         430 WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE            440      447 ALHNHYTQKS LSLSPG X 如Kabat中闡釋的EU索引編號,其中X是賴氨酸(K)或不存在。
示例性的人IgG2的CH2-CH3結構域的氨基酸序列是(SEQ ID NO:2) : 231       240          250          260         270          280 APPVA-GPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVQFNWYVD            290         300          310          320         330 GVEVHNAKTK PREEQFNSTF RVVSVLTVVH QDWLNGKEYK CKVSNKGLPA            340         350          360          370         380 PIEKTISKTK GQPREPQVYT LPPSREEMTK NQVSLTCLVK GFYPSDISVE            390         400          410          420         430 WESNGQPENN YKTTPPMLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE 440      447 ALHNHYTQKS LSLSPG X 如Kabat中闡釋的EU索引編號,其中X是賴氨酸(K)或不存在。
示例性的人IgG3的CH2-CH3結構域的氨基酸序列是(SEQ ID NO:3) : 231       240          250         260          270          280 APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVQFKWYVD            290         300          310          320         330 GVEVHNAKTK PREEQYNSTF RVVSVLTVLH QDWLNGKEYK CKVSNKALPA              340         350          360          370         380 PIEKTISKTK GQPREPQVYT LPPSREEMTK NQVSLTCLVK GFYPSDIAVE              390         400          410          420         430 WESSGQPENN YNTTPPMLDS DGSFFLYSKL TVDKSRWQQG NIFSCSVMHE              440      447 ALHNRFTQKS LSLSPG X 如Kabat中闡釋的EU索引編號,其中X是賴氨酸(K)或不存在。
示例性的人IgG4的CH2-CH3結構域的氨基酸序列是(SEQ ID NO:4) : 231       240          250         260          270          280 APEFLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSQED PEVQFNWYVD            290         300          310          320         330 GVEVHNAKTK PREEQFNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKGLPS            340         350          360          370         380 SIEKTISKAK GQPREPQVYT LPPSQEEMTK NQVSLTCLVK GFYPSDIAVE            390         400          410          420         430 WESNGQPENN YKTTPPVLDS DGSFFLYSRL TVDKSRWQEG NVFSCSVMHE            440      447 ALHNHYTQKS LSLSLG X 如Kabat中闡釋的EU索引編號,其中X是賴氨酸(K)或不存在。
遍及本說明書,IgG重鏈的恒定區中殘基的編號是如在Kabat等, Sequences of Proteins of Immunological Interest, 第五版. Public Health Service, NH1, MD (1991) (“Kabat”)中的EU索引的編號,其通過參考明確併入本文。術語“如在Kabat的EU索引”指人IgG1 EU抗體的恒定結構域的編號。通過鏈中氨基酸的位置命名來自免疫球蛋白的成熟重鏈和輕鏈的可變結構域的氨基酸。Kabat描述了抗體的許多氨基酸序列,鑒定了每個亞組的氨基酸共有序列,並且為每個氨基酸賦予殘基編號,並且,如Kabat定義的來鑒定CDR (應當理解,如Chothia, C. &Lesk, A.M. ((1987)“Canonical Structures For The Hypervariable Regions Of Immunoglobulins, ” J.Mol.Biol.196: 901-917) 限定的CDRH 1在之前的五個殘基開始)。通過參考保守的氨基酸比對所討論的抗體與Kabat中的共有序列中的一條,Kabat的編號方案可擴展至未包括在其綱要中的抗體。用於賦予殘基編號的該方法已經成為本領域的標準並且容易鑒定在不同抗體,包括嵌合或人源化的變體中等同位置處的氨基酸。例如,在人抗體輕鏈50位的氨基酸佔據與在小鼠抗體輕鏈的50位氨基酸的等同位置。
已經在抗體恒定區中的許多不同位置(例如,Fc位置,包括但不限於270、272、312、315、356和358位,如在Kabat闡釋的EU索引編號)處觀察到了多態性,因此示出的序列和現有技術的序列之間可能存在輕微的差別。已經充分表徵了人免疫球蛋白的多態性形式。目前,已知18個Gm同種異型:G1m (1、2、3、17)或G1m (a、x、f、z)、G2m (23)或G2m (n)、G3m (5、6、10、11、13、14、15、16、21、24、26、27、28)或G3m (b1、c3、b3、b0、b3、b4、s、t、g1、c5、u、v、g5) (Lefranc, 等, “The Human IgG Subclasses: Molecular Analysis Of Structure, Function And Regulation. ”Pergamon, Oxford, pp. 43-78 (1990);Lefranc, G. 等1979,Hum. Genet.: 50, 199-211)。具體考慮本發明的抗體可併入任何免疫球蛋白基因的任何同種異型(allotype)、異同種異型(isoallotype)或單倍型(haplotype),並且不限於本文提供的序列的同種異型、異同種異型或單倍型。此外,在一些表達體系中,CH3結構域的C-末端氨基酸殘基(上面粗體顯示的)可在翻譯後去除。因此,CH3結構域的C-末端殘基是本發明的ROR1-結合分子中的任選的氨基酸殘基。本發明尤其包括缺乏CH3結構域的C-末端殘基的ROR1-結合分子。本發明還尤其包括的是包括CH3結構域的C-末端賴氨酸殘基的這類構建體。
如上所述,天然IgG抗體的Fc區能夠結合細胞Fc γ受體( FcγR) 。這類結合導致啟動或抑制信號向免疫系統的傳導。導致截然相反的功能的這類結合的能力反映了不同FcγR之間的結構差異,尤其反映了結合的FcγR是否具有基於免疫受體酪氨酸的啟動基序(“ITAM”)或基於免疫受體酪氨酸的抑制基序(“ITIM”)。不同細胞質酶向這些結構的募集控制了FcγR-介導的細胞應答的結果。包含ITAM的FcγRs包括FcγRI、FcγRIIA、FcγRIIIA,並且,當結合Fc區(例如,存在於免疫複合物中的聚集Fc區域)時啟動免疫系統。FcγRIIB是目前已知的唯一包含ITIM的天然FcγR;當結合至聚集的Fc區時,其用於阻礙或抑制免疫系統。人嗜中性粒細胞表達FcγRIIA基因。通過免疫複合物或特異性抗體交聯的FcγRIIA聚類用於使ITAM與促進ITAM磷酸化的受體相關的激酶聚集。ITAM磷酸化充當Syk激酶的停泊位點,Syk激酶的啟動導致下游底物(例如,PI3 K)的啟動。細胞啟動導致促炎性介質的釋放。FcγRIIB基因在B淋巴細胞上表達;其細胞外結構域與FcγRIIA是96%一致的,並且以不能區分的方式結合IgG複合物。ITIM在FcγRIIB的胞質結構域中的存在限定了FcγR的這種抑制性亞類。最近,確定了這種抑制的分子基礎。當與啟動FcγR共連接時,FcγRIIB中的ITIM變成磷酸化的,並且吸引肌醇聚磷酸鹽5’-磷酸酶(SHIP)的SH2結構域,肌醇聚磷酸鹽5’-磷酸酶(SHIP)水解由於含ITAM的FcγR介導的酪氨酸激酶啟動而釋放的磷酸肌醇信使,從而防止細胞內Ca++的流入。因此,FcγRIIB的交聯抑制對FcγR連接的啟動應答並抑制細胞應答。B-細胞啟動、B-細胞增殖和抗體分泌因此被中止。
III . 雙特異性抗體、多特異性雙抗體和 DART® 雙抗體
抗體結合抗原的表位的能力取決於抗體的VL和VH結構域的存在和氨基酸序列。抗體的輕鏈和重鏈的相互作用,尤其地,其VL和VH結構域的相互作用,形成天然抗體,諸如IgG,的兩個表位結合位點之一。天然抗體能夠結合僅僅一個表位種類(即,它們是單特異性的),但是它們可結合該種類的多個拷貝(即,展示雙價或多價)。
本發明的結合結構域以“免疫特異性 ”方式結合表位元。如本文所使用,如果抗體、雙抗體或其他表位結合分子,相對於可選的表位,與另一分子的區域(即,表位元)更經常、更快速、以更長的持久性和/或以更大的親和力反應或締合,則認為抗體、雙抗體或其他表位結合分子“免疫特異性 ”結合該表位。例如,免疫特異性結合病毒表位元的抗體是,相比其免疫特異性結合其他病毒表位元或非病毒表位元,以更大的親和力、親合力、更容易和/或以更大的持久性結合該病毒表位元的抗體。通過閱讀該定義,應理解,例如,免疫特異性結合第一靶的抗體(或部分或表位元)可特異性或非特異性或優選或非優選結合第二靶。因此,“免疫特異性結合”不必要求(儘管其可包括)排他性結合。一般而言,但不是必要的,提及結合意思是“免疫特異性”結合。如果兩個分子的結合展示受體結合它們各自配體的特異性,則認為兩個分子能夠彼此以“物理 特異性 ”方式結合。
可以通過產生可同時結合兩種分開的和不同的抗原(或相同抗原的不同表位)的基於多特異性抗體的分子和/或通過產生對於相同的表位和/或抗原的具有更高價(即大於兩個結合位點)的基於抗體的分子而增強抗體的功能性。
為了提供比天然抗體具有更大能力的分子,已經開發了各種重組雙特異性抗體形式(見,例如,PCT公佈號WO 2008/003116、WO 2009/132876、WO 2008/003103、WO 2007/146968、WO 2009/018386、WO 2012/009544、WO 2013/070565),其大部分使用連接肽,所述連接肽與其他表位結合片段(例如,scFv、VL、VH等)融合或在抗體核心中(IgA、IgD、IgE、IgG或IgM)或與多個表位結合片段(例如,兩個Fab片段或scFvs)融合。可選的形式使用連接肽,以將表位結合片段(例如,scFv、VL、VH等)與二聚化結構域,比如CH2-CH3結構域,或可選的多肽融合(WO 2005/070966、WO 2006/107786A WO 2006/107617A、WO 2007/046893)。PCT公開號WO 2013/174873、WO 2011/133886和WO 2010/136172公開了三特異性抗體,其中CL和CH1結構域由其各自的天然位置被轉變,並且VL和VH結構域已經被多樣化(WO 2008/027236、WO 2010/108127),以允許它們結合大於一種抗原。PCT公開號WO 2013/163427和WO 2013/119903公開了修飾CH2結構域,以包含包括結合結構域的融合蛋白加合物。PCT公開號WO 2010/028797、WO2010028796和WO 2010/028795公開了重組抗體,其Fc區已經用另外的VL和VH結構域替換,以便形成三價結合分子。PCT公開號WO 2003/025018和WO2003012069公開了重組雙抗體,其單個鏈包含scFv結構域。PCT公開號WO 2013/006544公開了多價Fab分子,其作為單多肽鏈被合成,然後經歷蛋白酶解,以產生異源二聚化結構。PCT公開號WO 2014/022540、WO 2013/003652、WO 2012/162583、WO 2012/156430、WO 2011/086091、WO 2008/024188、WO 2007/024715、WO 2007/075270、WO 1998/002463、WO 1992/022583和WO 1991/003493公開了添加另外的結合結構域或功能集團至抗體或抗體部分(例如,添加雙抗體至抗體的輕鏈或添加另外的VL和VH結構域至抗體的輕鏈和重鏈或添加異源融合蛋白或彼此連結多個Fab結構域)。
本領域已經另外注意到產生在能夠結合兩個或多個不同表位種類(即,除了雙價或多價之外顯示雙特異性或多特異性)方面不同於這樣的天然抗體的雙抗體的能力(見,例如,Holliger等(1993) “’Diabodies’: Small Bivalent And Bispecific Antibody Fragments, ” Proc. Natl. Acad. Sci. (U.S.A.) 90:6444-6448、US 2004/0058400 (Hollinger等);US 2004/0220388/WO 02/02781 (Mertens等);Alt等(1999) FEBS Lett. 454(1-2):90-94;Lu, D.等(2005) “A Fully Human Recombinant IgG-Like Bispecific Antibody To Both The Epidermal Growth Factor Receptor And The Insulin-Like Growth Factor Receptor For Enhanced Antitumor Activity ,” J. Biol. Chem. 280(20):19665-19672;WO 02/02781 (Mertens等);Olafsen, T.等(2004) “Covalent Disulfide-Linked Anti-CEA Diabody Allows Site-Specific Conjugation And Radiolabeling For Tumor Targeting Applications ,” Protein Eng. Des. Sel. 17(1):21-27;Wu, A.等(2001) “Multimerization Of A Chimeric Anti-CD20 Single Chain Fv-Fv Fusion Protein Is Mediated Through Variable Domain Exchange ,” Protein Engineering 14(2):1025-1033;Asano等(2004) “A Diabody For Cancer Immunotherapy And Its Functional Enhancement By Fusion Of Human Fc Domain ,” Abstract 3P-683, J. Biochem. 76(8):992;Takemura, S.等(2000) “Construction Of A Diabody (Small Recombinant Bispecific Antibody) Using A Refolding System, ” Protein Eng. 13(8):583-588;Baeuerle, P.A.等(2009) “Bispecific T-Cell Engaging Antibodies For Cancer Therapy ,” Cancer Res. 69(12):4941-4944)。
雙抗體的設計是基於被稱為單鏈可變結構域片段(scFv)的抗體衍生物。這樣的分子通過利用短連接肽連接輕鏈和/或重鏈可變結構域而製備。B Bird等(1988) (“Single-Chain Antigen-Binding Proteins ,” Science 242:423-426)描述了連接肽的例子,其在一個可變區的羧基末端和另一可變區的氨基末端之間橋接約3.5 nm。已經設計和使用了其他序列的連接體(Bird等(1988) “Single-Chain Antigen-Binding Proteins ,” Science 242:423-426)。連接體進而可被修飾用於另外的功能,比如藥物的附著或附著至固體載體。可重組或合成產生單鏈變體。為了合成產生scFv,可使用自動合成儀。為了重組體產生scFv,可將包含編碼scFv的多核苷酸的合適質粒引入適當的宿主細胞中,所述宿主細胞可以是真核細胞,比如酵母細胞、植物細胞、昆蟲細胞或哺乳動物細胞,或原核細胞,比如大腸埃希氏菌。可通過常規操作比如多核苷酸的連接製備編碼感興趣的scFv的多核苷酸。可使用本領域已知的標準蛋白質純化技術分離所得scFv。
雙特異性結合分子(例如,非單特異性雙抗體)的供應提供相比抗體的明顯優勢,包括但不限於足以共連接和/或共定位表達不同表位的不同細胞的“反式(trans)”結合能力和/或足以共連接和/或共定位由相同細胞表達的不同分子的“順式(cis)”結合能力。因此,雙特異性結合分子(例如,非單特異性雙抗體)具有廣泛的應用,包括治療和免疫診斷。在各種應用中,雙特異性在設計和工程化雙抗體方面允許大的靈活性,提供對多聚抗原的增強的親合力、不同抗原的交聯和對特定細胞類型的導向靶向,這取決於兩個靶抗原的存在。由於其增加的價、低離解速率和從迴圈中快速清除(對於小尺寸的雙抗體,為~50 kDa或以下),本領域中已知的雙抗體分子在腫瘤成像領域還顯示特別的用途(Fitzgerald等(1997)“Improved Tumor Targeting By Disulphide Stabilized Diabodies Expressed In Pichia pastoris, ” Protein Eng. 10: 1221-1225)。
產生雙特異性雙抗體的能力引起它們(以“反式”) 將兩個細胞共連接在一起的用途,例如,通過共連接在不同的細胞表面上存在的受體(例如,將細胞毒性T-細胞與腫瘤細胞交聯) (Staerz等(1985)“Hybrid Antibodies Can Target Sites For Attack By T Cells,” Nature 314:628-631;和Holliger等(1996)“Specific Killing Of LymphomaCells By Cytotoxic T-Cells Mediated By A Bispecific Diabody,” Protein Eng. 9:299-305;Marvin等(2005) “Recombinant Approaches To IgG-Like Bispecific Antibodies ,” Acta Pharmacol. Sin. 26:649-658)。可選地(或另外),雙特異性(或三特異性或多特異性)雙抗體可用於(以“順式”)共連接存在於相同細胞表面上的分子,比如受體等。共連接不同的細胞和/或受體可用於調節效應子功能和/或免疫細胞信號傳導。包括表位-結合位點的多特異性分子(例如雙特異性雙抗體)可被引導至任何在T淋巴細胞、自然殺傷(NK)細胞、抗原呈遞細胞或其他單核細胞上表達的免疫細胞的表面決定簇,諸如CD2、CD3、CD8、CD16、T細胞受體(TCR)、NKG2D等。尤其地,針對存在於免疫效應細胞上的細胞表面受體的表位-結合位點可用於產生能夠介導重定向細胞殺傷的多特異性結合分子。
然而,上述優勢需要突出的成本。這類非單特異性雙抗體的形成需要成功組裝兩個或更多個獨特和不同的多肽(即,這樣的形成需要通過不同多肽鏈種類的異源二聚化而形成雙抗體)。該事實與單特異性雙抗體不同,其通過一致的多肽鏈的同源二聚化而形成。由於至少兩個不同的多肽(即,兩個多肽種類)必須被提供以形成非單特異性雙抗體並且由於這樣的多肽的同源二聚化導致失活分子(Takemura, S.等(2000) “Construction Of A Diabody (Small Recombinant Bispecific Antibody) Using A Refolding System, ” Protein Eng. 13(8):583-588),這樣的多肽的產生必須以防止相同種類的多肽之間的共價結合的方式完成(即,以便防止同源二聚化) (Takemura, S.等(2000) “Construction Of A Diabody (Small Recombinant Bispecific Antibody) Using A Refolding System, ” Protein Eng. 13(8):583-588)。所以,現有技術教導了這類多肽的非共價締合(見,例如,Olafsen等(2004)“Covalent Disulfide-Linked Anti-CEA Diabody Allows Site-Specific Conjugation And Radiolabeling For Tumor Targeting Applications,” Prot. Engr. Des. Sel. 17:21-27;Asano等(2004) “A Diabody For Cancer Immunotherapy And Its Functional Enhancement By Fusion Of Human Fc Domain ,” Abstract 3P-683, J. Biochem. 76(8):992;Takemura, S.等(2000) “Construction Of A Diabody (Small Recombinant Bispecific Antibody) Using A Refolding System, ” Protein Eng. 13(8):583-588;Lu, D.等( 2005) “A Fully Human Recombinant IgG-Like Bispecific Antibody To Both The Epidermal Growth Factor Receptor And The Insulin-Like Growth Factor Receptor For Enhanced Antitumor Activity ,” J. Biol. Chem. 280(20):19665-19672)。
然而,本領域已經認識到由非共價締合的多肽組成的雙特異性雙抗體不穩定並且容易解離成非功能單體(見,例如,Lu, D.等(2005) “A Fully Human RecombinantIgG-Like Bispecific Antibody To Both The Epidermal Growth Factor Receptor And The Insulin-Like Growth Factor Receptor For Enhanced Antitumor Activity ,” J. Biol. Chem. 280(20):19665-19672)。
面對這樣的挑戰,本領域已經成功地開發了穩定的、共價結合的異源二聚非單特異性雙抗體,稱為DART® ( 雙親和力重靶向試劑 )雙抗體;見,例如,美國專利公開號2013-0295121、2010-0174053和2009-0060910;歐洲專利公開號EP 2714079、EP 2601216、EP 2376109、EP 2158221;和PCT公開號WO 2012/162068、WO 2012/018687、WO 2010/080538;和Sloan, D.D.等(2015) “Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells ,” PLoS Pathog. 11(11):e1005233. doi: 10.1371/journal.ppat.1005233;Al Hussaini, M.等(2015) “Targeting CD123 In AML Using A T-Cell Directed Dual-Affinity Re-Targeting (DART®) Platform ,” Blood pii: blood-2014-05-575704;Chichili, G.R.等(2015) “A CD3xCD123 Bispecific DART For Redirecting Host T Cells To Myelogenous Leukemia: Preclinical Activity And Safety In Nonhuman Primates ,” Sci. Transl. Med. 7(289):289ra82;Moore, P.A.等(2011) “Application Of Dual Affinity Retargeting Molecules To Achieve Optimal Redirected T-Cell Killing Of B-Cell Lymphoma ,” Blood 117(17):4542-4551;Veri, M.C.等(2010) “Therapeutic Control Of B Cell Activation Via Recruitment Of Fcgamma Receptor IIb (CD32B) Inhibitory Function With A Novel Bispecific Antibody Scaffold ,” Arthritis Rheum. 62(7):1933-1943;Johnson, S.等(2010) “Effector Cell Recruitment With Novel Fv-Based Dual-Affinity Re-Targeting Protein Leads To Potent Tumor Cytolysis And in vivo B-Cell Depletion ,” J. Mol. Biol. 399(3):436-449)。這樣的雙抗體包括兩條或多條共價複合的多肽並涉及將一個或多個半胱氨酸殘基工程化到每個應用的多肽種類中,其允許形成二硫鍵,從而將一對或多對這類多肽鏈彼此共價結合。例如,將半胱氨酸殘基添加至這樣的構建體的C-末端已經被證明允許涉及的多肽鏈之間的二硫結合,穩定了產生的雙抗體,而不干擾雙抗體的結合特性。
已經描述了這類分子的許多變型(見,例如,美國專利公開號2015/0175697、2014/0255407、2014/0099318、2013/0295121、2010/0174053;2009/0060910;2007-0004909;歐洲專利公開號EP 2714079、EP 2601216、EP 2376109、EP 2158221、EP 1868650;和PCT公開號WO 2012/162068、WO 2012/018687、WO 2010/080538、WO 2006/113665),並且提供在本文中。
用於期望四價分子而不需要Fc的應用的可選的構建體在本領域中是已知的,包括但不限於四價串聯抗體,也稱為“TandAbs ”(見,例如美國專利公開號2005-0079170、2007-0031436、2010-0099853、2011-020667 2013-0189263;歐洲專利公開號EP 1078004、EP 2371866、EP 2361936和EP 1293514;PCT公開號WO 1999/057150、WO 2003/025018,和WO 2013/013700),其通過每個具有VH1、VL2、VH2和VL2結構域的兩條相同多肽鏈的同源二聚化而形成。
最近,已經描述了併入兩個雙抗體型結合結構域和一個非雙抗體型結構域和Fc區域的三價結構(見例如PCT公開號WO 2015/184207和WO 2015/184203)。 這類三價結合分子可用於生成單特異性、雙特異性或三特異性分子。結合三種不同表位的能力提供增強的性能。 6A-6F 提供了包括3或4條多肽鏈的這類三價結合分子的示意圖。
IV . 優化的抗 -ROR1 可變結構域
本發明的優選的優化的ROR1-結合分子包括能夠結合人ROR1的連續或不連續(例如,構象的)表位的抗體、雙抗體、BiTEs、三價結合分子等。本發明的優化的ROR1-結合分子還優選地顯示結合一種或多種非人物種,尤其是非人靈長類物種(例如食蟹猴、黑猩猩、獼猴(macaque)等)的ROR1分子的能力。人ROR1多肽的代表性長等同型(NCBI序列NP_005003.2,包括29個氨基酸殘基信號序列,以底線表示)(SEQ ID NO:5 )是: MHRPRRRGTR PPLLALLAAL LLAARGAAA Q ETELSVSAEL VPTSSWNISS ELNKDSYLTL DEPMNNITTS LGQTAELHCK VSGNPPPTIR WFKNDAPVVQ EPRRLSFRST IYGSRLRIRN LDTTDTGYFQ CVATNGKEVV SSTGVLFVKF GPPPTASPGY SDEYEEDGFC QPYRGIACAR FIGNRTVYME SLHMQGEIEN QITAAFTMIG TSSHLSDKCS QFAIPSLCHY AFPYCDETSS VPKPRDLCRD ECEILENVLC QTEYIFARSN PMILMRLKLP NCEDLPQPES PEAANCIRIG IPMADPINKN HKCYNSTGVD YRGTVSVTKS GRQCQPWNSQ YPHTHTFTAL RFPELNGGHS YCRNPGNQKE APWCFTLDEN FKSDLCDIPA CDSKDSKEKN KMEILYILVP SVAIPLAIAL LFFFICVCRN NQKSSSAPVQ RQPKHVRGQN VEMSMLNAYK PKSKAKELPL SAVRFMEELG ECAFGKIYKG HLYLPGMDHA QLVAIKTLKD YNNPQQWTEF QQEASLMAEL HHPNIVCLLG AVTQEQPVCM LFEYINQGDL HEFLIMRSPH SDVGCSSDED GTVKSSLDHG DFLHIAIQIA AGMEYLSSHF FVHKDLAARN ILIGEQLHVK ISDLGLSREI YSADYYRVQS KSLLPIRWMP PEAIMYGKFS SDSDIWSFGV VLWEIFSFGL QPYYGFSNQE VIEMVRKRQL LPCSEDCPPR MYSLMTECWN EIPSRRPRFK DIHVRLRSWE GLSSHTSSTT PSGGNATTQT TSLSASPVSN LSNPRYPNYM FPSQGITPQG QIAGFIGPPI PQNQRFIPIN GYPIPPGYAA FPAAHYQPTG PPRVIQHCPP PKSRSPSSAS GSTSTGHVTS LPSSGSNQEA NIPLLPHMSI PNHPGGMGIT VFGNKSQKPY KIDSKQASLL GDANIHGHTE SMISAEL
在ROR1(SEQ ID NO:5 )的937個氨基酸殘基中,殘基1-29是信號序列,殘基30-406是細胞外結構域,殘基407-427是跨膜結構域,殘基428- 937是細胞質結構域。已知幾種等同型和天然變體。
本發明尤其包括包含免疫特異性結合人ROR1多肽的表位的優化的抗-ROR1可變結構域(即VL和/或VH結構域)的ROR1結合分子(例如抗體、雙抗體、三價結合分子等)。如本文所使用的,這樣的ROR1可變結構域分別被稱為“抗-ROR1-VL”和“抗-ROR1-VH”。
本發明的ROR1-結合分子尤其包括具有優化的抗-ROR1-VL結構域和/或抗-ROR1-VH結構域的分子,其免疫特異性結合人ROR1多肽,尤其是包括SEQ ID NO:5 的殘基30-406的人ROR1多肽,的表位。優選地,與包括非優化的親本抗-ROR1-VL結構域和抗-ROR1-VH結構域的ROR1-結合分子相比,這類優化的ROR1-結合分子表現出對於人ROR1增強的結合親和力,和/或是去免疫化的,以降低這類分子的免疫原性。更優選地,本發明涉及優化的ROR1-結合分子,其顯示對ROR1增強的結合親和力和降低的免疫原性。
下麵和 7A 提供了親本抗-ROR1-VL結構域(SEQ ID NO:6 )的氨基酸序列,CDRL 殘基以底線表示。 QLVLTQSPSA SASLGSSVKL TC TLSSGHKT DTID WYQQQP GKAPRYLMK L EGSGSYNKGS GVPDRFGSGS SSGADRYLTI SSLQSEDEAD YYC GTDYPGN YL FGGGTQLT VLG
下麵和 7B 提供了親本抗-ROR1-VH結構域(SEQ ID NO:7 )的氨基酸序列,CDRH 殘基以底線表示。 QEQLVESGGG LVQPGGSLRL SCAASGFTFS DYYMS WVRQA PGKGLEWVA T IYPSSGKTYY ADSVKG RFTI SSDNAKNSLY LQMNSLRAED TAVYYCAR DS YADDAALFDI WGQGTTVTVS S
在某些實施方案中,包括本發明的優化的抗-ROR1-VL和/或VH結構域的ROR1-結合分子(例如scFv、抗體、雙特異性雙抗體等)的特徵在於以下標準中的任何一個、兩個、三個、四個、五個、六個、七個、八個或九個: (1)   免疫特異性地結合在癌細胞表面上內源性表達的人ROR1的能力; (2)   相對於包括親本抗-ROR1-VL和抗-ROR1-VH結構域的ROR1-結合分子,以增強的結合親和力免疫特異性地結合人ROR1的能力; (3)   相比包括親本抗-ROR1-VL和抗-ROR1-VH結構域的ROR1-結合分子的單價平衡結合常數(KD ),以較低的單價平衡結合常數(KD )免疫特異性地結合人ROR1的能力; (4)   相比包括親本抗-ROR1-VL和抗-ROR1-VH結構域的ROR1-結合分子的單價平衡結合常數(KD ),以其二分之一的單價平衡結合常數(KD )免疫特異性地結合人ROR1的能力; (5)   相比包括親本抗-ROR1-VL和抗-ROR1-VH結構域的ROR1-結合分子的單價締合速率(Ka ),以較高的單價締合速率(Ka )免疫特異性地結合人ROR1的能力; (6)   相比包括親本抗-ROR1-VL和抗-ROR1-VH結構域的ROR1-結合分子的單價解離速率(Kd ),以較低的單價解離速率(Kd )免疫特異性地結合人ROR1的能力; (7)   免疫特異性地結合非人靈長類動物ROR1(例如食蟹猴的ROR1)的能力; (8)   相對於包括親本抗-ROR1-VL和抗-ROR1-VH結構域的ROR1-結合分子的免疫原性,降低的免疫原性;和/或 (9)   相對於包括親本抗-ROR1-VL和抗-ROR1-VH結構域的ROR1-結合分子的介導重定向細胞殺傷的能力(如果有的話),增強的介導重定向細胞殺傷的能力。
如本文別處所述,可以使用表面等離子體共振,例如通過BIACORE®分析來測定ROR1-結合分子的結合常數。表面等離子體共振資料可以擬合到1:1朗繆爾結合模型(Langmuir binding model)(同步的ka kd)和從速率常數kd/ka的比率計算的平衡結合常數KD 。這類結合常數可以針對單價ROR1-結合分子(即,包括單個ROR1表位-結合位點的分子)、二價ROR1-結合分子(即,包括兩個ROR1表位-結合位點的分子)或具有更高價的ROR1-結合分子(例如,包括三個、四個或更多個ROR1表位-結合位點的分子)被測定。
如本文所使用的,術語“重定向細胞殺傷 (redirected cell killing )”是指分子通過結合存在於效應細胞和靶細胞表面上的表位將這類免疫效應細胞(例如,T細胞、NK細胞)定位在這類靶細胞的位置,來介導對靶細胞(例如癌細胞)的殺傷的能力,結果導致對靶細胞的殺傷。可以使用細胞毒性T淋巴細胞(CTL)試驗來測定ROR1-結合分子(例如雙特異性ROR1 x CD3-結合分子)介導重定向細胞殺傷活性的能力。這樣的試驗是本領域熟知的,並且優選的試驗在下面描述。
本發明的ROR1-結合分子包括優化的抗-ROR1-VL和/或抗-ROR1-VH結構域。在優選的實施方案中,ROR1-結合分子包括優化的抗-ROR1-VL結構域或優化的抗-ROR1-VH結構域。在更優選的實施方案中,本發明的ROR1-結合分子包括優化的抗-ROR1-VL結構域和優化的抗-ROR1-VH結構域。
本發明的優選的優化的抗-ROR1-VL結構域的氨基酸序列是SEQ ID NO:6 的變體,並且由SEQ ID NO:8 表示(CDRL 殘基以底線表示): QLVLTQSPSA SASLGX1 SVX2 L TC TLSSGHKT DTID WYQQQP GKAPRYLMX3 L EGSGSYNKGS GVPDRFX4 SGX5 SSGADX6 YLTI SSLQSEDEAD YYC GTDX7 PGN YL FGGGTQLT VLG 其中:X1 X2 X3 X4 X5 X6 X7 被獨立地選擇,並且 其中:X1 為S或G,X2 為K、I或N,X3 為K或N,X4 為G或不存在,X5 為S或I,X6 為R或W,並且X7 為Y或N。
在優選的實施方案中,本發明的ROR1-結合分子包括具有SEQ ID NO:8 的氨基酸序列的優化的抗-ROR1-VL結構域,其中X6 為W。
在另一個實施方案中,本發明的優化的ROR1-結合分子包括具有SEQ ID NO:8 的氨基酸序列的優化的抗-ROR1-VL結構域,其中X6 為W,並且其中: (a)X1 為S或G,X2 為K、I或N,X3 為K或N,X4 為G或不存在,X5 為S或I,X7 為Y或N; (b)X1 為S,X2 為K,X3 為K,X4 為G或不存在,X5 為S和X7 為N; (c)X1 為S,X2 為K,X3 為K,X4 為G或不存在,X5 為I和X7 為Y; (d)X1 為S,X2 為K,X3 為K,X4 為G或不存在,X5 為I和X7 為N;或 (e)X1 為S,X2 為K,X3 為K,X4 為G或不存在,X5 為S和X7 為Y。
本發明的優選的優化的抗-ROR1-VH結構域的氨基酸序列是SEQ ID NO:7 的變體,並且由SEQ ID NO:9 表示(CDRH 殘基以底線表示): QEQLVESGGG LVQPGGSLRLSCAASGFTFS DYYMS WX1 RQA PGKGLEWVAT IYPSSGKTYY ADSX2 KG RX3 TI SSDNAKX4 SLY LQMNSLRAED TAVYYCX5 R DS YADDAALFDI WGQGTTVTVS S 其中:X1 X2 X3 X4 X5 被獨立地選擇,並且 其中:X1 為V或I,X2 為V或A,X3 為F或L,X4 為N、D或Y,並且X5 為A或T。
本發明尤其提供這類優化的ROR1-結合分子,其中可變重鏈結構域具有SEQ ID NO:9 的氨基酸序列,其中: (a)X1 為V或I,X2 為V或A,X3 為L,X4 為N、D或Y,並且X5 為A或T; (b)X1 為V或I,X2 為V或A,X3 為F或L,X4 為D或Y,並且X5 為A或T; (c)X1 為V或I,X2 為V或A,X3 為F或L,X4 為N、D或Y,並且X5 為T; (d)X1 為V或I,X2 為V或A,X3 為L,X4 為N,並且X5 為A; (e)X1 為V或I,X2 為V或A,X3 為F,X4 為D,並且X5 為A; (f)X1 為V或I,X2 為V或A,X3 為F,X4 為N,並且X5 為T; (g)X1 為V或I,X2 為V或A,X3 為L,X4 為D,並且X5 為T; (h)X1 為I,X2 為A,X3 為F或L,X4 為N、D或Y,並且 X5 為A或T; (i)X1 為I,X2 為A,X3 為F,X4 為N,並且X5 為A; (j)X1 為I,X2 為A,X3 為L,X4 為N,並且X5 為A; (k)X1 為I,X2 為A,X3 為F,X4 為D,並且X5 為A; (l)X1 為I,X2 為A,X3 為F,X4 為N,並且X5 為T;或 (m)X1 為I,X2 為A,X3 為L,X4 為D,並且X5 為T。
在優選的實施方案中,本發明的ROR1-結合分子包括具有SEQ ID NO:9 的氨基酸序列的優化的抗-ROR1-VH結構域,其中: (a)X1 為V或I,X2 為V或A,X3 為L,X4 為N、D、或Y,並且X5 為A或T; (b)X1 為V或I,X2 為V或A,X3 為F或L,X4 為D或Y,並且X5 為A或T; (c)X1 為V或I,X2 為V或A,X3 為F或L,X4 為N、D、或Y,並且X5 為T; (d)X1 為V或I,X2 為V或A,X3 為L,X4 為N,並且X5 為A; (e)X1 為V或I,X2 為V或A,X3 為F,X4 為D,並且X5 為A; (f)X1 為V或I,X2 為V或A,X3 為F,X4 為N,並且X5 為T;或 (g)X1 為V或I,X2 為V或A,X3 為L,X4 為D,並且X5 為T。
在另一個優選的實施方案中,本發明的ROR1-結合分子包括具有SEQ ID NO:9 的氨基酸序列的優化的抗-ROR1-VH結構域,其中X1 為I和X2 為A,並且其中: (a)X3 為F或L,X4 為N、D或Y,並且X5 為A或T; (b)X3 為F,X4 為N,且X5 為A; (c)X3 為L,X4 為N,並且X5 為A; (d)X3 為F,X4 為D,並且X5 為A; (e)X3 為F,X4 為N,並且X5 為T;或 (f)X3 為L,X4 為D,並且X5 為T。
具體地,如本文所提供的,構建並研究了包括親本抗-ROR1-VL結構域(SEQ ID NO:6 )的十四種不同變體的ROR1-結合分子。變異的抗-ROR1-VL結構域被命名為“ -ROR1-VL(1) ”、“ -ROR1-VL(2) ”、“ -ROR1-VL(3) ”、“ -ROR1-VL(4) ”、“ -ROR1-VL(5) ”、“ -ROR1-VL(6) ”、“ -ROR1-VL(7) ”、“ -ROR1-VL(8) ”、“ -ROR1-VL(9) ”、“ -ROR1-VL(10) ”、“ -ROR1-VL(11) ”、“ -ROR1-VL(12) ”、“ -ROR1-VL(13) ”和“ -ROR1-VL(14) ”。這些變異的VL結構域的氨基酸序列如下示出:
抗-ROR1-VL(1)的氨基酸序列(SEQ ID NO:10 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRF - SGS SSGADRYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG
抗-ROR1-VL(2)的氨基酸序列(SEQ ID NO:11 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSGS SSGAD W YLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG
抗-ROR1-VL(3)的氨基酸序列(SEQ ID NO:12 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLM N L EGSGSYNKGS GVPDRFGSGS SSGADRYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG
抗-ROR1-VL(4)的氨基酸序列(SEQ ID NO:13 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLG G SVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSGS SSGADRYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG
抗-ROR1-VL(5)的氨基酸序列(SEQ ID NO:14 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSY S KGS GVPDRFGSGS SSGADRYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG
抗-ROR1-VL(6)的氨基酸序列(SEQ ID NO:15 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSG I SSGADRYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG
抗-ROR1-VL(7)的氨基酸序列(SEQ ID NO:16 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSV I L TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSGS SSGADRYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG
抗-ROR1-VL(8)的氨基酸序列(SEQ ID NO:17 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSV N L TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSGS SSGADRYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG
抗-ROR1-VL(9)的氨基酸序列(SEQ ID NO:18 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSY T KGS GVPDRFGSGS SSGADRYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG
抗-ROR1-VL(10)的氨基酸序列(SEQ ID NO:19 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSGS SSGADRYLTI SSLQSEDEAD YYCGTD N PGN YLFGGGTQLT VLG
抗-ROR1-VL(11)的氨基酸序列(SEQ ID NO:20 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSGS SSGAD W YLTI SSLQSEDEAD YYCGTD N PGN YLFGGGTQLT VLG
抗-ROR1-VL(12)的氨基酸序列(SEQ ID NO:21 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSG I SSGAD W YLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG
抗-ROR1-VL(13)的氨基酸序列(SEQ ID NO:22 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSG I SSGAD W YLTI SSLQSEDEAD YYCGTD N PGN YLFGGGTQLT VLG
抗-ROR1-VL(14)的氨基酸序列(SEQ ID NO:23 )如下所示(修飾的殘基以底線示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRF - SGS SSGAD W YLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG
所研究的具體修飾概括在表6中,修飾的氨基酸殘基被方框框住,並在 7A 中呈現的抗-ROR1-VL的氨基酸序列中用箭頭指示(下面顯示的是Kabat編號)。雖然可以看出,在這些具體的變體抗-ROR1-VL結構域中,多個氨基酸殘基已經被取代或缺失,但當工程化本發明優化的抗-ROR1-VL結構域時不必修飾所有或大部分這些殘基。對於輕鏈可變區域,優選修飾Kabat 位置71(對應於SEQ ID NO:6 的殘基76(X6 ))處的殘基。尤其地,輕鏈還可以包括在Kabat位置66和92(對應於SEQ ID NO:6 的殘基70(X5 )和97(X7 ))中的一個或多個位置處包括修飾。另外,應注意,抗-ROR1-VL在Kabat位置63和64之間包括額外的甘氨酸(G)殘基,因此,輕鏈可進一步包括這樣的額外氨基酸殘基(對應於SEQ ID NO:6 的殘基67(X4 ))的缺失。在優選的實施方案中,優化的抗-ROR1-VL結構域包括R71W取代,並且可任選地包括:(1)S66I取代和/或(2)Y92N取代,和/或(3)在63和64之間的G殘基的缺失,但是如本文所提供的,可以進行一些其它修飾。本發明還包括這些序列的微小變異,包括例如C-末端和/或N-末端氨基酸殘基的氨基酸取代,其可以被引入以促進亞克隆。
在各種實施方案中,本發明的ROR1-結合分子包括優化的抗-ROR1-VL結構域,所述VL結構域優選地包括選自SEQ ID NO:111920212223 的氨基酸序列 在優選的實施方案中,本發明的ROR1-結合分子包括優化的抗-ROR1-VH結構域,其包括SEQ ID NO:11SEQ ID NO:23 的氨基酸序列。
尤其地,如本文所提供的,構建並研究了包括親本抗-ROR1-VH結構域(SEQ ID NO:7 )的八種不同變體的ROR1-結合分子。變體抗-ROR1-VH結構域被命名為“ -ROR1-VH(1) ”、“ -ROR1-VH(2) ”、“ -ROR1-VH(3) ”,“ -ROR1-VH(4) ”、“ -ROR1-VH(5) ”、“ -ROR1-VH(6) ”、“ -ROR1-VH(7) ”和“ -ROR1-VH(8) ”。還提供了可以被構建的另外的變體(命名為“ -ROR1-VH(9) ”)。這些變異的VH結構域的氨基酸序列如下所示:
抗-ROR1-VH(1)的氨基酸序列(SEQ ID NO:24 )如下所示(修飾的殘基以底線示): QEQLVESGGG LVQPGGSLRL SCAASGFTFS DYYMSWVRQA PGKGLEWVAT IYPSSGKTYY ADSVKGR L TI SSDNAKNSLY LQMNSLRAED TAVYYCARDS YADDAALFDI WGQGTTVTVS S
抗-ROR1-VH(2)的氨基酸序列(SEQ ID NO:25 )如下所示(修飾的殘基以底線示): QEQLVESGGG LVQPGGSLRL SCAASGFTFS DYYMSWVRQA PGKGLEWVAT IYPSSGKTYY ADSVKGRFTI SSDNAK D SLY LQMNSLRAED TAVYYCARDS YADDAALFDI WGQGTTVTVS S
抗-ROR1-VH(3)的氨基酸序列(SEQ ID NO:26 )如下所示(修飾的殘基以底線示): QEQLVESGGG LVQPGGSLRL SCAASGFTFS DYYMSWVRQA PGKGLEWVAT IYPSSGKTYY ADSVKGRFTI SSDNAKNSLY LQMNSLRAED TAVYYC T RDS YADDAALFDI WGQGTTVTVS S
抗-ROR1-VH(4)的氨基酸序列(SEQ ID NO:27 )如下所示(修飾的殘基以底線示): QEQLVESGGG LVQPGGSLRL SCAASGFTFS DYYMSWVRQA PGKGLEWVAT IYPSSGKTYY ADSVKGRFTI SSDNAK Y SLY LQMNSLRAED TAVYYCARDS YADDAALFDI WGQGTTVTVS S
抗-ROR1-VH(5)的氨基酸序列(SEQ ID NO:28 )如下所示(修飾的殘基以底線示): QEQLVESGGG LVQPGGSLRL SCAASGFTFS DYYMSWVRQA PGKGLEWVAT IYPSSGKTYY ADSVKGRFTI SSDNAKNSLY LQMNSLRAED TAVYYCARDS YADDAALF A I WGQGTTVTVS S
抗-ROR1-VH(6)的氨基酸序列(SEQ ID NO:29 )如下所示(修飾的殘基以底線示): QEQLVESGGG LVQPGGSLRL SCAASGFTFS DYYMSWVRQA PGKGLEWVAT IYPSSGKTYY ADSVKGRFTI SSDNAKNSLY LQMNSLRAED TAVYYCARDS YADDAALF Y I WGQGTTVTVS S
抗-ROR1-VH(7)的氨基酸序列(SEQ ID NO:30 )如下所示(修飾的殘基以底線示): QEQLVESGGG LVQPGGSLRL SCAASGFTFS DYYMSWVRQA PGKGLEWVAT IYPSSGKTYY ADSVKGR L TI SSDNAK D SLY LQMNSLRAED TAVYYC T RDS YADDAALFDI WGQGTTVTVS S
抗-ROR1-VH(8)的氨基酸序列(SEQ ID NO:31 )如下所示(修飾的殘基以底線示): QEQLVESGGG LVQPGGSLRL SCAASGFTFS DYYMSW I RQA PGKGLEWVAT IYPSSGKTYY ADS A KGR L TI SSDNAK D SLY LQMNSLRAED TAVYYC T RDS YADDAALFDI WGQGTTVTVS S
抗-ROR1-VH(9)的氨基酸序列(SEQ ID NO:32 )如下所示(修飾的殘基以底線示): QEQLVESGGG LVQPGGSLRL SCAASGFTFS DYYMSW I RQA PGKGLEWVAT IYPSSGKTYY ADS A KGRFTI SSDNAKNSLY LQMNSLRAED TAVYYCARDS YADDAALFDI WGQGTTVTVS S
所研究的具體修飾概括在表6中,修飾的氨基酸殘基被方框框住,並在 7B 中呈現的抗-ROR1-VH的氨基酸序列中用箭頭指示(下面顯示的是Kabat編號)。雖然可以看出,在這些具體的優化的抗-ROR1-VH結構域中多個氨基酸殘基已經被取代或缺失,但當工程化本發明優化的抗-ROR1-VH結構域時不必修飾所有或大部分這些殘基。對於重鏈可變區域,優選修飾Kabat 位置67、76和93(對應於SEQ ID NO:9 的殘基68 (X3 )、77 (X4 )和97 (X5 ))中的一個或多個殘基。另外或者可選地,重鏈可以在Kabat位置37和67(對應於SEQ ID NO:9 的殘基37 (X1 )和64 (X2 ))中的一個或多個位置處包括修飾。在優選的實施方案中,優化的抗-ROR1-VH結構域包括:(1)F67L取代和/或(2)N76D取代,和/或(3)A93T取代,和/或(4)V37I取代,和/或(5)V63A取代,但是如本文所提供的,可以進行一些其它修飾。本發明還包括這些序列的微小變異,包括例如C-末端和/或N-末端氨基酸殘基的氨基酸取代,其可以被引入以促進亞克隆。
在各種實施方案中,本發明的ROR1-結合分子包括優化的抗-ROR1-VH結構域,所述VH結構域優選地包括選自SEQ ID NO:24252627303132 的氨基酸序列。在優選的實施方案中,本發明的ROR1-結合分子包括優化的抗-ROR1-VH結構域,其包括SEQ ID NO: 26303132 的氨基酸序列。
在其它實施方案中,本發明的ROR1-結合分子包括優化的抗-ROR1-VL結構域,並且還包括優化的抗-ROR1-VH結構域。本發明的ROR1-結合分子可以包括本文所述的優化的抗-ROR1-VL和抗-ROR1-VH結構域的任何組合:
在各種實施方案中,本發明的ROR1-結合分子包括以下組合中的一個:
尤其優選的組合是:
本發明特別包括ROR1-結合分子,其包括:(i)如上所提供的優化的抗-ROR1-VL和/或VH結構域,和(ii)Fc區域。在具體實施方案中,本發明的ROR1-結合分子是單克隆抗體,其包括:(i)如上所提供的優化的抗-ROR1-VL和/或VH結構域,和(ii)Fc區域。在其它實施方案中,本發明的ROR1-結合分子選自:單克隆抗體、多特異性抗體、合成抗體、嵌合抗體、單鏈Fv(scFv)、單鏈抗體、Fab片段、F(ab')片段、二硫鍵連接的雙特異性Fvs(sdFv)、BiTEs、雙抗體和三價結合分子。
V. 嵌合抗原受體
本發明的ROR1-結合分子可以是單特異性單鏈分子,例如單鏈可變片段(“ -ROR1-scFv ”)或嵌合抗原受體(“ -ROR1-CAR ”)。如上所述,scFv通過經由短連接肽將輕鏈和重鏈可變結構域連接在一起來製備。第一代CAR通常具有來自CD3ζ鏈的細胞內結構域,其是來自內源性TCR的信號的主要傳遞者。第二代CAR具有從各種共刺激蛋白受體(例如CD28、41BB、ICOS等)到CAR的胞質尾區的另外的細胞內信號傳導結構域,以向T細胞提供另外的信號。第三代CAR組合多種信號傳導結構域,例如CD3z-CD28-41BB或CD3z-CD28-OX40,以進一步增加效力(Tettamanti, S.等(2013) “Targeting Of Acute Myeloid Leukaemia By Cytokine-Induced Killer Cells Redirected With A Novel CD123-Specific Chimeric AntigenReceptor ,” Br. J. Haematol. 161:389-401;Gill, S.等(2014) “Efficacy Against Human Acute Myeloid Leukemia And Myeloablation Of Normal Hematopoiesis In A Mouse Model Using Chimeric Antigen Receptor-Modified T Cells ,” Blood 123(15): 2343-2354;Mardiros, A.等(2013) “T Cells Expressing CD123-Specific Chimeric Antigen Receptors Exhibit Specific Cytolytic Effector Functions And Antitumor Effects Against Human Acute Myeloid Leukemia ,” Blood 122:3138-3148;Pizzitola, I.等(2014) “Chimeric Antigen Receptors Against CD33/CD123 Antigens Efficiently Target Primary Acute Myeloid Leukemia Cells in vivo ,” Leukemia doi:10.1038/leu.2014.62)。
本發明的抗-ROR1-CAR包括與受體的細胞內結構域融合的抗-ROR1-scFv。抗-ROR1-scFv的可變輕鏈和可變重鏈結構域選自本文公開的任何優化的抗-ROR1-VL結構域和抗-ROR1-VH結構域。優選地,VL結構域選自:抗-ROR1-VL(2)(SEQ ID NO:11 )、抗-ROR1-VL(11)(SEQ ID NO:20 )、抗-ROR1-VL (12)(SEQ ID NO:21 )、抗-ROR1-VL(13)(SEQ ID NO:22 )和抗-ROR1-VL(14)(SEQ ID NO:23 )。優選地,VH域選自:抗-ROR1-VH(3)(SEQ ID NO:26 )、抗-ROR1-VH(7)(SEQ ID NO:30 )、抗-ROR1-VH (8)(SEQ ID NO:31 )和抗-ROR1-VH(9)(SEQ ID NO:32 )。因此,對於這類抗-ROR1-CAR的這類抗-ROR1-scFv,優化的抗-ROR1-VL和抗-ROR1-VH結構域的以下組合是優選的:
本發明的抗-ROR1-CAR的細胞內結構域優選地選自以下任一種的細胞內結構域:41BB-CD3ζ、b2c-CD3ζ、CD28、CD28-4-1BB-CD3ζ、CD28-CD3ζ、 CD28-FcεRIγ、CD28mut-CD3ζ、CD28-OX40-CD3ζ、CD28-OX40-CD3ζ、CD3ζ、CD4-CD3ζ、CD4-FcεRIγ、CD8-CD3ζ、FcεRIγ、FcεRIγCAIX、Heregulin-CD3ζ、IL-13- CD3ζ或Ly49H-CD3ζ (Tettamanti, S.等(2013) “Targeting Of Acute Myeloid Leukaemia By Cytokine-Induced Killer Cells Redirected With A Novel CD123-Specific Chimeric AntigenReceptor ,” Br. J. Haematol. 161:389-401;Gill, S.等(2014) “Efficacy Against Human Acute Myeloid Leukemia And Myeloablation Of Normal Hematopoiesis In A Mouse Model Using Chimeric Antigen Receptor-Modified T Cells ,” Blood  123(15): 2343-2354;Mardiros, A.等(2013) “T Cells Expressing CD123-Specific Chimeric Antigen Receptors Exhibit Specific Cytolytic Effector Functions And Antitumor Effects Against Human Acute Myeloid Leukemia ,” Blood  122:3138-3148;Pizzitola, I.等(2014) “Chimeric Antigen Receptors Against CD33/CD123 Antigens Efficiently Target Primary Acute Myeloid Leukemia Cells in vivo ,” Leukemia doi:10.1038/leu.2014.62)。
VI. 多特異性 ROR1- 結合分子
本發明還涉及這樣的ROR1結合分子:其包括表位-結合位點(優選地包括本發明的優化的抗-ROR1-VL結構域和/或本發明的優化的抗-ROR1-VH結構域),並且還包括免疫特異性結合第二表位的第二表位-結合位點,其中這樣的第二表位是(i)ROR1的不同表位,或(ii)不是ROR1的分子的表位。這類三特異性或多特異性ROR1-結合分子優選地包括識別對靶細胞或組織類型獨特的一組抗原的表位-結合位元點的組合。尤其地,本發明涉及能夠結合ROR1的表位和存在於效應細胞(特別是T淋巴細胞、自然殺傷(NK)細胞或其他單核細胞)表面上的分子的表位的三特異性或多特異性ROR1結合分子。例如,本發明的這類ROR1-結合分子可以被構建為包括免疫特異性結合CD2、CD3、CD8、CD16、T細胞受體(TCR)或NKG2D的表位結合位點。
本發明的一個實施方案涉及能夠結合“第一表位”和“第二表位”的雙特異性ROR1-結合分子,這樣的表位彼此不相同。這類雙特異性分子包括能夠結合第一表位的“VL1 ”/“VH1 ”結構域和能夠結合第二表位的“VL2 ”/“VH2 ”結構域。符號“VL1 ”和“VH1 ”分別表示結合這類雙特異性分子的“第一”表位元的可變輕鏈結構域和可變重鏈結構域。類似地,符號“VL2 ”和“VH2 ”分別表示結合這類雙特異性分子的“第二”表位元的輕鏈可變結構域和重鏈可變結構域。將具體表位命名為第一表位還是第二表位是不重要的;這類符號僅與本發明的結合分子的多肽鏈的結構域的存在和取向有關。在一個實施方案中,這樣的表位之一是人ROR1的表位,另一個是ROR1的不同表位,或不是ROR1的分子的表位。在具體的實施方案中,這樣的表位之一是人ROR1的表位,另一個是存在於效應細胞,例如T淋巴細胞、自然殺傷(NK)細胞或其他單核細胞,的表面上的分子(例如,CD2、CD3、CD8、CD16、T-細胞受體(TCR)、NKG2D等)的表位。在某些實施方案中,雙特異性分子包括多於兩個的表位-結合位點。這樣的雙特異性分子將結合ROR1的至少一個表位和不是ROR1的分子的至少一個表位,並且可以進一步結合ROR1的另外的表位和/或不是ROR1的分子的另外的表位。
本發明尤其涉及雙特異性、三特異性和多特異性ROR1-結合分子(例如雙特異性抗體、雙特異性雙抗體、三價結合分子等),其具有抗體的表位-結合片段(例如VL和VH結構域),使它們能夠協調地結合ROR1的至少一個表位和不是ROR1的第二分子的至少一個表位。這些分子的多肽結構域的VL和VH結構域的選擇被協調,以便構成這類多特異性ROR1-結合分子的多肽鏈組裝的多肽鏈形成對至少一個ROR1的表位特異性的至少一個功能性表位-結合位點和對不是ROR1的分子的至少一個表位特異性的至少一個功能性表位-結合位點。優選地,雙特異性ROR1-結合分子包括本文提供的優化的抗-ROR1-VL和/或VH結構域。
A. 雙特異性抗體
本發明包括能夠同時結合ROR1的表位和不是ROR1的分子的表位的雙特異性抗體。在一些實施方案中,能夠同時結合ROR1和不是ROR1的第二分子的雙特異性抗體是使用以下文獻中描述的任何方法製備的:PCT公開號WO 1998/002463、WO 2005/070966、WO 2006/107786 、WO 2007/024715、WO 2007/075270、WO 2006/107617、WO 2007/046893、WO 2007/146968、WO 2008/003103、WO 2008/003116、WO 2008/027236、WO 2008/024188、WO 2009/132876、WO 2009/018386、WO 2010/028797、WO2010028796、WO 2010/028795、WO 2010/108127、WO 2010/136172、WO 2011/086091、WO 2011/133886、WO 2012/009544、WO 2013/003652、WO 2013/070565、WO 2012/162583、WO 2012/156430、WO 2013/174873和WO 2014/022540,其各自通過引用以其整體併入本文。
B. 缺少 Fc 區域的雙特異性雙抗體
本發明的一個實施方案涉及能夠結合第一表位和第二表位的雙特異性雙抗體,其中第一表位是人ROR1的表位,第二表位是不是ROR1的分子的表位,所述不是ROR1的分子優選是存在於效應細胞例如T淋巴細胞、自然殺傷(NK)細胞或其他單核細胞表面上的分子(例如CD2、CD3、CD8、CD16、T-細胞受體(TCR)、NKG2D等)。這樣的雙抗體包括第一多肽鏈和第二多肽鏈,並且最優選地由第一多肽鏈和第二多肽鏈組成,其序列允許多肽鏈彼此共價結合以形成共價締合的雙抗體,其能夠同時結合ROR1的表位和第二表位。
雙特異性雙抗體的這類實施方案的第一多肽鏈在N-末端至C-末端方向包括:N-末端、能夠結合第一或第二表位的單克隆抗體的VL結構域(即VL -ROR1-VL 或VL表位 2 )、第一間插間隔體肽(連接體1)、能夠結合第二表位(如果這樣的第一多肽鏈含有VL -ROR1- VL )或ROR1(如果這樣的第一多肽鏈含有VL表位 2 )的單克隆抗體的VH結構域、任選地含有半胱氨酸殘基的第二間插間隔體肽(連接體2)、異源二聚體-促進結構域和C-末端( 1 )。
雙特異性雙抗體的該實施方案的第二多肽鏈在N-末端至C-末端方向包括:N-末端、能夠結合第一或第二表位的單克隆抗體的VL結構域(即,VL -ROR1-VL 或VL表位 2 ,並且是未被選擇包括在雙抗體的第一多肽鏈中的VL結構域)、間插間隔體肽(連接體1)、能夠結合第二表位(如果這樣的第二多肽鏈含有VL -ROR1-VL )或結合ROR1(如果這樣的第二多肽鏈含有VL表位 2 )的單克隆抗體的VH結構域、任選地含有半胱氨酸殘基的第二間插間隔體肽(連接體2)、異源二聚體-促進結構域和C-末端( 1 )。
第一多肽鏈的VL結構域與第二多肽鏈的VH結構域相互作用以形成對第一抗原(即ROR1或含有第二表位的分子)特異性的第一功能性表位-結合位點。同樣地,第二多肽鏈的VL結構域與第一多肽鏈的VH結構域相互作用,以形成對第二抗原(即,包括第二表位的分子或 ROR1)特異性的第二功能性表位-結合位點。因此,對第一和第二多肽鏈的VL和VH結構域的選擇是協調的,使得雙抗體的兩條多肽鏈總共包括能夠結合ROR1的表位和結合第二表位的VL和VH結構域(即它們總共包括VL -ROR1-VL / VH -ROR1-VH 和VL表位 2 /VH表位 2 )。
最優選地,間插間隔體肽(即,分離這類VL和VH結構域的“連接體1”)長度被選擇,以基本上或完全地防止多肽鏈的VL和VH結構域彼此結合(例如由0、1、2、3、4、5、6、7、8或9個間插連接體氨基酸殘基組成)。因此,第一多肽鏈的VL和VH結構域基本上或完全不能彼此結合。同樣,第二多肽鏈的VL和VH結構域基本上或完全不能彼此結合。優選的間插間隔體肽(連接體1)具有序列(SEQ ID NO:33 ):GGGSGGGG。
基於促進這類二聚化的一個或多個多肽結構域(即,“異源二聚體促進結構域 ”)的選擇來選擇第二間插間隔體肽(連接體2)的長度和組成。典型地,第二間插間隔體肽(連接體2)包括3-20個氨基酸殘基。尤其地,當採用的異源二聚體促進結構域(一個或多個)包括/不包括半胱氨酸殘基時,使用包含半胱氨酸的第二間插間隔體肽(連接體2)。包含半胱氨酸的第二間插間隔體肽(連接體2)將包含1、2、3或更多個半胱氨酸。優選的含半胱氨酸的間隔體肽(連接體2)具有序列GGCGGG (SEQ ID NO:34 )。可選地,連接體2不包括半胱氨酸(例如GGG, GGGS (SEQ ID NO:35 )、LGGGSG (SEQ ID NO:36 )、GGGSGGGSGGG (SEQ ID NO:37 )、ASTKG (SEQ ID NO:38 )、LEPKSS (SEQ ID NO:39 )、APSSS (SEQ ID NO:40 )等),並且使用如下所描述的含半胱氨酸的異源二聚體-促進結構域。任選地,使用含半胱氨酸的連接體2和含半胱氨酸的異源二聚體-促進結構域。
異源二聚體-促進結構域在一條多肽鏈上可以是GVEPKSC (SEQ ID NO:41 )或VEPKSC (SEQ ID NO:42 )或AEPKSC (SEQ ID NO:43 ),並且在另一條多肽鏈上可以是GFNRGEC (SEQ ID NO:44 )或FNRGEC (SEQ ID NO:45 ) (US2007/0004909)。
在優選的實施方案中,異源二聚體促進結構域將包括具有相反電荷的串聯重複的螺旋結構域,例如,“E-螺旋”螺旋結構域(SEQ ID NO:46 E VAAL E K- E VAAL E K- E VAAL E K- E VAAL E K),其谷氨酸殘基在pH 7形成負電荷,和“K-螺旋”結構域(SEQ ID NO:47 K VAAL K E- K VAAL K E- K VAAL K E- K VAAL K E),其賴氨酸殘基在pH 7形成正電荷。這類帶電結構域的存在促進了第一和第二多肽之間的締合,因此有助於異源二聚體形成。可以使用包括上述E-螺旋和K-螺旋序列的修飾的異源二聚體促進結構域,以便包括一個或多個半胱氨酸殘基。這類半胱氨酸殘基的存在允許在一條多肽鏈上存在的螺旋與另一多肽鏈上存在的互補螺旋成為共價結合的,從而彼此共價結合多肽鏈並且增加雙抗體的穩定性。這樣的尤其優選的例子是異源二聚體促進結構域包括修飾的E-螺旋,其具有氨基酸序列 E VAA C E K- E VAAL E K- E VAAL E K- E VAAL E K (SEQ ID NO:48 ),和修飾的K-螺旋,其具有氨基酸序列 K VAA C K E- K VAAL K E- K VAAL K E- K VAAL K E (SEQ ID NO: 49 )。
如WO 2012/018687中所公開的,為了提高雙抗體的體內藥物代謝動力學特性,雙抗體可被修飾,以在雙抗體的一個或多個末端處包含血清結合蛋白的多肽部分。最優選地,血清結合蛋白的這類多肽部分設置在雙抗體的多肽鏈的C-末端。白蛋白是血漿中最豐富的蛋白質並且在人中半衰期是19天。白蛋白具有若干小分子結合位點,這允許其非共價結合其他蛋白,從而延長它們的血清半衰期。鏈球菌屬(Streptococcus)菌株G148的蛋白質G的白蛋白結合結構域3 (ABD3)由形成穩定的三螺旋束的46個氨基酸殘基組成並且具有廣泛的白蛋白結合特異性(Johansson, M.U.等(2002) “Structure, Specificity, And Mode Of Interaction For Bacterial Albumin-Binding Module s,” J. Biol. Chem. 277(10):8114-8120。因此,對於改善雙抗體的體內藥物代謝動力學特性,尤其優選的血清結合蛋白的多肽部分是來自鏈球菌蛋白質G的白蛋白結合結構域(ABD),更優選地,鏈球菌屬菌株G148的蛋白質G的白蛋白結合結構域3  (ABD3) (SEQ ID NO:50 ):LAEAKVLANR ELDKYGVSDY YKNLIDNAKS AEGVKALIDE ILAALP。
如WO 2012/162068 (通過引用併入本文)中公開,SEQ ID NO:50 的“去免疫化 的變體具有削弱或消除II類MHC結合的能力。基於組合突變結果,對於形成這樣的去免疫化的ABD,如下取代的組合被認為是優選的取代:66D/70S +71A、66S/70S +71A、66S/70S +79A、64A/65A/71A、64A/65A/71A+66S、64A/65A/71A+66D、64A/65A/71A+66E、64A/65A/79A+66S、64A/65A/79A+66D、64A/65A/79A+66E。变异的ABD具有修饰L64A、I65A和D79A或修饰N66S、T70S和D79A。具有下述氨基酸序列: LAEAKVLANR ELDKYGVSDY YKNLI D 66 NAK S 70 A 71 EGVKALIDE ILAALP (SEQ ID NO:51 )、 或氨基酸序列: LAEAKVLANR ELDKYGVSDY YKN A 64 A 65 NNAKT VEGVKALI A 79 E ILAALP (SEQ ID NO:52) 或氨基酸序列: LAEAKVLANR ELDKYGVSDY YKNLI S 66 NAK S 70 VEGVKALI A 79 E ILAALP (SEQ ID NO:53) 的變異的去免疫化的ABD是尤其優選的,因為這類去免疫化的ABD展示基本上野生型結合,同時提供削弱的II類MHC結合。因此,具有ABD的這類雙抗體的第一多肽鏈包含第三連接體(連接體3),其優選地位於這類多肽鏈的E螺旋(或K螺旋)結構域的C-末端,以便插在E螺旋(或K螺旋)結構域和ABD (其優選地是去免疫化的ABD)之間。用於這類連接體3的優選的序列是SEQ ID NO:35 :GGGS。
C. 包含 Fc 區域的多特異性雙抗體
本發明的一個實施方案涉及能夠同時結合ROR1的表位和第二表位(即,ROR1的不同表位或不是ROR1的分子的表位)的多特異性雙抗體,其包括Fc區域。添加IgG CH2-CH3結構域至雙抗體多肽鏈之一或兩條中,以便雙抗體鏈的複合導致形成Fc區,延長了生物半衰期和/或改變了雙抗體的價。此類雙抗體包括兩條或更多條多肽鏈,其序列允許多肽鏈彼此共價結合以形成能夠同時結合ROR1的表位和第二表位的共價締合的雙抗體。將IgG CH2-CH3結構域併入到兩條雙抗體多肽上允許形成雙鏈雙特異性包含Fc-區域的雙抗體( 2 )。
可選地,僅僅在一條雙抗體多肽上併入IgG CH2-CH3結構域允許形成更複雜的、包含Fc區的四鏈雙特異性雙抗體( 3A-3C )。 3C 顯示具有恒定輕鏈(CL)結構域和恒定重鏈CH1結構域的代表性四鏈雙抗體,然而,可以可選地採用這類結構域的片段以及其他多肽(見,例如, 3A 3B ,美國專利公開號2013-0295121、2010-0174053和2009-0060910;歐洲專利公開號EP 2714079、EP 2601216、EP 2376109、EP 2158221;和PCT公開號WO 2012/162068、WO 2012/018687、WO 2010/080538)。因此,例如,代替CH1結構域,可採用源自人IgG的鉸鏈區的、具有氨基酸序列GVEPKSC (SEQ ID NO:41 ) VEPKSC (SEQ ID NO:42 )或AEPKSC (SEQ ID NO:43 )的肽,並且代替CL結構域,可採用人κ輕鏈的C-末端6個氨基酸GFNRGEC (SEQ ID NO:44 )或FNRGEC (SEQ ID NO:45 )。包含代表性肽的四鏈雙抗體顯示在 3A 中。可選地,或另外,可採用肽包括具有相反電荷的串聯螺旋結構域的肽,比如“E-螺旋”螺旋結構域 (SEQ ID NO:46 E VAAL E K- E VAAL E K- E VAAL E K- E VAAL E K或SEQ ID NO:48 E VAA C E K- E VAAL E K- E VAAL E K- E VAAL E K);和“K-螺旋”結構域(SEQ ID NO:47 K VAAL K E- K VAAL K E- K VAAL K E- K VAAL K E或SEQ ID NO:49 K VAA C K E- K VAAL K E- K VAAL K E- K VAAL K E)。代表性的、包含螺旋結構域的四鏈雙抗體顯示在 3B 中。
本發明的含有Fc區域的分子可以包括另外的間插間隔體肽(連接體),通常這類連接體將被併入在異源二聚體-促進結構域(例如E-螺旋或K-螺旋)和CH2-CH3結構域之間和/或在CH2-CH3結構域和可變結構域(即VH或VL)之間。通常,另外的連接體將包括3-20個氨基酸殘基,並且可任選地包括IgG鉸鏈區域(優選IgG鉸鏈區域的包含半胱氨酸的部分)的全部或一部分。可用於本發明的含Fc區域的雙特異性雙抗體分子中的連接體包括:GGGS (SEQ ID NO:35 )、LGGGSG (SEQ ID NO:36 )、GGGSGGGSGGG (SEQ ID NO:37 )、ASTKG (SEQ ID NO:38 )、LEPKSS (SEQ ID NO:39 )、APSSS (SEQ ID NO:40 )、APSSSPME (SEQ ID NO:54 )、VEPKSADKTHTCPPCP (SEQ ID NO:55 )、LEPKSADKTHTCPPCP (SEQ ID NO:56 )、DKTHTCPPCP (SEQ ID NO:57 )、GGC和GGG。為了便於克隆,可以使用LEPKSS(SEQ ID NO:39 )代替GGG或GGC。另外,氨基酸GGG或LEPKSS(SEQ ID NO:39 )之後緊接著可以是DKTHTCPPCP(SEQ ID NO:57 ),以形成可選的連接體:GGGDKTHTCPPCP(SEQ ID NO:58 );和LEPKSSDKTHTCPPCP(SEQ ID NO:59 )。除了連接體之外或者替代連接體,本發明的含Fc區域的雙特異性分子可以併入IgG鉸鏈區域。示例性鉸鏈區包括:來自IgG1的EPKSCDKTHTCPPCP (SEQ ID NO:60 )、來自IgG2的ERKCCVECPPCP (SEQ ID NO:61 )、來自IgG3的ELKTPLGDTTHTCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPCPRCP (SEQ ID NO:116 )、來自IgG4的ESKYGPPCPSCP (SEQ ID NO:62 )以及包括穩定化S228P取代(通過如Kabat中所述的EU索引編號)以減少鏈交換的IgG4鉸鏈變體ESKYGPPCP P CP (SEQ ID NO:63 )。
3A-3C 中提供的,本發明的包含Fc區的雙特異性雙抗體可包括四條鏈。這類雙抗體的第一和第三多肽鏈包含三個結構域:(i)包含VL1的結構域、(ii)包含VH2的結構域、(iii)異源二聚體-促進結構域、和(iv)包含CH2-CH3序列的結構域。第二和第四多肽鏈包含:(i)包含VL2的結構域、(ii)包含VH1的結構域和(iii)異源二聚體-促進結構域,其中異源二聚體-促進結構域促進第一/第三多肽鏈與第二/第四多肽鏈的二聚化。第三和第四多肽鏈的VL和/或VH結構域,以及第一和第二多肽鏈的VL和/或VH結構域可以相同或不同,以便允許單特異性、雙特異性或四特異性的四價結合。符號“VL3 ”和“VH3 ”分別表示結合這類雙抗體的“第三”表位元的輕鏈可變結構域和可變重鏈結構域。類似地,符號“VL4 ”和“VH4 ”分別表示結合這類雙抗體的“第四”表位元的輕鏈可變結構域和可變重鏈結構域。本發明的包含Fc區的、代表性四鏈雙特異性雙抗體的多肽鏈的一般結構提供在 1 中: HPD =異源二聚體-促進結構域
在具體的實施方案中,本發明的雙抗體是雙特異性的、四價(即,具有四個表位-結合位點)、包含Fc的雙抗體,其由總共四條多肽鏈構成( 3A-3C )。本發明的雙特異性、四價、包含Fc的雙抗體包括對於ROR1免疫特異性的兩個表位-結合位點(其可能夠結合ROR1相同的表位或ROR1不同的表位),和對於第二分子免疫特異性的兩個表位-結合位點(其可能夠結合第二分子的相同表位或第二分子的不同表位)。優選地,第二分子是存在於效應細胞,例如T淋巴細胞、自然殺傷(NK)細胞或其他單核細胞,表面上的分子(例如CD2、CD3、CD8、CD16、T-細胞受體(TCR)、NKG2D等)。
在另一個實施方案中,本發明的包含Fc區的雙抗體可包括三條多肽鏈。這類雙抗體的第一多肽包含三個結構域:(i)包含VL1的結構域、(ii)包含VH2的結構域和(iii)包含CH2-CH3序列的結構域。這類雙抗體的第二多肽包含:(i)包含VL2的結構域、(ii)包含VH1的結構域和(iii)促進與雙抗體的第一多肽鏈異源二聚化和共價結合的結構域。這類雙抗體的第三多肽包括CH2-CH3序列。因此,這類雙抗體的第一和第二多肽鏈締合在一起,以形成能夠結合第一抗原(即, ROR1或包括第二表位的分子)的VL1/VH1表位-結合位點,以及能夠結合第二抗原(即,包括第二表位的分子或ROR1)的VL2/VH2表位-結合位點。第一和第二多肽通過涉及在它們各自的第三結構域中的半胱氨酸殘基的二硫鍵彼此結合。值得注意的是,第一和第三多肽鏈彼此複合,以形成經二硫鍵穩定的Fc區。這類雙特異性雙抗體具有增強的效價。 4A 4B 闡釋了這類雙抗體的結構。這類包含Fc區的雙抗體可具有兩個取向之一( 2 ): HPD =異源二聚體-促進結構域
在具體的實施方案中,本發明的雙抗體是雙特異性、二價(即,具有兩個表位-結合位點)、包含Fc的雙抗體,其由總共三條多肽鏈構成( 4A-4B )。本發明的雙特異性、二價、包含Fc的雙抗體包括對ROR1免疫特異性的一個表位-結合位點和對第二分子免疫特異性的一個表位-結合位點。優選地,第二分子是存在於效應細胞,例如T淋巴細胞、自然殺傷(NK)細胞或其他單核細胞表面上的分子(例如CD2、CD3、CD8、CD16、T-細胞受體(TCR)、NKG2D等)。
在進一步的實施方式中,包含Fc區的雙抗體可包括總共五條多肽鏈。在具體的實施方式中,所述五條多肽鏈的兩條具有相同的氨基酸序列。這類雙抗體的第一多肽鏈包含:(i)包含VH1的結構域、(ii)包含CH1的結構域和(iii)包含CH2-CH3序列的結構域。第一多肽鏈可以是抗體的重鏈,其包含VH1和重鏈恒定結構域。這類雙抗體的第二和第五條多肽鏈包含:(i)包含VL1的結構域和(ii)包含CL的結構域。這類雙抗體的第二和/或第五多肽鏈可以是抗體的輕鏈,其包含與第一/第三多肽鏈的VH1互補的VL1。第一、第二和/或第五多肽鏈可分離自天然產生的抗體。可選地,它們可以是重組構建的。這類雙抗體的第三多肽鏈包含:(i)包含VH1的結構域、(ii)包含CH1的結構域、(iii)包含CH2-CH3序列的結構域、(iv)包含VL2的結構域、(v)包含VH3的結構域和(vi)異源二聚體-促進結構域,其中異源二聚體-促進結構域促進第三鏈與第四鏈的二聚化。這類雙抗體的第四多肽包含:(i)包含VL3的結構域、(ii)包含VH2的結構域和(iii)促進與雙抗體的第三多肽鏈異源二聚化和共價結合的結構域。
因此,這類雙抗體的第一和第二,以及第三和第五多肽鏈締合在一起,以形成能夠結合第一表位的兩個VL1/VH1表位-結合位點。這類雙抗體的第三和第四多肽鏈締合在一起,以形成能夠結合第二表位的VL2/VH2表位-結合位點,以及能夠結合第三表位的VL3/VH3結合位點。第一和第三多肽通過涉及在它們各自恒定區中的半胱氨酸殘基的二硫鍵彼此結合。值得注意的是,第一和第三多肽鏈彼此複合,以形成Fc區。這類多特異性雙抗體具有增強的效力。 5 圖解了這類雙抗體的結構。應當理解,VL1/VH1、VL2/VH2和VL3/VH3結構域可以相同或不同,以便允許單特異性、雙特異性或三特異性的結合。如本文所提供的,優選地選擇這些結構域以結合ROR1的表位、第二分子的表位和任選地第三分子的表位。
選擇多肽鏈的VL和VH結構域,以便形成對於期望的表位特異性的VL/VH結合位點。通過多肽鏈的締合形成的VL/VH結合位點可以相同或不同,以便允許單特異性、雙特異性、三特異性或四特異性的四價結合。尤其地,可選擇VL和VH結構域,以便多價雙抗體可包括針對第一表位的兩個結合位點和針對第二表位的兩個結合位點,或針對第一表位的三個結合位點和針對第二表位的一個結合位點,或針對第一表位的兩個結合位點,針對第二表位的一個結合位點和針對第三表位的一個結合位點(如 5 中所描繪)。本發明的代表性包含Fc區的五鏈雙抗體的多肽鏈的一般結構提供在 3 中: HPD =異源二聚體-促進結構域
在具體的實施方式中,本發明的雙抗體是雙特異性、四價(即,具有四個表位-結合位點)、包含Fc的雙抗體,其由總共五條多肽鏈構成,具有對於ROR1免疫特異性的兩個表位-結合位點(其可能夠結合ROR1的相同表位或ROR1的不同表位),和對於第二分子特異性的兩個表位-結合位點(其可能夠結合第二分子的相同表位或第二分子的不同表位)。在另一實施方式中,本發明的雙特異性、四價、包含Fc的雙抗體包括對於ROR1免疫特異性的三個表位-結合位點(其可能夠結合ROR1的相同的表位或ROR1的兩個或三個不同的表位),和對於第二分子特異性的一個表位-結合位點。在另一實施方式中,本發明的雙特異性、四價、包含Fc的雙抗體包括對於ROR1免疫特異性的一個表位-結合位點,和對於第二分子特異性的三個表位-結合位點(其可能夠結合第二分子的相同的表位或第二分子的兩個或三個不同的表位)。如上所述,可以選擇VL和VH結構域以允許三特異性結合。因此,本發明還包括三特異性、四價、含Fc的雙抗體。本發明的三特異性、四價、含Fc的雙抗體包括對ROR1免疫特異性的兩個表位-結合位點、對第二分子免疫特異性的一個表位-結合位點和對第三分子免疫特異性的一個表位-結合位點。在某些實施方案中,第二分子是存在於效應細胞例如T淋巴細胞、自然殺傷(NK)細胞或其他單核細胞表面上的分子(例如CD2、CD3、CD8、CD16、T細胞受體(TCR)、NKG2D等)。在某些實施方案中,第二分子是CD3,第三分子是CD8。
D. 含有 Fc 區域的三價結合分子
本發明的另一個實施方案涉及包括Fc區域的三價結合分子,其能夠同時結合第一表位、第二表位和第三表位,其中至少一個這樣的表位與另一個不同。這類三價結合分子包括三個表位-結合位點,其中兩個是雙抗體型結合結構域,其提供結合位點A和結合位點B,並且其中一個是Fab型結合結構域或scFv型結合結構域,其提供結合位點C (見,例如, 6A-6F ,和PCT公佈號:PCT/US15/33081;和PCT/US15/33076)。這類三價結合分子因此包括能夠結合第一表位的“VL1 ”/“VH1 ”結構域和能夠結合第二表位的“VL2 ”/“VH2 ”結構域和能夠結合這類三價結合分子的“第三”表位的“VL3 ”和“VH3 ”結構域。“雙抗體型結合結構域”是雙抗體,尤其是DART®雙抗體中存在的表位-結合位點的類型,如上所述。每個“Fab型結合結構域”和“scFv型結合結構域”是通過免疫球蛋白輕鏈的VL結構域和免疫球蛋白重鏈的互補VH結構域相互作用形成的表位-結合位點。Fab型結合結構域與雙抗體型結合結構域的差異在於形成Fab型結合結構域的兩條多肽鏈僅僅包括單個表位-結合位點,而形成雙抗體型結合結構域的兩條多肽鏈包括至少兩個表位-結合位點。類似地,scFv型結合結構域與雙抗體型結合結構域的差異也在於它們僅僅包括單個表位-結合位點。因此,如本文使用的Fab型和scFv型結合結構域與雙抗體型結合結構域不同。
通常,本發明的三價結合分子包括四條不同的多肽鏈(見 6A-6B ),但是,例如,通過彼此融合這類多肽鏈(例如,經肽鍵)或通過分開這類多肽鏈,以形成另外的多肽鏈,或通過經二硫鍵締合更少的或另外的多肽鏈,分子可包括更少或更多數量的多肽鏈。 6C-6F 通過示意性描繪具有三條多肽鏈的這類分子闡釋了本發明的這個方面。如 6A-6F 中提供的,本發明的三價結合分子可具有可選的取向,其中雙抗體型結合結構域在Fc區的N-末端( 6A6C6D )或C-末端( 6B6E6F )。
在某些實施方案中,本發明的這類三價結合分子的第一多肽鏈包含:(i)包含VL1的結構域、(ii)包含VH2的結構域、(iii)異源二聚體-促進結構域和(iv)包含CH2-CH3序列的結構域。VL1和VL2結構域位於包含CH2-CH3的結構域的N-末端或C-末端,如 4 (也見 6A6B )中所顯示。這類實施方式的第二多肽鏈包含:(i)包含VL2的結構域、(ii)包含VH1的結構域和(iii)異源二聚體-促進結構域。這類實施方式的第三多肽鏈包含:(i)包含VH3的結構域、(ii)包含CH1的結構域和(iii)包含CH2-CH3序列的結構域。第三多肽鏈可以是包含VH3和重鏈恒定區的抗體的重鏈,或包含這樣的結構域的多肽。這類實施方式的第四多肽包含:(i)包含VL3的結構域和(ii)包含CL的結構域。第四多肽鏈可以是包含與第三多肽鏈的VH3互補的VL3的抗體的輕鏈,或包含這樣的結構域的多肽。第三或第四多肽鏈可分離自天然產生的抗體。可選地,它們可經重組、合成通過其方式而構建。
第一和第二多肽鏈的輕鏈可變結構域通過間插間隔體肽與這類多肽鏈的重鏈可變結構域分開,所述間插間隔體肽長度太短而不允許它們的VL1/VH2 (或它們的VL2/VH1)結構域締合在一起形成能夠結合第一或第二表位的表位結合位點。用於該目的的優選間插間隔體肽(連接體1)具有序列(SEQ ID NO: 33 ):GGGSGGGG。三價結合分子的其他結構域可通過任選地包括半胱氨酸殘基的一個或多個間插間隔體肽(連接體)分開。尤其地,如上面提供,這類連接體通常被併入在可變結構域(即,VH或VL)和肽異源二聚體促進結構域(例如,E-螺旋或K-螺旋)之間和這類肽異源二聚體促進結構域(例如,E-螺旋或K-螺旋)和CH2-CH3結構域之間。上面提供了用於產生三價結合分子的示例性連接體,並且其也提供在PCT公佈號:PCT/US15/33081和PCT/US15/33076中。因此,這類三價結合分子的第一和第二多肽鏈締合在一起,形成能夠結合第一表位的VL1/VH1結合位點,以及能夠結合第二表位的VL2/VH2結合位點。這類三價結合分子的第三和第四多肽鏈締合在一起而形成能夠結合第三表位的VL3/VH3結合位點。
如上所述,本發明的三價結合分子可包括三條多肽。包括三條多肽鏈的三價結合分子可通過將第四多肽N-末端的結構域連接至第三多肽的包含VH3的結構域(例如,使用間插間隔體肽(連接體 4 ))而獲得。可選地,使用包含下述結構域的本發明的三價結合分子的第三多肽鏈:(i)包含VL3的結構域、(ii)包含VH3的結構域和(iii)包含CH2-CH3序列的結構域,其中VL3和VH3通過間插間隔體肽彼此間隔開,所述間插間隔體肽足夠長(至少9個或更多個氨基酸殘基),以便允許這些結構域的締合形成表位-結合位點。對於該目的,一個優選的間插間隔體肽具有序列:GGGGSGGGGSGGGGS (SEQ ID NO:64 )。
應當理解,這類三價結合分子的VL1/VH1、VL2/VH2和VL3/VH3結構域可以不同,以便允許單特異性、雙特異性或三特異性的結合。具體地,可以選擇VL和VH結構域,使得三價結合分子包括針對第一表位的兩個結合位點和針對第二表位的一個結合位點,或針對第一表位的一個結合位點和針對第二表位的兩個結合位點,或者針對第一表位的一個結合位點,針對第二表位的一個結合位點和針對第三表位的一個結合位點。
然而,如本文所提供的,優選地選擇這些結構域,以便結合ROR1的表位、第二分子的表位和第三分子的表位。在某些實施方案中,第二分子是存在於效應細胞例如T淋巴細胞、自然殺傷(NK)細胞或其他單核細胞表面上的分子(例如CD2、CD3、CD8、CD16、T細胞受體(TCR)、NKG2D等)。在某些實施方案中,第三分子是CD8。
本發明的代表性三價結合分子的多肽鏈的一般結構被提供在 6A-6F 4 中: HPD =異源二聚體-促進結構域
本發明的一個實施方案涉及三價結合分子,其包括針對ROR1的兩個表位-結合位點和針對第二分子的一個表位-結合位點。針對ROR1的兩個表位-結合位點可結合相同的表位或不同的表位。本發明的另一實施方式涉及三價結合分子,其包括針對ROR1的一個表位-結合位點和針對第二分子的兩個表位-結合位點。針對第二分子的兩個表位-結合位點可結合第二分子的相同的表位或不同的表位。本發明的另一個實施方案涉及三特異性三價結合分子,其包括針對ROR1的一個表位-結合位點,針對第二分子的一個表位結合位點和針對第三分子的一個表位結合位點的。在某些實施方案中,第二分子是存在於效應細胞例如T淋巴細胞、自然殺傷(NK)細胞或其他單核細胞表面上的分子(例如CD2、CD3、CD8、CD16、T細胞受體(TCR)、NKG2D等)。在某些實施方案中,第二分子是CD3,第三分子是CD8。如上所述,這樣的三價結合分子可以包括三條、四條、五個或更多條多肽鏈。
VII. 恒定結構域和變異的 Fc 區域
本文提供了可用於生成本發明的ROR1-結合分子(例如抗體、雙抗體、三價結合分子等)的抗體“恒定結構域”。
優選的CL結構域是人IgG CL κ結構域。示例性人CL κ結構域的氨基酸序列是(SEQ ID NO:65 ): RTVAAPSVFI FPPSDEQLKS GTASVVCLLN NFYPREAKVQ WKVDNALQSG NSQESVTEQD SKDSTYSLSS TLTLSKADYE KHKVYACEVT HQGLSSPVTK SFNRGEC
可選地,示例性CL結構域是人IgG CL λ結構域。示例性人CL λ結構域的氨基酸序列是(SEQ ID NO:66 ): QPKAAPSVTL FPPSSEELQA NKATLVCLIS DFYPGAVTVA WKADSSPVKA GVETTPSKQS NNKYAASSYL SLTPEQWKSH RSYSCQVTHE GSTVEKTVAP TECS
如本文所提供的,本發明的ROR1-結合分子可以包括Fc區域。本發明的這些分子的Fc區域可以是任何同種型(例如,IgG1、IgG2、IgG3或IgG4)。本發明的ROR1-結合分子還可以包括CH1結構域和/或鉸鏈區域。當存在時,CH1結構域和/或鉸鏈區域可以是任何同種型(例如,IgG1、IgG2、IgG3或IgG4),並且優選與期望的Fc區域屬於相同的同種型。
示例性CH1結構域是人IgG1 CH1結構域。示例性人IgG1 CH1結構域的氨基酸序列是(SEQ ID NO:67 ): ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YICNVNHKPS NTKVDKRV
示例性CH1結構域是人IgG2 CH1結構域。示例性人IgG2 CH1結構域的氨基酸序列是(SEQ ID NO:68 ): ASTKGPSVFP LAPCSRSTSE STAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSNFGTQT YTCNVDHKPS NTKVDKTV
示例性CH1結構域是人IgG3 CH1結構域。示例性人IgG3 CH1結構域的氨基酸序列是(SEQ ID NO:117 ): ASTKGPSVFP LAPCSRSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YTCNVNHKPS NTKVDKRV
示例性CH1結構域是人IgG4 CH1結構域。示例性人IgG4 CH1結構域的氨基酸序列是(SEQ ID NO:69 ): ASTKGPSVFP LAPCSRSTSE STAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTKT YTCNVDHKPS NTKVDKRV
示例性鉸鏈區域是人IgG1鉸鏈區域。示例性人IgG1鉸鏈區域的氨基酸序列是(SEQ ID NO:60 ):EPKSCDKTHTCPPCP。
另一個示例性鉸鏈區域是人IgG2鉸鏈區域。示例性人IgG2鉸鏈區域的氨基酸序列是(SEQ ID NO:61 ):ERKCCVECPPCP。
另一個示例性鉸鏈區域是人IgG3鉸鏈區域。示例性人IgG3鉸鏈區域的氨基酸序列是(SEQ ID NO:116 ): ELKTPLGDTTHTCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPCPRCP。
另一個示例性鉸鏈區域是人IgG4鉸鏈區域。示例性人IgG4鉸鏈區域的氨基酸序列是(SEQ ID NO:62 ):ESKYGPPCPSCP。如本文所述,IgG4鉸鏈區域可以包括穩定化突變,例如S228P取代。示例性穩定的IgG4鉸鏈區域的氨基酸序列是(SEQ ID NO:63 ):ESKYGPPCPPCP。
本發明的包含Fc區的分子(例如,抗體、雙抗體、三價結合分子等)的Fc區可以是完整的Fc區(例如,完整的IgG Fc區)或僅僅Fc區的片段。任選地,本發明的包含Fc區的分子的Fc區缺少C-末端賴氨酸氨基酸殘基。
在傳統免疫功能中,抗體-抗原複合物與免疫系統的細胞的相互作用產生各種各樣的應答,範圍從效應子功能,比如抗體依賴性細胞毒性、肥大細胞脫粒和吞噬,到免疫調節信號,比如調節淋巴細胞增殖和抗體分泌。所有這些相互作用通過抗體或免疫複合物的Fc區與造血細胞上專用細胞表面受體的結合來啟動。由抗體和免疫複合物引發的細胞應答的多樣性由三種Fc受體:FcγRI (CD64)、FcγRII (CD32)和FcγRIII (CD16)的結構異質性造成。FcγRI (CD64)、FcγRIIA (CD32A)和FcγRIII (CD16)是啟動(即,免疫系統增強)性受體;FcγRIIB (CD32B)是抑制(即,免疫系統抑制)性受體。另外,與新生Fc受體(FcRn)的相互作用介導IgG分子從內體至細胞表面的再迴圈並且釋放進入血液中。上面呈現了示例性野生型IgG1 (SEQ ID NO:1 )、IgG2 (SEQ ID NO:2 )、IgG3 (SEQ ID NO:3 )和IgG4 (SEQ ID NO:4 )的氨基酸序列。
Fc區域的修飾可以導致改變的表型,例如改變的血清半衰期、改變的穩定性、改變的對細胞酶的易感性或改變的效應子功能。因此,就效應子功能而言,可期望修飾本發明的包含Fc區的ROR1-結合分子,例如,以便增強這類分子治療癌症的效力。在某些情況下,例如在作用機制涉及阻斷或拮抗,但是不殺傷攜帶靶抗原的細胞的抗體的情況下,期望降低或消除效應子功能。當涉及非期望的細胞,比如腫瘤和外源細胞時,其中FcγRs以低水準表達,例如,具有低水準的FcγRIIB腫瘤特異性B細胞(例如,非霍奇金淋巴瘤、CLL和伯基特淋巴瘤),一般期望增加的效應子功能。本發明的分子具有這樣的賦予的或改變的效應子功能活性,可用於治療和/或預防其中期望增強的效應子功能活性效力的疾病、病症或感染。
因此,在某些實施方案中,本發明的包含Fc區的分子的Fc區可以是工程化的變異的Fc區。儘管本發明雙特異性包含Fc區的分子的Fc區可以具有結合一個或多個Fc受體(例如,FcγR)的能力,但是更優選地這類變異的Fc區具有對FcγRIA (CD64)、FcγRIIA (CD32A)、FcγRIIB (CD32B)、FcγRIIIA (CD16a)或FcγRIIIB (CD16b)改變的結合(相對於野生型Fc區展示的結合),例如,具有與啟動性受體增強的結合和/或具有對抑制性受體基本上降低的結合能力或沒有結合抑制性受體的能力。因此,本發明包含Fc區的分子的Fc區可包括完整的Fc區的一些或所有CH2結構域和/或一些或所有CH3結構域,或可包括變異的CH2和/或變異的CH3序列(其相對於完整的Fc區的CH2或CH3結構域,可包括,例如,一個或多個插入和/或一個或多個缺失)。這類Fc區可包括非Fc多肽部分,或可包括非天然完整Fc區的部分,或可包括非天然產生的取向的CH2和/或CH3結構域(比如,例如,兩個CH2結構域或兩個CH3結構域,或者在N-末端至C-末端方向上,連接至CH2結構域的CH3結構域等)。
被鑒定為改變效應子功能的Fc區修飾是本領域已知的,包括增加與啟動性受體(例如,FcγRIIA (CD16A)的結合的修飾和減少與抑制性受體(例如,FcγRIIB (CD32B)結合的修飾(例如,FcγRIIB (CD32B) (見,例如,Stavenhagen, J.B.等(2007) “Fc Optimization Of Therapeutic Antibodies Enhances Their Ability To Kill Tumor Cells In Vitro And Controls Tumor Expansion In Vivo Via Low-Affinity Activating Fcgamma Receptors ,” Cancer Res. 57(18):8882-8890)。 5 列舉了示例性修飾的示例性單、雙、三、四和五取代(編號和取代相對於SEQ ID NO:1 的氨基酸序列),其增加了與啟動性受體的結合和/或降低了與抑制性受體的結合。
具有與CD32B降低的結合和/或與CD16A增加的結合的人IgG1 Fc區的示例性變異包含F243L、R292P、Y300L、V305I或P296L取代。這些氨基酸取代可以以任何組合存在於人IgG1 Fc區中。在一個實施方式中,變異的人IgG1 Fc區包含F243L、R292P和Y300L取代。在另一實施方式中,變異的人IgG1 Fc區包含F243L、R292P、Y300L、V305I和P296L取代。
在某些實施方案中,本發明的ROR1-結合分子的Fc區優選地展示對FcγRIA (CD64)、FcγRIIA (CD32A)、FcγRIIB (CD32B)、FcγRIIIA (CD16a)或FcγRIIIB (CD16b)降低的(或基本上沒有)結合(相對於野生型IgG1 Fc區(SEQ ID NO: 1 )展示的結合)。在具體的實施方式中,本發明的包括IgG Fc區的ROR1-結合分子展示降低的ADCC效應子功能。在優選的實施方式中,這類ROR1-結合分子的CH2-CH3結構域包括下述的任何1、2、3或4個取代:L234A、L235A、D265A、N297Q和N297G。在另一實施方式中,CH2-CH3結構域包含N297Q取代、N297G取代、L234A和L235A替換或D265A取代,因為這些突變消除了FcR結合。可選地,使用固有地展示對FcγRIIIA (CD16a)降低的(或基本上沒有)結合和/或降低的效應子功能(相對於野生型IgG1 Fc區(SEQ ID NO: 1 )展示的結合和效應子功能)的天然產生的Fc區的CH2-CH3結構域。在具體的實施方式中,本發明的ROR1-結合分子包括IgG2 Fc區(SEQ ID NO:2 )或IgG4 Fc區(SEQ ID:NO:4 )。當使用IgG4 Fc區時,本發明也包括引入穩定化突變,比如上述的鉸鏈區S228P取代(見,例如,SEQ ID NO: 63 )。因為N297G、N297Q、L234A、L235A和D265A取代消除了效應子功能,在期望效應子功能的情況下,優選地將不採用這些取代。
對於具有降低的或消除的效應子功能的本發明的包含Fc區的分子的CH2和CH3結構域,優選的IgG1序列包括取代L234A/L235A (SEQ ID NO:70 ): APE AA GGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPG X 其中,X 為賴氨酸(K)或不存在。
可通過增加Fc區對於FcRn的結合親和力而延長包括Fc區的蛋白質的血清半衰期。如本文使用的術語“半衰期”意思是分子的藥物代謝動力學性質,是對在其施用之後分子的平均生存時間的衡量。半衰期可表示為從受試者的身體(例如,人患者或其他哺乳動物)或其特定區室消除百分之五十(50%)的已知量的分子需要的時間,例如,如在血清中測量的,即,迴圈半衰期,或在其他組織中測量的。一般而言,半衰期的增加導致施用的分子在迴圈中的平均停留時間(MRT)的增加。
在一些實施方案中,本發明的ROR1-結合分子包括變異的Fc區,其中所述變異的Fc區相對於野生型Fc區包括至少一個氨基酸修飾,以便所述分子具有延長的半衰期(相對於包括野生型Fc區的分子)。在一些實施方式中,本發明的ROR1-結合分子包括變異的IgG Fc區,其中所述變異的Fc區在選自下述的一個或多個位置處包括延長半衰期的氨基酸取代:238、250、252、254、256、257、256、265、272、286、288、303、305、307、308、309、311、312、317、340、356、360、362、376、378、380、382、413、424、428、433、434、435和436。能夠延長包含Fc區的分子的半衰期的許多突變是本領域已知的,包括,例如M252Y、S254T、T256E和其組合。例如,見美國專利號6,277,375、7,083,784、7,217,797、8,088,376;美國公開號2002/0147311、2007/0148164;和PCT公開號WO 98/23289、WO 2009/058492和WO 2010/033279中描述的突變,其通過引用以它們的整體併入本文。具有延長的半衰期的ROR1-結合分子也包括具有在Fc區殘基250、252、254、256、257、288、307、308、309、311、378、428、433、434、435和436中的兩個或更多個處包括取代的變異的Fc區的那些。尤其地,兩個或更多個取代選自:T250Q、M252Y、S254T、T256E、K288D、T307Q、V308P、A378V、M428L、N434A、H435K和Y436I。
在具體實施方案中,本發明的ROR1-結合分子具有包括以下取代的變異的IgG Fc區域: (A) M252Y、 S254T和T256E; (B)  M252Y和S254T; (C)  M252Y和T256E; (D) T250Q和M428L; (E)  T307Q和N434A; (F)   A378V和N434A; (G) N434A和Y436I; (H) V308P和N434A; 或 (I)    K288D和H435K。
在優選的實施方案中,本發明的ROR1-結合分子具有包括M252Y、S254T和T256E中的任何1、2或3個取代的變異的IgG Fc區域。本發明還包括具有變異的Fc區域的ROR1-結合分子,所述Fc區域包括: (A) 改變效應子功能和/或FcγR的一個或多個突變;和 (B)  延長血清半衰期的一個或多個突變。
對於其含有Fc區的第一和第三多肽鏈不一致的某些抗體、雙抗體和三價結合分子,期望減少或防止兩個第一多肽鏈的CH2-CH3結構域之間或兩個第三多肽鏈的CH2-CH3結構域之間發生同源二聚化。這類多肽鏈的CH2和/或CH3結構域不需要序列相同,並且有利地被修飾以促進兩條多肽鏈之間的複合。例如,氨基酸取代(優選以包括形成“杵(knob)”的大側基的氨基酸例如色氨酸進行取代)可被引入CH2或CH3結構域中,以便空間干擾將防止與類似的突變結構域的相互作用並將迫使突變的結構域與其中互補或適應性突變已經被工程化的結構域——即“臼(hole)”(例如,用甘氨酸取代)——配對。這樣的突變組可被工程化到任意對的、包括形成Fc區的CH2-CH3結構域的多肽中,以促進異源二聚化。蛋白質工程化以相對於同源二聚化利於異源二聚化的方法在本領域中是悉知的,尤其就工程化免疫球蛋白樣分子而言,這些都包括在本文中(見例如,Ridgway等(1996)“‘Knobs-Into-Holes’ Engineering Of Antibody CH3 Domains For Heavy Chain Heterodimerization,” Protein Engr. 9:617-621;Atwell等(1997)“Stable Heterodimers From Remodeling The Domain Interface Of A Homodimer Using A Phage Display Library,” J. Mol. Biol. 270: 26-35;和Xie等(2005)“A New Format Of Bispecific Antibody: Highly Efficient Heterodimerization, Expression And Tumor Cell Lysis,” J. Immunol. Methods 296:95-101;其每一篇通過引用以其整體併入本文)。
通過修飾IgG Fc區以包含修飾T366W而產生優選的杵。通過修飾IgG Fc區以包含修飾T366S、L368A和Y407V而產生優選的臼。為了有助於從最終的雙特異性的、異源二聚化的、包含Fc區的分子中純化含臼的第三多肽鏈同源二聚體,優選地通過在435位的氨基酸取代(H435R)突變第三多肽鏈的含臼的CH2和CH3結構域的蛋白質A結合位點。因此,含臼的第三多肽鏈同源二聚體不結合蛋白質A,而雙特異性的異源二聚體經在第一多肽鏈上的蛋白質A結合位點而保持其結合蛋白質A的能力。在可選的實施方式中,含臼的第三多肽鏈可併入在434和435位的氨基酸取代(N434A/N435K)。
對於本發明包含Fc區域的分子的第一多肽鏈的CH2和CH3結構域,優選的IgG氨基酸序列具有“包含杵的 ”序列(SEQ ID NO:71 ): APE AA GGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK NQVSL W CLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPG X 其中,X 為賴氨酸(K)或不存在。
對於具有兩條多肽鏈的本發明的包含Fc區域的分子的第二多肽鏈(或具有三、四或五條多肽鏈的包含Fc區域的分子的第三多肽鏈)的CH2和CH3結構域,優選的IgG氨基酸序列具有“包含臼的 ”序列(SEQ ID NO:72 ): APE AA GGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK NQVSL S C A VK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFL V SKL TVDKSRWQQG NVFSCSVMHE ALHN R YTQKS LSLSPG X 其中,X 為賴氨酸(K)或不存在。
如將注意到的,SEQ ID NO:71SEQ ID NO:72 的CH2-CH3結構域包括在234用丙氨酸和235位用丙氨酸的取代,並且因此形成展示與FcγRIA (CD64)、FcγRIIA (CD32A)、FcγRIIB (CD32B)、FcγRIIIA (CD16a)或FcγRIIIB (CD16b)降低的(或基本上沒有)結合的Fc區(相對於野生型Fc區(SEQ ID NO:1 )展示的結合)。本發明也包括這類CH2-CH3結構域,其包括野生型丙氨酸殘基,修飾Fc區的效應子功能和/或FγR結合活性的可選的和/或另外取代。本發明也包括這類CH2-CH3結構域,其進一步包括一個或多個延長半衰期的氨基酸取代。尤其地,本發明包括這類包含臼的和這類包含杵的CH2-CH3結構域,其進一步包括M252Y/S254T/T256E。
優選地,第一多肽鏈具有“包含杵的”CH2-CH3序列,比如SEQ ID NO:71 的序列。但是,如將認識到,“包含臼的”CH2-CH3結構域(例如,SEQ ID NO:72 )可用於第一多肽鏈中,在這類情況下,“包含杵的”CH2-CH3結構域(例如,SEQ ID NO:71 )用於本發明具有兩條多肽鏈的、包含Fc區的分子的第二多肽鏈中(或用於具有三、四或五條多肽鏈的包含Fc區的分子的第三多肽鏈中)。
在其他實施方案中,本發明包括ROR1-結合分子,其包括使用本領域已知的突變已經被工程化成相對於同源二聚化利於異源二聚化的CH2和/或CH3結構域,比如PCT公開號WO 2007/110205、WO 2011/143545、WO 2012/058768、WO 2013/06867中公開的那些,其所有通過引用以其整體併入本文。
VIII. 效應細胞結合能力
如本文所提供的,本發明的ROR1-結合分子可以被工程化改造,以包括識別靶細胞或組織類型特有的一組抗原的表位元結合位元點的組合。尤其地,本發明涉及能夠結合ROR1的表位和存在於效應細胞(例如T淋巴細胞、自然殺傷(NK)細胞或其他單核細胞)表面上的分子的表位的多特異性ROR1-結合分子。例如,本發明的ROR1-結合分子可以構建成包括免疫特異性結合CD2、CD3、CD8、CD16、T細胞受體(TCR)或NKG2D的表位-結合位點。本發明還涉及能夠結合CD3的表位和CD8的表位的三特異性ROR1-結合分子(見例如PCT公開號WO 2015/026894)。
A. CD2 結合能力
在一個實施方案中,本發明的雙特異性、三特異性或多特異性ROR1-結合分子能夠結合ROR1的表位和CD2的表位。CD2是在T細胞和自然殺傷(NK)細胞的表面上發現的細胞粘附分子。CD2增強NK細胞細胞毒性,可能作為NK細胞納米管(nanotube)形成的啟動子(Mace, E.M.等(2014) “Cell Biological Steps and Checkpoints in Accessing NK Cell Cytotoxicity ,” Immunol. Cell. Biol. 92(3):245-255;Comerci, C.J.等(2012) “CD2 Promotes Human Natural Killer Cell Membrane Nanotube Formation ,” PLoS One 7(10):e47664:1-12)。特異性結合CD2的分子包括抗-CD2抗體“Lo-CD2a ”。
Lo-CD2a的VL結構域的氨基酸序列(ATCC登錄號:11423;SEQ ID NO:73 )如下所示(CDRL 殘基以底線表示): DVVLTQTPPT LLATIGQSVS ISC RSSQSLL HSSGNTYLN W LLQRTGQSPQ PLIY LVSKLE S GVPNRFSGS GSGTDFTLKI SGVEAEDLGV YYC MQFTHYP YT FGAGTKLE LK
Lo-CD2a的VH結構域的氨基酸序列(ATCC登錄號:11423;SEQ ID NO:74 )如下所示(CDRH 殘基以底線表示): EVQLQQSGPE LQRPGASVKL SCKASGYIFT EYYMY WVKQR PKQGLELVG R IDPEDGSIDY VEKFKK KATL TADTSSNTAY MQLSSLTSED TATYFCAR GK FNYRFAY WGQ GTLVTVSS
B. CD3 結合能力
在一個實施方案中,本發明的雙特異性、三特異性或多特異性ROR1-結合分子能夠結合ROR1的表位和CD3的表位。CD3是由四條不同的鏈組成的T-細胞共受體(Wucherpfennig, K.W.等(2010) “Structural Biology Of The T-Cell Receptor: Insights Into Receptor Assembly, Ligand Recognition, And Initiation Of Signaling ,” Cold Spring Harb. Perspect. Biol. 2(4):a005140; 第1-14頁)。在哺乳動物中,複合物包括CD3γ鏈、CD3δ鏈和兩條CD3ε鏈。這些鏈與稱為T-細胞受體(TCR)的分子締合,以在T淋巴細胞中產生啟動信號。在不存在CD3的情況下,TCR不能正確組裝並且被降解(Thomas, S.等(2010) “Molecular Immunology Lessons From Therapeutic T-Cell Receptor Gene Transfer ,” Immunology 129(2):170–177)。發現CD3結合於所有成熟T-細胞的膜,並且幾乎沒有其他細胞類型(參見,Janeway, C.A.等(2005), 在以下中: IMMUNOBIOLOGY: THE IMMUNE SYSTEM IN HEALTH AND DISEASE,” 第六版, Garland Science Publishing, NY, pp. 214- 216;Sun, Z. J.等(2001) “Mechanisms Contributing To T Cell Receptor Signaling And Assembly Revealed By The Solution Structure Of An Ectodomain Fragment Of The CD3ε:γ Heterodimer ,” Cell 105(7):913-923;Kuhns, M.S.等(2006) “Deconstructing The Form And Function Of The TCR/CD3 Complex ,” Immunity. 2006 Feb;24(2):133-139)。特異性結合CD3的分子包括抗-CD3抗體“CD3 mAb 1 ” 和“OKT3 ”。抗-CD3抗體CD3 mAb 1能夠結合非人靈長類動物(例如食蟹猴)。
CD3 mAb 1的VL結構域的氨基酸序列(SEQ ID NO:75 )如下所示(CDRL 殘基以底線表示): QAVVTQEPSL TVSPGGTVTL TC RSSTGAVT TSNYAN WVQQ KPGQAPRGLI G GTNKRAP WT PARFSGSLLG GKAALTITGA QAEDEADYYC ALWYSNLWV F GGGTKLTVLG
CD3 mAb 1的VH結構域的氨基酸序列(SEQ ID NO:76 )如下所示(CDRH 殘基以底線表示): EVQLVESGGG LVQPGGSLRL SCAASGFTFS TYAMN WVRQA PGKGLEWVG R IRSKYNNYAT YYADSVK D RF TISRDDSKNS LYLQMNSLKT EDTAVYYCVR HGNFGNSYVS WFAY WGQGTL   VTVSS
如下所述,為了闡釋本發明,製備了雙特異性ROR1 x CD3-結合分子。在一些ROR1 x CD3構建體中,使用CD3 mAb 1的變體。變異的“CD3 mAb 1(D65G) ”包括CD3 mAb 1的VL結構域(SEQ ID NO:75 )和具有D65G取代(Kabat位置65,對應於SEQ ID NO:77 的殘基68)的VH CD3 mAb 1結構域。
CD3 mAb 1(D65G)的VH的氨基酸序列(SEQ ID NO:77 )如下所示(CDRH 殘基以底線表示,取代的位置(D65G)以雙底線表示): EVQLVESGGG LVQPGGSLRL SCAASGFTFS TYAMN WVRQA PGKGLEWVG R IRSKYNNYAT YYADSVK G RF TISRDDSKNS LYLQMNSLKT EDTAVYYCVR HGNFGNSYVS WFAY WGQGTL VTVSS
可選地,可以併入CD3 mAb 1的親和力變體。變體包括命名為“CD3 mAb 1 ”的低親和力變體和具有較快解離速率的命名為“CD3 mAb 1 ”的變體。CD mAb 1的VL結構域(SEQ ID NO:75 )對“CD3 mAb 1低”和“CD3 mAb 1快”來說是共有的,並在上文提供。下文提供了“CD3 mAb 1低”和“CD3 mAb 1快”各自的VH結構域的氨基酸序列。
抗-人CD3 mAb 1低的可變重鏈結構域的氨基酸序列(SEQ ID NO:78 )如下所示(CDRH 殘基以底線表示): EVQLVESGGG LVQPGGSLRL SCAASGFTFS TYAMN WVRQA PGKGLEWVG R IRSKYNNYAT YYADSVKG RF TISRDDSKNS LYLQMNSLKT EDTAVYYCVR HGNFGNSYVT WFAY WGQGTL VTVSS
抗-人CD3 mAb 1快的可變重鏈結構域的氨基酸序列(SEQ ID NO:79 )如下所示(CDRH 殘基以底線表示): EVQLVESGGG LVQPGGSLRL SCAASGFTFS TYAMN WVRQA PGKGLEWVG R IRSKYNNYAT YYADSVKG RF TISRDDSKNS LYLQMNSLKT EDTAVYYCVR HKNFGNSYVT WFAY WGQGTL VTVSS
可以使用的另一種抗CD3抗體是抗體莫羅單抗(Muromonab)-CD3“OKT3 ” (Xu等(2000)“In Vitro Characterization Of Five Humanized OKT3 Effector Function Variant Antibodies,” Cell. Immunol. 200:16-26);Norman, D.J. (1995) “Mechanisms Of Action And Overview Of OKT3 ,” Ther. Drug Monit. 17(6):615-620;Canafax, D.M. 等(1987) “Monoclonal Antilymphocyte Antibody (OKT3) TreatmentOf Acute Renal Allograft Rejection ,” Pharmacotherapy 7(4):121-124;Swinnen, L.J.等(1993) “OKT3 Monoclonal Antibodies Induce Interleukin-6 And Interleukin-10: A Possible Cause Of Lymphoproliferative Disorders Associated With Transplantation ,” Curr. Opin. Nephrol. Hypertens. 2(4):670-678)。
OKT3 的VL結構域的氨基酸序列(SEQ ID NO:80 )如下所示(CDRL 殘基以底線表示): QIVLTQSPAI MSASPGEKVT MTC SASSSVS YMN WYQQKSG TSPKRWIY DT SKLAS GVPAH FRGSGSGTSY SLTISGMEAE DAATYYC QQW SSNPFTF GSG TKLEINR
O KT3 的VH結構域的氨基酸序列(SEQ ID NO:81 )如下所示(CDRH 殘基以底線表示): QVQLQQSGAE LARPGASVKM SCKASGYTFT RYTMH WVKQR PGQGLEWIG Y INPSRGYTNY NQKFKD KATL TTDKSSSTAY MQLSSLTSED SAVYYCAR YY DDHYCL DYWG QGTTLTVSS
可以被使用的另外的抗-CD3抗體包括但不限於在PCT公開號WO 2008/119566;和WO 2005/118635中所描述的那些。
C. CD8 結合能力
在一個實施方案中,本發明的雙特異性、三特異性或多特異性ROR1-結合分子能夠結合ROR1的表位和CD8的表位。CD8是由兩條不同的鏈組成的T-細胞共受體(Leahy, D.J., (1995) “A Structural View of CD4 and CD8 ,” FASEB J., 9:17-25),其在細胞毒性T-細胞上表達。已經發現CD8+ T-細胞的啟動是通過排列在靶細胞表面上的抗原:主要組織相容性I類(MHC I )分子複合物和排列在CD8+ T-細胞的表面上的CD8和T-細胞受體的複合物之間共刺激相互作用來介導的(Gao, G.,和Jakobsen, B., (2000). "Molecular interactions of coreceptor CD8 and MHC class I: the molecular basis for functional coordination with the T-Cell Receptor ". Immunol Today 21: 630–636)。與僅由某些免疫系統細胞表達的MHC II分子不同,MHC I分子被非常廣泛地表達。因此,細胞毒性T-細胞能夠結合多種細胞類型。啟動的細胞毒性T-細胞通過其釋放細胞毒素穿孔蛋白、粒酶和粒溶素而介導細胞殺傷。特異性結合CD8的抗體包括抗-CD8抗體“OKT8 ”和“TRX2 ”。
OKT8的VL結構域的氨基酸序列(SEQ ID NO:82 )如下所示(CDRL 殘基以底線表示): DIVMTQSPAS LAVSLGQRAT ISCRASESVD SYDNSLMH WY QQKPGQPPKV LIY LASNLES GVPARFSGSG SRTDFTLTID PVEADDAATY YC QQNNEDPY T FGGGTKLEI KR
OKT8的VH結構域的氨基酸序列(SEQ ID NO:83)如下所示(CDRH 殘基以底線表示): QVQLLESGPE LLKPGASVKM SCKASGYTFT DYNMH WVKQS HGKSLEWIG Y IYPYTGGTGY NQKFKN KATL TVDSSSSTAY MELRSLTSED SAVYYCARNF RYTYWYFDVW GQGTTVTVSS
TRX2的VL結構域的氨基酸序列(SEQ ID NO:84)如下所示(CDRL 殘基以底線表示): DIQMTQSPSS LSASVGDRVT ITC KGSQDIN NYLA WYQQKP GKAPKLLIY N TDILHT GVPS RFSGSGSGTD FTFTISSLQP EDIATYYC YQ YNNGYT FGQG TKVEIK
TRX2的VH結構域的氨基酸序列(SEQ ID NO:85 )如下所示(CDRH 殘基以底線表示): QVQLVESGGG VVQPGRSLRL SCAASGFTFS DFGMN WVRQA PGKGLEWVA L IYYDGSNKFY ADSVKG RFTI SRDNSKNTLY LQMNSLRAED TAVYYCAK PH YDGYYHFFDS WGQGTLVTVS S
D. CD16 結合能力
在一個實施方案中,本發明的多特異性ROR1-結合分子能夠結合ROR1的表位和CD16的表位。CD16是FcγRIIIA受體。CD16由嗜中性粒細胞、嗜酸性粒細胞、自然殺傷(NK)細胞和結合聚集的的但不是單體的人IgG的組織巨噬細胞表達(Peltz, G.A.等(1989) “Human Fc Gamma RIII: Cloning, Expression, And Identification Of The Chromosomal Locus Of Two Fc Receptors For IgG ,” Proc. Natl. Acad. Sci. (U.S.A.) 86(3):1013-1017;Bachanova, V.等(2014) “NK Cells In Therapy Of Cancer ,” Crit. Rev. Oncog. 19(1-2):133-141;Miller, J.S. (2013) “Therapeutic Applications: Natural Killer Cells In The Clinic ,” Hematology Am. Soc. Hematol. Educ. Program. 2013:247-253;Youinou, P.等(2002) “Pathogenic Effects Of Anti-Fc Gamma Receptor IIIB (CD16) On Polymorphonuclear Neutrophils In Non-Organ-Specific Autoimmune Diseases ,” Autoimmun Rev. 1(1-2):13-19;Peipp, M.等(2002) “Bispecific Antibodies Targeting Cancer Cells ,” Biochem. Soc. Trans. 30(4):507-511)。特異性結合CD16的分子包括抗-CD16抗體“3G8 ”和“A9 ”。人源化的A9抗體在PCT公開號WO 03/101485中被描述。
3G8的VL結構域的氨基酸序列(SEQ ID NO:86 )如下所示(CDRL 殘基以底線表示): DTVLTQSPAS LAVSLGQRAT ISC KASQSVD FDGDSFMN WY QQKPGQPPKL LIY TTSNLES GIPARFSASG SGTDFTLNIH PVEEEDTATY YC QQSNEDPY T FGGGTKLEI K
3G8的VH結構域的氨基酸序列(SEQ ID NO:87)如下所示(CDRH 殘基以底線表示): QVTLKESGPG ILQPSQTLSL TCSFSGFSLR TSGMGVG WIR QPSGKGLEWL A HIWWDDDKR YNPALKS RLT ISKDTSSNQV FLKIASVDTA DTATYYCAQ I NPAWFAY WGQ GTLVTVSA
A9的VL結構域的氨基酸序列(SEQ ID NO:88)如下所示(CDRL 殘基以底線表示): DIQAVVTQES ALTTSPGETV TLTC RSNTGT VTTSNYAN WV QEKPDHLFTG LIG HTNNRAP GVPARFSGSL IGDKAALTIT GAQTEDEAIY FC ALWYNNHW V FGGGTKLTVL
A9的VH結構域的氨基酸序列(SEQ ID NO:89 )如下所示(CDRH 殘基以底線表示): QVQLQQSGAE LVRPGTSVKI SCKASGYTFT NYWLG WVKQR PGHGLEWIG D IYPGGGYTNY NEKFKG KATV TADTSSRTAY VQVRSLTSED SAVYFCAR SA SWYFD VWGAR TTVTVSS
可以使用的另外的抗-CD19抗體包括但不限於在PCT公開號WO 03/101485;和WO 2006/125668中描述的那些。
E. TCR 結合能力
在一個實施方案中,本發明的雙特異性、三特異性或多特異性ROR1-結合分子能夠結合ROR1的表位和T-細胞受體(TCR)的表位。T-細胞受體由CD4+ 或CD8+ T-細胞天然表達,並且允許這樣的細胞識別由抗原-呈遞細胞的I類或II類MHC蛋白結合和呈遞的抗原肽。通過TCR識別pMHC(肽–MHC)複合物啟動細胞免疫應答的傳播,其導致細胞因數的產生和抗原呈遞細胞的裂解(見例如,Armstrong, K.M.等(2008) “Conformational Changes And Flexibility In T-Cell Receptor Recognition Of Peptide–MHC Complexes ,” Biochem. J. 415(Pt 2):183–196;Willemsen, R. (2008) “Selection Of Human Antibody Fragments Directed Against Tumor T-Cell Epitopes For Adoptive T-Cell Therapy ,” Cytometry A. 73(11):1093-1099;Beier, K.C.等(2007) “Master Switches Of T-Cell Activation And Differentiation ,” Eur. Respir. J. 29:804-812;Mallone, R.等(2005) “Targeting T Lymphocytes For Immune Monitoring And Intervention In Autoimmune Diabetes ,” Am. J. Ther. 12(6):534–550)。CD3 是結合TCR的受體(Thomas, S.等(2010) “Molecular Immunology Lessons From Therapeutic T-Cell Receptor Gene Transfer ,” Immunology 129(2):170-177;Guy, C.S.等(2009) “Organization Of Proximal Signal Initiation At The TCR:CD3 Complex ,” Immunol. Rev. 232(1):7-21;St. Clair, E.W. (Epub 2009 Oct 12) “Novel Targeted Therapies For Autoimmunity ,” Curr. Opin. Immunol. 21(6):648-657;Baeuerle, P.A.等(Epub 2009 Jun 9) “Bispecific T-Cell Engaging Antibodies For Cancer Therapy ,” Cancer Res. 69(12):4941-4944;Smith-Garvin, J.E.等(2009) “T Cell Activation ,” Annu. Rev. Immunol. 27:591-619;Renders, L.等(2003) “Engineered CD3 Antibodies For Immunosuppression ,” Clin. Exp. Immunol. 133(3):307-309)。
特異性結合T-細胞受體的分子包括抗-TCR抗體“BMA 031 ” (EP 0403156;Kurrle, R.等(1989) “BMA 031 – A TCR-Specific Monoclonal Antibody For Clinical Application ,” Transplant Proc. 21(1 Pt 1):1017-1019;Nashan, B.等(1987) “Fine Specificity Of A Panel Of Antibodies Against The TCR/CD3 Complex, ” Transplant Proc. 19(5):4270-4272;Shearman, C.W.等(1991) “Construction, Expression, And Biologic Activity Of Murine/Human Chimeric Antibodies With Specificity For The Human α / β T Cell, ” J. Immunol. 146(3):928-935;Shearman, C.W. 等(1991) “Construction, Expression And Characterization of Humanized Antibodies Directed Against The Human α/β T Cell Receptor ,” J. Immunol. 147(12):4366-4373)。
BMA 031的VL結構域的氨基酸序列(SEQ ID NO:90 )如下所示(CDRL 殘基以底線表示): EIVLTQSPAT LSLSPGERAT LSC SATSSVS YMH WYQQKPG KAPKRWIY DT SKLAS GVPSR FSGSGSGTEF TLTISSLQPE DFATYYC QQW SSNPLT FGQG TKLEIK
BMA 031的VH結構域的氨基酸序列(SEQ ID NO:91 )如下所示(CDRH 殘基以底線表示): QVQLVQSGAE VKKPGASVKV SCKASGYKFT SYVMH WVRQA PGQGLEWIG Y INPYNDVTKY NEKFKG RVTI TADKSTSTAY LQMNSLRSED TAVHYCAR GS YYDYDGFVY W GQGTLVTVSS
F. NKG2D 結合能力
在一個實施方案中,本發明的多特異性ROR1-結合分子能夠結合ROR1的表位和NKG2D受體的表位。NKG2D受體在所有人(和其他哺乳動物)的自然殺傷細胞上表達(Bauer, S.等(1999) “Activation Of NK Cells And T Cells By NKG2D, A Receptor For Stress-Inducible MICA ,” Science 285(5428):727-729;Jamieson, A.M.等(2002) “The Role Of The NKG2D Immunoreceptor In Immune Cell Activation And Natural Killing ,” Immunity 17(1):19-29),也在所有CD8+ T細胞上表達(Groh, V.等(2001) “Costimulation Of CD8αβ T Cells By NKG2D Via Engagement By MIC Induced On Virus-Infected Cells ,” Nat. Immunol. 2(3):255-260;Jamieson, A.M.等(2002) “The Role Of The NKG2D Immunoreceptor In Immune Cell Activation And Natural Killing ,” Immunity 17(1):19-29)。這樣的結合配體,尤其是那些不在正常細胞上表達的結合配體,包括組織相容性60(H60)分子、視黃酸早期誘導基因-1(RAE-1)的產物和鼠UL16-結合蛋白樣轉錄物1 (MULT1) (Raulet D.H. (2003) “Roles Of The NKG2D Immunoreceptor And Its Ligands ,” Nature Rev. Immunol. 3:781-790;Coudert, J.D.等(2005)“Altered NKG2D Function In NK Cells Induced By Chronic Exposure To Altered NKG2D Ligand-Expressing Tumor Cells ,” Blood 106:1711-1717)。特異性結合NKG2D受體的分子包括抗-NKG2D抗體“KYK-1.0 ”和“KYK-2.0 ”(Kwong, KY等(2008) “Generation, Affinity Maturation, And Characterization Of A Human Anti-Human NKG2D Monoclonal Antibody With Dual Antagonistic And Agonistic Activity ,” J. Mol. Biol. 384:1143-1156;和PCT/US09/54911)。
KYK-1.0的VL結構域的氨基酸序列(SEQ ID NO:92 )如下所示(CDRL 殘基以底線表示): QPVLTQPSSV SVAPGETARI PC GGDDIETK SVH WYQQKPG QAPVLVIY DD DDRPS GIPER FFGSNSGNTA TLSISRVEAG DEADYYC QVW DDNNDEWV FG GGTQLTVL
KYK-1.0的VH結構域的氨基酸序列(SEQ ID NO:93)如下所示(CDRH 殘基以底線表示): EVQLVESGGG VVQPGGSLRL SCAASGFTFS SYGMH WVRQA PGKGLEWVA F IRYDGSNKYY ADSVKG RFTI SRDNSKNTKY LQMNSLRAED TAVYYCAK DR FGYYLDY WGQ GTLVTVSS
KYK-2.0的VL結構域的氨基酸序列(SEQ ID NO:94)如下所示(CDRL 殘基以底線表示): QSALTQPASV SGSPGQSITI SC SGSSSNIG NNAVN WYQQL PGKAPKLLIY YDDLLPS GVS DRFSGSKSGT SAFLAISGLQ SEDEADYYC A AWDDSLNGPV FGGGTKLTVL
KYK-2.0的VH結構域的氨基酸序列(SEQ ID NO:95 )如下所示(CDRH 殘基以底線表示): QVQLVESGGG LVKPGGSLRL SCAASGFTFS SYGMH WVRQA PGKGLEWVA F IRYDGSNKYY ADSVKG RFTI SRDNSKNTLY LQMNSLRAED TAVYYCAK DR GLGDGTYFDY WGQGTTVTVS S
IX . 示例性多特異性 ROR1- 結合分子
A. ROR1 x CD3 雙特異性雙鏈雙抗體
如本文所提供的,產生並表徵了三十三種示例性雙特異性雙鏈“ROR1 x CD3 ”雙抗體,其具有對ROR1特異性的一個結合位點(包括親本和/或優化的抗-ROR1-VL和抗-ROR1-VH結構域)和對CD3特異性的一個結合位點(包括CD3 mAb 1(D65G)的VL和VH結構域)。這樣的雙抗體被連續編號並命名為“DART-1 ”至“DART-33 ”。這些雙鏈雙特異性ROR1 x CD3雙抗體的結構在下面詳述。DART-1包括親本抗-ROR1-VL和抗-ROR1-VL結構域。這些示例性ROR1 x CD3雙特異性雙鏈雙抗體意圖是說明性的,但決不限制本發明的範圍。
示例性ROR1 x CD3雙特異性雙鏈雙抗體的第一多肽鏈在N-末端至C-末端方向包括:N-末端;選自S EQ ID NO:6SEQ ID NO:10-23 的抗-ROR1-VL結構域;間插間隔體肽(連接體1:GGGSGGGG (SEQ ID NO:33 ));CD3 mAb 1(D65G)的VH結構域(SEQ ID NO:77 );含有半胱氨酸的間插間隔體肽(連接體2:GGCGGG (SEQ ID NO:34 ));異源二聚體促進(K-螺旋)結構域(KVAALKE-KVAALKE-KVAALKE-KVAALKE (SEQ ID NO:47 ));和C-末端。每個雙抗體中存在的特定抗-ROR1-VL結構域顯示在 7 中,並且氨基酸序列在上面提供。
示例性ROR1 x CD3雙特異性雙鏈雙抗體的第二多肽鏈在N-末端至C-末端方向包括:N-末端;CD3 mAb 1的VL結構域(SEQ ID NO:75 );間插間隔體肽(連接體1:GGGSGGGG (SEQ ID NO:33 ));選自SEQ ID NO:7SEQ ID NO:24-32 的抗-ROR1-VH結構域;含有半胱氨酸的間插間隔體肽(連接體2:GGCGGG(SEQ ID NO:34 ));異源二聚體促進(E-螺旋)結構域(EVAALEK-EVAALEK-EVAALEK-EVAALEK (SEQ ID NO:46 ));和C-末端。每個雙抗體中存在的特定抗-ROR1-VH結構域顯示在 7 中,並且氨基酸序列在上面提供。
DART-25
提供了代表性的ROR1 x CD3雙特異性雙鏈雙抗體DART-25的氨基酸序列。DART-25包括優化的抗-ROR1-VL結構域抗-ROR1-VL(2)和優化的抗-ROR1-VL結構域抗-ROR1-VL(7)。DART-25的CD3結合結構域是CD3 mAb 1(D65G)的VH結構域(SEQ ID NO:77 )和CD3 mAb 1的VL結構域(SEQ ID NO:75 )。抗-ROR1結合結構域和抗CD3結合結構域通過間插間隔體肽(連接體1:GGGSGGGG (SEQ ID NO:33 ))彼此分開。
DART-25的第一多肽鏈的氨基酸序列(SEQ ID NO:96 )如下所示(抗-ROR1-VL(2)以實底線表示;抗-CD3 mAb 1(D65G)的VH結構域以虛底線表示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSGS SSGADWYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG GGGSGGG GEVQLVESGG GLVQPGGSLR LSCAASGFTF STYAMNWVRQ APGKGLEWVG RIRSKYNNYA TYYADSVKGR FTISRDDSKN SLYLQMNSLK TEDTAVYYCV RHGNFGNSYV SWFAYWGQGT LVTVSS GGCG GGKVAALKEK VAALKEKVAA LKEKVAALKE
DART-25的第二多肽鏈的氨基酸序列(SEQ ID NO:97 )如下所示(抗-ROR1-VH(7)以實底線表示;CD3 mAb 1的VL結構域以虛底線表示):QAVVTQEPSL TVSPGGTVTL TCRSSTGAVT TSNYANWVQQ KPGQAPRGLI GGTNKRAPWT PARFSGSLLG GKAALTITGA QAEDEADYYC ALWYSNLWVF GGGTKLTVLG GGGSGGGG QE QLVESGGGLV QPGGSLRLSC AASGFTFSDY YMSWVRQAPG KGLEWVATIY PSSGKTYYAD SVKGRLTISS DNAKDSLYLQ MNSLRAEDTA VYYCTRDSYA DDAALFDIWG QGTTVTVSS G GCGGGEVAAL EKEVAALEKE VAALEKEVAA LEK
鑒於本文提供的教導,應當理解,可以利用不同的結構域取向、VH結構域、VL結構域、連接體和/或異源二聚體促進結構域來生成供選擇的ROR1 x CD3雙特異性雙鏈雙抗體。例如,使用不同的抗-ROR1-VL和/或VH結構域生成DART-1至DART-33(見例如 7 )。此外,本文提供的優化的抗-ROR1-VL和/或VH結構域(優選SEQ ID NO:23SEQ ID NO:31 )中的任一個可以用於替代抗-ROR1-VL(2)和/或抗-ROR1-VH(7),以生成供選擇的分子。
B. ROR1 x CD3 雙特異性三鏈雙抗體
如本文所提供的,產生並表徵四個示例性雙特異性三鏈“ROR1 x CD3 ”雙抗體,其具有對ROR1特異性的一個結合位點(包括親本和/或優化的抗-ROR1-VL和抗-ROR1-VH結構域)和對CD3特異性的一個結合位點(包括CD3 mAb 1(D65G)的VL和VH結構域)。示例性雙特異性三鏈雙抗體被命名如下:“DART-A ”,其包括親本的抗-ROR1-VL和抗-ROR1-VH結構域;“DART-B ”,其包括優化的抗-ROR1-VL(1)和親本的抗-ROR1-VH結構域; “DART-C ”,其包括優化的抗-ROR1-VL(14)和抗-ROR1-VH(7)結構域 ;和“DART-D ”,其包括優化的抗-ROR1-VL(14)和抗-ROR1-VH(8)結構域。這些ROR1 x CD3雙特異性三鏈雙抗體的結構在下面詳述。這些示例性ROR1 x CD3雙特異性三鏈雙抗體旨在闡釋,但決不限制本發明的範圍。
示例性ROR1 x CD3雙特異性三鏈雙抗體的第一多肽鏈在N-末端至C-末端方向包括:N-末端;抗-ROR1-VL結構域(針對DART-A的S EQ ID NO:6 針對DART-B的S EQ ID NO:10 針對DART-C的S EQ ID NO:23 或針對DART-D的S EQ ID NO:23 );間插間隔體肽(連接體1:GGGSGGGG (SEQ ID NO:33 ));CD3 mAb 1(D65G)的VH結構域(SEQ ID NO:77 );間插間隔體肽(連接體2:ASTKG(SEQ ID NO:38 ));含有半胱氨酸的異源二聚體促進(E-螺旋)結構域(EVAACEK-EVAALEK-EVAALEK-EVAALEK (SEQ ID NO:48 ));間插間隔體肽(連接體3:GGGDKTHTCPPCP (SEQ ID NO:58 ));攜帶杵的IgG1 CH2-CH3結構域(SEQ ID NO:71 );和C末端。該多肽鏈的編碼多核苷酸可以編碼SEQ ID NO:71 的C-末端賴氨酸殘基(即SEQ ID NO:71X ),然而,如上所述,該賴氨酸殘基在一些表達系統中可以被翻譯後去除。因此,本發明包括含有這樣的賴氨酸殘基的這樣的第一多肽鏈(即SEQ ID NO:71 ,其中X 為賴氨酸),以及缺少這樣的賴氨酸殘基的第一多肽鏈(即SEQ ID NO:71 ,其中X 不存在)。每個雙抗體中存在的抗-ROR1-VL結構域顯示在 9 中,並且氨基酸序列在下面提供。
示例性ROR1 x CD3雙特異性三鏈雙抗體的第二多肽鏈在N-末端至C-末端方向包括:N-末端;CD3 mAb 1的VL結構域(SEQ ID NO:75 );間插間隔體肽(連接體1:GGGSGGGG (SEQ ID NO:33 ));抗-ROR1-VH結構域(針對DART-A的S EQ ID NO:7 針對DART-B的S EQ ID NO:7 針對DART-C的S EQ ID NO:30 、或 針對DART-D的S EQ ID NO:31 );間插間隔體肽(連接體2:ASTKG(SEQ ID NO:38 ));含有半胱氨酸的異源二聚體促進(K-螺旋)結構域(KVAACKE-KVAALKE-KVAALKE-KVAALKE (SEQ ID NO:49 ));和C-末端。每個雙抗體中存在的抗-ROR1-VH結構域顯示在 9 中,並且氨基酸序列在下面提供。
示例性ROR1 x CD3雙特異性三鏈雙抗體的第三多肽鏈在N-末端至C-末端方向包括:N-末端;間隔體肽(DKTHTCPPCP (SEQ ID NO:57 ));攜帶臼的IgG1 CH2-CH3結構域(SEQ ID NO:72 );和C-末端。該多肽鏈的編碼多核苷酸可以編碼SEQ ID NO:72 的C-末端賴氨酸殘基(即SEQ ID NO:72X ),然而,如上所述,該賴氨酸殘基在一些表達系統中可以被翻譯後去除。因此,本發明包括含這樣的類賴氨酸殘基的這樣的第三多肽鏈(即SEQ ID NO:72 ,其中X 為賴氨酸),以及缺少這樣的賴氨酸殘基的第三多肽鏈(即SEQ ID NO:72 ,其中X 不存在)。第三多肽鏈對於每個示例性ROR1×CD3雙特異性三鏈雙抗體是共有的。
DART-A
因此,DART-A的第一多肽鏈的氨基酸序列(SEQ ID NO:98 )如下所示(親本抗-ROR1-VL用底線表示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSGS SSGADRYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG GGGSGGG GEVQLVESGG GLVQPGGSLR LSCAASGFTF STYAMNWVRQ APGKGLEWVG RIRSKYNNYA TYYADSVKGR FTISRDDSKN SLYLQMNSLK TEDTAVYYCV RHGNFGNSYV SWFAYWGQGT LVTVSSASTK GEVAACEKEV AALEKEVAAL EKEVAALEKG GGDKTHTCPP CPAPEAAGGP SVFLFPPKPK DTLMISRTPE VTCVVVDVSH EDPEVKFNWY VDGVEVHNAK TKPREEQYNS TYRVVSVLTV LHQDWLNGKE YKCKVSNKAL PAPIEKTISK AKGQPREPQV YTLPPSREEM TKNQVSLWCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSLSPGK
DART-A的第二多肽鏈的氨基酸序列(SEQ ID NO:99 )如下所示(親本抗-ROR1-VH用底線表示): QAVVTQEPSL TVSPGGTVTL TCRSSTGAVT TSNYANWVQQ KPGQAPRGLI GGTNKRAPWT PARFSGSLLG GKAALTITGA QAEDEADYYC ALWYSNLWVF GGGTKLTVLG GGGSGGGG QE QLVESGGGLV QPGGSLRLSC AASGFTFSDY YMSWVRQAPG KGLEWVATIY PSSGKTYYAD SVKGRFTISS DNAKNSLYLQ MNSLRAEDTA VYYCARDSYA DDAALFDIWG QGTTVTVSS A STKGKVAACK EKVAALKEKV AALKEKVAAL KE
DART-A的第三多肽鏈的氨基酸序列為SEQ ID NO:100 DKTHTCPPCP APEAAGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK NQVSLSCAVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLVSKL TVDKSRWQQG NVFSCSVMHE ALHNRYTQKS LSLSPGK
DART-B
DART-B的第一多肽鏈的氨基酸序列與DART-A的第一多肽鏈的氨基酸序列一致,除了Kabat位置63和64之間的G殘基缺失(以底線顯示)(SEQ ID NO:101 ): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRF_ SGS SSGADRYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLGGGGSGGG GEVQLVESGG GLVQPGGSLR LSCAASGFTF STYAMNWVRQ APGKGLEWVG RIRSKYNNYA TYYADSVKGR FTISRDDSKN SLYLQMNSLK TEDTAVYYCV RHGNFGNSYV SWFAYWGQGT LVTVSSASTK GEVAACEKEV AALEKEVAAL EKEVAALEKG GGDKTHTCPP CPAPEAAGGP SVFLFPPKPK DTLMISRTPE VTCVVVDVSH EDPEVKFNWY VDGVEVHNAK TKPREEQYNS TYRVVSVLTV LHQDWLNGKE YKCKVSNKAL PAPIEKTISK AKGQPREPQV YTLPPSREEM TKNQVSLWCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSLSPGK
DART-B的第二多肽鏈的氨基酸序列與DART-A的第二多肽鏈的氨基酸序列一致(SEQ ID NO:99 )。DART-B的第三多肽鏈的氨基酸序列與DART-A的第三多肽鏈的氨基酸序列一致(SEQ ID NO:100 )。
DART-C
DART-C的第一多肽鏈的氨基酸序列(SEQ ID NO:102 )如下所示(抗-ROR1-VL(14)用底線表示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFSGSS SGADWYLTIS SLQSEDEADY YCGTDYPGNY LFGGGTQLTV LG GGGSGGGG EVQLVESGGG LVQPGGSLRL SCAASGFTFS TYAMNWVRQA PGKGLEWVGR IRSKYNNYAT YYADSVKGRF TISRDDSKNS LYLQMNSLKT EDTAVYYCVR HGNFGNSYVS WFAYWGQGTL VTVSSASTKG EVAACEKEVA ALEKEVAALE KEVAALEKGG GDKTHTCPPC PAPEAAGGPS VFLFPPKPKD TLMISRTPEV TCVVVDVSHE DPEVKFNWYV DGVEVHNAKT KPREEQYNST YRVVSVLTVL HQDWLNGKEY KCKVSNKALP APIEKTISKA KGQPREPQVY TLPPSREEMT KNQVSLWCLV KGFYPSDIAV EWESNGQPEN NYKTTPPVLD SDGSFFLYSK LTVDKSRWQQ GNVFSCSVMH EALHNHYTQK SLSLSPGK
DART-C的第二多肽鏈的氨基酸序列(SEQ ID NO:103 )如下所示(抗-ROR1-VH(7)用底線表示): QAVVTQEPSL TVSPGGTVTL TCRSSTGAVT TSNYANWVQQ KPGQAPRGLI GGTNKRAPWT PARFSGSLLG GKAALTITGA QAEDEADYYC ALWYSNLWVF GGGTKLTVLG GGGSGGGG QE QLVESGGGLV QPGGSLRLSC AASGFTFSDY YMSWVRQAPG KGLEWVATIY PSSGKTYYAD SVKGRLTISS DNAKDSLYLQ MNSLRAEDTA VYYCTRDSYA DDAALFDIWG QGTTVTVSS A STKGKVAACK EKVAALKEKV AALKEKVAAL KE
DART-C的第三多肽鏈的氨基酸序列與DART-A的第三多肽鏈的氨基酸序列一致(SEQ ID NO:100 )。
DART-D
DART-D的第一多肽鏈的氨基酸序列與DART-C的第一多肽鏈的氨基酸序列一致(SEQ ID NO:102 )。
DART-D的第二多肽鏈的氨基酸序列(SEQ ID NO:104 )如下所示(抗-ROR1-VH(8)用底線表示): QAVVTQEPSL TVSPGGTVTL TCRSSTGAVT TSNYANWVQQ KPGQAPRGLI GGTNKRAPWT PARFSGSLLG GKAALTITGA QAEDEADYYC ALWYSNLWVF GGGTKLTVLG GGGSGGGG QE QLVESGGGLV QPGGSLRLSC AASGFTFSDY YMSWIRQAPG KGLEWVATIY PSSGKTYYAD SAKGRLTISS DNAKDSLYLQ MNSLRAEDTA VYYCTRDSYA DDAALFDIWG QGTTVTVSS A STKGKVAACK EKVAALKEKV AALKEKVAAL KE
DART-D的第三多肽鏈的氨基酸序列與DART-A的第三多肽鏈的氨基酸序列一致(SEQ ID NO:100 )。
鑒於本文提供的教導,應當理解,可以利用不同的結構域取向、VH結構域、VL結構域、連接體、異源二聚體促進結構域和/或IgG恒定結構域來生成供選擇的ROR1 x CD3雙特異性三鏈雙抗體。例如,使用不同的抗-ROR1-VL和/或VH結構域生成DART-A至DART-D(見例如 9 )。此外,本文提供的優化的抗-ROR1-VL和/或VH結構域中的任一個可以用於替代抗-ROR1-VL(14)和抗-ROR1-VH(8),以生成供選擇的分子。
C. ROR1 x CD3 x CD8 三價結合分子
提供了示例性三價“ROR1 x CD3 x CD8 ”結合分子,其具有對ROR1特異性的一個結合位點(包括親本和/或優化的抗-ROR1-VL和抗-ROR1-VH結構域)、對CD3特異性的一個結合位點(包括CD3 mAb 1(D65G)的VL和VH結構域)和對CD8特異性的一個結合位點(包括TRX2的VL和VH結構域)。示例性三價結合分子被命名如下:“TRIDENT-A ”,其具有三條多肽鏈並且包括親本的抗-ROR1-VL和抗-ROR1-VH結構域;“TRIDENT-B ” ,其具有四條多肽鏈並且包括親本的抗-ROR1-VL和抗-ROR1-VH結構域;“TRIDENT-C ” ,其具有三條多肽鏈並且包括優化的抗-ROR1-VL(14)和抗-ROR1-VH(8)結構域; “TRIDENT-D ” ,其具有四條多肽鏈並且包括優化的抗-ROR1-VL(14)和抗-ROR1-VH(8)結構域。TRIDENT-A和TRIDENT-C具有 6D 顯示的一般結構,並且TRIDENT-B和TRIDENT-D具有 6A 顯示的一般結構。這些ROR1 x CD3 x CD8三價結合分子的結構在下面詳述。這些示例性ROR1 x CD3 x CD8三價結合分子旨在闡釋,但決不限制本發明的範圍。
具有三條或四條多肽鏈的示例性ROR1 x CD3 x CD8三價結合分子(見例如, 6A )的第一多肽鏈在N-末端至C-末端方向包括:N-末端;抗-ROR1-VL結構域(針對TRIDENT-A的S EQ ID NO:6 針對TRIDENT-B的S EQ ID NO:6 針對TRIDENT-C的S EQ ID NO:23 和針對TRIDENT-D的S EQ ID NO:23 );間插間隔體肽(連接體1:GGGSGGGG (SEQ ID NO:33 ));CD3 mAb 1(D65G)的VH結構域(SEQ ID NO:77 );間插間隔體肽(連接體2:ASTKG(SEQ ID NO:38 ));含有半胱氨酸的異源二聚體促進(E-螺旋)結構域(EVAACEK-EVAALEK-EVAALEK-EVAALEK (SEQ ID NO:48 ));間插間隔體肽(連接體3:GGGDKTHTCPPCP (SEQ ID NO:58 ));攜帶杵的IgG1 CH2-CH3結構域(SEQ ID NO:71 );和C末端。該多肽鏈的編碼多核苷酸可以編碼SEQ ID NO:71 的C-末端賴氨酸殘基(即SEQ ID NO:71X ),然而,如上所述,該賴氨酸殘基在一些表達系統中可以被翻譯後去除。因此,本發明包括含有這樣的賴氨酸殘基的這樣的第一多肽鏈(即SEQ ID NO:71 ,其中X 為賴氨酸),以及缺少這樣的賴氨酸殘基的第一多肽鏈(即SEQ ID NO:71 ,其中X 不存在)。每個三價結合分子中存在的抗-ROR1-VL結構域顯示在 10 中,並且氨基酸序列在上面提供。
具有三條或四條多肽鏈的示例性ROR1 x CD3 x CD8三價結合分子的第二多肽鏈在N-末端至C-末端方向包括:N-末端;CD3 mAb 1的VL結構域(SEQ ID NO:75 );間插間隔體肽(連接體1:GGGSGGGG (SEQ ID NO:33 ));抗-ROR1-VH結構域(針對TRIDENT-A的S EQ ID NO:7 針對TRIDENT-B的S EQ ID NO:7 針對TRIDENT-C的S EQ ID NO:31 、或 針對TRIDENT-D的S EQ ID NO:31 );間插間隔體肽(連接體2:ASTKG(SEQ ID NO:38 ));含有半胱氨酸的異源二聚體促進(K-螺旋)結構域(KVAACKE-KVAALKE-KVAALKE-KVAALKE (SEQ ID NO:49 ));和C末端。每個雙抗體中存在的抗-ROR1-VH結構域顯示在 10 中,並且氨基酸序列在上面提供。
示例性三多肽鏈ROR1 x CD3 x CD8三價結合分子TRIDENT-A和TRIDENT-C的第三多肽鏈在N-末端至C-末端方向包括:N-末端;TRX2的VL結構域(SEQ ID NO:84 );間插間隔體肽(連接體4:GGGGSGGGGSGGGGS (SEQ ID NO:64 ));TRX2的VH結構域(SEQ ID NO:85 );間插間隔體肽(連接體3:VEPKSADKTHTCPPCP (SEQ ID NO:55 ));攜帶臼的IgG1 CH2-CH3結構域(SEQ ID NO:72 );和C末端。該多肽鏈的編碼多核苷酸可以編碼SEQ ID NO:72 的C-末端賴氨酸殘基(即,SEQ ID NO:72X ),然而,如上所述,該賴氨酸殘基在一些表達系統中可以被翻譯後去除。因此,本發明包括含有這樣的賴氨酸殘基的這樣的第三多肽鏈(即SEQ ID NO:72 ,其中X 為賴氨酸),以及缺少這樣的賴氨酸殘基的第三多肽鏈(即SEQ ID NO:72 ,其中X 不存在)。
示例性四多肽鏈ROR1 x CD3 x CD8三價結合分子TRIDENT-B和TRIDENT-D的第三多肽鏈是抗體重鏈,其在N-末端至C-末端方向包括:N-末端;TRX2的VH結構域(SEQ ID NO:85 );IgG1 CH1結構域(SEQ ID NO:67 );IgG1鉸鏈區域(EPKSCDKTHTCPPCP(SEQ ID NO:60 ));攜帶臼的IgG1 CH2-CH3結構域(SEQ ID NO:72 );和C末端。該多肽鏈的編碼多核苷酸可以編碼SEQ ID NO:72 的C-末端賴氨酸殘基(即SEQ ID NO:72X ),然而,如上所述,該賴氨酸殘基在一些表達系統中可以被翻譯後去除。因此,本發明包括含有這樣的賴氨酸殘基的這樣的第三多肽鏈(即SEQ ID NO:72 ,其中X 為賴氨酸),以及缺少這樣的賴氨酸殘基的第三多肽鏈(即SEQ ID NO:72 ,其中X 不存在)。
具有四條多肽鏈的示例性ROR1 x CD3 x CD8三價結合分子(即,TRIDENT-B和TRIDENT-D)的第四多肽鏈是抗體輕鏈,其在N-末端至C-末端方向包括:N-末端;CD8 mAb TRX2的VL結構域(SEQ ID NO:84 );CL κ結構域(SEQ ID NO:65 );和C末端。
提供了具有三條多肽鏈的代表性的ROR1 x CD3 x CD8三價結合分子TRIDENT-C的氨基酸序列。TRIDENT-C分別包括優化的抗-ROR1-VL和抗-ROR1-VH結構域抗-ROR1-VL(14)和抗-ROR1-VH(8)。
TRIDENT-A
TRIDENT-A的第一多肽鏈的氨基酸序列(SEQ ID NO:105 )如下所示(親本抗-ROR1-VL以底線表示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSGS SSGADRYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG GGGSGGG GEVQLVESGG GLVQPGGSLR LSCAASGFTF STYAMNWVRQ APGKGLEWVG RIRSKYNNYA TYYADSVKGR FTISRDDSKN SLYLQMNSLK TEDTAVYYCV RHGNFGNSYV SWFAYWGQGT LVTVSSASTK GEVAACEKEV AALEKEVAAL EKEVAALEKG GGDKTHTCPP CPAPEAAGGP SVFLFPPKPK DTLMISRTPE VTCVVVDVSH EDPEVKFNWY VDGVEVHNAK TKPREEQYNS TYRVVSVLTV LHQDWLNGKE YKCKVSNKAL PAPIEKTISK AKGQPREPQV YTLPPSREEM TKNQVSLWCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSLSPGK
TRIDENT-A的第二多肽鏈的氨基酸序列(SEQ ID NO:106 )如下所示(親本抗-ROR1-VH以底線表示): QAVVTQEPSL TVSPGGTVTL TCRSSTGAVT TSNYANWVQQ KPGQAPRGLI GGTNKRAPWT PARFSGSLLG GKAALTITGA QAEDEADYYC ALWYSNLWVF GGGTKLTVLG GGGSGGGG QE QLVESGGGLV QPGGSLRLSC AASGFTFSDY YMSWVRQAPG KGLEWVATIY PSSGKTYYAD SVKGRFTISS DNAKNSLYLQ MNSLRAEDTA VYYCARDSYA DDAALFDIWG QGTTVTVSS A STKGKVAACK EKVAALKEKV AALKEKVAAL KE
TRIDENT-A的第三多肽鏈的氨基酸序列(SEQ ID NO:107 )如下所示: DIQMTQSPSS LSASVGDRVT ITCKGSQDIN NYLAWYQQKP GKAPKLLIYN TDILHTGVPS RFSGSGSGTD FTFTISSLQP EDIATYYCYQ YNNGYTFGCG TKVEIKGGGG SGGGGSGGGG SQVQLVESGG GVVQPGRSLR LSCAASGFTF SDFGMNWVRQ APGKCLEWVA LIYYDGSNKF YADSVKGRFT ISRDNSKNTL YLQMNSLRAE DTAVYYCAKP HYDGYYHFFD SWGQGTLVTV SSVEPKSADK THTCPPCPAP EAAGGPSVFL FPPKPKDTLM ISRTPEVTCV VVDVSHEDPE VKFNWYVDGV EVHNAKTKPR EEQYNSTYRV VSVLTVLHQD WLNGKEYKCK VSNKALPAPI EKTISKAKGQ PREPQVYTLP PSREEMTKNQ VSLSCAVKGF YPSDIAVEWE SNGQPENNYK TTPPVLDSDG SFFLVSKLTV DKSRWQQGNV FSCSVMHEAL HNRYTQKSLS LSPGK
TRIDENT-B
TRIDENT-B的第一多肽鏈的氨基酸序列與TRIDENT-A的第一多肽鏈的氨基酸序列相同(SEQ ID NO:105 )。TRIDENT-B的第二多肽鏈的氨基酸序列與TRIDENT-A的第二多肽鏈的氨基酸序列相同(SEQ ID NO:106 )。
TRIDENT-B的第三多肽鏈的氨基酸序列(SEQ ID NO:108 )如下所示: QVQLVESGGG VVQPGRSLRL SCAASGFTFS DFGMNWVRQA PGKGLEWVAL IYYDGSNKFY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKPH YDGYYHFFDS WGQGTLVTVS SASTKGPSVF PLAPSSKSTS GGTAALGCLV KDYFPEPVTV SWNSGALTSG VHTFPAVLQS SGLYSLSSVV TVPSSSLGTQ TYICNVNHKP SNTKVDKRVE PKSCDKTHTC PPCPAPEAAG GPSVFLFPPK PKDTLMISRT PEVTCVVVDV SHEDPEVKFN WYVDGVEVHN AKTKPREEQY NSTYRVVSVL TVLHQDWLNG KEYKCKVSNK ALPAPIEKTI SKAKGQPREP QVYTLPPSRE EMTKNQVSLS CAVKGFYPSD IAVEWESNGQ PENNYKTTPP VLDSDGSFFL VSKLTVDKSR WQQGNVFSCS VMHEALHNRY TQKSLSLSPG K
TRIDENT-B的第四多肽鏈的氨基酸序列(SEQ ID NO:109 )如下所示: DIQMTQSPSS LSASVGDRVT ITCKGSQDIN NYLAWYQQKP GKAPKLLIYN TDILHTGVPS RFSGSGSGTD FTFTISSLQP EDIATYYCYQ YNNGYTFGQG TKVEIKRTVA APSVFIFPPS DEQLKSGTAS VVCLLNNFYP REAKVQWKVD NALQSGNSQE SVTEQDSKDS TYSLSSTLTL SKADYEKHKV YACEVTHQGL SSPVTKSFNR GEC
TRIDENT-C
TRIDENT-C的第一多肽鏈的氨基酸序列(SEQ ID NO:110 )如下所示(抗-ROR1-VL(14)以底線表示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFSGSS SGADWYLTIS SLQSEDEADY YCGTDYPGNY LFGGGTQLTV LG GGGSGGGG EVQLVESGGG LVQPGGSLRL SCAASGFTFS TYAMNWVRQA PGKGLEWVGR IRSKYNNYAT YYADSVKGRF TISRDDSKNS LYLQMNSLKT EDTAVYYCVR HGNFGNSYVS WFAYWGQGTL VTVSSASTKG EVAACEKEVA ALEKEVAALE KEVAALEKGG GDKTHTCPPC PAPEAAGGPS VFLFPPKPKD TLMISRTPEV TCVVVDVSHE DPEVKFNWYV DGVEVHNAKT KPREEQYNST YRVVSVLTVL HQDWLNGKEY KCKVSNKALP APIEKTISKA KGQPREPQVY TLPPSREEMT KNQVSLWCLV KGFYPSDIAV EWESNGQPEN NYKTTPPVLD SDGSFFLYSK LTVDKSRWQQ GNVFSCSVMH EALHNHYTQK SLSLSPGK
TRIDENT-C的第二多肽鏈的氨基酸序列(SEQ ID NO:111 )如下所示(抗-ROR1-VH(8)以底線表示): QAVVTQEPSL TVSPGGTVTL TCRSSTGAVT TSNYANWVQQ KPGQAPRGLI GGTNKRAPWT PARFSGSLLG GKAALTITGA QAEDEADYYC ALWYSNLWVF GGGTKLTVLG GGGSGGGG QE QLVESGGGLV QPGGSLRLSC AASGFTFSDY YMSWIRQAPG KGLEWVATIY PSSGKTYYAD SAKGRLTISS DNAKDSLYLQ MNSLRAEDTA VYYCTRDSYA DDAALFDIWG QGTTVTVSS A STKGKVAACK EKVAALKEKV AALKEKVAAL KE
TRIDENT-C的第三多肽鏈的氨基酸序列與上述提供的TRIDENT-A的第三多肽鏈的氨基酸序列相同(SEQ ID NO:107 )。
TRIDENT-D
TRIDENT-D的第一和第二多肽鏈與TRIDENT-C的第一和第二多肽鏈一致。因此,TRIDENT-D的第一多肽鏈的氨基酸序列是上述提供的SEQ ID NO:110 ,並且TRIDENT-D的第二多肽鏈的氨基酸序列是上述提供的SEQ ID NO:111 。TRIDENT-D的第三和第四多肽鏈與上述提供的TRIDENT-B的第三和第四多肽鏈一致(分別為SEQ ID NO:104SEQ ID NO:105 )。
鑒於本文提供的教導,應當理解,可以利用不同的結構域取向、VH結構域、VL結構域、連接體、和/或異源二聚體促進結構域來生成可選的ROR1 x CD3 x CD8三價結合分子。例如,使用不同的抗-ROR1-VL和/或VH結構域生成TRIDENT-A和TRIDENT-C(見例如 10 )。此外,本文提供的優化的抗-ROR1-VL和/或VH結構域中的任一個可以用於替代抗-ROR1-VL(14)和抗-ROR1-VH(8),以生成供選擇的分子。
X . 製備方法
如本領域所熟知的,本發明的ROR1-結合分子最優選通過編碼這類多肽的核酸分子的重組表達而產生。
本發明的多肽可以使用肽固相合成方法被方便地製備(Merrifield, B. (1986) “Solid Phase Synthesis ,” Science 232(4748):341-347;Houghten, R.A. (1985) “General Method For The Rapid Solid-Phase Synthesis Of Large Numbers Of Peptides: Specificity Of Antigen-Antibody Interaction At The Level Of Individual Amino Acids ,” Proc. Natl. Acad. Sci. (U.S.A.) 82(15):5131-5135;Ganesan, A. (2006) “Solid-Phase Synthesis In The Twenty-First Century ,” Mini Rev. Med. Chem. 6(1):3-10)。
在可選的方案中,可重組製備抗體和使用本領域已知的任何方法表達。可如下經重組製備抗體:首先從宿主動物分離製備的抗體,獲得基因序列,和使用基因序列在宿主細胞(例如,CHO細胞)中重組表達抗體。可採用的另一方法是在植物(例如,煙草)或轉基因奶中表達抗體序列。用於在植物或奶中重組表達抗體的適當的方法已經被公開了(見,例如Peeters等(2001) “Production Of Antibodies And Antibody Fragments In Plants ,” Vaccine 19:2756;Lonberg, N.等(1995) “Human Antibodies From Transgenic Mice ,” Int. Rev. Immunol 13:65-93;和Pollock等(1999) “Transgenic Milk As A Method For The Production Of Recombinant Antibodies ,” J. Immunol Methods 231:147-157)。製備抗體衍生物,例如,人源化抗體、單鏈抗體等的適當的方法是本領域已知的,並且已經在上面描述過了。在另一可選方案中,可通過噬菌體展示技術重組製備抗體(見,例如,美國專利號5,565,332、5,580,717、5,733,743、6,265,150;和Winter, G.等(1994) “Making Antibodies By Phage Display Technology ,” Annu. Rev. Immunol. 12.433-455)。
可以通過許多合適的方法中的任何一種將含有感興趣的多核苷酸(例如,編碼本發明的ROR1-結合分子的多肽鏈的多核苷酸)的載體引入到宿主細胞中,所述適當手段包括電穿孔;採用氯化鈣、銣氯化物、磷酸鈣、DEAE-葡聚糖或其他物質的轉染;微彈轟擊(microprojectile bombardment);脂轉染;和感染(例如,在載體是感染劑諸如痘苗病毒的情況下)。引入載體或多核苷酸的選擇常常取決於宿主細胞的特徵。
能夠過表達異源DNA的任何宿主細胞均可用於表達感興趣的多肽或蛋白質的目的。合適的哺乳動物宿主細胞的非限制性例子包括但不限於COS、HeLa和CHO細胞。
本發明包括包含本發明的ROR1-結合分子的氨基酸序列的多肽。可通過本領域已知的程式製備本發明的多肽。可通過抗體的蛋白水解或其他降解、如上述的重組方法(即,單個或融合多肽)或化學合成來產生多肽。抗體的多肽,尤其地,上至約50個氨基酸的較短的多肽,通過化學合成被常規製備。化學合成方法在本領域中是已知的,並且是商業上可得到的。
本發明包括ROR1-結合分子的變體,包括不明顯影響這類分子的特性的功能上等同的多肽以及具有增強的或降低的活性的變體。多肽的修飾在本領域中是常規操作,因而不需要在本文詳細描述。修飾的多肽的實例包括這樣的多肽:其具有氨基酸殘基的保守取代、未明顯有害改變功能活性的氨基酸的一個或多個缺失或添加,或使用化學類似物。可彼此保守取代的氨基酸殘基包括但不限於:甘氨酸/丙氨酸;絲氨酸/蘇氨酸;纈氨酸/異亮氨酸/亮氨酸;天冬醯胺/穀氨醯胺;天冬氨酸/谷氨酸;賴氨酸/精氨酸;和苯基丙氨酸/酪氨酸。這些多肽還包括糖基化和非糖基化多肽以及具有其它翻譯後修飾的多肽,所述其它翻譯後修飾,諸如例如,用不同糖進行糖基化、乙醯化和磷酸化。優選地,氨基酸取代應該是保守的,即,取代的氨基酸會具有與原始氨基酸類似的化學性質。這樣的保守取代在本領域中是已知的,並且已經在上文提供實例。氨基酸修飾範圍可從改變或修飾一個或多個氨基酸到區域諸如可變結構域的完全重新設計(redesign)。可變結構域中的變化可改變結合親和力和/或特異性。修飾的其它方法包括利用本領域中已知的偶合技術,包括但不限於酶促手段、氧化取代和螯合。修飾可用於例如,連接標籤用於免疫分析,諸如連接放射性部分用於放射免疫分析。修飾的多肽利用本領域中確定的方法製備,並且可利用本領域中已知的標準測定來篩選。
本發明包括融合蛋白,所述融合蛋白包括本發明的優化的抗-ROR1-VL和/或VH中的一種或多種。在一個實施方式中,提供了融合多肽,其包括輕鏈、重鏈或輕鏈和重鏈二者。在另一實施方式中,提供的融合多肽包括輕鏈、重鏈或輕鏈和重鏈二者。在另一實施方式中,融合多肽包含異源免疫球蛋白恒定區。在另一實施方式中,融合多肽包含由公共保藏的雜交瘤產生的抗體的輕鏈可變結構域和重鏈可變結構域。為了本發明的目的,抗體融合蛋白包含特異性結合ROR1的一個或多個多肽結構域和其在天然分子中未連接的另外的氨基酸序列,所述另外的氨基酸序列例如,異源序列或來自另一區域的同源序列。
本發明尤其包括與診斷或治療部分綴合的ROR1-結合分子(例如,抗體、雙抗體、三價結合分子等)。出於診斷目的,本發明的ROR1-結合分子可以與可檢測物質偶聯(couple)。這類ROR1-結合分子可用於監測和/或預測疾病的發展或進展,作為臨床檢測程式的一部分,例如確定特定治療的效力。可檢測物質的實例包括各種酶(例如辣根過氧化物酶、β-半乳糖苷酶等)、輔基(例如鏈酶抗生物素/生物素)、螢光物質(例如7-羥基香豆素、螢光素或藻紅素)、發光物質(例如發光氨)、生物發光物質(例如螢光素酶或水母發光蛋白)、放射性物質(例如碳-14、錳-54、鍶-85或鋅-65)、正電子發射金屬和非放射性順磁金屬離子。可檢測物質可以使用本領域已知的技術與ROR1-結合分子直接偶聯或綴合,或通過中間體(例如,連接體)與ROR1-結合分子間接偶聯或綴合。
出於治療目的,本發明的ROR1-結合分子可以與治療部分如細胞毒素(例如細胞生長抑制劑或殺細胞劑)、治療劑或放射性金屬離子(例如α-發射體)綴合。細胞毒素或細胞毒性劑包括對細胞有害的任何試劑,例如假單胞菌外毒素、白喉毒素、肉毒桿菌毒素A至F、蓖麻毒蛋白相思豆毒蛋白、肥皂草毒蛋白和這些試劑的細胞毒性片段。治療劑包括具有預防性或治療性治療病症的治療效果的任何試劑。這樣的治療劑可以是化學治療劑、蛋白質或多肽治療劑,並且包括具有所需生物活性和/或改變給定生物應答的治療劑。治療劑的實例包括烷化劑、血管生成抑制劑、抗有絲分裂劑、激素治療劑和用於治療細胞增殖性病症的抗體。治療部分可以使用本領域已知的技術與ROR1-結合分子直接偶聯或綴合,或通過中間體(例如,連接體)與ROR1-結合分子或間接偶聯或綴合。
本發明的 ROR1- 結合分子的用途
本發明包括組合物,所述組合物包括藥物組合物,所述藥物組合物包含本發明的ROR1-結合分子(例如抗體、雙特異性抗體、雙特異性雙抗體、三價結合分子等)、來源於這些分子的多肽、包括編碼此類分子或多肽的序列的多核苷酸和本文所述的其它試劑。
如本文所提供的,包括本文提供的優化的抗-ROR1-VL和/或VH結構域的本發明的ROR1-結合分子具有結合存在於細胞表面上的ROR1並誘導抗體-依賴性細胞介導的細胞毒性(ADCC)和/或補體依賴性細胞毒性(CDC)和/或介導重定向細胞殺傷(例如重定向T-細胞細胞毒性)的能力。
因此,包括本文提供的優化的抗-ROR1-VL和/或VH結構域的本發明的ROR1-結合分子具有治療與ROR1的表達相關或特徵在於ROR1的表達的任何疾病或病況的能力。如上所述,ROR1是在許多血液和實體惡性腫瘤中表達的癌-胚抗原,其與表現出較低分化形態的高級腫瘤相關,並且與差的臨床結果相關(見例如, Zhang, S.,等(2012) “The Onco-Embryonic Antigen ROR1 Is Expressed by a Variety of Human Cancers, ” Am J. Pathol. 6:1903-1910;Zhang, H.等(2014) “ROR1 Expression Correlated With Poor Clinical Outcome In Human Ovarian Cancer ,” Sci Rep. 4:5811)。因此,沒有限制地,本發明的ROR1-結合分子可用於診斷或治療癌症,尤其是以ROR1的表達為特徵的癌症。
可以通過本發明的ROR1-結合分子治療的癌症包括以存在癌細胞為特徵的癌症,所述癌細胞選自由以下的細胞組成的組:腎上腺腫瘤、AIDS相關的癌症、軟組織腺泡狀肉瘤、星形細胞瘤、腎上腺癌、膀胱癌、骨癌、腦和脊髓癌、轉移性腦腫瘤、B細胞癌、乳腺癌、頸動脈體瘤、宮頸癌、軟骨肉瘤、脊索瘤、嫌色細胞腎細胞癌、透明細胞癌、結腸癌、結直腸癌、皮膚良性纖維組織細胞瘤、促結締組織增生小圓細胞瘤、室管膜細胞瘤、尤文氏瘤、骨外黏液樣軟骨肉瘤、不完全性骨纖維生成、骨的纖維發育異常、膽囊癌或膽管癌、胃癌、妊娠滋養層疾病、生殖細胞瘤、頭頸癌、血液學惡性腫瘤、肝細胞癌、胰島細胞腫瘤、卡波西氏肉瘤、腎癌、白血病、脂肪肉瘤/惡性的脂肪瘤、肝癌、淋巴瘤、肺癌、成神經管細胞瘤、黑素瘤、腦膜瘤、多發性內分泌瘤、多發性骨髓瘤、骨髓增生異常綜合征、成神經細胞瘤、神經內分泌腫瘤、卵巢癌、胰腺癌、甲狀腺乳頭狀癌、甲狀旁腺腫瘤、兒科癌症、周圍神經鞘瘤、嗜鉻細胞瘤、垂體瘤、前列腺癌、眼色素層後黑素瘤、腎轉移性癌症、橫紋肌樣瘤、橫紋肌肉瘤、肉瘤、皮膚癌、軟組織肉瘤、鱗狀細胞癌、胃癌、滑膜肉瘤、睾丸癌、胸腺癌、胸腺瘤、甲狀腺轉移性癌和子宮癌。
尤其地,本發明的ROR1-結合分子可用於治療腎上腺癌、膀胱癌、乳腺癌、結直腸癌、胃癌、惡性膠質瘤、腎癌、非小細胞肺癌、急性淋巴細胞白血病、急性骨髓性白血病、慢性淋巴細胞白血病、慢性骨髓性白血病、毛細胞白血病、伯基特淋巴瘤、彌散性大B細胞淋巴瘤、濾泡淋巴瘤、套細胞淋巴瘤、邊緣區淋巴瘤、非霍奇金淋巴瘤、小淋巴細胞淋巴瘤、多發性骨髓瘤、黑素瘤、卵巢癌、胰腺癌、前列腺癌、皮膚癌、腎細胞癌、睾丸癌和子宮癌。
本發明的雙特異性ROR1-結合分子通過促進對表達此類分子(例如CD2、CD3、CD8、CD16、T細胞受體(TCR)、NKG2D等)的第二特異性的腫瘤細胞的重定向殺傷來增加由ROR1提供的癌症治療。這樣的ROR1-結合分子尤其可用於癌症的治療。
除了它們在治療中的實用性,本發明的ROR1-結合分子可以被可檢測地標記並用於癌症的診斷或用於腫瘤和腫瘤細胞的成像。
XII . 藥物組合物
本發明的組合物包括原料藥物組合物,其可用於製造藥物組合物(例如,不純的或非無菌組合物)和可用於製備單位劑型的藥物組合物(即,適於施用至受試者或患者的組合物)。這類組合物包括預防上或治療上有效量的本發明的ROR1-結合分子,或這類劑和藥學上可接受的載體的組合。優選地,本發明的組合物包括預防上或治療上有效量的本發明的ROR1-結合分子和藥學上可接受的載體。本發明也包括這類藥物組合物,其另外包括對特定的癌症抗原特異性的第二治療性抗體(例如,腫瘤特異性單克隆抗體),和藥學上可接受的載體。
在具體的實施方案中,術語“藥學上可接受的”表示獲得聯邦政府或州政府管理機構的許可或列於美國藥典(U.S. Pharmacopeia)或其他通常獲得認可的藥典中,供用於動物,特別是用於人類。術語“載體”指與治療劑一起施用的稀釋劑、佐劑(例如弗氏佐劑(完全和不完全)、賦形劑或媒介。一般而言,本發明組合物的成分被單獨提供或以單位劑型混合在一起,例如作為標明活性劑的量的密封容器中的凍乾粉或無水濃縮物,所述密封容器如安瓿或小袋(sachette)。當通過輸注施用組合物時,其可以用含有無菌的藥學級水或鹽水的輸注瓶分配。如果通過注射施用所述組合物,則可以提供一安瓿注射用無菌水或鹽水,以便可以在施用前混合所述成分。
本發明也提供藥物包裝或試劑盒,其包括一個或多個容器,所述容器填充本發明的ROR1-結合分子,單獨地或與這類藥學上可接受的載體一起。另外,用於治療疾病的一種或多種其他預防劑或治療劑也可包括在藥物包裝或試劑盒中。本發明也提供了這樣的藥物包裝或試劑盒,其包括一個或多個容器,所述容器填充本發明藥物組合物的一種或多種成分。任選地與這類容器(一個或多個)關聯的可以是管理藥物或生物產品的製造、使用或銷售的政府機構規定的形式的佈告(notice),所述佈告反映了管理機構許可用於人類施用的製造、使用或銷售。
本發明提供了可用於上述方法的試劑盒。試劑盒可以包括本發明的任何ROR1-結合分子。試劑盒可在一個或多個容器中進一步包括可用於治療癌症的一種或多種其他預防劑和/或治療劑。
XIII. 給藥方法
通過向受試者施用有效量的本發明的融合蛋白或綴合分子或包括本發明的融合蛋白或綴合分子的藥學組合物,可以提供本發明的組合物用來治療、預防和改善與疾病、病症或感染相關的一種或多種症狀。在優選的方面,這類組合物基本上是純的(即,基本上不含限制其效果或產生不期望的副作用的物質)。在具體實施方式中,受試者是動物,優選哺乳動物,如非靈長類(例如牛、馬、貓科動物、犬科動物、齧齒動物等)或靈長類(例如,猴子,如食蟹猴、人等)。在優選的實施方式中,受試者是人。
各種送遞系統是已知的,並且可以用於施用本發明的組合物,例如封裝於脂質體中、微粒、微膠囊、能表達抗體或融合蛋白的重組細胞、受體介導的內吞作用(見,例如,Wu等(1987) “Receptor-Mediated In Vitro Gene Transformation By A Soluble DNA Carrier System,” J. Biol. Chem. 262:4429-4432)、構建核酸作為逆轉錄病毒或其他載體的一部分等。
施用本發明的分子的方法包括但不限於腸胃外施用(例如皮內、肌肉、腹腔內、靜脈內以及皮下)、硬膜外以及粘膜(例如鼻內和口腔途徑)。在具體實施方式中,本發明的ROR1-結合分子經肌肉、靜脈內或皮下施用。組合物可以通過任何方便途徑施用,例如通過輸注或彈丸注射、通過上皮或黏膜皮膚被覆(lining) (例如口腔粘膜、直腸和腸粘膜等)吸收,並且可以與其他生物活性劑一起施用。給藥可以是全身的或局部的。另外,也可以應用肺給藥,例如通過使用吸入器或噴霧器,並且與霧化劑一起配製。見,例如,美國專利號6,019,968、5,985,320、5,985,309、5,934,272、5,874,064、5,855,913、5,290,540和4,880,078;和PCT公佈號WO 92/19244、WO 97/32572、WO 97/44013、WO 98/31346和WO 99/66903,其每一篇通過引用以其整體併入本文。
本發明也使得本發明的ROR1-結合分子的製劑包裝在密封容器中,比如指示分子的數量的安瓿或小袋中。在一個實施方式中,這樣的分子作為凍幹無菌粉或無水濃縮物提供於密封容器中,並且可以用例如水或鹽水重構至適當濃度,用於施用於受試者。優選地,本發明的ROR1-結合分子作為無菌凍幹粉末提供在密封容器中。
本發明的ROR1-結合分子的凍幹製劑應在它們的初始容器中儲存在2°C和8°C之間,並且分子應該在重構之後12小時內,優選地6小時內、5小時內、3小時內或1小時內施用。在可選的實施方式中,這樣的分子以液體形式提供在指示分子、融合蛋白或綴合分子的量和濃度的密封容器中。優選地,這類ROR1-結合分子在以液體形式提供時,被供應在密封容器中。
可通過標準臨床技術確定本發明的這類製劑有效治療、預防或改善與病症相關的一個或多個症狀的量。製劑中採用的精確劑量還將取決於施用的路徑和病況的嚴重性,並且應根據從業者的判斷和每個患者的情況決定。有效的劑量可從源自體外或動物模型測試系統的劑量回應曲線推斷。
如本文所使用的,藥物組合物的“有效量 ”是足夠實現有益或期望的結果的量,所述結果包括但不限於臨床結果,比如減少源自疾病的症狀、減少感染的症狀(例如,病毒量、發燒、疼痛、敗血症等)或癌症的症狀(例如,癌細胞的增殖、腫瘤存在、腫瘤轉移等),從而提高遭受疾的患者的生命品質,降低治療疾病需要的其他藥物治療的劑量、比如經靶向和/或內化增強另一藥物的作用、延遲疾病的進展,和/或延長個體的生存。
有效量可以在一次或多次給藥中被施用。為了本發明的目的,藥物、化合物或藥物組合物的有效量是足以直接或間接減少病毒存在的增殖(或效應)並減少和/或延遲病毒疾病發展的量。在一些實施方案中,藥物、化合物或藥物組合物的有效量可聯合或不聯合另一藥物、化合物或藥物組合物實現。因此,“有效量”可在施用一種或多種化療劑的背景下考慮,並且如聯合一種或多種其他劑,可實現或實現期望的結果,則單劑可視為以有效量施用。儘管個體的需要不同,但是測定每種組分的有效量的最佳範圍是本領域技術人員已知的。
對於本發明包括的ROR1-結合分子,施用於患者的劑量優選基於接受受試者的體重(kg)確定。對於本發明包括的ROR1-結合分子,施用於患者的劑量通常為受試者體重的約0.01μg/kg至約30 mg/kg或更多。
可通過修飾比如,例如脂質化而增強分子的吸收和組織滲透,來減少或改變本發明的ROR1-結合分子的給藥劑量和頻率。
對於用作單劑療法,可計算向患者施用的本發明的ROR1-結合分子的劑量。可選地,分子可與其他治療組合物聯合使用,並且向患者施用的劑量小於當所述分子用作單劑療法時的劑量。
本發明的藥物組合物可被局部施用至需要治療的區域;這可通過例如,但不限於下述方式實現:局部注入、通過注射、或通過植入物的手段,所述植入物是多孔的、非多孔的或膠狀材料,包括膜,比如矽橡膠膜或纖維。優選地,當施用本發明的分子時,必須注意使用不吸收該分子的材料。
本發明的組合物可以在泡狀體(vesicle),尤其是脂質體中遞送(見Langer (1990) “New Methods Of Drug Delivery,”Science 249:1527-1533);Treat等,在Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein和Fidler (編輯),Liss, New York,pp. 353- 365 (1989)中;Lopez-Berestein, 同上, pp. 3 17-327).
當本發明的組合物是編碼本發明的ROR1-結合分子的核酸的情況下,核酸可被體內施用,以通過如下方式促進其編碼的ROR1-結合分子的表達:將其構建為適當的核酸表達載體的一部分並且施用其從而其成為細胞內的,例如,通過使用逆轉錄病毒載體(見美國專利號4,980,286),或通過直接注射,或通過使用微粒轟擊(例如,基因槍;生物彈道技術(Biolistic), Dupont),或用脂質或細胞表面受體或轉染試劑塗覆,或通過與已知進入核的同源框樣肽聯合施用(見例如,Joliot等(1991) “Antennapedia Homeobox Peptide Regulates Neural Morphogenesis,”Proc. Natl. Acad.Sci. (U.S.A.) 88:1864-1868)等。可選地,可以將核酸引入細胞內並通過同源重組整合到宿主細胞DNA中,以進行表達。
用治療或預防有效量的本發明的ROR1-結合分子對受試者的治療可包括單治療,或優選地,可包括一系列治療。在優選的實施例中,用這類雙抗體治療受試者每週一次,持續約1至10周,優選地2至8周,更優選地約3至7周,和甚至更優選地持續約4、5或6周。本發明的藥物組合物可以每天施用一次,其中這樣的給藥每週發生一次、每週發生兩次、每兩周發生一次、每月發生一次、每六周發生一次、每兩月發生一次、每年發生兩次或每年發生一次等。可選地,本發明的藥物組合物可每天施用兩次,其中這樣的給藥每週發生一次、每週發生兩次、每兩周發生一次、每月發生一次、每六周發生一次、每兩月發生一次、每年發生兩次或每年發生一次等。可選地,本發明的藥物組合物可每天施用三次,其中這樣的給藥每週發生一次、每週發生兩次、每兩周發生一次、每月發生一次、每六周發生一次,每兩月發生一次、每年發生兩次或每年發生一次等。還應當理解,用於治療的分子的有效劑量可以在特定治療過程中增加或減少。
實施例
現在已經大體上描述了本發明,通過參考下述實施例其將更容易理解。下述實施例闡釋了組合物在本發明的診斷或治療方法中的各種方法。實施例旨在闡釋但決不限制本發明的範圍。
實施例 1
-ROR1-VL 和抗 -ROR1-VH 的優化
為了獲得對人ROR1表現出改善的親和力的優化的抗-ROR1抗體種類,對編碼親本抗-ROR1抗體VL和抗-ROR1-VH結構域的多核苷酸(即分別為抗-ROR1-VL或抗-ROR-VH)進行誘變。VL結構域變體被命名為“ -ROR1-VL(2) ”、“ -ROR1-VL(3) ”、“ -ROR1-VL(4) ”、“ -ROR1-VL(5) ”、“ -ROR1-VL(6) ”、“ -ROR1-VL(7) ”、“ -ROR1-VL(8) ”、“ -ROR1-VL(9) ”、“ -ROR1-VL(10) ”、“ -ROR1-VL(11) ”、“ -ROR1-VL(12) ”、“ -ROR1-VL(13) ”和“ -ROR1-VL(14) ”,並且VH結構域變體被命名為“ -ROR1-VH(1) ”、“ -ROR1-VH(2) ”、“ -ROR1-VH(3) ”、“ -ROR1-VH(4) ”、“ -ROR1-VH(5) ”、“ -ROR1-VH(6) ”和“ -ROR1-VH(7) ”。這些變體的氨基酸序列在上文被提供,突變和相應的SEQ ID NO 被總結在 6 中。
產生了31種ROR1 × CD3雙特異性雙鏈共價結合的雙抗體,每種均具有對ROR1特異性的一個結合位點(其包括親本的和/或變異的抗-ROR1-VL和抗-ROR1-VH結構域)和對CD3具有特異性的一個結合位點(其包括CD3 mAb 1(D65G)的VL和VH結構域)。上文詳細提供了這些示例性ROR1 × CD3雙特異性雙鏈雙抗體的第一和第二多肽鏈的一般結構。在每種雙抗體(連續編號並命名為“DART-1 ”至“DART-31 ”)中存在的特定抗-ROR1-VL和抗-ROR1-VH結構域提供於 7 中。這類雙抗體的CD3結合結構域是CD3 mAb 1的VL結構域(SEQ ID NO:75 )或抗-CD3 mAb 1(D65G)的VH結構域(SEQ ID NO:77 )。抗-ROR1結合結構域和抗-CD3結合結構域通過間插間隔體肽(連接體1)GGGSGGGG(SEQ ID NO:33 )彼此分開。 √: 相似的結合          ↑: 提高的結合             ↓: 降低的結合          -:   未確定
DART-1
為了闡釋,DART-1包括親本抗-ROR1-VL和抗-ROR1-VL結構域。DART-1的氨基酸序列在下面提供。
DART-1的第一多肽鏈的氨基酸序列(SEQ ID NO:112 )如下所示(親本抗-ROR1-VL以實底線表示;抗-CD3結合結構域以虛底線表示 ): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFGSGS SSGADRYLTI SSLQSEDEAD YYCGTDYPGN YLFGGGTQLT VLG GGGSGGG GEVQLVESGG GLVQPGGSLR LSCAASGFTF STYAMNWVRQ APGKGLEWVG RIRSKYNNYA TYYADSVKGR FTISRDDSKN SLYLQMNSLK TEDTAVYYCV RHGNFGNSYV SWFAYWGQGT LVTVSS GGCG GGKVAALKEK VAALKEKVAA LKEKVAALKE
DART-1的第二多肽鏈的氨基酸序列(SEQ ID NO:113 )如下所示(親本抗-ROR1-VH以實底線表示;抗-CD3結合結構域以虛底線表示 ):QAVVTQEPSL TVSPGGTVTL TCRSSTGAVT TSNYANWVQQ KPGQAPRGLI GGTNKRAPWT PARFSGSLLG GKAALTITGA QAEDEADYYC ALWYSNLWVF GGGTKLTVLG GGGSGGGG QE QLVESGGGLV QPGGSLRLSC AASGFTFSDY YMSWVRQAPG KGLEWVATIY PSSGKTYYAD SVKGRFTISS DNAKNSLYLQ MNSLRAEDTA VYYCARDSYA DDAALFDIWG QGTTVTVSS G GCGGGEVAAL EKEVAALEKE VAALEKEVAA LEK
包括變異的VL和VH結構域(即,抗-ROR1-VL(2)和抗-ROR1-VH(7))的代表性ROR1×CD3雙特異性雙鏈雙抗體DART-25的第一和第二多肽鏈的氨基酸序列在上文提供。
通過ELISA檢驗DART-1至DART-31與可溶性人ROR1的結合。簡言之,用0.5μg/mL的His標記的可溶性人ROR1(“shROR1-His”,包含與His-Tag融合的人ROR1的胞外部分) 塗覆微量滴定板,洗滌板,並與所產生的雙抗體(DART-1至DART-31)之一的三倍連續稀釋物一起孵育。使用通過鏈酶抗生物素-HRP檢測的生物素化的抗-E/K螺旋第二抗體來評價與固定化ROR1結合的雙抗體的量。在板閱讀器上分析所有樣品,並生成結合曲線。相對於DART-1,DART-2至DART-31的結合總結於上面 7 中。包括變異的VL和/或變異的VH結構域的一些雙抗體相對於DART-1顯示改善的結合,表明這類可變結構域是優化的。
使用Biacore分析研究DART-1至DART-6、DART-10至DART-17、DART-20至DART-33的結合動力學,其中使ROR1蛋白在固定化的雙抗體上通過。簡言之,每種雙抗體構建體被捕獲在固定化的抗-E/K-螺旋表面上,並與25和100nM的shROR1-His一起孵育,並且通過Biacore分析確定結合動力學。來自這些研究的計算的ka、kd和KD示於表7中。導致改善的結合的大多數突變位於CDR外部。尤其地,在這些研究中,存在於DART-2(抗-ROR1-VL(2))中的單R71W取代使結合增強超過兩倍。
為了進一步表徵變異的抗-ROR1-VL和抗-ROR1-VH結構域,使用兩種不同的細胞毒性T淋巴細胞(CTL)測定來評估幾種ROR1×CD3雙抗體介導重定向細胞殺傷的能力。在一個測定中,將ROR1×CD3雙特異性雙抗體或陰性對照雙抗體(缺少ROR1-結合位點)與全T-細胞和靶腫瘤細胞一起孵育,並通過測量由損傷的細胞向培養基中的乳酸脫氫酶(LDH)的釋放來測定細胞毒性百分比(即細胞殺傷)。使用定量測量LDH釋放的CytoTox 96®非放射性細胞毒性測定試劑盒(Promega)進行這些測定,基本上如下所述。使用在測定培養基(不含酚紅的RPMI 1640、10%FBS、1%青黴素/鏈黴素)中密度為4×105個細胞/mL和在測定開始時生存率高於90%的靶細胞(例如腫瘤靶細胞),以及以適當的密度懸浮在測定培養基中以實現10:1的效應子與靶標(E:T)細胞比(或期望的E:T比)的、分離的純化的人T-細胞。50μL靶細胞懸浮物(〜20,000個細胞)、100μL效應細胞懸浮物(對於10:1的 E:T比例為200,000個細胞)和50μL連續稀釋的雙特異性ROR1×CD3雙抗體或陰性對照雙抗體(缺乏ROR1-結合位點)被加入微量滴定板的重複的孔(duplicate wells)中,並孵育(37℃,5%CO2 ) 24小時。在孵育結束時,加入30μL裂解溶液,將板孵育10分鐘以完全裂解靶細胞。然後將板離心(212 × g,5分鐘),將40μL上清液從測定板的每個孔轉移至平底ELISA板中,並將40μL LDH底物溶液加入每個孔中。將板在室溫,黑暗中孵育10-20分鐘,並加入40μL終止溶液(Promega Cat#G183A)。在Victor2 Multilabel板閱讀器(Perkin Elmer#1420-014)上,在1小時內,在490nm處測量光密度。使用下式從光密度(OD)資料計算特定的細胞裂解:並且使用GraphPad Prism 6軟體,通過將細胞毒性值曲線擬合到S形(sigmoidal)劑量-回應函數來生成劑量-回應曲線。
在另一種測定中,將ROR1 × CD3雙特異性雙抗體或陰性對照雙抗體(缺乏ROR1-結合位點)與全 T-細胞和靶JIMT-1細胞(其已經被工程化以表達螢光素酶(luc)報導基因(JIMT-1-Luc細胞))一起孵育,並通過測量靶細胞的細胞螢光素酶活性的發光(LUM)測定來測定細胞毒性。這些測定的製備和設置基本上與上述LDH測定相同。孵育後,從每個孔中取出100μL孵育基,隨後向每個孔中加入100μL Steady-Glo螢光素酶底物,然後向上/向下吹吸數次以完全裂解靶細胞。將板在室溫,黑暗中孵育10分鐘,然後使用VictorX4 Multilabel板閱讀器(Perkin Elmer#1420-014)測量發光強度,以發光相對光單位(RLU)作為讀出。RLU指示靶細胞的相對存活力。使用GraphPad Prism 6軟體通過將RLU值曲線擬合到S形劑量-回應函數來生成劑量-回應曲線。
對於這些研究,使用JIMT-1乳腺癌細胞、HBL-2套細胞淋巴瘤細胞或Jeko-1套細胞淋巴瘤細胞作為腫瘤靶細胞,並且使用雙抗體(DART-1、DART-2、DART-14、DART-15、DART-16、DART-20、DART-22、DART-23和DART-25)的五倍連續稀釋物。代表性的細胞毒性曲線示於 8A-8B9A-9B10A-10C 中。 10A-10C 中的曲線的EC50和最大回應值在 8 中提供。這些研究證明,包括優化的抗-ROR1-VL和/或VH結構域的雙抗體(例如DART-2、DART-8、DART-20、DART-22、DART-23和DART-25)相對於具有親本抗-ROR1-VL和/或VH結構域的雙抗體表現介導對腫瘤細胞的重定向細胞殺傷的更好的能力。尤其地,相比DART-1,對ROR1具有更高的親和力的雙抗體和那些在VH結構域中包括A93T的雙抗體顯示介導重定向細胞殺傷的增強的能力。DART-23和DART-25的EC50值是DART-1的二十分之一到十分之一。
實施例 2
-ROR1 可變結構域的進一步優化和雙特異性三鏈雙抗體的生成
為了進一步優化抗-ROR1-VL和抗-ROR1-VH結構域,將幾種改變引入到抗-ROR1-可變結構域中,以降低免疫原性。修飾親本抗-ROR1-VL結構域和優化的抗ROR1-VL(2)結構域以除去存在於Kabat位置63和64(對應於SEQ ID NO:6SEQ ID NO:11 的位置67)之間的額外的甘氨酸(G)殘基。被命名為“ -ROR1-VL(1) ”和“ -ROR1-VL(14) ”(分別為SEQ ID NO:10SEQ ID NO:23 也見上述 6 )的所得抗-ROR1-VL結構域,被併入到具有兩條或三條多肽鏈的ROR1×CD3雙特異性雙抗體中,並與不同的抗-ROR1-VH結構域配對,如下文更詳細描述。
修飾此類分子的抗-ROR1-VH結構域以除去存在於CDRH 1和CDRH 2中的兩個混雜的高親和性MHC II類結合序列。具體地,將Kabat 位置37(對應於SEQ ID NO:7 的位置37)處的纈氨酸突變為異亮氨酸(“V37I ”),以破壞CDRH 1中存在的免疫原性序列,和將Kabat 位置63處的纈氨酸(對應於SEQ ID NO:7 的位置64)突變為丙氨酸(“V63A ”),以破壞CDRH 2中存在的免疫原性序列。命名為“ -ROR1-VH(8) ”(SEQ ID NO:31 ,見上 6 )的所得VH結構域被併入到具有兩條或三條鏈的ROR1×CD3雙特異性雙抗體中,如下文更詳細描述。
生成了具有兩條鏈的兩種ROR1 x CD3雙特異性雙抗體,其包括抗-ROR1-VL(14)。這些雙抗體被命名為:“DART-32 ”,其包括抗-ROR1-VL(14)和抗-ROR1-VH(7);和“DART-33 ”,其包括抗-ROR1-VL(14)和抗-ROR1-VH(8)(見上 7 )。上文詳細提供了這些示例性ROR1×CD3雙特異性雙鏈雙抗體的第一和第二多肽鏈的一般結構。
DART-32
DART-32的第一多肽鏈的氨基酸序列(SEQ ID NO:114 )如下所示(抗-ROR1-VL(14)以底線表示): QLVLTQSPSA SASLGSSVKL TCTLSSGHKT DTIDWYQQQP GKAPRYLMKL EGSGSYNKGS GVPDRFSGSS SGADWYLTIS SLQSEDEADY YCGTDYPGNY LFGGGTQLTV LG GGGSGGGG EVQLVESGGG LVQPGGSLRL SCAASGFTFS TYAMNWVRQA PGKGLEWVGR IRSKYNNYAT YYADSVKGRF TISRDDSKNS LYLQMNSLKT EDTAVYYCVR HGNFGNSYVS WFAYWGQGTL VTVSSGGCGG GKVAALKEKV AALKEKVAAL KEKVAALKE
DART-32的第二多肽鏈的氨基酸序列與上文提供的DART-25的第二多肽鏈(SEQ ID NO:97 )一致。
DART-33
DART-33的第一多肽鏈的氨基酸序列與上文提供的DART-32的第一多肽鏈(SEQ ID NO:114 )一致。
DART-33的第二多肽鏈的氨基酸序列(SEQ ID NO:115 )如下所示(抗-ROR1-VH(8)以底線表示): QAVVTQEPSL TVSPGGTVTL TCRSSTGAVT TSNYANWVQQ KPGQAPRGLI GGTNKRAPWT PARFSGSLLG GKAALTITGA QAEDEADYYC ALWYSNLWVF GGGTKLTVLG GGGSGGGG QE QLVESGGGLV QPGGSLRLSC AASGFTFSDY YMSWIRQAPG KGLEWVATIY PSSGKTYYAD SAKGRLTISS DNAKDSLYLQ MNSLRAEDTA VYYCTRDSYA DDAALFDIWG QGTTVTVSS G GCGGGEVAAL EKEVAALEKE VAALEKEVAA LEK
此外,生成了具有三條鏈並具有Fc區域的四種ROR1×CD3雙特異性雙抗體,並命名為:“DART-A ”,其包括親本抗-ROR1-VL(SEQ ID NO:6 )和抗-ROR1-VH(SEQ ID NO:7 )結構域;“DART-B ”,其包括抗-ROR1-VL(1) (SEQ ID NO:10 )和親本抗-ROR1-VH(SEQ ID NO:7 )結構域;“DART-C ”,其包括抗-ROR1-VL(14) (SEQ ID NO:23 )和抗-ROR1-VH(7) (SEQ ID NO:30 );和“DART-D ”,其包括抗-ROR1-VL(14) (SEQ ID NO:23 )和抗-ROR1-VH(8) (SEQ ID NO:31 )。上文詳細提供了這些示例性ROR1×CD3雙特異性三鏈雙抗體的第一、第二和第三多肽鏈的一般結構和氨基酸序列。在DART-A、DART-B、DART-C和DART-D中存在的具體抗-ROR1-VL和抗-ROR1-VH結構域提供於 9 中。 -:不確定
通過夾心ELISA檢驗雙特異性ROR1x CD3二鏈和三鏈雙抗體DART-1和DART-A結合ROR1和CD3兩者的能力。簡言之,用shROR1-His塗覆微量滴定板,洗滌板,並用DART-1或DART-A的三倍連續稀釋物孵育。使用通過鏈酶抗生物素-HRP檢測的生物素化的CD3評估與固定化的ROR1結合的雙抗體的量。在板閱讀器上分析所有樣品,並生成結合曲線。在另外的研究中,基本上如上所述檢驗雙特異性ROR1x CD3三鏈雙抗體DART-A、DART-C和DART-D結合ROR1和CD3兩者的能力。來自這些研究的結合曲線( 11A-11B )證明二鏈和三鏈雙抗體都能夠進行雙重抗原結合,並且在具有優化的抗-ROR1-VL和抗-ROR1-VH結構域的三鏈雙抗體中雙重抗原結合被保留。通過FACS分析評價DART-D結合至三種表達ROR1的癌細胞系(HOP-92、PC-3和HBL-2)和表達CD3的人原代T-細胞的表面的能力。簡言之,將細胞(100μL中的0.5至1.0×106 個細胞/ mL)與0.12nM-10nM DART-D(在含有10%人AB血清的FACS緩衝液中,100μL終體積)在微量滴定板中孵育20- 60分鐘。細胞被洗滌兩次,將細胞與識別E-螺旋/K-螺旋(EK)異源二聚化區域的生物素綴合的小鼠抗EK-螺旋抗體(100μL的1μg/mL與1:500稀釋的鏈黴抗生物素-藻紅素混合)一起孵育45分鐘。然後洗滌細胞並用FACS緩衝液重懸,並用BD FCS Canto II流式細胞儀,使用FlowJo v10軟體進行分析。如 12A-12D 所示,DART-D結合表達ROR1的人癌細胞( 12A-12C )和結合表達CD3的 T細胞( 12D )。
使用Biacore分析研究DART-32和DART-33的結合動力學,其中使shROR1-His在固定化的雙抗體上通過,如實施例 1 所述。從這些研究計算的ka 、kd 和KD 在上 7 中示出。
使用Biacore分析研究DART-1、DART-A、DART-B和DART-C的結合親和力,其中使每種雙抗體構建體在固定化的ROR1上通過。簡言之,將shROR1-His捕獲在固定化的抗-PentaHis表面上,並與6.25-100nM的DART-1、DART-A、DART-B或DART-C一起孵育,通過Biacore分析測定結合的動力學。從這些研究計算的ka 、kd 和KD 在上 8 中示出。
這些研究證明,三鏈雙抗體例如DART-1的結合親和力與包括相同VL和VH的雙鏈雙抗體例如DART-A(見 7 )的結合親和力相當。DART-25和DART-32的結合親和力幾乎與DART-A和DART-B的結合親和力相同,表明缺失額外的G殘基不改變結合親和力(見 7 8 )。此外,與包括親本VL和抗-ROR1-VH結構域的相應雙抗體(DART-1和DART-A)相比,DART-32和DART-C的結合增強超過兩倍(見 7 8 )。此外,DART-32和DART-33具有幾乎相同的結合親和力(見 7 ),表明在CDRH 1附近和CDRH 2內引入去免疫化突變對結合親和力沒有負面影響。
實施例 3
細胞毒性研究
基本上如實施例 1 中所述,使用LDH釋放測定法來評價雙特異性ROR1xCD3雙鏈和三鏈雙抗體DART-1和DART-A介導重定向細胞殺傷的能力。對於這些研究,將ROR1 x CD3雙特異性雙抗體或陰性對照雙抗體(缺乏ROR1-結合位點)與效應子全T-細胞和靶腫瘤細胞(JIMT-1乳腺癌細胞、A549肺癌細胞、HBL-2套細胞淋巴瘤細胞)以10:1的效應子與靶的比例一起孵育24小時。在其他研究中,效應子PBMC細胞和靶RECA0201癌幹細胞以30:1的效應子與靶的比例被使用。使用DART-1、DART-A和陰性對照的5倍連續稀釋物。每種靶腫瘤細胞類型的代表性細胞毒性曲線示於 13A-13D 中。在進一步的研究中,使用實施例1中描述的LDH釋放測定法評估雙特異性ROR1 x CD3三鏈雙抗體DART-A、DART-C和DART-D介導細胞毒性的能力。對於這些研究,將ROR1 x CD3雙特異性雙抗體或陰性對照(缺乏ROR1-結合位點)與效應子全T-細胞和靶腫瘤細胞(JIMT-1乳腺癌細胞、NCI-H1957細胞)以10:1的效應子與靶的比例一起孵育24小時。使用DART-A、DART-C、DART-D和陰性對照的5倍連續稀釋物。每種靶腫瘤細胞類型的代表性細胞毒性曲線示於 14A-14B 中。在沒有效應細胞的情況下沒有觀察到細胞殺傷。這些研究表明,三鏈雙抗體保留介導細胞毒性的能力,並且具有優化的抗-ROR1-VL和抗-ROR1-VH結構域的三鏈雙抗體保留在雙鏈形式中觀察到的增強的介導重定向細胞殺傷的能力。
在另外的研究中,使用另外的靶腫瘤細胞類型:HBL-2 B-細胞淋巴瘤細胞;HOP-92肺腺癌細胞;PC-3M前列腺癌細胞;Daoy成神經管細胞瘤細胞;和Saos-2、U-2 OS和MG-63骨肉瘤細胞來評價代表性雙特異性ROR1 × CD3三鏈雙抗體(DART-D;5倍連續稀釋物)的細胞毒性活性。CHO細胞也包括在這些研究中作為ROR1陰性對照靶細胞。對於這些研究,在單獨的實驗中使用來自不同供體的原代T-細胞。針對不同的靶細胞系,有時使用原代T-細胞不同供體。對於每種細胞系測試的供體數目如下:MG-63(2個供體),Saos-2(5個供體),U2-OS(2個供體),HBL-2 (3個供體),HOP-92 (5個供體)、Daoy(3個供體)和PC-3 (7個供體)。對於每種靶細胞類型,T-細胞來自代表性供體的劑量依賴性殺傷曲線顯示於 15A-15H 。在評價的7種靶細胞系中觀察到範圍為0.0013-0.056nM的EC50 值(在每個圖中的括弧中示出),其中HBL-2是最敏感的細胞系(EC50 =0.0013ng/mL)。在評價的最高濃度(10,000ng/mL),用對照DART分子觀察到最小或沒有活性。在ROR1-陰性CHO細胞中,在DART-D存在的情況下沒有觀察到細胞毒性,證實雙特異性ROR1 x CD3雙抗體對表達ROR1的靶細胞的活性的特異性。這些研究進一步證實,雙特異性ROR1 x CD3三鏈雙抗體(例如,DART-D)介導表達ROR1的靶細胞的有效的,特異性的重定向殺傷。
在人PBMC中,單獨地或在以10:1的E:T細胞比存在表達ROR1的靶細胞(NCI-H1975肺癌細胞)的情況下,通過FACS評估由代表性雙特異性ROR1 x CD3三鏈雙抗體(DART-D)誘導的T-細胞啟動水準。簡言之,將PBMC (100-150μL測定培養基(RPMI 1640 + 10%FBS)中的200,000個細胞/孔),單獨地或與靶細胞(在50μL中的20,000個細胞/孔)一起,與指示濃度的DART-D的連續稀釋物在微量滴定板的重複的孔中一起在37℃孵育24小時。如上詳細描述地,將來自每個孔的40μL上清液用於LDH釋放測量,剩餘的上清液用於測量細胞因數。簡言之,在測定板中用FACS緩衝液(100μL/孔)中的CD8-FITC、CD4-APC、CD25-PE和CD69-PECy5抗體(BD Biosciences)標記細胞。將板(在4℃的黑暗中)孵育30分鐘。然後洗滌細胞並重懸於FACS緩衝液中,並基本上如上文實施例2所述進行分析。此外,根據製造商的說明使用BD CBA 人Th1/Th2細胞因數試劑盒,在從相同實驗收集的培養物上清液中測量IFN-γ、IL-2、IL-4、IL-6、IL-10和TNF-α的細胞因數水準。使用FCAP Array(v3.0.1,BD Biosciences)測定細胞因數濃度。使用樣品強度值從4-參數標準曲線外推標準物濃度範圍(0-5000pg/mL)之外的值。這些研究的結果顯示在 16A-16B17A-17D18A-18E 中。
DART-D介導的T-細胞啟動與靶細胞的細胞毒性相關( 16A-16B )。在所有評價的濃度,在靶細胞存在的情況下觀察到顯著的DART-D介導的細胞毒性( 16A )。相比之下,在CTL測定中,當單獨的PBMC與DART-D或對照DART孵育時,沒有觀察到細胞毒性( 16B )。流式細胞術分析顯示,在表達ROR1的靶細胞存在的情況下,通過DART-D,CD4+ ( 17A 17C )和CD8+ T-細胞亞群( 17B 17D )上的CD69( 17A-17B )和CD25( 17C-17D )T細胞啟動標記物的劑量依賴性方式的上調。這些資料表明,由本發明的雙特異性ROR1 x CD3雙抗體介導的T細胞啟動依賴於效應細胞-靶細胞共接合(co-engagement)。與T-細胞啟動標記物一致,當在存在表達ROR1的靶細胞(實心符號)的情況下用DART-D處理PBMC時,觀察到測量的所有6種細胞因數的水準的劑量依賴性增加(IFN-γ、TNF-α、IL-10、IL-6、IL-4和IL-2,分別示於 18A-18F )。然而,當單獨的PBMC用DART-D或對照陰性對照雙抗體(空心符號)處理時,沒有觀察到細胞因數釋放。
實施例 4
體內研究
在幾種癌症模型中檢驗了雙特異性ROR1 x CD3雙鏈和三鏈雙抗體的體內活性。在共混HBL-2套細胞淋巴瘤模型中檢驗DART-1和DART-A的抗腫瘤活性。簡言之,將HBL-2套細胞淋巴瘤細胞(5×106 )與啟動的人T-細胞以5:1的比例預混合,並於第0天皮下(SQ)植入到NOD/SCID(NOG)小鼠(8只雌性/組)中。從第0天開始,每天一次,通過靜脈內(IV)注射處理小鼠,達四天,在一項研究中用DART-1(0.004、0.02、0.1或1mg/kg)或僅僅媒介物,和在另一項研究中用DART-A(0.00016、0.0008、0.004或0.02mg/kg)或僅僅媒介物。在研究過程中監測腫瘤生長。這些實驗的結果( 19A-19B )顯示,DART-1和DART-A都能夠在這種鼠異種移植模型中預防或抑制腫瘤發展。
在進一步的研究中,在PBMC-重構的HOP-92肺腺癌模型中檢驗DART-A和DART-D的抗腫瘤活性。簡言之,將HOP-92細胞(5×106 )重懸於50μL Ham's F12培養基中,與50μL 基質膠(Matrigel)組合,然後在研究第0天通過皮內(ID)注射植入MHCl1-/-小鼠(6-7只雌性/組)中,在研究第13天,通過腹膜內(IP)注射(200μL,Ham's F12培養基)植入人PBMC(1×107 個存活細胞)。在第26天,將動物隨機分組,並通過IV注射用DART-A (5、50或500μg/ kg),DART-D (0.5、5、50或500μg/ kg)或僅僅媒介物處理,每7天一次,共5劑量。在研究過程中監測腫瘤體積。該實驗的結果( 20A-20B )顯示,DART-A和DART-D都能夠在這種鼠異種移植模型中預防或抑制腫瘤發展。
在進一步的研究中,在PBMC-重構的NCI-H1975肺癌模型中檢驗DART-B和DART-D的抗腫瘤活性。簡言之,將NCI-H1975細胞(5×106 )重懸於50μL Ham's F12培養基中,與50μL基質膠組合,然後在研究第0天通過ID注射植入MHCl1-/-小鼠(6只雌性/組)中。在研究的第7天,通過IP注射(200μL,Ham's F12培養基)植入人PBMC(1×107 個存活細胞)。在第15天,將動物隨機分組,並通過IV注射用DART-B(0.5、5、50、或500μg/ kg),DART-D(0.5、5、50或500μg/ kg)或僅僅媒介物處理,每7天一次,共2劑量。該實驗的結果( 21A-21B )顯示,DART-B和DART-D都能夠在這種鼠異種移植模型中預防或抑制腫瘤發展。
在進一步研究中,在共混REC1套細胞癌(mantle cancer)模型中檢驗DART-B的抗腫瘤活性。簡言之,將REC1細胞(5×106 )與啟動的人T細胞以5:1的比例預混合,並在第0天皮下(SQ)植入到NOD / SCID(NOG)小鼠(8只雌性/組)中。從第0天開始,通過靜脈內(IV)注射,用DART-B(0.5、5、50或500μg/ kg)或僅僅媒介物處理小鼠,每天一次,持續4天。在研究過程中監測腫瘤生長。該實驗的結果( 22 )顯示,DART-B能夠在這種鼠異種移植模型中預防或抑制腫瘤發展。
在進一步的研究中,在PBMC-重構的REC1套細胞癌模型中檢驗DART-D的抗腫瘤活性。簡言之,在研究第0天通過IP注射(200μL,Ham's F12培養基)植入人PBMC(1×107 個存活細胞)。將REC1細胞(5×106 )重懸於50μL Ham's F12培養基中,與50 μL基質膠組合,然後在研究的第1天通過ID注射植入MHCl1-/-小鼠(8只雌性/組)中。在第13天,將動物隨機分組,並通過IV注射用DART-D(0.05、0.5、5、50、或500μg/ kg)或僅僅媒介物處理,每7天一次,共4劑量。該實驗的結果( 23 )顯示,DART-D能夠在這種鼠異種移植模型中預防或抑制腫瘤發展。
在進一步研究中,在共混DAOY促結蒂組織增生的小腦成神經管細胞瘤模型中檢驗DART-D的抗腫瘤活性。簡言之,將DAOY細胞(5×106 )與啟動的人T-細胞以5:1的比例預混合,並在第0天皮下(SQ)植入到NOG小鼠(7只雌性/組)中。從第0天開始,通過靜脈內(IV)注射用DART(0.005、0.05、0.5、5或50ng/kg)或僅僅媒介物處理小鼠,每天一次,持續四天。在研究過程中監測腫瘤生長。該實驗的結果( 24 )顯示,DART-D能夠在這種鼠異種移植模型中預防或抑制腫瘤發展。
實施例 5
三特異性三價結合分子的生成
生成四種三特異性ROR1 x CD3 x CD8三價結合分子,其各自具有對ROR1特異性的一個結合位點(包括親本和/或優化的抗-ROR1-VL和抗-ROR1-VH結構域)、對CD3特異性的一個結合位點(包括CD3 mAb 1(D65G)的VL和抗-ROR1-VH結構域)和對CD8特異性的一個結合位點(包括TRX2的VL和抗-ROR1-VH結構域)。具有三條多肽鏈並且包括親本抗-ROR1-VL和抗-ROR1-VH結構域的三價結合分子TRIDENT-A、具有四條多肽鏈並且包括親本抗-ROR1-VL和抗-ROR1 -VH結構域的TRIDENT-B、具有三條多肽鏈並且包括優化的抗-ROR1-VL(14)和抗-ROR1-VH(8)結構域的TRIDENT-C和具有四條多肽鏈並且包括優化的抗-ROR1-VL(14)和抗-ROR1-VH(8)結構域的TRIDENT-D已經在上文中被討論。上文詳細提供了這些三鏈和四鏈ROR1 x CD3 x CD8三價結合分子的多肽鏈的一般結構。存在於TRIDENT-A、TRIDENT-B、TRIDENT-C和TRIDENT-D中的具體抗-ROR1-VL和抗-ROR1-VH結構域提供於 10 中。
使用BIACORE®分析來研究ROR1 x CD3 x CD8三價結合分子中的每一種與ROR1的結合動力學,其中在BIACORE®分析中,基本上如上所述使每種三價結合分子(6.25至100nM)通過固定化的shROR1-His。從這些研究計算的ka 、kd 和KD 顯示在 10 中,其顯示包括優化的抗-ROR1-VL和抗-ROR1-VH結構域的ROR1 x CD3 x CD8三價結合分子具有改善的結合親和力。此外,也顯示TRIDENT-A和TRIDENT-B能夠結合ROR1和CD3兩者,證明ROR1 x CD3 x CD8三價結合分子保持雙重抗原結合能力。
基本上如實施例 1 中所述使用LDH釋放試驗來評估雙特異性ROR1 x CD3三多肽鏈雙抗體DART-A和三特異性ROR1 x CD3 x CD8三價結合分子TRIDENT-A和TRIDENT-B介導重定向細胞殺傷的能力。對於這些研究,將DART-A、TRIDENT-A、TRIDENT-B或陰性對照(具有四條多肽鏈的三特異性結合分子,其結合不相關的抗原、CD3和CD8)與效應子全T-細胞和靶腫瘤細胞(JIMT-1乳腺癌細胞、NCI-H1975細胞、Calu-3肺腺癌細胞)一起以10:1的效應子與靶的比例一起孵育24小時。使用DART-A、TRIDENT-A和TRIDENT-B的5倍連續稀釋物。每種靶腫瘤細胞類型的代表性細胞毒性曲線示於 22A-22C 中,EC50值提供於 11 中。
這些研究表明,與具有相同的抗-ROR1-VL和抗-ROR1-VH結構域的雙特異性ROR1 x CD3雙抗體相比,三特異性ROR1 x CD3 x CD8三價結合分子具有介導對腫瘤細胞重定向細胞殺傷的更好的能力。
本說明書提到的所有出版物和專利通過參考併入本文,達到如同具體和單獨指出每個單個出版物或專利申請通過參考以其整體併入的相同程度。儘管已經結合其具體實施方式描述了本發明,但是應當理解,其能夠被進一步修改,並且本申請旨在覆蓋大體上根據本發明原理並且包括與本公開的偏離的本發明的任何變型、用途或改變,只要在本發明所屬領域的已知或習慣實踐內並且如可應用至本文之前所闡釋的本質特徵。
1 提供了由兩條多肽鏈組成的、具有兩個表位-結合位點的代表性共價結合的雙抗體的示意圖,每條多肽鏈均具有E-螺旋或K-螺旋異源二聚體-促進結構域(下文提供了可選擇的的異源二聚體-促進結構域)。半胱氨酸殘基可以存在於連接體和/或存在於異源二聚體-促進結構域中,如 3B 所示。以相同的陰影或填充式樣顯示識別相同表位元的VL和VH結構域。 2 提供了由兩條多肽鏈組成的、具有兩個表位-結合位點的代表性共價結合的雙抗體分子的示意圖,每條多肽鏈均具有CH2和CH3結構域,以便締合的鏈形成Fc區域的全部或部分。以相同的陰影或填充式樣顯示識別相同表位元的VL和VH結構域。 3A-3C 提供了由兩對多肽鏈(即,總共四條多肽鏈)組成的、具有四個表位-結合位點的代表性共價結合的四價雙抗體的示意圖。每對的一條多肽均具有CH2和CH3結構域,以便締合的鏈形成Fc區域的全部或部分。以相同的陰影或填充式樣顯示識別相同表位元的VL和VH結構域。兩對多肽鏈可以是相同的。在其中這兩對多肽鏈相同並且VL和VH結構域識別不同的表位(如 3A-3B 所示)這樣的實施方案中,所得分子具有四個表位-結合位點,並且對於每個結合表位是雙特異性和二價的。在其中VL和VH結構域識別相同的表位(例如,相同的VL結構域CDR和相同的VH結構域CDR在兩條鏈上都被使用)這樣的實施方案中,所得分子具有四個表位-結合位點,並且對於單表位是單特異性和四價的。可選地,兩對多肽鏈可以是不同的。在其中這兩對多肽鏈是不同的並且每對多肽的VL和VH結構域識別不同的表位(如 3C 中不同的陰影和式樣所示)這樣的實施方案中,所得分子具有四個表位-結合位點並且對於每個結合表位是四特異性和單價的。 3A 顯示含有Fc區域的雙抗體,其含有包括半胱氨酸殘基的肽異源二聚體-促進結構域。 3B 顯示含有Fc區域的雙抗體,其含有包括半胱氨酸殘基和連接體(具有任選的半胱氨酸殘基)的E-螺旋和K-螺旋異源二聚體-促進結構域。 3C 顯示含有Fc區域的雙抗體,其包括抗體CH1和CL結構域。 4A 4B 提供了由三條多肽鏈組成的、具有兩個表位-結合位點的代表性共價結合的雙抗體分子的示意圖。多肽鏈中的兩條均具有CH2和CH3結構域,以便締合的鏈形成Fc區域的全部或部分。包括VL和VH結構域的多肽鏈進一步包括異源二聚體-促進結構域。以相同的陰影或填充式樣顯示識別相同表位元的VL和VH結構域。 5 提供了由五條多肽鏈組成的、具有四個表位-結合位點的代表性共價結合的雙抗體分子的示意圖。多肽鏈中的兩條均具有CH2和CH3結構域,以便締合的鏈形成包括Fc區域的全部或部分的Fc區域。 包括連接的VL和VH結構域的多肽鏈進一步包括異源二聚體-促進結構域。以相同的陰影或填充式樣顯示識別相同表位元的VL和VH結構域。 6A-6F 提供了具有三個表位-結合位元點的含有Fc區域的代表性三價結合分子的示意圖。 6A 6B 分別示意性地示出了包括兩個雙抗體型(diabody-type)結合結構域和具有不同結構域取向的Fab型(Fab-type)結合結構域的三價結合分子的結構域,其中雙抗體型結合結構域在Fc區域的N-末端或C-末端。 6A 6B 中的分子包括四條鏈。 6C 6D 分別示意性地示出了包括在Fc區域的N-末端的兩個雙抗體型結合結構域和Fab型結合結構域或scFv型結合結構域的三價結合分子的結構域,其中在Fab型結合結構域中,輕鏈和重鏈通過多肽間隔體連接。 6E 6F 中的三價結合分子分別示意性地示出了包括在Fc區域的C-末端的兩個雙抗體型結合結構域和Fab型結合結構域或scFv型結合結構域的三價結合分子的結構域,其中在Fab型結合結構域中,輕鏈和重鏈通過多肽間隔體連接。 6C-6F 中的三價結合分子包括三條鏈。以相同的陰影或填充式樣顯示識別相同表位元的VL和VH結構域。 7A-7B 描繪了親本ROR1-結合分子的非優化的抗-ROR1-VL結構域( 7A SEQ ID NO:6 )和非優化的VH結構域( 7B SEQ ID NO:7 )的氨基酸序列。底線表示CDR殘基,框表示在優選的優化的抗-ROR1-結合分子的序列中突變的殘基;Kabat位置用箭頭並且通過序列下方的編號指示,連續的氨基酸殘基編號在序列上方指示。 8A-8B 顯示了ROR1 x CD3雙特異性雙鏈共價結合的雙抗體:DART-1、DART-2、DART-16和DART-20介導對JIMT-1乳腺癌細胞的重定向細胞殺傷的能力,如通過細胞相關的螢光素酶活性( 8A )或在細胞裂解後乳酸脫氫酶(LDH)向培養基中的釋放所測量的( 8B )。 9A-9B 顯示了ROR1 x CD3雙特異性雙鏈共價結合的雙抗體DART-1、DART-14、DART-15、DART-22和DART-23介導對JIMT-1乳腺癌細胞的重定向細胞殺傷的能力,如通過細胞相關的螢光素酶活性( 9A )或在細胞裂解後乳酸脫氫酶(LDH)向培養基中的釋放所測量的( 9B )。 10A-10C 顯示了ROR1 x CD3雙特異性雙鏈共價結合的雙抗體DART-1、DART-22和DART-25介導對JIMT-1乳腺癌細胞( 10A )、HBL-2套細胞淋巴瘤細胞( 10B )或Jeko-1套細胞淋巴瘤細胞( 10C )的重定向細胞殺傷的能力,如通過在細胞裂解後乳酸脫氫酶(LDH)向培養基中的釋放所測量的。 11A-11B 採用夾心ELISA顯示了ROR1 x CD3雙特異性雙鏈和三鏈雙抗體的雙抗原結合能力。雙鏈雙抗體DART-1和DART-A的結合曲線顯示在 11A 中(結合是450nm處吸光度的函數),三鏈雙抗體DART-A、DART-B和DART-C的結合曲線的平均值顯示在 11B 中。 12A-12D 是流式細胞儀(FACS cytometry)圖譜(profile)的描繪,通過FACS顯示了ROR1 x CD3雙特異性三鏈雙抗體DART-D與表達ROR1的癌細胞系HOP-92( 12A )、PC-3( 12B )和HBL-2( 12C )結合的能力,以及與表達CD3的人原代T細胞( 12D )結合的能力。 13A-13D 顯示了ROR1 x CD3雙特異性雙鏈和三鏈雙抗體DART-1和DART-A介導對JIMT-1乳腺癌細胞( 13A )、A549肺癌細胞( 13B )、HBL-2套細胞淋巴瘤細胞( 13C )和RECA0201癌幹細胞( 13D )的重定向細胞殺傷的能力。通過在細胞裂解後乳酸脫氫酶(LDH)向培養基中的釋放來測量細胞毒性。 14A-14B 顯示了三鏈雙抗體DART-A、DART-C和DART-D介導對JIMT-1乳腺癌細胞( 14A )和NCI-H1975細胞( 14B )的重定向細胞殺傷的能力。通過在細胞裂解後乳酸脫氫酶(LDH)向培養基中的釋放來測量細胞毒性。 15A-15H 顯示了代表性三鏈ROR1 x CD3雙特異性雙抗體DART-D介導對HBL-2 B細胞淋巴瘤細胞( 15A )、HOP-92肺腺癌細胞( 15B );PC-3M前列腺癌細胞( 15C );Daoy成神經管細胞瘤細胞( 15D );和Saos-2骨肉瘤細胞( 15E )、U-2 OS骨肉瘤細胞( 15F )和MG-63骨肉瘤細胞( 15 G)的重定向細胞殺傷的能力。正如預期的,DART-D不介導對ROR1陰性CHO細胞的重定向細胞殺傷( 15H )。通過在細胞裂解後乳酸脫氫酶(LDH)向培養基中的釋放來測量細胞毒性。 16A-16B 顯示了代表性三鏈ROR1 x CD3雙特異性雙抗體DART-D在靶NCI-H1975細胞和PBMC存在下介導細胞毒性的能力( 16A ),在PBMCs存在下沒有觀察到細胞毒性( 16B )。通過在細胞裂解後乳酸脫氫酶(LDH)向培養基中的釋放來測量細胞毒性。 17A-17D 顯示了代表性三鏈ROR1 x CD3雙特異性雙抗體DART-D以劑量依賴的方式在表達ROR1的NCI-H1975靶細胞的存在下上調在CD4+ ( 17A 17C )和CD8+ T細胞亞群( 17B 17D )上的CD69( 17A-17B )和CD25( 17C-17D )T細胞啟動標記物的能力。 18A-18F 顯示在PBMCs的培養上清液中的IFN-γ( 18A )、TNF-α( 18B )、IL-10( 18C )、IL-6( 18D )、IL-4( 18E )、IL-2( 18F )細胞因數水準,其中所述PBMCs在表達ROR1的靶細胞(實心符號)存在下被DART-D(實心方形)或陰性對照雙抗體(空心菱形)處理或PBMCs單獨地被DART-D(空心方形)或陰性對照雙抗體(空心圓)處理。 19A-19B 顯示ROR1 x CD3雙特異性雙抗體DART-1( 19A )和DART-A( 19B )相對於媒介對照在鼠共混異種移植模型中,在體內阻止或抑制HBL-2套細胞淋巴瘤細胞的腫瘤生長或發展的能力。 20A-20B 顯示ROR1 x CD3雙特異性雙抗體DART-A( 20A )和DART-D( 20B )相對於媒介對照在鼠PBMC重構的異種移植模型中,在體內阻止或抑制HOP-92肺腺癌細胞的腫瘤生長或發展的能力。 21A-21B 顯示ROR1 x CD3雙特異性雙抗體DART-B( 21A ) 和DART-D( 21B )相對於媒介對照在PBMC重構的鼠異種移植模型中,在體內阻止或抑制NCI-H1975肺癌細胞的腫瘤生長或發展的能力。 22 顯示ROR1 x CD3雙特異性雙抗體DART-B相對於媒介對照在共混鼠異種移植模型中,在體內阻止或抑制REC1套細胞癌細胞的腫瘤生長或發展的能力。 23 顯示ROR1 x CD3雙特異性雙抗體DART-D相對於媒介對照在PBMC重構的鼠異種移植模型中,在體內阻止或抑制REC1套細胞癌細胞的腫瘤生長或發展的能力。 24 顯示ROR1 x CD3雙特異性雙抗體DART-D相對於媒介對照在鼠共混異種移植模型中,在體內阻止或抑制DAOY促結蒂組織增生的小腦成神經管細胞瘤細胞的腫瘤生長或發展的能力。 25A-25C 顯示雙特異性ROR1 x CD3三鏈雙抗體DART-A和三特異性ROR1 x CD3 x CD8三價結合分子TRIDENT-A和TRIDENT-B介導對JIMT-1乳腺癌細胞( 25A )、NCI-H1975細胞( 25B )和Calu-3肺腺癌細胞( 25C )的重定向細胞殺傷的能力。通過在細胞裂解後乳酸脫氫酶(LDH)向培養基中的釋放來測量細胞毒性。

Claims (26)

  1. 一種ROR1-結合分子,其包括可變輕鏈(VL)結構域和可變重鏈(VH)結構域,其中所述VL結構域具有SEQ ID NO 8 的氨基酸序列: QLVLTQSPSASASLGX1 SVX2 LTCTLSSGHKTDTIDWYQQQPGKAPRYLMX3 LEGSGSYNKGSGVPDRFX4 SGX5 SSGADX6 YLTISSLQSEDEADYYCGTDX7 PGNYLFGGGTQLTVLG 其中X6 是W,並且其中: (a)X1 是S或G,X2 是K、I或N,X3 是K或N,X4 是G或不存在,X5 是S或I,X7 是Y或N; (b)X1 是S,X2 是K,X3 是K,X4 是G或不存在,X5 是S,並且X7 是N; (c)X1 是S,X2 是K,X3 是K,X4 是G或不存在,X5 是I,並且X7 是Y; (d)X1 是S,X2 是K,X3 是K,X4 是G或不存在,X5 是I,並且X7 是N; 或 (e)X1 是S,X2 是K,X3 是K,X4 是G或不存在,X5 是S,並且X7 是Y。
  2. 如請求項1所述的ROR1-結合分子,其中所述VH結構域包括SEQ ID NO:9的氨基酸序列: QEQLVESGGGLVQPGGSLRLSCAASGFTFS DYYMS WX1 RQAPGKGLEWVAT IYPSSGKTYYADSX2 KG RX3 TISSDNAKX4 SLYLQMNSLRAEDTAVYYCX5 R DSYADDAALFDI WGQGTTVTVSS 其中: (a)X1 是V或I,X2 是V或A,X3 是L,X4 是N、D或Y,並且X5 是A或T; (b)X1 是V或I,X2 是V或A,X3 是F或L,X4 是D或Y,並且X5 是A或T; (c)X1 是V或I,X2 是V或A,X3 是F或L,X4 是N、D或Y,並且X5 是T; (d)X1 是V或I,X2 是V或A,X3 是L,X4 是N,並且X5 是A; (e)X1 是V或I,X2 是V或A,X3 是F,X4 是D,並且X5 是A; (f)X1 是V或I,X2 是V或A,X3 是F,X4 是N,並且X5 是T; (g)X1 是V或I,X2 是V或A,X3 是L,X4 是D,並且X5 是T; (h)X1 是I,X2 是A,X3 是F或L,X4 是N、D或Y,並且X5 是A或T; (i)X1 是I,X2 是A,X3 是F,X4 是N,並且X5 是A; (j)X1 是I,X2 是A,X3 是L,X4 是N,並且X5 是A; (k)X1 是I,X2 是A,X3 是F,X4 是D,並且X5 是A; (l)X1 是I,X2 是A,X3 是F,X4 是N,並且X5 是T;或 (m)X1 是I,X2 是A,X3 是L,X4 是D,並且X5 是T。
  3. 如請求項1-2中任一項所述的ROR1-結合分子,其中: (a)     所述VL包括SEQ ID NO:11SEQ ID NO:20 SEQ ID NO:21SEQ ID NO:22SEQ ID NO:23 的氨基酸序列;並且 (b)    所述VH包括SEQ ID NO:26 SEQ ID NO:24 SEQ ID NO:25 SEQ ID NO:26 SEQ ID NO:30SEQ ID NO:31SEQ ID NO:32 的氨基酸序列。
  4. 如請求項1-3中任一項所述的ROR1-結合分子,其中所述分子是抗體或其抗原結合片段。
  5. 如請求項1-3中任一項所述的ROR1-結合分子,其中所述分子是: (a)     雙特異性抗體;或 (b)    雙抗體,所述雙抗體是包括兩條、三條、四條或五條多肽鏈的共價結合的複合物;或 (c)     三價結合分子,所述三價結合分子是包括三條、四條、五條或更多條多肽鏈的共價結合的複合物。
  6. 如請求項1-5中任一項所述的ROR1-結合分子,其中所述分子包括Fc區域。
  7. 如請求項5所述的ROR1-結合分子,其中所述分子是雙抗體,並且包括白蛋白-結合結構域(ABD)。
  8. 如請求項6所述的ROR1-結合分子,其中所述Fc區域是變異Fc區域,所述變異Fc區域包括: (a)     降低變異Fc區域對FcγR的親和力的一個或多個氨基酸修飾;和/或 (b)    提高變異Fc區域的血清半衰期的一個或多個氨基酸修飾。
  9. 如請求項8所述的ROR1-結合分子,其中降低變異Fc區域對FcγR的親和力的所述修飾包括以下的取代:L234A;L235A;或L234A和L235A,其中所述編號是如Kabat中的EU索引的編號。
  10. 如請求項8或9所述的ROR1-結合分子,其中提高變異Fc區域的血清半衰期的所述修飾包括以下的取代:M252Y;M252Y和S254T;M252Y和T256E;M252Y、S254T和T256E;或K288D和H435K,其中所述編號是如Kabat中的EU索引的編號。
  11. 如請求項1-10中任一項所述的ROR1-結合分子,其中所述分子是雙特異性的,並且包括能夠免疫特異性結合ROR1的表位的兩個表位-結合位點和能夠免疫特異性結合存在於效應細胞表面上的分子的表位的兩個表位-結合位點。
  12. 如請求項1-10中任一項所述的ROR1-結合分子,其中所述分子是雙特異性的,並且包括能夠免疫特異性結合ROR1的表位的一個表位-結合位點和能夠免疫特異性結合存在於效應細胞表面上的分子的表位的一個表位-結合位點。
  13. 如請求項1-10中任一項所述的ROR1-結合分子,其中所述分子是三特異性的,並且包括: (a)     能夠免疫特異性結合ROR1的表位的一個表位-結合位點; (b)    能夠免疫特異性結合存在於效應細胞表面上的第一分子的表位的一個表位-結合位點;和 (c)     能夠免疫特異性結合存在於效應細胞表面上的第二分子的表位的一個表位-結合位點。
  14. 如請求項1-3中任一項所述的ROR1-結合分子,其中所述分子能夠同時結合ROR1和存在於效應細胞表面上的分子。
  15. 如請求項11-13中任一項所述的ROR1-結合分子,其中存在於效應細胞表面上的所述分子是CD2、CD3、CD8、TCR或NKG2D。
  16. 如請求項11-15中任一項所述的ROR1-結合分子,其中所述效應細胞是細胞毒性T細胞或自然殺傷(NK)細胞。
  17. 如請求項11-16中任一項所述的ROR1-結合分子,其中存在於效應細胞表面上的所述分子是CD3。
  18. 如請求項13所述的ROR1-結合分子,其中存在於效應細胞表面上的所述第一分子是CD3,並且存在於效應細胞表面上的所述第二分子是CD8。
  19. 如請求項11-18中任一項所述的ROR1-結合分子,其中所述分子介導表達ROR1的細胞和細胞毒性T細胞的協調結合。
  20. 如請求項15或17-19中任一項所述的ROR1-結合分子,其中所述分子包括: (a)    CD3 mAb 1 (SEQ ID NO:75 )的VL結構域,或所述VL結構域的一個或多個CDR;和/或 (b)   CD3 mAb 1 (SEQ ID NO:76 )的VH結構域或CD3 mAb 1 (D65G) (SEQ ID NO:77 )的VH結構域,或所述VH結構域的一個或多個CDR。
  21. 如請求項1-5、6、8-9、12、14-17和19-20中任一項所述的ROR1-結合分子,其中所述分子包括第一多肽鏈、第二多肽鏈和第三多肽鏈,並且其中: (a)     所述第一多肽鏈包括SEQ ID NO:98 SEQ ID NO:101 SEQ ID NO:102 ; (b)    所述第二多肽鏈包括SEQ ID NO:99 SEQ ID NO:103 SEQ ID NO:104 ;和 (c)     所述第三多肽鏈包括SEQ ID NO:100
  22. 一種藥物組合物,其包括有效量的如請求項1-21中任一項所述的ROR1-結合分子和藥學上可接受的載體、賦形劑或稀釋劑。
  23. 如請求項1-21中任一項所述的ROR1-結合分子或如請求項22所述的藥物組合物在治療與ROR1表達相關或特徵在於ROR1表達的疾病或病症中的用途。
  24. 如請求項23所述的用途,其中與ROR1表達相關或特徵在於ROR1表達的所述疾病或病症是癌症。
  25. 如請求項23所述的用途,其中所述癌症的特徵在於存在選自以下細胞的癌細胞:腎上腺腫瘤、AIDS相關的癌症、軟組織腺泡狀肉瘤、星形細胞瘤、腎上腺癌、膀胱癌、骨癌、腦和脊髓癌、轉移性腦腫瘤、B細胞癌、乳腺癌、頸動脈體瘤、宮頸癌、軟骨肉瘤、脊索瘤、嫌色細胞腎細胞癌、透明細胞癌、結腸癌、結直腸癌、皮膚良性纖維組織細胞瘤、促結締組織增生小圓細胞瘤、室管膜細胞瘤、尤文氏瘤、骨外黏液樣軟骨肉瘤、不完全性骨纖維生成、骨的纖維發育異常、膽囊癌或膽管癌、胃癌、妊娠滋養層疾病、生殖細胞瘤、頭頸癌、肝細胞癌、胰島細胞腫瘤、卡波西氏肉瘤、腎癌、白血病、脂肪肉瘤/惡性的脂肪瘤、肝癌、淋巴瘤、肺癌、成神經管細胞瘤、黑素瘤、腦膜瘤、多發性內分泌瘤、多發性骨髓瘤、骨髓增生異常綜合征、成神經細胞瘤、神經內分泌腫瘤、卵巢癌、胰腺癌、甲狀腺乳頭狀癌、甲狀旁腺腫瘤、兒科癌症、周圍神經鞘瘤、嗜鉻細胞瘤、垂體瘤、前列腺癌、眼色素層後黑素瘤、罕見血液學病症、腎轉移性癌症、橫紋肌樣瘤、橫紋肌肉瘤、肉瘤、皮膚癌、軟組織肉瘤、鱗狀細胞癌、胃癌、滑膜肉瘤、睾丸癌、胸腺癌、胸腺瘤、甲狀腺轉移性癌和子宮癌。
  26. 如請求項24所述的用途,其中所述癌症選自:腎上腺癌、膀胱癌、乳腺癌、結直腸癌、胃癌、惡性膠質瘤、腎癌、非小細胞肺癌、急性淋巴細胞白血病、急性骨髓性白血病、慢性淋巴細胞白血病、慢性骨髓性白血病、毛細胞白血病、伯基特淋巴瘤、彌散性大B細胞淋巴瘤、濾泡淋巴瘤、套細胞淋巴瘤、邊緣區淋巴瘤、非霍奇金淋巴瘤、小淋巴細胞淋巴瘤、多發性骨髓瘤、黑素瘤、卵巢癌、胰腺癌、前列腺癌、皮膚癌、腎細胞癌、睾丸癌和子宮癌。
TW106104961A 2016-02-17 2017-02-15 Ror1-結合分子及其使用方法 TW201730212A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201662296267P 2016-02-17 2016-02-17

Publications (1)

Publication Number Publication Date
TW201730212A true TW201730212A (zh) 2017-09-01

Family

ID=58191624

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106104961A TW201730212A (zh) 2016-02-17 2017-02-15 Ror1-結合分子及其使用方法

Country Status (5)

Country Link
US (1) US20170233472A1 (zh)
AR (1) AR108034A1 (zh)
TW (1) TW201730212A (zh)
UY (1) UY37127A (zh)
WO (1) WO2017142928A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201803098VA (en) 2015-10-30 2018-05-30 Nbe Therapeutics Ag Anti-ror1 antibodies
BR112018014615A2 (pt) 2016-01-20 2018-12-11 The Scripps Research Institute composições de anticorpo para ror1 e métodos relacionados
AU2018219887A1 (en) 2017-02-08 2019-08-22 Dragonfly Therapeutics, Inc. Multi-specific binding proteins for activation of natural killer cells and therapeutic uses thereof to treat cancer
AU2018220736A1 (en) 2017-02-20 2019-09-05 Dragonfly Therapeutics, Inc. Proteins binding HER2, NKG2D and CD16
US11459394B2 (en) 2017-02-24 2022-10-04 Macrogenics, Inc. Bispecific binding molecules that are capable of binding CD137 and tumor antigens, and uses thereof
BR112019024654A2 (pt) * 2017-05-23 2020-06-09 Dragonfly Therapeutics Inc proteína de ligação nkg2d, cd16 e ror1 ou ror2
GB201710835D0 (en) 2017-07-05 2017-08-16 Ucl Business Plc ROR1 Antibodies
GB201710836D0 (en) 2017-07-05 2017-08-16 Ucl Business Plc ROR1 Car T-Cells
GB201710838D0 (en) 2017-07-05 2017-08-16 Ucl Business Plc Bispecific antibodies
US20210139579A1 (en) * 2017-07-20 2021-05-13 Nbe-Therapeutics Ag Multispecific antibody product that binds to different ror1 epitopes
SG11202000846WA (en) 2017-08-07 2020-02-27 Nbe Therapeutics Ag Anthracycline-based antibody drug conjugates having high in vivo tolerability
CN117756946A (zh) * 2017-11-03 2024-03-26 莱蒂恩技术公司 用于用抗ror1免疫治疗来治疗癌症的组合物和方法
US20200362054A1 (en) * 2017-11-21 2020-11-19 Brian Granda Trispecific binding molecules against tumor-associated antigents and use thereof
GB201721802D0 (en) * 2017-12-22 2018-02-07 Almac Discovery Ltd Ror1-specific antigen binding molecules
MX2020008336A (es) 2018-02-08 2020-09-21 Dragonfly Therapeutics Inc Dominios variables de anticuerpos que se dirigen al receptor nkg2d.
US11780926B2 (en) * 2018-03-22 2023-10-10 Universität Stuttgart Multivalent binding molecules
WO2019225777A1 (ko) * 2018-05-23 2019-11-28 에이비엘바이오 주식회사 항-ror1 항체 및 그 용도
PE20210488A1 (es) 2018-05-23 2021-03-15 Pfizer Anticuerpos especificos para gucy2c y sus usos
US20220227866A1 (en) 2019-05-23 2022-07-21 VelosBio Inc. Anti-ror1 / anti-cd3 bispecific binding molecules
EP4209509A1 (en) * 2020-09-03 2023-07-12 Harbour Biomed (Shanghai) Co., Ltd Ror1-targeting antibody or antigen-binding fragment thereof, preparation method therefor, and application thereof
EP3988568A1 (en) 2020-10-21 2022-04-27 Numab Therapeutics AG Combination treatment
AU2022215847A1 (en) 2021-02-02 2023-08-10 Numab Therapeutics AG Multispecific antibodies having specificity for ror1 and cd3
CN114539411B (zh) * 2022-04-29 2022-11-11 山东博安生物技术股份有限公司 一种ror1抗体或其抗原结合片段

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
US4980286A (en) 1985-07-05 1990-12-25 Whitehead Institute For Biomedical Research In vivo introduction and expression of foreign genetic material in epithelial cells
US4880078A (en) 1987-06-29 1989-11-14 Honda Giken Kogyo Kabushiki Kaisha Exhaust muffler
CA2018248A1 (en) 1989-06-07 1990-12-07 Clyde W. Shearman Monoclonal antibodies against the human alpha/beta t-cell receptor, their production and use
AU6290090A (en) 1989-08-29 1991-04-08 University Of Southampton Bi-or trispecific (fab)3 or (fab)4 conjugates
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
DE69232706T2 (de) 1991-05-01 2002-11-28 Jackson H M Found Military Med Verfahren zur behandlung infektiöser respiratorischer erkrankungen
DE69233482T2 (de) 1991-05-17 2006-01-12 Merck & Co., Inc. Verfahren zur Verminderung der Immunogenität der variablen Antikörperdomänen
GB9112536D0 (en) 1991-06-11 1991-07-31 Celltech Ltd Chemical compounds
WO1994004679A1 (en) 1991-06-14 1994-03-03 Genentech, Inc. Method for making humanized antibodies
GB9115364D0 (en) 1991-07-16 1991-08-28 Wellcome Found Antibody
CA2078539C (en) 1991-09-18 2005-08-02 Kenya Shitara Process for producing humanized chimera antibody
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
US5733743A (en) 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
GB9225453D0 (en) 1992-12-04 1993-01-27 Medical Res Council Binding proteins
US5934272A (en) 1993-01-29 1999-08-10 Aradigm Corporation Device and method of creating aerosolized mist of respiratory drug
US6180377B1 (en) 1993-06-16 2001-01-30 Celltech Therapeutics Limited Humanized antibodies
US6019968A (en) 1995-04-14 2000-02-01 Inhale Therapeutic Systems, Inc. Dispersible antibody compositions and methods for their preparation and use
US6265150B1 (en) 1995-06-07 2001-07-24 Becton Dickinson & Company Phage antibodies
PT885002E (pt) 1996-03-04 2011-07-14 Massachusetts Inst Technology Materiais e métodos para aumento da internalização celular
US5855913A (en) 1997-01-16 1999-01-05 Massachusetts Instite Of Technology Particles incorporating surfactants for pulmonary drug delivery
US5874064A (en) 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US5985309A (en) 1996-05-24 1999-11-16 Massachusetts Institute Of Technology Preparation of particles for inhalation
US5922845A (en) 1996-07-11 1999-07-13 Medarex, Inc. Therapeutic multispecific compounds comprised of anti-Fcα receptor antibodies
WO1998023289A1 (en) 1996-11-27 1998-06-04 The General Hospital Corporation MODULATION OF IgG BINDING TO FcRn
CA2277801C (en) 1997-01-16 2002-10-15 Massachusetts Institute Of Technology Preparation of particles for inhalation
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
DE19819846B4 (de) 1998-05-05 2016-11-24 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Multivalente Antikörper-Konstrukte
JP2002518432A (ja) 1998-06-24 2002-06-25 アドバンスト インハレーション リサーチ,インコーポレイテッド 吸入器から放出される大多孔性粒子
JP5179689B2 (ja) 2000-02-11 2013-04-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 抗体ベース融合タンパク質の循環系内半減期の増強
WO2002002781A1 (en) 2000-06-30 2002-01-10 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Heterodimeric fusion proteins
EP1355919B1 (en) 2000-12-12 2010-11-24 MedImmune, LLC Molecules with extended half-lives, compositions and uses thereof
US6833441B2 (en) 2001-08-01 2004-12-21 Abmaxis, Inc. Compositions and methods for generating chimeric heteromultimers
ATE346866T1 (de) 2001-09-14 2006-12-15 Affimed Therapeutics Ag Multimerische, einzelkettige, tandem-fv- antikörper
ATE483472T1 (de) 2002-05-30 2010-10-15 Macrogenics Inc Cd16a bindungsproteine und verwendung zur behandlung von immunkrankheiten
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
AU2004290070A1 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. Neonatal Fc receptor (FcRn)-binding polypeptide variants, dimeric Fc binding proteins and methods related thereto
ES2364147T3 (es) 2004-01-16 2011-08-25 Regeneron Pharmaceuticals, Inc. Polipéptidos de fusión capaces de activar receptores.
EA010350B1 (ru) 2004-06-03 2008-08-29 Новиммун С.А. Антитела против cd3 и способы их применения
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
AU2006232310B9 (en) 2005-04-06 2011-07-21 Ibc Pharmaceuticals, Inc. Improved stably tethered structures of defined compositions with multiple functions or binding specificities
JP5011277B2 (ja) 2005-04-06 2012-08-29 アイビーシー・ファーマシューティカルズ・インコーポレーテッド ホモダイマー、ホモテトラマーまたはダイマーのダイマーのからなる安定に連結された複合体を発生させるための方法および使用
CA2605024C (en) 2005-04-15 2018-05-22 Macrogenics, Inc. Covalent diabodies and uses thereof
US9963510B2 (en) 2005-04-15 2018-05-08 Macrogenics, Inc. Covalent diabodies and uses thereof
US9284375B2 (en) 2005-04-15 2016-03-15 Macrogenics, Inc. Covalent diabodies and uses thereof
GB0510790D0 (en) 2005-05-26 2005-06-29 Syngenta Crop Protection Ag Anti-CD16 binding molecules
US7612181B2 (en) 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
CN101370525B (zh) 2005-08-19 2013-09-18 Abbvie公司 双重可变结构域免疫球蛋白及其用途
JP5231231B2 (ja) 2005-10-19 2013-07-10 アイビーシー・ファーマシューティカルズ・インコーポレーテッド 複雑性が増大した生理活性アセンブリーを生成するための方法および組成物ならびに使用
WO2007075270A2 (en) 2005-12-16 2007-07-05 Ibc Pharmaceuticals, Inc. Multivalent immunoglobulin-based bioactive assemblies
AR060070A1 (es) 2006-03-24 2008-05-21 Merck Patent Gmbh Dominios proteicos heterodimericos obtenidos por ingenieria
KR101571027B1 (ko) 2006-06-12 2015-11-23 이머전트 프로덕트 디벨롭먼트 시애틀, 엘엘씨 효과기 기능을 갖는 단일쇄 다가 결합 단백질
AT503902B1 (de) 2006-07-05 2008-06-15 F Star Biotech Forsch & Entw Verfahren zur manipulation von immunglobulinen
AT503889B1 (de) 2006-07-05 2011-12-15 Star Biotechnologische Forschungs Und Entwicklungsges M B H F Multivalente immunglobuline
PL2059533T3 (pl) 2006-08-30 2013-04-30 Genentech Inc Przeciwciała wieloswoiste
MX2009010611A (es) 2007-04-03 2010-03-26 Micromet Ag Enlazadores biespecificos, especificos para especies.
CN101821288A (zh) 2007-06-21 2010-09-01 宏观基因有限公司 共价双抗体及其用途
AU2008282218A1 (en) 2007-07-31 2009-02-05 Medimmune, Llc Multispecific epitope binding proteins and uses thereof
EP2113255A1 (en) 2008-05-02 2009-11-04 f-star Biotechnologische Forschungs- und Entwicklungsges.m.b.H. Cytotoxic immunoglobulin
EP2282770B1 (en) 2008-06-04 2018-03-07 MacroGenics, Inc. Antibodies with altered binding to fcrn and methods of using same
WO2010028797A1 (en) 2008-09-10 2010-03-18 F. Hoffmann-La Roche Ag Multivalent antibodies
WO2010028796A1 (en) 2008-09-10 2010-03-18 F. Hoffmann-La Roche Ag Trispecific hexavalent antibodies
WO2010028795A1 (en) 2008-09-10 2010-03-18 F. Hoffmann-La Roche Ag Multivalent antibodies
KR101940059B1 (ko) 2008-12-19 2019-01-18 마크로제닉스, 인크. 공유결합형 디아바디 및 이의 용도
MA33198B1 (fr) 2009-03-20 2012-04-02 Genentech Inc Anticorps anti-her di-spécifiques
AU2010252284A1 (en) 2009-05-27 2011-11-17 F. Hoffmann-La Roche Ag Tri- or tetraspecific antibodies
US8277919B2 (en) 2009-07-23 2012-10-02 VMO Systems, Inc. Reflective coating for an optical disc
US20120282177A1 (en) * 2009-11-02 2012-11-08 Christian Rohlff ROR1 as Therapeutic and Diagnostic Target
GB201000467D0 (en) 2010-01-12 2010-02-24 Ucb Pharma Sa Antibodies
ES2582001T3 (es) 2010-02-25 2016-09-08 Affimed Gmbh Molécula que se une a antígeno y usos de la misma
US20110206672A1 (en) 2010-02-25 2011-08-25 Melvyn Little Antigen-Binding Molecule And Uses Thereof
ES2617777T5 (es) 2010-04-23 2022-10-13 Hoffmann La Roche Producción de proteínas heteromultiméricas
US9527926B2 (en) 2010-05-14 2016-12-27 Rinat Neuroscience Corp. Heterodimeric proteins and methods for producing and purifying them
WO2012009544A2 (en) 2010-07-14 2012-01-19 Amgen Inc. Domain insertion immunoglobulin
ES2667100T3 (es) 2010-08-02 2018-05-09 Macrogenics, Inc. Diacuerpos covalentes y sus usos
EP2635607B1 (en) 2010-11-05 2019-09-04 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
ES2703780T3 (es) 2011-05-17 2019-03-12 Trion Res Gmbh Preparación de una vacuna que contiene anticuerpos trifuncionales con propiedades potenciadoras de la inmunogenicidad del antígeno
RS58765B1 (sr) 2011-05-21 2019-06-28 Macrogenics Inc Cd3-vezujući molekuli sposobni za vezivanje za humani i nehumani cd3
AU2012259162C1 (en) 2011-05-21 2020-05-21 Macrogenics, Inc. Deimmunized serum-binding domains and their use for extending serum half-life
WO2012162583A1 (en) 2011-05-26 2012-11-29 Ibc Pharmaceuticals, Inc. Design and construction of novel multivalent antibodies
WO2013003647A2 (en) 2011-06-28 2013-01-03 Sea Lane Biotechnologies, Llc Multispecific stacked variable domain binding proteins
US20140155581A1 (en) 2011-07-06 2014-06-05 Medimmune, Llc Methods For Making Multimeric Polypeptides
US9920438B2 (en) 2011-07-07 2018-03-20 Massachusetts Institute Of Technology Methods and apparatus for ultrathin catalyst layer for photoelectrode
CA2842649C (en) 2011-07-22 2020-01-21 Affimed Therapeutics Ag Multivalent antigen-binding fv molecule
EP2776061B1 (en) 2011-11-07 2019-08-14 MedImmune, LLC Multispecific and multivalent binding proteins and uses thereof
AU2013216943B2 (en) 2012-02-10 2018-04-19 Research Corporation Technologies, Inc. Fusion proteins comprising immunoglobulin constant domain-derived scaffolds
WO2013163427A1 (en) 2012-04-25 2013-10-31 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Antibodies to treat hiv-1 infection
RU2014149681A (ru) 2012-05-24 2016-07-20 Ф. Хоффманн-Ля Рош Аг Антитела с множественной специфичностью
WO2014022540A1 (en) 2012-08-02 2014-02-06 Regeneron Pharmaceuticals, Inc. Multivalent antigen-binding proteins
US9487587B2 (en) 2013-03-05 2016-11-08 Macrogenics, Inc. Bispecific molecules that are immunoreactive with immune effector cells of a companion animal that express an activating receptor and cells that express B7-H3 and uses thereof
EP2789630A1 (en) * 2013-04-09 2014-10-15 EngMab AG Bispecific antibodies against CD3e and ROR1
UA116479C2 (uk) * 2013-08-09 2018-03-26 Макродженікс, Інк. БІСПЕЦИФІЧНЕ МОНОВАЛЕНТНЕ Fc-ДІАТІЛО, ЯКЕ ОДНОЧАСНО ЗВ'ЯЗУЄ CD32B I CD79b, ТА ЙОГО ЗАСТОСУВАННЯ
EP2840091A1 (en) 2013-08-23 2015-02-25 MacroGenics, Inc. Bi-specific diabodies that are capable of binding gpA33 and CD3 and uses thereof
NZ726514A (en) 2014-05-29 2019-01-25 Macrogenics Inc Tri-specific binding molecules and methods of use thereof
AU2015295349B2 (en) * 2014-07-29 2020-09-24 Cellectis ROR1(NTRKR1)specific chimeric antigen receptors for cancer immunotherapy
WO2016094873A2 (en) * 2014-12-12 2016-06-16 Emergent Product Development Seattle, Llc Receptor tyrosine kinase-like orphan receptor 1 binding proteins and related compositions and methods

Also Published As

Publication number Publication date
US20170233472A1 (en) 2017-08-17
UY37127A (es) 2017-08-31
WO2017142928A1 (en) 2017-08-24
AR108034A1 (es) 2018-07-11

Similar Documents

Publication Publication Date Title
US11840571B2 (en) Methods of using bispecific molecules having immunoreactivity with PD-1 and CTLA-4
US20170233472A1 (en) ROR1-Binding Molecules, and Methods of Use Thereof
JP6647222B2 (ja) 三重特異性結合分子及びその使用方法
JP2019517539A (ja) 併用療法
TW201702265A (zh) 結合lag-3的分子和其使用方法
WO2016122701A1 (en) Anti-dr5 antibodies and molecules comprising dr5-binding domains thereof
TW202000231A (zh) 變體cd3-結合結構域及其在用於治療疾病的組合療法中的用途
TW201938192A (zh) 雙特異性cd16-結合分子及其在疾病治療中的用途
US20220324995A1 (en) ADAM9-Binding Molecules, and Methods of Use Thereof
JP7378567B2 (ja) Lag‐3結合分子及びその使用方法
NZ782254A (en) Bispecific molecules having immunoreactivity with pd-1 and ctla-4, and methods of use thereof
EA043373B1 (ru) Биспецифичные молекулы, обладающие иммунореактивностью в отношении pd-1 и ctla-4, и способы их применения